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Plants defend themselves against pathogens using either resis-
tance, measured as the host’s ability to limit pathogen multipli-
cation, or tolerance, measured as the host’s ability to reduce the
negative effects of infection. Tolerance is a promising trait for
crop breeding, but its genetic basis has rarely been studied and
remains poorly understood. Here, we reveal the genetic basis of
leaf tolerance to the fungal pathogen Zymoseptoria tritici that
causes the globally important septoria tritici blotch (STB) dis-
ease on wheat. Leaf tolerance to Z. tritici is a quantitative trait
that was recently discovered in wheat by using automated image
analyses that quantified the symptomatic leaf area and counted
the number of pycnidia found on the same leaf. A genome-wide
association study identified four chromosome intervals associ-
ated with tolerance and a separate chromosome interval associ-
ated with resistance. Within these intervals, we identified can-
didate genes, including wall-associated kinases similar to Stb6,
the first cloned STB resistance gene. Our analysis revealed a
strong negative genetic correlation between tolerance and re-
sistance to STB, indicative of a trade-off. Such a trade-off be-
tween tolerance and resistance would hinder breeding simulta-
neously for both traits, but our findings suggest a way forward
using marker-assisted breeding. We expect that the methods de-
scribed here can be used to characterize tolerance to other fun-
gal diseases that produce visible fruiting bodies, such as speckled
leaf blotch on barley, potentially unveiling conserved tolerance
mechanisms shared among plant species.
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Plants defend themselves against pathogens using either re-
sistance, measured as the host’s ability to limit pathogen mul-
tiplication, or tolerance, measured as the host’s ability to re-
duce the negative effects of infection (Pagán and García-Arenal
2020). A fundamental difference between these two strategies is
that resistance reduces the multiplication rate of the pathogen,
whereas tolerance does not. Tolerance was first recognized by
plant pathologists in 1894 (Cobb 1894), and it is thought to be
a host defense strategy as common and important as resistance
(Pagán and García-Arenal 2020). However, our knowledge of the
mechanisms and genes controlling tolerance pales in compari-
son to our knowledge of the mechanisms and genes underlying
resistance. This stems in part from the difficulty of measuring
tolerance in plants, as well as from a lack of agreement on how
tolerance should be defined. The excellent, comprehensive re-
view by Pagán and García-Arenal (2020) presents well-reasoned
definitions that should resolve the latter difficulty.

The genetic basis of tolerance in plants has rarely been stud-
ied and remains poorly understood. The review by Pagán and
García-Arenal (2020) identified 10 examples of where tolerance
was inferred and its genetic basis was analyzed. In most of these
cases, tolerance appeared to be a quantitative trait, involving
from 1 to 70 quantitative trait loci (QTLs) or candidate genes,
but in some of these cases, it remains unclear whether the mea-
sured trait was truly tolerance or a form of resistance that was
treated as tolerance (Ayala et al. 2002; Han et al. 2008; Williams
et al. 2003). For example, Han et al. (2008) identified eight QTLs
associated with tolerance to Phytophthora sojae in soybeans, us-
ing the proportion of surviving plants as a proxy for tolerance.
However, it is possible that the plants surviving exposure to P. so-
jae were displaying partial resistance instead of tolerance to this
pathogen. The most extensive work on tolerance has been con-
ducted with plant viruses, including a study in which tolerance to
the barley yellow dwarf virus in wheat was ascribed to 22 QTLs
of minor effect (Ayala et al. 2002). In tomatoes, a MAP kinase
was found to enhance tolerance to the tomato yellow leaf curl
virus by regulating salicylic acid and jasmonic acid signaling
(Li et al. 2017). More recently, the overexpression of a cellu-
lose synthase-like gene was shown to boost tolerance to tomato
yellow leaf curl virus (Choe et al. 2021). Functional alleles of
flowering repressor genes in Arabidopsis thaliana were found to
contribute to plant tolerance to cucumber mosaic virus (Shukla
et al. 2022). Tamisier et al. (2022) identified candidate genes
for potato virus Y tolerance in peppers (Capsicum annuum), in-
cluding a cluster of nucleotide-binding site leucine-rich repeat
(NBS-LRR) genes. However, we are not aware of any studies
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that have identified candidate genes specifically associated with
tolerance to fungal plant pathogens until now.

Septoria tritici blotch (STB) is the most damaging disease of
wheat in Europe (Jørgensen et al. 2014) and among the most
important diseases of wheat globally (Savary et al. 2019). STB
is caused by the fungus Zymoseptoria tritici, a pathogen that has
co-evolved with wheat for more than 10,000 years (Stukenbrock
et al. 2007) and has a high evolutionary potential (McDonald
et al. 2022). The most common strategies for controlling STB
are deployments of fungicides and STB-resistant wheat culti-
vars. Exposed Z. tritici populations typically evolve resistance
to fungicides and virulence against resistant cultivars within a
few years of deployment (Kildea et al. 2020; McDonald and
Mundt 2016; McDonald et al. 2019). The genetic basis of fungi-
cide resistance and virulence has been explored in several pop-
ulations of Z. tritici, leading to the discovery, cloning, and func-
tional validation of several of the underlying genes for both traits
(Amezrou et al. 2023; Garnault et al. 2019; Meile et al. 2018;
Zhong et al. 2017). Several STB resistance genes in wheat have
also been cloned and functionally validated (Hafeez et al. 2023;
Saintenac et al. 2018, 2021). The cloned pathogen avirulence
genes and cloned wheat resistance genes have been shown to
largely conform to the gene-for-gene concept of plant-pathogen
interactions, though resistance to STB does not appear to involve
a hypersensitive response (Saintenac et al. 2018).

