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Abstract 

Cardiometabolic diseases including cardiovascular diseases (CVDs) remain a threat 

to global public health, placing a significant burden on low- and middle-income countries. 

Among the risk factors for CVDs is an altered blood lipid profile, usually characterised by a 

rise in the concentration of triglycerides (TG) or low-density lipoprotein cholesterol (LDL-

C) and a reduction in the concentration of high-density lipoprotein cholesterol (HDL-C). 

Lipid-related traits such as CVDs are known to be impacted by environmental factors 

including dietary intake. However, evidence from genetic association studies indicates that 

genetic variants play a role in the development of these traits. Therefore, investigating how 

gene-diet interactions impact on lipid-related traits could help to improve our 

understanding of the underlying pathophysiology and the development of precision 

nutrition strategies for the prevention and management of these conditions. Gene-diet 

interaction studies have been extended to cover previously under-represented populations, 

but there is still limited research in some developing countries. The main aim of this PhD 

work was to investigate the association of single nucleotide polymorphisms (SNPs) as a 

genetic risk score (GRS) with lipid-related traits in different ethnic groups.  The interaction 

of the GRS with dietary factors on lipid-related traits was also assessed. Additionally, the 

association between dairy intake, a source of saturated fat, on cardiometabolic risk factors 

was investigated. Finally, factors that need to be considered to facilitate the translation of 

nutrigenetics to personalised and precision nutrition for cardiometabolic health in diverse 

ethnic groups were explored. This thesis included seven studies: a review of cholesteryl 

ester transfer protein (CETP) gene-diet interactions on lipid-related outcomes; three cross-

sectional cohort studies [the Obesity, Lifestyle and Diabetes in Brazil (BOLD) study, Brazilian 

young adults, n=190; the Chennai Urban Rural Epidemiological Study (CURES), Asian Indian 

adults, n=1,033; and the Study of Obesity, Nutrition, Genes and Social factors (SONGS), 

Peruvian young adults, n=468]; a case-control study (CURES, Asian Indian adults, n=497); a 

systematic review of gene-lifestyle interactions on cardiometabolic disease-related traits in 

Latin American and Caribbean populations; and a review focusing on the barriers in 

translating existing nutrigenetics insights to precision nutrition for cardiometabolic health 

in ethnically diverse populations. Statistical analyses were performed using the Statistical 

Package for the Social Sciences (SPSS) software (version 28; SPSS Inc., Chicago, IL, USA) and 

the R software version 4.3.1. Significant GRS-saturated fatty acid (SFA) intake interactions 

were observed in the Brazilian and Asian Indian populations, impacting on TG:HDL-C ratio 

(Pinteraction=0.03) and waist circumference (Pinteraction=0.006), respectively. A significant GRS-
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total fat intake interaction on TG:HDL-C ratio was also observed in the Brazilian population 

(Pinteraction=0.03). In the Peruvian population, a significant GRS-carbohydrate intake 

interaction on the concentration of HDL-C was observed (Pinteraction=0.0007). Also in the 

Peruvian population, participants with a high GRS, had lower concentrations of HDL-C across 

tertiles of glycaemic load (Ptrend=0.017). In summary, the findings of this thesis add to the 

field of nutrigenetics by showing the presence of genetic heterogeneity in gene-diet 

interactions on lipid-related traits in different ethnic groups. These findings will contribute 

to improved understanding of how genetic and dietary factors interact to alter the 

susceptibility to CVDs in different ethnic groups. Replication of the findings in large scale 

longitudinal and dietary intervention studies is required prior to being considered for 

personalised dietary guidelines. 
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Chapter 1 Introduction to the thesis 

1.1 Introduction 

In recent decades, the rates of cardiometabolic diseases including cardiovascular 

diseases (CVDs) have risen dramatically, coinciding with the so-called ‘obesogenic 

environment’ which is used to describe environmental influences on nutrition and physical 

activity [1, 2]. One of the main risk factors for CVDs is an altered blood lipid profile, usually 

characterised by a reduced concentration of high-density lipoprotein cholesterol (HDL-C) 

and elevated levels of low-density lipoprotein cholesterol (LDL-C) or triglycerides (TG) [3, 

4]. Recent advancements in genotyping technology have paved the way for research into the 

genetic basis of complex traits, and so far, large-scale genome-wide association (GWA) 

studies have discovered numerous genetic loci associated with blood lipid concentrations 

and the risk of CVDs [5-9]. However, only a small proportion of variability in blood lipid 

concentrations is explained by these genetic variants [5, 10, 11]. Moreover, diet, which is 

considered an environmental factor, has been shown to contribute to variations in blood 

lipid concentrations and the risk of CVDs [12, 13]. Therefore, dietary modification is a 

fundamental aspect of first line treatment of lipid-related traits [14, 15]. Nonetheless, inter-

individual differences in the biological response to dietary interventions have been reported, 

which might be due to genetic variations [16, 17]. Therefore, it is important to examine how 

genetic and dietary factors interact to influence lipid-related traits.   

The gene-diet interaction (nutrigenetic) approach is an innovative approach that 

investigates the impact of genetic variability on individual responses to diet [18]. This 

approach helps to determine whether the genetic risk of abnormal blood lipid 

concentrations and related traits is modified by dietary factors, offering the potential to 

design personalised dietary guidelines for preventing and managing CVDs [19, 20]. 

This chapter will (i) give an overview of CVDs; (ii) examine lipids as a risk factor for 

CVDs; (iii) discuss the influence of genetic and dietary factors on blood lipid concentrations; 

(iv) examine the significance of studying gene-diet interactions and the role of personalised 

nutrition in the prevention and management of CVDs. 
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1.2 An overview of cardiovascular diseases 

CVDs cover a variety of conditions affecting the heart and blood vessels including 

ischaemic heart disease, stroke and peripheral vascular disease [21]. Most CVDs are caused 

by atherosclerosis, which results from the build-up of lipids and inflammation in the large 

arteries [22, 23]. Through narrowing of the lumen of arteries or formation of thrombi, 

atherosclerosis can result in reduced blood supply to the heart, brain or lower extremities, 

causing coronary heart disease, ischaemic stroke or peripheral vascular disease respectively 

[22, 23]. CVDs are a threat to global public health, accounting for over 17 million deaths in 

2019, with a significant proportion (more than 75%) occurring in low- and middle-income 

countries (LMICs) [24]. As shown in Figure 1.1, a substantial majority of non-communicable 

disease (NCD) mortality is attributable to CVDs  [25]. 

 

 

Figure 1.1 Major contributors to NCD mortality 

Major contributors to non-communicable disease (NCD) mortality (80%) in people under 

the age of 70 [25].     

Abbreviations: NCD – non-communicable disease; CVDs – cardiovascular diseases. 
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CVDs present severe health and economic consequences for individuals, families and 

communities, especially in LMICs, where individuals tend to be affected by CVDs and related 

conditions during their productive years, which, coupled with huge healthcare expenses and 

limited employment opportunities worsens the financial burden of CVDs in these countries 

[26, 27]. In Latin American and Caribbean populations (LACP), CVDs, in particular, ischaemic 

heart disease and cerebrovascular disease, are the top cause of mortality and a key 

contributor to disability, and this is mainly attributed to CVD risk factors [28]. Similarly, the 

CVD epidemic in India is marked by an early onset, greater relative risk (RR), a higher fatality 

rate, and an increased number of premature deaths [29], necessitating further research into 

the prevention and management of CVD risk factors in these regions. 

1.3 Lipid as a risk factor for cardiovascular diseases 

Atherosclerotic lesions are marked by the build-up of cholesterol, and low-density 

lipoprotein (LDL) is the primary transporter of cholesterol to the walls of arteries [30]. The 

main events in the onset of atherosclerotic CVD involves the retention and build-up of 

cholesterol-rich apolipoprotein B (ApoB)-containing lipoproteins within the arterial intima 

at locations prone to plaque formation [31]. The likelihood of retention of LDL particles and 

the risk of developing atherosclerosis are reported to be reduced when the concentration of 

LDL-C is around 0.5–1.0 mmol/L (20–40 mg/dL). Above this threshold, the likelihood of 

retention of LDL in the intima, and the subsequent initiation and progression of 

atherosclerotic plaque increases in a dose-dependent manner [31]. In a systematic review 

and meta-analysis of 14 prospective cohort studies including 1,055,309 participants [32], a 

positive association was found between the concentration of LDL-C and mortality from CVDs 

[Hazard ratio (HR), 1.21; 95% confidence interval (CI), 1.09–1.35]. In support of this, a 

systematic review and meta-analysis of 49 trials with a total of 312,175 participants [33] 

observed that, a low LDL-C concentration was associated with a lower RR of major 

cardiovascular events. It was identified that a 1 mmol/L (38.7 mg/dL) reduction in the 

concentration of LDL-C was associated with a RR of 0.77 (95% CI, 0.75–0.79, P<0.001). 

Therefore, a high concentration of LDL-C is widely considered as a key risk factor for CVDs 

[34], and most cardiovascular risk prediction models and prevention guidelines include 

LDL-C [35, 36]. 

As with LDL-C, a rise in the concentration of TG has been associated with increased 

risk of atherosclerosis and CVDs [37, 38]. Plasma TG concentration serves as a marker of TG-

rich lipoproteins and their remnants such as very-low density lipoprotein (VLDL), 
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chylomicrons and chylomicron remnants, and the cholesterol contained within these 

lipoproteins is believed to contribute to the development of atherosclerosis [37, 38]. 

Remnant lipoproteins can enter the intima, causing low-grade inflammation, foam cell 

formation and atherosclerotic plaques [37, 39]. Moreover, a high concentration of TG, caused 

by either an increased production or decreased breakdown of TG-rich lipoproteins is 

reported to directly affect the composition and metabolism of both LDL and HDL, resulting 

in small dense LDL and HDL particles which are atherogenic  [40].  A systematic review and 

meta-analysis of 61 prospective cohort studies [41] identified that, raised TG concentrations 

were associated with higher risks of CVD and total mortality in a dose-dependent manner. 

In comparison to the reference group (90–149 mg/dL), the combined RRs and 95% CIs for 

CVD mortality were 0.83 (0.75 to 0.93) for the lowest TG group (<90 mg/dL); 1.15 (1.03 to 

1.29) for the borderline-high group (150–199 mg/dL); and 1.25 (1.05 to 1.50) for the high 

TG group (≥200 mg/dL). For total mortality, the  combined RRs and 95% CIs were 0.94 (0.85 

to 1.03), 1.09 (1.02 to 1.17), and 1.20 (1.04 to 1.38), respectively [41]. Similarly, alterations 

in TG levels were found to be predictive of major cardiovascular events in a meta-regression 

analysis of 40 randomised controlled trials (RCTs) (P=0.005) [42]. Taking together, these 

findings suggest that a raised TG concentration is a key risk factor of CVDs. 

In contrast to LDL and TG-rich lipoproteins, high-density lipoprotein (HDL) is well 

known to have a cardioprotective effect [43-47]. Through reverse cholesterol transport, HDL 

facilitates the removal of excess cholesterol from peripheral tissues and promotes its 

excretion, thus reducing the risk of atherosclerosis and CVDs [48, 49]. However, it has been 

recognised that, the concentration of HDL-C does not necessarily correlate with the function 

of HDL [32, 50], which is exemplified by the observation that, individuals with scavenger 

receptor class B member 1 (SCARB1) gene mutations have higher CVD risk despite having 

high concentrations of HDL-C [50]. Nonetheless, the systematic review and meta-analysis of 

14 prospective cohort studies discussed above [32] found that, increased HDL-C 

concentration was associated with reduced risk of mortality from CVDs [HR, 0.60, 95% CI, 

0.50–0.72; P<0.01). Similarly, a meta-analysis of 23 prospective cohort and cross-sectional 

studies in the Asian Pacific region [51] reported that, low concentration of HDL-C [<1.03 

mmol/L (<40 mg/dL) in men and <1.30 mmol/L (<50 mg/dL) in women] was associated 

with higher risk of coronary heart disease (CHD) in Asian participants (participants from 

India, China, Hong Kong, Japan, Korea, the Philippines, Singapore, South Korea, Taiwan, and 

Thailand) (HR, 1.67; 95% CI, 1.27–2.19). In line with these findings, a meta-analysis of 8 

trials [52] reported an inverse association between the concentration of HDL-C and the risk 
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of cardiovascular events (HR, 0.83; 95% CI, 0.81–0.86). Altogether, these results suggest that 

low HDL-C concentration is a main risk factor of CVDs.   

Therefore, this thesis aimed to examine factors that influence lipid-related traits. 

Several factors are known to contribute to the development of lipid-related traits, and these 

include non-modifiable factors including genetics, age and sex as well as modifiable factors 

such as dietary intake, physical activity level and obesity [53-55]. Managing modifiable risk 

factors could help to lower the risk of developing CVDs. In this thesis, genetic and dietary 

factors will be examined. 

1.4 Lipid metabolism 

Lipids are insoluble in water and as a result they have to be transported in plasma in 

combination with proteins, forming lipoproteins [56]. Lipoproteins consist of a central 

hydrophobic core containing lipids, mainly TG and cholesterol esters (CE), surrounded by a 

hydrophilic membrane made up of phospholipids, free cholesterol and apolipoproteins. 

Lipoproteins play an important role in the absorption and transport of dietary lipids by the 

small intestine, the movement of lipids from the liver to peripheral tissues, and the transport 

of lipids from peripheral tissues back to the liver and intestine, a process known as reverse 

cholesterol transport [57]. Lipoproteins are categorised based on their hydrated density, in 

ascending order as chylomicrons, very-low-density lipoproteins (VLDL), intermediate-

density lipoproteins (IDL), low-density lipoproteins (LDL), and high-density lipoproteins 

(HDL) [56]. These  lipoproteins differ in size, lipid content, and the type of apolipoprotein 

they contain [58], and these characteristics are altered by the action of enzymes such as 

lipoprotein lipase (LPL), hepatic lipase (HL), lecithin-cholesterol acyltransferase (LCAT), 

and cholesteryl ester transfer protein (CETP) [56]. 

The metabolism of lipoproteins is dependent on apolipoproteins, which are proteins 

that play multiple roles such as acting as templates for the assembly of lipoprotein particles, 

maintaining the structure of these particles and guiding their metabolism by binding to 

membrane receptors as well as regulating enzyme activity [56]. The cellular uptake of 

lipoproteins is regulated through the binding of apolipoproteins to membrane lipoprotein 

receptors, and these include LDL receptors (LDLR), LDL receptor related protein (LRP) and 

scavenger receptor BI (SRBI). Apolipoprotein B100 (apoB100) and apolipoprotein E (apoE) 

both bind to LDLR, apoE also binds to LRP while apolipoprotein A (apoA) binds to SRBI [56], 

enabling cellular uptake of lipoproteins. 
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Dietary lipids, mainly TG, phospholipids and CE, are emulsified with bile salts and 

broken down in the intestinal lumen by various pancreatic lipases into FFA, monoglycerides 

and free cholesterol [59]. These products are absorbed by the intestinal enterocytes and 

used to resynthesise TG as well as phospholipids and CE which are assembled into 

chylomicrons [59]. Chylomicrons consist mainly of TG (75%) and apoB-48 as the core 

structural protein [60]. Upon secretion by the intestine, chylomicrons obtain apoCII from 

HDL and circulate through the tissues where LPL on the endothelial surface is activated by 

the apoCII. LPL breaks down the TG into FFA which are absorbed by the tissues (muscle and 

adipose) and used as energy or stored for future use [60]. When TG are removed from 

chylomicrons by LPL, smaller particles known as chylomicron remnants are formed. 

Chylomicron remnants contain apoE which enables them to bind to LRP in the liver, thereby 

facilitating their removal through endocytosis [57]. 

VLDL is synthesised in the liver and this process depends on the availability of TG 

[61]. The TG for VLDL assembly are produced as a preventive response to increases in FFA. 

The liver obtains FFA from three main sources: FFA derived from adipocytes, chylomicron 

remnants, and the intestine through the portal vein [61]. Nascent VLDL initially contain 

apoB100 as the only apolipoprotein, but they later acquire apoA (AI, AII, AIV), apoC (CI, CII, 

and CIII), and apoE, primarily from HDL [56]. Some of the TG in VLDL is broken down in 

muscle and adipose tissue by LPL, releasing FFA and forming VLDL remnants (IDL) [57]. 

VLDL remnants are taken up by the liver by binding to the LDL receptor via apoE. In this 

process, there is a further breakdown of TG by HL. The remnants also lose apoC and apoE  

(which are transferred to HDL), decrease in size, and transform into LDL [56], the final 

product of VLDL metabolism [62]. The main structural protein of VLDL, IDL and LDL  is apoB-

100, which is synthesised in the liver [57]. 

HDL on the other hand is formed from lipid-free apoAI which is secreted by the liver 

and the intestine [48]. ApoAI removes free cholesterol and phospholipids from peripheral 

tissues to form small dense HDL, by binding to the membrane adenosine-triphosphate-

binding cassette transporter-1 (ABCA1), which regulates the efflux of free cholesterol from 

cells [56]. Some of the free cholesterol is then esterified by LCAT into cholesteryl esters (CE), 

converting small dense HDL to mature HDL [48].  CETP transfers CE from HDL to VLDL, IDL 

and LDL where they are exchanged for TG which are then transported back to HDL. HDL also 

transports excess cholesterol in the form of CE and free cholesterol to SRB1 cells in the liver 

where it is excreted in bile [63]. When CETP enriches HDL with TG, it becomes a substrate 

for HL, which hydrolyses the TG, causing the lipid-free apoA1 to dissociate and reducing the 



  

24 

size of the HDL particle, thereby forming small dense HDL [64]. The primary apolipoproteins 

on HDL are apoAI and apoAII, but they also contain other apolipoproteins such as apoAIV, 

apoCI/CII/CIII and apoE [65, 66]. 

1.5 Factors influencing blood lipid levels 

1.5.1 Dietary factors 

Diet is a known risk factor for an altered blood lipid profile, and dietary modification 

is considered a fundamental aspect of first line treatment of an abnormal lipid profile [14, 

67]. Dietary fatty acids play a role in the metabolism of lipids and lipoproteins [68, 69], and 

one of the key recommendations of dietary guidelines for CVD prevention and management 

is to reduce the intake of total fat and saturated fatty acids (SFA) [70, 71]. A high intake of 

SFA has been linked to a rise in LDL-C [14, 72] and TG-rich lipoproteins [73-75]. SFA are 

reported to promote the activity of apoCIII, and excessive apoCIII activity leads to prolonged 

presence of VLDL and chylomicron remnants in circulation; while polyunsaturated fatty 

acids (PUFA) suppress the activity of apoCIII [76]. A systematic review and regression 

analysis of dietary trials indicated that replacing SFA with cis-PUFA or cis-monounsaturated 

fatty acid (MUFA) was associated with a significant reduction in the concentrations of total 

cholesterol (TC), LDL-C, HDL-C and TG; as well as in the TC to HDL-C ratio and LDL-C to HDL-

C ratio [72]. Replacing SFA with carbohydrates was also associated with a significant 

reduction in the concentrations of TC, LDL-C and HDL-C, but with a significant increase in 

the concentration of TG [72]. However, a pooled analysis of 11 cohort studies [77] suggested 

that, replacing SFA with PUFA is more beneficial than replacing with it with MUFA or 

carbohydrates. In contrast, a review of direct comparison trials [67] concluded that, 

compared with a high MUFA intake from sources such as olive oil, a high SFA intake from 

sources such as butter or cream had more negative effects on blood lipids. It was also 

reported that, although omega-6 PUFA lowers LDL-C concentration, it can also decrease the 

particle size of LDL, producing a more atherogenic small dense LDL, as well as reduce the 

protective effect of HDL [67]. Overall, there are inconsistent results regarding the influence 

of dietary factors on blood lipid levels. 
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1.5.2 Genetic factors 

1.5.2.1 Common disease common variant hypothesis 

The common disease-common variant hypothesis suggests that common genetic 

variants contribute to the development of common diseases. Cardiometabolic diseases have 

a complex inheritance pattern and harmful variants with large effect sizes are mostly 

removed from the genome over time due to evolutionary pressure [78]. It argues that these 

variants occur at a high frequency but have a low ‘penetrance’ (the likelihood that an 

individual carrying the variant will develop the disease) [79]. A widely used approach for 

identifying alleles that increase or decrease the risk of common diseases with complex 

genetic components involve using markers within candidate genes or across all genes 

involved in a biological pathway or with similar biological functions [80]. 

1.5.2.2 The candidate gene approach 

The candidate gene approach is a hypothesis-driven approach commonly used to 

examine the genetic contribution to complex diseases [81]. This approach involves 

examining genes that code for proteins with established roles in a disease process [82]. It is 

based on the idea that differences in a trait are often due to mutations in specific genes. These 

genes are usually genes with known biological functions that directly or indirectly modulate 

the processes involved in the development of the trait being examined [83]. The initial step 

in a candidate gene study is selecting a gene that is likely to be involved in the disease or trait 

being investigated. Once a candidate gene has been selected, the existing variants of the gene 

need to be identified to determine which alleles encode proteins with altered functions that 

could impact on the disease or trait being studied [84]. By genotyping common SNPs within 

these genes and their regulatory regions, populations  of affected and unaffected individuals 

can be studied [82].  

The effectiveness of the candidate gene approach depends on the accurate selection 

of genes or pathways for investigation, and as a result, a pre-existing hypothesis about the 

biological function is necessary which can sometimes be arbitrary [80]. Moreover, while this 

approach is less expensive, it is limited to genes already known or suspected to influence a 

particular phenotype and does not offer new insights into the biological pathways involved 

in the disease [82]. Additionally, associations found through candidate gene studies often fail 

to replicate due to various factors including low statistical power linked to insufficient 

sample sizes and varying causes of the disease [82, 83]. However, consistent associations 

have been found between SNPs of candidate genes such as CETP and LPL [85-90] and lipid-

related traits. 
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1.5.2.3 Genetic variants and blood lipids 

Genetic factors play a role in the metabolism of lipids and the risk of CVDs, and all the 

major blood lipid fractions, TC, LDL-C, HDL-C and TG are estimated to be 40-70% heritable 

[91]. The regulation of lipid and lipoprotein metabolism is a complex process involving 

numerous steps. A balance in lipid levels is maintained through the coordinated actions of 

many nuclear factors, binding proteins, apolipoproteins, enzymes and receptors, all 

involving multiple genes [19]. GWA studies have shown that lipid abnormalities have genetic 

risk factors in common, including polymorphisms in established lipid regulators and 

proteins such as CETP, LPL, and apoE [92, 93]. 

The CETP gene, which encodes CETP is one of the most widely studied lipid-related 

genes and several single nucleotide polymorphisms (SNPs) of this gene have been associated 

with variations in the concentration of HDL-C [94-97]. The ‘B1’ allele of the TaqIB SNP 

(rs708272) of CETP has been linked to higher CETP activity which leads to lower 

concentrations of HDL-C and higher levels of serum TG [98], and studies have shown that 

individuals with the ‘B1B1’ genotype have lower HDL-C concentrations [99-101]. Similarly, 

apoE functions as a ligand for both LDLR and LRP, and variations in the concentrations of TC 

and LDL-C have been reported in individuals with different isoforms of the APOE gene, the 

E4 isoform being associated with higher levels of TC and LDL-C compared to the E2 isoform 

[102, 103]. Although numerous genetic loci have been identified by GWA studies to influence 

blood lipid concentrations, only a small proportion of variation in blood lipid levels is 

explained by these variants [5, 10, 11], and there is growing evidence that an interaction 

between genetic variants and environmental factors such as dietary intake might be 

responsible for part of the missing heritability [104-108]. 

1.6 The nutrigenetic approach 

The nutrigenetic (gene-diet interaction) approach focuses on understanding gene-

diet interactions that predispose to specific diseases. Thus, a genetic variant might not 

always pose a higher risk of a disease as its effects might be modulated by the environmental 

factors that interact with it [109]. By identifying gene-diet interactions that increase the 

susceptibility to certain diseases, nutrigenetics offers the potential to design personalised 

and precise dietary guidelines for preventing and managing CVDs [19, 20]. 
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1.6.1 Genetic variations and the role of ethnicity in cardiovascular disease risk 

The Human Genome Project indicated that humans are 99.9% identical at the DNA 

level, and that examining the 0.1% genetic variation, especially the distribution of SNPs 

between affected and unaffected individuals, could offer valuable insights into the genetic 

factors contributing to complex traits [110]. GWA studies have identified many SNPs 

associated with CVDs and risk factors such as abnormal lipid levels [5, 10, 11, 111], and 

several studies have shown that the occurrence of SNPs varies among populations of 

different ancestries, resulting in disparities in disease risk [112-116]. SNPs of lipid-pathway 

genes such as the APOE gene, one of the most widely studied genes in relation to 

cardiometabolic diseases, have been reported to occur at different frequencies in different 

populations [112, 113]. The E4 isoform of the gene, which is linked to higher risk of CVDs, is 

reported to occur at higher frequencies in Asian and African populations compared to 

populations of European descent [112, 113], and this could contribute to differences in 

susceptibility to specific diseases among these populations. Similarly, variations in the effect 

size of SNPs of the CETP gene, an established lipid metabolism gene, have been reported 

among different ethnic groups [117, 118]. The effect size of the ‘A’ allele of CETP SNP 

rs4783961, which is associated with higher concentrations of HDL-C, was found to be larger 

in African American cohorts compared to European American cohorts; while another CETP 

SNP rs17231506 had larger effect sizes in European Americans and Hispanics, compared to 

African Americans [117]. This suggests that different ethnic groups might share the same 

underlying causal variant within a gene. However, due to ethnicity-specific differences in the 

frequencies of major and minor alleles, a SNP might have different effect sizes and varying 

degrees of association [117]. 

Moreover, variations in conventional risk factors for CVDs exist among different 

ethnic groups. Asian Indians are known to have distinct biochemical and physical 

characteristics (“the Asian Indian phenotype”) which make them prone to developing 

cardiometabolic diseases at a lower body mass index (BMI) compared to Europeans [105]. 

These characteristics include central obesity, abnormal lipid levels, insulin resistance, higher 

amounts of visceral fat, increased overall fat, and a propensity to beta cell dysfunction [105, 

119, 120]. Furthermore, ethnic groups have differences in dietary patterns, lifestyle and 

socioeconomic factors [121, 122] which can influence the risk of CVDs. Therefore, it is 

important to examine how genetic factors influence the risk of CVDs in different ethnic 

groups. 
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1.6.2 Rationale for studying gene-diet interactions 

GWA studies have identified numerous SNPs associated with CVDs and risk factors 

such as abnormal lipid levels [5, 9-11, 123-125]. The major lipid fractions (TC, HDL-C, LDL-

C and TG) in particular, are reported to have a heritability of 40-70% [91]. However, despite 

the discovery of a large number of genetic variants associated with lipid-related traits, only 

a small fraction of variability is explained by these variants [5, 10, 11], and there is growing 

evidence that an interaction between genetic and environment factors such as dietary intake 

could partly explain this so called ‘missing heritability’ [105, 106, 126-129]. Therefore, 

investigating how gene-diet interactions impact on lipid-related traits could help to improve 

our understanding of the underlying pathophysiology and the development of precision 

nutrition strategies for the prevention and management of these conditions. 

1.6.3 Importance of investigating gene-diet interactions in different ethnic groups 

Studies have shown that allele frequencies of SNPs vary among individuals of 

different ethnic backgrounds, impacting how their bodies metabolise certain nutrients [18, 

106, 130-132]. With regard to circulating levels of arachidonic acid (AA) and its metabolites, 

which play significant roles in immune response and inflammation and have been linked to 

various diseases including diabetes and CVDs [133, 134], research involving individuals of 

European ancestry suggests that, only a small fraction of dietary linoleic acid is converted to 

AA in humans [135, 136]. However, it has been identified that this minimal conversion rate 

might not be the same for all populations due to variations in allele frequencies of SNPs 

which influence circulating levels of fatty acids [114-116]. Therefore, gene-diet interaction 

studies covering different ethnic groups are required to gain a better understanding of the 

genetic variations and specific nutritional requirements within these groups.  

Although gene-diet interaction studies have been extended to cover previously 

under-represented populations [99, 137-141], a systematic review conducted as part of this 

thesis [106] identified that, 27 out of 33 countries in Latin America and the Caribbean had 

not conducted gene-diet interaction studies, indicating that there is still limited research in 

some areas. Given the genetic diversity and differences in dietary patterns, cultural and 

socioeconomic factors, gene-diet interaction studies covering populations of different 

ethnicities are needed to develop dietary guidelines that are tailored to each ethnic group. 
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1.6.4 Study designs and their roles in identifying gene-diet interactions 

Study designs commonly used to investigate gene-diet interactions include 

observational studies such as cross-sectional, case-control and cohort studies; and 

interventional studies such as RCTs. A cross-sectional study design is the most common and 

it involves analysing data from a population at a single point in time to assess the 

relationship between dietary exposures and genetic variations [142]. Assessing both 

exposures and outcomes at the same point in time provides a ‘snapshot’ of the current 

conditions within a population, including dietary habits, nutritional status and the 

prevalence of disease [143]. Cross-sectional studies are also quick and relatively inexpensive, 

enabling the investigation of gene-diet interactions in large samples, making them useful for 

generating hypotheses [143]. However, causality cannot be established since it is difficult to 

determine if the results would change significantly if data were collected at a different time 

point [144]. Nonetheless, GWA studies have shown that cross-sectional studies are effective 

in identifying genetic variants linked to diseases, as these studies are less likely to be 

influenced by potential confounders and are free from reverse causation [142] (where the 

outcome of interest influences the exposure instead of the exposure influencing the 

outcome) [145]. 

In cohort studies, a group of individuals are followed over time to assess the 

development of an outcome based on different dietary exposures [146]. Cohort studies are 

useful in identifying exposures and risk factors prior to disease onset, thereby reducing bias 

in the assessment of dietary exposure [147]. They are also beneficial in investigating rare 

exposures and allowing the examination of multiple outcomes at the same time, although 

they can be time consuming and expensive due to the requirement of large sample sizes and 

long follow up periods [146]. Case-control studies compare individuals who have a specific 

health outcome (cases) with those without it (controls) to examine the impact of dietary 

exposure and genetic factors on the health outcome [143]. Case-control studies are usually 

conducted retrospectively to identify genetic and other risk factors, as well as dietary 

exposures that were present before the onset of the disease or trait, likely contributing to its 

development [148]. Case-control studies are also efficient for rare diseases, allowing for 

multiple exposures to be assessed [146]. As with cohort studies, case-control studies require 

large sample sizes to detect interactions, and there is a risk of selection bias and challenges 

in choosing appropriate control groups [148]. One of the main challenges in case-control 

studies is the potential differences between the participants in the case and control groups 

with regard to exposure variables and risk factors not under investigation [146]. This is 
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addressed by matching the participants in the case and control groups, ensuring that data 

collection methods are designed to be equally applicable to both groups [148].  Case-only 

studies which focus only on individuals with a specific health outcome are also used to 

investigate gene-diet interactions, and they are believed to be efficient as only cases are 

needed, which are generally easier to gather compared to suitable controls [147]. However, 

the separate or joint effects of genetic variants and dietary factors cannot be assessed [149]. 

One of the main challenges of observational studies is confounding. A confounder 

refers to a variable that is linked to both the exposure and the outcomes, without being 

caused by either, and can introduce bias into the relationship between a dietary exposure 

and the outcome, if not controlled [145]. The distribution of confounding variables may vary 

between populations, and it is important to identify relevant confounders and adjust for 

them [150]. Potential confounders in gene-diet interaction studies include age, sex and BMI 

[105]. Another significant issue in observational studies is accurate assessment of dietary 

intake, as errors in dietary assessment can reduce the power of the study, and this is 

particularly important for interactions with minimal effect sizes [142]. Food frequency 

questionnaires (FFQs) are cost effective and are commonly used in large studies to assess 

usual dietary intake [151], but they need to be designed and validated to account for 

differences in socioeconomic, cultural and ethnic backgrounds of the population being 

studied [152, 153]. Moreover, under estimation of dietary intake is a main limitation of FFQs, 

and methods such as weighed diet diaries and multiple 24-h dietary recalls are reported to 

provide better estimates of dietary intake than FFQs [154, 155]. However, weighed diet 

diaries, which can theoretically offer the most precise assessment of dietary intake, are 

generally not practicable for large population studies due to the significant burden they 

place on respondents, the high chance of poor compliance, and the expensive nature of data 

entry [155]. 

In contrast to observational studies, interventional studies (clinical trials) aim to 

assess the effect of a dietary intervention on the outcome of interest [156]. RCTs are 

considered the gold-standard due to the high level of control over dietary exposure and the 

ability to establish causality [157]. In an RCT, participants who meet specific inclusion and 

exclusion criteria are randomly placed in two distinct groups, with each group receiving a 

different intervention. Randomisation, if implemented properly, results in two groups that 

are generally comparable, considering both measured and unmeasured factors [156]. When 

factors that could bias the estimate of the intervention’s effect on the main outcome are 

randomly distributed between the two groups in an RCT, it ensures that the results are free 
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from confounding bias [158]. Thus, in theory, any differences in the outcome between the 

two groups is attributed to the effect of the intervention [156]. Another important feature of 

an RCT which improves the validity of the results is blinding, where people involved in the 

study (participants, investigators or  assessors) are not made aware of the assigned 

intervention, preventing their actions and assessments from being influenced by this 

knowledge [159]. RCTs however have some limitations including small sample sizes which 

can affect their ability to detect moderate gene-diet interactions [142]. RCTs are also costly, 

have high dropout rates and may not be feasible for long-term studies since altering one 

dietary component usually results in compensatory changes in other components, and good 

compliance is usually difficult to maintain [145].  

An alternative to an RCT is the crossover design, where participants receive two or 

more interventions during different time periods, with the sequence of interventions 

randomised for each participant [160]. The most common is the two sequence design, where 

half of the participants are randomly assigned to begin with the control period and then 

switch to the treatment (dietary intervention) period, while the other half follows the 

opposite sequence [161]. This design enables the effect of an intervention to be compared 

within each participant, as each individual serves as their own control [160]. A challenge of 

the crossover trial is the potential for residual effects from the intervention to influence the 

outcome during the period after the intervention has ended [161]. This can be addressed by 

incorporating an adequate ‘washout’ period between the end of the first intervention and 

the start of the second intervention or control period. This helps to ensure that the outcomes 

measured during the second intervention or control period are not influenced by the effects 

of the first intervention [162]. 

1.6.5 Gene–Nutrient Interactions (GeNuIne) Collaboration 

There have been remarkable advances in recent years in identifying genetic variants 

that alter disease susceptibility by interacting with dietary factors [163-168]. However, most 

of the gene-diet interaction studies have produced inconsistent results, which might be due 

to genetic heterogeneity (variations in allele frequencies) and differences in dietary and 

lifestyle patterns across populations. Hence, the findings of gene-diet interactions conducted 

in one population might not be applicable to other ethnic groups due to ethnic-specific 

differences in gene-diet interactions [18, 130, 169]. While gene-diet interaction studies have 

been extended to cover previously under-represented populations, a systematic review 

conducted as part of this thesis [106] identified that, 27 out of 33 countries in Latin America 

and the Caribbean had not conducted gene-diet interaction studies, indicating that there is 
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still limited research in LMICs. To facilitate nutrigenetic studies in LMICs, a large-scale 

collaborative project, the Gene–Nutrient Interactions (GeNuIne) collaboration was started 

at the University of Reading in 2013 through funding from the British Nutrition Foundation. 

Specifically, the GeNuIne collaboration is aimed at investigating how genetic and lifestyle 

factors interact to influence chronic diseases in diverse ethnic groups, with the goal of 

preventing and managing chronic diseases through personalised nutrition [18, 131, 170, 

171]. Through this collaboration, gene-lifestyle interaction studies have been conducted in 

countries such as Brazil, Peru, Ghana, India, Sri Lanka, Indonesia, Malaysia and Turkey. In 

addition to conducting nutrigenetic studies, the GeNuIne collaboration has initiated training 

and resource development in LMICs to improve the ability of professionals and policymakers 

to effectively apply the findings of nutrigenetics within their domains [18, 106, 131, 170, 172, 

173].  

1.6.6 From nutrigenetics to personalised nutrition 

Evidence from epidemiological studies indicates that lipid-related traits such as CVDs 

result from a complex interplay between genetic and environmental factors such as dietary 

intake [20, 174]. Nutrients play a role not only in enzymatic reactions that drive metabolism 

but also in the regulation of gene expression, and might significantly influence metabolic 

pathways involved in diseases [175]. Therefore, dietary modification is a fundamental aspect 

of first line treatment of lipid-related traits [14, 15]. However, numerous studies have 

highlighted significant variations among individuals in terms of disease susceptibility and 

biological responses to diet, indicating the need for a shift away from the “one-size-fits-all” 

approach for optimal health and disease prevention [16, 131]. Human diversity covers a 

broad range of factors including genetic, phenotypic, physiological, and lifestyle factors 

which are not accounted for by the “one-size-fits-all” approach [17, 172]. The completion of 

the Human Genome Project paved the way for various large-scale genomics initiatives 

focused on identifying and comprehending the extent of human genetic variation [176]. The 

remarkable advancements in research in fields such as nutritional genetics, epigenetics, and 

metabolomics has generated profound insights into genotypic and phenotypic variations 

that affect individual responses to diet, leading to the emergence of personalised and 

precision nutrition [17, 176].  

Personalised nutrition is based on the idea that specific foods or amounts of nutrients 

can alter disease susceptibility depending on genetic make-up; utilising genetic information 

along with biological and cultural differences such as food preferences to tailor diets 

according to an individual’s response to nutrients [177, 178]. Precision nutrition on the hand 
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is a relatively new concept that refers to a broader approach focused on integrating multiple 

disciplines including nutrigenetics, metabolomics, epigenetics and the gut microbiome [17, 

177]. The goal of precision nutrition is to incorporate knowledge from multiple disciplines 

to advance understanding of key concepts in nutrigenetics and nutrigenomics, enabling 

healthcare professionals to determine the most suitable level of care for achieving precise 

nutrition [178]. Thus, precision nutrition indicates personalised nutrition that is more 

scientifically accurate and comprehensive [177]. 

Dietary factors may interact with an individual’s genetic characteristics and impair 

metabolic processes, which may contribute to the development of CVDs [20]. Therefore, 

understanding gene-diet interactions that predispose to altered blood lipid levels could help 

to design personalised dietary guidelines for the prevention and management of lipid-

related traits such as CVDs [19, 20]. In a study to examine whether the incorporation of 

genetic information to personalise an individual’s diet could enhance long-term weight 

management [179], it was observed that, participants who followed diets tailored to their 

genetic information had greater long-term reductions in BMI and improvements in fasting 

glucose levels.  

To enhance the scientific understanding of inter-individual variability in response to 

dietary interventions, integrating data from nutrigenetics and nutrigenomic approaches 

such as metabolomics is argued to be important, although the practicality and effectiveness 

of this process are still being explored [180, 181]. So far, progress has been made in the 

mechanistic understanding of dietary interventions through the integration of omics 

technologies such as metabolomics and the gut microbiome [182]. Metabolomics focuses on 

analysing small molecules (metabolites) found in biological samples to understand changes 

in metabolism under various conditions [180]. Metabolites are the direct products of dietary 

consumption and metabolism, enabling a more accurate assessment of biological and 

physiological pathways as well as the related biomarkers for diet or disease [182]. The gut 

microbiome supports the host by interacting directly or indirectly with host cells through 

the production of bioactive molecules, and this interaction allows the gut microbiome to 

regulate various biological processes related to immunity and energy balance [183]. The 

application of the gut microbiome in precision nutrition involves using the gut microbiome 

as a biomarker to predict how specific dietary components affect host health, and the use of 

this information to design precision dietary interventions aimed at promoting health [183]. 

Epigenetics on the other hand covers the molecular processes that can alter the activity of 

genes without changing the DNA sequence, and these processes include DNA methylation, 
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histone modifications and alterations in noncoding RNAs [184]. Epigenetic changes might 

explain individual differences in metabolic health and responses to diet, and have the 

potential to identify novel biomarkers for precision nutrition and targets for precise 

interventions [185]. 

1.7 Hypothesis, aims and outline of the thesis 

Genetic association studies have identified SNPs in multiple genes linked to variations 

in blood lipid concentrations and susceptibility to lipid-related traits such as CVDs [5, 9-11, 

123-125] and there is evidence that lifestyle factors including dietary intake, might modulate 

the effect of these SNPs in different ethnic groups [18, 131]. Given the genetic diversity and 

differences in dietary patterns, lifestyle and other environmental factors, it was 

hypothesised that gene-diet interactions will vary across populations and ethnic groups. 

Therefore, this thesis aimed to: 

1. Investigate the association of selected SNPs as a genetic risk score (GRS) with lipid-

related traits in different ethnic groups. 

2. Investigate the interaction of the GRS with dietary factors (intake of fat, carbohydrate 

and protein) on lipid-related traits in ethnically diverse populations. 

