University of
< Reading

A general model for the seasonal to
decadal dynamics of leaf area

Article
Published Version
Creative Commons: Attribution 4.0 (CC-BY)

Open Access

Zhou, B., Cai, W., Zhu, Z., Wang, H., Harrison, S. P. ORCID:
https://orcid.org/0000-0001-5687-1903 and Prentice, |. C.
(2025) A general model for the seasonal to decadal dynamics
of leaf area. Global Change Biology, 31 (3). e70125. ISSN
1365-2486 doi: 10.1111/gcb.70125 Available at
https://centaur.reading.ac.uk/122095/

It is advisable to refer to the publisher’s version if you intend to cite from the
work. See Guidance on citing.

To link to this article DOI: http://dx.doi.org/10.1111/gcb.70125

Publisher: Wiley-Blackwell

All outputs in CentAUR are protected by Intellectual Property Rights law,
including copyright law. Copyright and IPR is retained by the creators or other
copyright holders. Terms and conditions for use of this material are defined in
the End User Agreement.

www.reading.ac.uk/centaur

CentAUR


http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence

University of
< Reading
Central Archive at the University of Reading

Reading’s research outputs online



Global Change Biology

WILEY

= [GloballChange Biology

| RESEARCH ARTICLE CEIED

A General Model for the Seasonal to Decadal Dynamics of
Leaf Area

Boya Zhou! | Wenjia Cail | Zigi Zhu? | Han Wang? | Sandy P. Harrison?3 | 1. Colin Prentice!-?

!Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Ascot, UK | *Department of Earth System Science,
Ministry of Education Key Laboratory for Earth System Modelling, Institute for Global Change Studies, Tsinghua University, Beijing, China | 3School of
Archaeology, Geography and Environmental Science (SAGES), University of Reading, Reading, UK

Correspondence: Boya Zhou (boya.zhou20@imperial.ac.uk)
Received: 30 October 2024 | Revised: 11 February 2025 | Accepted: 20 February 2025

Funding: This work was supported by Schmidt Sciences LLC(G-21-61881), European Research Council (787203 REALM), National Natural Science
Foundation of China (72140005), the Tsinghua University Initiative Scientific Research Program (20223080041), and Hainan Institute of National Park
Research Program (KY-23ZKO01).

Keywords: eco-evolutionary optimality theory | gross primary production | land-atmosphere exchanges | land-surface modeling | leaf area index | seasonal
leaf phenology

ABSTRACT

Leaf phenology, represented at the ecosystem scale by the seasonal dynamics of leaf area index (LAI), is a key control on the
exchanges of CO,, energy, and water between the land and atmosphere. Robust simulation of leaf phenology is thus important for
both dynamic global vegetation models (DGVMs) and land-surface representations in climate and Earth System models. There
is no general agreement on how leaf phenology should be modeled. However, a recent theoretical advance posits a universal re-
lationship between the time course of “steady-state” gross primary production (GPP) and LAI—that is, the mutually consistent
LAT and GPP that would pertain if weather conditions were held constant. This theory embodies the concept that leaves should
be displayed when their presence is most beneficial to plants, combined with the reciprocal relationship of LAT and GPP via (a)
the Beer's law dependence of GPP on LAI, and (b) the requirement for GPP to support the allocation of carbon to leaves. Here we
develop a global prognostic LAT model, combining this theoretical approach with a parameter-sparse terrestrial GPP model (the
P model) that achieves a good fit to GPP derived from flux towers in all biomes and a scheme based on the P model that predicts
seasonal maximum LAI as the lesser of an energy-limited rate (maximizing GPP) and a water-limited rate (maximizing the use
of available precipitation). The exponential moving average method is used to represent the time lag between leaf allocation and
modeled steady-state LAIL. The model captures satellite-derived LAT dynamics across biomes at both site and global levels. Since
this model outperforms the 15 DGVM:s used in the TRENDY project, it could provide a basis for improved representation of leaf-
area dynamics in vegetation and climate models.

1 | Introduction

Leaf phenology refers to the annual life cycle of leaves, includ-
ing budburst and unfolding, growth, senescence, and abscis-
sion. At the ecosystem level, these processes give rise to the
seasonal cycle in leaf area (Xie et al. 2018). The seasonal cycle
of leaf area, as measured by the leaf area index (LAI), imposes

constraints on the geographic distribution of tree species
(Chuine 2010) and has a strong influence on the global car-
bon and water cycles (Piao et al. 2019). Thus, leaf phenology
is important for understanding and predicting the interactions
between terrestrial ecosystems and climate (Zhao et al. 2013)
and predicting the seasonal time course of LAI is an essential
element of land surface models.
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The global controls of LAI have gained increasing attention in
recent years (Tang et al. 2016; Piao et al. 2019) but there is still
no accepted way to represent the seasonal changes in LAT in
global models. Most land surface models predict LAI as out-
comes of carbon allocation. For example, the Community Land
Model Version 5 (CLMS5.0) first estimates the carbon flux to
leaves, taking account of the effects of climate-related variables,
including soil temperature and moisture, then converts leaf car-
bon mass to the equivalent LAI, assuming a fixed Specific Leaf
Area (SLA) for each vegetation type (Lawrence et al. 2011). The
Community Atmosphere Biosphere Land Exchange (CABLE)
model (Xia et al. 2017) and the Canadian Terrestrial Ecosystem
Model (CTEM) (Arora and Boer 2005) divide vegetation growth
into phenophases and prescribe different proportions of photo-
synthate to be allocated to leaves in each phase. Leaf area is then
derived based on empirical relationships with biophysical vari-
ables, including SLA. In most land surface models, biophysical
variables are set to fixed values for each vegetation type (Kato
et al. 2013; Meiyappan et al. 2015; Vuichard et al. 2019; Walker
et al. 2017; Lienert and Joos 2018). This approach requires many
empirical values to be specified, introducing considerable un-
certainty for global-scale simulations (Xia et al. 2017). Some
other models, such as the Integrated Blosphere Simulator (IBIS)
model (Yuan et al. 2014) and the Interactions between Soil,
Biosphere, and Atmosphere (ISBA) model (Gibelin et al. 2006;
Delire et al. 2020), model SLA more dynamically, allowing it
to be modified by leaf nitrogen concentration and atmospheric
carbon dioxide. However, all of these approaches are ad hoc,
lacking an explicit theoretical basis; and indeed, theory for
the seasonal dynamics of carbon allocation is still incomplete
(Franklin et al. 2012; Hartmann et al. 2020) and thus unable to
provide a well-founded basis for modeling leaf phenology.