Leaf-level tolerance to Z. tritici is a quantitative trait that
was recently discovered in wheat (Mikaberidze and McDonald
2020) by using automated image analyses that could accurately
quantify the leaf area affected by STB and count the number of
fungal fruiting bodies (called pycnidia) found on the same leaf
(Karisto et al. 2018; Stewart et al. 2016). These measures were
then used to quantify degrees of STB resistance and STB tol-

erance in wheat, the latter using a novel measure called kappa,
in 335 elite winter wheat cultivars growing in the same field.
Resistance was quantified as the average number of pycnidia on
a leaf, Np, adjusted for the overall leaf area. More resistant plant
genotypes suppressed pathogen reproduction and consequently
carried fewer pycnidia on their leaves. Kappa is an exponen-
tial slope that characterizes the negative relationship between
green leaf area and the number of pycnidia on a leaf. Lower
kappa values correspond to higher tolerance: when inhabited by
pathogen populations of the same size (i.e., when leaves carry
the same numbers of pycnidia), more tolerant plant genotypes
retain larger green leaf areas than less tolerant genotypes (Fig. 1).
Mikaberidze and McDonald (2020) showed that there was a
wide, continuous variation in both resistance and leaf tolerance
across the 335 wheat cultivars. They also found a negative rela-
tionship between tolerance and resistance, indicative of a trade-
off between these traits.

Before the discovery of leaf tolerance, we used these data
to conduct a genome-wide association study (GWAS) to ana-
lyze the genetic architecture of STB resistance in the 335 wheat
cultivars and identified several chromosome regions that con-
tained interesting candidate STB resistance genes (Yates et al.
2019). Here, we used the leaf tolerance trait kappa to conduct a
GWAS aiming to elucidate the genetic architecture of tolerance
and identify candidate genes that may be associated with leaf
tolerance. We also sought to determine if the trade-off between
tolerance and resistance to STB has a genetic basis. We discov-
ered that the genetic associations for tolerance were independent
from the previously described genetic associations for resistance
to this pathogen. We identified four chromosome intervals asso-
ciated with leaf-level tolerance and a separate chromosome in-
terval associated with resistance. A bivariate GWAS that jointly

Fig. 1. Illustration of leaf tolerance. Septoria tritici
blotch symptoms on wheat leaves can be seen as char-
acteristic necrotic lesions with pycnidia (seen as small,
black, round structures within lesions) on A, tolerant
cultivar Intact versus B, nontolerant cultivar Lynx. The
number of pycnidia is similar in the two images, but the
nontolerant leaf has a larger disease-induced necrotic
area (and a smaller green leaf area) and therefore suffers
more damage from disease compared with the tolerant
leaf. Black rectangles are 4× magnified in the insets,
where two characteristic pycnidia are indicated by ar-
rows. To quantify leaf tolerance, it is not sufficient to
compare two leaves; instead, we analyzed large numbers
of diseased leaves from each cultivar and estimated tol-
erance as the negative exponential slope of how green
leaf areas decrease versus the number of pycnidia on a
leaf (Figure 4; Mikaberidze and McDonald 2020).
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considered both tolerance and resistance did not provide signif-
icant marker associations, even though there was a significant
negative genetic correlation between these traits. Within each
of the significant chromosome intervals, we identified candidate
genes associated with tolerance.

Results
Leaf tolerance (quantified as kappa) and resistance to STB

(quantified as the number of pycnidia per leaf, Np) were mea-
sured based on the analysis of 11,152 individual images of nat-
urally infected leaves coming from 335 elite winter wheat cul-
tivars growing in a replicated field experiment (Karisto et al.
2018). On average, each leaf was infected by a different strain
of Z. tritici (Lorrain et al. 2024; McDonald et al. 2022); hence,
the measures of leaf tolerance and resistance calculated for each
cultivar represent average values across a very large number of
pathogen strains. Despite the large variance associated with in-
fections involving thousands of pathogen strains, the heritability
was high for both leaf tolerance (0.44 for kappa) and resistance
(0.88 for Np). There were strong phenotypic (rp = −0.40, P <
0.001) and genetic (rg = −0.67, P < 0.001; Fig. 2) correlations
between leaf tolerance and resistance.

The leaf tolerance and resistance phenotypes were used to
conduct a GWAS that included, after filtering, 9,125 SNPs in
330 of the wheat cultivars. The GWAS identified three marker-
trait associations (MTAs) for leaf tolerance that exceeded the
Bonferroni significance threshold, located on chromosomes 2D,
6B, and 7D (Fig. 3). An additional leaf tolerance MTA on chro-
mosome 7A fell just below the Bonferroni threshold (LOD =
5.19; Fig. 3) but was included in further analyses. For resistance,
Np, one significant MTA was detected on chromosome 5A. The
bivariate GWAS that jointly considered leaf tolerance and re-
sistance did not detect any significant associations, though the
MTAs observed on chromosomes 5A, 6B, and 7D in the uni-
variate analyses remained distinct relative to other SNPs (Fig.
3C). Although it was not significant at the Bonferroni threshold,

Fig. 2. Genetic correlation between tolerance (quantified as kappa) and re-
sistance (quantified as Np). Purple dots represent the empirical best linear
unbiased predictors extracted from the bivariate model (equation 3), and
gray lines represent the standard deviations.

a distinctive peak visible on chromosome 7A (LOD = 4.01; Fig.
3C) was included in further analyses.