This thesis is presented as a collection of seven published papers covering the 

following topics: 

 

Chapter 2: A nutrigenetic update on CETP gene-diet interactions on lipid-related outcomes 

(Wuni et al., 2022) 

An abnormal lipid profile is considered a main risk factor for CVDs and evidence suggests 

that SNPs of the CETP gene contribute to variations in lipid levels in response to dietary 

intake. This work aimed to identify and discuss nutrigenetic studies assessing the 

interactions between CETP SNPs and dietary factors on blood lipids. 

 

Chapter 3: Higher intake of dairy is associated with lower cardiometabolic risks and 

metabolic syndrome in Asian Indians (Wuni et al., 2022) 

There is conflicting evidence about the association between dairy products and 

cardiometabolic risk (CMR). This work aimed to assess the association of total dairy intake 

with CMR factors and to investigate the association of unfermented and fermented dairy 

intake with CMR in Asian Indians who are known to have greater susceptibility to type 2 

diabetes and CVDs compared to white Europeans. 
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Chapter 4: Interaction between GRS and dietary fat intake on lipid-related traits in Brazilian 

young adults (Wuni et al., 2024) 

CVDs are a top cause of mortality globally, accounting for 32% of all deaths worldwide in 

2019. In Brazil, ischaemic heart disease and stroke accounted for most deaths in 2019, with 

a percentage increase of 18 and 14%, respectively from 2009. The occurrence of 

dyslipidaemia, which is an established risk factor for CVDs, has been attributed to multiple 

factors including genetic and environmental factors. This study utilised a GRS to assess the 

genetic associations and the interaction of the GRS with dietary factors on lipid-related traits 

in Brazilian young adults. 

 

Chapter 5: Interactions between genetic and lifestyle factors on cardiometabolic disease-

related outcomes in Latin American and Caribbean populations: A systematic review (Wuni 

et al., 2023) 

Cardiometabolic diseases such as hypertension and type 2 diabetes are accountable 

for most NCD deaths and impose an economic burden in LMICs. In Latin American and 

Caribbean populations (LACP), the prevalence of these diseases has increased in recent 

years. This work was done to identify gene-lifestyle interactions that modify the risk of 

cardiometabolic diseases in LACP. 

 

Chapter 6: Impact of lipid-GRS and saturated fatty acid intake on central obesity in an Asian 

Indian Population (Wuni et al., 2022) 

Asian Indians are more prone to developing type 2 diabetes and CVDs at a lower BMI 

than Caucasians, due to the ‘Asian Indian phenotype’, which is characterised by central 

obesity, dyslipidaemia, and increased levels of total fat, visceral fat, insulin resistance and 

faster decline in beta cell function. This study used a nutrigenetic approach to establish a link 

between lipids and obesity in Asian Indian adults. 

 

Chapter 7: Interaction between GRS and dietary carbohydrate intake on high-density 

lipoprotein cholesterol levels: Findings from the Study of Obesity, Nutrition, Genes and 

Social factors (SONGS)  (Wuni et al., 2025) 

Cardiometabolic traits are complex interrelated traits that result from a combination 

of genetic and lifestyle factors. In Peru, a substantial increase in fatalities related to CVDs 

(77.8%) between 2020 to 2022  was reported. This study aimed to assess the association 
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and interaction of a GRS with dietary macronutrient intake on cardiometabolic traits in an 

urban Peruvian young adult population. 

 

Chapter 8: Barriers in translating existing nutrigenetics insights to precision nutrition for 

cardiometabolic health in ethnically diverse populations (Wuni and Vimaleswaran, 2024) 

There have been remarkable advances in recent years in identifying genetic variants 

that alter disease susceptibility by interacting with dietary factors. Despite the remarkable 

progress, several factors need to be considered before the translation of existing 

nutrigenetics insights to personalised and precision nutrition in ethnically diverse 

populations. This work aimed to explore the potential barriers and challenges in bridging 

the gap between existing nutrigenetics insights and the implementation of personalised and 

precision nutrition across diverse ethnicities. 

 

Chapter 9: Discussion 

This chapter covers a discussion of the findings of all the studies including general 

trends observed across the different ethnic groups, strengths, limitations, future prospects, 

and conclusions of this thesis. 
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Chapter 2  A nutrigenetic update on CETP gene-diet interactions on lipid-

related outcomes 

 

Published (The published version of the paper is attached as an appendix at the end of the 

thesis) 

 

Wuni, R., Kuhnle, G. G. C., Wynn-Jones, A. A. & Vimaleswaran, K. S. A Nutrigenetic Update on 

CETP Gene-Diet Interactions on Lipid-Related Outcomes. Current Atherosclerosis Reports 

2022, 24, 119-132. https://doi.org/10.1007/s11883-022-00987-y 

 

Ramatu Wuni’s contribution: For this review, I started by conducting a literature search of 

genome-wide association studies to identify genetic variants associated with blood lipid 

levels. The results showed that, the cholesteryl ester transfer protein (CETP) gene had the 

highest number of reported associations (20 out of 32 identified studies). I then conducted 

a literature search of nutrigenetic studies focusing on CETP. A total of 448 articles were 

identified, 227 from PubMed and 221 from Google Scholar. After applying the exclusion 

criteria, 49 articles were found to be eligible, of which one article was published as an 

abstract. I read the full-text of the 48 eligible studies in detail and extracted the results for 

analysis. I contacted corresponding authors to provide additional information when needed. 

I wrote the manuscript and revised it based on comments from the co-authors before it was 

submitted to the Current Atherosclerosis Reports journal. I also wrote the responses to the 

comments from the reviewers and revised them based on suggestions from the co-authors. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://doi.org/10.1007/s11883-022-00987-y
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2.1 Abstract 

An abnormal lipid profile is considered a main risk factor for cardiovascular diseases 

and evidence suggests that single nucleotide polymorphisms (SNPs) in the cholesteryl ester 

transfer protein (CETP) gene contribute to variations in lipid levels in response to dietary 

intake. The objective of this review was to identify and discuss nutrigenetic studies assessing 

the interactions between CETP SNPs and dietary factors on blood lipids. Relevant articles 

were obtained through a literature search of PubMed and Google Scholar through to July 

2021. An article was included if it examined an interaction between CETP SNPs and dietary 

factors on blood lipids. From 49 eligible nutrigenetic studies, 27 studies reported significant 

interactions between 8 CETP SNPs and 17 dietary factors on blood lipids in 18 ethnicities. 

The discrepancies in the study findings could be attributed to genetic heterogeneity, and 

differences in sample size, study design, lifestyle and measurement of dietary intake. The 

most extensively studied ethnicities were those of Caucasian populations and majority of the 

studies reported an interaction with dietary fat intake. The rs708272 (TaqIB) was the most 

widely studied CETP SNP, where the ‘B1’ allele was associated with higher CETP activity, 

resulting in lower high-density lipoprotein cholesterol and higher serum triglycerides under 

the influence of high dietary fat intake. Overall, the findings suggest that CETP SNPs might 

alter blood lipid profiles by modifying responses to diet, but further large studies in multiple 

ethnic groups are warranted to identify individuals at risk of adverse lipid response to diet. 
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2.2 Introduction 

The global burden of cardiovascular diseases (CVDs) is well recognised and ischaemic 

heart disease alone accounted for 9 million deaths in 2019, making it the top cause of death 

in all parts of the world [186]. An abnormal lipid profile (dyslipidaemia), indicated by low 

concentrations of high-density lipoprotein (HDL) cholesterol and elevated levels of low-

density lipoprotein (LDL) cholesterol or triglycerides (TG), is considered a major risk factor 

for CVDs  [107, 187].   The cardioprotective role of HDL is thought to be dependent on the 

function of HDL rather than the levels of HDL, which is reflected in individuals with 

Scavenger Receptor Class B Member 1 (SCARB1) gene mutations who have higher levels of 

HDL cholesterol but higher CVD risk [50]. There is evidence to suggest that a combination of 

genetic susceptibility and environmental factors including diet is responsible for CVDs [18, 

105, 188]. Single nucleotide polymorphisms (SNPs) in lipid-related genes such as the 

cholesteryl ester transfer protein (CETP), lipoprotein lipase (LPL) and apolipoprotein E 

(APOE) genes have been found to contribute to changes in lipid profiles in response to diet  

[108, 126, 189].  Of these three genes, CETP has been shown to have more associations with 

blood lipids (Supplementary Table S2.1). CETP regulates the concentration and particle 

size of HDL in the plasma (Figure 2.1) and is considered to play an important role in reverse 

cholesterol transport which is a protective mechanism against atherosclerosis [48]. 

Increased CETP activity has been shown to result in lower HDL cholesterol levels and is 

linked to higher risk of CVDs [46].     

Several studies have demonstrated CETP-diet interactions on blood lipids; however, 

the findings have been inconsistent [99, 100, 189-192]. The objective of this review was 

therefore to identify and discuss studies assessing the interactions between CETP SNPs and 

dietary factors on blood lipids and to identify the factors that can be attributed to these 

discrepancies. 
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Figure 2.1 The role of cholesteryl ester transfer protein in lipid metabolism 

Cholesteryl ester transfer protein (CETP) is a plasma glycoprotein which is secreted 

by the liver and is responsible for transporting cholesteryl esters and triglycerides between 

high-density lipoprotein (HDL) and Apolipoprotein B-containing lipoproteins such as very-

low density lipoprotein (VLDL) and low-density lipoprotein (LDL) [64].  HDL is formed from 

lipid-free Apolipoprotein AI (apoAI) in a process involving the removal of free cholesterol 

from peripheral tissues and the subsequent esterification of some of the free cholesterol into 

cholesteryl esters via the actions of adenosine triphosphate binding cassette transporter A1  

and Lecithin:cholesterol acyltransferase (LCAT) [48].  The enrichment of HDL with 

triglycerides makes it a substrate for hepatic lipase (HL) which then hydrolyses the 

triglycerides, resulting in dissociation of the lipid-free apoAI and a decrease in size of the 

HDL particle, forming small dense HDL [64].   

2.3 Methods 

2.3.1 Selection of the candidate gene for the review 

To identify candidate genes which have been reported by genome-wide association 

(GWA) studies to influence blood lipid levels, a literature search was undertaken in 

December 2020, using the keywords: (genome-wide association study OR genome-wide 

association scan OR genome-wide association analysis OR GWAS OR GWA) AND (Lipids OR 

HDL OR LDL OR VLDL OR total cholesterol OR triglycerides OR triacylglycerol OR blood 

lipids).  The results showed that, out of 32 identified studies (Supplementary Table S2.1), 

20 GWA studies reported statistically significant associations between CETP and lipids [92, 
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94-97, 193-207]; while LPL was reported by 18 GWA studies [92, 94, 95, 97, 123, 193, 196, 

197, 199, 201-209]; and APOE was reported by 10 GWA studies [92, 95, 97, 196-198, 200, 

202-204]. CETP was then chosen for the review as it had the highest number of hits 

compared to LPL and APOE. 

2.3.2 Study identification 

To identify published articles, a literature search was undertaken using PubMed 

(https://pubmed.ncbi.nlm.nih.gov/) and Google Scholar (https://scholar.google.com/). The 

search covered the earliest date of indexing through to July 2021. For PubMed, the following 

key terms were used: (CETP OR cholesteryl ester transfer protein) AND (polymorphism OR 

gene OR SNP OR single nucleotide polymorphism OR genetic variation OR genetic variant OR 

rs3764261 OR rs1532624 OR rs1800775 OR rs9989419 OR rs4783961 OR rs708272 OR 

rs7499892 OR rs2303790 OR rs16965220 OR rs247616 OR rs289708 OR rs12708980 OR 

rs247617 OR rs173539) AND ("gene-diet interaction" OR "diet-gene interaction" OR "SNP-

diet interaction" OR "diet-SNP interaction" OR "gene-nutrient interaction" OR "nutrient-

gene interaction") AND (carbohydrate OR protein OR fat OR fibre OR sugar OR SFA OR MUFA 

OR PUFA OR Mediterranean diet OR Nordic diet OR B12 OR amino acids OR polyphenols OR 

egg intake OR caffeine intake OR green tea OR alcohol intake OR meat intake) AND (lipids 

OR HDL OR LDL OR VLDL OR total cholesterol OR triglycerides OR triacylglycerol OR blood 

lipids OR serum lipids). The key terms for Google Scholar were (CETP AND “gene-diet 

interaction” AND lipids). Only studies published in English were included. 

2.3.3 Study selection 

The search strategies above yielded a total of 448 articles from the two databases 

(227 from PubMed and 221 from Google Scholar) as shown in Figure 2.2. Titles of all the 

studies were first read to determine their relevance to the topic. Full-text of those found to 

be relevant were then read in detail to determine eligibility for inclusion. The criteria for 

inclusion in the review were: gene-diet interaction studies involving CETP gene 

polymorphisms and blood lipids. Only studies conducted in humans were included and, after 

applying the inclusion and exclusion criteria, 49 articles were found to be eligible, of which 

one article was published as an abstract.  The studies excluded after reading the full-text 

were those focusing on interaction between CETP and physical activity on lipids; gene-diet 

interaction on lipids not including CETP; and gene-diet interaction review articles. Full-text 

of 48 eligible studies was read in detail and the results were extracted for analysis 

(Supplementary Tables S2.2 and S2.3). The results of one study [210] which was published 

https://pubmed.ncbi.nlm.nih.gov/
https://scholar.google.com/
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as an abstract were also extracted and included in the tables. The studies consisted of 28 

observational studies (Supplementary Table S2.2) and 21 interventional studies 

(Supplementary Table S2.3). 

2.3.4 Data extraction 

The studies were identified by a single investigator and the following data were 

double-extracted independently by one reviewer: first author, publication year, location or 

ethnicity of participants, sample size, mean age, study design, reference SNP (rs) ID, 

genotype and minor allele. Corresponding authors were contacted to provide additional 

information where needed. 

 

Figure 2.2 Flow chart of studies identified in the literature for CETP-diet interaction on 
lipids 
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2.4 Results of database search 

This section reviews studies examining the interaction between dietary factors and 

CETP SNPs on blood lipids. The rs708272 (TaqIB), the most widely studied CETP SNP, was 

investigated by 31 studies. The second most studied SNP was rs5882 (I405V), accounting 

for 16 studies. The CETP SNPs rs3764261 and rs1800775 were each examined by 6 studies. 

All the studies were conducted in adults except for one study which was carried out in 

prepubertal children [211]. The ethnicities covered by the studies included British, White 

American, Spanish, Mexican, Chinese and Iranian as shown in Figure 2.3. A wide range of 

dietary factors were investigated by the 28 observational studies, and these included dietary 

carbohydrate, protein, saturated fatty acids (SFA), monounsaturated fatty acids (MUFA), 

polyunsaturated fatty acids (PUFA), coffee, sucrose, total energy intake and alcohol 

consumption. The 21 dietary intervention studies also focused on a variety of diets including 

Mediterranean diet, plant sterol ester, sesame oil, canola oil and rapeseed oil. 
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Figure 2.3 CETP-diet interaction studies and the interaction findings in multiple ethnicities 
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2.4.1 TaqIB (SNP rs708272 G > A) 

The major allele (‘G’) is also called the ‘B1’ allele while the minor allele (‘A’) is also 

referred to as the ‘B2’ allele. Eight out of seventeen observational studies reported a 

significant association between TaqIB genotypes, dietary factors and blood lipids. In a cross-

sectional study involving 129  Iranian patients with type 2 diabetes (T2D) without 

dyslipidaemia [99], a higher intake of total fat (>34.9% from total energy intake) was 

associated with higher HDL in participants with ‘B1B1’ genotype [mean HDL (mg/dL) for 

high total fat intake (>34.9% from total energy) vs low total fat intake (≤34.9% from total 

energy) = 58.6 ± 4.1 vs 36.5 ± 6.5; Pinteraction=0.02].  Those with ‘B2B2’ genotype who had a 

higher intake of total fat (>34.9% from total energy) also had higher HDL [mean HDL 

(mg/dL) for high total fat intake (>34.9% from total energy) vs low total fat intake (≤34.9% 

from total energy) = 59.0 ± 4.2 vs 55.8 ± 3.3] but the interaction was more pronounced in 

individuals with ‘B1B1’ genotype, while in those with ‘B1B2’ genotype, the interaction was 

not observed.  A prospective cohort study of  603 men with T2D in the United States of 

America (96% of whom were white) [190] on the other hand reported that, a higher intake 

of total fat (>33.5% from total energy intake), animal fat (>19.9% from total energy intake), 

SFA (>11.47% from total energy intake) and MUFA (>12.75% from total energy intake) was 

associated with lower HDL in participants with ‘B1B1’ genotype compared to those with 

‘B2B2‘ genotype [mean HDL (mg/dL) for low total fat intake (≤33.5% of energy) vs high total 

fat intake (>33.5% of energy): 40.0 ± 0.03 vs 36.2 ± 0.02 for ‘B1B1’, 41.5 ± 0.03 vs 44.9 ± 0.03 

for ‘B2B2’, Pinteraction=0.003; mean HDL (mg/dL) for low animal fat intake (≤19.9% of energy) 

vs high animal fat intake (>19.9% of energy): 39.7 ± 0.02 vs 36.2 ± 0.03 for ‘B1B1’, 42.2 ± 

0.04 vs 43.5 ± 0.03 for ‘B2B2’, Pinteraction=0.02; mean HDL (mg/dL) for low SFA intake 

(≤11.47% of energy) vs high SFA intake (>11.47% of energy): 39.8 ± 0.02 vs 36.2 ± 0.03 for 

‘B1B1’, 42.2 ± 0.04 vs 43.8 ± 0.03 for ‘B2B2’, Pinteraction=0.02; mean HDL (mg/dL) for low 

MUFA intake (≤12.75% of energy) vs high MUFA intake (>12.75% of energy): 39.3 ± 0.03 vs 

36.5 ± 0.02 for ‘B1B1’, 41.9 ± 0.03 vs 44.2 ± 0.03 for ‘B2B2’, Pinteraction=0.04]. The difference 

in the findings might be due to the type of fat consumed since the Iranian study only 

considered total fat intake while the American study investigated types of fat.  Furthermore, 

the variation in frequency of the TaqIB SNP might also contribute to the difference in the 

findings. In the Iranian study [99] only 8 out of 127 normolipidemic individuals had the 

‘B1B1’ genotype but in the American study [190] 192 out of 603 participants, had the ‘B1B1’ 

genotype. Thus, while these two studies were both conducted in  patients with T2D, there is 

a wide variation in frequency of the ‘B1B1’ genotype between the two studies and this affects 
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the interpretation of the findings.   In an animal study performed in feral adult male St. Kitts 

vervets monkeys (Cercopithecus aethiops sabeus) [212], SFA was shown to increase CETP 

activity, thereby reducing HDL levels which might explain the findings of the study in the 

American population [190].  However, in the animal study [212], the effect of SFA on CETP 

activity was only observed when cholesterol was added to the diet. SFA has also been shown 

to lower the number of LDL receptors in the liver, which slows the removal of Apopoliprotein 

B (ApoB)-containing lipoproteins [213], with the resulting effect of a decrease in HDL levels.  

It has also been demonstrated that the effect of dietary fat on CETP expression is not 

dependent solely on the composition of fat, but also on the amount of fat [214], although the 

mechanisms under which total fat affects CETP expression are still unclear [99]. A cross-

sectional study of 2,858 Chinese participants, 761 Malay participants and 588 Asian Indian 

participants [100] demonstrated that, participants with ‘B2B2’ genotype had a significantly 

higher increase in HDL in response to a higher intake of dietary cholesterol compared to 

those with ‘B1B1’ and ‘B1B2’ genotypes, but the interaction was only significant in Asian 

Indians (Pinteraction=0.0230) and Malays (Pinteraction=0.0460). A cross-sectional study of 215 

Mexican-Mestizos [98] also showed that,  a higher sucrose intake (≥5% of total energy per 

day) was linked to increased levels of total cholesterol and LDL in individuals with 

‘B1B2’/‘B2B2’ genotype compared to those with ‘B1B1’ genotype [mean total cholesterol 

(mg/dL) (95% confidence interval): 200.19 (184.79–215.60) vs 165.55(142.21–188.89), 

Pinteraction=0.0340; mean LDL (mg/dL) (95% confidence interval): 128.64 (113.59–143.69) vs 

99.29 (75.52–123.05), Pinteraction=0.0370]. As this study [98] was the only one which 

investigated sucrose intake, and considering that the sample size was 215, further studies 

are needed to corroborate these findings.   

Several studies have investigated the interaction between alcohol intake and TaqIB 

genotype on HDL, LDL and TG [101, 215-217]. In a cross-sectional study of 758 healthy 

Chinese participants [215], individuals with ‘B1B1’ genotype  who consumed any amount of 

alcohol had higher HDL (mean HDL (mmol/l): 2.09 ± 0.46 vs 1.94 ± 0.38; Pinteraction<0.01), 

higher TG (mean TG (mmol/l): 1.42 ± 2.71 vs 0.94 ± 0.36; Pinteraction<0.05 ) and lower LDL 

(mean LDL (mmol/l): 2.24 ± 0.65 vs 2.65 ± 3.01; Pinteraction<0.01) compared to those with 

‘B1B1’ genotype who did not drink alcohol. Those with ‘B1B2’ genotype who consumed any 

amount of alcohol also had higher HDL (mean HDL (mmol/l): 2.17 ± 0.55 vs 2.02 ± 0.50; 

Pinteraction<0.05) compared to individuals with ‘B1B2’ genotype who did not drink alcohol; 

and lower TG (mean TG (mmol/l): 1.01 ± 0.86 vs 1.42 ± 2.71; Pinteraction<0.05) compared to 

those with ‘B1B1’ who consumed any amount of alcohol.  There were no significant 
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interactions between alcohol intake and TG or HDL in participants with ‘B2B2’ genotype. 

This study also observed that ‘B2B2’ individuals who drank any amount of alcohol had lower 

LDL than ‘B2B2’ participants who did not drink alcohol (mean LDL in mmol/l: 2.20 ± 0.52 vs 

2.41 ± 0.86; Pinteraction<0.0500), while there were no significant interactions between alcohol 

intake and LDL in those with ‘B1B2’ genotype. Similar findings were reported in a nested 

case-control study involving 505 patients with coronary heart disease (CHD) and 1,010 

healthy controls from different ethnicities in the US population [101] in which it was 

observed that, among healthy individuals, a higher intake of alcohol (≥15g/day) was linked 

to higher HDL in participants carrying the ‘B2’ allele compared to those with ‘B1B1’ 

genotype, with ‘B2B2’ individuals having the highest HDL (Pinteraction<0.0100).  These findings 

are consistent with the results of a case-control study consisting of 608 Irish and French men 

with myocardial infarction (MI) and 742 healthy controls [217], which reported  that, among 

individuals with a higher alcohol intake (≥75g/day), those carrying the ‘B2’ allele had higher 

mean plasma HDL (30% higher for ‘B2B2’ and 13% higher for ‘B1B2’) than those with the 

‘B1B1’ genotype (Pinteraction<0.0001).  Likewise, a cross-sectional study of 1,729 Japanese 

participants [216] reported that,  among women who consumed any amount of alcohol, 

those with ‘B2B2’ genotype had higher HDL than those with ‘B1B1’ or ‘B1B2’ genotype 

(mean HDL (mmol/l): 1.57 ± 0.03 for ‘B1B1’; 1.57 ± 0.03 for ‘B1B2’; 1.79 ± 0.06 for ‘B2B2’; 

Pinteraction=0.0220); while in men who consumed ≥2 drinks/day, those carrying the ‘B2’ allele 

had higher HDL than those with ‘B1B1’ genotype (mean HDL (mmol/l): 1.37 ± 0.03 for 

‘B1B1’, 1.44 ± 0.03 for ‘B1B2’, 1.49 ± 0.05 for ‘B2B2’; Pinteraction=0.0490). These findings 

suggest that alcohol intake could alter lipid profiles by increasing HDL in both ‘B1’ and ‘B2’ 

carriers, however, the underlying mechanism is unclear and considering that alcohol intake 

has been linked to other health issues such as liver cirrhosis, the overall benefit needs to be 

carefully considered. Moreover, interaction between alcohol intake and TaqIB genotype on 

blood lipids has been investigated by 12 studies and eight of the studies have not found 

significant interactions [99, 190, 218-223].     

Six out of fourteen dietary intervention studies found significant interactions 

between TaqIB genotype, dietary factors, and blood lipids. Three of the interactions were 

observed in participants carrying the ‘B2’ allele while the remaining three were reported in 

those with the ‘B1B1’ genotype. A six-day dietary intervention study [224], using high 

carbohydrate/low fat diet in 56 healthy Chinese individuals showed that, those carrying the 

‘B2’ allele had higher HDL concentrations (mean HDL (mg/dL): 56.14 ± 10.69 after washout 

diet vs 59.77 ± 10.62 after high carbohydrate/low fat diet; Pinteraction<0.0500) but the 
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interaction was not observed in individuals with ‘B1B1’ genotype. As the duration of this 

intervention was only 6 days, intervention studies with longer duration are required to 

confirm the effect of carbohydrate on HDL in individuals carrying the ‘B2’ allele.  In a meta-

analysis of 26 dietary interventions using SFA, trans fat, dietary cholesterol and the coffee 

diterpene cafestol in 405 healthy Dutch participants over a 20-year period [225], 

participants with ‘B2B2’ genotype had a larger increase in HDL in response to SFA compared 

to those with  ‘B1B1’ or ‘B1B2’ genotypes [mean change in HDL (mmol/l): 0.08 ± 0.02 for 

‘B2B2’, 0.03 ± 0.01 for ‘B1B2’, 0.04 ± 0.02 for ‘B1B1’ genotype; P=0.0400]; while participants 

carrying the ‘B1’ allele had a smaller increase in LDL in response to dietary cholesterol than 

those with the ‘B2B2’ genotype [mean change in LDL (mmol/l): 0.27 ± 0.14 for ‘B1B1’, 0.35 

± 0.08 for ‘B1B2’, 0.75 ± 0.15 for ‘B2B2’; ‘B1B1’ vs ‘B2B2’, P=0.0300; ‘B1B2’ vs ‘B2B2’, 

P=0.0100]. In an oral fat tolerance test performed in 80 Greek participants who were 

heterozygous for familial hypercholesterolemia (HFH) and 11 control participants [226], it 

was demonstrated that, among participants in the HFH group who showed an abnormal 

postprandial TG response (TG concentration of >220 mg/dL), men with the ‘B2’ allele had 

higher levels of TG than women with the ‘B2’ allele after 4 hours of fat intake (279 ± 95 vs 

239 ± 65 mg/dL; P=0.0300) but there were no reports of significant interactions in 

participants with ‘B1B1’ genotype.      

Statistically significant interactions between carriers of the ‘B1’ allele and dietary 

factors were reported by three dietary intervention studies [211, 227, 228].  In a randomised 

triple-blind crossover trial performed in 95 Iranian  patients with T2D and 73 healthy 

controls using three diets: sesame oil; canola oil; and sesame-canola oil [227], it was 

demonstrated that, in the T2D group, those with ‘B1B1’ genotype had a significant reduction 

in lipid ratios after consuming sesame oil and sesame-canola oil (change in LDL:HDL 

(mg/dL): –1.29, Pinteraction=0.0270; change in TC:HDL (mg/dL), –2.82, Pinteraction=0.0240; and 

change in TG:HDL (mg/dL), –7.00, Pinteraction=0.0250) but there were no reports of significant 

reductions in lipid ratios in participants carrying the ‘B2’ allele. Another randomised 

controlled trial (RCT) performed in 85 New Zealander men with hypercholesterolemia, 

involving a 4-week healthy diet vs healthy diet plus two kiwi fruits per day [228], also 

showed that, among participants with ‘B1B1’ genotype, consumption of kiwi fruit resulted 

in lower TG:HDL ratio than the control diet (mean change in TG:HDL (mmol/l): –0.14 ± 0.51 

for kiwifruit vs 0.09 ± 0.56 for control diet, P = 0.03; Pinteraction<0.05); while in individuals 

carrying the ‘B2’ allele, the interaction was not observed. Similar results were also observed 

in a crossover intervention conducted in Spanish prepubertal children with mild 
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hypercholesterolemia, consisting of consumption of cow’s skim milk vs cow’s skim milk 

enriched with virgin olive oil for two periods of 6 weeks [211]. It was observed that, intake 

of olive-oil-enriched skim milk resulted in a larger increase in HDL and a decrease in 

LDL:HDL ratio  in participants with ‘B1B1’ genotype compared to those carrying the ‘B2’ 

allele [mean change in HDL (mmol/l) (95% confidence interval): 0.179 (0.096 to 0.262) for 

‘B1B1’ vs 0.089 (0.032 to 0.146) for carriers of ‘B2’, Pinteraction<0.0010; mean change in 

LDL:HDL ratio (mmol/l) (95% confidence interval): –0.470 (–0.729 to 0.211) for ‘B1B1’ vs -

0.097 (-0.275 to 0.081) for carriers of ‘B2’, Pinteraction<0.0010]. While these studies show that 

individuals with the ‘B1B1’ genotype could benefit from consuming these diets, the 

interactions were reported only in those with either T2D [227] or hypercholesterolemia 

[211, 228] indicating that these results may not apply to healthy participants and hence, this 

limits the wider application of the findings. 

The TaqIB, located in intron 1 of the CETP gene is considered to be non-functional 

and is believed to serve as a marker for functional SNPs in the promoter region [100, 190, 

229]. The ‘B1’ allele differs from the ‘B2’ allele by the presence of a restriction site for TaqI 

endonuclease [100]. The ‘B1’ allele is believed to be associated with higher CETP activity, 

resulting in lower HDL and higher serum TG, and is considered a risk factor for dyslipidaemia 

[98]. This is supported by some of the studies as participants with the ‘B1B1’ genotype 

tended to have lower HDL [99-101, 222]. Nonetheless, the results suggest that people with 

this genotype can increase their HDL and modify their genetic risk by consuming sesame oil, 

canola oil, olive oil and kiwi fruit among others, although larger studies covering different 

ethnicities are warranted to tailor nutritional advice based on ethnicity and genetic profile. 

2.4.2 SNP rs5882 (I405V G > A) 

The SNP rs5882 (I405V) results in a substitution of Valine (V) for Isoleucine (I); hence 

the ‘G’ allele is also called the ‘V’ allele while the ‘A’ allele is also known as the ‘I’ allele.  The 

frequency of the ‘V’ allele is 34% globally but in Africans it is 58% while in Asians it is 48% 

and in Europeans it is 32% [230]. Six out of eight observational studies found statistically 

significant interactions between this SNP and dietary factors on blood lipids. A cross-

sectional analysis of 101 individuals from different ethnicities in the US population [189] 

showed that, a higher MUFA intake (>31g/day) was associated with lower TG in participants 

carrying the minor allele (‘V’) (Pinteraction=0.0060) but there were no reports of significant 

interactions in individuals with ‘II’ genotype. A longitudinal study of 4,700 Iranian 

participants over 3.6 years [231] reported that, a higher MUFA intake was linked to 

increased levels of TG in participants carrying the ‘V’ allele (mean changes in TG (mg/dL) 
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across quartiles of MUFA intake: –3.03, 1.73, 8.06, 8.85; Pinteraction=0.0010); but the 

interaction was not observed in those with ‘II’ genotype.  This study also observed that, a 

higher intake of total fat correlated with increased levels of TG in those carrying the ‘V’ allele 

(mean changes in TG (mg/dL) across quartiles of total fat intake: –1.90, 2.6, 6.06, 8.88; 

Pinteraction=0.0010) but the interaction was not significant in those with ‘II’ genotype.   A higher 

carbohydrate intake was also found to be associated with decreased levels of TG in ‘V’ allele 

carriers (mean changes in TG (mg/dL) across quartiles of carbohydrate intake: 6.65, 7.29, 

4.42, –3.28; Pinteraction=0.0100) but the interaction was not significant in individuals with ‘II’ 

genotype [231].  Interactions with MUFA were also reported in a nested case-control of 441 

Iranian participants with metabolic syndrome and 844 healthy controls [232] wherein 

carriers of the ‘V’ allele had a reduced risk of low HDL with a low intake of MUFA (<8.4% of 

energy) and an increased risk of low HDL with a higher intake of MUFA (9.6–11% of total 

energy intake) compared to those with ‘II’ genotype (odds ratio for low HDL across quartiles 

of MUFA intake: 0.49, 0.66, 0.88, 0.66 for carriers of ‘V’ allele vs 1, 0.61, 0.62, 0.68 for ‘II’ 

genotype; Pinteraction=0.0200).  The findings of these studies suggest that the SNP rs5882 

(I405V) may modify the  link between fat intake  and blood lipids.  A higher intake of MUFA 

and total fat appears to  be unfavourable in Iranian participants carrying the ‘V’ allele by 

leading to an increase in TG levels and the risk of low HDL while carbohydrate intake seems 

to be beneficial in reducing TG levels in these ‘V’ allele carriers [231, 232]. Conversely, the 

study in the US population [189] implies MUFA is beneficial in individuals carrying the ‘V’ 

allele. As this study [189] was performed in participants from different ethnicities, it is 

difficult to confirm ethnicity as a reason for the differential response to MUFA. Moreover, the 

study was performed in participants with overweight and obesity which could influence the 

findings since obesity is known to alter the  interaction between diet and genotype on lipids 

[189].  Nonetheless, the Iranian case-control study [232] also involved participants with 

metabolic syndrome as well as healthy controls; but the study did not report the findings for 

healthy controls.  It has been demonstrated that,  CETP transgenic mice fed with MUFA had 

improved LDL receptor activity with a corresponding increase in the uptake of ApoB-

containing lipoproteins by the liver [233], which could explain the reduction in TG levels 

associated with a high MUFA diet. The lipid-lowering effect of MUFA has also been linked to 

a decrease in expression of the transcription factor liver X receptor α (LXRα) which is 

involved in CETP activation [234]. Moreover, it has been argued that animal-based sources 

of MUFA also contain substantial amounts of SFA which could mask the effects of MUFA 
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[235], implying that the source of MUFA needs to be taken into account when assessing the 

impact of MUFA on lipid-related outcomes. 

In a cross-sectional study of Icelandic participants (152 men and 166 women) [236], 

alcohol intake was found to be associated with higher HDL in men with ‘VV’ genotype (13.7% 

higher HDL than ‘II’ genotype) compared to men with ‘II’ or ‘IV’ genotypes (Pinteraction<0.0200) 

but the interaction was not statistically significant in women. Interactions with HDL were 

also observed in a cross-sectional study of 553 Inuit participants [237] in which higher levels 

of omega 3 polyunsaturated fatty acids (n-3 PUFA) in red blood cells (RBCs) was associated 

with higher HDL in participants carrying the major allele (‘I’) compared to those with ‘VV’ 

genotype [β (mmol/l) = 0.0263 ± 0.0115 for ‘IV’ genotype, β (mmol/l)  = 0.0017 ± 0.0131 for 

‘II’ genotype; Pinteraction=0.0271].  The study also found that n-3 PUFA in RBCs had a negative 

correlation with total cholesterol in participants with ‘II’ genotype compared to those with 

‘VV’ or ‘IV’ genotype [β (mmol/l) = –0.0290 ± 0.0307; Pinteraction=0.0334]. In another cross-

sectional study of 553 Inuit participants [192],  individuals with ‘II’ genotype had a greater 

increase in total cholesterol with a higher intake of total fat than those with ‘VV’ or ‘IV’ 

genotype (β (mmol/l) = 0·0024 ± 0·0026; Pinteraction=0.0460). These findings imply that while 

n-3 PUFA intake was beneficial for Inuit participants carrying the ‘I’ allele [237], higher total 

fat intake was not favourable for these participants [192].  PUFA is believed to promote the 

synthesis of LDL receptors which has the effect of increasing hepatic uptake of ApoB- 

containing lipoproteins [238], thereby raising the levels of HDL. To understand how PUFA 

affects regulation of the CETP gene, a study [239] was conducted in CETP transgenic mice 

which demonstrated that n-3 PUFA resulted in elevated CETP messenger RNA (mRNA) and 

protein levels, possibly by being a ligand for peroxisome proliferator-activated receptors α 

(PPARα), which is involved in the regulation of lipid-related genes [239].  However, 

increased CETP activity is known to have an inverse effect on HDL levels and does not explain 

the beneficial effect on HDL observed in the Inuit study. This raises the question of whether 

particular CETP SNPs dictate the response of the CETP protein to n-3 PUFA.   

Only one of the six dietary intervention studies reported significant interactions 

between the I405V SNP and dietary factors on blood lipids.  In this study [240], Canadian 

monozygotic twins (12 pairs) who were overfed by 1000Kcal per day for a period of 100 

days showed a significant decrease in HDL, HDL2 and HDL3 in those with ‘II’ genotype 

compared to individuals with ‘VV’ genotype [mean change in HDL (mmol/l): –0.12 ± 0.04 vs 

0.02 ± 0.04, P=0.02; mean change in HDL2 (mmol/l): –0.08 ± 0.03 vs 0.03 ± 0.03, P=0.04; 

mean change in HDL3 (mmol/l): –0.04 ± 0.02 vs -0.004 ± 0.02, P=0.0020], but there were no 
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reports of significant interactions in individuals with ‘IV’ genotype. The ‘II’ genotype of SNP 

rs5882 is believed to affect the ability of the CETP protein to mediate the exchange of 

cholesteryl esters for TG, resulting in increased TG concentrations [232], although this SNP 

has not been reported by any of the 32 GWA studies to impact on lipids.  

It has also been shown that the ‘VV’ genotype of the SNP rs5882 is associated with 

lower plasma CETP levels and increased HDL concentration [241] however, baseline HDL 

data for participants with the ‘VV’ genotype was not available for all the studies because, 

there were not enough participants with the ‘VV’ genotype in the two Iranian studies [231, 

232]. Also, in the two Inuit studies [192, 237], baseline HDL data was not recorded separately 

for ‘VV’, ‘IV’ or ‘II’ genotypes. However, in the Icelandic study [236], those with the ‘VV’ 

genotype had higher baseline HDL levels. Overall, the findings indicate that  the SNP rs5882 

may modify dietary response to lipids, but further studies are needed to clarify the 

differences in the results of some of the studies. 

2.4.3 SNP rs3764261 (C > A) 

Significant interactions between dietary factors and SNP rs3764261 on blood lipids 

were observed in two out of four observational studies. In a longitudinal study of 4,700 

Iranian participants over 3.6 years [231], it was reported that, a higher fish intake was 

associated with a larger decrease in total cholesterol (TC) in participants carrying the minor 

allele (‘A’) (mean changes in TC (mg/dL) with quartiles of fish intake: 8.02, 6.93, 6.54, 5.58) 

compared to those carrying two copies of the major allele (‘C’) (mean changes in TC (mg/dL) 

with quartiles of fish intake: 3.65, 6.62, 4.57, 8.93) (Pinteraction=0.02). Interactions with fat 

intake were also observed in a cross-sectional study of 3,342 Indian participants [242] in 

which a high dietary fat intake (≥76.98g/day) was associated with increased levels of TC 

(β(mmol/l) = 0.097 ± 0.041; Pinteraction=0.018) and LDL (β(mmol/l) = 0.085 ± 0.041; 

Pinteraction=0.0420) in participants carrying the ‘A’ allele but there were no reports of 

interactions in those with ‘CC’ genotype. A high fat diet has been demonstrated to increase 

CETP activity in transgenic mice [243] which has the effect of increasing TC and LDL and 

could account for the findings reported. Moreover, the SNP rs3764261 (C > A) is located in 

the 51 region of the CETP gene and has been shown to regulate expression of the gene, the ‘C’ 

allele being associated with increased CETP expression and reduced HDL levels [244]. 

Two dietary intervention studies reported statistically significant interactions 

between the SNP rs3764261 and dietary factors on blood lipids. In a prospective, 

randomized, single-blind controlled dietary intervention trial carried out in 424 Spanish 

patients who had acute coronary syndrome (ACS) or CHD and also had metabolic syndrome 
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[191], wherein participants consumed either a Mediterranean diet or a low-fat diet, it was 

observed that, after 1 year,  consumption of Mediterranean diet was associated with higher 

HDL and lower TG in participants carrying the ‘A’ allele compared to those with ‘CC’ genotype 

(mean HDL (mg/dL): 41 vs 38, Pinteraction=0.0060; mean TG (mg/dL): 130 vs 146, 

Pinteraction=0.0400). This finding indicates that Mediterranean diet might be beneficial in 

increasing HDL in Spanish participants with ACS or CHD who carry the ‘A’ allele [191]; 

however, this finding might not be applicable to healthy individuals. In another study which 

was performed on participants from different ethnicities and involved a 2-year randomised 

weight-loss trial, consisting of low-fat diet (20% fat) vs high-fat diet (40% fat); and a 2-year 

RCT consisting of low-fat diet (30% fat) vs low carbohydrate (high fat) diet [214], the 

combined results of the two interventions showed that, among participants with ‘CC’ 

genotype, those in the high-fat diet group had a higher increase in HDL (11.7 vs 4.5%; 

Pinteraction=0.01) and a larger decrease in TG (–25.1 vs. –11.7%; Pinteraction=0.0007) than those 

in the low-fat diet group, but there were no significant interactions in participants with ‘CA’ 

or ‘AA’ genotype.  These results suggest that a high-fat diet (40% fat) in individuals from 

different ethnicities who have the ‘CC’ genotype might contribute to increased HDL and 

reduced TG levels [214] although the findings are not in agreement with  the study 

performed in CETP transgenic mice [243] in which a high fat diet resulted in increased CETP 

activity which lowered HDL levels. Considering that this was a weight loss intervention, it is 

unclear whether the changes in lipid levels were due to the high-fat diet or the loss of weight 

or both since physical activity has been shown to interact with genetic risk score and impact 

on waist-hip ratio [245]. Moreover, the ‘C’ allele of the SNP rs3764261 is regarded as a 

significant risk factor for low HDL [244, 246] although it has been demonstrated that this 

risk can be overcome by weight gain prevention [244].  The SNP rs3764261 has also been 

shown by GWA studies to influence HDL levels in Asian Indians [94, 199], Japanese [96, 201], 

African-American [97], Chinese [193], Lebanese [194]  and Finnish [205] but the evidence 

indicates that this SNP has not been extensively studied by gene-diet interaction studies. 