An extensive literature deals with the timing of phenological
transitions, most commonly the start of season (SOS) and end of
season (EOS), and many models have been published describing
the controls of these transitions. Current models for spring phe-
nology in cold-winter climates are of two main types: one-phase
models only consider the need for plants to accumulate heat
during the ecodormancy phase, when bud regrowth is hampered
by unfavorable external conditions (Reaumur 1735; McMaster
and Wilhelm 1997; Zhou and Wang 2018); two-phase models
also consider the amount of chilling during the (preceding)
endodormancy phase, which is an internally regulated process,
whereby growth is suppressed even in favorable environmental
conditions (Cannell and Smith 1983; Chuine et al. 2000; Caffarra
et al. 2011; Fu et al. 2020). Some other models include the influ-
ence of environmental factors on more complex aspects of phe-
nology, such as the DormPhot model (Caffarra et al. 2011) which
considers the effects of chilling, forcing, and photoperiod on
dormancy induction and phase of forcing simultaneously. The
lack of consensus about how to model these key phenological
transitions, coupled with the fact that these phenological models
are largely species- or plant type-specific, means that they are
not well suited to application in a global modeling context. This
is the major reason for focusing on modeling seasonal changes
in LAT in order to improve the representation of vegetation phe-
nology in LSMs.

Seasonal changes in incoming solar radiation are an import-
ant driver of the seasonal cycle of LAI in extratropical regions.

However, experiments have shown that air temperature is the
main driver of interannual phenological variability in north-
ern temperate and high-latitude regions (Fu et al. 2019; Meng
et al. 2021), while precipitation is the dominant factor influenc-
ing phenological changes in drylands (Currier and Sala 2022)
with a major impact on spring phenology (Castillioni et al. 2022).
The cyclical patterns of solar radiation and vapor pressure defi-
cit are the two most important environmental variables linked
to the production of new leaves and the shedding of old leaves in
tropical evergreen forests (Chen et al. 2019). For robust global-
scale modeling, it would be useful to seek an approach that
could account for such dependencies via a single mechanism ap-
plicable to all biomes. In this spirit, Jolly et al. (2005) proposed
the Growing Season Index Model, which considers photoperiod,
vapor pressure deficit, and air temperature as predictors. But
even though this model—and others derived from it (Schaphoff
et al. 2018)—have had some success in simulating seasonal leaf
area dynamics, they are still limited in climate-change applica-
tions because of their lack of theoretical underpinnings.

Xin et al. (2018) proposed a promising alternative method for
simulating the seasonal dynamics of LAI, in which LAI time
series are estimated from the seasonal time course of GPP via
the Beer's law dependence of GPP on LAT (Swinehart 1962) and
the reciprocal requirement for GPP to support LAI development.
The underlying principle—that seasonal variations in LAI are
coordinated with variations in GPP—can be considered an eco-
evolutionary optimality hypothesis (Harrison et al. 2021), be-
cause it implies that leaves are displayed at (or near) the time
when they are able to be most productive. A “semi-prognostic”
LAT dynamics model (Xin et al. 2020) based on this approach
was developed. It requires annual peak LAI data from satellite
data as input to provide an upper bound for predicted LAI. This
model has been shown to capture both the spatial pattern and
seasonal variation of satellite-derived LAI on a global scale, al-
beit with some limitations in high-latitude and tropical areas.
Zhou et al. (2023) further developed the model of Xin et al. (2020)
by adding a scheme to predict seasonal maximum LAI, thus
allowing a fully prognostic (i.e., independent of satellite data)
simulation of the seasonal time course of LAI This model can
generally capture the seasonal variation of LAI, although it per-
forms less well for biomes with typically high LAT such as ever-
green broadleaf forests and closed shrublands, and still requires
nine parameters to be estimated separately for each biome.

Here we adopt the theoretical approach proposed by Xin
et al. (2018, 2020) but in addition, we build on the develop-
ment of a universal, first principles-based model for GPP (the P
model: Prentice et al. 2014; Wang, Prentice, et al. 2017; Stocker
et al. 2020; Mengoli et al. 2022). The P model rests on eco-
evolutionary optimality hypotheses that have been tested one-
by-one using independent data. When forced by satellite-derived
LAI data, it achieves good representations of the seasonal cycle
of GPP across all biomes (Stocker et al. 2020) and a realistic
simulation of site-based GPP trends (Cai and Prentice 2020),
without requiring biome-specific parameters. We also apply a
top-down algorithm for predicting seasonal maximum LAT
(Zhu et al. 2023; Cai et al. 2025), which makes use of the P
model. This algorithm is based on the principle that this quan-
tity is limited either by available energy (in which case a profit-
maximizing criterion applies) or by water availability (when it is
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limited by the transpiration demands of photosynthesis). This
allows us to build a fully prognostic solution for simulating LAT
time series, which combines the robustness of the P model with
our top-down criteria for seasonal maximum LAT and the con-
ceptual simplicity and generality of the approach pioneered by
Xin et al. (2018, 2020).

The present study has two objectives: (1) to develop a global LAT
model, independent of satellite data, that can simulate seasonal
to multidecadal dynamics of LAI both at eddy-covariance flux
sites and globally; and (2) to evaluate the model across biomes,
using both in situ and satellite measurements.

2 | Data and Methods
2.1 | Model Overview

The modeling workflow has two steps (Figure 1): (1) Derivation
of steady-state LAT dynamics from the time course of potential
GPP through the Beer's law dependence of GPP on LAI and the
requirement for GPP to support LAI development. (2) Simulation
of actual LAT dynamics, allowing for the time lag of leaf alloca-
tion behind steady-state LAL

2.1.1 | Prediction of Gross Primary Production

The P model is a universal and extensively validated light use
efficiency (LUE) model for predicting gross primary production
(GPP) (Wang, Lu, et al. 2017; Wang, Prentice, et al. 2017; Stocker
et al. 2020). It integrates the Farquhar-von Caemmerer-Berry
(FvCB) model (Farquhar et al. 1980) with ecological evolution-
ary optimality (EEO) principles to represent the adaptation of
stomatal behavior and photosynthetic capacities to environmen-
tal conditions (Prentice et al. 2014; Wang, Lu, et al. 2017; Wang,
Prentice, et al. 2017). A study with a more detailed description

of this model has demonstrated its ability to effectively capture
observed trends in GPP across multiple eddy-covariance flux
sites (Stocker et al. 2020). Moreover, its performance in explain-
ing GPP trends is comparable to that of more complex models
(Mengoli et al. 2022).

Based on the P model, GPP (A) can be expressed as a product of
fAPAR, Light Use Efficiency (LUE) and PPFD. Potential gross
primary production (A,) is the GPP that would be achieved if
fAPAR =1 and can be calculated from Equation (1).

