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ABSTRACT

In light of rapidly expanding road networks worldwide, there is increasing global awareness of the growing amount of
mammalian roadkill. However, the ways in which road mortality affects the population dynamics of different species
remains largely unclear. We aimed to categorise the demographic parameters in mammalian populations around the
world that are directly or indirectly affected by road mortality, as well as identify the most effective study designs for quan-
tifying population-level consequences of road mortality. We conducted a comprehensive systematic review to synthesise
literature published between 2000 and 2021 and out of 11,238 unique studies returned, 83 studies were retained com-
prising 69 mammalian species and 150 populations. A bias towards research-intensive countries and larger mammals
was apparent. Although searches were conducted in five languages, all studies meeting the inclusion criteria were in
English. Relatively few studies (13.3%) provided relevant demographic context to roadkill figures, hampering under-
standing of the impacts on population persistence. We categorised five direct demographic parameters affected by road
mortality: sex- and age-biased mortality, the percentage of a population killed on roads per year (values up to 50% were
reported), the contribution of roadkill to total mortality rates (up to 80%), and roadkill during inter-patch or long-
distance movements. Female-biased mortality may be more prevalent than previously recognised and is likely to be
critical to population dynamics. Roadkill was the greatest source of mortality for 28% of studied populations and both
additive and compensatory mechanisms to roadkill were found to occur, bringing varied challenges to conservation
around roads. In addition, intra-specific population differences in demographic effects of road mortality were common.
This highlights that the relative importance of road mortality is likely to be context specific as the road configuration and
habitat quality surrounding a population can vary. Road ecology studies that collect data on key life parameters, such as
age/stage/sex-specific survival and dispersal success, and that use a combination of methods are critical in understanding
long-term impacts. Quantifying the demographic impacts of road mortality is an important yet complex consideration
for proactive road management.
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survival.
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I. INTRODUCTION

Recent estimates suggest that there are 21.6 million kilometres
of roads globally, with an expected increase of 14-23% in road
length by 2050 (Meijer et al., 2018). Consequently, many con-
servation biologists argue that the effects of roads on wild ani-
mal populations are one of the most pressing contemporary
conservation issues (Ibisch e al., 2016; Barrientos et al., 2021).
Whilst roads cause substantial habitat loss, fragmentation, pol-
lution (light, noise, chemical) and changes in animal move-
ment (Carvalho et al, 2018), the mortality caused by
wildlife-vehicle collisions (WVCis) is perhaps the most obvious
impact and has therefore received particular attention. Road
mortality 1s considered one of the largest contributors to wild
vertebrate mortality globally and, unlike other forms of direct
anthropogenic mortality, it affects individuals irrespective of
their body size, physical condition, and conservation status
(Hill, DeVault & Belant, 2019).

Raw counts of the numbers of animals killed per unit
length of road (hereafter ‘roadkill’) have been published for
a broad range of vertebrate taxa. However, these raw counts
alone provide little information about the impacts of WVCs
on populations (Grilo et al., 2021). Instead, roadkill counts
need to be considered in relation to population demography.
With this context, it is then possible to avoid simplistic or
erroneous conclusions that a high roadkill rate is inevitably
debilitating for a population or that low levels of road mortal-
ity are not negatively impacting populations (Ramp &
Ben-Ami, 2006; Grilo et al., 2021). In addition, impacts of

road mortality are likely to be confounded by other forms
of change around roads, such as habitat modification
(Chambers & Bencini, 2010) and road effect zones (Ibisch
et al., 2016). To disentangle road mortality from other road
impacts, demographic parameters must be quantified to
reveal the relative importance of road mortality and if/how
road mortality might be responsible for the observed popula-
tion dynamics. For example, Jaeger & Fahrig (2001) and
Ceia-Hasse ef al. (2018) used individual-based models of
‘virtual’ species and demonstrated that road mortality is
likely to have a greater impact on population persistence than
barrier effects because of the cumulative depletion of individ-
uals and lower connectivity when roadkill rates were high.
Finally, by using population dynamics, studies can identify
populations most at risk from roads and the specific threats
against those populations, such that conservation strategies
and actions can be defined and prioritised.

Approximately 27% of mammalian species are considered
to be threatened with extinction (IUCN, 2020). However,
most theoretical and empirical studies on the demographic
mmpacts of road mortality to date have focused on reptiles
and birds. For example, Borda-de-Agua, Grilo & Pereira
(2014) developed a stochastic, age-structured model and
found that an annual road mortality rate of 5% can reduce
barn owl (Iyto alba) populations to half their original size in
50 years. Population declines and/or biased population sex
ratios resulting from even relatively low rates of female road
mortality have been described for black ratsnakes (Elaphe
obsoleta) (Row, Blouin-Demers & Weatherhead, 2007) and
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freshwater turtles (Aresco, 2005). Like birds and herpetofauna,
several mammalian groups, particularly small mammals and
generalist carnivores, actively use roads as corridors for dis-
persal, routine movements or scavenging opportunities
(Kautz et al., 2021; Galantinho ¢t al., 2022). In doing so, indi-
viduals face an increase in the likelihood of vehicle collisions
(Serieys et al., 2021). Unlike other taxa however, vehicle colli-
sions with mammals have shown a pronounced increase over
time in response to a growing human footprint (Hill
et al., 2019). Moreover, hotspots of mammal roadkill are glob-
ally widespread (e.g. Coalition for Sonoran Desert
Protection, 2022; Fahrig & Rytwinski, 2009) and Grilo et al.
(2021) identified several regions where mammalian biodiver-
sity may be lost due to the influence of existing transport infra-
structure. Mammalian road mortality therefore remains a
crucial area of study for conservationists.

Scientifically rigorous research into the demographic
impacts of road mortality is key to influencing road planning
decisions (Roedenbeck et al., 2007). Sound research is also
essential to justify recent and future mitigation projects, espe-
cially for large-scale, expensive measures that are often tar-
geted at medium and large mammalian species (Huijser
et al., 2009). Using study designs capable of producing field
data with evidential weight, however, can be challenging.
The demography of a population can be poorly understood,
obtaining roadkill data can be time-consuming and expensive,
and accuracy can decline because of low carcass persistence
for several taxa (Santos et al., 2016). This particularly applies
to taxa with small body sizes, such as small mammals
(e.g. mice, voles and bats), which not only have lower detect-
ability on roadkill surveys but have shorter persistence times
compared to many taxa due to the ease of being scavenged
(Ruiz-Capillas, Mata & Malo, 2015). Small sample sizes fur-
ther preclude insight into long-term impacts on the structure
and sustainability of populations. In general, there is a trade-
off between spending resources to understand one population
thoroughly, or several populations inadequately. As a result,
guidance on how to design and maximise outputs from road
mortality studies remains an important yet unfulfilled goal.

