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A B S T R A C T

In epidemiological prospective modelling, assessing the hypothetical infectious quanta emission rate (Eq) is 
critical for estimating airborne infection risk. Existing Eq models overlook environmental factors such as indoor 
relative humidity (RH) and temperature (T), despite their importance to droplet evaporation dynamics. Here we 
include these environmental factors in a prospective Eq model based on the airborne probability functions with 
emitted droplet distribution for speaking and coughing activities. Our results show relative humidity and tem
perature have substantial influence on Eq. Drier environments exhibit a notable increase in suspended droplets 
(cf. moist environments), with Eq having a 10-fold increase when RH decreases from 90 % to 20 % for coughing 
and a 2-fold increase for speaking at a representative summer indoor environment (T = 25◦ C). In warmer en
vironments, Eq values are consistently higher (cf. colder), with increases of up to 22 % for coughing and 9 % for 
speaking. This indicates temperature has a smaller impact than humidity. We demonstrate that indoor envi
ronmental conditions are important when quantifying the quanta emission rate using a prospective method. This 
is essential for assessing airborne infection risk.

1. Introduction

Transmission routes of respiratory pathogens are determined by how 
infectious respiratory particles (IRP) travel through the environment 
and how exposed people interact with them (Marr & Tang, 2021). The 
World Health Organization (WHO) suggests the terminologies of 
airborne (or inhalation), direct deposition and contact for the major 
modes of transmission of respiratory pathogens (Leung & Milton, 2024). 
The inhalation/airborne route occurs when expelled IRPs are inhaled 
and deposited in any site of the human respiratory tract, with can be 
subdivided into: (1) short-range: involving inhaling IRPs in close prox
imity (<1–2 m) (Li, 2021a), and (2) long-range: referring to inhalation 
of aerosols at greater distances (Duval et al., 2022).

Infection transmission risk can be estimated using Quantitative Mi
crobial Risk Assessment (QMRA), with a dose–response model to predict 
the likelihood of infection based on exposure to a certain dose of path
ogens (Sze To & Chao, 2010). The Wells-Riley equation, one of the most 
used QRMA methods for evaluating airborne infections, quantifies the 
risk probability by considering variables such as ventilation rate, 

exposure time and quanta emission rate (Eq) (Kurnitski et al., 2021). The 
Wells (1955) dimensionless quantum of contagion represents the in
fectious dose necessary to infect 63.2 % of susceptible individuals [i.e., 
(1 – 1/e)] with pathogens-to-quanta ratio varying by pathogen type 
(Mikszewski et al., 2022). The quantum accounts for both concentration 
and virulence of the infectious material in the air. The rate of infectious 
quanta that are released into the air from a person (Eq) is essential for 
modelling the spread of airborne diseases and implementing effective 
control methods (Jones et al., 2023).

Generally, two methods are used for estimating Eq. First, the retro
spective method uses a past contamination airborne transmission 
outbreak event to estimate Eq from epidemiological factors and venti
lation rates (Miller et al., 2021). The outbreak data needed includes 
ventilation conditions (mechanical/natural ventilation), population 
density and behaviours, and ambient conditions. Insights derived from 
post-event data alone may be potentially delayed and could result in 
inaccurate estimates. Scarce data about variability of emission rates 
between emitters and through time may limit ability to extrapolate to 
other scenarios (Jones et al., 2024). Second, the prospective method 
(Buonanno, Stabile, and Morawska, 2020) estimates Eq using the viral 
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load from IRPs and pathogen’s infectivity data from measurements (e.g., 
aerosol samples and RT-qPCR (Stadnytskyi et al., 2020)), making it more 
reliable and applicable to various studies (Buonanno et al., 2022; Li 
et al., 2021; Mikszewski et al., 2022).

