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A B S T R A C T   

Limited attention has been given to improving carbon storage by identifying ecological conservation and 
restoration areas (ECRAs). In this research, we proposed a new framework for identifying ECRAs by incorpo-
rating future carbon storage changes into ecological security patterns (ESPs), including several models of the 
Patch-generating Land Use Simulation (PLUS), Integrated Valuation of Ecosystem Service and Tradeoffs 
(InVEST), Minimum Cumulative Resistance (MCR) and circuit theory. This new framework was applied in 
Jiangsu Yangtze River Economic Belt, East China. To evaluate the effectiveness of this new framework, we 
compared two scenarios: an ecological priority scenario (EPS) where future carbon storage change was not 
considered and an ecosystem carbon sequestration scenario (ECSS) where future carbon storage change was 
explicitly incorporated. Under the EPS, ecological conservation areas and ecological restoration areas were 
11169.87 km2 and 221.11 km2, respectively. Under the ECSS, the ecological conservation areas and ecological 
restoration areas were 14768.76 km2 and 244.89 km2, respectively. Carbon storage will be most likely to in-
crease around lakes and the Yangtze River, and the identified key areas under the ECSS will be more adaptable to 
future environmental changes than the EPS. This new framework can effectively enhance both ecological 
function and carbon sequestration, providing effective support for policymakers in landscape management and 
low-carbon development in other regions facing similar challenges. In the meantime, more caution is needed for 
the possible limitations, such as without adequate consideration of uncertainties of changes in population, land 
use, and economy in the future.   

1. Introduction 

Terrestrial ecosystems have absorbed one-third of carbon emissions 
from burning fossil fuels and land use and cover change (LUCC), 
contributing significantly to climate change mitigation (Carvalhais 
et al., 2014; Lai et al., 2016; Yu et al., 2014). However, in recent de-
cades, rapid global urban expansion has encroached on a large amount 
of ecological land, resulting in the degradation of approximately 60% of 
ecosystem function and a decrease in the carbon sinks of ecosystems 
(Assessment, 2005; Carpenter et al., 2009; Seto et al., 2012). Main-
taining integrity and stability of ecosystem function has emerged as the 
focus of global environmental change research (Pecl et al., 2017; Tang 
et al., 2018). Ecosystem conservation and restoration have been regar-
ded as an effective way to increase the carbon sink of terrestrial 

ecosystems by returning degraded ecosystems to their pre-degraded 
state and preserving habitat continuity (Strassburg et al., 2020; Su 
et al., 2021). 

Ecological security patterns (ESPs) can be characterized by the key 
landscape elements, spatial positions and spatial connections (Kang 
et al., 2021; Li et al., 2020). These ESPs can provide a method for 
evaluating the significance of landscape patches in preserving ecosystem 
processes and functions (Li et al., 2023a; Wang et al., 2022c). This in-
formation can then be used to designate key regions as ecological con-
servation and restoration areas (ECRAs), ultimately ensuring the long- 
term ecological security and well-being of human (Fan et al., 2020; 
Peng et al., 2018a). Recently, the construction of ESPs has evolved to a 
widely accepted paradigm for determining ecological sources, estab-
lishing resistance surfaces, and identifying corridors and nodes 
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(Beaujean et al., 2021; Dai et al., 2021; Zhang et al., 2017). In terms of 
sources determination, researchers are gradually committed to the 
quantitative assessment of ecological functions based on indicators, 
including ecological functional importance, landscape structure con-
nectivity and ecological vulnerability (Jongman et al., 2011; Li et al., 
2022a; Liang et al., 2018). In the process of resistance surface estab-
lishment, land use type, nighttime light data and slope have been 
extensively applied in the resistance coefficient calculation and correc-
tion to reflect the landscape heterogeneity within the same land type (Li 
et al., 2022a; Li et al., 2020). Ecological corridors can improve 
ecosystem connectivity and simulate the biological flows and have been 
generally extracted by circuit theory, Minimum Cumulative Resistance 
(MCR) and ant-colony algorithm (Peng et al., 2018a; Rinaldo et al., 
2018; Zhou et al., 2021). Ecological sources and corridors and their 
buffer zones have been widely recognized as important areas for 
ecological conservation (Wang et al., 2022c). Ecological nodes, the 
potentially significant ecological restoration spaces, have been identi-
fied using the circuit theory (Smith et al., 2019a; Wang et al., 2022c). To 
sum up, previous studies on ESPs have focused on methodology opti-
mization for improving the efficiency of biodiversity conservation, but 
few studies have constructed ESPs for increasing carbon stocks. 

Some studies have found that implementing ecological restoration 
projects such as the Grain for Green Program and Grazing Exclosure 
have great carbon sink benefits, contributing significantly to reducing 
atmospheric CO2 concentrations (Lu et al., 2018; Morsing et al., 2013; 
Zanini et al., 2021). The identification of ECRAs based on ESPs is the 
foundation for implementing ecological restoration projects (Zhang 
et al., 2022a). The process can accurately identify areas requiring 
ecological conservation and restoration, and it can provide essential 
data and support to execute restoration schemes with greater effec-
tiveness, facilitating the implementation of targeted restoration mea-
sures (Li et al., 2022b; Ran et al., 2022). Thus, if carbon stocks can be 
incorporated into the process of ESPs construction, ecosystem restora-
tion may have greater carbon sink benefits (Adame et al., 2015; Smith 
et al., 2019b). Currently, Peng et al. (2018b) and Xiao et al. (2020) have 
incorporated carbon storage assessment into ESPs, which mitigates the 
loss of carbon storage through some strict protection measures. How-
ever, the critical areas identified based on the current and past condi-
tions do not reflect the possible impact of anthropogenic and natural 
factors on the landscape (Bellard et al., 2012). Even if the key areas are 
strictly protected and restored, without taking into account future 
changes in carbon storage induced by LUCC, they will be occupied by 
intensified human activities and expansion of construction land in the 
future, resulting in the decline of ecological protection effect and pre-
senting additional challenges to the attainment of China’s carbon 
neutrality goals set for 2060 (Chausson et al., 2020; Sallustio et al., 
2015; Yang et al., 2022; Yang et al., 2019). 