Therefore, further studies in different ethnicities are required to confirm the effect of the 

SNP in modifying dietary response to lipids.      
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2.4.4 C-629A (SNP rs1800775 C > A) 

The SNP rs1800775 has been shown to be associated with HDL in seven of the 

nineteen GWA studies [92, 94, 95, 196, 201, 204, 205]. Two out of five observational studies 

reported significant interactions between dietary factors and the SNP rs1800775 (C-629A) 

on blood lipids. In a cross-sectional study of 9,075 Taiwanese participants [247], 

consumption of coffee was found to be associated with lower HDL in women carrying the 

minor allele (‘C’) compared to women with ‘AA’ genotype [β (mg/dL) = –1.8095 for ‘AC’ 

genotype, β (mg/dL) = –2.8151 for ‘CC’ genotype; Pinteraction<0.0001]; and in men carrying the 

‘C’ allele compared to men with the ‘AA’ genotype [β (mg/dL) = –1.9623 for ‘AC’ genotype, β 

(mg/dL) = –2.7154  for ‘CC’ genotype; Pinteraction<0.0001]. A case-control study consisting of 

568 Irish and French men with MI and 668 healthy controls [248] showed that, among 

individuals carrying the major allele (‘A’), alcohol consumption was associated with higher 

HDL in healthy participants (Pinteraction<0.0020) and in patients who were not treated with 

lipid-lowering medication (Pinteraction<0.0010) while in individuals with ‘CC’ genotype, there 

was no association between alcohol intake and HDL.  The results suggest that dietary factors 

other than fat intake may also play a role in modulating lipid levels, but these interactions 

need to be explored further to allow for comparison of results across multiple ethnic groups. 

The SNP rs1800775 (C-629A) is located in the promoter region of the CETP gene and the ‘A’ 

allele is associated with reduced CETP expression and higher HDL levels [100]. The ‘A’ allele 

of SNP rs1800775 (C-629A) is in a high degree of linkage disequilibrium with the ‘B2’ allele 

of SNP TaqIB and it is believed that this association is responsible for the protective effect of 

the ‘B2’ allele [100].  However, some are of the view that there might be other functional 

SNPs that are in linkage disequilibrium with TaqIB apart from SNP rs1800775 (C-629A) but 

it is unclear what these SNPs are [190, 229]. Moreover, despite the SNP rs1800775 (C-629A) 

being reported by several GWA studies to be associated with blood lipids, this SNP has not 

been extensively studied in gene-diet interaction studies. To date, only one dietary 

intervention study [249] investigated the SNP rs1800775 (C-629A) which also failed to 

demonstrate any significant SNP-diet interactions on lipids.  This study was an RCT 

performed in 490 participants from different ethnicities in the UK population and involved 

a reference diet [∼18% SFA, 12% MUFA, 38% total fat, 45% carbohydrate (CHO)] for 4 

weeks, followed by 1 of three diets: a MUFA diet (∼10% SFA, 20% MUFA, 38% total fat, 45% 

CHO); a low fat diet (∼10% SFA, 11% MUFA, 28% total fat, 55% CHO); or the reference diet 

for 24 weeks.  The findings overall indicate that further large studies are needed to confirm 

the effect of the SNP rs1800775 in altering lipid profiles in response to diet. 
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2.4.5 Other SNPs 

Other CETP SNPs which have been reported to interact with dietary factors and 

influence blood lipids are SNPs rs183130 (C-4502T), rs4783961 (G-971A), rs289714 (C > 

T), and rs1800774 (C > A).  In the cross-sectional study of 553 Inuit participants [250], higher 

levels of n-3 PUFA in RBCs was linked to lower TC levels in participants carrying the minor 

allele (‘T’) of the SNP rs183130 (C-4502T) compared to those with ‘CC’ genotype (β (mmol/l) 

= –0.0632 ± 0.0241 for ‘CT’ genotype, β (mmol/l) = –0.0421 ± 0.0343 for ‘TT’ genotype; 

Pinteraction=0.0326); and lower TG levels in those with the ‘TC’ genotype of the SNP rs183130 

(C-4502T) compared to individuals with ‘TT’ genotype (β (mmol/l) = –0.0095 ± 0.0051 vs β 

(mmol/l) = 0.0073 ± 0.0073; Pinteraction=0.0300) while there were no reports of significant 

interactions between n-3 PUFA in RBCs and TG in participants with ‘CC’ genotype. This study 

also reported that individuals with the ‘GA’ genotype of the SNP rs4783961 (G-971A) who 

had higher levels of n-3 PUFA in RBCs had lower TG levels (β (mmol/l) = –0.0106 ± 0.0057; 

Pinteraction=0.0032) and lower TC:HDL ratio (β (mmol/l) = –0.0055 ± 0.0033; 

Pinteraction=0.0483) compared to participants with 2 copies of the minor allele (‘A’) of the SNP 

rs4783961 (G-971A). These findings point to a beneficial role of PUFA in Inuit participants 

carrying the ‘T’ allele of the SNP rs183130(C-4502T) and the ‘G’ allele of the SNP rs4783961 

(G-971A). PUFA is believed to improve the breakdown of ApoB-containing particles thereby 

reducing TG concentrations [232], which is consistent with this finding. However, in a cross-

sectional study of 821  participants who were normal glucose tolerant and 861  participants 

with T2D, involving the Transcription Factor 7-Like 2 (TCF7L2) gene [251], higher PUFA 

intake (mean PUFA intake of 29g/day) was linked to 1.64 mg/dL lower HDL while lower 

PUFA  intake (mean PUFA intake of 9g/day) was associated with 1.96 mg/dL higher HDL in 

Asian Indian participants carrying the ‘T’ allele of the TCF7L2 SNP rs12255372 compared to 

those with the ‘GG’ genotype (Pinteraction<0.0001 ).  In another cross-sectional study involving 

101 participants of different ethnicities in the US population [189], it was reported that, 

among participants with two copies of the major allele (‘A’) of the SNP rs289714, those who 

consumed >92 grams of total fat per day, had lower TG levels (103 ± 63 mg/dL) than those 

who consumed <31 grams of total fat per day (135 ± 15 mg/dL) (Pinteraction=0.0010). The 

interaction was significant for both the dominant and recessive modes of inheritance 

(Pinteraction=0.0010 and Pinteraction=0.0230 respectively), but there were no reports of 

significant interactions in individuals with ‘GG’ genotype. In another cross-sectional study of 

1,315 Spanish participants [252], higher plasma selenium levels were found to be associated 

with elevated LDL levels in all the three genotypes of the SNP rs1800774 but  participants 
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with two copies of the major allele (‘C’)  had lower LDL compared to those with ‘CT’ and ‘TT’ 

genotypes [odds ratio per an interquintile range increase in plasma selenium (95% 

confidence interval): 0.97 (0.74 to 1.27) for ‘CC’, 1.76 (1.38 to 2.25) for ‘CT’, 3.20 (1.93 to 

5.28) for ‘TT’ genotype; Pinteraction=0.0002]. Selenium was also reported to be associated with 

lipid levels in a systematic review and meta-analysis [253], but it was shown to be linked to 

significant improvement in the levels of TC and TG and had no significant effect on LDL 

levels. A systematic review published in 2017, in which the results of 23 gene-diet 

interaction studies involving CETP were analysed [254], concluded that, SNPs in the CETP 

gene may influence the effect of dietary factors on metabolic traits but that the findings from 

these studies were inconsistent and suggest that multiple factors might be involved. 

2.5 Conclusion 

In summary, this review has identified statistically significant interactions between 

17 dietary factors and 8 SNPs in the CETP gene on blood lipids in the following populations: 

Mexican, Iranian, Spanish, White American, Chinese, Malay, Indian, Irish, French, Japanese, 

New Zealander, Dutch, Greek, Icelandic, Inuit, Canadian, Taiwanese and residents of the USA. 

The SNPs showing significant interactions with dietary factors (such as total fat intake, 

MUFA, n-3 PUFA, Mediterranean diet, olive oil and sesame-canola oil) were TaqIB (rs708272 

G > A); rs5882 (I405V); rs3764261 (C > A); rs1800775 (C-629A); rs183130(C-4502T); 

rs4783961 (G-971A); rs289714 (C > T); and rs1800774 (C > A). The macronutrient 

investigated by majority of the studies was dietary fat, comprising of total fat, SFA, MUFA 

and PUFA. Total fat intake accounted for majority of the interactions across different SNPs, 

being associated with unfavourable lipid outcomes in some individuals but not others. 

Studies reporting significant interactions in individuals with the B1B1 genotype of 

the SNP TaqIB (rs708272) have been performed in participants with either T2D or 

hypercholesterolemia. Similarly, those reporting significant interactions in individuals 

carrying the ‘V’ allele of the SNP rs5882 have been conducted in participants with 

overweight and obesity or metabolic syndrome. Moreover, some of the significant 

interactions involving the SNP rs3764261 have also been reported in patients with ACS or 

CHD, suggesting that some of the findings of these studies may not apply to healthy 

participants. Overall, the findings suggest that CETP SNPs might alter blood lipid profiles by 

modifying responses to diet, but further large studies in multiple ethnic groups are 

warranted to identify individuals at risk of adverse lipid response to diet which is essential 

in developing dietary guidelines that are tailored to specific groups of people. Information 
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on the underlying genetic factors for dyslipidaemia will also contribute to improved 

understanding of the mechanisms involved, which is central to the development of effective 

preventative strategies as well as identifying areas for further research.
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Chapter 3 Higher intake of dairy is associated with lower cardiometabolic 

risks and metabolic syndrome in Asian Indians 
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3.1 Abstract  

There is conflicting evidence about the association between dairy products and 

cardiometabolic risk (CMR). We aimed to assess the association of total dairy intake with 

CMR factors and to investigate the association of unfermented and fermented dairy intake 

with CMR in Asian Indians who are known to have greater susceptibility to type 2 diabetes 

and cardiovascular diseases compared to white Europeans. The study comprised 1033 Asian 

Indian adults with normal glucose tolerance chosen from the Chennai Urban Rural 

Epidemiological Study (CURES). Dietary intake was assessed using a validated open-ended 

semi-quantitative food frequency questionnaire. Metabolic syndrome (MS) was diagnosed 

based on the new harmonising criteria using central obesity, dyslipidaemia [low high-

density lipoprotein cholesterol (HDL) and increased serum triglycerides (TG)], hypertension 

and glucose intolerance. Increased consumption of dairy (≥5 cups per day of total, ≥4 cups 

per day of unfermented or ≥2 cups per day of fermented dairy) was associated with a lower 

risk of high fasting plasma glucose (FPG) [hazard ratio (HR), 95% confidence interval (CI): 

0.68, 0.48–0.96 for total dairy; 0.57, 0.34–0.94 for unfermented dairy; and 0.64, 0.46–0.90 

for fermented dairy; P<0.05 for all] compared to a low dairy intake (≤1.4 cups per day of 

total dairy; ≤1 cup per day of unfermented dairy; and ≤0.1 cup per day of fermented dairy). 

A total dairy intake of ≥5 cups per day was also protective against high blood pressure (BP) 

(HR: 0.65, 95% CI: 0.43–0.99, P<0.05), low HDL (HR: 0.63, 95% CI: 0.43–0.92, P<0.05) and 

MS (HR: 0.71, 95% CI: 0.51–0.98, P<0.05) compared to an intake of ≤1.4 cups per day. A high 

unfermented dairy intake (≥4 cups per day) was also associated with a lower risk of high 

body mass index (BMI) (HR: 0.52, 95% CI: 0.31–0.88, P<0.05) compared to a low intake (≤1 

cup per day), while a reduced risk of MS was observed with a fermented dairy intake of ≥2 

cups per day (HR: 0.71, 95% CI: 0.51–0.98, P<0.05) compared to an intake of ≤0.1 cup per 

day. In summary, increased consumption of dairy was associated with a lower risk of MS and 

components of CMR. 
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Graphical abstract 
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3.2 Introduction 

Asian Indians have been shown to have distinct biochemical and clinical 

characteristics that put them at risk of type 2 diabetes (T2D) and cardiovascular diseases 

(CVDs) [105, 119, 120, 255]. The distinct features include central obesity, dyslipidaemia, 

insulin resistance, increased levels of visceral fat, total fat, and propensity to beta cell 

dysfunction [105, 119, 120, 255]. The components of the ‘Asian Indian Phenotype’ are 

included in the metabolic syndrome (MS), which refers to a group of interconnected risk 

factors that make an individual susceptible to CVDs and T2D [256]. According to a systematic 

review and meta-analysis involving 133,926 participants from 111 studies [257], MS affects 

1 in 3 adults in India, and the prevalence is higher among people in urban areas (32%) than 

those living in rural areas (22%). MS is associated with increased CVDs and all-cause 

mortality [258, 259] warranting studies in Asian Indians who are known to have a 

predisposition to MS. 

The existence of an entity called MS is surrounded by controversies, partly due to 

variations in the definition of MS [260-263]. However, it is generally agreed that the risk 

factors of central obesity, high blood pressure (BP), elevated levels of triglycerides (TG), low 

concentration of high-density lipoprotein cholesterol (HDL) and elevated fasting plasma 

glucose (FPG) tend to co-exist and are important indicators of an individual’s risk of CVDs 

and T2D [260-264]. The increasing prevalence of these risk factors has been linked to genetic 

and environmental factors [18, 105, 126, 128, 265], and there is growing interest in the role of 

different types of food in the development of MS [105, 128, 256, 265]. Several studies have 

reported a protective effect of dairy consumption on the risk of MS [256, 266-269]. 

Consumption of at least two servings of dairy per day compared to no dairy intake, has been 

linked to a lower prevalence of MS [256]. Increased consumption of dairy (>7 times per week) 

was also found to be associated with a reduced risk of MS and central obesity compared to 

no dairy intake [269]. However, one study [270] reported that participants who did not 

consume milk had a lower risk of insulin resistance and MS compared to those who drank 

milk, making the findings inconsistent. Moreover, it has been suggested that fermented dairy 

might confer greater anti-inflammatory and cardiometabolic benefits than unfermented 

dairy [271, 272]. Possible mechanisms for the proposed benefits of fermented dairy include 

the action of microbial cultures on gut microbiota, changes in lipid and glyceride profiles and 

the release of more bioactive compounds involved in regulating several metabolic and 

immune pathway genes [271-273]. 
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Furthermore, consumption of dairy is high among Asian Indians [274-276] who also 

have a high prevalence of MS [257, 277, 278]. An examination of the dietary profile of 2042 

Asian Indian participants [274] showed that, dairy intake was within the national 

recommendation of 300 g/day [279]. However, despite dairy consumption being linked to 

lower risk of MS [256, 266-268], few studies have examined the impact of dairy intake on the 

risk of MS in Asian Indians. Hence, the present study sought to investigate the association of 

total dairy consumption with MS and components of cardiometabolic risk (CMR) in Asian 

Indians. We also aimed to determine the association of fermented and unfermented dairy 

products with MS and components of CMR. 

3.3 Methods 

3.3.1 Study population 

The current study consisted of 1033 adults with normal glucose tolerance chosen 

from the Chennai Urban Rural Epidemiological Study (CURES), and details of the study 

design have been given in previous publications [105, 126, 251, 280, 281]. In brief, a total of 

26,001 adults were recruited between 2001 to 2003 from the urban part of Chennai in 

Southern India through systematic random sampling, and the follow-up study was 

conducted between 2012 and 2013 and consisted of 2410 participants. The sample for the 

current study was chosen from the follow-up cohort as shown in Supplementary Figure 

S3.1. Approval was obtained from the Institutional Ethics Committee, and written informed 

consent obtained from all the study participants. 

3.3.2 Data collection 

Demographic (including medical history and physical activity), anthropometric, 

biochemical and dietary data were collected both at baseline (2001–2003) and after 10 years 

(2012–2013) using a structured, pretested, and validated interviewer-administered 

questionnaire [282]. Family history of diabetes was considered as positive if either parents 

or sibling/s had diabetes. Smokers were defined as those who were currently smoking, and 

alcohol use was defined as current alcohol consumption. 

Height, weight, waist circumference (WC) and BP were measured using standardised 

techniques [280], and body-mass index (BMI) was calculated as weight in kilograms (kg) 

divided by height in meters squared (m2). Biochemical analyses, including fasting plasma 

glucose (FPG) and lipids, were performed in all individuals; in addition, plasma glucose 

estimation 2 h after a 75 g oral glucose load was performed in individuals without diabetes 
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[280]. Biochemical analyses were performed in a laboratory certified by the National 

Accreditation Board for Testing and Calibration Laboratories and the College of American 

Pathologists on a Hitachi 912 autoanalyzer (Hitachi, Mannheim, Germany) using kits 

supplied by Roche Diagnostics (Basel, Switzerland) for estimation of plasma glucose (GOD-

POD method). 

3.3.2.1 Outcome ascertainment 

General obesity 

General obesity was defined as BMI ≥ 25 kg/m2 and overweight as BMI ≥ 22.9 

kg/m2 in accordance with the Asia Pacific guidelines [283]. 

Metabolic syndrome 

MS was diagnosed based on the new harmonising criteria [284].  Individuals with any 

three of the following abnormalities viz. high WC (Asia Pacific cut-off ≥80 cm for female, ≥90 

cm for male), hypertriglyceridemia [serum TG ≥1.70 mmol/L (≥150 mg/dL)], low HDL [male 

participants ≤ 1.04 mmol/L (≤40 mg/dL); female participants ≤1.30 mmol/L (≤50 mg/dL)], 

abnormal glucose metabolism [defined as FPG ≥5.6 mmol/L (≥100 mg/dL)] and elevated BP 

[systolic BP (SBP) ≥130 mmHg or diastolic BP (DBP) ≥85 mmHg] were considered to have 

MS. 

The term “cardiometabolic risk” was first employed by the American Diabetes 

Association as an umbrella term to include all the risk factors for diabetes and CVD [285]. 

The components of CMR given in the present analysis are central and general obesity; 

elevated levels of triglycerides, total cholesterol and LDL and reduced HDL concentration; 

hyperglycaemia; hypertension; and insulin resistance. 

3.3.2.2 Dietary assessment 

Dietary intake was assessed by trained dietitians using a validated open-ended semi-

quantitative 222-item food frequency questionnaire (FFQ) both at baseline and follow-up. 

The FFQ was designed to estimate the usual dietary intake of participants, the development 

and validation of which have been described elsewhere [282].  The FFQ included both the 

frequency as well as the servings of food items consumed by the individuals which was then 

converted to standardised portion sizes. However, any new food item reported (new market 

foods over 10-year period) during the follow-up period was updated in the in-house 

Nutritional Epidemiology (‘EpiNu’) software. Dairy intake was estimated from the FFQ using 

the ‘EpiNu’ software. Total dairy intake consists of unfermented plain milk and milk included 

in tea and coffee; Indian milk sweets and desserts; and fermented milk, which consists of 

Indian yoghurt (curd) and buttermilk. The ‘EpiNu’ software which contains information on 
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the nutritional composition of food that is mainly consumed in the Chennai area was 

developed for the local population using recipes from a wide range of sources, including fast-

food and home-made. Details of the development of the ‘EpiNu’ software are available in a 

previous publication [282]. 

3.3.3 Statistical analyses 

Statistical analyses were performed using SAS software version 9.4 (SAS Institute 

Inc., Cary, NC, USA) and the data analysis plan is attached as an appendix (Appendix A). All 

food groups and nutrients were energy adjusted by the residual method [286]. As nutrients 

and food groups were not normally distributed, estimates were expressed in median and 

interquartile range (IQR). The Mann-Kruskal Wallis test was used to compare differences 

between the medians of continuous variables, and the chi-squared test was used to test 

differences in proportions. The lowest, medium and highest intakes of total dairy, 

unfermented and fermented dairy were derived by stratifying the data into deciles and 

regrouping as lowest (quartile 1(Q1)–quartile 4 (Q4)), medium (Q5–Q8) and highest intake 

(Q9–Q10) to test the association with CMR using the regression model. The hazard ratio (HR) 

for incidence of CMR and MS in each group of dairy intake (lowest intake, medium intake 

and highest intake) and its subdivision (fermented and unfermented) was calculated using 

Cox proportional hazards analysis. Potential confounders were identified by the univariate 

analysis and entered simultaneously into the multiple Poisson regression model with p-

value <0.2. The model was adjusted for age, sex, BMI, income, smoking, alcohol, major 

cooking oil, total polyunsaturated fatty acids (PUFA) (g), added sugar (g), physical activity 

level (PAL), total energy (kcal) and tea and coffee intake. The linear trend across the lowest, 

medium and highest dairy intake and incidence of CMR and MS were tested with the 

regression model [287]. Difference between the dairy product and its subdivisions was 

assessed using the Kruskal-Wallis test for all the continuous variables. The P values were 

tested for statistical significance at <0.05 level. 

3.4 Results 

3.4.1 Characteristics of the study participants 

The median age of the study participants was 36 (IQR: 15) years. As shown in Table 

3.1, smoking and alcohol consumption were reported by 16% and 23% of participants, 

respectively. Nearly half of the participants (44%) had a family history of diabetes. The 

median SBP (113 mmHg), DBP (72 mmHg), FPG (84 mg/dL) and postprandial glucose (106 
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mg/dL) were within the normal ranges. Consumption of tea and coffee was the main source 

of dairy (80%) as shown in Figure 3.1 and Table 3.2. The medians of the lowest, medium, 

and the highest total dairy intake were 208, 411 and 755 g/day (1.4, 3 and 5 cups per day), 

respectively. 
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Table 3.1 Baseline characteristics of the study population (n=1033) 

Variables 
Overall Median (Interquartile Range)/n 
(%) 

Age (years) 36 (15) 

Gender n (%) 

Men n (%) 433 (42) 

Women n (%) 600 (58) 

Smoking (yes) n (%) 160 (15) 

Alcohol (yes) n (%) 242 (23) 

Income per month n (%) 

INR. <2000 24 (2) 

INR. 2000–5000 197 (19) 

INR. 5000–10,000 415 (40) 

INR. >10,000 397 (39) 

Family history of diabetes (yes) n (%) 449 (43) 

Weight (kg) 58 (17) 

BMI (kg/m2) 23.2 (6.2) 

Waist circumference (cm) 84 (16) 

Systolic BP (mmHg) 113 (19) 

Diastolic BP (mmHg) 72 (13) 

Fasting blood glucose (mg/dL) 84 (12) 

Postprandial blood glucose (mg/dL) 106 (33) 

Total Cholesterol (mg/dL) 175 (47) 

Triglyceride (mg/dL) 96 (65) 

High density lipoprotein (mg/dL) 42 (13) 

Low density lipoprotein (mg/dL) 109 (39) 

Data presented as median (interquartile range) for continuous variables; and as number (n) 

(%) for categorical variables. INR – Indian rupees; BMI – body mass index; BP – blood 

pressure. 
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Table 3.2 Consumption of dairy and its products (g/day) 

 Median (Interquartile Range) 

Dairy and its products (g/day) 
Lowest Intake 

Q1–Q4 
Medium Intake 

Q5–Q8 
Highest Intake 

Q9–Q10 

Total dairy products 208 (116) 411 (144) 755 (228) 

Fermented dairy products 
(curd and buttermilk) 

32 (66) 75 (119) 167 (215) 

Milk 10 (39) 37 (94) 74 (148) 

Tea and coffee (contribution by 
milk) 

118 (118) 235 (176) 471 (353) 

Milk sweets and desserts 
(milk sweets, ice cream, milk 
shake and other milk beverages) 

2 (8) 3 (10) 5 (22) 

 

3.4.2 Association of total dairy consumption and components of cardiometabolic risk 

A total dairy intake of ≥5 cups compared to ≤1.4 cups per day was associated with a 

decreased risk of three of the components of CMR [high BP, FPG and low HDL] and MS as 

shown in Table 3.3 and Figure 3.2, respectively. A decreased incidence of two of the 

components of CMR (high FPG and low HDL) was also observed among individuals in the 

medium total dairy intake group (≥3 cups per day) compared to those in the low total dairy 

intake group (≤1.4 cups per day) (Table 3.3). There was no association between total dairy 

intake and insulin resistance as shown in Supplementary Figure S3.2. 
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Table 3.3 Total dairy consumption and its association with components of cardiometabolic risk 

 
Hazard Ratio (95% Confidence Interval) 

 
Lowest Intake 
Q1–Q4 

Medium Intake 
Q5–Q8 

Highest Intake 
Q9–Q10 

Total dairy products (g/day) 208 (116) 
1.4 cups 

411 (144) 
3 cups 

755 (228) 
5 cups 

Blood pressure (mmHg) ≥140/90 1 (ref) 0.82(0.63–1.08) 0.65(0.43–0.99) * 

BMI (kg/m2) ≥22.9 1 (ref) 0.84(0.66–1.08) 0.78(0.53–1.15) 

Waist circumference (cm) (>80: F; >90: M) 1 (ref) 0.87(0.7–1.09) 0.87(0.62–1.24) 

Total cholesterol (>200 mg/dL) 1 (ref) 0.72(0.51–1.01) 0.70(0.42–1.18) 

Triglyceride (>150 mg/dL) 1 (ref) 1.05(0.76–1.44) 0.74(0.45–1.22) 

High-density lipoprotein (mg/dL) (≤40: F; ≤50: M) 1 (ref) 0.74(0.59–0.93) * 0.63(0.43–0.92) * 

Low-density lipoprotein (>100 mg/dL) 1 (ref) 0.95(0.77–1.17) 0.83(0.61–1.12) 

Fasting plasma glucose (>100 mg/dL) 1 (ref) 0.75(0.6–0.95) * 0.68(0.48–0.96) * 

Data presented as median (interquartile range). * P-value<0.05 considered as significant. Adjusted variables are age, sex, BMI, income, smoking, 

alcohol, major cooking oil, total poly unsaturated fatty acids (PUFA) (g), added sugar (g), physical activity level, total energy (kcal) and tea and 

coffee intake (g/day). 
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Figure 3.1 The sources of dairy and its products among the Chennai urban adults 

Milk sweets and desserts include Indian milk sweets, ice cream, milk shakes and other milk 

beverages. * Cheese and paneer intake was reported by only three individuals in the sample, 

and this resulted in a median value of 0. 

 

 

 
 

Figure 3.2 Total dairy consumption and its association with metabolic syndrome 

Data presented as median. * P-value<0.05 considered as significant. Adjusted variables are 

age (years), sex, BMI, income, smoking, alcohol, major cooking oil, total polyunsaturated 

fatty acids (PUFA) (g), added sugar (g), total energy (kcal) and tea and coffee intake.  
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Figure 3.3 Fermented dairy consumption and its association with metabolic syndrome 

Data presented as median. * P-value<0.05 considered as significant. Adjusted variables are 

age (years), sex, BMI, income, smoking, alcohol, major cooking oil, PUFA (g), added sugar (g), 

physical activity level, total energy (kcal) and tea and coffee intake. 

3.4.3 Association of fermented dairy consumption and components of 

cardiometabolic risk 

Consumption of 2 cups per day or more of fermented dairy was associated with a 

lower incidence of high FPG (Table 3.4) compared to an intake of ≤0.1 cups per day. A high 

fermented dairy intake (≥2 cups per day) was also associated with a lower risk of MS 

compared to a low fermented dairy intake (≤0.1 cups per day) [hazard ratio (HR): 0.71, 95% 

confidence interval (CI): 0.51–0.98, P<0.05] as shown in Figure 3.3.
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Table 3.4 Fermented and unfermented dairy consumption and its association with components of cardiometabolic risk 
 

Hazard Ratio (95% Confidence Interval) 

Unfermented Dairy Products (g/day) Fermented Dairy Products (g/day) 

 
Lowest Intake 
Q1–Q4 

Medium Intake 
Q5–Q8 

Highest Intake 
Q9–Q10 

Lowest Intake 
Q1–Q4 

Medium Intake 
Q5–Q8 

Highest Intake 
Q9–Q10 

Dairy product 
(g/day) 

138 (86) 
1 cup 

290 (103) 
2 cups 

581 (175) 
4 cups 

11 (23) 
0.1 cup 

86 (54) 
0.6 cup 

300 (116) 
2 cups 

Blood pressure 
(mmHg) ≥140/90 

1 (ref) 1.01 (0.73–1.41) 0.75 (0.45–1.27) 1 (ref) 0.83 (0.63–1.10) 0.71 (0.49–1.03) 

BMI (kg/m2) ≥22.9 1 (ref) 0.70 (0.50–0.99) 0.52 (0.31–0.88) * 1 (ref) 0.83 (0.63–1.10) 0.71 (0.49–1.03) 

WC (cm) 
(>80: F; >90: M) 

1 (ref) 0.91 (0.71–1.15) 0.89 (0.62–1.26) 1 (ref) 1.12 (0.92–1.37) 1.03 (0.81–1.34) 

Total cholesterol 
(>200 mg/dL) 

1 (ref) 0.78 (0.5–1.22) 0.59 (0.3–1.16) 1 (ref) 10 (0.72–1.39) 0.83 (0.54–1.28) 

Triglyceride 
(>150 mg/dL) 

1 (ref) 0.83 (0.57–1.2) 0.68 (0.38–1.22) 1 (ref) 1.14 (0.84–1.53) 0.98 (0.69–1.4) 

HDL (mg/dL) 
(≤40: F; ≤50: M) 

1 (ref) 1.02 (0.77–1.34) 0.93 (0.63–1.37) 1 (ref) 0.86 (0.69–1.06) 0.76 (0.57–1.01) 

LDL (>100 mg/dL) 1 (ref) 0.92 (0.71–1.19) 0.77 (0.53–1.13) 1 (ref) 1.09 (0.9–1.33) 0.88 (0.69–1.13) 

Fasting plasma 
glucose 
(>100 mg/dL) 

1 (ref) 0.62 (0.44–0.88) 0.57 (0.34–0.94) * 1 (ref) 0.96 (0.74–1.24) 0.64 (0.46–0.90) * 

Data presented as median (interquartile range). * P-value<0.05 considered as significant. Adjusted variables are age, sex, BMI, income, smoking, 

alcohol, major cooking oil, total polyunsaturated fatty acids (PUFA) (g), added sugar (g), physical activity level (PAL), total energy (kcal) and tea 

and coffee intake. HDL – high-density lipoprotein cholesterol; LDL – low-density lipoprotein cholesterol; BMI – body mass index; WC – waist 

circumference.
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3.5 Discussion 

The present study has found evidence of a protective effect of dairy consumption 

against CMR factors in Asian Indians. We found a reduced risk with an increased intake of 

dairy products, where consumption of ≥5 cups per day of total, ≥4 cups per day of 

unfermented or ≥2 cups per day of fermented dairy was associated with a reduced risk of 

high FPG. A total dairy intake of ≥5 cups per was also associated with a lower risk of high BP, 

low HDL and MS. Consumption of ≥4 cups per day of unfermented dairy was also associated 

with a decreased incidence of high BMI; while an intake of ≥2 cups per day of fermented 

dairy was also associated with a lower risk of MS. Given that Asian Indians have high 

prevalence of CVDs and T2D [105, 119, 255, 274], these findings are of public health 

importance. India is the largest producer of milk and it is commonly consumed by all classes 

of income groups, providing value for money and nutrients [275]. The results indicate that 

increasing the consumption of dairy products might help to reduce the risk of MS and its 

individual components in Asian Indians. 

At baseline, the most widely consumed dairy products were reported to be tea and 

coffee with milk [274], and the same trend continued in the follow-up period after 10 years. 

In the Chennai area, a large quantity of milk is typically used in the preparation of tea and 

coffee, hence milk added to tea and coffee is a main source of dairy in the study population. 

Given that tea and coffee intake may independently influence the risk of CVDs 

(Supplementary Table S3.1), we adjusted for tea and coffee intake in our analysis. Our 

findings are consistent with previous studies in which dairy consumption showed a 

protective effect against MS [256, 266-269]. In the Prospective Urban Rural Epidemiology 

(PURE) study [256], a large, multinational cohort study involving 112,922 individuals from 

21 countries with a median follow-up of 9.1 years, a higher total dairy intake (≥2 servings 

per day) compared with no intake, was associated with a decreased prevalence of MS [odds 

ratio (OR), 0.76; 95% CI, 0.71–0.80; Ptrend<0.0001]. Similarly, the Brazilian Longitudinal 

Study of Adult Health (ELSA-Brasil), which involved 9835 participants [266], observed that 

total dairy intake was inversely associated with metabolic risk score (Beta=−0.04 ± 0.01, 

P=0.009). The French Data from the Epidemiological Study on the Insulin Resistance 

Syndrome (DESIR) [268], a cohort study of 3435 participants also observed a negative 

association between consumption of dairy products, except cheese, and incidence of MS (OR, 

0.88; 95% CI, 0.79–0.97; P=0.01) and impaired fasting glycaemia/T2D (OR, 0.85; 95% CI 

0.76–0.94; P=0.001). A prospective study of 7240 Koreans [269] also reported that, a high 

consumption of dairy (≥7 times a week) was associated with a decreased risk of MS (HR, 
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0.72; 95% CI, 0.62–0.84; Ptrend<0.001) compared to no consumption of dairy. Overall, these 

findings indicate that consumption of dairy might be beneficial in reducing the risk of MS in 

different ethnic groups, but large dietary intervention studies will help to corroborate the 

findings. 

The inverse association between dairy consumption and the risk of individual 

components of CMR observed in our study is also consistent with previous studies. In the 

PURE study [256], a higher total dairy intake (≥2 servings per day) compared to no intake, 

was associated with a decreased incidence of hypertension (HR, 0.89; 95% CI, 0.82–0.97; 

Ptrend=0.02) and T2D (HR 0.88; 95% CI, 0.76–1.02, Ptrend=0.01). The Caerphilly Prospective 

Study of 2512 men [288] also reported that participants in the highest milk consumption 

group had a 10.4 mmHg lower SBP (Ptrend=0.023) than those who did not consume milk after 

a 22.8 year follow-up. This study [288] also observed lower levels of glucose (Ptrend=0.032) 

with increasing intake of milk and dairy products. Furthermore, a cross-sectional study of 

205 Indian participants with MS [289] showed that, consumption of milk and milk products 

(>4 servings/day) was associated with a lower risk of hypertension (OR, 0.54 95% CI, 0.18–

1.67). A study involving 133 Indian women with gestational diabetes [290] also found an 

inverse association between consumption of dairy products and adverse neonatal outcomes 

(OR, 0.14, 95% CI, 0.02–0.8; P=0.03). Moreover, a systematic review of randomised 

controlled trials [291]  reported that dairy intake had a beneficial effect on body weight. All 

in all, the findings call for large, randomised trials to confirm the effect of dairy products on 

BP, BMI and blood glucose levels. 

Our finding of a positive association between dairy intake and high HDL is also 

supported by a cohort study of 11,377 Norwegian participants (The Tromsø Study) [292] 

where consumption of cheese was positively associated with HDL concentration (Beta=0.02 

mmol/L, 95% CI, 0.01–0.03). However, this association was only observed for total dairy 

intake in our study. The study [292] also reported that, a high intake of fermented dairy (250 

g/day) was associated with lower TG concentration (Beta=−1.11, 95% CI, −1.96 to −0.24; 

P=0.01) than a low intake, but this was not observed in our study. One possible explanation 

is that, cheese was a main part of fermented dairy in the Norwegian study [292] while in our 

study, the median intake of cheese was zero. On the whole, the findings indicate a need for 

large scale randomised trials to confirm the association of dairy products with blood lipids. 

The average intake of SFA (% of energy) for this study population, Chennai urban 

area was 9% of total energy intake (TEI), which is within the recommended daily allowance 

of <10% of TEI [71]. Dairy is known to contain high amounts of SFA which is linked to 
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elevated LDL concentration and high risk of CVDs leading to concerns about the health 

benefits of dairy, with some people resorting to low-fat dairy alternatives [265, 293]. 

However, it has been noted that, SFAs are a large group of fatty acids, and their effects may 

vary depending on the type of food [265]. Moreover, a large multinational cohort study of 

136,384 individuals from 21 countries (PURE) [265] observed no significant association 

between higher intake of SFA from dairy sources and total mortality or major CVD. 

Furthermore, odd chain fatty acids are the major SFAs in milk and they have been associated 

with better CVD outcomes with regards to lipids [294, 295]. The association of dairy intake 

with favourable lipid levels has also been linked to the presence of oleic acid, a 

monounsaturated fatty acid (MUFA) in dairy products [292] which is known to increase the 

concentration of HDL and lower the levels of LDL and TG [296-298]. Fatty acids derived from 

milk have also been associated with a decrease in the number of small dense LDL particles, 

which is linked to a favourable lipid profile since small dense LDL is negatively associated 

with HDL and positively associated with TG and fasting insulin levels [299]. Milk is a rich 

source of different nutrients [265, 293], and it has been suggested that the protective effect 

of dairy consumption on the risk of MS is dependent on the individual as well as joint effect 

of the different nutrients [300, 301]. Milk protein is believed to suppress angiotensin I-

converting enzyme, which is involved in BP regulation [302]. Milk is also a rich source of 

potassium, which helps in regulating BP [303]. Whey protein derived from milk has also been 

reported to influence glucose levels through its involvement in the regulation of 

gastrointestinal hormones [301]. Fermented dairy is believed to confer greater anti-

inflammatory and cardiometabolic benefits than unfermented dairy [271, 272], but intake of 

fermented dairy was relatively low in this study, and this could have influenced our findings 

of fewer associations between fermented dairy and CMR. It has also been suggested that, the 

associations of dairy with blood lipids may be impacted by dairy matrix and fat content [292]. 

Moreover, findings from a large mendelian randomisation analysis of 1,904,220 individuals 

from three population-based studies [304]  indicate that, genetic variants linked to milk 

consumption, might also influence BMI and lipid levels, suggesting that multiple factors are 

involved in the association of dairy intake with reduced risk of MS. 

The strength of our study is the large sample size and the use of validated instruments 

in a well-characterised population. This study is one of few studies which have examined the 

association of total, unfermented and fermented dairy with the risk of MS in Asian Indians. 

Our study has some limitations. Comparing the benefits of fermented and unfermented dairy 

intake was not possible due to the relatively low intake of fermented dairy compared to 
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unfermented dairy. Additionally, we did not investigate the effect of individual dairy 

products on the risk of MS. Furthermore, the fat content of the dairy products was not 

analysed in our study. Coffee and tea might also influence CVD risk independently as shown 

in Supplementary Table S3.1, but data on intake of caffeine and phenolic compounds was 

not available. However, we adjusted for coffee and tea intake in the regression model. 

Moreover, evidence from nutrigenetic studies shows that genetic variants might be involved 

in modifying responses to diet, which is outside the scope of this study. Nonetheless, our 

findings support previous work and add to the evidence linking dairy consumption to lower 

risk of MS and components of CMR. 

3.6 Conclusion 

We found that increased consumption of dairy (≥5 cups per day of total, ≥4 cups per 

day of unfermented or ≥2 cups per day of fermented dairy) was associated with a lower risk 

of high FPG. A total dairy intake of ≥5 cups per day was also protective against high BP, low 

HDL and MS. A high unfermented dairy intake (≥4 cups per day) was also as-sociated with a 

lower risk of high BMI, while a reduced risk of MS was observed with a fermented dairy 

intake of ≥2 cups per day. The findings indicate that increasing the consumption of dairy 

might help to reduce CMR factors (high BP, BMI, FPG and low HDL) and MS in Asian Indians. 