Although it is generally accepted that road mortality affects
populations to some extent (Rytwinski & Fahrig, 2015), the lit-
erature 1s lacking a clear consensus on how road mortality
affects the persistence of populations. This systematic review
aimed to synthesise and categorise the direct and indirect
demographic parameters in mammalian populations around
the world that are affected by road mortality, as well as identify
the study designs with the greatest inferential strength for
assessing road mortality impacts at the population scale. By
using a standardised systematic review protocol, existing
knowledge can be gathered in an unbiased and comprehensive
overview. The extent to which a road affects population persis-
tence may depend on the particular circumstances, such as
road density, species behaviour, species-specific habitat qual-
ity, and other threats (Roedenbeck ¢t al., 2007). Therefore,
the scope of the present systematic review was kept global
and broad to synthesise the results from studies conducted
under a variety of circumstances. A focus on mammals is not

1035

only critical for their conservation, given the increasing threat
of extinction of many mammalian populations, the wide
range of mammalian life-history strategies provides valuable
insight into different, simultaneous mechanisms affecting
population resilience or vulnerability to road mortality (Grilo
etal.,2021). Recognising the demographic parameters affected
by road mortality, or alternatively how populations cope
under additional mortality, allows wildlife managers and con-
servationists to make transparent, quantitative, and informed
decisions. Moreover, an understanding of robust study designs
1s imperative to build a strong evidence base for the targeted
and effective actions around roads that are sorely needed.

II. MATERIALS AND METHODS

(1) Literature search

Following the identification of a relevant topic, research aims
were developed in consultation with external subject experts
in the scoping phase of the review. Experts included
researchers, ecological consultants, and non-governmental
organisations working in mammal conservation, road ecology,
and/or road safety, including Mott MacDonald (consultancy:
international; https://www.mottmac.com/), Rimba (non-
governmental organisation: Asia; https://rimba.ngo/) and
National Highways (government-owned company: England,;
https://nationalhighways.co.uk/). Following the guidelines
proposed by the Collaboration for Environmental Evidence
(CEE) (Pullin & Stewart, 2006), we performed a systematic lit-
erature search for studies around the world that documented
mammal-vehicle collisions and that also provided information
relevant to population demography. The CEE guidelines were
chosen to enable standardised subject-specific identification of
evidence to support conservation practise and road manage-
ment. The literature search was conducted in April 2021,
using two electronic databases: Scopus and Web of Science Core
Collection®. Importantly, Web of Science incorporates several
regional databases that allow searches for non-English-
language literature. The search was created by a thorough
scoping of the literature and a benchmarking process. The fol-
lowing Boolean search string was used in each database: (road-
kill OR road-kill OR ‘road kill’) OR (mortalit* OR fatalit*
OR strike OR collision AND anthropogenic OR vehicle OR
road OR highway OR traffic OR motorway OR freeway
OR expressway) AND (survival OR population OR viability
OR threat OR decline OR extinction OR extirpation OR
depletion OR dispers* OR movement OR migrat* OR gen-
et*) AND NOT (vessel OR boat). The search was performed
in English, French, Spanish, Portuguese, and Brazilian Portu-
guese (see online Supporting Information, Table S1), and no
country limitations were applied. To ensure objective and
comprehensive coverage, we included studies published in
any print outlet as well as multi-taxa studies that may have rel-
evant mammalian demographic data amongst that of other
taxa. The search was restricted to publications reporting data

Biological Reviews 98 (2023) 1033-1050 © 2023 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical

Society.

351801 SUOWILLIOD SAIER.D 3]0 [dde Uy Ag pauLBA0B a2 SBPIL WO '8N 0S8N 104 ARRIGIT SUIIUO AB]IM UO (SUONIPUOO-PLE-SUWLBY/LIOD™AB 1M ARG [BU 1UO//Sd1Y) SUORIPUOD PUE LWL L 34} 885 *[SZ02/60/TT] U0 ARiqITBUIIUO ABIM 52 L Ad Z¥62T A TTTT 0T/I0p/W0D" &3] 1M Asic 1 pUIUO//SANY WOl papeouMOq ‘% ‘EZ0Z ‘XSBTEYT


https://www.mottmac.com/
https://rimba.ngo/
https://nationalhighways.co.uk/

1036

from 2000 to 2021, inclusive, to account for the drastic histor-
ical increase in global traffic volume (Schafer & Victor, 2000).
However, traffic volume has continued to increase annually
and no comparisons were made between studies based on
the relationship between traffic volume and road mortality
impacts.

In addition, the first 400 results of an advanced title search
using the same search string on the meta-search engine Google
Scholar were also checked for relevance to increase grey litera-
ture returns, particularly in the non-English language literature
(Haddaway et al., 2015). We also searched for papers, confer-
ence proceedings and technical reports published on additional
online platforms, including conferences such as the Interna-
tional Conference on Ecology and Transportation (ICOET)
and from road ecology centres such as the Western Transpor-
tation Institute. Thesis repositories of Ethos (UK) and ProQuest
(worldwide) were used to search for relevant theses.

(2) Screening and inclusion criteria

All selected studies were subject to a stepwise selection pro-
cess. Before screening for relevance, all studies were screened
for duplicate data sets between sources with the most com-
plete sources selected. Studies were then selected for inclu-
sion using the a priort criteria based on consultation with
experts shown in Table 1.

We assessed scientific studies for inclusion at three succes-
sive levels: first on titles (N = 11,238), then abstracts
(N=1,025), and finally full texts (V= 624). If a study investi-
gated more than one taxon, species, or demographic param-
eter, all mammalian species and parameters were considered
and data on each were obtained separately. Table 2 lists the
inclusion and exclusion criteria applied at the full-text stage.
Kappa analysis was used to verify the level of reviewer agree-
ment on article inclusion at the third screening stage between
two reviewers (L.J.M. and RW.Y.). A random subsample of
10% of the studies was used (Kappa = 0.63, indicating ‘sub-
stantial agreement’ sensu Landis & Koch, 1977). There was
82% agreement between the two reviewers on the random

Table 1. A priori criteria used to select studies for inclusion
during the systematic review.

A priort criteria

Population Wild mammal population in any country.

Intervention  Road collisions leading to the mortality of a
mammalian animal. Any road type was
considered.

Comparator  No comparator, gradient, or Before—After—
Control-Impact (BACI) methods were necessary
for inclusion.

Outcome Any effect on population biology, including (but not
limited to) per capita mortality, age/stage/sex-
specific mortality, reproductive rates, movement,
growth rates, genetic structure.

Types of Any empirical study or simulation using real-world

study data.

Lauren J. Moore and others

Table 2. List of inclusion/exclusion criteria at the full-text stage
during the systematic search.

Criteria

Included in the final
set of papers

Original research — studies that
presented empirical data on road
mortality with any demographic data.
This included simulation studies if
using real data, either collected by the
authors or from existing literature post-
2000.

Systematic data collection — road
mortality figures collected in a
systematic manner or from monitoring
wild populations (e.g. via radio-collars)
to ensure accuracy of collated data.
Papers were excluded if they were not
explicit about data-collection methods.

Road mortality only — studies that
assessed the impacts caused by roads,
excluding other transportation
infrastructure such as railways. Data
were only included if reports of road
mortality were presented separately
from other transport collisions.

Public invelvement — studies using
records that were reliant on public
involvement, such as from rescue
centres, wildlife hospitals or citizen
science, because of potential recorder
Inaccuracies, spatial auto-correlation
and/or non-exhaustive samples due to
an unknown, variable, and unbalanced
sampling effort.

Lack of population context — reports
of sex- and age-specific roadkill or
spatiotemporal roadkill patterns with
no population context, such as
population size, sex- or age-ratio.

Outside of desired time period —
studies that reported data spanning
pre- and post-2000 and that could not
be separated for quantitative analyses.