A = fAPAR x LUE x PPFD 6))
In Equation (1), LUE is expressed as:
2
LUE = g, m 1—(ﬁ)3 @)
m
c,—I"
m= -
©)

{ca +2r* + 3r*\/ [1.67*Dp (K +T")7"] }

Here, @, is the intrinsic quantum yield (mol CO, mol™~ photon),
m represents the impact of leaf-internal CO, on carbon assim-
ilation. ¢, is the ambient CO, partial pressure (Pa), I'* is the
CO, partial pressure compensation point (Pa), K is the effective
Michaelis-Menten coefficient of Rubisco (Pa), »* is the viscosity
of water relative to its value at 25°C (dimensionless), 3 is the cost
factor for carboxylation and transpiration at 25°C, equaling 146
(dimensionless). c* is a dimensionless constant, equaling 41.

2.1.2 | Prediction of Seasonal Maximum LAI

We treated fAPAR (the fraction of incident photosyntheti-
cally active radiation that is absorbed by leaves) and LAI as
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FIGURE1 | Workflow of the LAI model and its evaluation. Notation: A, steady-state GPP (g C m~2day™); A, potential GPP (g C m~2day™'); LAI,

steady-state LAT (m=2m~2); LAI

max’

annual peak LAI (m?m~2). A and LAI are the mutually consistent GPP and LAI that would be supported if en-

vironmental conditions were held constant. A is the GPP that would be supported under the same conditions if all light incident on the canopy were

absorbed by leaves, i.e., as LAI—co. k is the light extinction coefficient (~0.5) and m is a quantity (to be determined) relating A_and LAI.

30of 17

95UdIIT SUCWWO)) dANeal) a|qedijdde ay3 Aq pausanob aie sapilie YO ‘9sn Jo ss|nJ Joj Aieiqr] auljuQ
Asjim uo (suonipuod-pue-suisy/wodAsimAielqijauljuo//:sdiiy) suonipuo) pue swis) ay1 995 "[§202/€0/ve] uo Ateaqry auluo Asim ‘1saL Ag "5210£°q6/LLLL0L/1op/wodAspimAieiqiauljuo//:sdiy wouy papeojumoq ‘€ 'S20Z ‘9872S9€EL



interchangeable, assuming they are monotonically related by
Beer's law (Swinehart 1962; Figure 1). Global spatial patterns
and temporal trends of the seasonal maximum value of fAPAR
(fAPAR_, )or LAI(LAI_, )can be predicted to first order based
on eco-evolutionary optimality principles (Zhu et al. 2023; Cai
et al. 2025).

It is hypothesized that over annual and longer time scales, car-
bon allocation to foliage is restricted by either water supply or
photosynthesis. A transpiring canopy cannot be sustained if
insufficient root-zone water causes prolonged stomatal closure,
while building and maintaining leaves (and supplying them
with water and nutrients) incurs a carbon cost that cannot ex-
ceed the carbon they fix indefinitely. These situations are called
‘water limited” and ‘energy limited’ respectively (Cai et al. 2025).

Under water limitation, it is assumed that plants adjust their
rooting behavior to extract a portion of annual precipita-
tion from the soil, irrespective of its distribution throughout
the year, and allocate carbon to leaves so that all this water
is transpired, thereby maximizing gross primary produc-
tion (GPP).

General expressions for GPP (Equation 4) and transpiration
(Equation 5) are:

A=Gyc,(1— y) =fAPAR. A, @

and

E=16G,D 5)
where A is GPP (leaf respiration was ignored for simplicity),
G, is the canopy conductance for CO,, c, is the ambient CO,
partial pressure, and y is the ratio of leaf-internal CO, par-
tial pressure to c,. A, is the potential GPP, i.e. the GPP that
would be achieved if fAPAR=1 and can be calculated from
Equation (1). E is transpiration, and D is the vapor pressure
deficit (VPD).

Transpiration is assumed to use a prescribed fraction (f)
of annual total precipitation (E=f, P). In the original
fAPAR_, framework (Zhu et al. 2023; Cai et al. 2025) f, was
assigned a single constant value, equaling 0.62. Here, we
have substituted this constant value with an empirical equa-
tion that relates f, to the climatological Aridity Index (AI)
(Good et al. 2017) (Equation 6), thus allowing f, to decline as
AT increases beyond a value close to the separation between
energy- and water-limited regimes. The climatic AT is the ratio
of mean annual potential evapotranspiration to mean annual
precipitation (Good et al. 2017) calculated using climate data
for a 20-year period (2001-2019). The precipitation data were
obtained directly from the CRU data set, and PET was calcu-
lated using SPLASH v1.0 with temperature, precipitation, and
cloud cover data as inputs (Davis et al. 2017).

Al
£, = 0.65x 2 () ®)

where 0.65 is the maximum value, 1.9 is the AI at which this
maximum occurs, and b=0.604169.

Equation (6), together with Equations (4) and (5), yields
Equation (11) as the expression of water-limited fAPAR.

Under energy limitation, it is assumed that plants allocate
carbon to leaves to maximize GPP after accounting for the
costs of constructing and maintaining leaves and supplying
them with water and nutrients. This approach leads to a clear
optimum because investing in leaf tissue yields diminishing
returns due to mutual leaf shading. We now define the net car-
bon profit (P,) as:

P, = A, X fAPAR — z x LAI (7)
and assume Beer's Law:
fAPAR =1—exp(—k x LAI) ®)
Then
P, = A, x fAPAR + (%) In(1 — fAPAR) ©)
and
oP, . 1)

S Sy P S
o(fAPAR) ' 1-fAPAR

Setting Equation (10) to zero yields Equation (11) as the expres-
sion of energy-limited fAPAR; the turning point is a maximum
in P_. The globally fitted value for z was 12.227 mol*m™a"!, ob-
tained by non-linear least squares regression using the log-sum-
exp function to approximate the minimum function.

The seasonal maximum fAPAR can then be represented by
Equation (11) and the seasonal maximum LAI by Equation (12)
(Cai et al. 2025):

fAPAR ., =min {1-2z/(kA,),[c, A= x)/1.6D| [, P/A,|}
(11

LAI, = —(1/k) In (1 —fAPAR ) 12)
In Equation (11), the first part represents the energy-limited
equation, and the second part represents the water-limited equa-
tion. k is the light extinction coefficient (set at 0.5), D is the mean
vapor pressure deficit (VPD) during the growing season (>0°C),
A, is the annual total potential GPP (mol m~2year™"), and Pis the
annual total precipitation (mol m—2year™).

