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A B S T R A C T

While numerous allometric models exist for estimating biomass in trees with single stems, models for multi-
stemmed species are scarce. This study presents models for predicting aboveground biomass (AGB) in Euro-
pean hazel (Corylus avellana L.), growing in multi-stemmed shrub form. We measured the size and harvested the
biomass of 30 European hazel shrubs, drying and weighing their woody parts and leaves separately. AGB (dry
mass) and leaf area models were established using a range of predictors, such as the upper height of the shrub,
number of shoots per shrub, canopy projection area, stem base diameter of the thickest stem, and the sum of cross-
sectional areas of all stems at the stem base. The latter was the best predictor of AGB, but the most practically
useful variables, defined as relatively easy to measure by terrestrial or aerial approaches, were the upper height of
the shrub and the canopy projection area. The leaf biomass to AGB ratio decreased with the shrub's height.
Specific leaf area of shaded leaves increases with shrub height, but that of leaves at the top of the canopy does not
change significantly. Given that the upper shrub height and crown projection of European hazel can be estimated
using remote sensing approaches, especially UAV and LIDAR, these two variables appear the most promising for
effective measurement of AGB in hazel.
1. Introduction

European hazel (Corylus avellana L.) is a deciduous shrub with a
woody growth habit, typically reaching a maximum height of around 10
m. As a pioneer species, its broad distribution extends across Europe,
from southern Scandinavia to the Mediterranean regions, where its
maximum lifespan stretches to about 90 years (De Rigo et al., 2016).
Colonising open spaces or growing as an understory species, hazel often
establishes itself following disturbance or the cessation of grazing. Highly
adaptive, hazel readily colonises abandoned agricultural lands and is
commonly found in hedges, thickets, and small woodlands. The propa-
gation of hazel occurs both generatively, through nuts, and vegetatively,
via stem sprouts or root suckers. Its ubiquity across the European land-
scape and its rapid growth have led to numerous traditional applications.
These range from hazelnut consumption (Solar and Stampar, 2011) to the
use of stems in construction and crafts (Allegrini et al., 2022), as well as
harnessing its woody biomass for bioenergy (Zambon et al., 2016).
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Due to its inherently low stature and tendency to form multi-stem
shrubs, European hazel has traditionally garnered little interest from
the wood processing industry. As a result, it is often deemed undesirable
in conventional forestry practices focused on optimising timber yield.
Consequently, European hazel is routinely removed during early thin-
ning operations to favour species with perceived higher commercial
value (Thysell, 2000). Its exclusion from standard forestry yield tables
exacerbates the scarcity of documentation regarding its contribution to
forest stand biomass. Similarly, in agricultural landscapes where Euro-
pean hazel is relatively common, comprehensive insights into its pro-
ductivity, biomass, or ecological role are lacking. In a rare investigation,
�Sebe�n (2018) estimated that approximately 15% of woody growing stock
on non-forest land in Europe could be attributed to ‘other softwood
broadleaves’, a category in which hazel likely plays a significant role.
Given the current emphasis on sustainable forestry and the expansion of
agroforestry in Europe (Mosquera-Losada et al., 2023), it is plausible that
European hazel will increasingly contribute to fulfilling objectives such
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as afforestation, carbon sequestration, or biodiversity enhancement
(Terasaki Hart et al., 2023).

European hazel is highly suitable for delivering multiple benefits
within forestry and agricultural landscapes. The leaf litter from this
species exhibits superior biochemical properties and palatability to
livestock compared to most other broadleaved tree species (De Rigo
et al., 2016). Hazel foliage, typical for its high concentration of base
cations, enhances the buffering capacity of acidic soils (Marschner and
Noble, 2000) and augments nutrient availability in forest soil (Mohr and
Topp, 2005). When growing in mono-specific stands, hazel shrubs create
distinctive habitats that foster flora and fauna biodiversity (Tiunov and
Scheu, 1999). As a pioneer species, hazel is typical for a dynamic canopy
development (Finsinger et al., 2006), with rapid changes in resource
allocation to maximize light interception. Such changes within and
across years are critical for competition and habitat creation (Niinemets
et al., 1998). The species’ notable ability to coppice and resprout makes it
an excellent candidate for short-rotation coppice, particularly in coun-
tries where non-native species are discouraged. Its productivity allows
for its utilisation in biofuels, biogas, or biochar manufacture, thereby
positioning European hazel as a versatile species within the circular
economy framework (Allegrini et al., 2022).