Opportunistic data — studies that
reported on roadkill data collected
systematically and opportunistically
but did not separate the data.

Literature reviews — including meta-
analyses.

Excluded from the
final set of papers

subsample of studies. As appropriate inter-rater agreement
for systematic reviews is regarded to be >80%, sufficient
comparability between reviewers was achieved for this litera-
ture search (McHugh, 2012).

(3) Data extraction, qualitative synthesis, and
quantitative analyses

Meta-data, such as species, conservation status, and country,
were tabulated for each relevant research study found.
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Relevant information relating to the road mortality and
demographic parameters of studied populations was identi-
fied and subsequently categorised into direct or indirect
parameters based on established demographic theory and
further sub-categorised (Krebs, 2009). Categories were for-
mulated once the relevant studies meeting the inclusion cri-
teria for this review had been identified. Study designs were
similarly categorised after identifying the relevant studies. A
narrative synthesis was undertaken using tables and figures
that describe the evidence base itself and the findings of indi-
vidual studies. To standardise data extraction from the vari-
ety of study designs, the proportion of a population killed on
roads was calculated per year for each population for which
relevant data were provided. Chi-squared tests were used
to quantify the presence or absence of sex- or age-biases in
the roadkill records relative to the source population.

III. RESULTS

(1) Overall results from the scientific literature

The search identified 15,298 studies, totalling 11,238 when
duplicates were removed. Of these, 624 were assessed at
the full-text stage and 83 studies (13.3% of the 624 studies)
met the inclusion criteria and were retained for analyses.
The main reason for exclusion of studies was that they lacked
demographic data to accompany the road mortality figs
(259 studies). Details on the search, screening and quality
assessment results are summarised in Fig. 1.

)
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Although the literature search was conducted in five
languages, all studies meeting the inclusion criteria were in
English. During abstract screening, 5.1% (N = 52) of studies
or, as a minimum their abstracts, were in non-English lan-
guages, including French (V¥ = 16), Brazilian Portuguese
(N = 14), Spanish (N = 12), German (N = 7), Croatian
(N =1), Dutch (N = 1), and Russian (¥ = 1). In addition,
2.6% (N = 16) of full texts screened had the whole text or
abstract in Spanish (N = 7), Brazilian Portuguese (N =5) or
French (V= 4). The reasons for the exclusion of these non-
English language studies followed the same pattern as the
studies in English (Fig. 1). The most common type of docu-
ment was journal article (VM = 75), followed by PhD thesis
(N'=13), technical or government report (V= 3), book chapter
(V=1), and conference proceeding (V= 1). The studies were
collated from 22 countries with the majority (57.8%) from
North America (Fig. 2).

The studies retained for analysis reported data on 69 mam-
malian species from 10 taxonomic orders (Fig. 3). Out of the
69 species identified, 54 are categorised as Least Concern, five
are Near Threatened, four are Vulnerable and six are Endan-
gered (IUCN, 2021). The review revealed a variable but over-
all increasing number of publications reporting mammalian
road mortality and demography between 2000 and 2021,
ranging between one and nine papers published each year.

We categorised nine research methods amongst the identi-
fied studies (see Table S2 for identified advantages and disad-
vantages of these methods). The most common methods were
radio-tracking only (V= 52) and year-round population mon-
itoring only (N = 10). Thirteen studies combined systematic

Records identified through Records identified

5 database searching: through additional

§ .MZ:;) ﬁ?%f,,,inczgélze on"ni;)r:?ggnnéz (eg. Duplicates excluded ]

& Collection (N = 6124) 5 (N'=4,060)

b 5 roceedings, road

|| +Google Scholar (N = 400) P !

S (N = 15,203) ecology websites)

(N=5)
() Records screened Records excluded
‘ by title 74’{ (N=10,213)

2 (N =11,238)

[=

§ Records screened by Records excluded

3 abstract —4 (N = 401) ‘

(N = 1,025)

- mll-text articles excluded, with reasons (N = 54%
@) *No relevant demographic context (N = 259)

E . *No mortality or road mortality reported (N = 90)
e Full-text articles +Did not separate out road mortality from other
= assessed for eligibility factors (e.g. railroads) (N = 49)

w (N = 624) *Data was pre-2000 or pre and post-2000 data was
— not separated out (N = 48)

3 *Unsuitable or unsystematic methods (N = 46)

B Studies included in *Incomplete data (N = 45)

° qualitative synthesis *Data reported in multiple studies (N = 4)
£ (N =83) k /

Fig. 1. Literature search and screening flow diagram of studies included and excluded from the systematic review.
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Fig. 2. Locations of the 83 studies included in the qualitative synthesis. Coloured points represent the centroid location of each study.

roadkill surveys with another survey method, including () a
one-time population estimate (N = 6), () radio-tracking
(V=1), () population monitoring (N'= 1), (i) secondary pop-
ulation data (i.e. published population size estimates) (N = 3),
(v) both radio-tracking and population estimate (V= 1). Two
population estimates were conducted using genetic finger-
printing from hairs. Studies also combined population moni-
toring and radio-tracking (N = 3), and utilised simulations
(V= 6) such as Population Viability Analyses. The average
sample size for a radio-tracked population was 93 individuals
(range: 2-492). Seven studies used Before—After (N = 2) and
Control-Impact (V = 5) experimental designs but none used
a Before-After-Control-Impact (BACI) design. Excluding
simulation studies, study duration increased over time and
ranged between less than 1 year to 17 years; four studies
(5.2%) were less than 1 year in length, 52 studies (67.5%) were
1-5 years in length, 17 studies (22.1%) were 6-10 years in
length, and four studies (5.2%) were 11-17 years in length.
Five direct and three indirect demographic parameters
were identified in relation to road mortality (Table 3). Over-
all, 87.2% of the studies identified reported direct

demographic effects of road mortality on the focal popula-
tions, whilst 12.8% reported indirect demographic effects of
road mortality.

(2) Description of direct demographic parameters
(a) Percentage of a population killed on roads per year

Mortality on roads accounted for 0.02 to 50.0% of the local
populations per year based on 61 studies, 40 species, and
85 populations. Twenty-six studies reported an annual
loss of up to 1% on roads, 38 studies reported a loss of 1.1-
5.0%, 14 studies reported a loss of 5.1-10.0%, four studies
reported aloss of 10.1-20.0%, and the remaining three stud-
ies reported a loss of 30.0-50.0% from the population. Split
by taxon, the percentage of the population killed on roads
was greatest for Dasyuromorphia (quolls Dasyurus spp., Tas-
manian devils Sarcophilus harrisii) and lowest for Cetartiodac-
tyla (even-toed ungulates) (Fig. 4A). Intra-specific
populations differed in the proportion of the population lost
on roads annually. For example, white-tailed deer (Odocotleus
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Carnivora

Cetartiodactyla — even-toed ungulates
Diprotodontia — kangaroos, koalas
Rodentia

Pilosa — anteaters, sloths

Dasyuromorphia — quolls, Tasmanian devils
Primates

Lagomorpha — hares, rabbits
Didelphimorphia — opossums

Eulipotyphla — hedgehogs, moles, shrews
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30 10 10 30 50 70
Percentage

Studies retained by the search B Species retained by the search

Fig. 3. Percentage and numbers of studies and species included in the systematic review, by taxon. Note that some studies reported

data on several species. Various Artists/ Shutterstock.com.