Future carbon storage changes are frequently predicted by 
combining land use simulation with carbon storage estimates (Brovkin 
et al., 2013). The Patch-generating Land Use Simulation (PLUS) model 
has been increasingly applied for great potential for predicting future 
LUCC (Liang et al., 2021; Zhang et al., 2022b). It possesses an innovative 
multi-type random patch seeding mechanism based on threshold 
descent that can better integrate various spatial factors with geographic 
units and reach higher simulation accuracy (Liang et al., 2021). Studies 
on coupling the Integrated Valuation of Ecosystem Services and Trade-
offs (InVEST) model with the PLUS model to predict future carbon 
storage changes in ecosystems have gradually gained popularity (Wang 
et al., 2022a; Wang et al., 2022b). Few studies, however, have incor-
porated future carbon storage changes into ESPs, which is essential for 
adapting to future environmental changes and developing long-term 
effective measures for ecological conservation and restoration (Bellard 
et al., 2012; Gattuso et al., 2015). 

To address this challenge, we proposed a new integrated framework 
for identifying ECRAs to increase carbon storage by combining future 
carbon storage dynamics with ESPs. In recent years, China has placed a 

greater emphasis on ecological conservation and restoration, particu-
larly in the implementation of the Yangtze River protection strategy, 
which improves the Yangtze River’s environmental quality (Lu et al., 
2020). However, the serious contradiction between anthropogenic ac-
tivities and ecological conservation has been a significant challenge 
during rapid urbanization (Bardgett et al., 2021; Lee et al., 2014). 
Jiangsu Yangtze River Economic Belt (JYREB) has encroached on a large 
amount of ecological space, resulting in the degradation of ecosystem 
functions and the loss of carbon stocks (Xue et al., 2020). Therefore, 
JYREB was chosen as the case in the current study. The main aims of this 
research are to: (1) develop a new framework for identifying ECRAs to 
enhance carbon storage; and (2) evaluate the effectiveness of our 
framework by comparing two scenarios: an ecological priority scenario 
(EPS) where the carbon storage dynamic was not considered and an 
ecosystem carbon sequestration scenario (ECSS) where carbon storage 
dynamic was explicitly incorporated. In general, this study offers novel 
insights for identifying critical areas and serves as a useful reference for 
coordinating ecological security and low-carbon development objectives 
(hereafter referred to as dual objectives) in other regions facing the 
similar challenges. 

2. Theoretical framework 

The research developed two theory frameworks: (1) the interaction 
between ecological conservation and restoration and carbon balance; 
and (2) the harmonization of objectives, processes and results for 
ecological conservation and restoration. 

2.1. Interaction of ecological conservation and restoration with carbon 
balance 

It is widely acknowledged that ecological conservation and restora-
tion can improve carbon storage by adjusting and optimizing ecosystem 
structure, function and local structure (Bustamante et al., 2019; Huang 
et al., 2022). Ecological conservation and restoration has altered the 
quantity and pattern of ecological sources, corridors and nodes, 
changing ecosystem functions, such as habitat maintenance and soil 
conservation (Feng et al., 2013; Smith et al., 2019c). Accordingly, the 
ecological process reacts positively or negatively, resulting in changes in 
carbon storage and carbon balance (Bottalico et al., 2016; Wang et al., 
2021). Simultaneously, when carbon storage changes, important 
ecosystem elements, for example, soil, vegetation, and land change, 
affecting the ecosystem processes and functions and, ultimately, 
changing the structure of the ESP, location and quantity of ECRAs and 
restoration pathways (Metzger and Brancalion, 2013; Wang et al., 
2022c) (Fig. 1). 

2.2. The harmonization of objectives, processes and results for ecological 
conservation and restoration 

This study proposed a theoretical framework of “objectives, pro-
cesses and results harmonization” for ecological conservation and 
restoration based on the interaction between ESPs and carbon storage 
dynamics (Fig. 2). Dual-objective harmonization (ecological security 
and low-carbon development) guides the harmonization of two pro-
cesses of ESPs construction and carbon stock adjustment. The goal of 
ecological security guides the process of ESPs construction, which in-
cludes the identification of ecological sources, the establishment of 
resistance surfaces, and the identification of corridors and nodes (Li 
et al., 2022a; Li et al., 2023a). The goal of low-carbon development 
guides the dynamic change process of carbon stocks by altering land use 
patterns and carbon density (Lai et al., 2016). By integrating carbon 
storage dynamics resulting from LUCC into the ESP construction pro-
cess, the dynamic adjustment of ESPs becomes more adaptable to future 
LUCC and consistent with the process of carbon stock change (Brovkin 
et al., 2013; Yang et al., 2018). The harmonization of these two 

L. Li et al.                                                                                                                                                                                                                                        
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processes promotes the alignment of results, namely the harmonization 
of conservation areas and restoration areas. The protection of key ele-
ments, such as ecological sources and corridors, plays a crucial role in 
the conservation areas, enhancing the function and structure of eco-
systems, while minimizing potential carbon storage loss (Liao et al., 
2022; Zhao et al., 2021). Restoration areas require the restoration of 
potential barriers and pinch points, as well as areas with potential in-
creases in carbon stocks (Wang et al., 2016; Zanini et al., 2021). The 
integration of results in ecological conservation and restoration 

facilitates dual-objective harmonization, effectively resolving conflicts 
between ecosystem conservation and land occupation while enhancing 
ecosystem function and increasing carbon storage. 