The SNPs and chromosome positions for each of the six iden-
tified MTAs are shown in Table 1. For each MTA, a chromosome
interval was defined by including the DNA sequences positioned
2.5 million base pairs (Mbp) in each direction from the signifi-
cant SNP (i.e., by placing the most significant SNP at the center
of a 5-Mbp interval on the IWGSC reference sequence v.1.0;
IWGSC et al. 2018). The positions of these chromosome in-
tervals were then compared with the positions of chromosome
intervals containing STB resistance QTLs that were reported in
recent publications (Alemu et al. 2021; Mahboubi et al. 2022;
Mekonnen et al. 2021; Yates et al. 2019; Zakieh et al. 2023)
to determine if there were any overlaps (Supplementary Table
S1). The leaf tolerance MTA on chromosome 2D was found to
be 0.9 Mbp upstream of an STB resistance MTA that was pre-
viously detected in a greenhouse experiment where seedlings
of 316 Nordic breeding lines were inoculated with two Nordic
strains of Z. tritici (Zakieh et al. 2023). The resistance MTA on
chromosome 5A was found to be within the same interval as a
different STB resistance trait, the percentage of leaf area covered
by lesions, that was identified in our earlier analyses of the same
dataset (Yates et al. 2019). The tolerance MTA on chromosome
7D was found to be 1.6 Mbp downstream of the STB resistance
QTL detected in a greenhouse experiment where seedlings of
185 wheat genotypes of globally diverse origin were inoculated
with 10 different Z. tritici strains of global origin (Mahboubi
et al. 2022). Using the consensus map by Wang et al. (2014),
we also compared our results with earlier publications reviewed
in Brown et al. (2015). We found that the resistance MTA on
chromosome 5A and the tolerance MTAs on chromosomes 6B,
7A, and 7D were within the reported intervals for MQTL19,
21, 24, and 27, respectively. However, these intervals are too
large (45, 22, 55, and 13 cM, respectively) to be confident that
these overlaps are biologically meaningful. Therefore, whereas
our tolerance MTAs on chromosomes 2D and 7D fall within
previously reported resistance intervals, our tolerance MTAs on
chromosomes 6B and 7A are likely to constitute new loci or re-
fined loci for tolerance within meta-QTLs previously associated
with resistance.

To identify candidate genes, we employed a two-pronged ap-
proach: (i) a gene motif overrepresentation analysis and (ii) a
differential gene expression analysis based on published data
(Ramírez-González et al. 2018; Rudd et al. 2015). To accomplish
(i), we first searched the IWGSC refseq1.0 annotation (IWGSC
et al. 2018) within 5-Mbp windows around each of the six iden-
tified MTAs. We selected candidate genes within these regions
based on their functional description (Supplementary Tables S2
to S7) and classified them into 13 motif groups. Next, we com-
pared the occurrence of these groups within each interval with
their occurrence in 10,000 intervals of 5 Mbp in size randomly
chosen across the genome (see Materials and Methods). This
analysis allowed us to determine whether the 5-Mbp intervals
around the MTAs we identified were more likely to contain a
gene with a specific function related to plant defense as com-
pared with intervals of the same size randomly chosen across
the genome. Seven of these motif groups showed a significant
(P < 0.05) overrepresentation compared with random genome
intervals and contained a total of 16 candidate genes (Table 2).
For details regarding the motif groups and individual genes, see
Supplementary Tables S8 to S10.

Around the MTAs for leaf tolerance, we found a significant
overrepresentation of gene motifs that can be associated with
programmed cell death, including cysteine proteinase inhibitors
(observed = 4, P < 0.01), cysteine proteases (observed = 2,
P < 0.05), DCD domain (observed = 1, P < 0.05), and wound
responsive motifs (observed = 2, P < 0.05). We also found a
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significant overrepresentation of disease resistance motifs
(GCN1, observed = 1, P < 0.01), aspartate—tRNA ligase
(observed = 1, P < 0.05), cell wall-associated Ran-binding
(observed = 1, P < 0.001), and wall-associated kinases (WAKs;
observed = 1, with a more relaxed significance threshold P <
0.1). The bivariate MTA on chromosome 7A also showed a sig-
nificant overrepresentation of cell wall-associated Ran-binding
(observed = 1, P < 0.001) and wound-responsive (observed =
2, P < 0.05) motifs. Around the resistance MTA on chromosome
5A, we observed one cysteine protease and eight genes with
LRR motifs, neither of which was significantly overrepresented.

We note that based on the Automated Assignment of Human
Readable Descriptions (AHRD), only one WAK gene has been
found in the tolerance MTA interval on chromosome 6B, but

we examined this interval more thoroughly (based on InterPro;
https://www.ebi.ac.uk/interpro/) and found three more WAKs
(which have been identified as receptor-like kinases by AHRD).
We consider these four WAKs in this interval to be interesting
because Stb6, the first cloned resistance gene for STB, is also
a wall-associated serine/threonine kinase with a galacturonan-
binding domain (Saintenac et al. 2018), although the four WAKs
have an epidermal growth factor domain, which Stb6 does not
have.