Larger studies are needed to confirm our findings. Once our findings are confirmed, dietary 

guidelines focusing on increasing the consumption of dairy might be effective in reducing 

the risk of MS and components of CMR in Asian Indians.
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4.1 Abstract 

The occurrence of dyslipidaemia, which is an established risk factor for 

cardiovascular diseases, has been attributed to multiple factors including genetic and 

environmental factors. We used a genetic risk score (GRS) to assess the interactions between 

genetic variants and dietary factors on lipid-related traits in a cross-sectional study of 190 

Brazilians (mean age: 21 ± 2 years). Dietary intake was assessed by a trained nutritionist 

using three 24-hour dietary recalls. The high GRS was significantly associated with increased 

concentration of triglycerides (TG) [Beta=0.10 mg/dL, 95% confidence interval (CI) 0.05–

0.16; P<0.001], low-density lipoprotein cholesterol (Beta=0.07 mg/dL, 95% CI 0.04–0.11; 

P<0.0001), total cholesterol (Beta=0.05 mg/dL, 95% CI: 0.03–0.07; P<0.0001) and the ratio 

of TG to high-density lipoprotein cholesterol (HDL-C) (Beta=0.09 mg/dL, 95% CI: 0.03–0.15; 

P=0.002). Significant interactions were found between the high GRS and total fat intake on 

TG:HDL-C ratio (Pinteraction=0.03) and between the high GRS and saturated fatty acids (SFA) 

intake on TG:HDL-C ratio (Pinteraction=0.03). A high intake of total fat (>31.5% of energy) and 

SFA (>8.6% of energy) was associated with higher TG:HDL-C ratio in individuals with the 

high GRS (Beta=0.14, 95% CI: 0.06–0.23; P<0.001 for total fat intake; Beta=0.13, 95% CI: 

0.05–0.22; P=0.003 for SFA intake). Our study provides evidence that the genetic risk of high 

TG:HDL-C ratio might be modulated by dietary fat intake in Brazilians and these individuals 

might benefit from limiting their intake of total fat and SFA.  
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4.2 Introduction 

Cardiovascular diseases (CVDs) are a top cause of mortality globally, accounting for 

32% of all deaths worldwide in 2019 [305]. Over three-quarters of mortality from CVDs has 

been reported to occur in low- and middle-income countries [305], highlighting the 

enormous impact of CVDs in these countries. In Brazil, ischaemic heart disease and stroke 

accounted for most deaths in 2019, with a percentage increase of 18 and 14%, respectively 

from 2009 [306]. An analysis of the factors contributing to death in Brazil using data from 

the Global Burden of Disease 2019 study [307] indicated that, more than 80% of deaths from 

CVDs is attributable to cardiovascular risk factors.  Among the risk factors for CVDs is an 

altered blood lipid profile (dyslipidaemia), which is evidenced by a rise in the concentration 

of triglycerides (TG) or low-density lipoprotein cholesterol (LDL-C) and a reduction in the 

concentration of high-density lipoprotein cholesterol (HDL-C) [3, 107].  

The occurrence of dyslipidaemia has been attributed to multiple factors including 

genetic and environmental factors [18, 104, 130, 251, 308, 309]. Dietary fatty acids are 

involved in modulating the metabolism of lipids and lipoproteins [68, 69], and dietary 

recommendations to reduce CVD risk advocate for a reduction in saturated fatty acids (SFA) 

and total fat intake [71]. A high SFA intake has been associated with a rise in TG-rich 

lipoproteins which is associated with increased risk of myocardial infarction (MI), ischaemic 

stroke, and other CVDs [73-75]. Consumption of SFA has also been linked to a rise in 

circulating levels of inflammatory biomarkers [310, 311] which contributes to the 

development of cardiometabolic diseases, including CVDs [312-314]. A meta-analysis 

involving a total of 49 prospective studies [315] identified that, higher concentration of 

circulating SFA was associated with a 50% increased risk of CVDs, 63% increased risk of 

coronary heart disease (CHD) and 38% increased risk of stroke.  In a cross-sectional study 

of 282 Brazilian adults [316], consumption of SFA was found to be higher than the 

recommended intake in 79.7% of the participants. The fat content of processed foods in 

Brazil was also found to be composed of high amounts of SFA, ranging from 9.3 to 12 grams 

per 100 grams of food products [317].  

Evidence from genome-wide association (GWA) studies has implicated several 

genetic loci for the development of dyslipidaemia [95, 124, 201, 204, 318], but these variants 

account for a small proportion of variability in blood lipid concentrations, and there is 

growing evidence that an interaction between genetic variants and environmental factors is 

responsible for part of the missing heritability [105, 106, 126-129]. Single variants often have 

small effect sizes and an effective approach to assessing the genetic contribution to complex 
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traits is the use of a genetic risk score (GRS), which allows the combined effect of multiple 

variants to be analysed [245, 319]. Single nucleotide polymorphisms (SNPs) of lipid-

pathway genes have been reported to contribute to variations in blood lipid concentrations 

[130, 228, 320, 321]; and the proteins encoded by these genes include cholesteryl ester 

transfer protein (CETP), which regulates HDL-C concentration and particle size by 

promoting the transfer of cholesteryl esters and TG between lipoproteins [48];  

apolipoprotein AI (apoAI) which is the main component of HDL-C and is involved in the 

maturation of HDL-C [322]; glucokinase regulatory protein, which regulates the activity of 

glucokinase [323, 324]; sortilin, which regulates plasma LDL-C by facilitating hepatic uptake 

of ApoB100-containing lipoproteins [325]; and hepatic lipase (LIPC) and endothelial lipase 

(LIPG) which hydrolyse lipoproteins to release free fatty acids [125, 326]. Only a few studies 

have utilised a GRS to assess the interactions between dietary intake and genetic variants on 

CVD traits in Brazilians [139, 319, 327], with even fewer studies focusing on young adults. 

Two of the studies [319, 327] used data from the Obesity, Lifestyle and Diabetes in Brazil 

(BOLD) cross-sectional study and involved 187 and 200 participants aged 19–24 years, 

respectively. Significant GRS-diet interactions were found in relation to vitamin D and 

glycaemic traits, respectively. The third study [139], which was also a cross-sectional study, 

consisted of 228 adults (19–60 years) and  significant GRS-diet interactions on 

dyslipidaemia were reported. Hence, the aim of this study was to assess the genetic 

associations and the interaction of the GRS with dietary factors on lipid-related traits in 

Brazilian young adults.  

4.3 Methods 

4.3.1 Study participants 

The study consisted of 190 young adults aged 19-24 years from the BOLD cross-

sectional study [128, 319]. Participants were recruited between March and June 2019 from 

the Federal University of Goiás. The study was performed as part of the gene-nutrient 

interactions (GeNuIne) collaboration which is aimed at investigating how genetic and 

lifestyle factors interact to influence chronic diseases in diverse ethnic groups, with the goal 

of preventing and managing chronic diseases through personalised nutrition [18, 131, 170, 

171]. Details of the study design are published elsewhere [319, 327]. In brief, a total of 416 

individuals expressed interest in the study but 207 individuals were found to be eligible. 

Participants were excluded if they were using lipid-lowering medication, vitamins, or 

mineral supplements; had undergone dietary interventions in the past six months; or 
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undertaking vigorous physical activity; or had a diagnosis of any chronic disease such as type 

2 diabetes, dyslipidaemia, or hypertension. Out of the 207 eligible participants, 200 

completed the study, however, 190 participants were included in the present analysis after 

excluding participants with missing data for genetic and phenotypic measurements. The 

selection of the participants is shown in Supplementary Figure S4.1. 

The study was approved by the Ethics Committee of the Federal University of Goiás 

(protocol number 3.007.456, 08/11/2018) and written informed consent was obtained 

from all the study participants. The study was performed in accordance with the ethical 

principles in the Declaration of Helsinki. 

4.3.2 Anthropometric and biochemical measurements 

Measurement of anthropometric parameters was done by trained staff from the 

Nutritional Genomics research group of The Federal University of Goiás, Brazil. A Tanita® 

(Tanita Corporation, Itabashi, Tokyo, Japan) portable electronic scale, which has a maximum 

capacity of 150 kg, was used to weigh participants. For height, a stadiometer with a movable 

rod was used and the volunteers were asked to keep upright with heels, calves, shoulder 

blades and shoulders pressed against the wall, knees straight, feet together and arms 

extended along the body; the head raised (making a 90º angle with the ground), with the 

eyes looking at a horizontal plane ahead, in accordance with the Frankfurt plane. Weight and 

height were used to calculate the body mass index (BMI) using the formula: weight (kg)/the 

square of the height (m2). Waist circumference was measured using an inelastic measuring 

tape at the midpoint between the lowest rib margin and the iliac crest [328].  

Blood pressure was measured when the patient was seated, positioning the arm at 

heart level. Three measurements were taken, with five-minute intervals between them. At 

the end, the average of the three measurements was considered, as proposed by the 

American Heart Association [329] and approved by the VI Brazilian Guideline on 

Hypertension [328]. 

Approximately 10mL of venous blood was collected from the medial cubital vein 

following a 12-hour fasting period. The blood collection procedure was performed by a 

trained healthcare professional using single-use materials. Participants were instructed to 

abstain from consuming alcohol for 72 hours and avoid engaging in strenuous physical 

activity for 24 hours prior to the blood collection. The samples were processed immediately 

after collection at the Romulo Rocha Laboratory (Goia nia, Brazil). The levels of TG, total 

cholesterol (TC) and HDL-C were assessed using direct enzymatic colorimetry. LDL-C levels 

were calculated using the Friedewald, Levy, and Fredrickson equation (1972) [330].  
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4.3.3 Dietary assessment 

Dietary intake was assessed by a trained nutritionist using three 24-hour dietary 

recalls consisting of non-consecutive days, including one weekend [331]. The nutritionist 

conducted the first interview in person according to multiple-pass method [332], and the 

following two interviews were conducted via phone calls. To assist in estimating portion 

sizes of various foods, participants were provided with measuring equipment such as 

measuring cups and spoons. Intake of nutrients and energy was determined from the dietary 

recalls using the Avanutri Online® diet calculation software (Avanutri Informática Ltda, Rio 

de Janeiro, Brazil) with three Brazilian food composition databases, Brazilian Institute of 

Geography and Statistics, 2011 [333], food composition table-support for nutritional 

decision making (2016) [334] and food studies and research centre-Brazilian food 

composition table (2011) [335]. For processed or ultra-processed foods that were not in the 

databases, the information in the label was manually added. 

4.3.4 SNP selection and genotyping 

A total of seven SNPs representing seven loci were selected for this study based on 

their association with lipid-related traits at a genome-wide significance level (P<5 × 10−8): 

cholesteryl ester transfer protein (CETP) SNP rs3764261 [94, 96, 97, 124, 205, 336], 

glucokinase regulator (GCKR) SNP rs1260326 [124, 195, 205, 321, 337-339], endothelial 

lipase (LIPG) SNP rs7241918 [124, 340-342], sortilin 1 (SORT1) SNP rs629301 [124, 340, 

341], hepatic lipase (LIPC) SNP rs1532085 [124, 203, 205, 339], apolipoprotein A1 (APOA1) 

SNP rs964184 [95, 124, 195, 197, 200, 202, 207, 343] and ATPase plasma membrane Ca2+ 

transporting 1 (ATP2B1) SNP rs2681472 [344-347]. Table 4.1 shows the SNPs, effect sizes, 

P-values and the GWA studies. A review by our team [130] indicated that the CETP gene had 

the highest number of reported associations with lipid traits, and it was concluded that SNPs 

of the CETP gene could potentially alter blood lipid profiles by interacting with diet. The 

GCKR gene was chosen as it has been reported to influence alterations in  blood lipid profiles 

[348-353]. The LIPG gene, another key lipid metabolism gene has been reported to play a 

role in inflammation and could influence the risk of CVDs [326, 354, 355]. Furthermore, the 

SORT1 gene is considered the strongest genome-wide LDL-C associated locus [95, 123, 336, 

356-358] and the LIPC gene is also a main lipid-pathway gene which has been associated 

with abnormal lipid profiles [124, 203, 205, 341, 359]. Additionally, the APOA1 gene has been 

widely studied and has been linked with variations in blood lipid levels [124, 197, 202, 318, 

360] and the risk of CVDs [361-364]. Similarly, the ATP2B1 gene has been reported to 

influence the risk of developing CVDs [344, 345, 347, 363, 365]. Six of the SNPs included in 
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our GRS (rs3764261, rs1260326, rs7241918, rs629301, rs1532085, rs964184) had 

previously been included in a GRS by a genetic association study involving 6,358 participants 

from the Multi-Ethnic Study of Atherosclerosis (MESA) Classic cohort [366] which observed 

significant associations between the GRS and lipid traits. The genotyping procedure has been 

previously published [327]. Briefly, blood samples (3ml each) for genotyping were collected 

in BD Vacutainer® ethylenediamine tetraacetic acid (EDTA) tubes and kept at a controlled 

temperature of –80ºC during transportation by the World Courier Company. Genotyping was 

performed by LGC Genomics, London, UK (http://www.lgcgroup.com/services/genotyping), 

using the competitive allele-specific PCR-KASP® assay. 

  

http://www.lgcgroup.com/services/genotyping
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Table 4.1 SNPs used to construct the GRS and the reported traits by genome-wide association studies 

Gene & SNP 
Effect 
Allele 

Lipid Trait & Effect size in mg/dL  (P-value) 
Population & Sample Size GWA Study 

HDL-C LDL-C TG TC 

CETP 
rs3764261 

A 
+0.24 
(1 × 10–769) 

–0.05 
(2 × 10–34) 

–0.04 
(2 × 10–25) 

+0.05 
(4 × 10–31) 

European ancestry (UK, 
Finland, Sweden, US, Italy, 
Greece, Germany, Estonia, 
Norway): n=94,595 

Willer et al. 
2013 [341] 

 A 
+3.39 
(7 × 10–380) 

 
–2.88 
(1 × 10–12) 

+1.67 
(7 × 10–14) 

European ancestry (Finland, 
Sweden, US, Australia, Iceland, 
Italy, Netherlands, Germany, 
UK, Croatia, Switzerland, 
Austria, France, Denmark) 
n=99,900 for HDL 
n=96,598 for TG 
n=100,184 for TC 

Teslovich et 
al. 2010 [124] 

 A 
+3.48 
(7 × 10–29) 

   
Northern Finnish Founder: 
n=4,763 

Sabatti et al. 
2009 [205] 

 A 
+0.20* 
(9 × 10–18) 

   African American: n=7,813 
Lettre et al. 
2011 [97] 

 A 
+3.18* 
(7 × 10–43) 

   
Indian 
n=1036 

Khushdeep et 
al. 2019 [94] 
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Table 4.1  continued 

CETP 
rs3764261 

A 
+6.20 
(3 × 10–12) 

   
Japanese 
n=900 

Hiura et al. 
2009 [96] 

LIPG 
rs7241918 

G 
–1.31 
(3 × 10–49) 
 

   

European ancestry 
(Finland, Sweden, US, 
Australia, Iceland, Italy, 
Netherlands, Germany, UK, 
Croatia, Switzerland, Austria, 
France, Denmark) 
n=99,900 

Teslovich et 
al. (2010) 
[124] 

 A    
–1.94 
(2 × 10–19) 

European ancestry 
(Finland, Sweden, US, 
Australia, Iceland, Italy, 
Netherlands, Germany, UK, 
Croatia, Switzerland, Austria, 
France, Denmark): n=100,184 

Teslovich et 
al. (2010) 
[124] 

 G 
–0.09* 

(1 × 10–44) 
  

–0.06* 

(4 × 10–18) 

European ancestry (UK, 
Finland, Sweden, US, Italy, 
Greece, Germany, Estonia, 
Norway): n=94,595 

Willer et al. 
(2013) [341] 
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Table 4.1 continued 

LIPG 
rs7241918 

G 
–0.08* 

(4 × 10–55) 
–0.02* 

(1 × 10–8) 
  

European ancestry 
n=115,082 

Richardson et 
al. (2022) 
[367] 

 A 
+0.02* 

(3 × 10–27) 
   

Multi-ancestry 
(African: n=23761; Asian: 
n=13,171; 
European: n=90272; Hispanic 
or Latin American: n=6620) 

Bentley et al. 
2019 [340] 

GCKR 
rs1260326 

T   
+8.76 
(6 × 10–133) 

+1.91 
(7 × 10–27) 

European ancestry 
(Finland, Sweden, US, 
Australia, Iceland, Italy, 
Netherlands, Germany, UK, 
Croatia, Switzerland, Austria, 
France, Denmark) 
n=96,598 for TG 
n=100,184 for TC 

Teslovich et 
al. (2010) 
[124] 

 T   
+0.12 
(2 × 10–239) 

+0.05* 

(3 × 10–42) 

European ancestry 
(UK, Finland, Sweden, US, Italy, 
Greece, Germany, Estonia, 
Norway): n=94,595 

Willer et al. 
(2013) [341] 
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Table 4.1 continued 

GCKR 
rs1260326 

T   
+0.12* 
(2 × 10–31) 

 
European (UK, Finland, 
Sweden, US, Italy, France) 
n=19,840 

Kathiresan et 
al. (2009) 
[318] 
 
 

 T   
+0.12* 
(5 × 10–88) 

+0.05* 
(3 × 10–13) 

European (UK, Finland, 
Sweden, Iceland, Netherlands, 
Germany, Estonia): n=62,166 

Surakka et al. 
(2015) [360] 

 T  
+0.03* 
(6 × 10–60) 

  European ancestry: n=440,546 
Richardson et 
al. (2020) 
[342] 

 T   
1.41†  
(2 × 10–13) 

 Mexican: n=2240 
Weissglas-
Volkov et al. 
(2013) [321] 

 T  
+0.03* 
(7 × 10–10) 

  

 
 
 
Multi-ancestry (European: 
n=76,627; Hispanic: n=7,795; 
East Asian: n=6,855; African 
American: n=2,958; South 
Asian: n=439) 
 
 
 
 
 

Hoffman et al. 
2018 [9] 
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Table 4.1 continued 

SORT1 
rs629301 

G  
–5.65 
(1 × 10–170) 

 
–5.41 
(6 × 10–131) 

European ancestry (UK, 
Finland, Sweden, US, Australia, 
Iceland, Italy, Netherlands, 
Germany, Croatia, Switzerland, 
Austria, France, Denmark) 
n=100,184 for TC 
N=95,454 for LDL-C 

Teslovich et 
al. (2010) 
[124] 

 G  
–0.17* 
(5 × 10–241) 

 
–0.13* 
(2 × 10–170) 

European ancestry (UK, 
Finland, Sweden, US, Italy, 
Greece, Germany, Estonia, 
Norway) 
n=94,595 

Willer et al. 
(2013) [341] 

 G 
+0.04* 
(4 × 10–15) 

  
–0.14* 
(7 × 10–135) 

Multi-ancestry (European: 
n=76,627; Hispanic: n=7,795; 
East Asian: n=6,855; African 
American: n=2,958; South 
Asian: n=439) 

Hoffman et al. 
2018 [9] 

 T  
+4.46* 
(1 × 10–128) 

  

 
 
 
Multi-ancestry (African: 
n=23,761; Asian: n=13,171; 
European: n=90,272; Hispanic 
or Latin American: n=6,620) 
 
 

Bentley et al. 
2019 [340] 
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   Table 4.1  continued 

SORT1 
rs629301 

G  
–6.03* 
(2 × 10–72) 

 
–5.80* 
(2 × 10–57) 

European 
n=29,902 

Kulminski et 
al. (2020) 
[368] 

 T  
+0.11* 
(2 × 10–31) 

  
Japanese 
n=72,866 

Sakaue  et al. 
(2021) 
[347] 

LIPC 
rs1532085 

A 
+0.11* 
(1 × 10–188) 

  
+0.05* 
(7 × 10–47) 

European ancestry (UK, 
Finland, Sweden, US, Italy, 
Greece, Germany, Estonia, 
Norway) 
n=94,595 

Willer et al. 
(2013) [341] 

 A 
+0.11* 
(1 × 10–213) 

   

Multi-ancestry  
European: n=187,167 
East Asian (China, Japan, 
Republic of Korea, Philippines, 
Singapore, Taiwan): n=34,930 
 
 
 

Spracklen et 
al. (2017) 
[359] 
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Table 4.1 continued 

LIPC 
rs1532085 

G 
–0.13* 
(1 × 10–35) 

   

European ancestry (UK, 
Finland, Sweden, Australia, 
Italy, Netherlands, Germany, 
Croatia, Norway, Denmark) 
n=21,412 

Aulchenko et 
al. 2009 
[203] 

 G   
+2.99 
(2 × 10–13) 

 

European ancestry (Finland, 
Sweden, US, Australia, Iceland, 
Italy, Netherlands, Germany, 
UK, Croatia, Switzerland, 
Austria, France, Denmark) 
n=96,598 

Teslovich et 
al. (2010) 
[124] 

 A 
+1.90 
(2 × 10–10) 

   
Northern Finnish Founder: 
n=4,763 
 

Sabatti et al. 
2009 [205] 

APOA1 
rs964184 

G  
+2.85 
(1 × 10–26) 

+16.95 
(7 × 10–240) 

 

European ancestry (UK, 
Finland, Sweden, US, Australia, 
Iceland, Italy, Netherlands, 
Germany, Croatia, Switzerland, 
Austria, France, Denmark) 
n=96,598 for TG; 
n=95,454 for LDL-C 

Teslovich et 
al. (2010) 
[124] 
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Table 4.1 continued 

APOA1 
rs964184 

G   
+0.24* 
(2 × 10–157) 

 

European (UK, Finland, 
Sweden, Iceland, Netherlands, 
Germany, Estonia) 
n=62,166 

Surakka et al. 
(2015) [360] 

 G 
–0.03* 
(2 × 10–11) 

   
European (UK, Finland, Italy, 
Switzerland) 
n=17,723 

Waterworth 
et al. 2010 
[197] 

 G 
–0.05* 
(3 × 10–12) 

 
+0.16* 
(4 × 10–33) 

 

African American: n=7,601, 
Hispanic: n=3,335 for TG; 
African American: n=7,917, 
Hispanic: n=3,506 for HDL-C 

Coram et al. 
2013 [202] 

 G 
–0.17 
(1 × 10–12) 

 
+0.30* 
(4 × 10–62) 

 

European ancestry (UK, 
Finland, Sweden, US, Italy, 
France) 
n=19,840 

Kathiresan et 
al. (2009) 
[318] 

 CAD MI   

ATP2B1 
rs2681472 

G 
1.07† 
(8 × 10–11) 

 
 
 

European 
n=63731 
 

Nelson et al. 
2017 [345] 
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Table 4.1 continued 

ATP2B1 
rs2681472 

G  
+0.07* 
(1 × 10–11) 

European (UK, Finland): 
n=461,823; Japanese: 
n=161,206 

Sakaue  et al. 
(2021) 
[347] 

 G  
1.08† 
(6 × 10–9) 

European: n=126630, Hispanic 
or Latin American (US): 
n=3615, Middle Eastern, North 
African or Persian: n=754, 
African American or Afro-
Caribbean (US): n=2908, South 
Asian (India, UK, Pakistan): 
n=23,156; East Asian (Republic 
of Korea, China): n=9396 

Nikpay et al. 
(2015) [344] 

 G  
1.07† 
(1 × 10–12) 

European 
N=∼472,000 

Hartiala et al. 
(2021) [365] 

SNP – single nucleotide polymorphism; GRS – genetic risk score; HDL-C – high-density lipoprotein cholesterol; LDL-C – low-density lipoprotein  

cholesterol; TG – triglycerides; TC – total cholesterol; GWA – genome-wide association. 

* Effect sizes are in units of standard deviation 

† Odds ratio 
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4.3.5 Construction of GRS 

To construct the GRS, each SNP was first tested for independent association with the 

lipid-related traits using linear regression analysis, adjusted for age, sex and BMI. An 

unweighted GRS was then constructed by summing the number of risk alleles across all the 

seven SNPs (CETP rs3764261, GCKR rs1260326, LIPG rs7241918, SORT1 rs629301, LIPC 

rs1532085, APOA1 rs964184 and ATP2B1 rs2681472) for each participant. For each SNP, a 

score of 0, 1 or 2 was assigned depending on whether the participant carried no risk alleles 

(homozygous for the non-risk allele), one risk allele (heterozygote) or two risk alleles 

(homozygous for the risk allele). The scores for the seven SNPs were then added up to create 

the GRS. The effect sizes of the SNPs were not considered and the GRS for each participant 

represented the total number of risk alleles they carried from the seven SNPs. An unweighted 

GRS was used because although we selected SNPs which have shown associations with lipid-

related traits, the studies were not conducted in the Brazilian population, and it has been 

reported that effect sizes may vary across populations and data from a GWA study conducted 

in one population may not apply to another population [105, 369]. Moreover, assigning 

weights to risk alleles has been shown to have minimal effect [370]. The risk alleles were 

defined as alleles previously reported to be associated with increased concentration of TG, 

LDL-C or TC; or reduced concentration of HDL-C; or increased risk of coronary artery disease 

(CAD) or MI. The GRS ranged from 1 to 10, and the median GRS (6 risk alleles) was used as a 

cut-off point for grouping participants as low risk (GRS<6 risk alleles) or high risk (GRS≥6 

risk alleles). 

4.3.6 Statistical analyses 

An independent sample t test was used to compare the means of continuous variables 

between men and women. The results for descriptive statistics are presented as means and 

standard deviation (SD). To test for normality, the Shapiro–Wilk test was used and all the 

biochemical, anthropometric and dietary variables, except total fat, carbohydrate, and 

monounsaturated fatty acids (MUFA) intake [percentages of total energy intake (TEI)], were 

log-transformed prior to the analysis. Allele frequencies were determined by gene counting 

and Hardy-Weinberg equilibrium (HWE) was calculated using the Chi-square test. All the 

seven SNPs were in HWE (P>0.05) (Supplementary Table S4.1), and the alleles had a 

frequency >5%. 

Linear regression was used to test the association of the GRS with lipid levels and 

blood pressure, with adjustment for age, sex and BMI. To determine interactions between 
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the GRS and dietary factors on the outcome variables [TG, TG:HDL-C ratio, HDL-C, LDL-C, TC, 

systolic blood pressure (SBP), and diastolic blood pressure (DBP)], the interaction term was 

included in the regression model. The dietary factors examined were the intakes of fat, 

carbohydrate, and protein. Statistically significant GRS-diet interactions (P<0.05) were 

investigated further by stratifying participants according to the quantity of dietary intake. A 

significant interaction between the GRS and total fat intake was explored further by 

analysing the effects of subtypes of fat [SFA, MUFA and polyunsaturated fatty acids (PUFA)]. 

The median intake of total fat, SFA, MUFA and PUFA was used as a cut-off point to place 

participants into groups: ‘low’ (for participants with an intake lower than or equal to the 

median) and ‘high’ (for those with an intake higher than the median); and the effect of the 

GRS on the outcome was examined for participants in each group. The Bonferroni adjusted 

P-value for association was 0.007 (1GRS*7 outcome variables = 7 tests; 0.05/7=0.007), and 

for interaction, it was 0.002 (1GRS*7 outcome variables*3 dietary factors = 21 tests; 

0.05/21=0.002). The statistical analyses were performed using the Statistical Package for 

the Social Sciences (SPSS) software (version 28; SPSS Inc., Chicago, IL, USA). Additionally, the 

GRS was scaled by converting the scores to units of standard deviation from the mean [371] 

and the association of the GRS as a continuous variable with the lipid-related traits was 

tested by linear regression using the R software version 4.3.1 [372]. The data analysis plan 

is attached as an appendix (Appendix B). 

4.3.7 Power and sample size calculation 

Power calculation was performed using the QUANTO software, version 1.2.4 (May 

2009) [373] in the form of minimum detectable effect at 80% power and a significance level 

of 5%. For a SNP with a minor allele frequency (MAF) of 5%, the minimum detectable effect 

at 80% power was 6.6 mg/dL for TC, LDL-C and TG. For a SNP with a MAF of 50%, the 

minimum detectable effect at 80% power was 2.9 mg/dL for TC, LDL-C and TG. 

4.4 Results 

4.4.1 Characteristics of the study participants 

The demographic and clinical characteristics of the participants in this study are 

summarised in Table 4.2. The mean age of the sample was 21 ± 2 years and men had higher 

BMI and WC than women (P=0.01 and P<0.001, respectively). Women, however, had higher 

concentrations of HDL-C (P<0.0001) and TC (P=0.01) but lower TG:HDL-C ratio (P=0.006), 

SBP (P<0.0001), and DBP (P<0.001) than men. Intakes of total energy and protein were 
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higher in men than in women (P=0.003 and P=0.04, respectively), but consumption of total 

fat, SFA, MUFA, PUFA and carbohydrate did not differ significantly between men and women. 

Table 4.3 shows the characteristics of the study participants according to GRS. Participants 

with a high GRS had a significantly lower intake of energy (P=0.02) than those with a low 

GRS. No other significant differences were observed between participants in the two groups. 

The distribution of the GRS across deciles of TC, LDL-C, TG and TG:HDL ratio is presented in 

Supplementary Figure S4.2. 
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Table 4.2 Characteristics of study participants by sex 

 
All (n=190)  Women  (n=141)  Men  (n=49)  

P value 
Mean SD  Mean SD  Mean SD  

Age (years) 21  2  21  2  22  2  0.17 

BMI (kg/m2) 23 1  23  1  24  1  0.01 

WC (cm) 72  1  69  1  83  1  <0.001 

TG (mg/dL) 76  2  76 2  75  2  0.81 

TG:HDL ratio 2 2  1 2  2  2  0.01 

HDL-C (mg/dL) 55  1  59 1  46  1  <0.0001 

LDL-C (mg/dL) 99  1  100  1  99  1  0.80 

TC (mg/dL) 174 1  178  1  163  1  0.01 

SBP (mmHg) 107 1  105 1  114  1  <0.0001 

DBP (mmHg) 64  1  63 1  67  1  <0.001 

Energy (kcal/day) 1735  1  1668  1  1944  1  0.003 

Total fat (% of energy) 32  6  32  6  31 6  0.14 

SFA (% of energy) 9  1  9  1  9  1  0.84 

MUFA (% of energy) 8  3  8  3  8  3  0.07 

PUFA (% of energy) 5 2  5  2  5  2  0.08 

Carbohydrate (% of 
energy) 

51  7 
 

51  7 
 

51  8 
 

0.88 
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Protein (% of energy) 17  1  16 1  18  1  0.04 

SD – standard deviation; BMI – body mass index; WC – waist circumference; TG – triglycerides; HDL-C – high-density lipoprotein cholesterol; 

LDL-C – low-density lipoprotein cholesterol; TC – total cholesterol; SBP – systolic blood pressure; DBP – diastolic blood pressure; SFA – 

saturated fatty acids; MUFA – monounsaturated fatty acids; PUFA – polyunsaturated fatty acids. 

P values for the differences in means between men and women were calculated using independent sample t test. 
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Table 4.3 Association of GRS with blood lipids and blood pressure and the characteristics of the participants stratified by GRS 

Trait 
GRS<6 (n=92) GRS≥6 (n=98) 

P value 
Mean SE Mean SE 

TG (mg/dL) 67.3 1.0 84.9 1.0 <0.001 

TG:HDL-C ratio 1.2 1.0 1.5 1.0 0.002 

HDL-C (mg/dL) 54.5 1.0 55.5 1.0 0.56 

LDL-C (mg/dL) 91.4 1.0 107.6 1.0 <0.0001 

TC (mg/dL) 164.1 1.0 183.7 1.0 <0.0001 

SBP (mmHg) 106.9 1.0 107.2 1.0 0.69 

DBP (mmHg) 63.2 1.0 64.1 1.0 0.48 

Characteristic 
GRS<6 (n=92) GRS≥6 (n=98) 

P value* 
Mean SD Mean SD 

Age (years) 21  2 21  2 0.28 

Sex (W/M) 67/27 – 78/26 – 0.56 

BMI (kg/m2) 23  1 23  1 0.97 

WC (cm) 73  1 72 1 0.59 

Energy (kcal/day) 1827  1 1648  1 0.02 

Total fat (% of energy) 32  6 32 6 0.99 

SFA (% of energy) 9  1 9  1 0.45 

MUFA (% of energy) 8  2 8  3 0.27 
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PUFA (% of energy) 5  1 4 2 0.12 

Carbohydrate (% of energy) 51  7 50  7 0.68 

Protein (% of energy) 17 1 17  1 0.84 

GRS – genetic risk score; SE – standard error; TG – triglycerides; HDL-C – high-density lipoprotein cholesterol; LDL-C – low-density lipoprotein 

cholesterol; TC – total cholesterol; SBP – systolic blood pressure; DBP – diastolic blood pressure; SD – standard deviation; W – women; M – 

men. P values were obtained from linear regression analysis with adjustment for age, sex and body mass index. Log-transformed variables 

were used for the analysis and values in bold represent significant associations.  

* P values for the differences in means between participants with low GRS and those with high GRS were obtained using independent sample 

t test. The distribution of sex in the two groups was compared using the Chi-Squared test. 
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4.4.2 Association of the GRS with blood lipids 

Four significant associations were identified between the GRS and lipid traits where 

individuals carrying six or more risk alleles had significantly higher TG, LDL-C, and TC 

concentrations, as well as higher TG:HDL-C ratio compared to participants with less than six 

risk alleles (Table 4.3). When the GRS was tested as a continuous variable, each standard 

deviation increase in the GRS was associated with a 1.05 mg/dL increase (95% CI 1.02 – 

1.07) in the concentration of TC (P=0.002); 1.07 mg/dL increase (95% CI 1.03 – 1.12) in the 

concentration of LDL-C (P<0.001); 1.14 mg/dL increase (95% CI 1.07 to 1.21) in the 

concentration of TG (P<0.0001); and a 1.16 mg/dL increase (95% CI 1.09 – 1.24) in TG:HDL-

C ratio (P<0.0001). All the associations remained significant after Bonferroni correction for 

multiple testing. The distribution of the lipid-related traits across deciles of the GRS is 

presented in Figure 4.1. As the decile of the GRS increased, the concentration of TC, TG, LDL-

C and TG:HDL also increased. 

 

 

Figure 4.1 Distribution of lipid-related traits across deciles of GRS (genetic risk score) 

TC – total cholesterol; LDL-C – low-density lipoprotein cholesterol; TG – triglycerides; 

TG:HDL-C – ratio of triglycerides to high-density lipoprotein cholesterol. 
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4.4.3 Interaction between GRS and dietary factors on blood lipids 

There was a significant interaction between GRS and total fat intake on TG:HDL-C 

ratio (Pinteraction=0.03) as shown in Table 4.4. In the high total fat intake group (>31.5% of 

TEI), participants carrying six or more risk alleles had a higher TG:HDL-C ratio compared to 

those carrying less than six risk alleles (Beta=0.14, 95% CI: 0.06–0.23; P<0.001) (Figure 

4.2). No significant difference in TG:HDL-C ratio was found between participants with a high 

GRS (≥6 risk alleles) and those with a low GRS (<6 risk alleles) in the low total fat intake 

group (≤31.5% of TEI). When subtypes of fat were investigated, a significant interaction was 

found between GRS and SFA intake on TG:HDL-C ratio (Pinteraction=0.03) (Figure 4.3), where 

a high SFA intake (>8.6% of TEI) was associated with a higher TG:HDL-C ratio in participants 

with a high GRS compared to those with a low GRS (Beta=0.13, 95% CI: 0.05–0.22;  P=0.003); 

but there was no significant difference in TG:HDL-C ratio when SFA intake was low (<8.6% 

of TEI). A significant interaction was also observed between GRS and total fat intake on HDL-

C concentration (Pinteraction=0.007). However, when individuals were stratified according to 

quantity of total fat intake, there was no significant association between the GRS and HDL-C 

concentration. The interactions did not pass the Bonferroni threshold. 
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Table 4.4. Interaction between GRS and dietary factors on blood lipids and blood pressure  

 

 

 

 

 

 

 

Trait 

 
GRS * Protein (% of energy) 

 GRS * Fat (% of energy)  
GRS * Carbohydrate (% of 
energy) 

Beta 
Coefficient  

SE Pinteraction  
Beta 
Coefficient  

SE Pinteraction  
Beta 
Coefficient  

SE Pinteraction 

TG (mg/dL) 0.33 0.30 0.27  0.01  0.01  0.26  -0.004  0.004   0.30 

TG:HDL-C ratio 0.28 0.32  0.39  0.01  0.01  0.03  -0.01  0.004  0.06 

HDL-C (mg/dL) 0.06 0.14 0.70  -0.01  0.002 0.007  0.004  0.002 0.05 

LDL-C (mg/dL) 0.29 0.18 0.12  -0.001  0.003  0.75  0.001  0.002  0.69 

TC (mg/dL) 0.22  0.13 0.10  -0.002  0.002  0.35  0.001  0.002  0.46 

SBP (mmHg) 0.002  0.05 0.96  -0.0002  0.001 0.83  -0.001  0.001  0.17 

DBP (mmHg) -0.03  0.08 0.71  0.00004  0.001  0.98  -0.001  0.001  0.31 

GRS – genetic risk score; SE – standard error; TG – triglycerides; HDL-C – high-density lipoprotein cholesterol; LDL-C – low-density lipoprotein 

cholesterol; TC – total cholesterol; SBP – systolic blood pressure; DBP – diastolic blood pressure. 

P values were obtained from linear regression analysis with adjustment for age, sex and body mass index. Log-transformed variables were 

used for the analysis and values in bold represent significant interactions.  
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Figure 4.2 Interaction between GRS (genetic risk score) and dietary fat intake on 

TG:HDL-C (triglycerides to high-density lipoprotein cholesterol) ratio.  

(a) Interaction between GRS and total fat intake on TG:HDL-C ratio. Low refers to total fat 

intake lower or equal to the median and high refers to total fat intake above the median. In 

the high total fat intake group, participants with a high GRS (≥6 risk alleles) had higher 

TG:HDL-C ratio than those with a low GRS (<6 risk alleles). There was no significant 

difference in TG:HDL-C ratio in the low total fat intake group. 
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(b) Interaction between GRS and SFA (saturated fatty acids) intake on TG:HDL-C ratio. 

Low refers to SFA intake lower or equal to the median and high refers to SFA intake above 

the median. A high intake of SFA was associated with higher TG:HDL-C in participants with 

a high GRS compared to those with a low GRS, but no significant difference in TG:HDL-C was 

observed when SFA intake was low. 

4.5 Discussion 

Our findings provide evidence that the genetic risk for disturbances in blood lipids 

concentration might be modulated by dietary fat intake. Significant interactions were found 

between the GRS and total fat intake on TG:HDL-C ratio; and between the GRS and SFA intake 

on TG:HDL-C ratio. Increased consumption of total fat (>31.5% of energy) and SFA (>8.6% 

of energy) was associated with higher TG:HDL-C ratio in participants carrying ≥6 risk alleles 

compared to those with <6 risk alleles. The results suggest that the TG:HDL ratio in Brazilian 

young adults with a high genetic risk for disturbances in lipid-related traits maybe 

responsive to dietary fat intake; hence, interventions targeting a reduction in total fat and 

SFA intake could potentially benefit these individuals. Although the interactions did not pass 

the Bonferroni threshold, three of the SNPs included in our GRS (CETP rs3764261, APOA1 

rs964184 and GCKR rs1260326) have previously been reported to interact with dietary fat 

intake and influence lipid-related traits. In a study involving two trials [a 2-year randomised 

weight loss trial (POUNDS LOST) consisting of 732 overweight/obese adults and a 

replication in 171 overweight/obese adults from an independent 2-year randomised weight 

loss trial (DIRECT)] [214], significant interactions were observed between the CETP SNP 

rs3764261 and dietary fat intake on changes in the concentration of HDL-C and TG (pooled 

Pinteraction<0.01). Similarly, a prospective, randomised, single-blind controlled dietary 

intervention trial [Coronary Diet Intervention With Olive Oil and Cardiovascular Prevention 

(CORDIOPREV)] involving 424 Spanish individuals with metabolic syndrome [191], found 

significant interactions between the CETP SNP rs3764261 and Mediterranean diet on the 

concentration of HDL-C (Pinteraction=0.006) and TG (Pinteraction=0.04). In another study 

consisting of 734 overweight/obese adults from the POUNDS LOST trial [374], the APOA1 

SNP rs964184 was also found to interact with dietary fat intake in relation to changes in the 

concentration of HDL-C, LDL-C and total cholesterol (Pinteraction=0.006, 0.02 and 0.007, 

respectively). Additionally, a cross-sectional study of 3,342 individuals (1,671 sib pairs) in 

India [242] found a significant interaction between the APOA1 SNP rs964184 and dietary fat 

intake on the concentration of TG (P=0.04). This study [242] also observed significant 
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interactions between the CETP SNP rs3764261 and dietary fat intake on the concentrations 

of total cholesterol (P=0.02) and LDL-C (P=0.04). Furthermore, an interaction between the 

GCKR SNP rs1260326 and MUFA intake on HDL-C concentration was reported in a cross-

sectional study of 101 participants of different ethnicities in the US population 

(Pinteraction=0.02) [189]. Therefore, the interactions in our study cannot be ruled out 

completely; hence a replication is warranted.  

 The ratio of TG:HDL-C  has been identified as an independent predictor of CHD, 

mortality from CVDs and insulin resistance [74, 75, 375, 376]. Hence, our findings have 

significant public health implications in terms of prevention and management of 

dyslipidaemia in individuals with a high genetic risk. Our data support the recommendations 

of the WHO [71] to reduce the intake of total fat and SFA to less than 30% and 10% of energy 

intake, respectively to help prevent cardiometabolic diseases. Our findings are also in 

agreement with the dietary guidelines for Brazilians which recommend decreasing the 

intake of food rich in solid fat and added sugar and limiting the daily energy intake from total 

fat to less than 30% [377, 378]. 