2.1.3 | Simulating the Dynamics of LAI

GPP is dependent on LAI (with the relationship governed by me-
teorological conditions) since leaves are the main organs of pho-
tosynthesis. On the other hand, GPP represents the total rate of
carbon fixation, of which some fraction accrues to leaves. A gen-
eral principle governing leaf phenology is that it should allow
plants to achieve competitive success through maximizing
photosynthesis subject to environmental constraints (Franklin
et al. 2012). Based on the mutual relationship between GPP
and LAI, Xin et al. (2018, 2020) proposed a criterion consistent
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with this principle, based on the concepts of steady-state LAI
and GPP—that is, the LAI and GPP that would be in equilib-
rium if weather conditions were constant (Equation 13). Given
daily meteorological conditions, the steady-state LATI is mod-
eled on a daily basis by solving the closed system of equations
(Equations 13 and 14) as follows:

L = min | m A, LAL,, | 13)

A;=A;[1-exp (-kL)| 14)
where L, denotes steady-state LAI; m denotes the fraction of
GPP allocated to LAI; and A  denotes the steady-state GPP. The
solution is given by Equation (15):

I, =min{ ok (%)WO [ - ku exp(—ky)],LAImaX} (15)

where u=mA_and W is the principal branch of the Lambert W
function. Further information on the solution of Equations 13
and 14 is provided in Note S1.

The processes governing canopy photosynthesis and vegetation
phenology do not respond instantaneously to weather fluctu-
ations, so there are inherent delays between the steady-state
LAT and the real-time dynamic LAI. Although photosynthesis
responds within minutes, the allocation of photosynthate to
leaves and other tissues can take from days to several months
(Mengoli et al. 2022; Sierra et al. 2022). Thus, it is reasonable
to model GPP on an hourly to daily basis, and to simulate leaf-
area dynamics as a slower process, lagging steady-state GPP.
Without such a lag, LAI would fluctuate unrealistically from
day to day. We adopt the exponential weighted moving average
method (Equation 16) to incorporate this lag effect (Mengoli
et al. 2022). This method is widely used in models to smooth
out short-term fluctuations and highlight longer-term trends or
cycles. It assigns exponentially decreasing weights to older LAT
values, making it more responsive to recent changes in the data
compared to a simple moving average (Yu et al. 2020):

LAL;, =a X L[t]+ (1 —a) X Lg, [t — 1] (16)
where the simulated actual LAI (LAI; ) is a weighted average
of the steady-state LAI value corresponding to the steady-state
GPP of the day (L) and its acclimated value from the previous
day, with weightings of & and (1—c) respectively. « is set to 0.067
here, corresponding to approximately 15days of memory. We
also tested a range of alternative values of a (0.33, 0.143, 0.1,
0.067, 0.05, 0.04, 0.033, 0.022 and 0.0167, corresponding to 3, 7,
10, 15, 20, 25, 30, 45 and 60days) (Table S2; Figure S1). Further
information on the derivation of Equation (16) and the parame-
ter « is provided in Note S2.

2.1.4 | Estimation of m

Because actual LAT and GPP lag behind L and A, the param-
eter m cannot be estimated directly from daily or monthly
data (Xin 2016; Xin et al. 2019). However, a natural approx-
imation for m is the ratio of annual average LAI to annual
mean GPP:

m = (Annual mean LAI) / (Annual mean GPP) 17)
Xia et al. (2015) found that annual total GPP can be robustly es-
timated as a constant fraction (around 2/3) of the product of the
length of the CO, uptake period (growing season length, GSL)
and the seasonal maximum of GPP (GPP_, ). Applying the same
approach to LAI, we estimate m as follows:

m = (o) X LA,y X GSL) / (6, X GPP, X GSL)  (18)

where LAI__ is the seasonal maximum LAI and o; and o,

are parameters. We further assume that GPP_ is achieved

when both A, and fAPAR achieve their peak values, that is
GPP_ . =A, . XTAPAR . andthatA . also follows the Xiz;
A

et al. (2015) theory and can be represented as A
(0,X GSL), where A

Omax — “~Osum

osum 1S the annual sum of A,. Thus:
m= (o, X LAL,,, X GSL X 65 X GSL) / (6, X Aggym X FAPAR,, X GSL)
(19)
Combining parameters (defining 0 =0, X 0,/0,), we obtain:
m= (o X GSL X LAI .y ) / (Agsum X fAPAR . ) (20)
We estimate GSL as the length of the continuous above 0°C
period longer than 5days. LAI_, is the seasonal maximum
LAI, from Equation (12); Apeum 1S the annual total poten-
tial GPP; fAPAR __ is the seasonal maximum fAPAR, from
Equation (11); and o represents the extent to which seasonal
LAIdynamics depart from a “square wave” whereby maximum
LATI would be maintained over the whole growing season (Xia
et al. 2015; Zhou et al. 2023). To estimate o we used data at flux
sites to obtain “observed” values of m, as the ratio of annual
average (satellite-derived) LAT to annual mean (flux tower-
derived) GPP (Equation 17). Then ¢ was calculated according
to Equation (20) with “observed” m values, satellite-derived
seasonal maximum LAI and fAPAR, and “observed” A as in-
puts. The “observed” total A is the ratio of flux tower-derived
GPP to satellite-based fAPAR (data sources are described
below). This method yielded c=0.771 as a global estimate.

2.2 | Data and Model Evaluation
2.2.1 | Flux-Tower Data and Site-Based Analysis

GPP and meteorological data at flux-tower sites were obtained
from the FLUXNET 2015 Tier Two and ONEFLUX datasets
(http://fluxnet.fluxdata.org/) (Pastorello et al. 2020). At the site
level, the sub-daily P model (Mengoli et al. 2022) was used to
calculate potential GPP with the FLUXNET datasets providing
the meteorological variables required as input: incident photo-
synthetic photon flux density (PPFD_IN, umol m~2s™"), vapor
pressure deficit (VPD_F, Pa), air temperature (TA_F, °C), and car-
bon dioxide mole fraction (CO,_F_MDS, umol mol™) on a half-
hourly timestep. In contrast with the standard P model (Stocker
et al. 2020), the sub-daily P model (Mengoli et al. 2022) implements
acclimation of photosynthetic parameters to midday conditions,
when the light is greatest, and explicitly separates the subdaily
(fast) responses of photosynthesis and stomatal conductance from
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slower acclimated responses to environmental variations over a
15-day period. The effect of soil moisture stress on simulated GPP
was considered separately by applying an additional empirical soil
moisture limitation function (Mengoli et al. 2023).