Given the considerable potential of European hazel, there is a press-
ing need to establish a reliable aboveground biomass (AGB) model. Such
a model is crucial for estimating hazel's contribution to woody biomass in
a given area, assessing its yield potential, or improving the accuracy of
greenhouse gas flux reporting in the land use sector (Grassi et al., 2022).
Allometric relationships, widely employed for biomass estimation in
single-stem trees (Konôpka et al., 2011; Le Goff and Ottorini, 2022;
Petersson et al., 2012; Xiang et al., 2021), utilise mathematical functions
to convert easily measurable tree characteristics into biomass. Stem
diameter is often the most precise and readily measurable characteristic
(West and West, 2009). However, parameterising allometric models be-
comes more challenging in woody plants with multiple stems. Although
allometric models have been previously developed for coppiced species
such as Eucalyptus globulus (Zewdie et al., 2009), Robinia pseudoacacia L.
(Carl et al., 2017), Salix spp. (Mosseler et al., 2014), or Populus spp.
(Oliveira et al., 2017), they all rely on measuring stem diameter and the
number of stems, which is laborious and resource-demanding.

Allometric models predicting tree biomass are widely developed and
used. This paper aims to construct models for estimating AGB in coppiced
Fig. 1. Location of the study areas for research of aboveground E
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or multi-stem European hazel shrubs and test their accuracy. In addition,
we sought to describe the development of hazel foliage as a function of
shrub height, as it is the key driver of biomass production. Our investi-
gation involves testing the effectiveness of a range of predictor variables
to optimise the trade-off between ease of measurement and the accuracy
of biomass predictions. We describe the properties of hazel foliage as it
forms the canopy and drives growth. Lastly, we discuss predictor variable
usefulness against the likely application of close-range remote sensing
techniques.

2. Material and methods

2.1. Site and tree measurements

The fieldwork for this study was conducted during the second half of
the 2022 growing season in three mountain ranges: Str�a�zovsk�e vrchy,
�Stiavnick�e vrchy, and Nízke Tatry, representing the conditions of the
Inner Western Carpathians, Slovakia, Europe (see Fig. 1). Sampled sites
are located on land classified as forest and in the following Forest
Administration Units: Rajeck�e Teplice, �S�a�sov, and Predajn�a. Due to the
land designation as forest, the occurrence of European hazel is reported
at the level of forest administration units, which guided our selection of
possible locations. All sites were situated on mesotrophic cambisols and
ranged from 470 to 910 m above sea level. The local forester then indi-
cated relevant plots where forest harvesting occurred within the last 15
years. Ten shrubs, at least 50 m apart (approximately ten times the
estimated height) and composed of pure hazel, were randomly selected at
each location. Each shrub consisted of several tens of relatively uniform
stems, avoiding shrubs with a single dominant stem surrounded by sec-
ondary stem sprouts (see Fig. 2).

The crown projection area of each shrub was established by
measuring its radius in four perpendicular directions using a rolling
measuring tape with a precision of �1.0 cm (Table 1). We then deter-
mined the maximum height of the shrub using a measuring stick with a
precision of �1.0 cm. Subsequently, all stems of the shrub were cut at
ground level. We counted the number of stems in the individual shrub
and measured their diameters at the stem base to establish the sum of
their cross-sectional areas.

All stems in each shrub were then cut down at ground level. We
randomly collected fifteen leaves from each shrub, five each from the
uropean hazel biomass, Inner Western Carpathians, Slovakia.



Fig. 2. Model fits predicting aboveground biomass (lines) as a function of the stem base diameter of the thickest stem (a), maximum height (b), the sum of cross-
sectional areas of all stems at base (c), and crown projection area (d) of a single European hazel shrub. Dots represent measured values in 30 individual shrubs.

Table 1
Key variables describing the European hazel shrubs, as measured in this study: d0 – stem base diameter of the thickest stem, h – upper height of the shrub, N – number of
stems per shrub, CPA – shrub crown projection area, Sg – sum of cross-sectional areas of all stems in the shrub, Bwb – wood under bark biomass per shrub, Bl – leaf
biomass per shrub, Bab – aboveground biomass per shrub (wood under bark þ foliage), wf – weight of the leaf, LA – leaf area, SLA – specific leaf area. The same below.