To accomplish (ii), we compared gene expression across
all our MTA intervals between Z. tritici-infected seedlings
and mock-inoculated controls using published data (Ramírez-
González et al. 2018; Rudd et al. 2015; data available via
https://www.wheat-expression.com/) and identified candidate

Fig. 3. Manhattan and Q-Q plots
depicting the genome-wide as-
sociation study (GWAS) results
for A, tolerance (kappa); B, re-
sistance; and C, the combined,
bivariate GWAS. Green, red, and
purple dots in the Manhattan plots
represent the single-nucleotide
polymorphisms significantly as-
sociated with the respective traits:
kappa, resistance, and the bivari-
ate model combining kappa and
resistance, respectively. Crossed
circles represent marker-trait
associations that were not signif-
icant at the Bonferroni threshold
but were nevertheless consid-
ered in additional analyses. The
legends in the Q-Q plots indi-
cate the applied GWAS model
and the genome-wide inflation
coefficient λ.
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genes as those having significant differential expression. We
found that 26 genes around the tolerance MTAs, seven genes
around the resistance MTA, and six genes around the MTA for
the bivariate model were significantly differentially expressed
(Table 3; Supplementary Table S11 for more details). Among
the MTAs for leaf tolerance, we found significant differences in
gene expression for three glutathione S-transferases (log2 fold
difference ranging from 3.7 to 8.3), a receptor-like protein ki-
nase (log2 fold difference of 1.6), a transposon protein with a
NAC transcription domain (log2 fold difference of 5.5), and a
RING finger protein that was downregulated (log2 fold differ-
ence of −1.6). Another glutathione S-transferase was signifi-
cantly upregulated (log2 fold difference of 3.8) in the MTA for
resistance.

Discussion
Although several studies have analyzed the genetics of disease

tolerance in plants (Pagán and García-Arenal 2020), we believe
this is the first study to reveal the genetic basis of tolerance to a
fungal plant pathogen and to identify candidate genes that may
confer the leaf tolerance phenotype. Among these candidates are
WAKs with galacturonan-binding and serine/threonine kinase
domains similar to Stb6, the first cloned STB resistance gene
(Saintenac et al. 2018). Our automated analyses of more than
11,000 scanned leaves revealed that wheat’s response to an STB
infection can be dissected into resistance and tolerance compo-
nents that display high and moderate heritability, respectively. In

the analyzed population of 330 elite winter wheat cultivars, the
two traits showed a strongly negative genetic correlation (Fig. 2),
supporting our previous report of a substantial negative pheno-
typic correlation indicative of a trade-off between tolerance and
resistance (Mikaberidze and McDonald 2020).

While screening for germplasm that performs well during an
STB epidemic, wheat breeders cannot distinguish between the
leaf tolerance and resistance traits using traditional visual scor-
ing. A more detailed phenotyping based on leaf image analysis is
required to distinguish between them. As a result, breeding based
on visual assessments may select germplasm that has higher re-
sistance or higher tolerance, both of which could produce an
improved yield response to STB infections compared with STB-
susceptible germplasm. This may explain why the STB tolerance
QTLs that we identified on chromosome 2A overlapped with an
STB resistance QTL identified in Nordic breeding lines based on
traditional visual scoring of STB under greenhouse conditions
(Supplementary Table S1; Zakieh et al. 2023). Furthermore, be-
cause breeders have been selecting for better performance in
elite European winter wheat over several decades using visual
scoring, we would expect these efforts to result in cultivars with
high values for both tolerance and resistance. However, it was
rare to find elite winter wheat cultivars that show high values
for both traits (Fig. 2), suggesting that there is indeed a trade-
off between the two traits. These interpretations are consistent
with our previous analysis, where we found a positive correla-
tion between cultivar release year and degree of tolerance and
an absence of such a relationship for resistance, suggesting that

Table 1. Marker-trait associations (MTAs) for tolerance (kappa), resistance, and the combined, bivariate genome-wide association studya

Interval SNP Position MAF LOD Effect PVE

Kappa 2D IAAV8779 647,278,479 0.288 5.46 0.178 4.47
Resistance 5A Ra_c7322_2294 20,816,495 0.297 8.12 –0.286 12.72
Kappa 6B wsnp_Ex_c702_1383612 21,415,561 0.053 8.04 0.446 33.61
Kappa 7D wsnp_Ex_c12102_19361467 557,843,433 0.198 5.39 0.195 8.02
Kappa 7A (n.s.) BS00099804_51 89,835,842 0.139 5.19 –0.226 7.55
(Kappa, resistance) 7A (n.s.) CAP7_c7296_88 642,736,799 0.212 4.01 (–0.233; 0.025) –

a For each MTA, we report the physical position (bp), minor allele frequency (MAF), LOD score, single-nucleotide polymorphism (SNP) effect estimates, and
percentage of phenotypic variance explained (PVE). Nonsignificant MTAs are indicated by “n.s.”

Table 2. Overrepresentation of gene motifs within 5-Mbp intervals around marker-trait associationsa

Expected ≤ probability quantile

Interval Genes in interval Gene group Occurrence genome q90 q95 q99 q99.9 Observed

Kappa 2D 97 Cysteine proteinase inhibitor 101 0 0 3 6 4 **
GCN1 6 0 0 0 1 1 **
Cysteine protease 225 1 1 6 11 2 *
LRR 3,215 16 20 36 50 17 .
Expansin 262 1 2 5 10 1 n.s.
WAT1 194 1 2 3 6 1 n.s.

Kappa 6B 62 LRR 3,215 16 20 36 50 17 .
Wall-associated kinase 95 0 1 2 4 1 .

Kappa 7A (n.s.) 43 DCD domain 34 0 0 1 2 1 *
Lectin RLK 209 1 1 3 4 1 n.s.

Kappa 7D 30 Ran-binding 12 0 0 0 0 1 ***
Aspartate—tRNA ligase 16 0 0 1 1 1 *
Wound-responsive 69 0 0 3 14 2 *

Resistance 5A 50 Cysteine protease 225 1 1 6 11 1 n.s.
LRR 3,215 16 20 36 50 8 n.s.