Table 3. Descriptions of the eight parameters categorised from the 83 papers retrieved during the systematic review.

Number of studies

Demographic parameters

Description

(percentage of
studies)*

Direct

Indirect

Percentage of a population
killed on roads per year

Contribution to total
mortality

Sex-biased road mortality

Age-biased road mortality

Roadkill during inter-patch
or long-distance
movements

Population growth rates

Population persistence

Genetic diversity

The number of individuals killed on roads as a percentage of the total
population per year.

The contribution of road mortality deaths relative to the total mortality
rate in a set time period, such as a year.

The ratio of males: females found killed on roads relative to the sex ratio
in the population (i.e. whether one sex is killed on roads more than
expected given their prevalence in the population). A significant chi-
squared result was considered to represent a bias.

The ratio of adults: sub-adults: juveniles found killed on roads relative to
the age ratio in the population. A significant chi-squared result was
considered to represent a bias.

Road mortality interfering with the success of movement-related
behaviour that is not part of day-to-day activities (e.g. foraging), such
as mortality during known dispersal events or migration.

Temporal changes to population growth rate because of animals
removed by road mortality.

The extent to which road mortality impacts the persistence of
populations.

Changes to the heterozygosity within/between populations as a result of
road mortality.

61 (36.1%)
58 (34.3%)

16 (9.5%)

13 (7.7%)

7 (4.1%)

7 (4.1%)
5 (3.0%)

2 (1.2%)

*Note that several papers reported on more than one demographic parameter.

virgimianus) had an 11.5-fold difference in proportional loss
across four studies, whilst the annual proportional loss of
beech martens (Martes foina) ranged from 1.11 to 33.0%
between two studies (T'able S3). In one study of six popula-
tions of American black bear (Ursus americanus) in Florida,
USA, annual proportional loss ranged between 0.76 and
11.49% (Simek et al., 2005).

(b) Contribution to total mortality

Between 1.1% and 80.0% of a population’s total known mor-
tality was due to roadkill out of 58 studies, 35 species, and
69 populations. Thirty-two studies reported a 1.0-15.0%
contribution from road mortality to total mortality, 16 studies
reported a 15.1-30.0% contribution, nine studies reported a
30.1-45.0% contribution, six studies reported a 45.1-60.0%
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A Mean percentage of a population killed on roads per year

Dasyuromorphia — quolls, Tasmanian devils (N = 2) [ |

Diprotodontia — kangaroos, koalas (N =1)
Rodentia (N = 3)
Carnivora (N = 45)
Lagomorpha — hares, rabbits (N = 3)
Eulipotyphla — hedgehogs, moles, shrews (N =1)

Didelphimorphia — opossums (N = 1) ]
Cetartiodactyla — even-toed ungulates (N = 29)
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B Mean contribution of road mortality to total mortality
Didelphimorphia — opossums (N = 1) ]
Primates (N =2) A
Rodentia (N =3) |
Carnivora (N=29) |1 |
Eulipotyphla — hedgehogs, moles, shrews (N =1)
Lagomorpha — hares, rabbits (N = 2)
Cetartiodactyla — even-toed ungulates (N = 31)
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m Carnivora 1 Didelphimorphia — opossums M Lagomorpha — hares, rabbits
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C sex-biased road mortality
(N =20)
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D Age-biased road mortality

(N =15)
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Fig. 4. Results from four direct demographic parameters identified by the systematic search. The number of studied populations is
provided in brackets. (A) Mean percentage of studied populations killed on roads. (B) Mean contribution of road mortality to total
mortality for the studied populations. (C) Percentage of populations with male-biased, female-biased and no sex bias to the road
mortality records. (D) Percentage of populations with adult-biased, juvenile-biased and no age bias to the road mortality records.
Error bars in A and B represent +1SD.
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Mammalian road mortality

contribution, and three studies reported a 60.0-80.0% con-
tribution from WVCs to total known mortality. Split by
taxon, the mean contribution of road mortality to total mor-
tality was greatest for Didelphimorphia (opossums) and low-
est for Cetartiodactyla (even-toed ungulates) (Fig. 4B). Data
on cause-specific mortality was provided for 57 populations.
Of these, 28.1% experienced road mortality as the largest
contributor to total mortality, with a further 29.8% and
31.5% of populations experiencing road mortality as their
second and third largest mortality factor, respectively. Other
prevalent causes of mortality were hunting, predation and
disease. Intra-specific population differences were evident
for several Cetartiodactyla species such as elk (Cervus canaden-
sts), mule deer (Odocoileus hemionus) and white-tailed deer, and
Carnivora such as American black bear and puma (Puma con-
color). For example, out of four studies, elk populations had a
20-fold difference in the contribution of road mortality to
total mortality, whilst the contribution differed between six
puma populations by 7.9-fold (Table S3).

(¢) Sex-biased road mortality

Many studies that reported the sex ratio of roadkill
(16 papers, 15 species, 20 populations) did so on small sample
sizes of roadkill and therefore inference power of the results is
low (Fraser et al., 2013). Seven populations (35% of studied
populations) experienced significantly more female road
mortality than would be expected by chance (Fig. 4C; see
Table S3 for chi-squared test results). For example, whilst
female bobcats (Lynx rufus) made up 38% of the radio-
collared population, 75% (N =4 WVCQ) of the roadkill were
females (Serieys et al., 2021). Likewise, common wallaroo
(Osphranter robustus) females were killed more than expected
(observed: 9, expected: 2.4) relative to males (observed:
25, expected: 31.6) (Klocker, Croft & Ramp, 2006). Con-
versely, seven populations (35% of studied populations)
showed significantly male-biased road mortality, although
again with small sample sizes (Fig. 4C; Table S3). For exam-
ple, whilst 42% of American fishers (Pekania pennant) in a pop-
ulation in California, USA, were male, 100% of the roadkill
was male (V=2 WVC) (Sweitzer et al., 2016). Additionally,
six populations (30%) identified in this review did not show
any sex bias of the roadkill. Intra-specific population compar-
isons were possible for three species. Whilst two populations
of red kangaroo (Osphranter rufus) showed the same lack of
bias, two populations of both coyote (Canis latrans) and com-
mon wallaroo showed differing sex biases in their roadkill
records (Table S3).

(d) Age-biased road mortality

Many studies that reported the age ratio of roadkill
(13 papers, 9 species, 15 populations) did so on small sample
sizes of roadkill and therefore inference power of the results is
low (Fraser et al., 2013). Eleven populations (73% of studied
populations) experienced significantly more adult road
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mortality than would be expected by chance (Fig. 4D; see
Table S3 for chi-squared test results). For example, whilst
54% of an American black bear population was comprised
of adults, 100% (N = 11 WVC) of the roadkill was adults
(Tri et al., 2017). In comparison, coyote was the only species
reported where sub-adults in the population were killed more
frequently than would be expected by chance (25% of the
population comprised of subadults, 100% of the roadkill
was subadults, N =2 WVC) (Stevenson ¢t al., 2016). In three
populations (20% of studied populations), adults and juve-
niles were killed on roads in similar proportions to their
populations (Table S3). Intra-specific population compari-
sons were possible for four species. Whilst two populations
of white-tailed deer showed the same adult bias in road mor-
tality, two populations of both coyote and puma showed dif-
fering age biases in their roadkill records. Out of five
American black bear populations across two studies, four
populations showed an adult bias whilst one population
showed no bias in the roadkill records.