The prospective method quanta emission rate (Eq) [quanta h− 1] is 
estimated from (Buonanno, Stabile, and Morawska, 2020): 

Eq = cvciprv (1) 

where cv is the viral load of exhaled droplets [ribonucleic acid (RNA) 
copies mL− 1], ci is the conversion factor [quanta RNA copies− 1], and pr is 
the pulmonary ventilation rate of the infected person [m3 h− 1]. The 
volume concentration of exhaled droplets [mL m− 3] v is calculated by 
integrating over the volumes of droplets of initial diameter Dp,0: 

v =

∫ Dcrit

0
Cn
(
Dp,0

)
dV
(
Dp,0

)
(2) 

where Cn is the droplet number concentration [particles m− 3] and V is 
the volume of a single droplet [mL]. The critical droplet diameter [µm] 
Dcrit is essential for understanding particle behaviour dynamics in res
piratory emissions. For a given ambient condition, Dcrit indicates the 
threshold between droplets with Dp,0 > Dcrit that settles due to gravity 
and droplets with Dp,0 < Dcrit that evaporate fully before settling 
(Chaudhuri et al., 2020; Xie et al., 2007). Dcrit indicates the boundary 
between the inhalation/airborne to other transmission modes, since the 
former involves droplets that no longer remain suspended in the air.

Buonanno et al. (2020) originally used a Dcrit of 10 µm, while Li et al. 
(2021) used 20 μm suggesting only IRPs that shrink to around 5–10 μm 
in diameter should be accounted for in the inhalation transmission 
route. These Dcrit values were likely chosen for simplicity, assuming that 
inhalation transmission occurs only if IRPs are < 5 μm in diameter (Li 
et al., 2022). This is now considered outdated (Jimenez et al., 2022), as 
there is evidence that IRPs dynamics are environment-dependent, with 
settling rate and spread distance influenced by various factors including 
droplet size, internal content, exhalation mode, speed and direction, 
expired jet flow instabilities, ambient air temperature (T) and relative 
humidity (RH) (Cavazzuti & Tartarini, 2023; Chaudhuri et al., 2020; Liu 
et al., 2017; Wei & Li, 2015). For example, Xie et al. (2007) demonstrate 
Dcrit could vary from 95 to 65 µm (for RH of 30 % and 70 %) in an indoor 
environment with T = 20 ◦C, while Chaudhuri et al. (2020) found Dcrit 
can almost double when the indoor environment is warmed from 5 to 
35 ◦C. Turbulence-induced exhaled jet fluctuations in droplet dispersion 
can cause up to a four-fold greater spread compared to cases where 
turbulence is disregarded (Wei & Li, 2015). Despite evidence of their 

importance, environmental characteristics are overlooked in estimating 
Eq from both retrospective and prospective methods.

To better understand how indoor environmental factors influence 
the critical droplet diameter and hence Eq, we use a prospective 
approach and integrate the airborne probability of respirable-sized IRPs 
after modelling evaporation and transport for different indoor RH and T 
scenarios. The model results are used for deriving a simple parametri
zation for airborne probability in relation to environment conditions, to 
calculate Eq. We utilise our modified Eq to simulate different outbreaks, 
which we compare to the previous Buonanno et al. (2020) case.

2. Methods

2.1. Modified quanta emission rate (Eq) estimation

Our modified prospective method is developed to improve under
standing of how indoor environmental conditions affects Eq. 

Eq = cvcipr

∫ Dcrit=100μm

0
Cn
(
Dp,0

)
γl
(
Dp,0,RH,T

)
dV
(
Dp,0

)
(3) 

where γl is the airborne probability of droplets (Section 2.1.2). We 
consider both relative humidity (RH) in the range 20 to 100 % and in
door air temperature (T) of 18 and 25 ◦C to represent summer and winter 
indoor conditions of temperature-controlled environments (Salthammer 
& Morrison, 2022).

If IRPs settle on the ground, they no longer represent an inhalation 
transmission route risk. Hence, we include airborne probability (Wei & 
Li, 2015) to indicate the likelihood of IRPs remaining suspended in the 
air rather than settling at a specific distance (Grandoni et al., 2024; Wei 
& Li, 2015).

We set the upper limit of droplet size that can be inhaled by humans 
to 100 µm (Milton, 2020) as a more realistic cut-off for Dcrit for the 
inhalation route. Turbulence can enhance the dispersion and spread of 
expired IRPs and this is captured by the airborne probability, as large 
dried-out droplets (> 50 µm) can be found up to 4 m from the emitter 
when coughing is considered (Wei & Li, 2015). Even low probabilities of 
larger droplets reaching longer distances may have important implica
tions for the airborne disease transmission.