Parameter Mean S.D. Min Max 25th percentile 75th percentile Skewness

d0 (mm) 44.27 21.41 14.50 107.80 30.80 55.15 1.07
h (m) 4.33 1.92 1.46 7.85 2.83 5.93 0.42
N 20.63 10.26 6.00 51.00 13.00 26.00 1.03
CPA (m2) 5.81 4.79 0.59 17.35 1.73 8.04 0.91
Sg (cm2) 193.73 182.48 15.17 733.10 48.97 285.92 1.53
Bwb (kg) 23.44 28.71 0.64 116.13 4.42 29.83 1.88
Bl (kg) 2.18 2.15 0.11 7.43 0.44 3.95 1.14
Bab (kg) 25.63 30.74 0.79 123.56 4.91 33.78 1.82
wf (g) 0.25 0.13 0.04 0.68 0.15 0.31 1.01
LA (cm2) 49.18 16.01 17.93 122.97 38.34 58.95 0.83
SLA (cm2⋅g�1) 234.89 91.99 65.94 508.15 160.12 305.63 0.38
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crown's upper, middle, and lower parts. The leaves were scanned within
one or two days while fresh (Epson Expression 10000 XL), placed in
labelled paper bags and dried at 95 �C for 24 h. Leaf scans were analysed
using Easy Leaf Area software (https://github.com/heaslon/Easy-Leaf-
Area) following the Easlon and Bloom protocol (Easlon and Bloom,
2014). After drying, the leaves were weighed with a precision of
�0.0001 g (Precisa 40SM-200A). After leaf sub-sampling, whole stems
with branches and bulk foliage were cut into sections, placed in labelled
paper bags and transported to the laboratory. Bulk foliage was manually
separated from the woody parts, and both components were stored in a
well-ventilated room for a few days. All biomass samples were dried in a
3

large-capacity oven at 105 �C for 4–5 days until constant weight. Dried
samples were weighed using a digital laboratory scale with a precision of
�0.01 g (Radwag, WLT 3/6/X).
2.2. Calculations and modelling

The construction of models focused on estimating the dry mass of
foliage, woody parts and total AGB of individual hazel shrubs where
these can be identified. We also developed models for closed-canopy
hazel stands by predicting the same variables per 1 m2 of the area
covered by this shrub. We tested the performance of the following

https://github.com/heaslon/Easy-Leaf-Area
https://github.com/heaslon/Easy-Leaf-Area
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predictors: diameter at stem base of the thickest stem d0, height of the
thickest stem (“top height”) h, number of stems in the shrub N, shrub
crown projection CPA, and the sum of cross-sectional areas at the base of
all stems in the shrub Sg. All predictors were derived from field mea-
surements. We used power-form allometric functions:

Wi ¼ b0X
b1
1 Xb2

2 … Xbn
n (1)

which were log-transformed to remove the effect of heteroscedasticity
and then reverse-transformed to the following form:

Wi ¼ eðb0þb1lnðX1Þ þb2lnðX2Þ … bn lnðXnÞ Þλ (2)

where
Wi – the amount of biomass in the ith shrub part (kg of dry mass of a

shrub shrub); X1, X2, …, Xn – predictors; b0, b1, …, bn – equation co-
efficients, λ – logarithmic transformation bias.

Statistical descriptors of the performance of models with a single
independent variable are provided in Table 2. Based on the knowledge
that the dry weight of individual fractions is least influenced by the
number of stems and the base diameter of the dominant stem, we did not
consider these variables in further model formation with multiple inde-
pendent variables. Statistical characteristics of models with multiple in-
dependent variables are provided in Table 3.

When calculating the dry weight of fractions per 1 m2 of canopy area,
the biomass stock of individual fractions Wim was the dependent vari-
able, with the height of the dominant stem h and the leaf area index LAI
selected as independent variables. We selected these predictors as close-
range remote sensing technology makes them relatively easy to establish.
In our study, LAI is a variable derived from the weight ofW and leaf area
LA of 15 leaves collected from each shrub across the canopy depth.
Descriptive statistics of these sampled leaves are provided in Table 1.
Based on these measured values, we derived the specific leaf area SLA at
the leaf level according to the equation:

SLA¼LA�W�1 (3)

The specific leaf area at the shrub level SLAshrub was calculated as the
arithmetic mean of SLA values from 15 sampled leaves per shrub. Based
on this derived SLA and the dry weight of leaf biomass Wf obtained by
drying and weighing all leaves collected from each shrub, we calculated
the leaf area LAshrub of all leaves at the shrub level:

LAshrub ¼ SLAshrub�Wf (4)

LAI for each shrub was derived based on LAshrub and the total area of
the crown projection of the shrub CPA:
Table 2
Coefficients and model performance of single predictor variable biomass models for Eu
Sg. b0, b1 are regression coefficients, S.E. is standard error, P is the p-value of the fi

logarithmic transformation bias and S.D. is its standard deviation. The same below.