(Kappa, resistance) 7A (n.s.) 61 Ran-binding 12 0 0 0 0 1 ***
Wound-responsive 69 0 0 3 14 3 *
LRR 3,215 16 20 36 50 1 n.s.

a The significance of motif overrepresentation was determined based on the probability distribution of their occurrence across 10,000 random samples. Column
4 shows the total occurrence of motifs across the entire genome. Columns 5 to 8 show the expected occurrence of motifs in 90, 95, 99, and 99.9% of the
random samples, respectively. Column 9 shows the observed occurrence of motifs in the intervals around marker-trait associations. The symbols ***, **, *,
and . indicate the level of significance of overrepresentation with P < 0.001, P < 0.01, P < 0.05, and P < 0.1 respectively; “n.s.” stands for not significant.
DCD, development and cell death; GCN1, general control nonderepressible 1; LRR, leucine-rich repeat; RLK, receptor-like kinase; WAT1, walls are thin 1.
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European wheat breeders may have been selecting for tolerance
instead of resistance to STB during recent decades (Mikaberidze
and McDonald 2020).

Should wheat breeding programs seek to limit STB damage
by combining STB resistance and tolerance into the same culti-
var? This would require the two traits to be encoded by a shared
pathway or by separate sets of genes that can be recombined into
the same lineage, as well as the absence of epistasis. Our anal-
yses reveal a nuanced picture of genetic connections between
STB resistance and tolerance. The significant and strongly neg-
ative genetic correlation between the two traits suggests that the
traits are not independent of each other. However, the univari-
ate GWAS analyses identified different chromosome intervals
associated with tolerance and resistance, whereas the bivariate
GWAS revealed only one association that was visually striking
but not statistically significant. A similar pattern was found in
studies of resistance and tolerance of pepper plants to potato
virus Y: The two traits exhibited significant negative pheno-
typic and genetic correlations, the GWAS identified markers
that were significantly associated with either tolerance or re-
sistance, but none of the markers was shared between the two
traits (Tamisier et al. 2020, 2022). A possible explanation of
these outcomes is that there could be several molecular path-

ways contributing to tolerance. Some of the pathways exhibit a
negative genetic correlation with resistance and are underpinned
by a large number of genes of small effect. Here, a negative cor-
relation between tolerance and resistance may result from these
genes exhibiting negative pleiotropy, whereby the same gene
contributes to an increase in tolerance but a decrease in resis-
tance (or vice versa). Alternatively, a negative correlation be-
tween the two traits can be caused by linked monotropic genes:
Among several linked genes, some contribute to an increase in
tolerance, whereas others contribute to a decrease in resistance
(Gardner and Latta 2007). Under either of these scenarios, we
would not be able to capture these genes via MTAs in the GWAS.
Other tolerance pathways could be independent of resistance and
conferred by fewer genes with larger effects. These would be
identified as significant MTAs for tolerance in the GWAS, none
of which was significantly associated with resistance. Hence,
purely phenotypic selection for tolerance may inadvertently se-
lect against resistance and vice versa. However, marker-assisted
selection for components of tolerance that are independent of re-
sistance could avoid this pitfall and select for tolerance without
compromising resistance. Additional experiments will be
needed to further validate the tolerance MTAs and the associated
candidate genes to enable this approach.

Table 3. Differentially expressed genes within 5-Mbp intervals around marker-trait associationsa

Interval Transcript ID Human-readable description Log2 fold change Padj

Kappa_2D TraesCS2D01G586500.1 WAT1-related protein 4.61 1.7E-3
TraesCS2D01G587800.2 CsAtPR5 6.39 12.5E-3
TraesCS2D01G588800.1 CsAtPR5 –1.07 4.8E-3
TraesCS2D01G589200.1 Cytochrome P450 family protein, expressed 7.80 91.2E-9
TraesCS2D01G589300.1 Glutathione S-transferase 8.30 12.4E-12
TraesCS2D01G589400.1 Glutathione S-transferase 8.34 12.2E-12
TraesCS2D01G589600.1 Glutathione S-transferase, putative 3.69 35.5E-6
TraesCS2D01G590600.1 Receptor-like protein kinase 1.59 33.6E-3
TraesCS2D01G595500.1 Amino acid transporter, putative 2.60 59.3E-6
TraesCS2D01G595900.1 DNA-directed RNA polymerase subunit beta 1.76 18.2E-3
TraesCS2D01G596300.1 Late embryogenesis abundant (LEA) hydroxyproline-rich glycoprotein

family
3.04 9.4E-6

TraesCS2D01G596400.1 Late embryogenesis abundant (LEA) hydroxyproline-rich glycoprotein
family, putative

3.51 71.3E-9

TraesCS2D01G596500.1 Transposon protein, putative, Pong sub-class, expressed 5.54 782.5E-6
TraesCS2D01G597000.1 Eukaryotic aspartyl protease family protein 2.87 9.5E-3

Kappa_6B TraesCS6B01G032400.1 RING finger protein –1.61 19.7E-3
TraesCS6B01G033500.1 3-ketoacyl-CoA synthase 2.67 2.9E-6
TraesCS6B01G037300.1 Flowering promoting factor-like 1 –2.01 5.7E-3
TraesCS6B01G037800.1 Photosystem II CP47 reaction center protein 1.36 15.4E-3

Kappa_7A TraesCS7A01G135700.1 Sulfiredoxin –1.21 2.8E-3
TraesCS7A01G137000.1 Pheophorbide a oxygenase, chloroplastic –1.61 33.3E-3