2.1.1. Droplet size distribution
We adopt Johnson et al. (2011)’s droplet number concentration (Cn) 

from their trimodal distribution (Table 1) for speaking and coughing 
activities. It allows IRPs to be released from different origins in the 

Nomenclature

Variable Meaning/Reference/Unit
Ar Attack rate Eq. (10) %
a, b, c Fitted parameters in the sigmoid function Eq. (6) −
ci Conversion factor Eq. (1) Quanta RNA copies− 1

Cn Droplet number concentration Eq. (2), (4) Particles m− 3

cv Viral load Eq. (1) RNA copies mL− 1

Dcrit Maximum diameter of exhaled droplet Eq. (2) µm
Di,med Count median diameter Eq. (4) µm
Di,sd Geometric standard deviation Eq. (4) µm
Dp,0 Initial diameter of droplets Eq. (2) µm
Eq Quanta emission rate Eq. (1), (10) Quanta h− 1

I Number of infectors Eq. (10) person
n Number of samples Eq. (7)− (9)−
Ntotal Number of droplets released Eq. (5) −
Nground Number of droplets settling to the ground Eq. (5) −
pr Pulmonary ventilation rate Eq. (1), (10) m3 h− 1

tex Exposure time Eq. (10) h
T Temperature Eq. (3) ◦C
v Volume concentration Eq. (1) mL m− 3

V Volume of a single droplet Eq. (2) mL
Vvenue Volume of the venue Eq. (10) m3

x Horizontal distance Eq. (5) m
yi “True” value Eq. (7)− (9) −
ŷi Predicted value Eq. (7)− (9) −
yi Mean “true” value Eq. (7)− (9) −
λ Air changes per hour Eq. (10) h− 1

γ Airborne probability Eq. (5) −
γl Long-range airborne probability Eq. (3), (6) −
MAE Mean absolute error Eq. (7) −
MBE Mean biased error Eq. (8) −
RH Relative humidity Eq. (3) %
R2 Coefficient of determination Eq. (9) −
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respiratory tract, including bronchiolar, laryngeal, and oral sites. 

dCn

dLogDp,0
= ln(10)x

∑3

i=1

(
Cn,i

̅̅̅̅̅̅
2π

√
ln
(
Di,sd

)

)

exp

(

−

(
lnDp,0 − ln

(
Di,med

) )2

2
(
lnDi,sd

)2

)

(4) 

2.1.2. Airborne probability (γ)
Droplets that settle on the ground are removed from the air, so no 

longer represent an inhalation transmission risk. By introducing the 
airborne probability of droplets (γ) we consider turbulence-induced 
exhaled jet fluctuations and their impact on dispersion using a discrete 
random walk approach. The γ term gives the likelihood of IRPs 
remaining suspended in the air, by the quantity that settle to the ground, 
Nground(x), at a specific distance x relative to the total number of droplets 
released, Ntotal (Grandoni et al., 2024; Wei & Li, 2015): 

γ = 1 −
Nground(x)

Ntotal
(5) 

As we consider only IRPs inhaled at a long-range, we calculate the long- 
range airborne probability (γl) for speaking using x  = 2 m. For coughing 
a larger threshold of x  = 4 m is adopted, as the cough jet can remain 
suspended in the air for longer compared to speaking breaths 
(Bourouiba, 2020).

2.1.3. Droplet movement and evaporation
The long-range airborne probability (γl) requires information of 

movement and evaporation of exhaled IRPs to be modelled. The initial 
velocity of an exhaled droplet depends on respiratory activity. Once 
exhaled evaporation will cause the droplet to start to lose water to the 
ambient air. Key model assumptions are (details in Appendix and Wei & 
Li, 2015): 

• Exhaled droplets are spherical during transport.
• Thermophysical properties are uniform within the droplet.
• Heat transfer processes through the droplet surface are convective 

heating and evaporative cooling.
• Exhaled droplets contain both soluble and insoluble components. 

Vapour pressure at the droplet surface depend on Kelvin and solute 
effects.