Variables Component B0 (S.E.), P b1 (S.E.

d0 Wood and bark �6.674 (1.023), <0.001 2.442 (
Foliage �7.161 (0.950), <0.001 1.990 (
Aboveground �6.380 (0.119), <0.001 2.393 (

H Wood and bark �1.368 (0.314), <0.001 2.727 (
Foliage �2.696 (0.364), <0.001 2.117 (
Aboveground �1.165 (0.317), 0.001 2.662 (

N Wood and bark �2.379 (1.330), 0.085 1.624 (
Foliage �4.248 (1.060), <0.001 1.528 (
Aboveground �2.214 (1.300), 0.100 1.607 (

CPA Wood and bark 0.455 (0.126), 0.001 1.369 (
Foliage �1.411 (0.104), <0.001 1.160 (
Aboveground 0.602 (0.121), <0.001 1.346 (

Sg Wood and bark �3.838 (0.341), <0.001 1.294 (
Foliage �5.051 (0.279), <0.001 1.097 (
Aboveground �3.620 (0.327), <0.001 1.273 (

4

LAI¼LAshrub�CPA�1 (5)
The stock of the i-th fraction per 1 m2 of canopy area was expressed
using a logarithmically transformed allometric function similar to the
calculations of fraction dry weight at the shrub level:

Wim ¼ eðb0þb1lnðX1Þþb2lnðX2Þ … bn lnðXnÞ Þλ (6)

Model parameters and model performance is detailed in Table 4.
In hazel stands with known canopy cover, it is then possible to derive

the stock of biomass components according to:

Wi ¼ S� C �Wim (7)

whereWi – dry biomass of i-th component in a stand, S – stand area (m2),
C – canopy cover (from 0 to 1), Wim – biomass of i-th component per 1
m2.

K-fold cross-validation of each model was conducted in R program-
ming language v. 4.3.0 to validate the model performance (R Core Team,
2023) using Metrics, Caret and hydroGOF packages. Kwas set to 5 and 6,
with 100 repetitions for each K. The following model performance in-
dicators were calculated as mean values from all runs: mean absolute
error (MAE), mean squared error (MSE), absolute root mean square
prediction error (RMSPE) and relative root mean square prediction error
(RMSPE %).

3. Results

The base diameter of the stems in the sampled European hazel shrubs
varied between 14.50 and 107.80 mm, while their heights ranged from
1.46 to 7.85 m (Table 1). The total number of stems per shrub varied
between 6 and 51, and the crown projection area ranged from 0.59 to
17.35 m2. Predictor variables were used to construct biomass models in
two steps: individual predictors and their combinations. Among the
single predictor models, upper height, mean diameter at stem base, sum
of cross-sectional areas on stem bases, and crown projection area of a
hazel bush were all effective predictors.

In contrast, the number of stems in a shrub was less suitable (Table 2).
The closest relationship was between biomass and the sum of cross-
sectional areas at the stem base. In the next step, we combined the
best-performing single predictors into the following pairs: shrub height
� crown projection area; shrub height � sum of cross-sectional areas;
crown projection area � sum of cross-sectional areas; shrub height �
crown projection area � sum of cross-sectional areas. The combined
models effectively predicted woody, foliage, and total biomass (Table 3).
Finally, a model combining all predictors measured in this study resulted
in the closest relationship (R2 was 0.982 for woody parts, 0.973 for fo-
liage, and 0.983 for AGB).
ropean hazel. Predictor variables used to construct the models are: d0, h, N, CPA,
t, R2 is the coefficient of determination, MSE is the mean square error, λ is the

), P R2 MSE λ S.D.