In the current study, the GRS was positively associated with the concentration of TG, 

LDL-C and TC; and the ratio of TG:HDL-C. Our findings are consistent with those of a study 

involving 8,526 participants from two Danish cohorts [379] [a randomised 

nonpharmacological intervention study (Inter99), n=5,961; and a population-based 

epidemiological study (Health2006), n=2,565], in which a positive association was identified 

between lipid-GRS and the concentration of TG (Beta=1.4% mmol/L, P<0.0001); LDL-C 

(Beta=0.024 mmol/L, P<0.0001); and TC (Beta= 0.027 mmol/L, P<0.0001). Similarly, a 

prospective study of 3,495 Swedish participants [380], reported significant associations 

between lipid-GRS and changes in the concentration of TC and TG after a 10-year follow up 

[Beta=0.02 mmol/L per effect allele, P<0.0001 for TC; Beta=0.02 mmol/L per effect allele, 

P<0.0001 for TG]. The European Prospective Investigation of Cancer (EPIC)-Norfolk cohort 

study, consisting of 20,074 participants [381], also found  a positive association between a 

lipid-GRS and the concentration of TG [Beta=0.25 mmol/L, 95% CI 0.22–0.27 per allele 

change; P<0.001], indicating the role of genetic polymorphisms in predicting variability in 

blood lipid concentration. 

A systematic review and meta-analysis of six prospective studies including 10,222 

participants [74] reported that, in patients with CHD, those with elevated TG:HDL-C ratio 

had increased risk of all-cause mortality [Hazard ratio (HR)=2.92, 95% CI 1.75–4.86; P<0.05] 

and major adverse cardiovascular events (HR=1.56, 95% CI 1.11–2.18; P<0.05) compared to 
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those with lower TG:HDL-C ratio. In line with our findings, a study conducted in 228 

Brazilian adults [139] reported a significant interaction between a GRS based on lipid 

metabolism genes and intake of solid fat, alcoholic beverages and added sugar on the risk of 

dyslipidaemia (Pinteraction<0.001), where participants with a high GRS had a lower risk of 

dyslipidaemia when their intake of solid fat, alcoholic beverages and added sugar was below 

the median. Similarly, a prospective randomised controlled trial involving 523 Spanish 

patients with CAD from the CORDIOPREV study [382] reported that, carriers of the risk allele 

(‘G’ allele) of APOA1 SNP rs964184 who consumed a low-fat diet (containing <30% of total 

fat) had reduced post-prandial TG concentrations after 3 years, while ‘G’ allele carriers on a 

Mediterranean diet (containing a minimum of 35% of total fat) continued to have higher 

post-prandial TG concentrations. Along these lines, a fat response genetic score based on 

SNPs showing a positive interaction with dietary fat in relation to LDL-C, was found to 

predict a 1-year change in LDL-C in a sample of 422 Black and Hispanic participants from 

the Women’s Health Initiative cohort [383]. A significant interaction was identified between 

the dietary modification trial arm and fat response genetic score for LDL-C concentration 

(P=0.002), where participants in the control arm showed a trend towards minimal 

reductions in LDL-C concentrations at higher fat response genetic scores, while the opposite 

trend was observed in participants following a low-fat diet [383]. Taking together, these 

findings suggest that the genetic susceptibility to dyslipidaemia could be modulated by 

dietary fat intake in different populations. 

A nationwide dietary survey involving 32,749 Brazilian  individuals (≥10 years old) 

[384] highlighted a change in dietary pattern in Brazil which is characterised by increased 

consumption of processed foods rich in fat and simple sugars. An increase in the 

consumption of ultra-processed food among Brazilians aged ≥10 years was also reported in 

a study using food consumption data from 2008–2009 (n=34,003) and 2017–2018 

(n=46,164) Household Budget Surveys [385]. Similarly, an assessment of the diet quality of 

Brazilians using data from the national survey [377] showed that, in 60% of the population, 

the mean SFA intake was 10.7% of TEI, which exceeds the WHO’s recommendation of <10% 

of TEI [71]. The study [377] also reported that solid fat and added sugar contributed more 

than 45% of TEI. In the present study, the median intake of total fat was 31.5% of TEI which 

is more than the recommended intake of <30% [71]; however, the median intake of SFA 

(8.6% TEI) was within the recommended level [71]. This suggests that individuals who have 

a genetic predisposition to dyslipidaemia may find greater benefit from adhering to dietary 

recommendations. 
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 The mechanisms through which dietary fat intake affects blood lipid concentration 

have been examined by several studies [68, 238, 386-388]. Dietary fatty acids affect lipid 

metabolism through the activation of several transcription factors and nuclear receptors 

including peroxisome proliferator-activated receptors (PPARs) and liver X receptors [238, 

388]. PPARs regulate the expression of different genes involved in lipid and lipoprotein 

metabolism and the activation of PPARs is positively correlated with the chain length and 

degree of unsaturation of fatty acids [68, 238, 388].  SFA are also believed to decrease LDL-

C receptor activity which slows the clearance of TG-rich lipoproteins [238], and this could 

explain the increased TG:HDL-C ratio observed among participants in the high SFA intake 

group. Consumption of SFA has also been shown to suppress the expression of genes 

involved in fatty acid oxidation and synthesis of TG [68], and promote the expression of 

inflammatory genes [389]. However, SFA of different chain lengths and from different food 

sources have been reported to exert different effects on cardiometabolic traits [390, 391]. 

The main strength of our study is the use of a GRS based on established lipid 

metabolism genes. Our study is one of few studies which have utilised this approach to 

explore CVD traits in Brazilian young adults, considering the increased prevalence of CVDs 

in young people aged 15–49 years in Brazil in 2019 [392]. The GRS approach is more 

effective in assessing the genetic contribution to complex traits such as blood lipid 

concentration since single variants often have moderate effect sizes and hence less likely to 

accurately predict the genetic risk of multifactorial traits [104, 129, 281]. Another strength 

is the use of validated techniques and trained personnel to assess biochemical, 

anthropometric, and dietary variables, which enhances the accuracy of the assessments. 

However, our study has some limitations. The small sample size could have influenced our 

findings since large sample sizes improve the power to detect interactions with small effects 

[393, 394]. Additionally, we were not able to replicate our findings due to a lack of access to 

similar Brazilian cohorts with data on both genetics and dietary information. Nonetheless, 

we were able to replicate previously reported associations and interactions. Another 

limitation is the use of self-reported dietary recalls which can introduce bias through 

overestimation and underestimation of dietary intake [152, 395]. Moreover, we did not 

investigate types or food sources of SFA which have been reported to have different effects 

on CVD traits [294, 390]. Additionally, the cross-sectional design means that causality 

between dietary fat intake and TG:HDL-C ratio cannot be established [105].  
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4.6 Conclusion 

In conclusion, our study provides evidence that the genetic risk of increased TG:HDL-

C ratio might be modulated by dietary fat intake. The findings indicate that Brazilian young 

adults with a high genetic risk for dyslipidaemia might benefit from limiting their intake of 

total fat and SFA. Our results support the dietary guidelines of the WHO which recommend 

reducing total fat and SFA to help prevent cardiometabolic diseases. The findings suggest 

that personalised nutrition strategies based on GRS might be effective for the prevention and 

management of dyslipidaemia but confirmation in dietary intervention studies with large 

sample sizes is required.   
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5.1 Abstract 

The prevalence of cardiometabolic diseases has increased in Latin American and the 

Caribbean populations (LACP). To identify gene-lifestyle interactions that modify the risk of 

cardiometabolic diseases in LACP, a systematic search using 11 search engines was 

conducted up to May 2022. Eligible studies were observational and interventional studies in 

either English, Spanish, or Portuguese. A total of 26,171 publications were screened for title 

and abstract; of these, 101 potential studies were evaluated for eligibility, and 74 articles 

were included in this study following full-text screening and risk of bias assessment. The 

Appraisal tool for Cross-Sectional Studies (AXIS) and the Risk Of Bias In Non-Randomized 

Studies—of Interventions (ROBINS-I) assessment tool were used to assess the 

methodological quality and risk of bias of the included studies. We identified 122 significant 

interactions between genetic and lifestyle factors on cardiometabolic traits and the vast 

majority of studies come from Brazil (29), Mexico (15) and Costa Rica (12) with FTO, APOE, 

and TCF7L2 being the most studied genes. The results of the gene-lifestyle interactions 

suggest effects which are population-, gender-, and ethnic-specific. Most of the gene-lifestyle 

interactions were conducted once, necessitating replication to reinforce these results. The 

findings of this review indicate that 27 out of 33 LACP have not conducted gene-lifestyle 

interaction studies and only five studies have been undertaken in low-socioeconomic 

settings. Most of the studies were cross-sectional, indicating a need for 

longitudinal/prospective studies. Future gene-lifestyle interaction studies will need to 

replicate primary research of already studied genetic variants to enable comparison, and to 

explore the interactions between genetic and other lifestyle factors such as those 

conditioned by socioeconomic factors and the built environment. The protocol has been 

registered on PROSPERO, number CRD42022308488. 
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5.2 Introduction 

Cardiometabolic diseases such as hypertension and type 2 diabetes (T2D) are 

accountable for most non-communicable disease (NCD) deaths and impose an economic 

burden on low- and middle-income countries [396]. In Latin American and the Caribbean 

populations (LACP), the prevalence of hypertension, T2D and obesity is 47, 22, and above 

20%, respectively [397, 398]. The aetiology of cardiometabolic diseases is multifactorial 

where studies have demonstrated an interaction between the environment, genetic, 

behavioural, physiological, and socioeconomic factors [18, 170, 171, 281, 399, 400]. These 

intertwined mechanisms interact, modifying the risk of developing cardiometabolic 

diseases. Genetic variations or single nucleotide polymorphisms (SNPs) may modify the 

susceptibility to cardiometabolic diseases conditioned by the exposure to lifestyle factors 

[18, 170]. Genome-wide association studies have identified several genetic loci associated 

with cardiometabolic traits but most of these studies have been performed in Caucasian 

populations [95, 197, 198, 203, 339, 401]. Similarly, majority of nutrigenetic studies have 

been performed in Western countries and the findings might not be applicable to low-

income countries due to variations in allele frequencies, dietary pattern and environmental 

factors [18, 130]. 

Factors such as changes in patterns of food consumption, the process of urbanization, 

increased health and socioeconomic disparities, underfinanced healthcare systems, lower 

levels of income and productivity, and the rise in sedentary lifestyle have led to an increase 

in NCDs [402-406]. Moreover, studies have shown that metabolic responses to lifestyle 

factors such as diet and physical activity vary between ethnicities due to genetic 

heterogeneity [18, 105, 128, 170], and hence we sought to determine which lifestyle factors 

are interacting with genetic variants in different LACP with regard to cardiometabolic 

disease traits. The discovery of gene-lifestyle interactions in LACP will help to identify 

population subgroups that will respond to lifestyle interventions.  

The influence of gene-lifestyle interactions on obesity, T2D and cardiovascular 

diseases (CVDs) has been broadly studied, and there is evidence that the genetic risk of 

cardiometabolic traits can be modified [18, 170, 407-410]. However, to our knowledge, no 

previous systematic reviews have been conducted regarding the interactions of genetic and 

lifestyle factors on cardiometabolic disease traits in LACP. Thus, the objective of this 

systematic review was to identify studies examining the interactions between genetic 

variants and lifestyle factors such as diet, nutrient intake, nutritional status, physical activity, 
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socioeconomic factors, and the built environment on obesity, cardiovascular diseases, and 

T2D-related traits in LACP. 

5.3 Methods 

5.3.1 Inclusion and exclusion criteria 

Eligible for inclusion were articles that explored the interaction between genetic 

variations and lifestyle factors on cardiometabolic disease traits in LACP. All cardiometabolic 

diseases and traits were considered including CVDs, cerebrovascular diseases such as 

stroke, blood lipid levels, obesity-related traits such as body mass index (BMI) and T2D-

related traits such as fasting glucose. The eligible articles included observational and dietary 

intervention studies and were in either English, Spanish, or Portuguese. Articles that did not 

explore gene-lifestyle interactions or were not based on LACP were excluded. 

5.3.2 Information sources and search strategy 

A literature search was conducted in MEDLINE (via PubMed and EBSCO Host), Web 

of Science, ScienceDirect, SciELO, SCOPUS, Taylor & Francis Online, Cochrane library, LILACS 

(Latin American and Caribbean Health Sciences Literature), IBECS, Google Scholar, and ERIC 

(Education Resources Information Center via EBSCO Host) search engines until the 25th of 

May 2022. To reach literature saturation, the researchers conducted independent search 

strings (Supplementary Section 1, Table S5.1), and the included publications were 

searched through to identify potential articles in reference lists. We followed the Peer 

Review of Electronic Search Strategies (PRESS) guideline [411] and the literature search was 

limited to human participants and had no dates of publication restrictions. The protocol was 

registered on PROSPERO, number CRD42022308488. 

5.3.3 Study selection, synthesis methods, effect measures, and data collection 

process 

Duplicate articles were removed using Rayyan software [412], titles and abstracts 

were blindly screened to assess against the pre-established inclusion criteria, followed by 

full-text screening and discussion until consensus between E.F.V. and R.W. All the data 

required to assess the eligibility of the studies was available, hence study investigators were 

not contacted to obtain or confirm the data. The reviewers ensured consistency across the 

data that needed to be extracted, and a narrative synthesis was conducted to collate the data, 

including populations, lifestyle factors, study designs, genetic variations, cardiometabolic 
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disease traits, and P-values for gene-lifestyle interactions on obesity, diabetes and CVD traits. 

P-values for gene-lifestyle interactions were used as indicators of the relationship between 

the exposure (genetic and lifestyle factors) and the outcome (cardiometabolic traits).  P-

values<0.05 were considered statistically significant. Pinteraction refers to the P-value for the 

interaction between the genetic variant and dietary/lifestyle factors on cardiometabolic 

traits. To synthesize the findings, we categorised the outcomes into four categories: obesity, 

diabetes, CVD, and overall cardiometabolic risk. We then coded the exposures considering 

major themes; proteins, carbohydrates, fats, and fibre as well as plasma fatty acids, 

polyunsaturated fatty acids (PUFA), saturated fatty acids (SFA), breastfeeding, smoking, 

alcohol, coffee, and lifestyle (if the exposure was multiple, including factors embracing diet, 

physical activity, smoking, and/or socioeconomic status, education), macronutrients (when 

the exposures included at least proteins, carbohydrates, fats and fibre), and micronutrients 

(when the exposure referred to minerals or vitamins). The final graphical representation of 

the interaction between the genetic variations, and the coded lifestyle factors on the 

clustered outcomes was a heat map, where the intensity of the colour corresponds to the P-

values of the gene-lifestyle interactions (Figures 5.1–5.4). All heat maps were produced 

using the ggplot2 package [413] in R software with RStudio environment [414]. A meta-

analysis could not be conducted due to the wide range of dietary factors, genetic variants 

and cardiometabolic traits investigated by the included studies, in addition to heterogeneity 

in the methods used.   
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Figure 5.1 A heat map showing the findings for gene-lifestyle interactions on overall cardiometabolic disease risk 

Alsulami et al. [327], Metabolic-GRS = TCF7L2 (rs12255372, rs7903146); MC4R (rs17782313, rs2229616); PPAR-γ (rs1801282); FTO (rs8050136); 

CDKN2A/2B (rs10811661); KCNQ1 (rs2237892); CAPN10 (rs5030952); Alathari et al. [319], Vitamin D-GRS = VDR (rs2228570, rs7975232), DHCR7 

(rs12785878), CYP2R1(rs12794714), CYP24A1(rs6013897), GC (rs2282679), FTO (rs8050136, rs10163409), TCF7L2 (rs12255372, rs7903146), 
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MC4R (rs17782313), KCNQ1 (rs2237895, rs2237892), CDKN2A (rs10811661), PPAR-γ (rs1801282), CAPN10 (rs5030952); Costa-Urrutia et al. 

[415], Obesity-GRS = ABCA1 (rs2230806, rs9282541); ADIPOQ (rs2241766); ADRB2 (rs1042713); AGT (rs699); APOA4 (rs675); APOB (rs512535); 

APOE (rs405509); CAPN10 (rs2975760, rs2975762, rs3792267); FTO (rs1121980, rs9939609); HNF4 (rs745975); LIPC (rs1800588); LPL (rs320); 

PPAR-α (rs1800206); PPAR-γ (rs1801282); SCARB1 (rs1084674); TCF7L2 (rs7903146); TNF (rs361525); TRHR (rs1689249, rs7832552); Norde et 

al. [416], 5-SNPs = IL10 rs1554286, rs1800871, rs1800872, rs1800890, rs3024490; Oki et al. [417], 4-SNPs = TNF-α rs1799724, rs1800629, 

rs361525, rs1799964; Norde et al. [418], 4-SNPs = TLR4 rs11536889, rs4986790, rs4986791, rs5030728; Oki et al. [419], 3-SNPs = CRP rs1205, 

rs1417938, rs2808630; Norde et al. [416], 4-SNPs = IL1B rs16944, rs1143623, rs1143627, rs1143643; 3-SNPs = rs1800795, rs1800796, 

rs1800797; BR, Brazilian; ME, Mexican; PR, Puerto Rican; AR, Argentinian. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

115 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2 A heat map showing the findings for gene-lifestyle interactions on cardiovascular disease traits 

Sotos-Prieto et al. [420], MI-GRS = CDKN2A/2B (rs4977574, rs10757274, rs2383206, rs1333049); CELSR2-PSRC1-SORT1 (rs646776, rs599839); 

CXCL12(rs501120, rs1746048); HNF1A, C12orf43 (rs2259816); MRAS (rs9818870); SLC22A3 (rs2048327); LPAL2 (rs3127599); LPA (rs7767084, 

rs10755578); Fujii et al. [139], Cardiometabolic-GRS = APOA5 (rs662799); APOB (rs693, rs1367117); LDLR (rs688, rs5925); LIPC (rs2070895, 

rs1800588); Yang et al. [421], 3-SNPs = APOE rs7412, rs449647, rs429358; Fiegenbaum et al. [422], 3-SNPs = APOC3 rs2854116, rs2854117, 
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rs5128; Maintinguer Norde et al. [423], 5-SNPs = ADIPOQ rs2241766, rs16861209, rs17300539, rs266729, rs1501299; Carvalho et al. [424], 3-

SNPs = FADS rs174575, rs174561, rs3834458; Barcelos et al. [425], 3-SNPs = eNOS rs2070744, rs1799983, rs61722009; Zheng et al. [426], 3-

SNPs = Chromosome 9p21 rs4977574, rs2383206, rs1333049. BR, Brazilian; CR, Costa Rican. 
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Figure 5.3 A heat map showing the findings for gene-lifestyle interactions on obesity traits 

Vilella et al. [427], 10-SNPs = FTO rs79149291, rs62048379, rs115530394, rs75066479, rs2003583, rs115662052, rs114019148, rs62034079, 

rs1123817, rs16952663; Smith et al. [428], 4-SNPs = LRP1 rs1799986, rs1799986, rs1800191, rs715948; Guevara-Cruz et al. [429], 3-SNPs 

= CAPN10 rs5030952, rs3792267, rs2975762. BR, Brazilian; PR, Puerto Rican; ME, Mexican; CO, Colombian. 
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Figure 5.4 A heat map showing the findings for gene-lifestyle interactions on diabetes traits 

 

López-Portillo et al. [430], GRS-16 Type 2 Diabetes (T2D) risk SNPs = MTNR1B (rs10830963); TCF7L2 (rs7903146); CDKAL1 (rs7756992); 

ADCY5 (rs11717195); ANK1 (rs516946); BCAR1 (rs7202877); CDC123 (rs11257655); DUSP9 (rs5945326); GRB14 (rs3923113); RASGRP1 

(rs7403531); TLE4 (rs17791513); TLE1 (rs2796441); ZBED3 (rs6878122).
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5.3.4 Data items 

Data was extracted in Table 5.1 and the main outcomes were diabetes, obesity, CVD, 

and their related traits including lipid levels, blood pressure and anthropometric 

measurements. 
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Table 5.1 Summary table of gene-lifestyle interactions and study characteristics 

Gene & SNP Population & 

Sample Size 

Study 

Design 

Dietary/Lifestyle 

Factor 

Outcome Pinteraction* Reference 

FTO 

rs9939609 

 
Brazilian   

n=1088 

LS Plasma vitamin D 

 
BMI 0.02 – 0.04 Lourenço et al. 

2014 [431] 

rs9939609 

 
Brazilian   

n=1215 

C-S Screen time Cardiometabolic risk score 0.047 Sehn et al. 2022 

[432] 

rs9939609 Brazilian   

n=432 

C-C Physical activity 

intervention 

TC, HDL, LDL, TG, glucose, 

insulin, HOMA-IR, QUICKI 

NS do Nascimento et 

al. 2018 [433] 

rs9939609 Brazilian 

n=3701 

P-C 

 

 

Breastfeeding BMI, overweight, fat mass, 

lean mass, WC, visceral 

and subcutaneous 

abdominal fat thickness 

0.01 – 0.02 Horta et al. 2018 

[434] 

rs9939609 Brazilian   

n=434 

C-C hypocaloric diet, 

physical exercise 

program 

BMI, WC, AC 0.047 do Nascimento et 

al. 2019 [435] 

rs17817449 Colombian   

n=212/212 

C-C Physical activity BMI NS 

 
Orozco et al. 2014 

[436] 

rs17817449 Colombian 

n=1081 

C-S Socioeconomic stratum, 

maternal education year, 

maternal breastfeeding 

BMI NS Muñoz et al. 2017 

[437] 

rs79149291, rs62048379, 

rs115530394, rs75066479, 

rs2003583, rs115662052, 

rs114019148, rs62034079, 

rs1123817, rs16952663 

Brazilian  

n=1191 

C-S Carbohydrate, protein, 

total fat, MUFA, 

PUFA:SFA intake 

 

 

 

Overweight/obesity 0.01 Vilella et al. 2017 

[427] 
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Table 5.1 Continued 

APOE       

rs7412, rs429358  Brazilian  

n=567  

C-S Olive oil, PUFA, sucrose, 

soluble and insoluble 

fibre 

LDL, TG, TC 0.018 – 0.04 de Andrade et al. 

2010 [438] 

rs7412 Brazilian  

n=252 

C-S Total fat, PUFA:SFA LDL, TG, VLDL  

 
<0.05 Paula et al. 2010 

[439] 

rs7412 Brazilian  

n=851 

P-C Alcohol intake SBP, DBP NS Correa Leite et al. 

2013 [440] 

rs7412 Mexican 

n=224 

C-S MUFA intake, n-3:n-6 TC, Non-HDL, LDL, HbA1c 0.016 – 

0.035 

Torres-Valadez et 

al. 2020 [441] 

rs7412 Costa Rican 

n=420 

C-S SFA TG, TC, VLDL, LDL, HDL, 

Apo A1, Apo B, LDL 

particle size 

0.02 – 0.03 Campos et al. 2001 

[442] 

rs7412, , rs429358,  

rs449647 

Costa Rican 

n=1927/1927 

C-C SFA TC, HDL, LDL, TG, MI 0.0157 Yang et al.  2007 

[421] 

APOA5 

rs3135506 Brazilian 

n=567 

C-S Olive oil, PUFA, sucrose, 

soluble and insoluble 

fibre 

LDL, TG, TC 0.018 – 0.04 de Andrade et al. 

2010 [438] 

rs3135506, rs662799 Mexican 

n=100/100 

C-C SFA, total fat TC, TG, LDL, HDL, obesity 0.001 – 0.02 Domínguez-Reyes 

et al. 2015 [443] 

rs3135506, rs662799 Puerto Rican 

n=802 

LS Total fat WC, serum glucose, SBP, 

DBP, HDL, IDL, TC, VLDL 

0.002 – 

0.032 

 

Mattei et al. 2009 

[444] 
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Table 5.1 Continued 

APOA5 

rs3135506 Puerto Rican 

n=821 

LS Total fat WC, SBP, DBP 0.001 – 

0.005 

Mattei et al 2011 

[445] 

MTHFR 

rs1801133, rs1801131 Brazilian 

n=3803 

C-S Physical activity, alcohol 

intake, and blood folate 

Homocysteine <0.001-

0.002 

Oliveira et al. 2017 

[446] 

rs1801133, rs1801131 Brazilian 

n=113 

C-S Fat, protein, 
carbohydrate intake, 
physical activity 

Vitamin B12, 
homocysteine, folic acid, 
HDL, LDL, TG, oxidized 
LDL 

0.005  – 

0.034 

Surendran et al. 

2019 [309] 

rs1801133 Mexican 

n=996 (women); 

231 (new-borns) 

P-C Folate and Vitamin B12 Weight, length and BMI of 

new-born 

0.02 Torres-Sánchez et 

al. 2014 [447] 

rs1801133 Mexican 

n=130 

C-S Vitamin B12, alcohol 

intake  

Plasma Folate, total 

homocysteine 

0.01 Torres-Sánchez et 

al. 2006 [448] 

ACE 

rs4340 Brazilian 

n=335 

C-S Sodium, potassium, 
calcium, magnesium  

 

SBP, DBP 0.004 – 

0.009 

Giovanella et al. 

2021 [449] 

rs4340 Colombian 

n=1081 

C-S Socioeconomic stratum, 

maternal education year, 

maternal breastfeeding 

BMI NS Muñoz et al. 2017 

[437] 

rs4646994 Brazilian 

n=234 

C-C Sodium  Hypertension 

 

 

NS Freire et al. 2017 

[450] 
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Table 5.1 Continued 

ACE 

rs4646994  Brazilian 

n=34 

RCT Physical activity SBP, DBP 0.02 –0.002 Goessler et al. 2015 

[451] 

TCF7L2 

rs7903146 Mexican 

n=137 

P-LS Two diets: Nopal tortilla 

and whole grain bread 

Weight, BMI, WC, HC, 

WHR, glucose, HbA1c, TG, 

TC, HDL, LDL, insulin, 

HOMA-B, HOMA-IR, GLP-1 

NS López-Ortiz et al. 

2016 [452] 

rs7903146 Colombian 

n=1081 

C-S Socioeconomic stratum, 

maternal education year, 

maternal breastfeeding 

BMI NS Muñoz et al. 2017 

[437] 

rs7903146, rs12255372, 

rs7903146, rs12255372 
Puerto Rican 

n=1120 

C-S Mediterranean diet 

score 

BMI, WC, weight 0.014 – 

0.036 

Sotos-Prieto et al. 

2020 [453] 

ABCA1 

rs5888 Brazilian 

n=567 

C-S Olive oil, PUFA, sucrose, 

soluble and insoluble 

fibre 

LDL, TG, TC 0.018 – 0.04 de Andrade et al. 

2010 [438] 

rs9282541 Mexican 

n=3591 

C-S Carbohydrate  

 
HDL 0.037 Romero-Hidalgo et 

al. 2011 [454] 

rs2230806 Colombian 

n=1081 

C-S Socioeconomic stratum, 

maternal education year, 

maternal breastfeeding 

BMI 

 

 

 

NS Muñoz et al. 2017 

[437] 
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Table 5.1 Continued 

LIPC 

rs2070895 Brazilian 

n=567 

C-S Olive oil, PUFA, sucrose, 

soluble and insoluble 

fibre 

LDL, TG, TC 0.018 – 0.04 de Andrade et al. 

2010 [438] 

rs1800588 Mexican 

n=167/398 

C-C Maximal oxygen 
consumption (VO2 max), 
muscle endurance (ME)   

pre-diabetes (fasting 

glucose concentrations) 

NS Costa-Urrutia et al. 

2018 [455] 

rs1800588 Dominican/Puerto 

Rican, other 

Caribbean 

Hispanics 

n=41 

RCT High fat diet  HDL, LDL, TC, TG, glucose NS Smith et al. 2017 

[456] 

APOC3 

rs2854116, rs2854117, rs5128 Brazilian 

n=673 

C-S Smoking TG 0.009 Fiegenbaum et al. 

2007 [422] 

rs2854116, T-625del Costa Rican 

n=336 

C-S SFA   TG, TC, LDL, HDL, Apo B, 

LDL diameter 

0.0004 –0.01 Brown et al. 2003 

[457] 

rs138326449 Puerto Rican 

n=821 

LS Total fat WC, SBP, DBP 0.001 – 

0.005 

Mattei et al 2011 

[445] 

CETP 

rs708272 Brazilian 

n=567 

C-S Olive oil, PUFA, sucrose, 

soluble and insoluble 

fibre 

LDL, TG, TC 0.018 – 0.04 de Andrade et al. 

2010 [438] 

rs708272 Mexican 

n=215 

C-S Sucrose intake, physical 

activity  

TC, LDL,TG, HDL, TG:HDL, 

BMI, WC 

 

0.033 – 

0.037 

Campos-Perez et al 

2020 [98] 
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Table 5.1 Continued 

CETP 

rs708272 Colombian 

n=1081 

C-S Socioeconomic stratum, 

maternal education year, 

maternal breastfeeding 

BMI NS Muñoz et al. 2017 

[437] 

ADIPOQ 

rs2241766, rs16861209, 

rs17300539, rs266729, rs1501299 

Brazilian 

n=262 

C-S Plasma fatty acids (14:0, 

16:0, 16:1 n-7, 18:0, 

18:1, 18:2 n-6, 18:3 n-3, 

20:3 n-6, AA, EPA, DPA, 

DHA, SFA, MUFA, n-6, n-

3, PUFA, n-3 HUFA, SCD-

16, SCD-18, D5D, D6D) 

Systemic Inflammation 0.019 – 

0.044 

Maintinguer Norde 

et al. 2016 [423] 

rs17300539 Mexican 

n=394 

C-S MUFA, physical activity adiponectin level NS 

 
Garcia-Garcia et al. 

2014 [458] 

rs2241766 Mexican 

n=167/398 

C-C VO2 max, ME 

 
pre-diabetes (fasting 

glucose concentrations) 

NS Costa-Urrutia et al. 

2018 [455] 

PPAR-γ 

rs1801282 Mexican 

n=167/398 

C-C VO2 max, ME 

 
pre-diabetes (fasting 

glucose concentrations) 

NS Costa-Urrutia et al. 

2018 [455] 

rs1801282 Costa Rican 

n=1805/1805 

C-C PUFA intake  

 

 

 

MI, PUFA in adipose tissue 0.016 –0.03 Ruiz-Narváez et al. 

2007 [459] 
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Table 5.1 Continued 

PPAR-γ 

rs1801282 Argentina 

n=572 

C-S Smoking status MetS, fasting plasma 

glucose, SBP, DBP, WC, 

HDL, TG, fasting insulin, 

loginsulin, HOMA-IR, 

LogHOMA-IR, QUICKI 

0.031 Tellechea et al. 

2009 [460] 

PPAR-γ  C1A 

rs8192678 Mexican 

n=167/398 

C-C VO2 max, ME 
 

 

pre-diabetes (fasting 

glucose concentrations) 

NS Costa-Urrutia et al. 

2018 [455] 

PPAR-α 

rs1800206 Mexican 

n=167/398 

C-C VO2 max, ME 
 

 

pre-diabetes (fasting 
glucose concentrations) 

NS Costa-Urrutia et al. 

2018 [455] 

rs1800206 Mexican 

n=608 

C-C VO2 max, ME BMI, WC, fat mass, pre-DM 

 
0.001 – 

0.007 

Costa-Urrutia et al. 

2017 [415] 

APOA4 

rs693, rs675, rs5110 Brazilian 

n=391 

C-S Smoking, alcohol intake, 
physical activity 

 

BMI, WC 0.007 – 0.02 Fiegenbaum et al. 

2003 [461] 

rs5104 Puerto Rican 

n=821 

 

 

 

 

LS Total fat 

 

 

 

 

WC, SBP, DBP 0.001 – 

0.005 

Mattei et al 2011 

[445] 
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Table 5.1 Continued 

IRS1 

rs2943641 Puerto Rican 

n=1144 

 

LS 25(OH)D HOMA-IR 0.004 – 

0.023 

Zheng et al. 2014 

[462] 

rs1801278 Chile 

n=243 

NRCT 3-day unrestricted diet 

containing 300 g/d of 

carbohydrate, an 

overnight fast of 10h and 

75 g glucose 

Fasting glucose, fasting 
insulin, fasting HOMA-IR, 
insulinogenic index, 
insulin sensitivity index 
composite 

NS Sir-Petermann et 

al. 2004 [463] 

IRS2 

rs1805097 Colombian 

n=1081 

C-S Socioeconomic stratum, 

maternal education year, 

maternal breastfeeding 

BMI NS Muñoz et al. 2017 

[437] 

PON1 

rs662 Mexican 

n=206 

C-S Urinary 1-

hydroxypyrene 

Serum asymmetric 
dimethylarginine (ADMA) 

0.02 Ochoa-Martínez et 

al. 2017 [464] 

rs662 Mexican 

n=185 

C-S Urinary arsenic levels ADMA, fatty acid-binding 
protein 4, micro-RNAs  

<0.001 –

<0.010 

Ochoa-Martínez et 

al. 2021 [465] 

rs662, rs854560 Costa Rican 

n=492/518 

C-C Smoking status  

 

 

MI 
 
 
 

0.04 Sen-Banerjee et al. 

2000 [466] 
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Table 5.1 Continued 

AGT 

rs699 Brazilian 

n=335 

C-S Sodium, potassium, 
calcium, magnesium  

 

SBP, DBP 0.004 – 

0.009 

Giovanella et al. 

2021 [449] 

rs699 Colombian 

n=1081 

C-S Socioeconomic stratum, 

maternal education year, 

maternal breastfeeding 

BMI NS Muñoz et al. 2017 

[437] 

ADRB2 

rs1042713, rs1042714 Brazilian 

n=197 

P-C Physical exercise 

intervention 

Body fat, AC, BMI, DBP, 
SBP, TC, HDL, LDL, TG, 
glucose, insulin, HOMA-IR, 
QUICK, TG-glucose index 

0.001 de Souza et al. 

2022 [467] 

rs1042713 Mexican 

n=608 

C-C VO2 max, ME 

 

BMI, WC, fat mass, pre-DM 
 

0.001 – 

0.007 

Costa-Urrutia et al. 

2017 [415] 

TNF-α 

rs1799724, rs1800629,  rs361525, 

rs1799964 

Brazilian 

n=281 

C-S Plasma fatty acids 

(C14:0, C16:0, C18:0, 

C16:1, C18:1, n-6, C18:2, 

C20:3, C20:4, n-3, C18:3, 

C20:5, C22:5, C22:6, n-3 

HUFA, SCD-16, SCD-18, 

D5D, D6D, n-6:n-3, SFA, 

MUFA, PUFA) 

 

 

Systemic inflammation 0.026 –0.044 Oki et al. 2017 

[417] 
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Table 5.1 Continued 

TNF-α 

rs361525, rs7832552 Mexican 

n=608 

C-C VO2 max, ME 

 

BMI, WC, fat mass, pre-
diabetes 
 

0.001 – 

0.007 

Costa-Urrutia et al. 

2017 [415] 

CAPN10 

rs5030952, rs3792267, rs2975762 Mexican 

n=31 

P-C Low SFA diet, soy 

protein, soluble fiber 

TC, TG, HDL, LDL 
 

NS Guevara-Cruz et al. 

2014 [429] 

rs3842570 Colombian 

n=212/212 

C-C Physical activity BMI NS 

 
Orozco et al. 2014 

[436] 

rs3842570 Colombian 

n=1081 

C-S Socioeconomic stratum, 

maternal education year, 

maternal breastfeeding 

BMI NS Muñoz et al. 2017 

[437] 

PCSK9 

rs11206510 Costa Rican 

n=1932/2055 

C-C LC n-3 PUFA, EPA, DPA, 

DHA 

MI 0.012 Yu et al. 2017 [468] 

rs11206510 Mexican American 

n=1734 

C-S Serum Vitamin A LDL 7.65×10-5 Dumitrescu et al. 

2012 [469] 

CYP1A2 

rs762551 Costa Rican 

n=2014/2014 

C-C Coffee intake MI 0.04 El-Sohemy et al. 

2007 [470] 

rs762551 Costa Rican 

n=873/932 

C-C Smoking  MI NS Cornelis et al. 2004 

[471] 

CYP1A1 

rs1048943 Costa Rican 

n=873/932 

C-C Smoking  MI NS Cornelis et al. 2004 

[471] 
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Table 5.1 Continued 

APOA2 

rs5082 Mexican 

n=100/100 

C-C SFA, total fat TC, TG, LDL, HDL, obesity 0.001 – 0.02 Domínguez-Reyes 

et al. 2015 [443] 

rs5082 Puerto Rican 

n=930 

C-S SFA  BMI 0.02 Corella et al. 2009 

[137] 

APOA1 

rs1799837 Puerto Rican 

n=821 

LS Total fat WC, SBP, DBP 0.001 – 

0.005 

Mattei et al 2011 

[445] 

rs1799837 Brazilian  

n=567  

C-S Olive oil, PUFA, sucrose, 

soluble and insoluble 

fibre 

LDL, TG, TC 0.018 – 0.04 de Andrade et al. 

2010 [438] 

APOB 

rs512535 Mexican 

n=608 

C-C VO2 max, ME 

 

BMI, WC, fat mass, pre-DM 
 

0.001 – 

0.007 

Costa-Urrutia et al. 

2017 [415] 

rs693 Mexican American 

n=1734 

C-S Serum Vitamin E LDL 8.94×10-7 Dumitrescu et al. 

2012 [469] 

LPL 

rs320 Puerto Rican 

n=1171 

LS Low PUFA, n-3 PUFA, 

n-6 PUFA intake  

BMI, WC 0.02 – 0.04 Ma et al. 2014 

[472] 

rs285 Colombian 

n=1081 

C-S Socioeconomic stratum, 

maternal education year, 

maternal breastfeeding 

BMI 
 
 
 
 

NS Muñoz et al. 2017 

[437] 
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Table 5.1 Continued 

UCP3 

rs1800849 Colombian 

n=212/212 

C-C Physical activity BMI NS 
 

Orozco et al. 2014 

[436] 

rs1800849 Colombian 

n=1081 

C-S Socioeconomic stratum, 

maternal education year, 

maternal breastfeeding 

BMI NS Muñoz et al. 2017 

[437] 

TLR4 
rs11536889, rs4986790, 

rs4986791, rs5030728 

Brazilian 

n=262 

C-S Systemic Inflammation 0.034 
 

Norde et al. 
2017 [418] 

Systemic 

Inflammation 

BDKRB2 

rs1799722 

Brazilian 

n=335 

C-S Sodium, potassium, 
calcium, magnesium  

 

SBP, DBP 0.004 – 
0.009 

Giovanella et al. 

2021 [449] 

FADS 

rs174575, rs174561, rs3834458 

Brazilian 

n=250 

C-S α-linolenic acid, 
linoleic:α-linolenic acid 
ratio. 

Plasma concentration of 
PUFA 

0.004 – 
0.028 
 

Carvalho et al. 

2019 [424] 

CYBA (p22phox) 

rs4673 

Brazilian 

n=1298 

C-S Urinary sodium SBP, DBP, hypertension <0.001 –  
0.004 

Schreiber et al. 

2013 [473] 

eNOS 

rs2070744, rs1799983, rs61722009 

Brazilian 

n=113 

C-S Alcohol intake  SBP, DBP, nitrite levels in 
plasma 

0.033 
 

Barcelos et al. 2015 

[425] 

FNDC5 

rs16835198 

Brazilian 

n=1701 

C-S Cardiorespiratory 
fitness, lower limb 
strength 

WC, BMI 0.007 – 
0.044 

Todendi et al. 2021 

[474] 

LEPR rs8179183 , rs1137101 

 

Mexican 

n=100/100 

 

C-C SFA, total fat intake TC, TG, LDL, HDL, obesity 0.001 – 0.02 Domínguez-Reyes 

et al. 2015 [443] 
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Table 5.1 Continued 

ACSL1 rs9997745 Mexican 

n=167/398 

C-C VO2 max, ME 
 

pre-diabetes  NS Costa-Urrutia et al. 

2018 [455] 

TRHR rs16892496 Mexican 

n=608 

C-C VO2 max, ME BMI, WC, fat mass, pre-
diabetes 

0.001 – 
0.007 

Costa-Urrutia et al. 

2017 [415] 

DRD2/ANKK1 rs1800497 Mexican 

n=175 

C-S Maltose, total fat, MUFA, 
dietary cholesterol   

TG 0.001 –0.041 Ramos-Lopez et al. 

2019 [475] 

GFOD2 rs12449157 Mexican 

n=41 

P-C Low SFA diet, soy 
protein and soluble fiber  

TC, LDL, HDL, TG 0.002 – 
0.006 

Guevara-Cruz et al. 