3. Materials and methodology 

3.1. Study area 

Located in eastern China (30◦43′-33◦24′N; 118◦19′-122◦00′E), JYREB 

Fig. 1. Theoretical framework of interaction between ecological conservation and restoration and carbon balance.  

Fig. 2. Theoretical framework of “objectives, processes and results harmonization” for ecological conservation and restoration.  
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has eight cities along the Yangtze River and covers an area of 48463.85 
km2 (Fig. 3). This region is dominated by subtropical and temperate 
zones, with an average temperature of 13–16 ℃ and annual precipita-
tion of around 1000 mm. It has flat topography and abundant water 
resources, as well as a high carbon storage capacity (Xiao et al., 2020). 

As the Yangtze River Economic Belt’s densest area, JYREB under-
went rapid population growth and economic development. From 2010 
to 2020, the urban population and gross domestic production (GDP) 
increased by 25.14% and 110.32%, respectively. Rapid economic 
development and urban sprawl have brought about serious environ-
mental issues, such as over-use of ecological land, degradation of 
ecosystem function and a continuous loss of carbon storage (Han et al., 
2021). For sustainable development, therefore, it is critical to improve 
carbon storage and ecosystem quality through ecological conservation 
and restoration. 

3.2. Data sources and processing 

Table 1 shows the data types, sources, time, and spatial resolution 
used in this study. Land use data were classified into six categories: 
farmland, woodland, grassland, water area, built-up land and unused 
land, which were used for ecosystem function assessment, carbon stor-
age evaluation and resistance surfaces establishment. Digital elevation 
model (DEM) data were used for slope calculation, resistance surface 
correction and land use simulation. Soil data were used to calculate soil 
retention. Normalized difference vegetation index (NDVI) data were 
used to obtain the fractional vegetation cover (FVC). Net primary pro-
ductivity (NPP) and FVC were used to correct the habitat quality. 

Precipitation and temperature data were used to revise the carbon 
storage and simulate future land use patterns. Population density, eco-
nomic density, road, ecological protection red line and farmland pro-
tection red line were used for land use simulation. Nighttime light data 
were used to correct the resistance coefficient. Socio-economic data, 
including population and economic statistical data, were used to analyze 
the local conditions. Using the nearest neighbor method, all data were 
resampled to 100 m and projected into Albers’ equal-area projection. 

3.3. Methodology 

The methodological framework in this study includes four parts 
(Fig. 4). First, the PLUS and InVEST models were used to predict future 
land use and carbon storage. Second, the InVEST and revised universal 
soil loss equation (RUSLE) models were applied to evaluate habitat 
quality, soil retention and carbon storage to quantify ecological func-
tional importance (EFI). Third, circuit theory and the MCR model were 
used to construct ESPs in two scenarios, which included determining 
ecological sources, corridors and nodes. Fourth, ECRAs were identified 
based on the above results. Each detailed process is described in the 
following sections. 

3.3.1. Prediction of carbon storage change 

3.3.1.1. Simulation of land use pattern. Land use simulation is the 
foundation of future carbon storage assessments. PLUS is a new land use 
simulation model composed of two components: a land expansion 
analysis strategy (LEAS) and a CA based on multiple random seeds 

Fig. 3. Location and environment of Jiangsu Yangtze River Economic Belt (JYREB). (a) Jiangsu Province in the Yangtze River Economic Belt, East China; (b) JYREB 
in Jiangsu Province and digital elevation model (DEM); (c) land use in JYREB in 2020. 

L. Li et al.                                                                                                                                                                                                                                        
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(CARS) (Liang et al., 2021). 
In the LEAS module, based on the LUCC in 2010 and 2020, the 

random forest classification (RFC) algorithm was used to examine the 
interrelationship between LUCC and nine drivers, i.e., elevation, slope, 
temperature, precipitation, population density, GDP, distance from 
highway, distance from railway and distance from the city center 
(Clarke et al., 1997; Liang et al., 2021; Liu et al., 2017). Based on the 
quantified interrelationship, the occurrence probability of various types 
of land was calculated. 

In the CARS module, local land use competition was simulated using 
the probability of occurrence, neighbor effects and conversion cost 
matrices to ensure that the number of different types of land meets 
future development demands (Kurnia et al., 2022; Liu et al., 2017). 
Referring to Liang et al. (2021), this study quantified the neighbor ef-
fects using 3 × 3 M and set patches generation and expansion co-
efficients to 0.1 and 0.9, respectively. 

Taking the land use pattern in 2010 as a baseline, the PLUS model 
was used to simulate the land use pattern in 2020, and the simulation 
accuracy was measured using the Kappa coefficient (Clarke et al., 1997). 

The Markov and PLUS models were used to predict the land use pattern 
in 2060 with sufficient accuracy. 

3.3.1.2. Assessment of carbon storage. The InVEST has been widely used 
to assess carbon storage. Referring to the carbon density parameters 
from published papers (Chuai et al., 2014; Lai et al., 2016), the carbon 
storage was calculated as follows: 

Cij =
(
Dj− above + Dj− below + Dj− soil + Dj− dead

)
× Sij (1) 

where Cij is the carbon storage of land type j on unit i (t), Dj-above is 
carbon density in the aboveground biomass of land type j (t/hm2), Dj- 

below is carbon density in the belowground biomass of land type j (t/hm2), 
Dj-soil is carbon density in the soil of land type j (t/hm2), Dj-dead is carbon 
density of in the dead matter of land type j (t/hm2), and Sij is the area of 
land type j on unit i (hm2). 