• Droplets are emitted together with breathing air in a turbulent 
buoyant round jet, with a discrete random walk representing in-jet 
turbulence.

2.2. Cases simulated

The two indoor air temperatures considered, warm (T = 25 ◦C) and 
cool (T = 18 ◦C), are intended to represent typical summer and winter 
indoor conditions in temperature-controlled environments in Europe 
(Salthammer & Morrison, 2022). Obviously, values vary associated with 
regional and cultural factors. Eight relative humidity conditions are 
selected to cover a range of indoor humidity scenarios. These span 20 to 
90 %, at 10 % intervals. The exhaled droplets range in diameter from 10 
to 100 µ m (interval = 2 µm), aligning with the upper limit of droplet 
diameter that can be inhaled by humans (Milton, 2020).

The epidemiological parameters are fixed for all simulations to es

timate the quanta emission rate, using the volume concentration from 
Eq. (2). The median epidemiological parameter values for SARS-CoV-2 
are used for viral load cv (= 4x105 RNA copies mL− 1) and conversion 
factor ci (= 0.0014 quanta RNA-1) (Mikszewski et al., 2022). Pulmonary 
ventilation rate pr varies with respiratory activities, with speaking being 
0.54 m3 h− 1 (Mikszewski et al., 2022) and for coughing being 0.0144 m3 

h− 1 based on persistent coughing [frequency 9 coughs h− 1] with a 
coughing flow rate of 2.45 x10-3 m3 cough− 1 (Altshuler et al., 2023; 
Gupta et al., 2009). We use a constant coughing frequency of 9 per hour, 
whereas this can vary with contamination stage and pathogen (Altshuler 
et al., 2023).

Quanta emission rate is estimated based on the long-range airborne 
probability (Eq. (5) with 1000 exhaled droplets per simulation scenario. 
The exhalation velocity is kept constant at 5 (speaking) and 10 m s− 1 

(coughing) with an exhaled air temperature set at 35 ◦C.

2.2.1. Parameterisation of long-range airborne probability (γl)
For computational efficiency a sigmoid equation is fit to the long- 

range airborne probability cases simulated: 

γl =
1

1 + exp −
(
aDp,0 + bRH + c

) (6) 

where a, b and c are the fitted parameters. The sigmoid function provides 
a smooth, continuous approximation of the probability, capturing 
nonlinear relationships between the settling and evaporation processes. 
This allows a fast airborne probability estimate across the range of 
droplet sizes without needing detailed calculations, thus reducing 
computational resources needed.

With only two indoor temperature scenarios, parameters are derived 
for each reparatory activity and temperature condition (i.e., four sets of 
parameters or equations). The parameter fitting is done twice, with the 
results split by RH values into one (i.e., 20 – 90 %), and three (low: 20 – 
40 %, medium: 50 – 60 % and high: 70 – 90 %) classes.

The fitted model accuracy is evaluated by assessing the predictive 
capacity for RH values used in the training (fitting) phase, using stan
dard metrics:

(1) Mean absolute error (MAE): 

MAE =
1
n
∑n

i=1
|yi − ŷi| (7) 

(2) Mean biased error (MBE): 

MBE =
1
n
∑n

i=1
(yi − ŷi) (8) 

(3) Coefficient of determination (R2): 

R2 =

∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)

yi =
1
n
∑n

i=1
yi (9) 

where ŷi is the predicted value of the i-th sample, with yi is the “true” 
value, and y is the mean of the true values.

Table 1 
Trimodal droplet size distribution model parameters for coughing and speaking (Johnson et al., 2011) including diameter geometric standard deviation (Di,sd) and 
count median diameter (Di,med).