() Roadkull during inter-patch or long-distance movements

Seven studies on six species and 14 populations revealed
movement parameters that are directly affected by roadkill.
Two studies compared the routine movements of resident
animals to the exploratory and migratory movements of
translocated animals (Frair ef al., 2007; Wright et al., 2020).
For both elk and mule deer, authors reported that non-
resident animals were more commonly killed on roads com-
pared to residents (Frair et al., 2007; Wright e al., 2020).
Moreover, three studies reported road mortality of dispers-
ing animals (Kanda, 2005; Fey, Hamilainen &
Selonen, 2016; Carvalho e al., 2018). Dispersal movements
were shown to correspond to a heightened road mortality
rate for young common genets (Genetta genetta) (N = 38
WVC) (Carvalho et al., 2018). Two of the three dispersing
rural female Virginia opossums (Didelphis virginiana) were
killed on roads during dispersal movements (Kanda, 2005).
Again, caution is recommended 1n interpreting these results
because of the low inference power derived from small sam-
ple sizes. High road mortality of dispersing animals was not
universally reported. One (3.2%) of the 32 tracked juvenile
red squirrels (Sciurus vulgaris) died during dispersal movements
in Finland, although three other dispersing individuals disap-
peared and traffic mortality remains a possible cause (Fey
et al., 2016). Migration was discussed in one paper: four
(1.1%) out of 359 mule deer were killed in WVCs during
migration in south-central Oregon, USA (Coe ¢t al., 2015).

(3) Description of indirect demographic parameters
(a) Population growth rates

Population growth rates were examined and reported in
seven studies on 20 species and 22 populations. Chambers &
Bencini (2010) examined population growth rates for three
tammar wallaby (Notamacropus eugenii) populations. Road
mortality reduced the population growth rate between
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2005 and 2007 by 1-6% for a population in the relatively
undisturbed southern bushland and 8-16% for populations
in a highly developed neighbouring site. Desbiez, Bertassoni &
Traylor-Holzer (2020) used empirical roadkill data for a
Population Viability Analysis in Brazil and showed that the
road mortality of giant anteaters (Myrmecophaga trdactyla)
decreased the stochastic growth rate of that population by
half. While population growth rates remained over 2% per
year, the population’s ability to withstand and recover
from other anthropogenic threats such as fire and disease
outbreaks was considered to be lower. Three studies collected
empirical data on both road mortality rates and population
growth for 16 populations, including Northern bushbuck
(Tragelaphus scriptus), oribi (Ourebia ourebr), common hippopota-
mus  (Hippopotamus — amphibius) and common warthog
(Phacochoerus ~ africanus) (Belant, 2007; Ruiz-Capillas et al.,
2015; Nyirenda, Namukonde & Fushike, 2017). The road
mortality rates of each of the 16 populations appeared sustain-
able and the population sizes continued to grow over several
years. For example, an American marten (Marles americana)
population experienced 12.5% of its mortality from vehicle
collisions, yet the population size continued to increase at a
rate of 16% per year over 3 years (Belant, 2007).

(b) Population persistence

Population persistence was reported in five studies on three
species and 22 populations. Desbiez ¢t al. (2020) reported that
a loss of 18% of the adult giant anteater population due to
road mortality in the Brazilian Cerrado resulted in a 47%
probability of extinction in 100 years, compared to no extinc-
tion risk over 100 years of a baseline population under no sig-
nificant threats. Desbiez et al. (2020) also reported a difference
in effects based on sex-biased road mortality, whereby female-
only roadkill produced a 46% probability of extinction in
100 years, compared to a 0.1% chance from male-only road-
kill. Diniz & Brito (2013) calculated that if 15% of a giant ant-
eater population in Parque Nacional Brasilia, Brazil, were
killed on roads, the population would reduce in size by 78%
(180 to 40 individuals) in 56 years, followed by local extinc-
tion in <8 years. Finally, Roger, Laffan & Ramp (2011) con-
ducted a sensitivity analysis for common wombats (Vombatus
ursinus) in New South Wales, Australia. Populations with
40% annual road fatality (26.7 individuals + 13.8 SD) pre-
sented high probability (50%) of decline, even for the largest
initial abundance and carrying capacity values.

(¢) Genetic diversity

Genetic diversity was examined in two studies, each examining
a different giant anteater population in Brazil and showing sim-
ilar results. Diniz & Brito (2013) examined the heterozygosity of
giant anteaters in Parque Nacional Brasilia in several roadkill
scenarios. The simulations showed that with 25 individuals
killed per year (15% of the population), most of the original
genetic diversity within the population was maintained. For a
giant anteater population in the Brazilian Cerrado, Desbiez
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et al. (2020) showed that the population at year 100 had 95%
genetic diversity remaining under the present road mortality
scenario. However, genetic diversity was more severely
reduced in simulated populations experiencing road mortality
of both sexes (heterozygosity = 0.798), followed by female-only
mortality (heterozygosity = 0.835), compared to male-only
mortality (heterozygosity = 0.948) (Desbiez et al., 2020).

IV. DISCUSSION

Gathering mammalian demography data is notoriously diffi-
cult (Stenglein et al., 2015). During the stepwise selection pro-
cess, 305 studies were removed because of a lack of
demographic data accompanying roadkill counts or the use
of unsystematic study design, leading to an incomplete or
unreliable data set for population-level assessments. There-
fore, despite intensive global research over the past 20 years,
many critical questions about long-term impacts of road
mortality remain unanswered. We explicitly searched for
and retained studies reporting road mortality impacts on
demographic parameters for this review because we intended
to synthesise data on how road mortality affects populations
and not the extent of road mortality worldwide. As such, this
review draws no conclusions about the number of popula-
tions free from the risk of WVCs, although previous studies
have indicated that most terrestrial populations are vulnera-
ble to vehicle collisions (Barrientos et al, 2021; Hill
et al., 2019). It must be emphasised that several studies iden-
tified in this review are based on small roadkill sample sizes.
This may be a function of the relatively short duration of
many studies and the difficulty in identifying sex from decom-
posed or damaged carcasses. Therefore, it is unclear how
well these results represent the wider population.

Despite our systematic literature search being conducted in
five languages and studies included from 22 countries, studies
that met the inclusion criteria were only in English. This could
be a result of a publication bias towards research-intensive and
developed countries that have a greater prevalence of English
speakers (Nufiez & Amano, 2021), and/or that non-English
studies often have less-robust study designs than the English lit-
erature (Amano ¢t al., 2021). Consequently, the latter may
result in English-language studies being published in higher-
impact journals that stipulate articles to be written in English,
which also have more thorough indexing procedures for well-
known literature search systems compared to non-English
journals (Amano et al., 2021).