2013 [476] 

PLA2G4A rs12746200 Costa Rican 

n=1936/2035 

C-C n-6 PUFA intake MI 0.005 Hartiala et al 2012 

[477] 

CRP 

rs1205, rs1417938 , rs2808630 

 Brazilian 

n=262 

C-S Plasma fatty acids 
(Myristic acid, Palmitic 
acid, Stearic acid, C16:1, 
C18:1, n-6, C18:2, C20:3, 
C20:4, n-3, C18:3, C20:5, 
C22:5, C22:6, n-3 HUFA, 
SFA, MUFA, PUFA, SCD-
16, SCD-18, D5D, D6D, n-
6/n-3) 

Systemic Inflammation 0.047 Oki et al. 2016 

[419] 

GSTM1 rs366631 

GSTP1 rs1695 

GSTT1 rs17856199 

Costa Rican 

n=2042/2042   

C-C Cruciferous vegetables, 
smoking 

MI 
 
 
 
 
 
 
 

0.008 Cornelis et al. 2007 

[478] 
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Table 5.1 Continued 

IL1B 

rs16944, rs1143623, rs1143627, 

rs1143643 

IL6 

rs1800795, rs1800796, rs1800797 

IL10 

rs1554286, rs1800871, rs1800872, 

rs1800890, rs3024490 

Brazilian 

n=301 

C-S Plasma fatty acid (C14:0, 
C16:0, C16:1 n-9, C18:0, 
C18:1 n-9, C18:2 n-6, 
C18:3 n-3, AA, EPA, DHA, 
n-6, n-3); desaturates 
activity (SCD-16, SCD-
18, D6D, D5D)  

MetS 0.007 – 
0.043 

Norde et al. 2018 

[416] 

MTR rs1805087 

MTRR rs1801394 

TCN2 rs1801198 

COMT rs4680, rs4633 

BHMT rs492842, rs3797546 

FUT2 rs602662 

Brazilian 

n=113 

C-S Fat, protein, 
carbohydrate intake, 
physical activity 
 

Vitamin B12, 
homocysteine, folic acid, 
HDL, LDL, triglycerides, 
oxidized LDL 
 

0.005  – 
0.034 

Surendran et al. 

2019 [309] 

GSTM1 rs366631 

GSTP1 rs1695 

GSTT1 rs17856199 

Costa Rican 

n=2042/2042   

C-C Cruciferous vegetables, 
smoking 

MI 
 

0.008 Cornelis et al. 2007 

[478] 

LRP1 rs1799986, rs1799986, 

rs1800191, rs715948 
Puerto Rican 

n=676 

P-C SFA, palmitic acid 
(C16:0), stearic acid 
(C18:0), 
butyric acid (C4:0), 
caproic acid (C6:0), 
caprylic acid (C8:0), 
capric acid (C10:0), 
lauric acid (C12:0), 
myristic acid (C14:0)  

BMI, WC, HC 0.002 – 
0.004 

Smith et al. 2013 

[428] 

PLIN rs894160 Puerto Rican 

n=920 

LS Complex carbohydrate, 
total carbohydrate, 
simple sugars  

WC, HC, BMI 0.004 – 
0.035 

Smith et al. 2008 

[479] 
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Table 5.1 Continued 

Chromosome 9p21 

rs4977574, rs4977574, 

rs2383206, rs1333049 

Costa Rican 

n=1560/1751 

C-C Sugar sweetened 
beverages,  
fruit juice  

MI 0.005 –0.03 Zheng et al. 2016 

[426] 

BDNF rs6265 Puerto Rican 

n=1340 

LS PUFA, 
n-3 : n-6, food intake  

BMI, WC, HC 0.002 – 
0.043 

Ma et al. 2012 

[480] 

PNPLA3 rs738409 Hispanic ancestry 

n=153 

C-S Carbohydrate, sugar  Hepatic fat 0.01 – 0.04 Davis et al. 2010 

[481] 

SRBI rs4238001 Brazilian  

n=567  

C-S Olive oil, PUFA, sucrose, 
soluble and insoluble 
fibre 

LDL, TG, TC 0.018 – 0.04 de Andrade et al. 

2010 [438] 

GRS:TCF7L2 (rs12255372, 
rs7903146); MC4R (rs17782313, 
rs2229616); PPAR-γ   (rs1801282); 
FTO (rs8050136); CDKN2A/2B 
(rs10811661); KCNQ1 (rs2237892); 
CAPN10 (rs5030952) 

Brazilian  

n=200  

C-S Total fat, SFA, PUFA, 
MUFA, carbohydrate, 
protein 

HbA1c, HOMA-IR, HOMA-
B, fasting glucose, fasting 
insulin, insulin:glucose, 
body fat mass, BMI, WC 

0.002 –0.017 Alsulami et al. 2021 

[327] 

GRS: VDR (rs2228570, rs7975232), 
DHCR7 (rs12785878), 
CYP2R1(rs12794714), 
CYP24A1(rs6013897), GC 
(rs2282679), FTO (rs8050136, 
rs10163409), TCF7L2 (rs12255372, 
rs7903146), MC4R (rs17782313), 
KCNQ1 (rs2237895, rs2237892), 
CDKN2A ( rs10811661), PPAR-γ  
(rs1801282), CAPN10 (rs5030952) 

Brazilian  

n=187 

C-S Carbohydrate, protein, 
fat and fibre  

BMI, WC, body fat, glucose, 
HbA1c, fasting insulin 

0.006 Alathari et al. 2022 

[319] 
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Table 5.1 Continued 

GRS: ABCA1 (rs2230806, 
rs9282541); ADIPOQ (rs2241766); 
ADRB2 (rs1042713); AGT (rs699); 
APOA4 (rs675); APOB (rs512535); 
APOE (rs405509); CAPN10 
(rs2975760, rs2975762 , 
rs3792267);  FTO (rs1121980, 
rs9939609); HNF4  (rs745975); LIPC 
(rs1800588); LPL (rs320); PPAR-α 
(rs1800206); PPAR-γ  (rs1801282); 
SCARB1 (rs1084674); TCF7L2 
(rs7903146); TNF (rs361525); TRHR 
(rs1689249, rs7832552) 

Mexican 

n=608 

C-C VO2 max, ME BMI, WC, fat mass, pre-
diabetes 
 

0.001 – 
0.007 

Costa-Urrutia et al. 

2017 [415] 

GRS: CDKN2A/2B (rs4977574, 
rs10757274, rs2383206, 
rs1333049); CELSR2-PSRC1-SORT1 
(rs646776, rs599839); 
CXCL12( rs501120, rs1746048); 
HNF1A, C12orf43 (rs2259816); 
MRAS (rs9818870); SLC22A3 
(rs2048327); LPAL2 (rs3127599); 
LPA (rs7767084, rs10755578) 

Costa Rican 

n=1534/1534 

C-C Lifestyle cardiovascular 
risk score (unhealthy 
diet, physical inactivity, 
smoking, elevated 
waist:hip ratio, high 
alcohol intake, low 
socioeconomic status.) 

MI NS Sotos-Prieto et al. 

2016 [420] 

GRS based on 97 BMI associated 
SNPs 

Puerto Rican, 

Mexicans, 

Dominicans, 

Cuban, Central 

American, South 

American 

n=9645 

P-C Total physical activity, 
physical activity at a 
moderate to vigorous 
intensity, sedentary 
behaviour  
 
 
 
 
 

BMI, fat mass, fat mass 
index, fat percentage, WC 
Fat-free mass 

0.001 –0.005 Moon et al 2017 

[482] 
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Table 5.1 Continued 

GRS: MTNR1B (rs10830963); 
TCF7L2 (rs7903146); CDKAL1 
(rs7756992); ADCY5 (rs11717195); 
ANK1 (rs516946); BCAR1 
(rs7202877); CDC123 (rs11257655); 
DUSP9  (rs5945326); GRB14 
(rs3923113); RASGRP1 
(rs7403531); TLE4 (rs17791513); 
TLE1 (rs2796441); ZBED3 
(rs6878122) 

Chile 

n=2828 

P-C Sugar sweetened 
beverages intake 

Fasting glucose 0.001 –0.02 López-Portillo et al. 

2022 [430] 

GRS: APOA5 (rs662799); APOB 
(rs693, rs1367117); LDLR (rs688, 
rs5925); LIPC (rs2070895, 
rs1800588) 

Brazilian  

n=228 

C-S Brazilian Healthy Eating 
Index Revised 

Dyslipidaemia 0.001 –0.019 Fujii et al. 2019 

[139] 

APOE – Apolipoprotein E; APOA – apolipoprotein A; ApoB – apolipoprotein B; SRBI – scavenger receptor class B member 1; ABCA1 – ATP binding 

cassette subfamily A member 1; CETP – cholesteryl ester transfer protein; APOC3 – Apolipoprotein C; ADIPOQ – adiponectin; TLR4 – toll like 

receptor 4; FTO – alpha-ketoglutarate dependent dioxygenase; CRP – C-reactive protein; GRS – genetic risk score; MTHFR – 

methylenetetrahydrofolate reductase; FADS – fatty acid desaturase; TNF – tumour necrosis factor; ADRB – adrenoceptor beta; ACE – angiotensin I 

converting enzyme; AGT – angiotensinogen; BDKRB – bradykinin receptor; eNOS – endothelial nitric oxide synthase; CYBA – cytochrome B-245 

alpha chain; IL – interleukin; FNDC5 – fibronectin type III domain containing 5; VDR – vitamin D receptor; DHCR7 – 7-Dehydrocholesterol 

Reductase; CYP2R1 – cytochrome P450 family 2 subfamily R member 1; CYP24A1 – cytochrome P450 family 24 subfamily A member 1; GC – group-

specific component; TCF7L2 – transcription factor 7 like 2; MC4R – melanocortin-4-receptor; KCNQ1 – potassium voltage-gated channel subfamily 

Q member 1; CDKN – cyclin dependent kinase inhibitor; PPAR – peroxisome proliferator activated receptor; CAPN – Calpain; MTR – methionine 

synthase; MTRR – 5-methyltetrahydrofolate-homocysteine methyltransferase reductase; TCN2 – transcobalamin 2; COMT – catechol-O-

methyltransferase; BHMT – betaine-homocysteine S-methyltransferase; FUT2 – fucosyltransferase 2; LEPR – leptin receptor; TRHR – thyrotropin 
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releasing hormone receptor; LIPC – hepatic lipase; ACSL – acyl-CoA synthetase long chain family member 1; GFOD2 – Glucose-Fructose 

Oxidoreductase Domain Containing 2; PCSK9 – proprotein convertase subtilisin/kexin type 9; PON1 – Paraoxonase 1; CYP1A2 – cytochrome P450 

family 1 subfamily A member 2; PLA2G4A – phospholipase A2 group IVA; GSTM1 – glutathione S-transferase Mu 1; GSTP1 – glutathione S-

transferase Pi 1; GSTT1 – glutathione S-transferase theta 1; CYP1A1 – cytochrome P450 family 1 subfamily A member 1; CELSR2 – Cadherin EGF 

LAG seven-pass G-type receptor 2; PSRC1 – proline and serine rich coiled-coil 1;  SORT1 – sortilin 1; CXCL12 – C-X-C motif chemokine ligand 12; 

HNF1A – hepatocyte nuclear factor 1; MRAS – muscle RAS oncogene homolog; SLC22A3 – solute carrier family 22 member 3; LPAL2 – lipoprotein(A) 

like 2, pseudogene; LPA – lipoprotein(A); IRS – insulin receptor substrate; MTNR1B – melatonin receptor 1B; CDKAL1 – CDK5 regulatory subunit-

associated protein 1-like 1; ADCY5 – adenylyl cyclase type V; ANK1 – ankyrin-1.  BCAR1 – breast cancer anti-estrogen resistance protein 1; CDC123 

– cell division cycle 123; DUSP9 – dual specificity phosphatase 9; GRB14 – growth factor receptor bound protein 14; RASGRP1 – RAS guanyl-

releasing protein 1; TLE – transducin-like enhancer protein; ZBED3 – zinc finger BED-Type containing 3; UCP3 – uncoupling protein 3; LPL –

lipoprotein lipase; MetS – metabolic syndrome; SBP – systolic blood pressure; DBP – diastolic blood pressure; WC – waist circumference; BMI – 

body mass index; TG – triglycerides. HDL – high-density lipoprotein cholesterol; HOMA-IR – homeostasis model assessment estimate of insulin 

resistance; QUICKI – quantitative insulin-sensitivity check index; AUC – area under the curve TC – total cholesterol; VLDL – very-low density 

lipoprotein cholesterol; LDL – low-density lipoprotein cholesterol; MI – myocardial infarction; PUFA – polyunsaturated fatty acid; MUFA – 

monounsaturated fatty acid; SFA – saturated fatty acid; n-3 – omega-3; LC – long-chain; EPA – eicosapentaenoic acid; DPA – docosapentaenoic 

acid; DHA – docosahexaenoic acid; C-S, – cross-sectional; RCT – randomised controlled trial; NRCT – non-randomised controlled trial; P-C – 

prospective cohort; LS – longitudinal study; C-C – case-control; NS – not significant. *Only significant Pinteraction values are given. 
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5.3.5 Risk of bias and certainty of assessment 

To evaluate the methodological quality and risk of bias (RoB) of cross-sectional 

studies we used the Appraisal tool for Cross-Sectional Studies (AXIS) [483] (Supplementary 

Section 2, Tables S5.2 and S5.3). Cohort studies, case-control studies, and non-randomized 

trials were assessed by using the RoB in Non-randomized Studies – of Interventions 

(ROBINS-I) assessment tool [483, 484] (Supplementary Section 2, Table S5.4). Risk of bias 

due to missing results was assessed using the AXIS RoB (questions 12 to 14) and the ROBINS-

I assessment [part 5 (questions 5.1 to 5.4)]. The current article adheres to the 

recommendations of the Synthesis without Meta-analysis (SWiM) in Systematic Reviews: 

Reporting Guideline [485]. 

5.4 Results 

5.4.1 Study selection and characteristics 

The search string results had an output of 29,092 articles and from these, 101 articles 

were identified as potential studies. After the full-text screening, 27 articles were excluded 

for the following reasons: six studies were not based on LACP [486-491], five studies aimed 

to identify the effect of genomic ancestry [492-496], six studies focused only on genetic 

associations [497-502], eight studies did not include cardiometabolic diseases [503-510], 

and two studies investigated gene-phenotype interactions [511, 512] as shown in Figure 

5.5. Finally, after excluding the irrelevant articles based on the exclusion criteria, 74 studies 

were included in this systematic review as shown in Table 5.1. 
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Figure 5.5 A flow chart showing the exclusion criteria and selection of studies 

 

Literature search was conducted in MEDLINE (via PubMed and EBSCO Host), Web of Science, 

ScienceDirect, SciELO, SCOPUS, Taylor & Francis Online, Cochrane library, LILACS (Latin 

American and Caribbean Health Sciences Literature), IBECS, Google Scholar, and ERIC 

(Education Resources Information Center via EBSCO Host) search engines until the 25th of 

May 2022. 
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5.4.2 Gene-lifestyle interactions in LACP 

The 74 studies conducted in LACP encompass ethnicities from Argentina, Colombia, 

Chile, Costa Rica, Mexico, Brazil, and LACP diaspora, including Dominicans, Puerto Ricans, 

Mexicans, and other Hispanic ethnicities residing in the United States of America (USA). Most 

of the studies are focused on four countries: Brazil (29), Mexico (15), Costa Rica (12) and 

Puerto Ricans in Boston (10). The studies have identified 122 significant gene-lifestyle 

interactions on cardiometabolic traits (P<0.05), as shown in Table 5.1. The results are 

stratified by country to enable identification of ethnic-specific gene-lifestyle interactions and 

to present a structured mapping of the research gaps for a multidisciplinary audience. 

5.4.3 Gene-lifestyle interactions in Brazilians 

5.4.3.1 Interaction between dietary fat intake and genetic variants on CVD traits 

Interaction between dietary fat intake and genetic variants on CVD-related traits was 

examined by five Brazilian studies [139, 309, 424, 438, 439]. In a cross-sectional study of 

567 participants [438], a significant interaction was reported between olive oil intake and 

Apolipoprotein E (APOE) genotype on low-density lipoprotein cholesterol (LDL) 

(Pinteraction=0.028), where a high intake of olive oil (≥ once a week) was associated with lower 

LDL levels in men carrying the ‘E2’ allele but had no effect in men without the ‘E2’ allele. In 

this study [438], a high polyunsaturated fatty acid (PUFA) intake (> twice a week) was 

associated with increased LDL levels in carriers of the ‘E4’ allele, but this was not observed 

in participants without the ‘E4’ allele (Pinteraction=0.04). A reduction in triglyceride levels in 

response to a high PUFA intake was also observed in carriers of the ‘E2’ allele but not in 

participants without the ‘E2’ allele (Pinteraction=0.04). A high PUFA intake was also associated 

with increased high-density lipoprotein cholesterol (HDL) concentration in participants 

without the ‘E4’ allele and reduced HDL levels in carriers of the ‘E4’ allele (Pinteraction=0.018) 

[438]. In contrast, a cross-sectional study of 252 Brazilian women [439] observed increased 

triglyceride and very-low density lipoprotein cholesterol (VLDL) in response to a low PUFA 

or a high fat diet intake in carriers of the ‘E4’ allele of APOE, but not in non-carriers 

(Pinteraction<0.05 for both). The findings of the first study [438] indicate that, PUFA intake 

might be beneficial in increasing HDL levels in individuals without the ‘E4’ allele, while in 

those with the ‘E4’ allele, PUFA intake might contribute to a rise in triglyceride and LDL levels 

which is associated with higher risk of CVDs [513]. Nonetheless, the findings of the second 

study [439] suggest a detrimental effect of low PUFA intake in carriers of the ‘E4’ allele. The 

differences in the findings could be attributed to the small sample sizes and the fact that, the 
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second study [439] was conducted in women unlike the first study [438]. PUFA is a ligand 

for peroxisome proliferator-activated receptors (PPARs) which are involved in regulating 

several lipid-pathway genes and it has been suggested that, increased consumption of PUFA 

might promote the expression of APOE and hepatic uptake of ‘E4’-containing VLDL particles 

[514, 515]. 

Furthermore, a cross-sectional study of 228 Brazilian participants from the Health 

Survey of São Paulo (HS-SP) [139] observed significant interactions between a GRS based on 

seven SNPs (Table 5.1) and the Brazilian Healthy Eating Index Revised (BHEI-R) on the risk 

of dyslipidaemia. Participants with a higher GRS (5 to 8) had a lower odds ratio for 

dyslipidaemia with an intake of BHEI-R oil component above the median (Pinteraction=0.019); 

while those with a GRS >9 had a lower odds ratio for dyslipidaemia with an intake of BHEI-

R solid fats, alcoholic beverages and added sugars (SoFAAS) component below the median 

(Pinteraction<0.001). Similarly, a cross-sectional study involving 250 pregnant women [424] 

observed significant interactions between fatty acid desaturase (FADS) SNPs (rs174561 and 

rs3834458) and dietary α-linolenic acid (ALA) and linoleic/α-linolenic acid ratio (LA/ALA) 

on plasma concentrations of omega-3 (n−3) PUFAs. It was reported that, in women with high 

ALA intake, plasma ALA concentrations were higher in homozygotes for the minor allele 

(P<0.05), compared to carriers of the major allele (MM and Mm) of rs174561 and 

rs3834458. However, the P values given in the study (P=0.004 for rs174561 and P=0.028 for 

rs3834458) seem to represent associations stratified by genotype, instead of interactions. 

FADS are involved in the synthesis of PUFA and their activation is linked to inflammation 

and coronary artery disease [516, 517], and these findings suggest that SNPs which alter the 

activation of FADS might affect plasma concentration of PUFA. In another cross-sectional 

study of 113 adolescents from the Obesity, Lifestyle and Diabetes in Brazil (BOLD) study 

[309], no significant interactions were reported between  seven genes involved in the one-

carbon metabolism pathway (Table 5.1) and fat intake on lipid-related traits. 

5.4.3.2 Interaction between dietary fat intake and genetic variants on glycaemic 

traits 

Interaction between dietary fat intake and genetic variants on glycaemic traits was 

investigated by two cross-sectional studies [319, 327] using data from the BOLD study. In 

the first study which consisted of 200 participants [327], a high total fat intake (37.98% of 

total energy intake (TEI)/day) was shown to interact with a 10-SNP metabolic-GRS (Table 

5.1), where individuals with 5 or more risk alleles had increased homeostasis model 

assessment estimate of insulin secretion (HOMA-B) (Pinteraction=0.016), fasting insulin 
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(Pinteraction=0.017), body fat mass (Pinteraction=0.009), and decreased insulin:glucose ratio 

(Pinteraction=0.01), but the interaction did not influence homeostasis model assessment 

estimate of insulin resistance (HOMA-IR), glycated haemoglobin (HbA1c), or waist 

circumference (WC). Similarly, the second BOLD study [319] which also examined the 

interaction between dietary fat intake and a 10-SNP metabolic-GRS did not find significant 

interactions between the GRS and dietary fat intake on fasting glucose, fasting insulin or 

HbA1c (Table 5.1). The mechanisms through which dietary fat intake influence glycaemic 

traits are unclear, although a sustained increase in blood glucose levels following a high fat 

meal has been reported [518]. 

5.4.3.3 Interaction between plasma fatty acid profile and genetic variants on 

systemic inflammation 

Five Brazilian cross-sectional studies [416-419, 423] investigated the interaction 

between plasma fatty acids and genetic variants on systemic inflammation, using data from 

the HS-SP. The first study [423] consisted of 262 adults, and significant interactions were 

identified between plasma n-3 and adiponectin (ADIPOQ) SNP rs2241766 (Pinteraction=0.019); 

arachidonic acid and ADIPOQ rs16861209 (Pinteraction=0.044); docosapentaenoic acid and 

ADIPOQ rs16861209 (Pinteraction=0.037); and SFA and ADIPOQ rs17300539 (Pinteraction=0.019) 

on the risk of systemic inflammation. Carriers of the ‘G’ allele of rs2241766 had a reduced 

odds ratio of having inflammatory biomarkers when plasma n-3 levels were above the 

median, while participants with the ‘CC’ genotype of rs16861209 had a lower odds ratio of 

having inflammatory biomarkers in the 50th percentile of plasma arachidonic acid and 

docosapentaenoic acid. Moreover, carriers of the ‘A’ allele of rs17300539 had a higher odds 

ratio of having inflammatory biomarkers in the upper 50th percentile of plasma SFA 

compared to those with the ‘GG’ genotype [423]. In the second study [418], which consisted 

of 262 participants, an interaction was also observed between plasma arachidonic 

acid/eicosapentaenoic acid ratio and toll-like receptor 4 (TLR4) SNP rs11536889, in which 

individuals with the ‘C’ allele had an increased odds ratio of having inflammatory biomarkers 

at the higher percentile of arachidonic acid/eicosapentaenoic acid ratio (Pinteraction=0.034). 

Similarly, the third study consisting of 262 participants [419] identified a significant 

interaction between plasma palmitoleic acid and C-reactive protein (CRP) SNP rs1417938, 

where individuals with the ‘AA’ genotype had a higher odds ratio of having inflammatory 

biomarkers with a plasma palmitoleic acid above the median (Pinteraction=0.047).  

In line with these findings, an increasing risk of having inflammatory biomarkers in 

response to increasing plasma SFA was observed in carriers of the ‘A’ allele of tumor necrosis 
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factor-α (TNF-α) SNP rs180062 (-308G/A) (Pinteraction=0.041); while a decreasing risk with 

increasing plasma stearic acid was found in participants with the ‘GG’ genotype 

(Pinteraction=0.046), in a sample of 281 participants from the HS-SP [417]. Furthermore, a 

decreasing risk of metabolic syndrome (MetS) was observed in response to increasing 

plasma stearic acid levels in ‘A’ allele carriers of interleukin 1 beta (IL1B) SNP rs16944 

(Pinteraction=0.043), and in response to increasing plasma arachidonic acid levels in those with 

the ‘GG’ genotype of interleukin 10 (IL10) SNP rs1800896 (Pinteraction=0.007), in a sample of 

301 participants from the HS-SP [416]. However, no significant interactions were identified 

between total SFA, myristic acid, palmitic acid, stearic acid and ADIPOQ SNPs rs1501299 and 

rs266729; TLR4 SNPs rs11536889 and rs5030728; and CRP SNP rs1205 on inflammatory 

biomarkers in three of the studies [416, 417, 423]. Plasma fatty acid profile is considered an 

indicator of dietary fatty acid intake [423] and these findings suggest that plasma fatty acid 

profile can interact with SNPs of several genes and modify the risk of systemic inflammation 

which is linked to cardiometabolic diseases such as type 2 diabetes and CVDs [423]. 

5.4.3.4 Interaction between carbohydrate intake and genetic variants on 

cardiometabolic traits 

Three Brazilian cross-sectional studies [309, 319, 327] investigated the interactions 

between carbohydrate intake and genetic variants on cardiometabolic traits, using data from 

the BOLD study. In the first study which consisted of 113 participants [309], a total 

carbohydrate intake of 47.7% TEI was associated with a significantly increased 

homocysteine concentration (Pinteraction=0.031) in carriers of the `AA´ genotype of 

fucosyltransferase 2 (FUT2) SNP rs602662. Carbohydrate intake also interacted with 

Catechol-O-Methyltransferase (COMT) SNP rs4680, increasing oxidised-LDL more in 

carriers of `AA´ than `GG´ genotype (Pinteraction=0.005) [309]. Notwithstanding, after applying 

Bonferroni correction for multiple testing, none of the interactions were considered 

significant [309]. Moreover, the other two studies [327] which consisted of 200 participants 

and [319] which consisted of 187 participants, from the BOLD study, did not identify 

significant interactions between carbohydrate intake and a metabolic-GRS based on 10 SNPs 

(Table 5.1) on cardiometabolic traits.  

5.4.3.5 Interaction between protein intake and genetic variants on cardiometabolic 

traits 

Three studies [309, 319, 427] investigated the interaction between protein intake 

and genetic variants on cardiometabolic traits, two of which [309, 319] used data from the 

BOLD study. A cross-sectional study of 1191 overweight and normal weight children [427] 
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observed a significantly increased BMI(P=0.01) among participants carrying the ‘T’ allele of 

FTO SNP rs79149291 with a protein intake above 12.7% TEI/day [427]. Similarly, in the 

BOLD study discussed above [309], those with a protein intake of 16.99% TEI who were 

carriers of the `AA´ genotype of FUT2 SNP rs602662 (Pinteraction=0.007) had increased 

homocysteine levels [309]. However, in the other BOLD study [319], there were no 

interactions between protein intake and a GRS based on 10 SNPs (Table 5.1) on obesity or 

diabetes traits. 

5.4.3.6 Interactions between micronutrients and genetic variants on cardiometabolic 

traits 

The interaction between micronutrients and genetic variants on cardiometabolic 

traits was examined by five Brazilian studies [431, 446, 449, 450, 473]. A cross-sectional 

study of 335 healthy young adults [449], observed a pronounced increase in systolic blood 

pressure (SBP) (Pinteraction=0.016) among carriers of the `G´ allele of Angiotensinogen (AGT) 

SNP rs699 with a higher plasma magnesium (209.3 mg). Similarly, among those with a high 

calcium intake (573.3 mg), carriers of the `T´ allele of Bradykinin Receptor B2 (BDKRB2) SNP 

rs1799722 had significantly higher SBP (Pinteraction=0.015) and diastolic BP (DBP) 

(Pinteraction=0.014) than carriers of the `CC´ genotype [449]. In line with these findings, a case-

control study of 234 elderly people [450] reported an interaction between sodium intake 

and angiotensin-converting enzyme (ACE) SNP rs4646994 on the risk of hypertension, 

where carriers of the `I/I´ genotype with a high sodium intake (>2 g/day) had an increased 

risk of hypertension (Pinteraction=0.007). Furthermore, in a cross-sectional study of 1298 

healthy adults [473], those carrying the `T´ allele of Cytochrome B-245 Alpha Chain (CYBA) 

(p22phox) with more than 86.5 mEq sodium per 12 h of urine collection, had increased SBP 

(Pinteraction<0.001) and DBP (Pinteraction=0.011). Sodium is known to increase BP by reducing 

vasodilation [519], while dietary calcium is believed to stabilize intracellular calcium in 

smooth muscles, thereby reducing vasoconstriction and BP [520]. Additionally, the ‘A’ allele 

of AGT SNP rs699 is thought to be a risk factor for elevated SBP, possibly due to its 

association with a rise in plasma AGT levels [449, 511], and the findings of the study 

discussed above [449] indicate that, the protective effect of the ‘G’ allele might be lost in the 

presence of higher plasma magnesium. 

Similarly, in a longitudinal study of 1088 children with a follow up of 4.6 years [431], 

those with a deficit of plasma vitamin D (<75 nmol/L) and carriers of the risk allele (`A´) of 

FTO SNP rs9939609 had increased BMI (Pinteraction=0.033). However, a cross-sectional study 
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examining folate intake in 5914 healthy adults [446] did not identify interactions between 

folate intake and MTHFR SNP rs1801133 on homocysteine concentrations.  

5.4.3.7 Interactions between alcohol intake and genetic variants on cardiometabolic 

traits 

Three Brazilian studies [425, 440, 446] examined the interaction between alcohol 

intake and genetic variants on cardiometabolic traits. In a cross-sectional study of 113 

participants [425], a significant interaction was observed between alcohol intake and 

endothelial nitric oxide synthase (eNOS) SNP rs2070744 (-786 T/C) on plasma nitrite levels. 

Individuals carrying the ‘C’ allele who consumed alcohol had lower plasma nitrite levels 

(Pinteraction=0.033). However, there were no significant interactions between alcohol intake 

and rs2070744 on BP [425]. Similarly, in a cross-sectional study of 3,803 participants from 

the Pelotas Birth Cohort [446], an interaction was identified between alcohol intake and 

MTHFR SNP rs1801133 (C677T), in which men with the ‘677TT’ genotype who consumed 

≥15 g of alcohol per day had the highest homocysteine concentration (Pinteraction=0.002); but 

the interaction was not observed in women. Moreover, a prospective cohort study of 964 

postmenopausal women [440], reported no interactions between alcohol intake and APOE 

genotype on lipid traits. A rise in homocysteine concentration is attributed to a deficiency in 

B vitamins and folate, and SNPs of MTHFR might affect homocysteine concentration by 

impairing folate metabolism [521]. However, it is unclear how alcohol intake modifies the 

activity of MTHFR, and the finding of the study [446] suggests a sex-specific response. 

5.4.3.8 Interactions between smoking and genetic variants on cardiometabolic traits 

Two studies [422, 461] investigated the interaction between smoking and genetic 

variants on cardiometabolic traits in Brazilians. In a cross-sectional study of 391 participants 

[461], smoking interacted with APOA-IV SNPs rs693 (XbaI), rs675 (Thr347Ser) and rs5110 

(Gln360His), increasing BMI in individuals with the ‘X*2’ (Pinteraction=0.007 ) and ‘347Ser’ 

(Pinteraction=0.02) alleles. However, men with the ‘360His’ allele who were non-smokers had a 

larger WC than homozygotes for the ‘Gln’ allele (Pinteraction=0.018) [461]. Similarly, in a cross-

sectional study of 673 overweight adults (403 women and 270 men) [422], carriers of the 

‘S2’ allele of APOC3 SNP rs5128 had increased triglycerides and the effect was more 

pronounced in women who smoked than in non-smokers (Pinteraction=0.009). Serum APOC3 

concentration has been shown to be positively associated with triglyceride levels, and 

smoking has been reported to lower the concentration of APOC3 but only in women without 

central obesity [522], indicating a sex-specific response which is influenced by obesity traits. 
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5.4.3.9 Interactions between physical activity and genetic variants on 

cardiometabolic traits 

Interactions between physical activity and genetic variants on cardiometabolic traits 

were investigated by nine Brazilian studies [309, 432, 433, 435, 446, 451, 461, 467, 474]. In 

a longitudinal study of 197 overweight or obese children [467], a physical exercise program 

(3 sessions/week for 12 weeks) interacted with adrenoceptor beta 2 (ADRB2) SNP 

rs1042714, decreasing triglyceride levels and triglyceride-glucose index (Pinteraction=0.001 

for both) more in carriers of the ‘Glu27Glu’ genotype than those carrying the ‘Gln27’ allele. 

A cross-sectional study of 1701 children and adolescents [474] also reported higher BMI and 

WC in individuals with the ‘TT’ genotype of fibronectin type III domain containing 5 (FNDC5) 

SNP rs16835198 compared to carriers of the ‘G’ allele only in those with lower levels of 

cardiorespiratory fitness (CRF) (Pinteraction=0.038 and Pinteraction=0.007 for WC and BMI, 

respectively); and lower limb strength (Pinteraction=0.040 and Pinteraction=0.044 for WC and BMI, 

respectively). Physical activity has been proposed to alter the expression of certain genes 

[523], and the findings of these studies indicate that, the effect of physical activity on lipid, 

glycaemic and anthropometric traits might be influenced by SNPs of ADRB2 and FNDC5 

genes.  

Similarly, a sedentary behaviour (a screen time of >378 min/day) was shown to 

increase cardiometabolic risk score in carriers of ‘AA’ genotype of FTO SNP rs9939609 with 

a low CRF but not in those with a high CRF in a cross-sectional study of 1215 children and 

adolescents (Pinteraction=0.047) [432]. Along this line, a randomised controlled trial of 34 

participants [451] reported that, a 45-minute walk on a treadmill at moderate intensity 

resulted in a reduction in SBP (Pinteraction=0.02) and DBP (Pinteraction<0.01) in carriers of the ‘I’ 

allele of ACE SNP rs4646994 compared with a non-exercise control session, but the 

reduction was not observed in participants with ‘DD’ genotype. However, five studies [309, 

433, 435, 446, 461] did not identify significant interactions between physical activity and 

genetic variants on cardiometabolic traits as shown in Table 5.1.   

5.4.3.10 Other gene-diet interactions in Brazilians 

In the BOLD study consisting of 113 participants [309], a total fat intake of 25.36% 

TEI interacted with Betaine-Homocysteine S-Methyltransferase (BHMT) SNP rs492842, 

increasing vitamin B12 concentrations (Pinteraction=0.034) in participants with the ‘TT’ 

genotype. A case-control interventional study of 126 obese women [132] also reported that, 

a hypocaloric diet (<600 kcal/day) for seven weeks was associated with a decreased 

abdominal circumference (Pinteraction=0.04) among carriers of the ‘A’ allele of FTO SNP 
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rs9939609. Furthermore, in a prospective cohort study of 3,701 women, breastfeeding (>6 

months duration) interacted with FTO SNP rs9939609, decreasing BMI (Pinteraction=0.03), fat 

mass (Pinteractin=0.03), and WC (Pinteraction=0.04) in carriers of the ‘A’ allele [434]. 

In summary, research in Brazil stands out in comparison to the rest of the gene-

lifestyle research in LACP for being the most abundant; twenty-nine studies investigated 

gene x lifestyle interactions in the Brazilian population as shown in Table 5.1, covering a 

wide range of cardiometabolic traits. Dietary fat intake and plasma fatty acid profile were 

the most frequently investigated dietary factors examined by seven and five studies 

respectively, although all the studies examining plasma fatty acid profile used data from the 

HS-SP. Carbohydrate intake was examined by only three studies, all of which used data from 

the BOLD study. Similarly, protein intake was investigated by only three studies, two of 

which used data from the BOLD study. Physical activity was the most frequently examined 

lifestyle factor, followed by smoking and alcohol intake. Breastfeeding was examined by only 

one study [434], and lifestyle factors such as socioeconomic status, level of education, and 

the effect of rural and urban environments were not investigated. Only one study was 

conducted in rural settings [425], but it was not focused on interaction of the rural 

environment with genetic variants. The FTO SNP rs9939609 was the most studied, being 

explored by five studies [431-433, 435, 446]. Overall, the findings call for further research 

into lifestyle factors such as socioeconomic status, level of education and the effect of rural 

and urban environments as well as other dietary factors such as fruit and vegetable intake. 

5.4.4 Gene-lifestyle Interactions in Mexicans 

5.4.4.1 Interaction between dietary fat intake and genetic variants on CVD traits 

The interaction between dietary fat intake and genetic variants on CVD-related traits 

was examined by five Mexican studies [429, 441, 443, 475, 476]. In a cross-sectional study 

of 224 participants with T2D [441], interactions between monounsaturated fatty acid 

(MUFA) intake and APOE genotype on blood lipid concentrations were reported. A low MUFA 

intake (<10–15% TEI) was found to be associated with higher total cholesterol (TC) 

(Pinteraction=0.016), non-HDL (Pinteraction=0.024) and LDL (Pinteraction=0.030) only in carriers of 

the `E2´ allele of APOE SNP rs7412. Similarly, interactions between MUFA intake 

(Pinteraction=0.001), total fat intake (Pinteraction=0.001), dietary cholesterol intake 

(Pinteraction=0.019) and Dopamine Receptor D2/Ankyrin Repeat and Kinase Domain 

Containing 1 (DRD2/ANKK1) SNP rs1800497, increasing triglyceride levels in carriers of the 

`A2A2´ genotype were observed in a cross-sectional study of 175 Mexican adults with T2D 
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[475]. MUFA intake has been linked to decreased triglyceride concentration [524] which is 

consistent with the findings of the first study [441]. However, the findings of the second 

study [475] imply that MUFA intake might not be beneficial for individuals with the `A2A2´ 

genotype of rs1800497. Both studies were conducted in participants with T2D which is 

known to affect lipid metabolism [525]. Moreover, as highlighted by the authors of the 

second study [475], the effect of dietary fat intake on triglycerides concentration may be 

influenced by other factors including physical activity and the level of insulin resistance. 

A Mexican case-control study consisting of 100 participants with normal weight and 

100 participants with obesity [443] also found significant interactions between SFA intake 

and leptin receptor (LEPR) SNP rs1137101 on TC (Pinteraction=0.002) and triglyceride 

(Pinteraction=0.02) levels. It was reported that, a SFA intake of ≥12 g/day was associated with 

a 3.8 times higher risk of hypercholesteroleamia and a 2.4 times higher risk of 

hypertriglycerideamia compared to an intake of <12 g/day in participants carrying the ‘G’ 

allele of rs1137101 [443]. An interaction between total fat intake with LEPR SNP rs1137101 

on TC (Pinteraction=0.001) was also reported in this study [443], where a high intake of total fat 

(≥83 g/d) was associated with a 4.1 times higher risk of hypercholesteroleamia in carriers 

of the ‘G’ allele of rs1137101. Similarly, in a prospective cohort study involving a dietary 

intervention in 41 participants with hypercholesterolaemia [476], interactions were 

observed between consumption of a diet low in SFA (<6% TEI/day) in addition to another 

diet containing 15 g of soluble fibre and 25 g of soy protein for 2 months and Glucose-

Fructose Oxidoreductase Domain Containing 2 (GFOD2) SNP rs12449157 on TC 

(Pinteraction=0.006) and LDL (Pinteraction=0.025). Participants carrying the ‘G’ allele had a larger 

decrease in TC and LDL in response to the dietary intervention compared to subjects with 

the ‘AA’ genotype of rs12449157 [476]. In this study [476], baseline LDL and TC levels were 

higher in carriers of the ‘G’ allele, but they responded better to the dietary intervention, 

which indicates that the genetic risk of dyslipidaemia can be modified by a dietary 

intervention. However, in another study of 31 Mexican participants with dyslipidaemia 

[429] from the same cohort as above [476], using the same dietary intervention, no 

significant interactions were identified between the diet and Calpain 10 (CAPN10) SNPs 

rs5030952, rs2975762 and rs3792267 on lipid traits. It has been reported that SFA of 

different types and from different food sources might have different effects on 

cardiometabolic traits [294, 390], however both studies [429, 476] used the same dietary 

intervention. Nonetheless, factors such as physical activity have also been reported to 
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influence the effect of dietary fat intake on cardiometabolic traits [475], which could explain 

the differences in the findings. 

5.4.4.2 Interaction between carbohydrate intake and genetic variants on 

cardiometabolic traits 

Interactions between carbohydrate intake and genetic variants on cardiometabolic 

traits were examined by three Mexican studies [98, 454, 475]. In a cross-sectional study of 

3591 adults [454], carbohydrate intake was negatively associated with HDL concentrations 

in premenopausal women carrying the risk allele (`C´) of ATP Binding Cassette Subfamily A 

Member 1 (ABCA1) SNP rs9282541 (R230C), but not in those carrying the `R´ allele 

(Pinteraction=0.037). In another cross-sectional study of 215 healthy adults [98], a high sucrose 

intake (>5% TEI) significantly increased TC (Pinteraction=0.034) and LDL (Pinteraction=0.037) 

more in participants with `B1B2/B2B2´ genotype than those with `B1B1´ genotype of 

cholesteryl ester transfer protein (CETP) SNP rs708272. However, the interaction did not 

influence triglycerides, HDL, BMI nor waist circumference [98]. In contrast, the cross-

sectional study discussed above [475], reported that the intake of maltose (0.68 ± 0.42 

g/day) significantly decreased triglycerides (Pinteraction=0.023) in carriers of the `A1´allele of 

DRD2/ANKK1 SNP rs1800497. These findings indicate that carbohydrate intake might 

modulate lipid levels in Mexicans with certain genetic variants, but the mechanism through 

which carbohydrates affect lipid levels are unclear. Moreover, it has been reported that, the 

effect of carbohydrates on lipids might be dependent on glycaemic index or glycaemic load, 

and highly processed carbohydrates are linked to unfavourable lipid profiles [526]. 