Kappa_7D TraesCS7D01G437000.1 Calcium lipid binding protein, putative 7.29 6.1E-9
TraesCS7D01G437000.2 Calcium lipid binding protein, putative 9.65 11.7E-3
TraesCS7D01G438600.1 Cytochrome P450 1.34 8.1E-3
TraesCS7D01G438700.1 Cytochrome P450 1.14 4.7E-3
TraesCS7D01G439300.1 Cytochrome P450 2.23 540.0E-6
TraesCS7D01G439400.1 Glycosyltransferase 3.21 2.1E-3

Resistance_5A TraesCS5A01G024100.1 Glutathione S-transferase 3.80 10.1E-3
TraesCS5A01G024500.2 N-carbamoylputrescine amidase 8.83 27.7E-3
TraesCS5A01G025200.2 2-aminoethanethiol dioxygenase 4.62 2.7E-3
TraesCS5A01G025400.1 Cationic amino acid transporter, putative 1.22 26.5E-3
TraesCS5A01G025600.1 ATP binding cassette subfamily B4 7.56 4.6E-3
TraesCS5A01G025900.2 YABBY transcription factor 6.54 29.8E-3
TraesCS5A01G027000.1 Ubiquitin carboxyl-terminal hydrolase, putative 1.49 159.3E-6

Bivar_Kappa_
Resistance_7A

TraesCS7A01G446700.1 Lipid transfer protein 4.14 1.0E-12

TraesCS7A01G447300.1 Calcium lipid binding protein, putative 3.70 420.1E-6
TraesCS7A01G449500.1 Cytochrome P450 1.85 591.6E-6
TraesCS7A01G450100.1 Cytochrome P450 1.73 16.5E-3
TraesCS7A01G450300.1 Polynucleotidyl transferase, ribonuclease H-like superfamily protein 8.02 9.4E-3
TraesCS7A01G450900.1 F-box/RNI-like/FBD-like domains-containing protein –1.05 4.6E-3

a Log2 fold change quantifies the change in expression between Zymoseptoria tritici-infected wheat seedlings and mock-inoculated controls, and Padj is the
adjusted P value.
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We identified tolerance candidate genes using analyses of both
motif enrichment and differential gene expression. The enrich-
ment analysis revealed a significant overrepresentation of genes
encoding programmed cell death, LRRs, responses to wound-
ing, and WAKs. Many of these candidate genes encode func-
tions that are typically associated with disease resistance, such
as NBS-LRRs, lectin receptor-like kinases, and WAKs, includ-
ing genes that are similar to Stb6, the first cloned STB resistance
gene (Saintenac et al. 2018). Similarly, Tamisier et al. (2022)
found a cluster of candidate NBS-LRR genes to be associated
with tolerance of pepper plants to potato virus Y. The differential
gene expression analysis also revealed genes known to be asso-
ciated with disease resistance, including a receptor-like protein
kinase. These findings suggest that there may be a common ge-
netic architecture underlying plant resistance and tolerance. In
particular, the same pathogen sensing, recognition, and signal-
ing processes may be involved at the beginning of the tolerance
and resistance response pathways. Under this scenario, the same
gene may confer tolerance to one pathogen but resistance to a
different pathogen. For example, a candidate NBS-LRR gene for
potato virus Y tolerance in pepper (Capsicum annuum) shares
87.1% nucleotide identity with the Bs2 gene in a different pep-
per species (Capsicum chacoense) known to confer resistance to
bacterial spot disease (Tamisier et al. 2022). For tolerance, we
found a greater overrepresentation of gene motifs associated with
wound responses and programmed cell death compared with the
resistance trait (Table 2). We speculate that inhibition or appro-
priate regulation of wound response or programmed cell death
pathways may lead to increased leaf tolerance via reduction of
excessive necrosis of leaf tissue.

Although this is the first work to identify candidate genes af-
fecting tolerance to fungal pathogens, we expect that the methods
described in this paper can be applied to many other fungal dis-
eases that produce visible fruiting bodies, such as speckled leaf
blotch on barley, septoria leaf blotch on oats, or septoria leaf spot
of tomatoes. As tolerance is analyzed in other plant pathosys-
tems, it will become possible to compare candidate genes iden-
tified across different systems to determine if tolerance, like re-
sistance, is encoded by conserved mechanisms shared among
many plant species.

Materials and Methods
Naturally infected penultimate leaves from 335 elite winter

wheat cultivars were sampled from replicated plots during the
2016 field season as described in earlier publications (Karisto
et al. 2018; Mikaberidze and McDonald 2020; Yates et al. 2019).
We estimate that at least half a million Z. tritici genotypes were
present in the sampled plots (Lorrain et al. 2024; McDonald et al.
2022); thus, our results are relevant for epidemics caused by
highly diverse, natural pathogen populations. On average, 16 in-
fected leaves from each plot were imaged using a flatbed scanner
(Canon CanoScan LiDE 220) at 1,200 dpi resolution to obtain the
percentage of leaf area covered by lesions (a measure of disease-
induced reduction of plant fitness for each leaf) and number of
pycnidia (Np, associated with pathogen reproduction, a mea-
sure of the pathogen burden in each leaf) (Karisto et al. 2018;
Stewart et al. 2016). To control for the effect of total leaf area on
the number of pycnidia per leaf, we performed the adjustment
Np,i → (Atot/Atot,i) Np,i, where Np,i and Atot,i are the number of py-
cnidia and the total area of an individual leaf i, and Atot is the mean
total leaf area averaged over the entire dataset (Mikaberidze
and McDonald 2020).