(1) Direct demographic parameters
(@) Depletion effects

Many studies identified in this review revealed that road
mortality can remove a large number of animals from the
population compared to population size or other mortality
factors (e.g. Grueber et al., 2017; Seiler, 2003; Lehrer,
Schooley & Whittington, 2012; McCleery et al., 2008).
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In particular, road mortality was the greatest source of mor-
tality for approximately one-third of populations for which
data were provided (N = 16 out of 57 populations). Twelve
of these populations were surrounded by urbanisation or
anthropogenic development, as opposed to natural forests,
savannahs, and National Park for example. This highlights
the well-cited link between urbanisation and additional
anthropogenic mortality (McCleery e al., 2008; Tri
et al., 2017; Wright et al., 2020). Large individual losses on
roads can directly reduce the effective population size and/or
increase mortality rates above recruitment rates, therefore
making populations vulnerable to environmental and demo-
graphic stochasticity, as shown for many species (Carvalho &
Mira, 2011; Roger et al., 2011).

The way in which high roadkill rates shape population
persistence is likely to be nuanced, possibly explaining the
variation in road mortality impacts on intra-species popula-
tions identified in this review. The impacts likely depend on
the suitability of the surrounding environment and associated
background demographic parameters such as population
growth and the potential for compensating mechanisms
(Seiler, 2003) (see Sections III.3 and III.4). Crucially, the rel-
ative importance of road mortality is likely to be context spe-
cific as the road configuration and habitat quality
surrounding a population can vary, for example between
core and edge habitats or along the urban-rural gradient
(Lehrer et al., 2012). These in turn affect population dynam-
ics, including population densities which are a key factor in
determining the level of road mortality that a population
can sustain (Wright ¢ al., 2020).

For some populations, roadkill can have a small effect on
the persistence of the population (Cypher, Bjurlin &
Nelson, 2009; Sidorovich, Novitsky & Solovej, 2020). It is
thought that species with fast life histories experiencing high
fecundity, large population densities and rapid population
growth are more able to replace lost individuals quickly
(Rytwinski & Fahrig, 2015). Fifteen populations identified in
this review continued to show stable or increased growth rates
over three or more years despite relatively high road mortality.
Many of the identified species meet some or all elements of fast
life histories, such as American martens and 13 ungulate spe-
cies (Belant, 2007; Ruiz-Capillas e al, 2015; Nyirenda
et al., 2017). A knowledge gap remains for small mammals,
such as mice, voles and bats, however. This is because low car-
cass detectability and persistence preclude accurate roadkill
rate estimates and therefore conclusions about the extent that
roadkill depletes these populations. Of note, 14 of the 15 popu-
lations shown to have stable or increased growth rates despite
road mortality inhabited National Parks. This suggests that
high-quality, protected environments can contribute to the
resilience of populations to anthropogenic threats such as
roads (Nyirenda et al., 2017; Pereira et al., 2010).

(b) Sex- and age-biased road mortality

It is noteworthy that road mortality appeared to be adult-
biased m 10 out of 15 studies that provided relevant data,
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which is likely a consequence of the greater roaming behaviour
of adults to find mates and food. Mammalian age-specific sur-
vival is typically characterised by low rates in young animals
and high rates in adults (Arso Civil ¢ al., 2019). Changes in
adult survival can have the greatest effect on population trajec-
tories, particularly for species where adult lifespans are long rel-
ative to the time taken to reach maturity (Chambers, 2009).
Therefore, adult-biased road mortality is a pertinent concern
as it reduces effective population sizes and reproduction rates.
However, whether adults and juveniles have different detection
probability (e.g. because of the smaller size of juveniles), which
may bias estimates of population structure and therefore any
inference from the data, remains unknown.

As sex structure and mortality are central to population sta-
bility, a sex bias in road mortality can be used in projections of
longer-term impacts (Klocker et al., 2006). A relatively even
spread of male, female and no bias to roadkill was found
amongst the retained studies, although the number of studies
identified was small. A lack of sex bias in road mortality is
unlikely to affect a population’s persistence beyond the general
depletion of individuals as the population structure is likely to
remain unchanged. There is a strong narrative in the literature
that males are more vulnerable to roadkill than females
(Green-Barber & Old, 2019; Miotto et al., 2012). However,
whilst males are often killed on roads more frequently than
females, this review shows that males are not necessarily killed
more than would be expected based on their numbers in the
population. Variations in sex-specific survival rates moderate
population dynamics and the severity of these impacts is likely
to depend on the species’ social structure and mating systems.
Female survival typically exerts a greater effect on population
trends than male survival. Low, but consistent, female road
mortality may cause a male-skewed population, as similarly
shown for reptiles (Mitro, 2011); males become mate limited
and female fecundity is reduced, generating Allee effects and
increasing population extinction risk (Simmons et al., 2010).

For species that live in family groups, female road mortality
has been shown to exert indirect, sublethal effects on the recruit-
ment of populations. The death of a mother by vehicle collisions
can lead to the death of dependent juveniles, either by starva-
tion (Snow et al., 2012) or infanticide (Logan & Runge, 2021).
Vehicle collisions of male or females were responsible for
2.1% of bond dissolution within a grey wolf (Canzs lupus) popu-
lation in Scandinavia, which can destabilise social structure and
reduce population growth (Milleret et al., 2017). For solitary and
territorial species, the impact of male- or female-biased road
mortality may be dependent on territory ownership and
whether other reproductively viable individuals are able to fill
the vacant breeding territories (Riley e al., 2006; Mumme
et al., 2000). Overall, studies identified in this review agreed that
adult-biased, and specifically female-biased, road mortality are
likely to be critical to population dynamics.

(¢) Roadkill during inter-patch or long-distance movements

Three out of the four studies reporting information on the
road mortality of dispersing animals reported relatively high
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roadkill rates (Kanda, 2005; Carvalho et al., 2018; Pereira
et al., 2010). Risk of road mortality during dispersal or extra-
territorial excursions has also been shown for some birds
(Mumme ¢t al., 2000; Bujoczek, Ciach & Yosef, 2011) and
reptiles (Bonnet, Naulleau & Shine, 1999). A suite of geo-
graphical positioning system (GPS)/radio-tracking data indi-
cate that the risk could be a function of a greater road
crossing frequency during dispersal than during exploratory
or routine movements (Grilo ¢t al., 2012; Fey et al., 2016).
When road mortality of dispersing animals is high, patch
connectivity 1s limited and gene flow is restricted (Jackson &
Fahrig, 2011; Balkenhol & Waits, 2009). In extreme cases,
high road mortality for populations in patchy habitat net-
works may lead to source—sink dynamics, as speculated by
Grilo et al. (2012) for a roadside population of beech martens
in Portugal. Collevatti et al. (2007) also suggest that the high
inbreeding within a giant anteater population in Emas
National Park in Brazil may be, at least in part, a result of
extensive roadkill between the park and nearby Cerrado
fragments, hence decreasing migration and gene flow.
Therefore, it remains possible that road mortality may be
influencing the dynamics of subpopulations far from roads.
However, a high mortality of dispersers does not necessarily
lead to subdivision (Carvalho et al., 2018), suggesting that in
some cases, even a small number of successful dispersers
can ensure sufficient gene flow and prevent the development
of spatial genetic structuring.