0.276), <0.001 0.743 0.515 1.388 1.808
0.257), <0.001 0.690 0.444 1.313 1.479
0.272), <0.001 0.741 0.500 1.375 1.762
0.222), <0.001 0.849 0.303 1.132 0.519
0.257), <0.001 0.715 0.408 1.183 0.656
0.224), <0.001 0.840 0.310 1.135 0.526
0.457), 0.001 0.319 1.366 1.988 2.692
0.364), <0.001 0.395 0.868 1.548 1.636
0.447), 0.001 0.324 1.306 1.931 2.552
0.077), <0.001 0.922 0.157 1.077 0.434
0.063), <0.001 0.926 0.106 1.050 0.334
0.074), <0.001 0.925 0.145 1.070 0.410
0.070), <0.001 0.926 0.149 1.088 0.591
0.058), <0.001 0.931 0.099 1.060 0.483
0.068), <0.001 0.929 0.136 1.081 0.568



Table 3
Biomass models for European hazel constructed by combinations of the following predictor variables: h, N, CPA, Sg. In the model, b0, b1, b2, b3, are regression co-
efficients. W: wood, B: bark, F: foliage, ABVG: aboveground.

Variables Component b0 (S.E.), P b1 (S.E.), P b2 (S.E.), P b3 (S.E.), P R2 MSE λ S.D.

h, CPA W þ B �0.350 (0.229), 0.138 1.035 (0.263), <0.001 0.934 (0.127), <0.001 0.951 0.102 1.046 0.314
F �1.459 (0.237), <0.001 0.062 (0.273), 0.883 1.134 (0.132), <0.001 0.926 0.110 1.050 0.333
ABVG �0.126 (0.227), 0.582 0.937 (0.261), 0.001 0.952 (0.126), <0.001 0.950 0.101 1.045 0.311

h, Sg W þ B �3.307 (0.243), <0.001 1.132 (0.191), <0.001 0.861 (0.087), <0.001 0.969 0.065 1.037 0.361
F �4.914 (0.297), <0.001 0.292 (0.232), 0.220 0.986 (0.105), <0.001 0.935 0.097 1.055 0.444
ABVG �3.129 (0.244), <0.001 1.046 (0.191), <0.001 0.873 (0.087), <0.001 0.967 0.066 1.037 0.363

CPA, Sg W þ B �1.926 (0.412), <0.001 0.700 (0.124), <0.001 0.692 (0.117), <0.001 0.967 0.070 1.033 0.279
F �3.437 (0.323), <0001 0.591 (0.097) <0.001 0.589 (0.092), <0.001 0.971 0.043 1.019 0.202
ABVG �1.742 (0.389), <0.001 0.688 (0.115), <0.001 0.681 (0.109), <0.001 0.970 0.060 1.028 0.254

h, CPA, Sg W þ B �2.203 (0.311), <0.001 0.783 (0.165), <0.001 0.464 (0.107), <0.001 0.596 (0.089), <0.001 0.982 0.038 1.017 0.198
F �3.367 (0.327), <0.001 �0.198 (0.174), 0.266 0.651 (0.110), <0.001 0.614 (0.094), <0.001 0.973 0.042 1.018 0.193
ABVG �1.984 (0.302), <0.001 0.684 (0.161), <0.001 0.481 (0.102), <0.001 0.597 (0.087), <0.001 0.983 0.036 1.016 0.191

Table 4
Models predicting biomass per unit area for European hazel on the basis of h and LAI.

Variables Component (kg⋅m�2) b0 (S.E.), P b1 (S.E.), P b2 (S.E.), P R2 MSE λ S.D.

h Wood and bark �0.278 (0.180), 0.134 0.916 (0.127), <0.001 0.659 0.099 1.047 0.320
Foliage �1.606 (0.189), <0.001 0.305 (0.134), 0.030 0.162 0.110 1.051 0.334
Aboveground �0.075 (0.178), 0.678 0.850 (0.126), <0.001 0.630 0.097 1.046 0.315

LAI Wood and bark �0.733 (0.294), 0.019 0.882 (0.150), <0.001 0.561 0.128 1.064 0.400
Foliage �2.525 (0.141), <0.001 0.697 (0.072), <0.001 0.776 0.030 1.014 0.175
Aboveground �0.578 (0.268), 0.040 0.862 (0.137), <0.001 0.594 0.107 1.053 0.363

h, LAI Wood and bark �1.045 (0.181), <0.001 0.674 (0.096), <0.001 0.572 (0.100), <0.001 0.849 0.046 1.021 0.211
Foliage �2.531 (0.148), <0.001 0.014 (0.078), 0.860 0.691 (0.082), <0.001 0.776 0.031 1.014 0.175
Aboveground �0.858 (0.172), <0.001 0.604 (0.091), <0.001 0.850 (0.126), <0.001 0.849 0.041 1.019 0.201
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The carbon density of vegetation is a parameter useful for monitoring
and reporting carbon storage in ecosystems. Standard forest mensuration
relies on the number of stems per hectare and their size as the funda-
mental variables driving carbon density, which is not practical for multi-
stemmed species such as hazel. We, therefore, combined the height and
the LAI of each shrub, two variables that can be estimated with good
accuracy by close-range remote sensing, to develop a separate model
predicting hazel biomass per unit ground area (Table 4). The results show
that woody biomass rapidly increases with height, whereas the related
increase in leaf biomass is small (Fig. 3a). As a result, the contribution of
leaves to AGB decreases with shrub height, from approximately 15% for a
2-m high hazel shrub to 7% for a shrub 8 m in height.