Carbon storage is correlated positively with precipitation but nega-
tively with temperature (Zhou et al., 2020). Therefore, the carbon 
storage was corrected as follows: 

Table 1 
Description of the data.  

Data type Data sources Time Spatial 
resolution 

Use 

Land use data https://www.resdc.cn/ 2015, 
2020 

30 m Land use simulation; resistance factor; ecosystem 
function assessment 

Digital elevation model (DEM) https://www.gscloud.cn/ 2009 30 m Driving factor; resistance factor modification; 
ecosystem function assessment 

Soil data The Harmonized World Soil Database (HWSD 
V1.2) 

1995 1:1 000,000 Ecosystem function assessment 

Normalized difference vegetation 
index (NDVI) 

https: / /https://www.resdc.cn 2019 1 km Ecosystem function modification 

Net primary productivity (NPP) https://www.usgs.gov/ 2020 500 m Ecosystem function modification 
Precipitation https://www.resdc.cn/ 2015 1 km Driving factor 
Temperature https://www.resdc.cn/ 2015 1 km Driving factor 
Economic density https://www.geodata.cn 2015 1 km Driving factor 
Population density https://www.worldpop.org/ 2015 100 m Driving factor 
Road https://www.openstreetmap.org/ 2015 1:25 × 104 Driving factor 
Basic Farmland 

vector data 
Permanent Basic Farmland Designation Dataset 
of Jiangsu province 

2018 1:10,000 Restriction factor 

Ecological Redline 
vector data 

Jiangsu Province’s National Ecological 
Protection Red Line Plan 

2018 1:100,000 Restriction factor 

Nighttime light data https://www.ngdc.noaa.gov/ 2013 1 km Resistance factor modification 
Socio-economic data Statistical Yearbook of Jiangsu province 2010–––2020 City Local conditions analysis  

Fig. 4. The methodological framework for identifying ecological conservation and restoration areas.  
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C′
i = Cij ×

lg(PRi)

lg
(
PRj
)×

lg
(
TEj
)

lg(TEi)
(2) 

where Ci’ is the corrected carbon storage on unit i (t), PRi is annual 
precipitation on unit i (mm), PRj is the average annual precipitation of 
land type j (mm), TEi is the annual temperature on unit i (℃), and TEj is 
the average annual temperature of land type j (℃). 

The future carbon storage changes from 2020 to 2060 were calcu-
lated using equations (1) and (2) based on the land use data in 2020 and 
2060. Grids with a carbon storage change value of less than 0 were 
considered vulnerable to carbon sink reduction, with a likelihood of 
carbon storage loss. Conversely, grids with a carbon storage change 
value of greater than 0 were considered important for carbon sink gain, 
with a potential increase in carbon storage (Yang et al., 2020; Zhu et al., 
2020). 

3.3.2. Quantification of ecological functional importance 
JYREB has experienced serious environmental issues such as 

increased carbon emissions, biodiversity loss and soil erosion (Han et al., 
2021). Therefore, the EFI was quantified by evaluating ecosystem 
functions such as carbon storage, habitat quality and soil conservation as 
follows: 

EFI = (C′ + Q′ + A)/3 (3) 

where EFI represents the ecological functional importance, C′, Q′ and 
A represent the normalized value of the modified carbon storage, cor-
rected habitat quality and soil conservation, respectively. Based on the 
natural breakpoint classification method, the EFI was divided into five 
grades: not important (1), general (2), important (3), very important (4), 
and most important (5) (Li et al., 2022a). Equations 4–6 show the 
methods for assessing habitat quality and soil retention. 

(1) Evaluation of habitat quality 
Using the InVEST model and the parameters from the published 

papers (Chuai et al., 2016; Xiao et al., 2020), the habitat quality was 
calculated as follows: 

Qij = Hj ×

(

1 −
Dz

ij

Dz
ij + kz

)

(4) 

where Qij is the habitat quality of land type j on unit i, Hj is the habitat 
suitability of land type j, Dij is habitat threat of land type j on unit i, and z 
and k are half-saturation constants, set to 2.5 and 0.5, respectively 
(Yohannes et al., 2021). 

To differentiate the value of the same type of land, the habitat quality 
was corrected using the NPP and FVC (Li et al., 2022a): 

Q′
i = Qij ×

[

1 + fnormal

(
NPPi

NPPj
×

FVCi

FVCj

)]

(5) 

where Qi’ is revised habitat quality on unit i, fnormal is a normalized 
function with a range of 0 to 1, NPPi is net primary production on unit i, 
NPPj is average net primary production of land type j, FVCi is the frac-
tional vegetation cover on unit i, and FVCj is the average fractional 
vegetation cover of land type j. 

(2) Assessment of soil retention 
Soil retention has been widely defined as the difference between 

potential and actual soil erosion, as determined by the RUSLE model 
(Benavidez et al., 2018): 

A = R × K × LS × (1 − C × P) (6) 

where A represents soil retention (t), R represents rainfall erosion, K 
is soil erodibility, LS is slope length and gradient, C represents vegeta-
tion cover and management, and P represents soil conservation practice. 