Some days of climate data are missing from some sites due to
quality control issues, so simulated GPP cannot be calculated for
those days. Considering that the fAPAR __model (Equation 11)
(Zhu et al. 2023; Cai et al. 2025) requires annual total potential
GPP as input, only those site-years with >300 daily GPP sim-
ulations were used for analysis from a total of 149 flux tower
sites. We used data in the time range from 2001 to 2018 (1038
site-years), including 47 evergreen needleleaf forest (ENF) sites,
14 evergreen broadleaf forest (EBF) sites, 25 deciduous broad-
leaf forest (DBF) sites, seven mixed forest (MF) sites, two closed
shrubland (CSH) sites, seven open shrubland (OSH) sites, six
woody savanna (WSA) sites, six savanna (SAV) sites, and 31
grassland (GRA) sites (Table S1).

2.2.2 | Gridded Climate Data and Global Analysis

We used the standard P model (Stocker et al. 2020) for the global
analysis. Six-hourly precipitation, maximum, minimum, and
mean temperature, atmospheric pressure, and surface down-
welling shortwave radiation at 0.5 resolution were downloaded
from the CRU-JRA dataset version 2.5 (Harris 2024). This is the
climate forcing used in the TRENDY project (Sitch et al. 2015,
2024). The hourly data were converted to daily timescales, as
inputs of the P model, by averaging the 24-hourly data. VPD
was calculated using maximum and minimum temperature and
water vapor pressure. Solar radiation was converted to incident
PPFD assuming a flux: energy ratio of 4.6 umolJ~! and a pho-
tosynthetically active fraction of 0.5. We downloaded globally
averaged monthly mean CO, concentrations (umolmol™) from
NOAA Global Monitoring Laboratory for 2001-2019 (NOAA/
GML; https://gml.noaa.gov/ccgg/trends/; accessed November
2023) and then interpolated them into daily scale.

The effect of soil moisture stress on simulated GPP was rep-
resented using the empirical ‘penalty factor’ developed by
Stocker et al. (2020), with the annual time course of soil mois-
ture calculated using the Simple Process-Led Algorithms
for Simulating Habitats (SPLASH) model (version 1: Davis
et al. 2017). As the standard P model makes separate cal-
culations for GPP of plants following the C, or C, photo-
synthetic pathways, a dynamic C, vegetation fraction was
simulated based on a C,/C, competition model (https://pyrea
Im.readthedocs.io/en/latest/) embedded in the P model.
This model requires tree cover percentages as inputs, which
were derived from MODIS MOD44B v006 during 2001-2019
(DiMiceli 2015). Areas where cropland cover is > 50% were ex-
cluded from the C,/C, vegetation fraction map. Cropland cover
data at 0.05° resolution from 2001 to 2019 were derived from
MODIS MCD12C1 v006 (Friedl and Sulla-Menashe 2015).

2.2.3 | Satellite LAI Data (Model Evaluation Data)

We used LAI time series derived from two alternative data-
sets (MODIS and Copernicus LAI) to evaluate the model's

performance. MODIS LAI data were derived from the MODIS
MOD15A2H Leaf Area Index/FPAR product, given at a resolu-
tion 0of 0.05 at a daily timestep from 2001 to 2019 (Li et al. 2023).
Copernicus LAT data were derived from Copernicus Global
Land Products (https://gbov.acri.fr) for the same period at
1km resolution. The results described below are based on the
MODIS data product. Results of model evaluation based on
the Copernicus data are shown in Table S4; Figures S2 and S3.

2.2.4 | Simulated LAI Data From the TRENDY Project

We downloaded simulated LAT data during 2001-2019 from
the ensemble of 15 TRENDY ecosystem models (TRENDY-v9;
Table 1). The S2 simulations were used, in which identical, time-
varying climate and CO, are prescribed to all the models. The
LAI datasets from different models were regridded to 0.5° res-
olution using the first-order conservative remapping function
(remapcon) from the Climate Data Operators (CDO) software
package (https://code.mpimet.mpg.de/projects/cdo).

2.2.5 | Evaluation Methods

The LAI model depends on several components, including P
model-derived GPP dynamics and the prediction of seasonal
maximum fAPAR and LAI. We conducted multiple sets of

TABLE 1 | Details of the models from TRENDY-vO.

Model name  Spatial resolution Reference

CABLE-POP 1°x1° Haverd et al. (2018)
CLASSIC 2.8125°%2.8125° Melton et al. (2020)
CLM 5.0 0.9375°x1.25° Lawrence

et al. (2019)
IBIS 1°x1° Yuan et al. (2014)
ISAM 0.5°x0.5° Meiyappan

et al. (2015)
ISBA-CTRIP 1°x1° Delire et al. (2020)
JSBACH 1.875°X 1.875° Reick et al. (2021)
JULES-ES 1.25°%1.875° Wiltshire

et al. (2021)
LPJ-GUESS 0.5°%0.5° Smith et al. (2014)
LPX-Bern 0.5°%0.5° Lienert and

Joos (2018)
OCN 1°x1° Zaehle and

Friend (2010)

ORCHIDEEV3 0.5°X%0.5° Vuichard

et al. (2019)
SDGVM 1°x1° Walker et al. (2017)
VISIT 0.5°%0.5° Kato et al. (2013)
YIBs 1°x1° Yue and Unger

(2015)
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Flux*

derived GPP and annual peak satellite LATI as inputs. Grey lines are the 1:1 line; red lines are the regression lines.

simulations at flux sites to investigate the dependence of model
performance on alternative model setups. Two model combi-
nations were defined: (1) Model,,,.: Inputs are A, which is de-
rived by dividing flux-derived GPP by satellite-derived fAPAR
(Figure 2b; Table 3; Figure 3) and the seasonal maximum LAI,
also obtained from the remote sensing data; (2) Modelpmgmmc:
Inputs are P model-derived A, and predicted seasonal maximum
LAI from Equation (12) (Figure 2a; Table 3; Figure 3). Model,
is used to evaluate the LAI model framework separately, and
ModelpmgmStic assesses the overall performance of the integra-
tion of the LAI from the P model (Stocker et al. 2020) and the
fAPAR . model (Cai et al. 2025).

We analyzed spatial (multi-year mean values by site), annual,
seasonal (mean by month of year), and weekly (mean by week of
year) variability for both model combinations (Table 3), pooling
data by biomes (Table S3). The models' performance in simulat-
ing intra- and inter-annual LAT variability was also evaluated
for different biomes (Figures 3 and 4). We separately analyzed
annual mean LAT (Figure 5a,b) on an annual scale. We also
evaluated the performance of our model and 15 other models
participating in the TRENDY project in predicting multi-year
average LAT (2001-2019), annual average LAI time series, and
seasonal LAI variation by comparing with the LAT products de-
rived from MODIS (Li et al. 2023).