The dry weight of top, mid and bottom-canopy leaves varied greatly
between 0.04 and 0.68 g, while the leaf area showed a much smaller
range between 17.93 and 122.97 cm2 (Table 1). As a result, a large
variability of SLA was observed, from 65.94 to 508.15 cm2⋅g�1. A very
Fig. 3. The relationship between aboveground biomass stock per unit area and its co
represent measured values, while lines indicate linear model fits.

5

strong effect of canopy position was detected (p < 0.0001), with the
leaves at the top of the canopy having the smallest (166� 71 s.d.) and the
most shaded leaves at the bottom of the canopy having the largest mean
SLA (293� 77 s.d.). The SLA of leaves in the middle and at the top of the
canopy increases with shrub height across the range of heights observed
in this study (p ¼ 0.0003 and 0.0006, respectively), however SLA of
leaves at the top of the canopy remains largely unchanged (p ¼ 0.3304,
Fig. 4a). When compared to other tree species commonly co-occurring
with hazel, we see that the SLA of hazel and sycamore increases with
shrub height, but that of aspen, birch and hornbeam decreases (Fig. 4b).

We also developed predictive models for leaf area (m2) and LAI
(m2⋅m�2) at the shrub level. Leaf area can be modelled fairly accurately
based on the projected crown area or the sum of cross-sectional areas at
the stem base using one or a combination of these two predictors
(Table 4). Interestingly, the maximum measured value of leaf area for a
single hazel shrub was 135 m2 (Fig. 4). Models predicting LAI were less
mponents in European hazel, and shrub height (a) and leaf area index (b). Dots



Fig. 4. Specific Leaf Area (SLA) and linear models of hazel foliage at the top, middle and bottom of the canopy dependent on shrub height (a). A comparison of mean
SLA in hazel and four other co-occurring deciduous tree species (b), data for aspen, birch, hornbeam and sycamore are from (Konôpka et al., 2021).

Table 5
Performance measures in k-fold cross-validation of the regression models for
biomass of aboveground parts and leaf traits in European hazel. MAE is mean
absolute error, MSE is mean squared error, RMSPE is absolute root mean square
prediction error, RMSPE % is relative root mean square prediction error. Hazel
cluster level and square unit of cluster (m2) were considered (see asterisk and
circle markers in Table). Other abbreviations are explained in the caption of
Table 1.

Dependant variable Predictor MAE MSE RMSPE RMSPE
%

Wood with barka h 11.29 334.25 16.66 72.15
CPA 11.22 295.19 15.57 66.37
Sg 13.37 1268.04 19.14 74.13
h, CPA 7.64 150.42 11.35 48.38
h, Sg 4.06 67.47 6.85 27.36
h, CPA,
Sg

2.59 15.89 3.61 15.65

Leavesa h 1.12 2.53 1.51 72.77
CPA 0.81 1.32 1.03 47.17
Sg 1.07 5.81 1.41 61.58
h, CPA 0.63 1.01 0.90 42.07
h, Sg 0.48 0.50 0.64 29.27
h, CPA,
Sg

0.38 0.40 0.56 24.88

Abovegrounda (i.e. wood
with bark plus leaves)

h 12.33 387.25 17.98 71.50
CPA 11.87 325.43 16.22 62.93
Sg 13.56 1101.94 18.72 67.91
h, CPA 8.09 170.23 12.09 47.43
h, Sg 4.38 72.71 7.20 26.48
h, CPA,
Sg

2.44 13.59 3.35 13.40

Wood with barkb h 0.80 0.85 0.90 31.07
Leavesb h 0.09 0.01 0.10 31.01
Abovegroundb h 0.87 0.99 0.98 30.26

Explanatory notes.
a models addressed for hazel cluster level.
b models based on m2 of hazel cluster.
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accurate, only models combining the crown projection area and the sum
of cross-sectional stem areas resulted in a moderately accurate relation-
ship (R2

adj¼ 0.546), with a maximummodelled LAI of nearly 12m2⋅m�2.
Finally, a moderate relationship (R2 ¼ 0.480) was found between AGB
and LAI (Table 5), indicating that canopy volume rather than light cap-
ture capacity of hazel shrubs is a better predictor of biomass and hence
carbon content of individual shrubs.