Coughing Speaking

Mode Bronchiolar Laryngeal Oral Bronchiolar Laryngeal Oral

Cn [cm− 3] 0.0903 0.1419 0.0159 0.054 0.0684 0.00126
Di,med [µm] 2.4123 2.4615 123.3 2.4830 3.6923 144.6
Di,sd [µm] 1.25 1.68 1.837 1.30 1.66 1.795
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2.3. Application to two outbreak case studies

We compare our results to retrospective assessments from two SARS- 
CoV-2 outbreak cases: an outbreak in a restaurant in Guangzhou, China 
(Lu et al., 2020) and in a call centre in South Korea (Prentiss et al., 
2020). In the retrospective analysis, we estimate the quanta emission 
rate using the Wells-Riley equation, considering no other losses apart 
from ventilation at the time of the event: 

Ar = 1 − exp
(

IprEqtex
Vvenueλ

)

(10) 

where Ar is the attack rate [%], I is the number of infectors [person], pr is 
the pulmonary ventilation rate [m3 h− 1], Eq is the quanta generation rate 
[quanta (h person)-1], tex is the exposure time interval [h], Vvenue is the 
volume of the venue [m3] and λ is the air changes per hour [h− 1].

Monte Carlo simulations (Kroese et al., 2014) are performed to es
timate the Eq for retrospective method for each outbreak location. Pa
rameters from Eq. (10) are used in the range values and distribution 
specified in Table 2, where uncertainties are obtained by varying these 
parameters within their specified lower and upper limits (Lu et al., 2020; 
Prentiss et al., 2020).

Additionally, Monte Carlo simulations are also conducted for our 
proposed method using parameters from Eq. (1). The range of variables 
and their distributions, as shown in Table 3, are used to capture the 
uncertainties. This approach facilitates the analysis of the uncertainty 
estimates derived from both methods.

3. Results and Discussion

3.1. Droplet dispersion pattern

To determine the number of droplets needed to provide robust sta
tistical results an initial sensitivity analysis (Fig. S.1) found 1,000 
droplets to be enough. This involves releasing a single droplet every 
0.04 s over a 40 s duration.

A snapshot of the droplet distribution in space at t = 40 s, with an 
initial size Dp,0 of 50 µm varies with humidity conditions (RH = 20 and 
90 %) and between activities, speaking (Fig. 1a) and coughing (Fig. 1b), 
in the summer scenario (T = 25 ◦C). Medium-sized droplets predomi
nantly follow the cough jet under dry environments for both coughing 
and speaking, as higher evaporation rate in lower RH conditions pro
longs the presence of larger exhaled droplets in the environment. Wei & 
Li (2015) also highlighted the significant effect of evaporation on 
medium-sized droplets for coughing, while variations in RH have min
imal impact on the airborne probability of small (< 30 µ m) and large 
droplets (> 60 µ m). Smaller droplets tend to follow the jet airflow 
closely, while larger droplets settle more quickly to the ground.

For both speaking and coughing, when the RH = 20 %, the airborne 
probability remains at 100 % across all considered distances (Fig. 1), 
indicating a tendency for dried-out droplets to follow jet streamlines in 
dry environments. In contrast, for wet environments with RH = 90 %, 
droplets are observed to settle at around 0.25 m from the emitter during 
speaking and 0.50 m during coughing with airborne probability 

decreasing to 0.15 and 0.25 for the largest distances considered, 
respectively, indicating reduced spread in more humid conditions.

3.2. Long-range airborne probability of droplets

Long-range airborne probability of exhaled droplets (γl) is computed 
across various RH levels and droplet sizes for the winter and summer air 
temperatures. Threshold distances (xt) are set to 2 m for speaking and 4 
m for coughing, to allow the long-range inhalation route to be distin
guished from the short-range (Eq. (5)).

There is a consistent decline in γl with increasing droplet size and RH 
for both coughing and speaking activities (Fig. 2). Between γl = 0.02 
(pink, Fig. 2) and green γl = 0.98 (green) is where most droplets are 
susceptible to fluctuation in long-range airborne probability. This in
dicates long-range airborne probability for medium-sized droplets (40 – 
70 µm) are more influenced by external conditions, particularly in en
vironments with low to medium RH (< 70 %). Although higher RH 
environments are expected to have fewer suspended droplets, a fraction 
of 50 μm droplets will persist (12.3 % for coughing and 6.6 % for 
speaking, with the winter T). Larger droplets are more susceptible to 
indoor temperature variations, as evidenced by the leftward shift of the 
γl = 0.02 bound from summer (pink solid, Fig. 2) to winter (dashed) for 
both respiratory activities. This shift indicates that droplets with same 
size evaporate more rapidly in higher temperature environments due to 
heightened vapour pressure deficit, resulting in a greater droplet sus
pension in the air.