These measures were then used to quantify degrees of STB
resistance and tolerance, the latter using a novel measure called
kappa. Kappa is an exponential slope that characterizes the neg-
ative relationship between green leaf area and the number of py-

cnidia on each leaf (Fig. 4; Mikaberidze and McDonald 2020).
Small values of kappa indicate a high level of leaf tolerance,
whereas large values of kappa indicate a low level of leaf toler-
ance. The kappa values were calculated for each cultivar based
on measurements from approximately 32 leaves (each cultivar
was replicated twice in the experiment), with each leaf typi-
cally infected by a different pathogen strain (Lorrain et al. 2024;
McDonald et al. 2022). Hence, the tolerance measures repre-
sented average values across a wide range of pathogen geno-
types (approximately equal to 32 Z. tritici strains) for each
wheat cultivar, and the range of kappa values encompassed a
wide range of host genotypes (approximately 330 wheat culti-
vars). Resistance was quantified as the average number of py-
cnidia found on each leaf (Np; adjusted for the total leaf area).
More susceptible cultivars allow for higher numbers of pycni-
dia per leaf, which translates to more pathogen reproduction,
whereas more resistant cultivars limit the numbers of pycni-
dia per leaf and therefore reduce pathogen reproduction. Addi-
tional details on how tolerance and resistance were calculated
for each cultivar can be found in Mikaberidze and McDonald
(2020). The workflow for data acquisition and analysis is il-
lustrated in Figure 4. The raw data stemming from the image
analysis of each individual diseased leaf reported by Karisto
et al. (2018) are available via the Dryad Digital Repository
(https://doi.org/10.5061/dryad.171q4). The processed pheno-
typic and genomic datasets underlying the outcomes of this study
and the code that can be used to reproduce the analyses are avail-
able via Zenodo at https://doi.org/10.5281/zenodo.14962847.

Statistical analysis
An initial data inspection revealed strong skews in the distri-

butions of both tolerance and resistance, which resulted in vio-
lations of the assumption of independence and normality of the
residual distribution in the subsequent linear modeling (Supple-
mentary Fig. S1). For this reason, the raw data from individual
plots were subjected to a rank-based inverse normal transfor-
mation using the R package RNOmni (v.1.0.1.2; McCaw 2023)
before conducting further analyses. This brought the distribu-
tions of tolerance and resistance close to the normal distribution
and resulted in independent, normally distributed residuals with
a mean of zero.

To obtain best linear unbiased estimates (BLUEs) across repli-
cations while accounting for spatial variability, a spatial model
using two-dimensional p-splines was fitted in the R package
SpATS (v.1.0.18; Rodríguez-Álvarez et al. 2018). The two com-
plete blocks were allocated diagonally in a virtual grid (see
Kronenberg et al. 2021; Pérez-Valencia et al. 2022 for details),
with rows and columns corresponding to the relative plot posi-
tions within each replicate of the experiment. The fitted model
was as follows:

Yi jk = μ + Gi + f (r, c) + r j + ck + ei jk (1)

where Yijk is the plot value of the respective trait (tolerance quan-
tified as kappa or resistance quantified as Np), μ is the global
intercept, Gi is the response of the genotype i, and eijk is the
residual error. To account for spatial variability, rj and ck rep-
resent the effects of the row j and column k, respectively, and
f(r,c) is a smoothed bivariate surface across rows and columns
within the virtual grid, thus fitting an independent spatial trend
to each of the two replicates. From this model, the BLUEs
were extracted to be used in the GWAS, whereas spatially cor-
rected plot values, comprising the BLUEs and residual errors but
omitting spatial trends and other unwanted design factors, were
used to calculate heritability and genetic correlations.
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To calculate heritability, the following model was fitted using
the R package asreml-R (v.4.2.0.302, VSNi Team 2023):

Yi = μ + Gi + ei (2)

where Yi is the spatially corrected plot value from equation 1 for
the respective trait, μ is the global intercept, Gi is the random
genotype response with known variance-covariance structure
based on the genome-wide identity-by-state relationship matrix
calculated from single-nucleotide polymorphism (SNP) data us-
ing the R package SNPRelate (v.1.30.1; Zheng et al. 2012), and
ei is the residual error. Heritability was estimated on a genotype
difference basis: H2

�BLUP according to equation 24 in Schmidt
et al. (2019).

Phenotypic correlations were calculated as Pearson’s r based
on the adjusted genotype means extracted from equation 1. To
calculate the genetic correlation between kappa and resistance,
equation 2 was expanded to the bivariate model:

(
Y 1

i ,Y 2
i

) = (
μ1,μ2

) + (
G1

i , G2
i

) + (
e1

i , e2
i

)
(3)

in the R package asreml-R, where the superscripts 1 and 2 denote
the two traits, kappa and Np, respectively. G1

i and G2
i were again

set as random with known variance-covariance structure based
on identity by state. The genetic correlation was then calculated
from the estimated variance and covariance components from
equation 3 following Holland et al. (2001):

Corr
(
G1, G2

) = Cov
(
G1, G2

)
√

Var
(
G1

)
Var

(
G2

) (4)

Genome-wide association studies (GWASs)
GWASs for the traits kappa, Np, and the combined, bivari-

ate response were conducted following the same workflow as
described by Roth et al. (2024). Marker data were supplied
by the GABI wheat consortium (Gogna et al. 2022) for the
GABI genotypes and by the Agroscope wheat breeding pro-
gram for the Swiss genotypes (Fossati and Brabant 2003). Mark-
ers were mapped to the Triticum aestivum reference sequence

v.1.0 (IWGSC et al. 2018) using ncbi-blast+ (v.2.9.0-2). Equiv-
ocally mapped markers were excluded, and the remaining mark-
ers were filtered for a missing rate <0.05 and a minor al-
lele frequency >0.05, resulting in 9,125 SNPs for 330 wheat
cultivars. The remaining missing markers were imputed using
fastPHASE (v.1.4; Scheet and Stephens 2006) implemented in
https://github.com/mwylerCH/HapMap_Imputation. Given the
large size of the wheat genome (>14 Gbp), the SNP marker den-
sity is quite low, on average one marker per 1.6 Mbp, which may
limit our capacity to detect MTAs.