The cross-validation suggested that the accuracy of models increases
with an increasing number of independent variables (Table 5). With one
independent variable, the models’ relative root mean square prediction
error (RMSPE) for calculating biomass components ranged between 27%
and 74%. With two independent variables, the RMSPE ranged between
20% and 35%, and with three independent variables, it ranged between
19% and 21%.

4. Discussion

4.1. Biomass accumulation and carbon storage

Our observations indicate that hazel foliage is highly responsive to
light availability, which is influenced by canopy development and sub-
sequent shading. As a fast-growing pioneer species, hazel adapts its fo-
liage to maximize light and carbon capture per unit of foliage mass. The
SLA of hazel leaves is conservative at the top of the canopy, but increases
in shaded leaves as the shrub grows larger (Fig. 4a). Shaded leaves
become thinner as the plant maximizes leaf area per unit of biomass
invested in leaf growth, eventually leading to the shedding of inner
canopy leaves. Once the shrub reaches a critical size, hazel retains foliage
primarily in the outer “shell” of the crown, with few leaves remaining
inside the canopy. Consequently, the LAI remains largely unchanged,
while AGB gradually accumulates in the stems beneath the foliage.
Additionally, LAI observations are strongly affected by seasonality, as
hazel is a deciduous species, requiring remote sensing data collection at
specific times. Estimating LAI from remotely sensed datasets is relatively
straightforward and accurate (Lee et al., 2023), it can be used as a single
predictor or in combination with variables like stand height (Kumar
et al., 2015). Our results (Table 4) suggest that using LAI alone as an
input in AGB models does not provide satisfactory biomass predictions
for European hazel. In combination with height, however, LAI can pre-
dict AGB with R2 ¼ 0.85.

Biomass models are important for estimating the fixed and transient
carbon pools in forests (e.g., Men�endez-Migu�elez et al., 2022; Pajtík
et al., 2008) or other ecosystems (e.g., Pasalodos-Tato et al., 2015; Yang
et al., 2017). Our models for European hazel show that the tallest hazel
shrubs measured in this study, reaching nearly 8 m in height, contain
approximately 55 t⋅ha�1 of dry AGB per m2, of which 8% is annually
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produced foliage. Seasonal growth rings are not easily recognisable in
this species, but based on forest management plans they were between 12
and 14 years old. Our previous research in naturally regenerated forests
in the same regions shows that a 13-year-old stand of European beech
contains 37 t⋅ha�1 of AGB, with 8% allocated to leaves (Konôpka et al.,
2013). Alternatively, a 12-year-old sessile oak forest contains 24 t⋅ha�1 of
AGB per m2, where leaves represent 7% (Pajtík et al., 2011). Hazel is a
pioneer species, whereas beech and oak are late-successional, explaining
the larger biomass accumulated by hazel during the first decade of
growth.

There are two reasons for developing hazel models: its potential for
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forming a second layer in tall forests and its expansion into former
agricultural land. Established forestry practice typically eliminates hazel
as a species with little contribution to the economic value of managed
forests. However, our comparison shows that more accurate carbon ac-
counting methods or focused applications of green finance may alter this
perception. Additionally, many regions in Europe are currently under-
going land use change, where marginal agricultural land is abandoned
and reverts to woody vegetation (Csik�os and T�oth, 2023). Hazel is one of
the species rapidly colonising these areas, highlighting the need for a
dependable methodology to estimate its biomass and carbon uptake.