5.4.4.3 Interaction between micronutrients and genetic variants on cardiometabolic 

traits 

Two cross-sectional studies examined the interaction between micronutrients and 

genetic variants on cardiometabolic traits [447, 448]. In the first study which consisted of 

231 healthy new-borns [447], a deficient maternal vitamin B12 (<2.0 mcg/d) was found to 

be associated with a smaller size baby at birth in mothers with the ‘TT’ genotype of MTHFR 

SNP rs1801133 (Pinteraction=0.02) but a deficient maternal folate (<400 mcg/d) was not 

associated with anthropometric parameters (weight, length or BMI) of new-borns [447]. A 

low vitamin B12 intake (<2.0 mcg/d) was also associated with increased homocysteine 

levels (Pinteraction=0.01) in carriers of the ‘TT’ genotype of MTHFR SNP rs1801133 in a cross-

sectional study of 130 healthy women [448]. The ‘TT’ genotype of MTHFR is associated with 

decreased enzymatic activity and increased homocysteine concentration [527] and the 
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findings of these studies suggest that increasing the intake of vitamin B12 might improve 

foetal development in Mexican women with the ‘TT’ genotype.  

5.4.4.4 Interaction between alcohol intake and genetic variants on cardiometabolic 
traits 

The cross-sectional study of 130 healthy women discussed above [448], was the only 

study which examined alcohol intake and no interaction was found between alcohol intake 

and MTHFR SNP rs1801133 on homocysteine levels which could be due to the fact that 80% 

of the studied population consumed less than 1 cup/week of alcohol [448]. 

5.4.4.5 Interaction between physical activity and genetic variants on cardiometabolic 

traits 

Interactions between physical activity and genetic variants on cardiometabolic traits 

were investigated by four Mexican studies [98, 415, 455, 458]. In the cross-sectional study 

discussed above [98], increased concentration of TC (Pinteraction=0.033) was observed in 

individuals carrying the ‘B2’ allele of CETP SNP rs708272 who did not perform physical 

activity, compared to those with the ‘B1B1’ genotype. However, there were no interactions 

on TG, HDL, TG:HDL ratio, LDL, BMI or WC  [98]. Similarly, interactions between physical 

fitness measured by muscular endurance (ME) and aerobic capacity with genetic variants 

were observed in a case-control study of 608 physically active adults [415], where higher 

levels of ME and aerobic capacity were associated with a lower WC in individuals with a high 

GRS based on 23 SNPs (Table 5.1) (Pinteraction=0.0001 for both). In this study [415], a higher 

risk of obesity was found in older participants (≥40 years) with the ‘AA’ genotypes of APOB 

SNP rs512535 (Pinteraction=0.004) and tumour necrosis factor (TNFA) SNP rs361525 

(Pinteraction=0.007) with low levels of ME. However, another cross-sectional study of 565 

physically active participants [455] did not find significant interactions between physical 

fitness and six SNPs (ADIPOQ rs2241766, ACSL1 rs9997745, LIPC rs1800588, PPAR-α 

rs1800206, PPAR-γ rs1801282 and PPAR-γC1A rs8192678) on glycaemic traits. Moreover, 

the fourth cross-sectional study which consisted of 394 participants [458], did not identify 

interactions between physical activity and ADIPOQ SNP –11391G/A on adiponectin levels.  

5.4.4.6 Other gene-lifestyle interactions in Mexicans 

In a cross-sectional study of 206 Mexican women [464], an interaction between 

polycyclic aromatic hydrocarbons (PAHs) and Paraoxonase 1 (PON1) SNP rs661 (Q192R) on 

serum asymmetric dimethylarginine (ADMA) was observed, where individuals carrying the 

‘R’ allele had higher ADMA levels compared to those with the ‘QQ’ genotype in response to 

higher levels of urinary 1-hydroxypyrene (Pinteraction=0.02). Increased levels of ADMA 

(P<0.01) and fatty acid-binding protein 4 (P<0.001) were also identified in individuals with 
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the ‘RR’ genotype of PON1 SNP rs661 with higher urinary arsenic levels (>45.0 ug/g of 

creatinine) in comparison with participants with the ‘QQ’ genotype in a sample of 185 

Mexican women [465]. The mechanisms of the interaction may be shared in the case of 

exposure to PAHs as these are also involved in the generation of reactive oxygen species 

[528]. 

Overall, different cardiometabolic traits have been investigated in Mexico, where 

eleven out of fifteen studies found significant gene-lifestyle interactions [98, 415, 441, 443, 

447, 448, 454, 464, 465, 475, 476] as shown in Table 5.1. Dietary fat intake was the most 

frequently examined dietary factor, being investigated by five studies [429, 441, 443, 475, 

476]; followed by carbohydrate intake, which was examined by three studies [98, 454, 475]. 

Physical activity was the most frequently examined lifestyle factor, while alcohol intake was 

investigated by only one study. Lifestyle factors such as smoking, socioeconomic status, level 

of education and the impact of rural and urban environments were not investigated. 

Moreover, dietary factors such as consumption of protein, complex carbohydrates, and fruits 

and vegetables have not been investigated, highlighting a need for further research. 

5.4.5 Gene-lifestyle interactions in Costa Ricans 

5.4.5.1 Interactions between dietary fat intake and genetic variants on CVD-related 

traits 

The interaction between dietary fat intake and genetic variants on CVD-related traits 

was examined by six Costa Rican studies [421, 442, 457, 459, 468, 477]. In a cross-sectional 

study of 420 participants [442], SFA intake interacted with APOE genotype and influenced 

blood lipid concentrations. A higher SFA intake (13.5% energy) was associated with higher 

levels of very-low density lipoprotein cholesterol (VLDL) (Pinteraction=0.03) and lower 

concentration of HDL (Pinteraction=0.02) in carriers of the ‘E2’ allele. However, no significant 

interactions were identified between SFA intake and APOE genotype on lipids in a case-

control study involving 1927 participants with myocardial infarction (MI) and 1927 

matched controls [421]. In another cross-sectional study of 336 participants [457], SFA 

intake was found to interact with APOC3 genotype and impact on the concentration of TC 

(Pinteraction=0.0004) and LDL (Pinteraction=0.01). Homozygotes for the APOC3-455T-625T alleles 

had a 13% increase in TC and a 20% increase in LDL with a high SFA intake (>11% of energy 

intake), but the interaction was not significant in individuals with the APOC3-455C-625del 

allele [457]. In the case-control study discussed above [421], a significant interaction 

between SFA intake and APOE genotype on the risk of MI (Pinteraction=0.0157) was also 
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reported, in which carriers of the ‘E4’ allele had a 49% increased risk of MI compared to a 

2.2 fold increased risk in those with the ‘E2’ allele in response to a high SFA intake (>11.8% 

of energy intake).  

APOE plays a key role in lipid metabolism, being a main component of triglyceride-

rich lipoproteins and HDL, and a ligand for LDL receptor [442, 529] and it is believed that 

the metabolism of fatty acids is impaired in carriers of the ‘E4’ allele which is considered a 

risk factor for CVDs [530]. However, the above findings indicate that, a high SFA intake is 

more detrimental to carriers of the ‘E2’ allele than those carrying the ‘E4’ allele, highlighting 

the potential role of SFA intake in modifying genetic risk. 

In accordance with the findings above, a case-control study of 1805 participants with 

a first non-fatal MI and 1805 matched controls [459], reported an interaction between PUFA 

intake and PPAR-γ SNP rs1801282, influencing the risk of MI (Pinteraction=0.03). Individuals 

with the ‘Pro12/Pro12’ genotype had a 34% reduced risk of MI per 5% increment in energy 

from PUFA compared to a 7% decreased risk in those carrying the ‘Ala12’ allele [459]. 

Similarly, a case-control study of 1932 participants with a first non-fatal MI and 2055 

matched controls [468], reported a significant interaction between long-chain omega-3 (LC 

n-3) PUFA intake and Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) SNP 

rs11206510 on the risk of MI (Pinteraction=0.012), where carriers of the ‘C’ allele had an odds 

ratio for MI of 0.84 per 0.1% increase in total energy from LC n-3 PUFA, compared to an odds 

ratio of 1.02 in participants without the ‘C’ allele [468]. Along similar lines, a case-control 

study of 1936 participants with a first non-fatal MI and 2035 matched controls [477] 

reported a significant interaction between omega-6 (n-6) PUFA intake and Phospholipase 

A2 Group IVA (PLA2G4A) SNP rs12746200 on the risk of MI (Pinteraction=0.005), in which 

participants with the ‘G’ allele had a reduced risk of MI with an intake of n-6 PUFA above the 

median compared to those with the ‘AA’ genotype. However, there were no significant 

interactions with n-3 PUFA intake [477]. 

These findings indicate that the beneficial effect of PUFA intake reported by some 

studies [77, 531] might be limited in individuals with certain genetic variants. PPAR-𝜸 is a 

nuclear receptor which is involved in adipogenesis and plays a role in the metabolism of 

glucose and fatty acids [532, 533], and the ‘Ala12’ allele of PPAR-𝜸 SNP rs1801282 has been 

reported to slow down the release of PUFA from adipocytes, which could explain the smaller 

reduction in the risk of MI in comparison with carriers of the ‘Pro12/Pro12’ genotype [459]. 
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5.4.5.2 Interaction between other dietary factors and genetic variants on the risk of 

MI 

Interactions between other dietary factors and genetic variants on the risk of MI were 

examined by three Costa Rican studies [426, 470, 478]. In a case-control study of 1560 

incident cases of non-fatal MI and 1751 matched controls [426], sugar sweetened beverage 

(SSB) intake interacted with a GRS based on 3 SNPs of chromosome 9p21 (rs4977574, 

rs2383206 and rs1333049), increasing the risk of MI (Pinteraction=0.03). SSB intake also 

interacted with rs4977574, increasing the risk of MI in carriers of the ‘G’ allele 

(Pinteraction=0.005), but there was no interaction with fruit juice intake [426]. In another case-

control study of 2014 participants with a first acute non-fatal MI and 2014 matched controls 

[470], an increased risk of MI with increasing coffee intake was observed in carriers of the 

‘C’ allele (also known as “slow metabolizers of caffeine”) of Cytochrome P450 Family 1 

Subfamily A Member 2 (CYP1A2) SNP rs762551 compared to carriers of the ‘AA’ genotype 

(Pinteraction=0.04). Similarly, in a case-control study consisting of 2042 participants with a first 

non-fatal MI and 2042 control subjects [478], cruciferous vegetable intake (0.86 

servings/day of half a cup) interacted with Glutathione S-Transferase Theta 1 (GSTT1) SNP 

rs17856199, lowering the risk of MI in carriers of the `*1´ allele, but not in individuals with 

the ̀ *0*0´ genotype (Pinteraction=0.006). These findings indicate that, dietary factors other than 

fat intake, might also influence the risk of MI in Costa-Ricans with certain genetic variants.  

5.4.5.3 Interaction between smoking and genetic variants on the risk of MI 

Interaction between smoking and genetic variants on the risk of MI was investigated 

by three Costa Rican case-control studies [466, 471, 478], two of which found significant 

interactions [466, 478]. In a case-control study of 492 participants with a first non-fatal MI 

and 518 matched controls [466], an interaction was observed between smoking status and 

Paraoxonase 1 (PON1192) SNP rs661 on the risk of MI (Pinteraction=0.04), where the PON1192Arg 

allele was associated with an increased risk of MI only in non-smokers. Similarly, in the case-

control study discussed above [478], the combined intake of cruciferous vegetables (>5 

servings/day) and smoking (1-10 cigarettes/day) in carriers of the `*1´ allele of rs17856199, 

lowered the risk of MI (Pinteraction=0.008). However, there were no significant interactions 

with GSTM1 or GSTP1 genotype on the risk of MI [478]. Moreover, in the third Costa Rican 

case-control study which involved 873 participants with a first non-fatal MI and 932 control 

subjects [471], no significant interactions were observed between smoking and CYP1A1 SNP 

rs1048943 or CYP1A2 SNP rs762551 on the risk of MI. Smoking has been linked to increased 

risk of MI [534, 535] although the mechanisms are unclear. Smoking is also believed to 
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impair the activity of PON1, which is linked to increased risk of CVDs [536, 537], but this is 

not supported by the findings of the studies above, suggesting that Costa Ricans with certain 

genetic variants might respond differently to smoking.  

5.4.5.4 Other gene-lifestyle interactions in Costa Ricans 

One case-control study consisting of 1534 participants with a first non-fatal MI and 

1534 matched controls [420], investigated the interaction between a lifestyle cardiovascular 

risk score comprising of physical activity, smoking, alcohol consumption, waist-to-hip ratio, 

and socioeconomic status; and a GRS based on 14 SNPs (Table 5.1) on the risk of MI, and no 

significant interactions were identified. 

The research in Costa Rica has mainly focused on CVD traits in adults, with an 

emphasis on the risk of MI, and dietary fat intake has been the most frequently examined 

exposure. Socioeconomic status was examined by one study [420], and lifestyle factors such 

as educational level, the effect of rural and urban environments as well as dietary factors 

such as consumption of protein, fibre and complex carbohydrates have not been explored, 

highlighting a need for further research. 

 

5.4.6 Gene-lifestyle interactions in LACP diaspora 

5.4.6.1 Interaction between dietary fat intake and genetic variants on anthropometric 

traits 

Interaction between dietary fat intake and genetic variants on anthropometric traits 

were investigated by six studies [137, 428, 445, 453, 472, 480], all of which used data from 

the Boston Puerto Rican Health Study (BPRHS). In a cross-sectional study of 930 Puerto 

Ricans from the BPRHS [137], a high intake of SFA (≥22 g/day) was associated with a 7.9% 

higher BMI in individuals with the ‘CC’ genotype of APOA2 SNP rs5082 than those carrying 

the 'T’ allele (Pinteraction=0.003); but the SNP had no effect on BMI when SFA intake was low 

(<22 g/day). This study also observed that, among individuals with a high SFA intake (≥22 

g/d), those with the ‘CC’ genotype had a higher risk of obesity than participants carrying the 

‘T’ allele of the SNP rs5082 [Odds ratio (OR) = 1.84; 95% confidence interval (CI) = 1.38 - 

2.47; P<0.0001). A similar finding was reported in a prospective cohort study of 920 

participants from the BPRHS [428], where a high intake of SFA (≥9.3% of total energy) was 

linked to higher BMI (Pinteraction=0.006), WC (Pinteraction=0.02), and hip circumference (HC) 

(Pinteraction=0.002) in participants carrying the minor allele (‘T’) of LDL receptor related 

protein 1 (LRP1) SNP rs1799986 compared to individuals with the ‘CC’ genotype; but the 

SNP had no effect on anthropometric traits when SFA intake was low (<9.3% of total energy). 
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The ‘CC’ genotype of APOA2 rs5082 is believed to affect body fat distribution by lowering 

plasma concentration of APOA2 and these findings indicate that, a low SFA intake might 

attenuate this genetic risk [137, 538]. 

An interaction of total fat intake with APOA1-75 on WC was also reported in a 

longitudinal study of 821 participants of the BPRHS [445], in which individuals carrying two 

copies of the major allele had a lower WC with a low total fat intake than those carrying the 

minor allele (Pinteraction=0.005). A longitudinal study performed in 1171 participants (333 

men and 838 women) of the BPRHS [472] also observed that, women with the ‘TT’ genotype 

of lipoprotein lipase (LPL) SNP rs320 had lower BMI (Pinteraction=0.002) and WC 

(Pinteraction=0.001) with a high intake of PUFA but this was not observed in minor allele (‘G’) 

carriers and there were no significant interactions in men. In contrast, another longitudinal 

study of 1340 participants (395 men and 945 women) of the BPRHS [480] found that, men 

with the ‘GG’ genotype of brain derived neurotrophic factor (BDNF) SNP rs6265 had higher 

BMI (Pinteraction=0.042), WC (Pinteraction=0.018) and HC (Pinteraction=0.009) with a low PUFA 

intake (<8.76% of energy) than those carrying the ‘A’ allele but no difference was observed 

when PUFA intake was high (≥8.76% of energy) and the interaction was not observed in 

women. Interaction between Mediterranean diet with TCF7L2 SNP rs7903146 on obesity-

related traits was also observed in a cross-section study of 1120 Puerto Ricans of the BPRHS 

[453], where carriers of the ‘T’ allele had lower WC (99.2 ± 0.9 vs 102.2 ± 0.9 cm; 

Pinteraction=0.026) and weight (77.3 ± 1.0 vs 80.9 ± 1.0 kg; Pinteraction=0.024) with a high 

Mediterranean diet score than individuals with ‘CC’ genotype. However, there were no 

significant differences between the genotypes when the Mediterranean diet score was low. 

The findings suggest that a high intake of PUFA and Mediterranean diet might be beneficial 

in reducing the genetic risk of obesity-related traits in a sex-specific manner and call for 

further research into the mechanisms involved. 

5.4.6.2 Interaction between dietary fat intake and genetic variants on CVD traits 

Interaction between total fat intake and genetic variants on CVD traits were reported 

by three studies [444, 445, 456]. In a longitudinal study of 802 participants of the BPRHS 

[444], a significant interaction was observed between total fat intake and APOA5 SNP -1131T 

< C on plasma triglycerides (Pinteraction=0.032), where a high total fat intake (≥31% of total 

energy) was associated with a higher plasma triglyceride concentration in individuals with 

the ‘1131C’ allele, although no difference between the genotypes was observed when total 

fat intake was low. This study [444] also observed an interaction between APOA5 SNP S19W 

with total fat intake on SBP (Pinteraction=0.002) and DBP (Pinteraction=0.007), where participants 
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with the minor allele (‘G’) had a higher SBP with a low total fat intake (<31% of total energy), 

and a lower SBP with a high total fat intake in comparison with individuals with the ‘CC’ 

genotype. The study on 821 participants of the BPRHS discussed above [445], also reported 

significant interactions between total fat intake and APOC3 -640 on DBP (Pinteraction=0.003), 

APOA4 N147S and APOA5 S19W on SBP (Pinteraction=0.001 and Pinteraction=0.002, respectively). 

It was observed that, homozygous for the major allele of APOA1-75, APOA4 N147S and 

APOA5 S19W had lower SBP with a low intake of total fat (<31% of total energy) than those 

carrying the minor allele; while heterozygous for APOC3 -640 had lower DBP with a high 

total fat intake (≥31% from energy) [445]. However, a randomized crossover trial involving 

41 adults from Dominican, Puerto Rican and other Caribbean Hispanic origins [456], did not 

find significant interactions between a high fat diet and hepatic lipase (LIPC) SNP rs1800588 

on HDL, LDL, TC or plasma glucose concentrations. A high intake of total fat has been 

associated with an unfavourable lipid profile and high blood pressure [539] and the above 

findings indicate that, this association might be influenced by variants of several genes. 

 

5.4.6.3 Interaction between carbohydrate intake and genetic variants on 

cardiometabolic traits 

Two studies investigated the interaction between carbohydrate intake and genetic 

variants on cardiometabolic traits [479, 481]. In a longitudinal study involving 920 

participants of the BPRHS [479], a significant interaction was observed between Perilipin 1 

(PLIN 1) SNP 1482 G > A and complex carbohydrate intake on WC (Pinteraction=0.002), where 

individuals carrying the ‘A’ allele had a higher WC with a low intake of complex carbohydrate 

(<144 g/day) and a lower WC with a high intake of complex carbohydrate (≥144 g/day) than 

those with the ‘GG’ genotype. Similarly, a cross-sectional study of 153 children descendent 

from Hispanic ancestry [481], identified significant interaction between carbohydrate intake 

(211.4 g/day) and total sugar intake (96.1 g/day), increasing hepatic fat fraction in carriers 

of the `GG´ genotype of Patatin like phospholipase domain containing 3 (PNPLA3) SNP 

rs738409 (Pinteraction=0.04 and Pinteraction=0.01, respectively), but the interaction was not 

observed in individuals carrying the ‘C’ allele. It has been reported that, body weight might 

be influenced by the type of carbohydrate consumed [540] which is supported by the 

findings of these studies, but the results also indicate that genetic variants might also play a 

role. 
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5.4.6.4 Interaction between micronutrient intake and genetic variants on 

cardiometabolic traits 

The interaction between micronutrient intake and genetic variants on 

cardiometabolic traits was investigated by two studies [462, 469]. A cross-sectional study 

involving 1,734 Mexican Americans [469] reported a significant interaction between vitamin 

E and APOB SNP rs693 on LDL (Pinteraction=8.94×10-7), and between vitamin A and PCSK9 SNP 

rs11206510 on LDL (Pinteraction=7.65×10-5), but the direction of the interactions is unclear. 

Similarly, in the longitudinal study of 1,144 Puerto Ricans of the BPRHS discussed above 

[462], a significant interaction between vitamin D status and IRS1 rs2943641 on the risk of 

T2D was identified in women in which minor allele homozygotes (‘TT’) had a lower risk of 

T2D compared with ‘C’ allele carriers only when 25(OH)D was higher than the median [>17 

ng/mL (42.4 nmol/L)] (Pinteraction=0.007), but the interaction was not observed in men. The 

findings of these studies indicate that micronutrients might modulate the association 

between genetic variants and lipid and glycaemic traits, but further studies are needed to 

replicate and elucidate the mechanisms involved. 

 

5.4.6.5 Interaction between physical activity and genetic variants on cardiometabolic 

traits 

Only one study [482] examined the interaction between physical activity and genetic 

variants on cardiometabolic traits. This study [482] was a prospective cohort study of 9645 

adult Puerto Ricans, Mexicans, Dominicans, Cuban, Central American, and South American 

from the Hispanic Community Health Study/Study of Latinos (HCHS/SOL) cohort, USA, and 

a positive association was observed between a GRS based on 97 SNPs (Table 5.1) and BMI, 

but the effect of the GRS was stronger in the first tertile of moderate to vigorous physical 

activity compared to the third tertile (Pinteraction=0.005). Significant interactions following the 

same pattern were observed for fat mass (Pinteraction=0.003), fat percentage (Pinteraction=0.003) 

and fat mass index (Pinteraction=0.002) [482]. 

In summary, research in LACP diaspora has mainly focused on Puerto Ricans residing 

in USA and most of this evidence (10 out of 13 studies) comes from the same study (BPRHS). 

Dietary fat intake has been the most frequently studied, with carbohydrate intake being 

examined by only two studies. Similarly, physical activity was investigated by only one study 

and lifestyle factors such as socioeconomic status, level of education, and the effect of rural 

and urban environments have not been explored. 
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5.4.7 Gene-lifestyle interactions in Chileans 

5.4.7.1 Interaction between carbohydrate intake and genetic variants on glycaemic 

traits 

Two gene-diet interaction studies were reported in Chileans [430, 463]. The first 

study [430]  was a cross-sectional study of 2828 healthy Chilean adults, and a significant 

interaction was observed between consumption of SSB and a weighted genetic risk score 

(wGRS) based on 16 T2D risk SNPs (Table 5.1) on log-fasting glucose (Pinteraction=0.02), 

where the strongest effect was observed between the highest SSB intake (≥2 servings/day 

of 330ml) and the highest wGRS. In this study [430], SSB intake also interacted with additive 

effects of Transcription Factor 7 Like 2 (TCF7L2) SNP rs7903146 (Pinteraction=0.002) and with 

the ‘G/G’ genotype of Melatonin Receptor 1B (MTNR1B) SNP rs10830963 (Pinteraction=0.001), 

increasing log-fasting glucose levels. The second Chilean study [463] was a non-randomized 

controlled trial performed in 97 healthy women and 147 women with polycystic ovary 

syndrome, and there were no reported interactions between a high glycaemic carbohydrate 

intake (75g of glucose) during an oral glucose tolerance test and Insulin Receptor Substrate 

1 (IRS-1) SNP rs1801278 on glycaemic traits. In Chile, research has been limited to diabetes 

traits as outcomes and simple carbohydrates as exposure, reflecting a need for further 

research into other dietary and lifestyle factors such as socioeconomic status, level of 

education and the effect of rural and urban environments. 

5.4.8 Gene-lifestyle interactions in Colombians 

Two gene-lifestyle interaction studies were conducted in Colombians [436, 437]. The 

first study [436] was a case-control study involving 212 normal weight, 112 overweight and 

100 obese teenagers and no significant interactions were observed between physical activity 

and three SNPs (Uncoupling Protein 3 (UCP3) rs1800849, FTO rs17817449 and CAPN10 

rs3842570) on excess weight. However, sub-group analysis showed that, a sedentary 

lifestyle was associated with an increased risk of excess weight only in those with the ‘GG’ or 

‘TT’ genotype of FTO rs17817449 (p=0.0005); and ‘CC’ genotype of UCP3 rs1800849 

(P=0.0032) [436]. It was also observed that, even with an active lifestyle (1.6 – 1.9 metabolic 

equivalent task (MET) minute/day), individuals with the ‘II’ genotype of CAPN10 rs3842570 

had a higher risk of excess body weight compared to those carrying the ‘D’ allele (P=0.0212) 

[436]. The second study which was also a cross-sectional study involved 1081 Colombian 

teenagers [437], and there were no interactions between lifestyle factors (socioeconomic 

stratum, level of education and maternal breastfeeding) and ten SNPs on BMI (Table 5.1). 
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As both studies [436, 437] were conducted in teenagers and focused on obesity traits, there 

is a need for further research into other cardiometabolic traits in the wider Colombian 

population.  

5.4.9 Gene-lifestyle interactions in Argentinians 

Only one study [460] was conducted in Argentinians, and this was a cross-sectional 

study consisting of 572 healthy Argentinian men. This study [460] reported a significant 

interaction between smoking status and PPAR-γ SNP rs1801282 on the risk of MetS 

(Pinteraction=0.031) where among the non-smokers, carriers of the `Pro/Ala´ genotype 

(P=0.0059) and the `Ala12´ allele (P=0.009) had a higher risk of MetS than non-carriers. It is 

unclear whether there were significant interactions between smoking status and rs1801282 

genotype on the other outcomes investigated in the study [460] (Table 5.1), since the p-

values given are for associations stratified by smoking status. The study adjusted for BMI 

and age only, but the pathophysiological mechanism of MetS is multifactorial [541], and 

hence other factors should be considered simultaneously. There have been no studies in 

Argentina examining the interactions of genetic variants with dietary factors, physical 

activity, or other lifestyle factors apart from smoking status. 

5.5 Summary of the findings of commonly investigated interactions across the 

countries 

The most commonly investigated interactions in LACP related to dietary fat intake 

and genetic variants on blood lipids. A high intake of olive oil was associated with lower LDL 

in Brazilian men with the ‘E2’ allele of APOE [438], while a low MUFA intake was linked to 

higher TC, non-HDL and LDL in Mexicans carrying the ‘E2’  allele of APOE [441]. In contrast, 

increased TG concentration in response to a high MUFA intake was observed in Mexicans 

who were homozygotes for the A2 allele of DRD2/ANKK1 SNP rs1800497. A high PUFA 

intake was also associated with increased concentration of LDL in Brazilian carriers of the 

‘E4’ allele, and reduced concentration of TG in those carrying the ‘E2’ allele of APOE [438]. 

However, a low PUFA intake was linked to increased TG and VLDL concentration in Brazilian 

women with the ‘E4’ allele of APOE [439]. 

Furthermore, a high SFA intake was associated with higher VLDL and lower HDL 

concentrations in Costa Rican carriers of the ‘E2’ allele of APOE [442], but no significant 

interactions were identified between SFA intake and APOE genotype on blood lipids in a 

Costa-Rican case-control study involving participants with MI [421]. However, a high SFA 

intake was linked to increased concentrations of TC and LDL in Costa Ricans who were 
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homozygotes for the APOC3-455T-625T alleles [457]. Similarly, a high SFA intake was 

associated with increased TC and TG concentrations in Mexicans with the ‘G’ allele of LEPR 

SNP rs1137101 [443]; while a low SFA intake was linked to a decrease in TC and LDL 

concentrations in Mexicans with the ‘G’ allele of GFOD2 SNP rs12449157 [476].   

The inconsistencies in the findings of the above studies call for further research into 

the interaction between sub-types of fat and genetic variants on blood lipids. The sources of 

dietary fat also need to be considered since SFA from different food sources have been 

reported to have different effects on cardiometabolic traits [390].    

5.6 Discussion 

This is the first systematic review to investigate gene-lifestyle interactions on 

cardiometabolic diseases in LACP, highlighting several gene-lifestyle interactions with 

effects being significant in Brazilians, Mexicans, Costa Ricans, Chileans, Argentinians, 

Colombians and LACP diaspora. The most frequently studied genes have been FTO, examined 

in Colombians, Mexicans, and Brazilians, APOE explored in Costa Ricans, Mexicans, and 

Brazilians, and TCF7L2 investigated in Chileans, Mexicans, Brazilians and LACP diaspora. The 

concentration of blood lipids such as HDL and LDL was the most widely investigated trait, 

followed by BMI and WC; MI was examined by eleven studies and one study looked at hepatic 

fat accumulation, while diseases such as stroke and liver cirrhosis were not investigated. 

Research has identified gene-lifestyle interactions that describe effects which are 

population-, gender-, and ethnic-specific. The findings of this review indicate that most of 

the gene-lifestyle interactions were conducted once, necessitating replication to strengthen 

the evidence.  

Another issue that could affect the results is the accuracy of the methods used to 

measure exposure variables such as dietary intake and physical activity [393, 542]. Some 

studies used 24-hour recall questionnaires and self-reporting methods [139, 419, 420, 449, 

454, 469], which might have induced recall bias, inadequate estimations, daily variation bias, 

and over and underreporting of values [152, 395]. Measurement of dietary intake is a crucial 

part of gene-diet interaction studies as under or overestimation of dietary intake can weaken 

or reverse the association between dietary factors and cardiometabolic traits [152, 543]. 

Moreover, other studies used food frequency questionnaires with no information on 

whether they were tested for validity. Genotyping errors can also affect the results of gene-

diet interactions by leading to deviations from the true genotype [169, 544]. 
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Sample size has also been highlighted as a key methodological issue in gene-lifestyle 

interaction studies [393, 542]. For complex traits where the main effects of genetic variants 

are often modest, a large sample size is required to detect small interaction effects [393, 

394].Thus, it is important that studies are adequately powered to detect true interactions 

[542]. Nonetheless, most of the studies had small sample sizes and only a few included 

information on statistical power to detect interactions. There is also the risk of false-positive 

finding when there is no correction for multiple comparisons [169, 545], but only a few of 

the studies provided information on correction for multiple comparisons.  

Overall, the included studies are majorly cross-sectional, indicating a need for 

longitudinal/prospective studies. The findings reflect gaps in covering the genetic risks and 

the socioeconomic variables to which the LACP are exposed; 27 out of 33 LACP have not 

conducted gene-lifestyle interaction studies yet. Only five studies have been conducted in 

contexts of low socioeconomic status, and from these, only two studies investigated gene-

socioeconomic status interactions [420, 437]. Moreover, no studies have examined the 

impact of rural and urban environments on the genetic predisposition to cardiometabolic 

diseases, highlighting a gap in knowledge in LACP. The higher number of nutrigenetic studies 

in Brazil compared to the other countries could be attributed to several factors including 

existing data on genetic studies [546-551], GWA studies done mainly in Brazil [552-554], 

increased awareness on nutrigenetics in Brazil or more research facilities available in Brazil 

compared to other LACP. Future gene-lifestyle interaction studies will need to replicate 

primary research of already studied genetic variants to enable comparison, and to explore 

the interactions between genetic and other lifestyle factors such as those conditioned by 

socioeconomic factors and the built environment. Moreover, the molecular mechanisms that 

underlie the gene-lifestyle interactions identified by this systematic review need to be 

explored. The strength of this review is the comprehensive search strategy and the inclusion 

of all dietary/lifestyle exposures and cardiometabolic traits. Another strength is the use of 

standardized tools to assess the quality of the studies. However, the study has some 

limitations. 

5.7 Conclusion 

In conclusion, this systematic review has identified several gene-lifestyle interactions 

on cardiometabolic disease traits in Brazilians, Mexicans, Costa Ricans, Chileans, 

Argentinians, Colombians and LACP diaspora, highlighting effects which are population-, 

gender-, and ethnic-specific. However, the lack of replication of most of the gene-lifestyle 
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interactions made it difficult to evaluate the evidence. Moreover, most of the studies were 

cross-sectional meaning that they preclude causal assumptions hence a temporal 

relationship cannot be established. Future gene-lifestyle interaction studies will need to 

replicate primary research of already studied genetic variants to enable comparison, and to 

explore the interactions between genetic and other lifestyle factors such as those 

conditioned by socioeconomic factors and the built environment. Moreover, the molecular 

mechanisms that underlie the gene-lifestyle interactions identified by this systematic review 

need to be explored. 
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Chapter 6 Impact of lipid genetic risk score and saturated fatty acid 

intake on central obesity in an Asian Indian population 
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6.1 Abstract 

Abnormalities in lipid metabolism have been linked to the development of obesity. 

We used a nutrigenetic approach to establish a link between lipids and obesity in Asian 

Indians, who are known to have a high prevalence of central obesity and dyslipidaemia. A 

sample of 497 Asian Indian individuals (260 with type 2 diabetes and 237 with normal 

glucose tolerance) (mean age: 44 ± 10 years) were randomly chosen from the Chennai Urban 

Rural Epidemiological Study (CURES). Dietary intake was assessed using a previously 

validated questionnaire. A genetic risk score (GRS) was constructed based on cholesteryl 

ester transfer protein (CETP) and lipoprotein lipase (LPL) genetic variants. There was a 

significant interaction between GRS and saturated fatty acid (SFA) intake on waist 

circumference (WC) (Pinteraction=0.006). Individuals with a low SFA intake (≤23.2 g/day), 

despite carrying ≥2 risk alleles, had a smaller WC compared to individuals carrying <2 risk 

alleles (Beta=−0.01 cm; P=0.03). For those individuals carrying ≥2 risk alleles, a high SFA 

intake (>23.2 g/day) was significantly associated with a larger WC than a low SFA intake 

(≤23.2 g/day) (Beta=0.02 cm, P=0.02). There were no significant interactions between GRS 

and other dietary factors on any of the measured outcomes. We conclude that a diet low in 

SFA might help reduce the genetic risk of central obesity confirmed by CETP and LPL genetic 

variants. Conversely, a high SFA diet increases the genetic risk of central obesity in Asian 

Indians. 
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6.2 Introduction 

Asian Indians are more prone to developing type 2 diabetes (T2D) and cardiovascular 

diseases (CVDs) at a lower body mass index (BMI) than Caucasians, due to the ‘Asian Indian 

phenotype’, which is characterised by central obesity, dyslipidaemia, and increased levels of 

total fat, visceral fat, insulin resistance and faster decline in beta cell function [105, 119, 120]. 

The location of body fat is thought to be more important in predicting adverse cardiovascular 

events [555-557]. Central obesity has been linked to several conditions, including insulin 

resistance and increased mortality from CVDs [558-561], necessitating studies to fully 

understand the underlying mechanisms for the development of central obesity in Asian 

Indians. 

Abnormalities in lipid metabolism have been linked to the development of obesity, 

and lipoprotein lipase (LPL), a key enzyme in lipid metabolism, contributes to the 

development of obesity through its role in the partitioning of lipids to different tissues [472, 

561, 562]. Cholesteryl ester transfer protein (CETP), mainly expressed in adipose tissue, is 

also a major enzyme in lipid metabolism, which mediates the transport of cholesteryl esters 

and triglycerides (TG) between high-density lipoprotein cholesterol (HDL) and 

apolipoprotein B (ApoB)–containing lipoproteins such as very-low-density lipoprotein 

(VLDL) [64]. Increased CETP activity results in lower HDL concentration, which is associated 

with higher risk of CVDs [46]. Consumption of a high saturated fatty acid (SFA) diet has also 

been shown to contribute to obesity by decreasing cholesterol efflux due to reduced 

expression of peroxisome proliferator-activated receptors involved in lipid metabolism [68, 

69, 386]. Genome-wide association (GWA) and candidate gene studies have demonstrated 

that lipid levels are influenced by single nucleotide polymorphisms (SNPs) in lipid-pathway 

genes [94, 107, 108, 126, 201, 204]. SNPs of the CETP gene have been associated with HDL 

concentrations [94, 95, 97, 195, 197, 199], while SNPs of the LPL gene have been associated with 

both HDL and TG levels [94, 193, 205, 339]. A recent review of GWA studies of lipids [130] 

showed that CETP SNPs had the highest number of associations with lipids, followed by LPL 

SNPs. CETP and LPL SNPs have also been associated with obesity-related traits [127, 563]. 

Several studies have shown significant interactions between genetic variants and 

lifestyle factors regarding the association between lipid profile and obesity-related traits 

[105, 126-128, 245], but the findings have been inconsistent. Moreover, it has been shown that 

the effect size of individual SNPs is modest and less likely to accurately predict the risk of 

complex diseases, and a more effective approach involves combining several risk alleles to 

generate a genetic risk score (GRS) [128, 370]. Nonetheless, studies investigating 
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interactions between GRS and dietary factors on lipid and obesity-related traits have not 

been adequately performed in Asian Indians. Hence, the aim of this study was to examine the 

effect of a GRS and its interaction with dietary factors on lipid and obesity-related traits in 

Asian Indian adults with and without T2D. 

6.3 Methods 

6.3.1 Study participants 

A sample of 497 individuals (260 with T2D and 237 with normal glucose tolerance 

(NGT)) were randomly chosen from an epidemiological study called the Chennai Urban 

Rural Epidemiological Study (CURES), details of which have been given in previous 

publications [18, 105, 126-128, 131, 251, 280, 564, 565]. Briefly, a total of 26,001 adults 

residing in the urban part of Chennai in Southern India were recruited by systematic random 

sampling between 2001 to 2003, and those who reported having T2D (1529 individuals) 

were tested to confirm their diagnosis [105, 564]. The follow-up study was conducted 

between 2012 to 2013 and consisted of 2410 participants (Figure 6.1). The sample for the 

current study was selected from the follow-up cohort. Participants were excluded if they 

were taking lipid-lowering medication such as statins and fibrates. Ethical approval was 

granted by the Madras Diabetes Research Foundation Institutional Ethics Committee and 

written informed consent was obtained from study participants [105]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 A flow chart showing the selection of participants from the CURES 
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6.3.2 Anthropometric and biochemical measurements 

Anthropometric measurements including height, weight, waist circumference (WC), 

hip circumference, and waist–hip ratio (WHR) were obtained using standardized 

techniques. BMI was calculated as weight in kilograms (kg) divided by the square of the 

height in meters (m). Individuals with BMI <25 kg/m2 were classified as non-obese and those 

with BMI ≥25 kg/m2 were classified as obese, in accordance with the World Health 

Organisation Asia Pacific Guidelines [283]. Biochemical analyses were conducted using 

Hitachi-912 Auto Analyzer (Hitachi, Mannheim, Germany) with kits supplied by Roche 

Diagnostics (Mannheim). Serum total cholesterol was measured by cholesterol oxidase-

phenol-4-amino-antipyrene peroxidase method and HDL by direct method-polyethylene 

glycol-pretreated enzymes. Serum TG was measured by glycerol phosphatase oxidase-

phenol-4-amino-antipyrene peroxidase method, and low-density lipoprotein cholesterol 

(LDL) was calculated using the Friedewald formula [330]. Serum insulin concentration was 

estimated using an enzyme-linked immunosorbent assay (Dako, Glostrup, Denmark), fasting 

plasma glucose (FPG) by glucose oxidase-peroxidase method, and glycated haemoglobin 

(HbA1c) by high-performance liquid chromatography using a Variant™ machine (Bio-Rad, 

Hercules, CA, USA). 

6.3.3 Dietary assessment 

Dietary intake was assessed by an interviewer using a previously validated semi-

quantitative food frequency questionnaire (FFQ) containing 222 items [282]. Participants 

were asked to estimate how much and how often they consumed various food items in the 

FFQ (number of times per day, week, month, year or never). The FFQ was designed to 

estimate the usual dietary intake of participants on a meal-by-meal basis. Open-ended 

questions were used to enable participants to estimate the frequency of their usual dietary 

intake. To help in estimating portion sizes, participants were shown common household 

measures such as spoons and cups and pictures of different sizes of fruits. The data were 

analysed using the Nutritional Epidemiology (‘EpiNu’) software to estimate average daily 

intake of macronutrients and total energy. Consumption of SFA, polyunsaturated fatty acid 

(PUFA), monounsaturated fatty acid (MUFA) and other macronutrients was estimated from 

the FFQ using the ‘EpiNu’ software which contains information on the nutritional content of 

commonly consumed food in the Chennai area. The ‘EpiNu’ software was developed for the 

local population using recipes from various sources including home-made and fast-food. 

Details of the development of the FFQ and the ‘EpiNu’ software are published elsewhere 

[282]. 
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6.3.4 SNP selection and genotyping 

Five SNPs (CETP SNP: rs4783961; and LPL SNPs: rs327, rs3200218, rs1800590 and 

rs268) were selected for this study based on their association with lipid-related traits in 

different ethnic groups, including Asian Indians [94, 127, 201, 204, 566-569]. Two SNPs 

(rs268 and rs1800590) had a minor allele frequency <5% (Supplementary Table S6.1), 

and hence, they were excluded. The remaining three SNPs (rs327, rs3200218 and 

rs4783961) were included in the current analysis. The genotyping methodology has been 

previously published [19]. Briefly, the DNA was extracted from whole blood using the 

phenol–chloroform method, and the SNPs were genotyped by the polymerase chain 

reaction-restriction fragment length polymorphism method. 