The long-range airborne probability model parameters (Table 4) are 
derived from fitting Eq. (6) using One and Three RH classes approaches. 
The fits are verified using ambient RH of 35 % and 55 % (i.e., a low and 
medium case from the Three RH class approach), for data not used in the 
fitting stage.

Predictions for coughing activity (Fig. 3) have comparable perfor
mance between the One and Three class approach for RH = 35 % in both 
summer and winter temperatures. Both approaches show similar values 
for the metrics considered, despite the tendency to underestimate the 
actual values as indicated by negative MBE (Table 5). In contrast, for RH 
= 55 %, the Three class approach substantially outperforms the One 
class, exhibiting improved estimates based on MBE with smaller MAE 
and larger R2 values (Table 5). Given the Three class approach’s better 
predictability, particularly at higher RH, the long-range airborne prob
ability is predicted using it when determining the quanta emission rate 
(Eq).

3.3. Quanta emission rate

Increasing temperature leads to an increase in Eq, while higher RH 
results in a decrease in Eq. Coughing indoors has a 10-fold larger Eq if the 
RH is 20 % compared with 90 % (Fig. 4a), whilst for speaking the dif
ference is only 2-fold for the same temperature conditions (Fig. 4b). As 
for the long-range airborne probability (Fig. 2), indoor temperature also 
influences the quanta emission rate across all RH levels (Fig. 4), with a 
more pronounced effect in drier environment. At T = 25 ◦C, the quanta 

Table 2 
Parametric values used in the Monte Carlo simulation for estimating Eq using the 
retrospective method in Equation (10) for a restaurant and a call centre (Lu 
et al., 2020; Prentiss et al., 2020).

Parameter Restaurant China Call Centre Korea

Values Distribution Values Distribution

Ar (%) 0.45 – 0.81 Uniform 0.50 – 0.75 Uniform
pr (m3 h− 1) 0.49 – 1.38 Uniform 0.49 – 1.38 Uniform
λ(h− 1) 0.56 – 0.77 Uniform 0.5 – 1.5 Uniform
Vvenue(m3) 45 Constant 1143 Constant
tex (h) 1 Constant 8 Constant

Table 3 
Parametric values used in the Monte Carlo simulation for estimating our pro
posed method in Eq. (1) for simulated scenarios.

Parameter Summer Winter

Values Distribution Values Distribution

ci (quanta RNA 
copies− 1)

0.0014 Constant 0.0014 Constant

cv (RNA copies 
mL− 1)

5.6 (1.2) Log10 normal 
(mean/std dev)

5.6 
(1.2)

Log10 normal 
(mean/std dev)

pr (m3 h-1) 0.49 – 
1.38

Uniform 0.5 – 
1.5

Uniform

v (mL m− 3) 0.047 Constant 0.021 Constant
RH (%) 20 Constant 90 Constant
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emission rate increases up to 19 % for coughing and 8 % for speaking (cf. 
T = 18 ◦C). By linearly extrapolating our data, environments with a 
lower temperature of T = 14 ◦C would experience a slight reduction in 
the quanta emission rate, with a 11 % decrease for coughing and 5 % 
decrease for speaking for drier environments, with smaller values 
observed at higher RH levels.

For speaking Eq is larger than for coughing (Fig. 4), due to its higher 
frequency of occurrence. However, Eq for coughing alone (assuming 9 
coughs h− 1) constitute a substantial fraction of that for speaking, 
amounting to approximately 20 % in an environment with RH = 20 % 
and to 6 % in with RH = 90 %. Moreover, as a sick person may alternate 
between speaking and coughing, and also with higher frequency of 
coughing, this could potentially further increase Eq values.

It is noteworthy that much lower estimates of Eq are obtained using 
the original Buonanno et al. (2020) formulation with a Dcrit of 10 µm 
assumed. This large discrepancy arises from our approach accounting 
for the influence of larger droplets, which are more susceptible to 

environmental conditions. Hence, including this effect points to a 
greater potential for disease transmission.