(2) Indirect demographic parameters

Several authors highlighted the vulnerability of population
growth rates of some, but not all, populations to road mortal-
ity in the short term. Changes to growth rates, and hence
population persistence, as a result of roadkill may be medi-
ated by lower effective population sizes and/or altered
mortality:recruitment ratio. Population persistence may be
particularly threatened by roadkill if the (sub)population
exhibits site fidelity and/or lives in patchy habitat that may
decrease immigration due to increasing patch isolation
(Snow et al., 2012). It is possible that under certain conditions,
such as areas extensively and/or rapidly modified by
humans, individuals select roadside habitats for favourable
resource availability. In turn, these populations are subject
to ecological trap dynamics following lower survival in road-
side habitats (Battin, 2004). These dynamics can shape pop-
ulation structure and sustainability and have previously
been reported for Eurasian lynx (Lynx lnx) (Basille
et al., 2013) and several bird species including mourning
wheatears (Oenanthe lugens) (Ben-Aharon, Kapota &
Saltz, 2020) and Florida scrub jays (dphelocoma coerulescens)
(Mumme et al., 2000).

Road mortality may not directly cause local extinctions for
all impacted populations, especially if the species-specific
habitat quality is high and so populations are relatively resil-
ient to environmental stressors. However, collisions can make
populations more vulnerable to environmental and demo-
graphic stochasticity, as shown for common wombats
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(Roger et al, 2011) and giant anteaters (Desbicz
et al., 2020). Most animal populations are subject to multiple
stressors that operate at various spatial and temporal scales
and interact to some degree, either additively or synergisti-
cally (Doherty et al., 2015). For example, Roger et al. (2011)
showed that intermediate levels of roadkill of common wom-
bat individuals in the Kosciuszko National Park in New
South Wales, Australia, caused the population to be more
sensitive to variation in juvenile survival and even low road-
kill levels increased their vulnerability to fires. For species
with slow breeding rates, as is the case for common wombats,
populations are less able to offset high mortality rates attrib-
uted to roads or other threats. In turn, immigration from the
surrounding area will be important for the persistence of
these roadside populations (Rytwinski & Fahrig, 2015).

It is possible that road mortality can indirectly impact
populations that are otherwise resilient to WVCs by causing
the loss of ecologically functional species, such as apex pred-
ators. Trophic cascades and changes to interspecific associa-
tions are a well-known result from the decline of key species
(Fischer et al., 2012). Road mortality that causes the local
extinction of key predator species may incite a mesocarnivore
influx, changing ecosystem structure and the vital rates of
populations in the wider ecological community (as reported
for other mortality causes; Hollings et al., 2014).

(3) Compensatory and additive mechanisms of road
mortality

The demographic impacts of road mortality were shown to
be highly variable amongst the study species and intra-
specific populations identified in this review. This may be a
function of the small roadkill sample sizes of several studies
retained by the search, which makes the results inherently
inconsistent. The variable results also demonstrate that the
interplay of roadkill with other context-specific factors, and
how that affects the mortality:recruitment ratio, will influ-
ence the capacity for populations to persist despite road mor-
tality (Roger e al., 2011). Extrinsic and intrinsic factors can
affect whether road mortality is additive to natural mortality,
resulting in a net reduction in total survival rates, or is com-
pensated for by a reduction in natural mortality and/or
increased reproductive rates (Sparkman, Waits &
Murray, 2011). Studies identified in this review report both
additive and compensatory mechanisms of road mortality.
For example, Burroughs et al. (2006), Tri et al. (2017) and
Logan & Runge (2021) found that white-tailed deer, pumas
and American black bears had a greater level of road mortal-
ity in conditions with lower mortality from other anthropo-
genic causes (e.g. harvesting, humane lethal control).
However, Chambers & Bencini (2010) found both compen-
satory and additive mechanisms for the road mortality of
tammar wallaby populations in Australia, suggesting that
road mortality impacts depend on other factors that also
affect vital rates. Additive road mortality has also been
reported in red wolves (Canis rufus) (Sparkman et al., 2011)
and, in addition to mammals, in several bird species
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(Bujoczek et al., 2011), spotted salamander (Ambystoma macula-
tum) (Gibbs & Shriver, 2005) and turtles (Congdon,
Dunham & van Loben Sels, 1994). It is likely that, in many
cases, road mortality is neither completely additive nor com-
pensatory. This is because road mortality is, to some extent,
influenced by density-dependent mechanisms and its conse-
quences on population dynamics can also depend on which
individuals are killed on roads and when (Desbiez
et al., 2020). This is corroborated by Lehnert, Bissonette &
Haefner (1998) who demonstrated that for a mule deer pop-
ulation in the USA, 50% of all animals killed on the highway
would have died from non-road causes before the next
breeding season. Nevertheless, mechanisms underlying
either compensatory or additive effects of road mortality
remain poorly understood and warrant further investigation
to improve the accuracy of road mortality assessments.

Of great concern is that rare and threatened species often
have (sometimes naturally) small population sizes and/or a
population growth rate that is close to zero or negative
(Desbiez et al., 2020). As such, even a low but uncompensated
road mortality rate can remove a significant percentage of
the population, thereby constraining annual survival and
inducing or exacerbating population decline (Sparkman
et al., 2011). This has important implications for conservation
because when road mortality is additive, mitigation efforts
around roads are a more pressing requirement than if com-
pensatory mortality is assumed.

(4) Considerations for road ecology study design

It can be argued that population growth is a fundamental
parameter of interest in studies of anthropogenic mortality
and quantifying it should be prioritised. Although population
size and raw roadkill counts are useful, they are a stationary
snapshot and unlike population growth, they do not consider
the impact of demographic variability and its role in any
compensatory processes (Seiler, 2003).

The methods used and sample sizes collected can drasti-
cally alter the conclusions of road mortality impacts. There
are typically three methods to obtain roadkill data: (1) system-
atic road surveys; (2) radio-tracking (and associated telemetry
technologies such as GPS and satellite tracking) or constant
population monitoring; and (3) opportunistic records (often
via unstructured citizen science) (see Table S2). Radio-
tracking tailored to the focal species provide a less-biased
sample because most road mortalities are usually detected.
Roadkill surveys, whether systematic or not, are more tar-
geted and can detect a large proportion, but rarely all, of
the roadkill present. However, efficiency of the surveys and
carcass detectability can be low depending on survey fre-
quency and carcass size. Non-systematic surveys such as from
citizen science participants have additional issues of bias
across the survey area depending on the geographic spread
of surveyor effort. Moreover, opportunistic records such as
ad hoc observations from park wardens or tourists could bias
the significance of mortality factors because death events
are detected differently (Pereira e al., 2010). However, data
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from radio-tracking can often only be based on a small
sample of individuals. Such studies might not be free of bias
nor be representative of the wider population depending on
the method used for capture (Stenglein ez al., 2015), meaning
mortality data should also be interpreted cautiously. For
example, Pereira ¢t al. (2010) reported that 18% (seven indi-
viduals) of a Geoffroy’s cat (Leopardus geoffroyr) population in
central Argentina was killed on roads when using opportunis-
tic sampling and ranger interviews to record carcasses, yet
only 5% (one individual) of a radio-tracked subset of the same
population was killed on roads.