We calculated R?, root mean squared error (RMSE), relative root
mean squared error (RRMSE), the Pearson correlation coeffi-
cient (r), and the mean bias for model evaluation. RRMSE is the
ratio of the root-mean-squared error to the mean of observed
values, which normalizes RMSE by the target variable range
and presents it as a percentage for easy cross-biome compari-
son. More accurate models are expected to have higher correla-
tion coefficients and smaller RMSEs, RRMSEs, and bias errors
when compared with data. Analyses were conducted in the
open-source environments R (version 4.1.0) and Python (version
3.8.10).

2.2.6 | Parameter Sensitivity Tests

For simplicity, in our main analysis, we fitted a single value for
the parameter o across all sites and years (Table 2). However,
we also investigated the variation of o with the environment
(Table S8). Additionally, given the potential effects of satellite
data uncertainty on o, we fitted o at flux sites based on MODIS
and Copernicus data separately (Table S7). Based on the P
model derived GPP and the fAPAR and LAIT products of MODIS,
GLOBMAP, and AVHRR, we further explored the spatial vari-
ation of o on a global scale (Figure S4) to assess its sensitivity to
input GPP and satellite data.

The light extinction coefficient (k), used to convert from fAPAR
to LAI, could be affected by canopy structure and therefore vary
between vegetation types. However, Cai et al. (2025) have tested
using a value that varies as a function of biome or a pixel-specific
value compared to using a constant k value and have shown that
this has no significant impact on the prediction of the seasonal
maximum LAI We therefore use a constant k value of 0.5 in this
analysis.

3 | Results
3.1 | LAI Variability Across Scales

The LATI model can capture the observed pattern of variabil-
ity in MODIS-derived LAI across temporal scales (Table 3,
Figure 2). It explains 67% of the variance in LAI with data ag-
gregated to seven-day means (53,863 data points) when driven
by flux tower-derived GPP (Modely, ), and 60% of variance
when driven by the P model-derived GPP (Modelegnosﬁc).
Seasonal and annual variations are also well simulated (R?:
70% to 87% for Model, and 67%-70% for Modelpmgmsﬁc).
Still, more variance is explained for LAT across sites, with 90%

for Modely,, . and 72% for Modelpmgnomc. Site-level interannual
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variations are less well simulated (R%* 43% for Model
and 34% for MOdEIPrognostic) (Figure S5). Our LAI model
(MOdelPrognostic) performs slightly less well when compared
with the alternative Copernicus-derived LAI. Nevertheless,
it still accounts for 48%, 51%, 63%, and 45% of the variance
in Copernicus-derived LATI aggregated to seven-day means,
monthly mean, annual mean, and site mean, respectively
(Table 4; Table S4; Figures S2 and S3).

Flux®

The LAI model also captures the seasonal and interannual
variations of annual LAI for each biome (Figures 3 and 4,
Table 4). The LAI simulated by Model,,  (Figure 3) agrees
well with MODIS-derived LAI, especially for MF (R?=58%;
RRMSE=18%), GRA (R?’=69%; RRMSE=27%), DBF
(R*=79%; RRMSE=22%), EBF (R*=56%; RRMSE=23%)
and WSA (R?>=44%; RRMSE=26%) and CSH (R*=72%;

RRMSE =15%). Observed LAI dynamics for ENF lag simu-
lated LAI, with a delay of up to 1 month in spring (R>=39%;
RRMSE =15%). The ability of the model to simulate LAI in
arid biomes (tropical savanna, open shrubland) was relatively
poor; nonetheless, the model still accounted for 38% and 51%
of the variance in satellite-derived LAI, with RRMSEs of 27%
and 30%, respectively, in these biomes. Compared to the LAI
model driven by flux tower-derived GPP (Model, ), the simu-
lated LAT using P model-derived GPP (MOdEIPrognostic) tends to
overestimate LAT in early spring, especially for MF (R?= 54%;
RRMSE=27%), GRA (R*=63%; RRMSE=26%), ENF
(R?>=55%; RRMSE =2 4%) and DBF (R>=48%; RRMSE = 28%).
This bias reflects the P model's known tendency to overesti-
mate GPP in the early part of the growing season, probably be-
cause it does not take into account the time required for new
leaves to become fully functional under conditions of high

Flux:
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light and low temperature (Stocker et al. 2020; Luo et al. 2023;
Figure S7).

The capability of our LAI model (Modelpmgnosﬁc) to capture
seasonal changes in Copernicus-derived LAI for each biome
is inferior to that of MODIS-derived LAI, but there are not big
differences (Table 4; Table S4; Figures S2 and S3). The under-
estimation of A (but not LAI) at some savanna sites (Figure 4e
and Figure S7) is likely because the sub-daily model does not
consider C, photosynthesis (Mengoli et al. 2022). The underesti-
mation of A at dense forests, such as DBF and EBF (Figure S7),
is due to the inherent limitations of satellite data, as satellite-
derived fAPAR of different products varies greatly at dense for-
ests (Stocker et al. 2020).

Representative time series of predicted and observed LAI and potential GPP in different biomes. LAI

Simulated LAI dynamics using flux tower-derived GPP and annual peak satellite LAT as inputs (Model, J; A,
Simulated potential GPP at flux sites (g C m~2day!). (a) MF, mixed forest; (b) GRA, grassland; (c) ENF, ev-
ergreen needleaf; (d) DBF, deciduous broadleaf; (e) SAV, savanna; (f) EBF,

T T T T T T
2008 2009 2003 2004 2005 2006

- Satellite LAI; LAT, ,

Prognostic);
Observed potential

evergreen broadleaf; (g) WSA, woody savanna; (h) OSH, open shrubland;

3.2 | Annual Mean LAI at Flux Sites

ModelPrognostic tends to overestimate annual mean LAI in more
arid biomes (Figure 5b) compared to Modely  (Figure 5a),
likely due to higher predicted seasonal maximum LAT in GRA
and OSH (Figures 3 and 4). Conversely, the underestimation of
annual mean LAT for EBF and DBEF is likely caused by a lower
predicted seasonal maximum LATand A (Figures 3 and 4). The
RMSE between satellite-derived and modeled LAI (Figure 5) is
<0.5 m?*m~2 for 45% of the sites, <1m2m™2 for 90% of the sites,
and <1.5m?m™2at 98% of the sites. There are four sites where the
RMSE exceeds 1.5 m2m~2: one SAV site (CG-Tch, RMSE =1.69
m2m~2) and three EBF sites (AU-Tum: 2.19 m?m~—2%; BR-Sa3:1.87
m?m~2; AU-Wac: 1.58 m?m~2; Figure 6.
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vanna; WSA, woody savanna.