3.3.3. Construction of ecological security pattern under different scenarios 

3.3.3.1. Determination of ecological sources. At a certain scale, ecolog-
ical sources are effective in maintaining the stability of ecosystem 
structure and function (Li et al., 2023a; Peng et al., 2018b). Therefore, 
the first 60 large patches within the most important patches were 
determined as ecological sources in the EPS. Prioritizing the protection 
of vulnerable carbon sink reduction areas and patches with high EFI 
benefits ecological security and low-carbon development (Lu et al., 
2018; Yang et al., 2019). Therefore, under the ECSS, the most vulnerable 
and important patches were merged using the elimination tool in ArcGIS 
10.5 (ESRI, Redlands, California, USA), and the first 60 large patches 
within those merged patches were identified as ecological sources. 

3.3.3.2. Establishment of resistance surfaces. (1) Establishment of resis-
tance surfaces in the ecological priority scenario. 

The most common method for establishing resistance surfaces has 
been to assign values based on land types (McRae, 2006). Referring to 
other studies (Li et al., 2022a; Xiao et al., 2020), the resistance co-
efficients for woodland, water area, grassland, farmland, and built-up 
land/unused land were assigned to1, 3, 50, 100, and 300, respec-
tively. To differentiate the coefficient within the same type of land even 
further, the slope and nighttime light index were applied to correct the 
values (Li et al., 2022a; Peng et al., 2018a): 

R′
i = Ri ×

[

1 + fnormal

(
NLIi

NLIj
×

SLi

SLj

)]

(7) 

where Ri’ denotes the corrected resistance coefficient on unit i, fnormal 
denotes the normalized function with a range of 0 to 1, Ri is the basic 
resistance coefficient on unit i, NLIi is the nighttime light index on unit i, 
NLIj is the average nighttime light index of land type j, SLi is the slope on 
unit i, and SLj is the average slope of land type j. 

(2) Establishment of resistance surfaces in the ecosystem carbon 
sequestration scenario 

Areas with high carbon storage tend to have high EFI and a low 
degree of species diffusion hindrance (Wang et al., 2022c). To empha-
size the role of carbon storage in the establishment of resistance sur-
faces, the resistance coefficient was corrected using carbon storage 
based on the correction with slope and nighttime light index under the 
ECSS as follows: 

R′
i = Ri ×

[

1 + fnormal

(
NLIi

NLIj
×

SLi

SLj
×

C′
j

C′
i

)]

(8) 

where Ri’ is the corrected resistance coefficient on unit i, Ci’is the 
revised carbon storage on unit i, and Cj’ is the average revised carbon 
storage of land type j. 

3.3.3.3. Extraction of ecological corridors and nodes. The MCR model has 
been the most commonly used method for extracting ecological corri-
dors (Dai et al., 2021; Li et al., 2020): 

MCR = fmin

∑(
Dai × R′

i

)
(9) 

where MCR denotes the minimum cumulative resistance value of 
species migration from sources to targets, f denotes the positive corre-
lation function between MCR and ecological process, and Dai denotes the 
spatial distance traversed from the source a to unit i. Circuit theory 
models the movement of species and energy in a landscape based on the 
random walk characteristic of electrons in a circuit (Dickson et al., 
2019). Therefore, ecological corridors were extracted using the Linkage 
Mapper tool in ArcGIS 10.5 based on circuit theory and the MCR model. 

Ecological nodes include pinch points and barrier points. The 
Pinchpoint Mapper tool was used to calculate the cumulative current 
value in ecological corridors, and areas with a high value were identified 
as pinch points (Dickson et al., 2019). After removing barrier zones, the 
cumulative current recovery value was calculated using the Barrier 
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Mapper tool, and areas with a high value were identified as barrier 
points (Smith et al., 2019a). 

3.3.4. Identification of ecological conservation and restoration areas 
Based on the determined ESPs and areas of future carbon storage 

changes, ECRAs for two scenarios were identified. The specific classifi-
cation criteria are shown in Table 2. 

4. Results 

4.1. Spatio-temporal characteristics of carbon storage 

4.1.1. Land use pattern changes from 2010 to 2060 
Farmland, built-up land, and water area were the most common land 

types between 2010 and 2020, followed by woodland, grassland, and 
unused land (Fig. 5a-b). They covered 55.95%, 22.18%, 17.14%, 3.89%, 
0.66% and 17.14% of the territory in 2020, respectively. In general, 
JYREB experienced large-scale urban expansion and significant changes 
in land use patterns from 2010 to 2020. Built-up land and grassland 
increased by 14.26% and 55.48%, respectively. It expanded in a “ring” 
mode with built-up land as the center, and it expanded in an “axis” mode 
along rivers and roads. Farmland, water area, woodland, and unused 
land decreased by 4.03%, 3.30%, 1.29% and 11.47%, respectively. 

The actual land use pattern in 2020 and simulated results tended to 
be consistent (Fig. 5b-c). The Kappa coefficient was 90.65% and greater 
than 80%, indicating that the simulation accuracy was sufficient to meet 
the subsequent prediction requirement. 

The land use structure in 2060 will be consistent with that in 2020 
(Fig. 5d). From 2020 to 2060, the built-up land along the Yangtze River 
will grow at an expansion rate of 14.67%, from 10750.60 km2 to 
14896.03 km2. Farmland in flat areas along the Yangtze River will be the 
most occupied, declining by 14.67%. Water area will increase by 2.04 
km2, while woodland, grassland and unused land will shrink by 95.06 
km2, 52.97 km2 and 20.90 km2, respectively. 

4.1.2. Carbon storage changes in 2020–2060 
Overall, JYREB provided high carbon storage in 2020, with 408.84 

Tg of carbon storage and an average carbon density of 84.36 t/ha. High 
average carbon density values were concentrated in hilly mountain 
areas with relatively higher elevations in Changzhou City and Wuxi City, 
while low values were primarily distributed in lakes in Suzhou City, 
Yangzhou City and Wuxi City, as well as built-up land in each city 
(Fig. 6a). 