(a) Improving study design

Replicated, manipulative study designs such as BACI are
considered the highest standard of study design in road ecol-
ogy (Rytwinski & Fahrig, 2015). These studies can be used to
detect demographic changes, particularly at the genetic level,
and to separate confounding factors (Fig. 5). Of the 83 studies
included in this review, seven studies used experimental
designs — two studies used Before-After and
five studies used Control-Impact, often comparing urban
or high-density road networks to rural or low-density areas.
Collecting sufficiently long-term data both pre- and post-
road construction, as per BACI protocol, is usually difficult
to achieve because many roads have already been built or
their construction is imminent at the research conception
stage. The majority (72.7%) of studies identified in this
review were less than 5 years in duration. The length of a
study on road mortality should be species-appropriate and
cover more than one generation. Longer-term studies can
overcome the challenges of small roadkill sample sizes and
of quantifying population demographics and their variabil-
ity, particularly for long-lived species and when combined
with individual-based methods such as marking individuals
(Desbiez et al., 2020). The large costs associated with long-
term, manipulative studies can be shared with collaborative
research action (see below) (Fraser e al., 2013).

Genetic studies are a critical component of examining the
long-term viability of roadside populations. However, nei-
ther of the two retained studies that reported the effects of
road mortality on genetic diversity used empirical genetic
data (Diniz & Brito, 2013; Desbiez ¢t al., 2020). The develop-
ment of genotypic approaches (analyses based on
the genotypes of individuals) and high-resolution molecular
markers (e.g. single nucleotide polymorphisms) offers power-
ful methods to examine fitness-related genetic effects, such as
population genetic structure, fragmentation, and diversity
(Balkenhol & Waits, 2009; Simmons ¢ al., 2010; Jackson &
Fahrig, 2011). For example, genotypic approaches such as
genetic pedigree, spatial-autocorrelation, and parentage
analysis can identify important within-population processes,
including demographic history and sex-biased dispersal
(e.g. across roads) (Balkenhol & Waits, 2009). Such
approaches can be informative at fine spatial and temporal
scales, can be readily scaled up, are complementary to the
other field-based approaches, and are becoming less
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Fig. 5. Suggested hierarchy and requirements of study designs relevant to examining the impacts of road mortality on population
persistence. BACI, Before—After—Control-Impact. Various Artists/Flaticon.com.

expensive over time (Corlett, 2017). Moreover, advances in
laboratory protocols, such as polymerase chain reaction
(PCR) from tissues of road-killed animals, can improve sex
identification of badly decomposed or damaged roadkills,
or roadkills of monomorphic species (Barragdn-Ruiz
et al., 2021).

Population viability can depend on the extent and nature
of dispersal and immigration between road and non-road
habitats (Mumme ¢t al., 2000). Therefore, studies that com-
bine radio-tracking data, or radio-frequency identification
(RFID) tags and related transponders (Testud et al., 2019),
with roadkill data can incorporate explicit assumptions about
successful and unsuccessful road crossings (Fahrig &
Rytwinski, 2009; Riley et al., 2006). Ultimately, a blend of
genetic and field-based approaches with appropriate statisti-
cal modelling, as shown by Carvalho et al. (2018), is needed to
assemble the suite of relevant data for accurate road mortal-
ity assessments (Fig. 5). Importantly, cost analyses should be
integrated into study planning to enable efficient resource
allocation for research, and likewise for any subsequent mit-
igation, In turn improving returns for investment (White
et al., 2022). Sharing the monetary costs associated with
robust study design will likely require collaborative experi-
mental research at an international scale. Collaborations
can pool resources more easily, including expertise, money,

and equipment, across several road networks, simultaneously
improving the quality of study design and sample sizes
(Fraser et al., 2013; Rytwinski & Fahrig, 2015).

(5) Future research directions

Despite the increasing interest and research focus over recent
decades, more detailed road mortality studies are needed to
ensure a robust understanding of demographic impacts on
mammalian populations and that efforts to reduce such
impacts are focussed on the most at-risk populations. The
interaction between road mortality and movement behav-
1ours, such as dispersal and migration, remains relatively
under-studied. Future research should investigate the
replacement rate following the death of a breeder in areas
intersected by roads and the success rate of dispersing indi-
viduals across roads. Appropriate context will be essential
in interpreting these results, considering that road crossings
by dispersing subadults do not necessarily translate into gene
flow (Riley et al., 2006). How often road mortality contributes
to the reduction in genetic integrity and the shape of that
decline over time (e.g. linear, exponential) should also receive
research attention. To understand a population’s capabilities
to sustain ongoing road mortality, investigations into whether
road mortality is compensated for, even partially, by

Biological Reviews 98 (2023) 10331050 © 2023 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical

Society.

35U9017 SUOLUWIOD dAIER.D 3|qedldde au Aq pauieAob aJe sapile YO ‘38N J0 s3I o4 Aeiq 1 auluO 8|1 UO (SUO1IPUOD-PLE-SWLRI/LICD" A8 | 1M Ale.q Ut UO// Sty SUOIIPUOD Pue SIS L 84} 89S *[Ge0z/c0/TT] o AreiqiTaulluo A8|IMm 159 L Ad 2y6¢T MA/TTTT OT/I0p/LI0D A8 | imAleud 1 jput|uoy/sdiy Wwouy papeojumoq ‘y '€20C ‘XS8TE9YT


http://flaticon.com

Mammalian road mortality

increased survival, reproduction or migration should be
prioritised.

V. CONCLUSIONS

(1) The conservation of wildlife populations impacted by
roads has gained recognition as an issue of worldwide con-
cern. We found that studies collecting data on the demo-
graphic effects of road mortality are relatively rare, but
some generalities emerge from the existing literature. The
83 retained studies from the systematic search demonstrate
that road mortality can place substantial pressure on popula-
tion size and/or background mortality rates. Female-biased
road mortality appears more frequent than previously recog-
nised in the literature and is likely to be a critical element in
negative population trajectories. Due to a common occur-
rence of adult-biased road mortality, wildlife-vehicle colli-
sions (WVCs) place a heavy toll on species that naturally
experience high adult survival.

(2) Itis evident that the demographic effects of road mortal-
ity are not limited to the immediate location or time period of
the WVCs. Long-term (meta-)population dynamics and
populations far from roads may be affected by lower survival
and unsuccessful dispersal near roads inciting source—sink
dynamics. However, some populations can tolerate addi-
tional mortality and maintain population growth over several
years, most likely a result of high reproductive rates.

(3) Understanding how road mortality shapes the structure
and sustainability of wildlife populations is challenged by
the complexity of underlying processes. Road mortality inter-
acts with demographic and environmental variability in
populations, causing context-specific responses to road
mortality.

(4) This review stresses that conservation strategies that seek
to address the impact of roads must collect data on relevant
demographic parameters, such as population growth and
survival rates, as well as an assessment of concurrent threats
to the target population(s). Studies that use rigorous study
design, ideally with a combination of methods and/or using
an experimental design, will hold the greatest inferential
strength for assessing population-level impacts of WVCs.
Examining the link between road mortality and movement
behaviours, as well as additive or compensating mechanisms
to road mortality, should be research priorities for more
accurate insight into long-term consequences.

(5) The knowledge gathered from this review is a step
towards sustainable road development and maintenance
amidst growing road networks, particularly in megadiverse
and developing countries that hold some of the world’s most
threatened species and last remaining wilderness areas. Mov-
ing forward, quantifying the demographic impacts of road
mortality should become an established process within com-
prehensive road mortality assessments and the planning of
impact mitigation to enable proactive conservation action
of populations at risk.
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