TABLE 2 | Definitions and expressions/values of parameters used in our LAI model.
Variability = Variability
Parameters Definition Values/Expressions with time with space
Iy The rz.itio.of pre?cipita'tion to £ =065 x e—bxln2 (%) Yes Yes
transpiration (dimensionless)
Z The unit cost of constructing 12.227molm=2a~! No No
and maintaining leaves
g The extent to which seasonal 0.771 No No
LAI dynamics depart from
a “square wave” whereby
maximum LATwould be
maintained over the whole
growing season (dimensionless)
m The ratio of steady-state LAT m= (g x GSL X LAImaX) / (AOSum X fAPARmaX) Yes Yes
divides steady-state GPP
a The constant smoothing factor 0.067 No No
k Light extinction coefficient 0.5 No No

Note: AI: The ratio of mean annual potential evapotranspiration to mean annual precipitation calculated using climate data for a 20-year period. b: A constant value,

equaling 0.604169. GSL, The length of the continuous period above 0°C longer than 5days. LAT

GPP. fAPAR, The seasonal maximum fAPAR.

max’

3.3 | Global-Scale Modeling

The LATI model presented here, based on the close relation-
ship between steady-state GPP and LAI, successfully cap-
tures MODIS-derived multi-year average LAT over 2001-2019
across most of the global land surface covered (or partly
covered) by natural vegetation. It somewhat underestimates
LAI in Amazonia, North America, and northeastern Asian
temperate deciduous forest, and overestimates LAI in arid

maxe The seasonal maximum LAT. A

Osum’

The annual total potential

regions including parts of southern Africa and South America
(Figure 7 and Figures S6 and S9). The simulated results are
highly consistent with the latitudinal patterns shown in
MODIS-derived products with multi-year mean LAI, with a
correlation coefficient of 0.91 (Figure 7c,d). The seasonal time
course of LATI on a global scale is also well simulated, apart
from the “early spring effect” in the northern hemisphere, and
a slight underestimation of global LAT in January and July

(Figure S10).
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TABLE 3 | Regression coefficient (Slope), R? and RMSE of simulated and MODIS-derived LAI (Li et al. 2023) assessed at different timescales.

Modely, . stic Modely,,,
Slope R? RMSE Slope R? RMSE N
7 days 0.88 0.60 0.76 0.80 0.67 0.76 53,863
Seasonal 0.99 0.67 0.79 0.84 0.70 0.68 13,184
Annual 0.96 0.70 0.61 0.90 0.87 0.29 1138
Spatial 0.98 0.72 0.47 0.93 0.90 0.26 163
Note: Modely, oyt Simulated LAT dynamics using P model-derived GPP and simulated annual peak LAI from the fAPAR,,,,, model as inputs. Modely,,,: Simulated
LAI dynamics using flux tower-derived GPP and annual peak satellite LAI as inputs.
TABLE 4 | Satellite-derived versus modeled seven-day mean leaf area index (LAI) by biome.
(b) Model, ;. o5ic
(a) Model, (Copernicus) © MOdelPrognosti . (MODIS)
Biome r RRMSE R? Bias r RRMSE R? Bias r RRMSE R? Bias N
ENF 0.57 30.05 0.39 0.20 0.63 25.42 0.38 0.11 0.72 24.76 0.55 0.17 18,489
EBF 0.75 16.37 0.56 0.23 0.60 20.10 0.46 0.42 0.62 22.10 0.27 0.48 3584
DBF 0.78 22.87 079 -0.13 0.71 32.71 0.53 0.27 0.78 28.13 0.48 —-0.12 8434
MF 0.70 18.84 0.58 0.12 0.73 25.36 0.55 0.29 0.79 27.92 0.54 0.41 3855
OSH 0.59 30.87 0.51 0.07 0.35 52.92 0.11 -0.01 0.58 50.10 0.21 -0.05 2448
CSH 0.83 15.24 0.74 0.14 0.43 21.79 0.15 0.32 0.66 27.29 0.36  —-0.02 950
WSA 0.69 26.01 0.44 0.06 0.58 50.46 041 -035 071 3313 0.46 0.32 2771
SAV 0.52 27.36 0.38 0.15 0.32 46.11 0.15 -0.21 0.30 36.21 0.04 0.08 1934
GRA 0.72 27.30 0.69 0.04 0.70 32.05 0.51 0.06 0.77 26.33 0.63 0.15 9300
Overall  0.78 23.49 0.67 0.10 0.67 30.32 0.48 0.09 0.75 27.41 0.60 0.16 53,863
Note: (a) Modely, . (MODIS): Inputs are flux-derived A, and annual peak LAI obtained from the MODIS data; (b) Model, . ;.: Inputs are P model-derived A, and
predicted annual peak LAI from Equation (12), with Copernicus-derived LAI as a benchmark. (¢) Model,, .. Inputs are P model-derived A, and predicted annual

peak LAI from Equation (12), with MODIS-derived LAT as a benchmark. Reported metrics are the Pearson correlation coefficient (r), relative root mean square error

(RRMSE), R2 and bias.

Abbreviations: CSH, closed shrubland; DBF, deciduous broadleaf; EBF, evergreen broadleaf; ENF, evergreen needleleaf; GRA, grassland; MF, mixed forest; OSH, open

shrubland; SAV, Savanna; WSA, woody savanna.

Our model is better than the 15 TRENDY models (Table S9)
at predicting multi-year average MODIS-derived LAI for
2001-2019 (Figure S11), with an RMSE of 0.46 and an R?
of 0.84 compared to RMSE values between 0.48 and 0.87
and R? values between 0.34 and 0.79 for the TRENDY mod-
els. ISBA-CTRIP is the best-performing TRENDY model in
terms of RMSE (0.48) and R? (0.79) but has a poorer slope co-
efficient (Figure S11). JISBACH has a better slope coefficient
than our model, but worse RMSE (0.60) and R? (0.68) scores
(Figure S11). Our model also performs better in terms of an-
nual average LAT time series (Figures S12-S14), with a mean
RRMSE of 46.14 compared to a range from 47.30 to 256.19.
The two best-performing TRENDY models are again, ISBA-
CTRIP (RRMSE =49.67) and JSBACH (RRMSE =47.30). Our
model also reproduces the seasonal variations of LAT well
(Figures S15-S17) compared to the TRENDY models, with
a mean RRMSE of 56.14 compared to the TRENDY range
of 63.11-257.76. Our model also performs better than the
TRENDY models when using the Copernicus-derived LAT as
a benchmark, with higher R? and lower RMSE and RRMSE
(Figures S18-S26).