Carbon storage and average carbon density in 2060 were 393.41 Tg 
and 81.18 t/ha, respectively, which were consistent with spatial char-
acteristics in 2020 (Fig. 6b). From 2020 to 2060, the carbon storage and 
average carbon density will decrease by 15.43 Tg and 3.18 t/ha, 
respectively (Fig. 6c). The area with the reduced average carbon density 
will be concentrated in the expansion area of built-up land along the 
Yangtze River. The area with the increased average carbon density will 
be found in lakes and along the Yangtze River. 

4.2. Ecological functional importance 

The EFI was generally high, with significant spatial heterogeneity 

(Fig. 7a). The most important areas and very important areas covered 
7960.39 km2 and 23643.31 km2, accounting for 16.43% and 48.79% of 
the total area, respectively. The most important areas, including water 
area, farmland, and woodland, were primarily distributed in Suzhou 
city, Wuxi city and Changzhou city in the south, as well as Yangzhou city 
in the north. 

The three types of ecosystem functions had significant spatial het-
erogeneity. The overall low importance of soil retention was associated 
with flat topographic conditions (Fig. 7b). High values of soil retention 
were mainly located in relatively high-altitude areas with erosion 
problems and dense vegetation. The habitat quality was positively 
correlated with distance to built-up land but negatively with distance to 
the water area and woodland (Fig. 7c). High habitat quality values were 
found in the southwestern hilly mountain areas and the Yangtze River in 
the middle, as well as in lakes such as Taihu Lake, Gaoyou Lake, Shijiu 
Lake and Yangcheng Lake, which are highly protected with limited 
human interference. High values of carbon storage were concentrated in 
the woodland in hilly mountain areas and wetlands around the Yangtze 
River and Taihu Lake, which were characterized by high rainfall, 
vegetation cover and soil carbon density (Fig. 7d). 

4.3. Comparison of ecological conservation and restoration areas between 
two scenarios 

Ecological conservation areas under the EPS and ECSS covered 
11169.87 km2 and 14768.76 km2, accounting for 23.05% and 30.47% of 
the entire area, respectively. They were mostly concentrated in the pe-
riphery and along the Yangtze River (Fig. 8A and 8a). Different from the 
EPS, some ecological conservation areas were scattered in farmland 
along the Yangtze River. The spatial distribution of ecological sources, 
corridors and their buffer zones were generally consistent with that of 
EPS, but their areas differed slightly. Ecological sources under the EPS 
and ECSS were 6009.93 km2 and 6010.52 km2, representing 53.80% and 
40.70% of ecological conservation areas, respectively, and they were 
concentrated in the southwest and northeast of Jiangsu Province 
(Fig. 8B and 8b). The numbers of ecological corridors under the EPS and 
ECSS were 93, with a total length of 2565.51 km and 2567.12 km, 
respectively, and they were distributed evenly and can effectively 
improve ecosystem connectivity (Fig. 8B and 8b). Ecological corridor 
buffer zones under the EPS and ECSS covered 5159.94 km2 and 5163.63 
km2, contributing 46.20% and 34.96% to ecological conservation areas, 
respectively. Carbon storage reduction zones under the ECSS covered 
3594.61 km2, contributing 24.34% to the ecological conservation areas 
(Fig. 8e). 

Ecological restoration areas under the EPS and ECSS covered 221.11 
km2 and 244.89 km2, contributing 0.46% and 0.51% to the entire area, 
respectively, and they were concentrated among ecological sources in 
the southwestern hilly mountainous region (Fig. 8A and 8a). The spatial 
distribution of pinch points and barrier points was similar to that of EPS, 
but their area differed slightly. Pinch points under the EPS and ECSS 
covered 10.88 km2 and 10.96 km2, representing 4.92% and 4.47% of the 
ecological restoration areas, respectively, and they were distributed 
throughout the ecological corridors in the southwest, northwest and 
southeast of Jiangsu Province (Fig. 8C and 8c). Barrier points under the 
EPS and ECSS covered 210.23 km2 and 219.02 km2, accounting for 
95.08% and 89.43% of the ecological restoration areas, respectively, 
and they were distributed throughout the southern and northern 
ecological corridors (Fig. 8D and 8d). Carbon storage increase zones 
were 14.92 km2, accounting for 6.09% of the ecological restoration 
areas, which were found around lakes and the Yangtze River (Fig. 8e). 

5. Discussion 

5.1. Novelty and rationality 

Despite recent studies on the identification of key areas (Li et al., 

Table 2 
The classification criteria of ecological conservation and restoration areas.  

Key areas Ecological priority 
scenario 

Ecosystem carbon sequestration 
scenario 

Conservation 
areas 

Ecological sources, 1- 
km corridor buffer 
zones 

Ecological sources, 1-km corridor 
buffer zones, and carbon storage 
reduction zones 

Restoration 
areas 

Pinch points and 
barriers points 

Pinch points, barriers points, and 
carbon storage growth zones  
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2022a; Peng et al., 2019), an integrated framework for identifying key 
areas with synergistic low-carbon development goals remains lacking. 
Unlike previous research (Boerema et al., 2016; Lu et al., 2018) that 
evaluated the carbon sink benefits of ecosystem restoration, this study 
developed a new framework for identifying ECRAs to enhance carbon 
storage. Furthermore, future LUCC and carbon storage changes were 

incorporated into the entire process of ESP construction in this research. 
These key areas identified within the ECSS will be protected as much as 
possible from future urban sprawl by anticipating future environmental 
changes, and thus can provide long-term effective ecosystem services 
and have a greater carbon sink (Ning et al., 2021; Yang et al., 2018), 
which is important for decision makers developing policies to maintain 

Fig. 5. Spatio-temporal changes in land use patterns. (a) in 2010, (b) the actual pattern in 2020, (c) the simulated pattern in 2020 and (d) in 2060.  