3.4. Case study

In the following comparison, we explore the variability in calculated 
Eq using Monte Carlo simulation (1000 runs) for a retrospective method 
for two outbreak scenarios and our proposed method (Section 2.3). Due 
to the absence of specific temperature and relative humidity (RH) values 
during the outbreaks (Lu et al., 2020; Prentiss et al., 2020) we applied 
our proposed method to two extreme scenarios in terms of Eq estimates: 
dry and warm (RH = 20 % and T = 25 ◦C) and wet and cold (RH = 90 % 
and T = 18 ◦C). Additionally, we include the estimates using Dcrit = 10 
μm (Buonanno et al., 2020) and present the results in interquartile 
ranges (IQR) to illustrate the variability of the estimates while mini
mizing the influence of extreme values (Fig. 5).

From the retrospective analysis, for a 1-hour event in a restaurant in 

Fig. 1. Droplet distribution at t = 40 s for (a) speaking and (b) coughing for two ambient RH conditions (blue: 20 %, red: 90 %) with expiratory jet boundaries (black 
dashed lines) and airborne probability (blue, red, dashed lines, right-hand y-axis). The initial droplet diameter is 50 µm and T = 25 ◦C.
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China the median value Eq of 32.76 quanta h− 1 while it becomes 149.47 
quanta h− 1 in an 8-hour shift in a call centre in South Korea (green, 
Fig. 5). Although retrospective and prospective methods are not directly 
comparable, estimating Eq using our prospective model gives median Eq 
of 2.78 to 5.93 quanta h− 1 for different environmental conditions, with 
lower values for when it is cold and wet (blue Fig. 5). Accounting for the 
environmental factors significantly influence quanta emission rates and 
provides a closer approximation to the retrospective data when 
compared to 0.21 quanta h− 1 obtained using the upper limit Dcrit = 10 
μm as suggested by Buonanno et al. (2020) (yellow, Fig. 5).

By incorporating environmental variables, our model offers more 
accurate predictions of Eq. These results highlight the impact of seasonal 
and environmental factors. Recognizing these influences enables more 
robust risk assessments for airborne disease transmission and facilitates 
the development of targeted preventive measures, such as adjusting 
ventilation/heating strategies or implementing specific hygiene prac
tices during high-risk periods.

Fig. 2. Heat map of γl in summer and winter for (a, b) coughing and (c, d) speaking with values γl of 0.02 (pink) and 0.98 (green) when T = 25 ◦C (solid) and T =
18 ◦C (dashed).

Table 4 
Fitted parameters for the sigmoid equation (Eq. (6)) using the One and Three RH classes approaches for summer and winter temperatures.

Model Summer (T ¼ 25 ◦C) Winter (T ¼ 18 ◦C)

a b c a b c

Coughing One − 0.2659 − 0.0869 21.9210 − 0.3028 − 0.0974 24.3288
Speaking One − 0.4307 − 0.1313 32.6496 − 0.4976 − 0.1470 36.5284
Coughing Three - Low RH -0.2207 -0.0279 16.5011 -0.2525 -0.0319 18.4122
Coughing Three - Medium RH -0.3262 -0.0707 25.8772 -0.3958 -0.0878 30.7511
Coughing Three - High RH -0.4852 -0.3511 55.1593 -0.5958 -0.4233 66.0338
Speaking Three - Low RH -0.3990 -0.0589 27.9199 -0.4899 -0.0683 33.1625
Speaking Three - Medium RH -0.6921 -0.1629 51.4679 -0.9694 -0.2130 69.3234
Speaking Three - High RH -0.7873 -0.4918 79.0972 -1.0096 -0.6153 98.4088
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4. Limitations of this study

In our study, we calculate quanta emission rates without accounting 
for infectivity decays, ventilation or filtration after exhalation, rather we 
focus on particles remaining airborne without settling (deposition). 
However, once IRPs are expelled from the mouth, their infectivity and 
aerostability are affected by factors such as UV irradiation, ambient CO2 
concentration, temperature and relative humidity (Dabisch et al., 2021; 
Haddrell et al., 2024).