3.4 | Effects of Parameter Variation

The predicted site-level values of m capture the variation of ob-
served values well (Slope =0.90; R?=91%; RRMSE =46%) for all
biomes together when ¢ is maintained as a constant (Figure 8c).
When the potential variation of o between different biomes is
considered, separately fitted values of o for EBF and ENF are
higher (EBF: 0=0.95; R>=96%; RRMSE=15%; ENF: 0=0.82;
R?=88%; RRMSE = 37%) than those for DBF (c=0.67; R*=89%;
RRMSE=59%) and MF (c=0.63; R?=92%; RRMSE=50%)
(Figure 8a). CSH, GRA, OSH, SAV, and WSA show ¢ values in
a relatively narrow range, from 0.69 to 0.82 (Figure 8b). Even
though o values decrease with temperature and increase with
PPFD, these variations are small (Table S8). The ¢ values fitted
using different satellite products at flux sites and global scales
also differ very little (Tables S6 and S7; Figures S4 and S6).
These results show that o is a relatively robust parameter and
can be used as a global constant to derive a general expression
for predicting the quantitative relationship between steady-state
LAT and steady-state GPP (Equation 20), applicable to all vege-
tation types.
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4 | Discussion

We have developed a universal global LAT model that predicts
the daily time course of LAI from climate variables alone.
The model is based on the theoretical approach introduced
by Xin et al. (2018, 2020), which can be considered an eco-
evolutionary optimality hypothesis as it proposes that the
dynamics of leaf display are closely coupled (with some time
lag) to the time course of the productive capacity of leaves,
which in turn is determined by light and weather conditions.
We have combined this theoretical approach with a parsimo-
nious and well-tested GPP model, the P model (Wang, Lu,
et al. 2017; Wang, Prentice, et al. 2017; Stocker et al. 2020;
Mengoli et al. 2022), and a separately validated top-down
model to predict the seasonal maximum LAT (Zhu et al. 2023;
Cai et al. 2025). We have also developed a semi-empirical
equation predicting the quantitative relationship between
steady-state LAI and steady-state GPP, expressed as the pa-
rameter m, that is applicable across all biomes.

Our approach differs fundamentally from that of classical
mechanistic phenological models, which focus on the triggers of
phenological phase transitions (Chuine et al. 2000; Chuine and
Régniére 2017; Chuine 2021). Mechanistic models can achieve
high accuracy for predictions of the timing of phenological
transitions at the species (Chuine 2010) and regional (Chuine
et al. 2000) levels, but uncertainties about the drivers of key
events and the need for species-specific information mean that

they are difficult to apply at a global scale. Our optimality-based
approach focuses on the emergent behaviour of leaves at the can-
opy scale, such that the timing of these phenological transitions
is implicit rather than explicit and is better adapted for global
vegetation and land-surface modeling.

Many studies have demonstrated a positive correlation be-
tween LAI and photosynthetic activity at various temporal
and spatial scales (Wu et al. 2016; Chen et al. 2020; Bian
et al. 2003). Our results provide further support for the hy-
pothesis of interdependence between the time course of LAT
and the photosynthetic potential of leaves. This hypothe-
sis provides a robust way to predict seasonal leaf allocation
from the conditions supporting photosynthetic productivity,
instead of trying to predict the timing of phenological events
(McMaster and Wilhelm 1997; Badeck et al. 2004; Cleland
et al. 2007). The resulting model is indifferent to the spe-
cific mechanisms used by plants in different environments to
achieve optimality. The model also avoids explicitly simulat-
ing the dynamics of C allocation to leaf growth. One recent
study found that leaf C accumulation accelerates in the early
green-up phase (due to both increased photosynthesis and a
greater fraction of GPP allocated to leaves) and declines in the
late green-up phase (Meng et al. 2023). However, the theory
of dynamic C allocation is incomplete (Hartmann et al. 2020)
and there is insufficient information that would allow a time-
varying allocation fraction to be modeled globally. Relying on
the interdependence of LAI time series and photosynthetic
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potential provides an effective alternative, as shown by Zhou
et al. (2023) and in the present study.

Our LAI simulation framework tends to overestimate LAI
values in spring in cold-climate regions, due to a known defi-
ciency of the P model (Stocker et al. 2020; Mengoli et al. 2022),
which may be related to the fact that full photosynthetic activ-
ity lags behind leaf development in these environments (Croft
et al. 2015; Luo et al. 2023). The model also tends to overesti-
mate LAIT slightly in grasslands and open vegetation in rela-
tively dry climates. The effect of soil moisture on GPP in the P
model is taken into account through an empirical soil moisture
stress function (Stocker et al. 2020; Mengoli et al. 2022), in a
similar way to many LSMs. This does not capture the impact of

long-term adjustments to maximum levels of GPP in more arid
climates (Mengoli et al. 2023). The underestimation of LAT in
tropical forests, where EBF is the dominant biome, is likely to
be caused by problems with the satellite data (Xin et al. 2020)
but may also reflect the extent to which the actual seasonal LAT
dynamics deviate from the “square wave” approach that main-
tains maximum LAT throughout the growing season. Our LAT
model tends to underestimate interannual variability in LAT in
some biomes, probably because it lacks any “carry-over” mech-
anism, such as soil moisture “memory” (Rahmati et al. 2024) or
allocation of carbon to non-structural carbohydrates (Ninomiya
et al. 2023). Nevertheless, despite these shortcomings, the model
performs well overall and better than the various models used in
the TRENDY project.
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savanna.

The model as presented here has benefited from including a
climatically variable f, parameter, compared to the original
formulation for the calculation of seasonal maximum fAPAR
(Zhu et al. 2023; Cai et al. 2025). The parameter f, refers to
the fraction of antecedent precipitation that is used by plants,
based on the hypothesis that plants adjust their rooting pro-
files in such a way as to access a certain fraction (f;) of an-
nual precipitation. This carries the implication that the share
of precipitation that evaporates directly (from foliage, or from
bare soil) is regulated by vegetation properties. Although this
implication is inconsistent with the approach usually taken
in LSMs, there is ample support for it in the ecohydrological
literature (Good et al. 2017). However, even if the variability
of the f, parameter with climate change is taken into account
in the LAT model presented here, it still shows some tendency
to overestimate LAT in arid regions. The parameter z in the
fAPAR . model (Zhu et al. 2023; Cai et al. 2025), which rep-
resents the unit cost of constructing and maintaining leaves,
was fitted according to the chosen value of the light extinc-
tion coefficient (0.5). The z cost could vary with temperature
or canopy structure (Cai et al. 2025), but a global constant was
used here as a tradeoff between model complexity and effec-
tiveness. These dependencies warrant further investigation,
either from a theoretical perspective or through analyses of
remotely sensed observations.
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