Fig. 6. Spatio-temporal changes in carbon storage in 2020–2060. (a) spatial variation in carbon storage in 2020, (b) spatial variation in carbon storage in 2060, and 
(c) changes in carbon storage in 2020–2060. 
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sustainable development and ecological security of cities. 
The identification of ECRAs was performed with a high level of ra-

tionality and accuracy. The number and spatial distribution of ecological 
sources identified in the ECSS (6010.52 km2 of ecological sources and 

2567.12 km of corridors) were largely consistent with those found by 
Han et al. (2021) (5620.0 km2 of ecological sources and 2209.0 km of 
corridors). This consistency highlights the accuracy of the framework 
employed for identifying ecological sources. The identified ecological 

Fig. 7. Spatial variation in ecological functional importance. (a) ecological functional importance, (b) soil retention, (c) habitat quality and (d) carbon storage.  

Fig. 8. Identification process and results of ecological conservation and restoration areas. Ecological priority scenario: (A) ecological conservation and restoration 
areas, (B) ecological sources and corridors, (C) pinch points and (D) barrier points. Ecosystem carbon sequestration scenario: (a) ecological conservation and 
restoration areas, (b) ecological sources and corridors, (c) pinch points, (d) barrier points, and (e) changes in carbon storage. 
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conservation areas were concentrated in lakes and the Yangtze River, 
and their spatial distribution corresponded to the ecological pattern of 
Jiangsu Province’s Territorial Spatial Planning (2021–2035) (https 
://www.jiangsu.gov.cn/). These results indicate that future ecological 
conservation and restoration will be supported by policies to facilitate 
implementation. Moreover, areas with increased carbon storage were 
primarily found in wetlands around the Yangtze River and lakes, sup-
porting the conclusion and demonstrating the benefits of wetland 
restoration in increasing carbon sinks (Baustian et al., 2021; Mao et al., 
2022; Mei et al., 2022). Other researchers can apply the methodology 
developed in this research and replicate our study in other areas. 
Additionally, the findings obtained in this paper are robust enough to be 
supported by the subsequent application. 

5.2. Interpretation of results 

Our results indicate that urban sprawl remains the main cause of the 
decline in carbon stocks from 2020 to 2060. Increased population and 
anthropogenic activities in Jiangsu Province have resulted in uncon-
trolled sprawl of built-up land, which has occupied farmland and 
ecological land, resulting in a decline in carbon storage (Chuai et al., 
2016; Xiao et al., 2020). It is critical to limit urban sprawl and protect 
areas at risk of carbon stock loss in the process of ecosystem restoration. 
Different from previous findings (Ran et al., 2022; Wang et al., 2022c; 
Zhang et al., 2022a), the areas with reduced carbon storage were 
included in the scope of ecological conservation areas, accounting for 
24.34% of the total ecological conservation areas. The majority of these 
areas consist of croplands scattered along the Yangtze River. As a result, 
this study encompasses the protection of cultivated land within the 
scope of ecological conservation and restoration, as it can help prevent 
the loss of carbon storage. While prior studies mainly focused on 
ecological land as the subject of ecological conservation and restoration 
(Li et al., 2022b; Wortley et al., 2013; Zhou et al., 2020), this study also 
includes cultivated land, thus advancing our understanding of existing 
ecological conservation and restoration research. 

There were differences in the number and spatial distribution of 
ECRAs identified in the two scenarios, indicating that the low-carbon 
development goal affected ecological conservation and restoration, 
and emphasizing the importance of identifying ECRAs that combine dual 
objectives (Wortley et al., 2013). In contrast to the EPS, the ECSS had a 
larger area of ecological sources because it contained some areas with 
decreased carbon storage. The ECSS had longer ecological corridors than 
the EPS to ensure the stability of ecosystem structure, which not only 
carried the flows of species and ecosystem information, but also 
improved the connectivity of patches with high carbon storage (Li et al., 
2017). The connectivity of key elements of an ecosystem plays a sig-
nificant role in the optimization of the ecosystem function (Smith et al., 
2019a). 

The area of ecological restoration areas under the ECSS was larger 
than the EPS, which not only restored the ecosystem to a healthy state, 
but also improved the ecosystem’s carbon sink. The restoration of the 
areas characterized by an increase in carbon storage caused by LUCC 
will be better adapted for future land use management policies aiming at 
improving low-carbon benefits (Ning et al., 2021). There were minor 
differences in pinch points and barrier points between the EPS and ECSS, 
most probably due to the impact of changes in carbon storage on 
ecosystem structure, function, and process (Griscom et al., 2017). 

5.3. Policy implications 

In recent years, increasing urbanization along the Yangtze River 
caused many problems, including an increase in carbon emissions, a loss 
of carbon storage and a decline in ecosystem quality (Han et al., 2021; 
Mei et al., 2022). Therefore, preserving ecological security and low- 
carbon development through a “win-win” ecological conservation and 
restoration scheme is a long-term goal of territorial spatial planning 

currently (de Oliveira et al., 2013; Phelps et al., 2012). The identifica-
tion of ECRAs under various scenarios can provide policy insights for 
coordinating regional objectives. 