The univariate GWAS analyses for kappa and Np were con-
ducted using the BLINK model (Huang et al. 2019) implemented
in the R package GAPIT3 (v.3.1.0) (Wang and Zhang 2021). The
bivariate GWAS was conducted using the software GEMMA
(v.0.98.1; Zhou and Stephens 2014) using the first three prin-
cipal components among SNP genotypes and the genome-wide
identity-by-state matrix to correct for population structure and
relatedness, respectively.

Taking into account advances in GWAS methodologies in
wheat since the publication of Yates et al. (2019), we adapted
our analyses in four ways. We used (i) an adjustment for spa-
tial variability using the R package SpATS (Rodríguez-Álvarez
et al. 2018); (ii) a different transformation (rank-based inverse
normal transformation [McCaw et al. 2020] instead of log trans-
formation) that better satisfies the assumption of normality in the
residuals of the applied linear models; (iii) a more comprehen-
sive marker panel that includes Swiss cultivars, thus adding 11
genotypes previously excluded due to missing marker data, and
improved imputation of missing genotype data based on similar-
ity of haplotype clusters around the missing genotype; and (iv) a
different genome-wide association model (single marker-based
BLINK [Huang et al. 2019] instead of haplotype-based PLINK
[Purcell et al. 2007]) that better manages the systematic inflation
of P values in genetic association tests. To ensure reproducibility
and better understand the effects of these four modifications, we
reanalyzed the data of Yates et al. (2019) and compared those
results with the outcomes of our new GWAS pipeline applied to
the same phenotypes. We illustrate the comparison of the two
analyses in Supplementary Figure S2.

Fig. 4. Workflow for the acquisition
of phenotypic data, estimation of
leaf tolerance, and genome-wide
association study (GWAS) (modified
from Figure 1 in Yates et al. [2019]
and Figure 3 in Mikaberidze and
McDonald [2020]).
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Identification of candidate genes
To identify candidate genes, we searched the IWGSC ref-

seq 1.0 annotation (IWGSC et al. 2018; https://urgi.versailles.
inra.fr/download/iwgsc/) for 2.5 Mbp in each direction from the
genome position of the associated SNP markers identified by
the GWAS. In an initial step, likely candidates for either leaf
tolerance or resistance were identified based on their functional
description. Genes were categorized into motif groups based on
their description (Table 2; Supplementary Tables S8 and S9).
Then, the likelihood of occurrence for each motif was quantified
using a bootstrapping approach. We examined 10,000 random
5-Mb intervals with a gene content>55 genes (i.e., the average of
the gene content of the associated 5-Mb intervals) across the en-
tire genome. We chose the size of the intervals to be 5 Mb because
this is below the characteristic linkage disequilibrium decay dis-
tance (r2 < 0.2) for all the chromosomes of interest. In these
intervals, we counted the occurrence of the selected candidate
motifs identified in the intervals around the MTAs and calculated
quantile distributions for the occurrence of the respective motifs
across the random samples. A motif was considered significantly
overrepresented if the occurrence in the identified interval was
larger than the occurrence in 95% of the random intervals.

The LRR protein domain represents a characteristic feature
of several classes of plant disease resistance proteins (Gururani
et al. 2012). Hence, for the purpose of the representation
analysis, we merged the gene groups “NBS-LRR,” “disease
resistance proteins,” “RPM1,” and “RPP13” (all of which
contain LRRs) into a single “LRR” category (Table 2). We note
that our overrepresentation analysis is based on AHRD (https://
github.com/groupschoof/AHRD?tab=readme-ov-file), which
represents the official description of wheat genes published
by the scientific community. However, there can be cases of
misclassification, which lead to uncertainties in the occurrence
of gene groups that are difficult to estimate, and for this reason,
the outcomes of this analysis need to be interpreted with
caution.

Furthermore, differential gene expression analysis has been
performed on the genes within the associated 5-Mbp inter-
vals using publicly available transcript count data (Ramírez-
González et al. 2018; https://www.wheat-expression.com/). The
RNA sequencing data originated from a gene expression study of
Z. tritici-infected seedlings versus mock-infected seedlings
(Rudd et al. 2015). There, seedlings of the wheat cultivar
‘Riband’ were infected with the Z. tritici isolate IPO323, and
samples were taken at five different time points (1 to 21 days)
after infection (see Rudd et al. 2015 for details). The outcomes
of this analysis need to be interpreted with caution because
wheat gene expression can differ between controlled environ-
ments and the field environment, as well as between seedlings
and adult plants; gene expression can also be specific to host and
pathogen genotypes. In this analysis, we pooled the transcript
count data across time points. Differential gene expression was
calculated across the whole genome using the R package DEseq2
(v.1.44.0; Love et al. 2014). Genes were considered differentially
expressed if their expression changed twofold and was signifi-
cant (adjusted P < 0.05). Only the differentially expressed genes
within the 5-Mb intervals around each QTL were considered for
candidate gene identification.
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