We consider a well-mixed stagnant indoor environment where 
ventilation does not directly affect the expired jet, yet ventilation de
signs could play an important role in mitigating airborne transmission 
risk (Bhagat et al., 2020). Targeted ventilation strategies, such as 
downward-directed airflows that enhance droplet settling could reduce 
airborne IRPs by increasing the surface deposition (Pandey et al., 2023). 
Similarly, prioritizing displacement ventilation over mixing ventilation, 
where feasible, may help limit fast dilution across the space and 

minimize the impact of ambient turbulence which could further increase 
the airborne residence time of droplets (Sodiq et al., 2021; Wei & Li, 
2015). In both scenarios, decreasing ambient temperature could further 
minimise quanta concentrations.

In our study, we define the threshold distance between short and 
long-range transmission as 2 m for speaking and 4 m for coughing. While 
there are no absolute values distinguishing these transmission modes, 
our choice was based on common assumption that close-proximity for 
speaking falls within 1.5 – 2 m (Li, 2021b), and that the cough jet can 
remain suspended in the air for longer compared to speaking breaths, 
reaching up to 4 m (Bourouiba, 2020). Beyond those distances, we as
sume droplet concentrations become well mixed in the environment, 
although in real-world conditions droplet distributions are often uneven 
and unsteady.

Although quanta emission rates are highly sensitive to viral load in 
droplets, we assume a constant viral load based on viral load of SARS- 
CoV-2 as in sputum, despite subject characteristics and contamination 
stage causing variation between 101 to 1011 RNA copies mL− 1, being an 
important source of uncertainty for quanta calculations (Pan et al., 
2020). This assumption extends to all droplet sizes despite evidence 
suggesting that viral load of SARS-CoV-2 varies with droplet size and 
that finer droplets (< 5 µm) can carry up to 85 % of the total viral load in 
some cases across various SARS-CoV-2 variants (Coleman et al., 2022; 
Tan et al., 2023). These findings could significantly influence quanta 
emission rates calculations, with a comprehensive analysis across a 
wider range of droplet sizes and pathogens still being necessary. How
ever, by not considering this variability, our findings are generalisable to 
other pathogens, which may not exhibit the same behaviour.

Fig. 3. Long-range airborne probability when RH is (a, c) 35 % and (b, d) 55 % for (a, b) summer and (c, d) winter temperatures during coughing simulated using full 
model from Eq. (5) (circle), One (square) and Three Class (triangle) RH approaches fit to Eq. (6).

Table 5 
Metrics (Section 2.2.1) used to evaluate cases when the RH is 35 and 55 %, with 
summer and winter temperatures, using One and Three RH class approaches.

Model RH ¼ 35 % RH ¼ 55 %

MAE MBE R2 MAE MBE R2

Summer One 0.055 − 0.023 0.959 0.092 0.070 0.894
Summer Three 0.046 0.000 0.963 0.049 − 0.002 0.975
Winter One 0.058 − 0.039 0.963 0.087 0.067 0.907
Winter Three 0.050 − 0.020 0.970 0.038 − 0.020 0.983
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5. Conclusions

Quantifying the quanta emission rate is crucial for accurate assess
ment of infectious disease transmission risks. Here we propose a modi
fied prospective method to estimate quanta emission rates that includes 
both environmental conditions and a larger threshold for inhalable 
droplet size. Our method employs the long-range airborne probability as 
a function of indoor relative humidity and temperature, and integrates it 
together with an exhalation droplet size distribution for coughing and 
speaking.

Our main findings are that both relative humidity and temperature 
are important factors in estimating quanta emission rates. Quanta 
emission rates can be up to 10 times larger in dry indoor environments 
(RH = 20 %) for coughing and 2 times larger for speaking modes 
compared to environments with RH = 90 %. Indoor air temperature has 

a large influence, particularly in dry conditions (RH = 20 %) with winter 
scenario (T = 18 ◦C) having a 20 % higher quanta emission rate (cf. 
summer scenario). These effects are more pronounced for medium-sized 
droplets (40 – 70 µm), suggesting they could play a crucial role in the 
inhalation route of disease transmission.
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= 25 ◦C, RH = 20 %, red) and wet and cold environment (T = 18 ◦C, RH = 90 %, blue) using our method alongside with the prospective method using Dcrit = 10 μm. 
Note Y axis is nonlinear.
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