As a part of ecological restoration areas, the majority of the areas 
with reduced carbon storage were farmland along the north and south 
sides of the Yangtze River, where the conflict between ecological con-
servation and economic development will be the most visible. If the 
farmland is located within concentrated and continuous farmland, it 
could be assigned to farmland protection red lines and agricultural 
management measures such as improved fertilization, crop variety se-
lection and fallowing can be implemented to reduce agricultural carbon 
emissions (Arneth et al., 2017; Liu et al., 2021). If farmland is close to 
ecological sources, it can be returned to forest and included in the 
ecological conservation red line to improve vegetation’s carbon sink 
ability and ecosystem quality (Wang et al., 2020). Furthermore, key ESP 
elements such as ecological sources, pinch points and barrier points can 
be included in ecological conservation red lines for strict protection to 
limit uncontrolled urban sprawl (Li et al., 2022a; Li et al., 2023b). 

Areas with rising carbon storage were found around lakes and the 
Yangtze River, which were the best restoration areas for increasing 
carbon sink. The current local policy defines that the areas within 1 to 
10 km from the rivers and lake should be conserved. Some carbon- 
cutting measures, such as ceasing illegal housing construction and 
polluting business, should be recommended (Yang et al., 2012; Ye et al., 
2018). Furthermore, policies and techniques, such as land remediation 
and farmland reclamation can be developed to restore vegetation and 
soil to increase the benefits of carbon sink (Chartin et al., 2013; Kolis 
et al., 2017). Environmental conservation and ecological restoration 
have received increased attention in China over the last decade, so 
stricter ecological conservation policies and the selection of locally 
appropriate ecological restoration modes are the keys to promoting 
long-term sustainability (Li et al., 2021; Yang et al., 2015). 

5.4. Limitations and future research 

This study makes an essential contribution to promoting low-carbon 
urban development and ensuring regional ecological security, but 
further research is still needed. 

First, identifying ECRAs is the foundation of ecosystem restoration, 
while the subsequent program implementation is critical to ensuring the 
effectiveness of ecosystem restoration (Lu et al., 2018). Thus, specific 
restoration modes and construction subsequences of the restoration 
program can be determined to ensure feasible program implementation 
by taking into account the cost in the process of ecological conservation 
and restoration, the benefits after restoration, the local natural condi-
tions and the needs of residents. 

Second, marine ecosystem protection and coastal zone restoration 
are beneficial for increasing carbon sinks and preserving ecosystem 
function integrity (Duarte et al., 2013). As a result, marine and terres-
trial ecosystems can be integrated for ecological conservation and 
restoration at the same time. 

Third, this research used the past trends in land use change to predict 
future changes, providing support for the implementation of ecological 
restoration programs. Notably, however, population, land use, econ-
omy, and cities are dynamic and constantly changing, particularly in 
China which has a large and dynamic population (Liang et al., 2021; Liu 
et al., 2017; Yang et al., 2020). To better account for these changes and 
improve the accuracy of future prediction, further studies should 
incorporate dynamic changes of population, land use, economy, and 
cities into the projection of land use. 

Fourth, due to data constraints, we can only select some socio- 
economic data with varying spatial resolutions to maintain data integ-
rity, which may cause some deviation. To minimize bias, future ad-
vances in data collection can yield more detailed data with the same 
spatial resolution. Moreover, the determination of corridor width based 
on various geospatial data warrants more attention in the future studies. 
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Despite these limitations, this research expands the theory of 
ecological conservation and restoration, and our findings and frame-
work can be applied to ecological conservation planning and carbon-
–neutral policy formulation in Jiangsu Province and other urbanized 
regions. 

6. Conclusions 

Different from the previous studies, this study appears to be the first 
attempt to propose a framework for identifying ECRAs for enhancing 
carbon storage, using several models including the PLUS, InVEST, MCR 
and circuit theory. Furthermore, we compared EPS and ECSS to evaluate 
the effectiveness of the proposed framework. 

From 2010 to 2020, there was a significant shift in land use patterns, 
particularly along the Yangtze River where built-up land expanded the 
most in an “axis” pattern, resulting in a 14.26% increase over the 
decade. The continued expansion of built-up land into farmland will 
lead to a significant decline in carbon storage, resulting in an estimated 
decrease of 15.43 Tg between 2020 and 2060. 

The distribution of both ecological conservation areas and ecological 
restoration areas in the ECSS exhibited a general similarity to that of 
EPS, albeit some differences in the areas. Notably, ecological conser-
vation areas occupied a larger area within the ECSS (14768.76 km2) 
than within the EPS (11169.87 km2), accounting for 30.47% and 
23.05% of the entire area, respectively, with concentrations primarily 
observed in the periphery and along the Yangtze River. The ecological 
conservation areas established within the ECSS serve a dual purpose, 
promoting the ecosystem restoration to a healthy state and preventing 
the loss of carbon storage. 24.34% (3594.61 km2) of the ecological 
conservation areas can effectively prevent the loss of carbon storage 
throughout farmland along the Yangtze River. 

Additionally, ecological restoration areas within the ECSS (244.89 
km2) occupied a larger area than the EPS (221.11 km2), contributing 
0.51% and 0.46% to the entire area, respectively, with concentrations 
primarily observed in the southwestern hilly mountainous region. 
Approximately 6.09% (14.92 km2) of the ecological restoration areas 
located around lakes and the Yangtze River are projected to result in an 
enhancement in carbon storage. 

This study expands the knowledge of ecosystem conservation and 
restoration, and provided recommendations for environmental man-
agement and carbon neutrality strategies in other regions facing the 
similar challenges. 
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