4.2. Predictor variables

Established literature (e.g., Fatemi et al., 2011; Muukkonen, 2007;
Tullus et al., 2009) indicates that stem diameter is the most accurate
predictor of AGB and its main components (leaves, branches, and stem)
in single-stemmed trees. Stem height is generally less correlated with
biomass than diameter (Pajtík et al., 2008), but its combination with
diameter can marginally improve model performance (Dutc�a et al., 2018;
Lambert et al., 2005). Several studies have tested the addition of addi-
tional tree characteristics, such as age (Wirth et al., 2004) or crown di-
mensions (Cienciala et al., 2008; Men�endez-Migu�elez et al., 2022), in a
quest for more accurate AGB prediction. Estimating the biomass of
woody species with a shrub-like and multi-stem growth form cannot rely
on the same variables or their combination, as establishing their size is
simply not practical or even possible. Several attempts to identify pre-
dictors and establish allometric relations of AGB in shrub species are
documented. Early on, Uso et al. (1997) utilised the volume of the shrub
in 10 Mediterranean species, assuming a cylindrical shape. Oyonarte and
Cerrillo (2003) developed allometric relations for AGB of 31 shrub spe-
cies using maximum height, the largest crown diameter, and the smallest
crown diameter as predictors. Cerrilo and Oyonarte (2006) tested height,
the largest and the smallest crown diameters, and the crown diameter at
the bottom of the crown as predictors. Recently, Yao et al. (2021) esti-
mated AGB of six shrub species in Inner Mongolia using crown volume
and considering different crown shapes (combinations of maximum and
minimum crown diameters in the upper and lower part of the crown).
These variables showed some promise, however, their practical imple-
mentation at scale is challenging and limits their wider use (Pasalo-
dos-Tato et al., 2015). AGB models for European hazel based on
predictors with a reasonable balance between ease of measurement and
accuracy are therefore necessary.

4.3. Application of aboveground biomass models

Models estimating the amount of AGB of woody vegetation can have
various practical uses, e.g. estimates of productivity and economic
output, prediction of biomass accumulation for bioenergy, quantification
of carbon sequestration and climate change mitigation potential, opti-
misation of land use at landscape level and more. To cover the widest
range of uses, we created two types of models in this study, predicting
AGB in individual hazel shrubs and on an area basis in hazel stands.

The AGB models for individual hazel shrubs are useful for predicting
hazel biomass where shrubs are separated from each other, and estab-
lishing the size of each shrub is not too difficult. Crown area or shrub
height can be measured manually or, increasingly so, with the help of
close-range remote sensing technology (Mokro�s et al., 2021). Examples
of systems where individual shrubmodels can be applied are agroforestry
plantations or newly colonised former agricultural land (Thapa et al.,
2023).

An AGB model predicting biomass or carbon content per unit area is
more appropriate in hazel stands with closed canopy. Stand height is the
most useful prediction variable, eliminating the need to identify indi-
vidual shrubs as hazel crown overlap. Based on our data, the unit area
AGB model using only stand height is more accurate (RMSPE 30%) than
the individual shrub AGB model using both height and crown projection
7

area as predictors (RMSPE 47%, Table 5). It is important to point out that
we did not validate our unit area model with data from closed-canopy
stands; this is a need for future research. In hazel stands with incom-
plete canopy, correcting the unit areamodel prediction by canopy closure
ratio may be advisable to correctly determine their AGB (Yang et al.,
2022). This ratio can presently be determined from the canopy height
raster (Lik�o et al., 2022; Polyakova et al., 2023) and automated deter-
mination of species composition in mixed stands (Lik�o et al., 2022; Pol-
yakova et al., 2023).

Due to the relatively small dimensions of growing hazel shrubs, close-
range remotely sensed datasets are necessary (Mokro�s et al., 2021; Zhao
et al., 2021). Visible spectrum data may be sufficient for the identifica-
tion of species and for estimating crown cover. However, canopy height
measurements require Light Detection and Ranging (LiDAR) or Synthetic
Aperture Radar (SAR) interferometric data (Ghosh et al., 2020; Sa�ckov
et al., 2019). The fusion of several types of data from passive and active
sensors to determine the height of the vegetation cover has already been
demonstrated (Lee and Lee, 2018), but its application is primarily
focused on forests (Anderson et al., 2008; Pourshamsi et al., 2021) or
open landscapes in dry or polar regions (Bartsch et al., 2020; Hellesen
and Matikainen, 2013).

5. Conclusions

We developed well-performing biomass models for European hazel
using data from three regions. The sum of cross-sectional areas of hazel
shrubs was the most precise predictor; however, we found that the upper
height of the shrub and the crown projection area are just as good pre-
dictors but far easier to measure. Our models can be combined with
remotely sensed observations to automatically estimate hazel biomass or
carbon content in individual shrubs and hazel stands. The models can be
applied to predict hazel biomass at various scales, ranging from local to
national, providing additional data to improve the accuracy of carbon
estimates in mixed forests or areas with tree vegetation and on previously
agricultural lands with hazel contribution.
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