6.3.5 Construction of GRS 

An additive model was used to construct an unweighted GRS by adding the number 

of risk alleles across the three SNPs (rs327, rs3200218 and rs4783961) for each participant. 

The risk alleles were defined as alleles previously reported to be associated with 

dyslipidaemia or obesity-related traits. The risk alleles were not weighed due to limited 

available information on effect sizes of the SNPs for the Asian Indian population. Moreover, 

it has been demonstrated that assigning weights to risk alleles only has minimal effect [370], 

and hence, we used an unweighted GRS. The 3-SNP GRS ranged from 0 to 5 and based on the 

median GRS (2 risk alleles), participants were placed into two groups: low-risk group (for 

individuals with a GRS <2 risk alleles) and high-risk group (for individuals with a GRS ≥2 risk 

alleles). 

6.3.6 Statistical analyses 

Statistical analyses were performed using the Statistical Package for the Social 

Sciences (SPSS) software (version 28; SPSS Inc., Chicago, IL, USA) and the data analysis plan 

is attached as an appendix (Appendix C). Normality test was performed by Shapiro–Wilk 

test, and all biochemical and anthropometric variables were log-transformed before the 

analysis. Results of descriptive statistics for continuous variables are presented as means 

and standard deviation (SD) and categorical variables as percentages [105]. Allele 

frequencies were determined by gene counting and a goodness-of-fit Chi-square test was 

performed to examine if the observed genotype counts were in Hardy-Weinberg equilibrium 

(HWE) (Supplementary Table S6.1). The three SNPs were all in HWE (P>0.05), and the 

alleles had a frequency greater than 5%. An independent sample t test was used to compare 

the means of the quantitative variables between individuals with low GRS (<2 risk alleles) 
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and those with high GRS (≥2 risk alleles). A Chi-squared test was performed to compare 

categorical variables such as smoking status between individuals in the low (GRS <2 risk 

alleles) and high-risk (GRS ≥2 risk alleles) groups. 

Linear and logistic regression analyses were used to examine the association of the 

3-SNP GRS with continuous and categorical outcomes, with adjustment for age, sex, BMI, 

T2D, duration of diabetes, anti-diabetic medication, smoking status, and alcohol intake 

wherever appropriate. Interactions between GRS and dietary factors were analysed by 

adding the interaction term in the regression models. For GRS–diet interactions, total energy 

was adjusted for, in addition to the other covariates. The dietary factors investigated in this 

study were consumption of fat, carbohydrate, protein, and dietary fibre. GRS–diet 

interactions reaching statistical significance (P<0.05) were investigated further by 

stratifying individuals based on the quantity of dietary intake. A significant interaction of 

GRS with total fat was explored further to include subtypes of fats (SFA, PUFA and MUFA). A 

median intake of total fat, SFA, MUFA, and PUFA was used to classify individuals into two 

groups, ‘low’ (lower than median) and ‘high’ (higher than median) group, and association 

between GRS and the outcome was then analysed for each group. 

6.4 Results 

6.4.1 Characteristics of the study participants 

The mean age of the study participants was 44 ± 10 (Table 6.1). At baseline, there 

were no significant differences in anthropometric traits (BMI, WC and WHR), lipid sub-

fractions (HDL, LDL, TG, and total cholesterol), systolic blood pressure (SBP) and diastolic 

blood pressure (DBP), or glycaemic traits (FPG, fasting serum insulin, insulin resistance and 

HbA1c) between participants with low GRS (<2 risk alleles) and those with high GRS (≥2 risk 

alleles). Furthermore, consumption of macronutrients did not differ significantly between 

participants with low GRS (<2 risk alleles) and those with high GRS (≥2 risk alleles) as shown 

in Table 1. Smoking was higher among individuals with high GRS (≥2 risk alleles) compared 

to those with low GRS (<2 risk alleles) (P=0.03). The baseline HDL concentration was 

significantly higher in women than in men (43.5 ± 1.3 vs. 38.7 ± 1.3 mg/dL; P=2.3 × 10−8). 
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Table 6.1 Characteristics of the study participants 

 All Participants (n=497) GRS<2 (n=239) GRS≥2 (n=258) P value * 

Age (years) 44 ± 10 45 ± 10 44 ± 9 0.34 

Sex [Men (%),Women (%)] 225 (45), 272 (55) 106 (47), 133 (49) 119 (53), 139 (51) 0.69 

BMI (kg/m2) 24.6 ± 4.5 24.7 ± 4.7 24.4 ± 4.3 0.41 

WC (cm) 87 ± 11 88 ± 12 87 ± 11 0.39 

WHR 0.92 ± 0.08 0.92 ± 0.09 0.91 ± 0.08 0.57 

Obese cases (%) 209 (42) 109 (52) 100 (48) 0.12 

HDL (mg/dL) 42 ± 10 42 ± 10 42 ± 10 0.79 

LDL (mg/dL) 119 ± 32 118 ± 32 119 ± 32 0.81 

TG (mg/dL) 165 ± 150 166 ± 120 164 ± 173 0.87 

Total cholesterol (mg/dL) 191 ± 40 192 ± 42 190 ± 38 0.64 

Systolic BP (mmHg) 122 ± 20 123 ± 22 120 ± 18 0.15 

Diastolic BP (mmHg) 76 ± 11 76 ± 12 75 ± 11 0.60 

Fasting plasma glucose (mg/dL) 126 ± 65 126 ± 64 127 ± 67 0.79 

Fasting serum insulin (μIU/mL) 9 ± 6 9 ± 6 9 ± 7 0.89 
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Insulin resistance 3 ± 2 3 ± 2 2 ± 2 0.44 

HbA1c (%) 7 ± 2 7 ± 2 7 ± 2 0.91 

Fat (g) 67 ± 27 67 ± 26 67 ± 27 0.83 

Carbohydrate (g) 410 ± 136 410 ± 134 411 ± 138 0.92 

Protein (g) 72 ± 24 73 ± 24 72 ± 23 0.63 

Dietary fibre (g) 32 ± 12 32 ± 12 32 ± 11 0.77 

Energy (kcal/day) 2560 ± 822 2560 ± 809 2559 ± 834 0.99 

Total SFA (g) 25 ± 11 25 ± 11 25 ± 11 0.91 

Total MUFA (g) 20 ± 8 20 ± 8 21 ± 9 0.79 

Total PUFA (g) 19 ± 9 18 ± 9 19 ± 10 0.77 

Plant protein (g/day) 41 ± 14 40 ± 13 42 ± 14 0.23 

Animal protein (g/day) 23 ± 13 23 ± 12 22 ± 13 0.75 

Smokers (%) 88 (18) 33 (38) 55 (63) 0.03 

Alcohol drinkers (%) 123 (25) 52 (42) 71 (58) 0.14 

T2D cases (%) 260 (52) 131 (50.4) 129 (49.6) 0.28 

Data are mean ± standard deviation or frequencies where appropriate. *P values for the differences in means/frequencies between participants 

with low GRS and those with high GRS. p values were calculated using independent sample t test for continuous variables and Chi-square test 
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for categorical variables. BMI – body mass index; WC –  waist circumference; WHR –  waist hip ratio; HDL –  high-density lipoprotein cholesterol; 

LDL – low-density lipoprotein cholesterol; TG – triglycerides;  HbA1c –  glycated haemoglobin; SFA – saturated fatty acids; MUFA –  

monounsaturated fatty acids; PUFA – polyunsaturated fatty acids. 
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6.4.2 Association of GRS with lipid and obesity-related traits 

There was no significant association between GRS and any of the outcomes measured 

(HDL, LDL, TG, total cholesterol, SBP, DBP, BMI, WC, WHR and obesity) after adjusting for 

the confounding factors, age, sex, BMI, T2D, duration of diabetes, anti-diabetic medication, 

smoking status, and alcohol intake where appropriate (Supplementary Tables S6.2 and 

S6.3). 

6.4.3 Interaction of GRS with dietary factors on lipid and obesity related traits 

A significant interaction was observed between GRS and total fat intake on WC 

(Pinteraction=0.03) after adjusting for age, sex, T2D, duration of diabetes, anti-diabetic 

medication, smoking status, alcohol intake, and total energy intake (Table 6.2). When 

individuals were stratified based on the median intake of total fat, there were no significant 

associations between GRS and total fat intake on WC, and when sub-types of fat were 

investigated (Figure 6.2), there was a significant interaction of GRS with SFA intake on WC 

(Pinteraction=0.006) and MUFA intake on WC (Pinteraction=0.004). In the low SFA intake group (≤ 

23.2 g/day), individuals carrying ≥2 risk alleles had a smaller WC compared to those 

carrying <2 risk alleles (Beta =−0.01 cm, P=0.03), while in the high SFA intake group (>23.2 

g/day), there was no significant difference in WC between participants carrying ≥2 risk 

alleles and those carrying <2 risk alleles. For those individuals carrying ≥2 risk alleles, a high 

SFA intake (> 23.2 g/day) was significantly associated with a larger WC than a low SFA intake 

(≤23.2 g/day) (Beta=0.02 cm, P=0.02). When individuals were grouped based on the median 

MUFA intake, there was no association between GRS and MUFA intake on WC. To examine 

whether the interactions of GRS with fat intake and SFA intake on WC were mediated by 

lipids, we included the four lipid subfractions (HDL, LDL, TG and total cholesterol) as 

confounding factors in addition to other confounding factors and found that the interaction 

was no longer significant for total fat intake (Pinteraction=0.08), but it remained significant for 

SFA intake (Pinteraction=0.02). 
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Table 6.2 Interaction of GRS with dietary factors on blood lipids, blood pressure, obesity-related traits, and obesity 

Trait 
GRS * Fat (g) GRS * Carbohydrate (g) GRS * Protein (g) GRS * Dietary Fibre (g) 

Beta Coefficient ± SE 
(Pinteraction) 

Beta Coefficient ± SE 
(Pinteraction) 

Beta Coefficient ± SE 
(Pinteraction) 

Beta Coefficient ± SE 
(Pinteraction) 

BMI (kg/m2) 0.05 ± 0.04 (0.21) a 0.04 ± 0.05 (0.36) a 0.04 ± 0.05 (0.35) a −0.01 ± 0.04 (0.77) a 

WC (cm) 0.06 ± 0.03 (0.03) a 0.05 ± 0.03 (0.18) a 0.07 ± 0.04 (0.07) a 0.00 ± 0.03 (0.93) a 

Waist hip ratio 0.01 ± 0.02 (0.52) b 0.00 ± 0.02 (0.98) b 0.01 ± 0.02 (0.58) b −0.01 ± 0.02 (0.62) b 

Common obesity −1.76 ± 1.14 (0.12) a 0.10 ± 0.08 (0.20) a −2.52 ± 1.41 (0.08) a −0.35 ± 1.26 (0.78) a 

HDL (mg/dL) −0.04 ± 0.05 (0.42) b −0.07 ± 0.06 (0.23) b −0.07 ± 0.06 (0.21) b −0.04 ± 0.05 (0.47) b 

LDL (mg/dL) 0.02 ± 0.06 (0.82) b 0.02 ± 0.08 (0.79) b −0.01 ± 0.08 (0.90) b −0.02 ± 0.07 (0.81) b 

TG (mg/dL) 0.10 ± 0.12 (0.39) b −0.01 ± 0.15 (0.97) b −0.02 ± 0.15 (0.89) b 0.08 ± 0.13 (0.57) b 

Total cholesterol 
(mg/dL) 

0.02 ± 0.04 (0.70) b −0.00 ± 0.06 (0.98) b −0.02 ± 0.06 (0.65) b −0.00 ± 0.05 (0.98) b 

Systolic BP (mmHg) 0.03 ± 0.03 (0.35) b 0.03 ± 0.04 (0.49) b 0.03 ± 0.04 (0.48) b 0.04 ± 0.03 (0.25) b 

Diastolic BP (mmHg) 0.02 ± 0.03 (0.50) b 0.01 ± 0.04 (0.87) b 0.03 ± 0.04 (0.51) b 0.01 ± 0.04 (0.72) b 

GRS – genetic risk score; BMI –  body mass index; WC –  waist circumference; HDL – high-density lipoprotein cholesterol; LDL –  low-density 

lipoprotein cholesterol; TG –  triglycerides. P values were obtained from linear regression analysis for continuous traits and logistic regression 

analysis for obesity. a P values adjusted for age, sex, type 2 diabetes, duration of diabetes, anti-diabetic medication, smoking status, alcohol 
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intake, and total energy intake. b P values adjusted for age, sex, BMI, type 2 diabetes, duration of diabetes, anti-diabetic medication, smoking 

status, alcohol intake, and total energy intake. Log-transformed variables were used for the analysis. P-value in bold represents statistically 

significant interaction. 
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P values adjusted for age, sex, type 2 diabetes, duration of diabetes, anti-diabetic medication, 

smoking status, and alcohol intake. Low (≤23.2) and high (>23.2) refer to lower or equal to 

median and higher than median intake of SFA (g/day) respectively. In the low SFA intake 

group (≤23.2 g/day), individuals carrying 2 or more risk alleles had a smaller waist 

circumference compared to those carrying less than 2 risk alleles (Beta =−0.01, P=0.03), and 

in the high SFA intake group (>23.2 g/day), there was no significant difference in waist 

circumference between participants carrying 2 or more risk alleles and those carrying less 

than 2 risk alleles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2 Interaction of GRS with SFA intake on log-transformed waist circumference. 
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6.5 Discussion 

Our study has shown that SFA intake may modify the effect of lipid-pathway genes on 

central obesity in Asian Indians. Our findings indicate that the combined effect of LPL and 

CETP SNPs (rs327, rs3200218 and rs4783961) on obesity traits may be altered by SFA 

intake, where consumption of high amounts of SFA may increase the combined genetic risk 

of central obesity posed by LPL and CETP SNPs while a low intake of SFA may help to reduce 

this risk. These findings are of public health importance considering the burden of central 

obesity in Asian Indians [119, 255, 570-572]. Our results suggest that Asian Indians with a 

higher genetic risk for central obesity are responsive to SFA intake and could benefit from 

dietary modifications to help prevent central obesity in Asian Indians. 

An examination of the fatty acid profile of commonly consumed foods in India showed 

that milk and milk products were the main source of SFA and the median intake of SFA was 

8.7% of total energy intake per day [573]. However, some of the commonly consumed food, 

such as potato chips, contained high amounts of palmitic acid, which could be attributed to 

the type of cooking oil used in their preparation [573]. The WHO’s dietary guidelines [71] 

state that SFA consumption should be less than 10% of total energy intake, and the National 

Dietary Guidelines Consensus Group [574] recommends that for Asian Indians who have 

higher LDL concentration (≥100 mg/dL), SFA intake should be <7% of total energy intake 

per day. Moreover, intake of SFA at 8.6% of total energy was found to be associated with 

increased risk of T2D in Indians [573]. In the present study, the median intake of SFA was 

8.5% of total energy intake, which is within the WHO’s dietary guidelines [71], but as Indians 

are predisposed to dyslipidaemia, reducing SFA even further as recommended by the 

National Dietary Guidelines Consensus Group [574] might help to prevent central obesity in 

individuals with a high genetic risk. 

Abnormalities in lipid metabolism have been linked to the development of obesity 

[386, 575]. We used a nutrigenetic approach to see if dietary intake can modify this link by 

employing a GRS from the two lipid pathway genes, CETP and LPL, which have been shown 

to have the strongest effect on lipid concentrations [94, 95, 130, 193, 195, 197, 199, 202]. To 

account for the effect of T2D on lipid levels, we adjusted for T2D status, anti-diabetic 

medication, and duration of T2D in our analysis. We found significant interactions between 

GRS and total fat, SFA and MUFA intake on WC, where a low intake of SFA (≤23.2 g/day) was 

found to be associated with a smaller WC in individuals with a higher genetic risk compared 

to those with a lower genetic risk. We also found that a high SFA intake (>23.2 g/day) was 

significantly associated with a larger WC than a low SFA intake (≤23.2 g/day) in individuals 
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with a high genetic risk. Our findings are in agreement with the results of a double-blind, 

randomized, crossover, controlled-feeding trial performed in 101 participants from Canada 

and the United States [386] where consumption of a diet low in SFA and high in unsaturated 

fatty acids resulted in increased serum-mediated cholesterol efflux which showed a negative 

association with WC (Beta=−0.25, P=0.01) and abdominal adiposity (Beta=−0.33, P=0.02). A 

parallel controlled-feeding trial performed in 20 individuals who were centrally overweight 

[68] also showed that consumption of a high SFA diet resulted in an increase in the 

expression of inflammatory genes in adipose tissue and a decrease in the expression of genes 

involved in fatty acid β-oxidation and synthesis of triglycerides, which could explain the 

increase in WC with a high SFA intake observed in our study. LPL was chosen as one of the 

candidate genes for the present nutrigenetic study, given that significant associations 

between LPL SNPs and obesity traits have been reported by previous studies in addition to 

their association with lipid traits. In a case-control study of 944 Koreans [567], the LPL SNP 

rs3200218, which is in the 3′-UTR, was shown to be associated with WHR (P=0.009), and in 

a previous study in CURES participants [127], carriers of the minor allele (G) of LPL SNP 

rs1800590 had a larger WC (P=0.03) and higher BMI (P=0.003) compared to those carrying 

two copies of the major allele (T). Increased risk of common obesity (2.73-fold increase) 

among carriers of the minor allele of LPL rs1800590 was also observed in Northern Indians 

[566]. Furthermore, LPL is a rate-restricting enzyme for the hydrolysis of TG in chylomicrons 

and VLDL [562], and it has been suggested that the level of LPL activity in muscle relative to 

that in adipose tissue determines body mass composition and contributes to obesity by 

influencing the rate at which fatty acids derived from TG are used or stored [561]. This 

suggests that SNPs that alter LPL activity in muscle and adipose tissue could affect obesity 

related traits. It has also been shown that SFAs are associated with a lower postprandial 

oxidation rate [576] and decreased energy expenditure [577] than MUFA. 

Another important candidate gene for the study is CETP, the SNPs in which have been 

reported to influence obesity and lipid-related traits. The ‘A’ allele of the SNP rs4783961 has 

been shown to influence the concentration of CETP mass in plasma by producing binding 

motifs for transcription factor SP3, which modulates CETP promoter activity [578, 579], but 

studies examining the association of rs4783961 with obesity traits are limited. However, the 

‘A’ allele of rs4783961 has been linked to higher HDL concentration in Taiwanese [580] (an 

increase of 1.71 mg/dL per allele, standard error (SE)=0.52; P=0.001) and African Americans 

[204] (Beta=4.6, SE=1.3; P=0.0009). A study involving 10,366 African American, 26,647 

European American, 1410 Hispanics and 717 Chinese American participants from nine 
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cohorts [117] also reported that the ‘A’ allele of rs4783961 was associated with increased 

HDL concentration in all the cohorts, but the effect size was larger in African Americans (0.17 

to 0.24) than in European Americans (0.09 to 0.15) (P=2 × 10−10). The mechanism under 

which rs4783961 affects obesity traits are unclear, although it has been proposed that CETP 

SNPs might affect deposition of fat in visceral adipose tissue by being in linkage with SNPs 

of other genes [65]. Nonetheless, association of other CETP SNPs with obesity traits have 

been previously reported. A cross-sectional study of 1005 Spanish individuals who were 

obese [581] reported that participants carrying the ‘A’ allele of CETP SNP rs1800777 

compared to non-carriers had higher WC (Delta: 5.6 ± 2.1 cm; P=0.02), WHR (Delta: 0.04 ± 

0.01 cm; P=0.01) and fat mass (Delta: 4.4 ± 1.1 kg; P=0.04). Similarly, a study performed in 

571 Chinese individuals [563] observed that participants with the ‘GT’ genotype of CETP SNP 

rs3764261 had a reduced risk of central obesity (Odds ratio (OR) = 0.631, 95% confidence 

interval (CI) = 0.460–0.865; P=0.004), and a study involving 3575 Dutch participants [582] 

reported that the minor allele of CETP SNP rs5882 was associated with a decreased 

prevalence of central obesity (OR=0.90, 95% CI=0.83–0.97; P=0.007). 

Our findings of significant interactions between GRS and dietary fat intake on WC are 

consistent with a previous study [575]. This study [575], which consisted of 199 

overweight/obese Spanish adolescents and involved a weight loss intervention, showed that 

each minor allele of CETP SNP rs1800777 was associated with a −1.4 kg decrease in body 

weight after 10 weeks (P=1.5 × 10−4). Studies examining CETP and obesity have mainly 

focused on the impact of body weight on CETP mass and activity [583-585]. A study 

involving  21 morbidly obese female participants (BMI >40 kg/m2) [583] who underwent a 

weight loss procedure concluded that weight loss was associated with a marked decrease in 

CETP mass and activity. Another study involving 51 normal weight individuals [585] also 

reported that participants with a body weight of around 46 kg had 15% lower serum CETP 

compared to those with a body weight of about 55 kg. However, an anti-adipogenic effect of 

CETP in the presence of apolipoprotein CIII (apoCIII) was reported by an animal study 

involving CETP and apoCIII transgenic mice [586], where obesity induced by a high-fat diet 

was reversed by the expression of CETP. As this study did not look at CETP SNPs, it is unclear 

whether different CETP SNPs will have the same effect. Individually, the SNPs in our study 

did not show any significant interaction with dietary factors. The discrepancies in findings 

between our study and others could be because of allele frequencies and effect sizes which 

differ between populations [105, 130]. Another plausible explanation is differences in dietary 

pattern and the methods used to assess dietary intake [105]. Moreover, a systematic review 
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of observational studies [587] concluded that SFAs were not linked to CVDs, and an analysis 

of data from randomized controlled trials [588] indicated that replacing SFA with linoleic 

acid was effective in lowering total cholesterol but there was no benefit in terms of lower 

risk of CVDs or death. However, large cohort studies [294, 390] have indicated that the effect 

of SFA is dependent on the type and food sources of SFA. The European Prospective 

Investigation into Cancer and Nutrition-Netherlands (EPIC-NL) cohort study of 37,421 

participants [390] observed that total dietary SFA had no association with T2D, but SFA 

derived from cheese and long-chain SFAs were negatively associated with T2D. The EPIC-

InterAct case-cohort study of 27,296 participants [294] also reported that even-chain SFAs 

including palmitic acid and myristic acid had a positive association with T2D, while odd-

chain and longer-chain SFAs had a negative association with T2D. 

The strength of our study is the use of a GRS based on two established lipid pathway 

genes in a well characterised population. Our study is the first of its kind to investigate the 

link between lipids and obesity from a nutrigenetic perspective. Another strength is the use 

of validated questionnaires and the robust sensitivity analysis incorporating conventional 

risk factors including alcohol consumption and smoking as confounding factors. 

Nonetheless, our study has several limitations. The small sample size could have influenced 

the lack of association between GRS and the measured outcomes (lipids and obesity). 

Another limitation is that we did not investigate different types or sources of SFAs. As this is 

a cross-sectional study, it is not possible to determine causality between fat intake and WC. 

Despite our robust sensitivity analysis, we cannot rule out residual confounding from 

unidentified factors [105]. However, we were able to replicate previously reported 

interactions between GRS and fat intake on WC. 

6.6 Conclusion 

Our findings suggest that dietary fatty acid intake may modify the effect of SNPs in 

lipid-pathway genes on central obesity in Asian Indians. The results indicate that a diet low 

in SFA might help to reduce the genetic risk of central obesity while a high SFA diet might 

increase the genetic risk of central obesity in Asian Indians. These findings support the 

WHO’s dietary guidelines for preventing unhealthy weight gain by limiting SFA intake to less 

than 10% of total energy intake, and they indicate that personalised nutrition based on GRS 

might be an effective strategy for the management of central obesity in Asian Indians who 

have a high genetic risk, but additional studies with large sample sizes are needed to confirm 

our findings.  
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7.1 Abstract 

Cardiometabolic traits are complex interrelated traits that result from a combination 

of genetic and lifestyle factors. This study aimed to assess the interaction between genetic 

variants and dietary macronutrient intake on cardiometabolic traits [body mass index, waist 

circumference, total cholesterol, high-density lipoprotein cholesterol (HDL-C), low-density 

lipoprotein cholesterol, triacylglycerol, systolic blood pressure, diastolic blood pressure, 

fasting serum glucose, fasting serum insulin, and glycated haemoglobin]. This cross-

sectional study consisted of 468 urban young adults aged 20 ± 1 years, and it was conducted 

as part of the Study of Obesity, Nutrition, Genes and Social factors (SONGS) project, a sub-

study of the Young Lives study. Thirty-nine single nucleotide polymorphisms (SNPs) known 

to be associated with cardiometabolic traits at a genome-wide significance level (P<5×10–8) 

were used to construct a genetic risk score (GRS). There were no significant associations 

between the GRS and any of the cardiometabolic traits. However, a significant interaction 

was observed between the GRS and carbohydrate intake on HDL-C concentration 

(Pinteraction=0.0007). In the first tertile of carbohydrate intake (≤327 g/day), participants with 

a high GRS (>37 risk alleles) had a higher concentration of HDL-C than those with a low GRS 

(≤37 risk alleles) [Beta=0.06 mmol/L, 95% confidence interval (CI), 0.01–0.10; P=0.018]. In 

the third tertile of carbohydrate intake (>452 grams/day), participants with a high GRS had 

a lower concentration of HDL-C than those with a low GRS (Beta= –0.04 mmol/L, 95% CI –

0.01 to –0.09; P=0.027). A significant interaction was also observed between the GRS and 

glycaemic load (GL) on the concentration of HDL-C (Pinteraction=0.002). For participants with 

a high GRS, there were lower concentrations of HDL-C across tertiles of GL (Ptrend=0.017). 

There was no significant interaction between the GRS and glycaemic index on the 

concentration of HDL-C, and none of the other GRS*macronutrient interactions were 

significant. Our results suggest that young adults who consume a higher carbohydrate diet 

and have a higher GRS have a lower HDL-C concentration, which in turn is linked to 

cardiovascular diseases, and indicate that personalised nutrition strategies targeting a 

reduction in carbohydrate intake might be beneficial for these individuals.  
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7.2 Introduction 

Cardiometabolic diseases including cardiovascular diseases (CVDs) remain a threat 

to global public health, and in 2019, around 32% of worldwide mortality was attributable to 

CVDs [589]. These diseases place a significant burden on low- and middle-income countries, 

where more than three-quarters of CVD deaths occur [25, 589]. Obesity, a key risk factor for 

cardiometabolic diseases has been increasing in Latin America, affecting over 26% of women 

and 21% of men in Peru [590]. According to a study which examined mortality and disability 

in Peru, using data from the Global Burden of Disease, Injuries and Risk Factors (2019) study 

[591], high body mass index (BMI) was among the key risk factors linked to disability-

adjusted life years. Similarly, a high prevalence of dyslipidaemia, in particular, low 

concentration of high-density lipoprotein cholesterol (HDL-C) (48%) has been reported in 

Latin American and Caribbean populations (LACP) [592]. Moreover, Peru experienced a 

substantial increase in fatalities related to CVDs (77.8%) between 2020 to 2022 [593].  

Obesity is associated with increased risk of CVDs [559, 584, 594-597] which is partly 

driven by atherogenic dyslipidaemia [584, 598]. Although the underlying mechanisms are 

complex, adipose tissue dysfunction results in several metabolic and cardiovascular 

disturbances including impaired lipid metabolism [598-600]. Obesity has been linked to 

alterations in the concentration and distribution of high-density lipoprotein (HDL) particles, 

and low levels or dysfunctional HDL contributes to the development of CVDs [584, 601, 602]. 

A meta-analysis of 97 prospective cohort studies with a total of 1·8 million participants [594] 

indicated that, in contrast to normal weight,  overweight or obesity was linked to a higher 

risk of coronary heart disease and stroke, with obesity demonstrating a more substantial 

impact than overweight [hazard ratio (HR) and 95% confidence interval (CI) for obesity vs 

normal weight: 1.69 (1.58–1.81) for coronary heart disease; 1.47 (1.36–1.59) for stroke] 

[594]. Numerous studies have indicated that obesity and other risk factors for 

cardiometabolic diseases result from multiple factors including genetic and environmental 

factors [18, 104-106, 130, 131, 304, 603], and in Peru the rise in cardiometabolic risk factors 

has coincided with a shift in lifestyle pattern in which there is increased consumption of 

high-caloric foods, animal-based products and sugar-sweetened beverages [604-606] as 

well as a decline in physical activity [607, 608]. 

Genome-wide association (GWA) studies have identified many genetic variants 

associated with cardiometabolic traits such as overweight/obesity, dyslipidaemia, high 

blood pressure and high fasting glucose levels, however, these variants explain a small 

fraction of variation in BMI [8, 609, 610] and blood lipid levels [5, 10, 11]. Moreover, the 
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genetic susceptibility to cardiometabolic traits has been shown to be impacted by lifestyle 

factors such as dietary intake and physical activity level [18, 104, 105, 245, 611-613]. To our 

knowledge, no studies have examined gene-lifestyle interactions on cardiometabolic traits 

in the Peruvian population. Hence, we aimed to assess the interaction between a genetic risk 

score (GRS) and dietary macronutrient intake on cardiometabolic traits in an urban Peruvian 

young adult population. The GRS approach has been shown to be more effective in predicting 

the genetic risk of complex traits, where the effect size of single variants is often modest 

[104, 245, 370, 613]. 

7.3 Methods 

7.3.1 Study participants 

This study was conducted as part of the Study of Obesity, Nutrition, Genes and Social 

factors (SONGS) project, a sub-study nested in the Young Lives Study (YLS) in Peru. The YLS 

is a multicentre longitudinal survey established in 2002 that follows two birth cohorts (a 

younger cohort born in 2001–2002, and an older cohort, born in 1994–1995) of children in 

Peru, India (Andhra Pradesh and Telangana), Ethiopia and Vietnam. In Peru, the original 

sample corresponds to 2,053 children aged 6 to 18 months in 2002. The YLS sample was 

selected in two stages. First, 20 clusters were randomly selected from the universe of 

districts in the country, excluding the wealthiest 5%. Second, approximately 100 households 

were chosen at random in each cluster [614]. The sample covers the diversity of living 

standard conditions observed in the country [614]. Each cohort of participants was visited 

personally in 2002, 2006, 2009, 2013, and 2016. In 2020 and 2021, due to COVID-19 

restrictions, the YLS was administered by phone survey and using an online virtual survey 

(2021) for collecting specific dietary data in Peru [615].  

Participants for this sub-study come from 12 of the original 20 clusters and include 

833 urban participants that responded to the phone survey call in 2020. The clusters were 

purposively chosen to capture the diversity of the country, thus districts located in the Coast, 

Highland and Jungle regions were selected. Participants were visited by the fieldworkers 

between July and October 2022 to obtain the specific data for this sub-study. From an initial 

sample of 833 participants, 735 participants had dietary intake data and after excluding 

those with missing data for genotyping (YLS participants that refused to provide a blood 

sample), 620 participants remained. Out of the 620 participants, 468 met the inclusion 

criteria and were included in the current analysis (Supplementary Figure S7.1). The 

inclusion criterion was urban young Peruvian with no diagnosis of chronic diseases. 
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Participants were excluded if they had any chronic condition such as diabetes, thyroid 

disorder, or polycystic ovary syndrome (n=148). Participants who were pregnant (n=1) or 

breastfeeding (n=3) were also excluded. The study was given a favourable ethical opinion 

for conduct by the University of Reading Ethics Committee, the Ethics Committee of the 

University of Oxford, UK and Nutritional Research Institute (Instituto de Investigación 

Nutricional in Spanish) in Lima, Peru which is accredited by the National Institute of Health. 

Ethical committee approval number 180-2002/CIEI-IIN. A written informed consent was 

obtained from all the study participants. 

7.3.2 Anthropometric, blood pressure and biochemical measurements 

Anthropometric measurements were taken by trained fieldworkers. The 

anthropometric variables included height, weight and waist circumference (WC) in 

centimetres (cm). BMI was calculated using weight (kg) divided by height in meters (m) 

squared. Weight was measured using a digital platform balance (SECA 813) with 100-gram 

precision and 200-kg capacity, while height was measured using a portable stadiometer 

(SECA 213) with a 1-mm precision. Finally, WC was measured using a “ergonomic 

circumference measuring/retractable stainless steel” tape with a 1-mm precision. The 

reference measurements were obtained following the standardised protocol by the World 

Health Organization (WHO) [616, 617].  

Blood pressure (BP) in mmHg and biochemical measurements were taken by trained 

health technicians. The BP was taken from the left hand after resting quietly in a seated 

position for 5 minutes; two consecutive BP measurements (systolic, SBP and diastolic, DBP) 

were taken three minutes apart using a digital upper-arm electronic device (Omron HEM-

7130). After two BP measurements were taken, the mean of both SBP and DBP were 

calculated. Standard protocols and validation of devices have been previously reported 

[618]. Fasting serum lipids [total cholesterol (TC), triacylglycerol (TAG) and HDL-C], glucose 

and glycated haemoglobin (HbA1c) were quantified by using the RX Daytona Plus clinical 

chemistry analyser (Randox Laboratories Limited, Crumlin, UK) using kits supplied by 

Randox. Fasting serum low-density lipoprotein cholesterol (LDL-C) concentration was 

estimated using the Friedewald equation [330] and non-HDL-C was calculated by 

subtracting HDL-C from TC. Human insulin was measured using ELISA kits from Protein 

Simple (Bio-Techne) and the Ella automated Simple Plex instrument (Protein Simple, Bio-

Techne). Briefly, plasma samples were centrifuged at 4C for 10 minutes (16,000 x g) and 
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the supernatant (50 μL) used for analysis, following the manufacturer’s instructions 

(samples were diluted 1:2 prior to analysis). 

7.3.3 Dietary assessment 

Dietary intake information was assessed using an online 47-item semi-quantitative 

food frequency questionnaire (FFQ) previously validated in the YLS [152]. The internal 

consistency of the instruments demonstrated good performance, with a Cronbach’s alpha of 

0.82 for all food groups. For each food item, participants were asked to recall the frequency 

and number of portions consumed during the last month, as well as the number of portions 

consumed at each occasion, where portion sizes of known weight (g) were selected from a 

series of photographs. Field researchers input the data with usual frequency estimated 

within food categories, ranging from never or rarely to more than 5 times daily, which was 

later converted to number of times per day. To estimate the quantity consumed per day 

(g/day), the portion size (g) selected was multiplied by frequency per day. To estimate the 

macronutrient (energy, carbohydrate, protein, fat) and fibre intake, food composition data 

from the Instituto de Investigacio n Nutricional database of the Centro Nacional de 

Alimentacio n y Nutricio n (Peru), and a Latin-American food composition table from the 

INCAP (Venezuela), was used.  

The dietary glycaemic index (GI) for each participant was obtained by multiplying the 

published GI value of each food item by the amount consumed and the grams of available 

carbohydrate, then adding up the values and dividing by the total daily carbohydrate intake 

[619, 620]. The glycaemic load (GL) was calculated by multiplying the published GI value of 

the food item by the amount consumed and the grams of available carbohydrate, then 

dividing by 100. The values were then added up to obtain the dietary GL [620, 621]. 

7.3.4 SNP selection and genotyping 

We selected a total of 39 SNPs which have shown an association with cardiometabolic 

traits at a genome-wide significance level (P<5 × 10−8) (Supplementary Table S7.1): alpha-

ketoglutarate-dependent dioxygenase (FTO) SNP rs1558902 [8, 622-625]; transmembrane 

protein 18 (TMEM18) SNP rs13021737 [8, 352, 626-629]; melanocortin 4 receptor (MC4R) 

SNP rs6567160 [7, 8, 629-631]; glucosamine-6-phosphate deaminase 2 (GNPDA2) SNP 

rs10938397 [7, 8, 401, 632]; SEC16 homolog B, endoplasmic reticulum export factor 

(SEC16B) SNP rs543874 [8, 352, 629, 632, 633]; BCDIN3 domain containing RNA 

methyltransferase (BCDIN3D) SNP rs7138803 [8, 352, 401, 629, 632];  transcription factor 

AP-2 beta (TFAP2B) SNP rs2207139 [8, 352, 401, 628]; neuronal growth regulator 1 
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(NEGR1) SNP rs3101336 [8, 626-629]; adenylate cyclase 3 (ADCY3) SNP rs10182181 [8, 626, 

627, 634]; ETS variant transcription factor 5 (ETV5) SNP rs1516725 [5, 8, 401, 626]; 

glutaminyl-peptide cyclotransferase like (QPCTL) SNP rs2287019 [8, 629, 632, 635]; G 

protein-coupled receptor class C group 5 member B (GPRC5B) SNP rs12446632 [8, 401, 629, 

634]; mitochondrial carrier 2 (MTCH2) SNP rs3817334 [626, 627, 633, 634]; centriolar 

protein (POC5) SNP rs2112347 [7, 8, 629, 632]; mitogen-activated protein kinase 5 (MAP2K) 

SNP rs16951275 [8, 628, 636]; zinc finger CCCH-type containing 4 (ZC3H4) SNP rs3810291 

[7, 8, 630, 632]; FPGT-TNNI3K read through (FPGT-TNNI3K) SNP rs12566985 [8, 628, 637]; 

leucine-rich repeat and immunoglobulin-like domain-containing nogo receptor-interacting 

protein 2 (LINGO2) SNP rs10968576 [8, 352, 633, 638]; cell adhesion molecule 1 (CADM1) 

SNP rs12286929 [8, 627, 629]; protein kinase D1 (PRKD1) SNP rs12885454 [8, 632, 633]; 

AGBL carboxypeptidase 4 (AGBL4) SNP rs657452 [8, 352, 627]; polypyrimidine tract 

binding protein 2 (PTBP2) SNP rs11165643 [7, 8, 352, 626]; NLR family CARD domain 

containing 3 (NLRC3) SNP rs758747 [8, 627]; syntaxin binding protein 6 (STXBP6) SNP 

rs10132280 [8, 629, 632]; Huntingtin interacting protein 1 (HIP1) SNP rs1167827 [8, 633]; 

cell adhesion molecule 2 (CADM2) SNP rs13078960 [8]; far upstream element binding 

protein 1 (FUBP1) SNP rs12401738 [8, 634]; olfactomedin 4 (OLFM4) SNP rs12429545 [626, 

628, 632]; RAS p21 protein activator 2 (RASA2) SNP rs16851483 [8, 628]; hypoxia inducible 

factor 1 subunit alpha inhibitor (HIF1AN) SNP rs17094222 [8, 633]; hepatocyte nuclear 

factor 4 gamma (HNF4G) SNP rs17405819 [627, 629, 639]; toll like receptor 4 (TLR4) SNP 

rs1928295 [8, 352]; neurexin 3 (NRXN3) SNP rs7141420 [8, 401]; inflammation and lipid 

regulator with UBA-like and NBR1-like domains (ILRUN or C6orf106) SNP rs205262 [8]; 

fragile histidine triad diadenosine triphosphatase (FHIT) SNP rs2365389 [8, 633]; neuron 

navigator 1 (NAV1) SNP rs2820292 [8]; tripartite motif containing 66 (TRIM66) SNP 

rs4256980 [8, 629]; erb-b2 receptor tyrosine kinase 4 (ERBB4) SNP rs7599312 [8, 623]; and 

lysine acetyltransferase 8 (KAT8) SNP rs9925964 [8, 627].  

Blood samples for genotyping (3ml) were collected in BD Vacutainer® 

ethylenediamine tetraacetic acid (EDTA) tubes and transported by the World Courier 

Company to London, UK. The samples were collected in the fasting state through 

venepuncture and stored at a controlled temperature of –80ºC during transportation. 

Genotyping was completed by LGC Genomics, London, UK 

(http://www.lgcgroup.com/services/genotyping), using the competitive allele-specific 

PCR-KASP® assay. 

 

http://www.lgcgroup.com/services/genotyping
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7.3.5 Construction of GRS 

An unweighted GRS was constructed by adding the number of risk alleles across all 

the 39 SNPs for each participant. For each SNP, a score of 0, 1 or 2 was assigned to reflect the 

number of risk alleles the participant carried for that SNP [0 for no risk alleles (homozygous 

for the non-risk allele); 1 for one risk allele (heterozygote); and 2 for two risk alleles 

(homozygous for the risk allele)]. The scores for the 39 SNPs were then combined to calculate 

the GRS. Thus, the GRS for each participant represented the total number of risk alleles the 

participant carried from the 39 SNPs. The risk alleles were not weighted because of 

insufficient information on effect sizes of the SNPs for the Peruvian population. It has been 

highlighted that, data on effect sizes from a GWA study conducted in one population may not 

be applicable to another population because of variations in effect sizes [105, 369]. 

Moreover, assigning weights to risk alleles has been reported to have little effect [370]. The 

risk alleles were defined as alleles which have shown an association with altered blood lipid 

levels or obesity-related traits. The risk alleles of the SNPs are shown in Supplementary 

Table S7.1. The GRS had a median of 37 risk alleles and ranged from 27 to 49 risk alleles. 

Participants were grouped as low risk or high risk using the median GRS as a cut-off point. 

7.3.6 Statistical analyses 

The means of continuous variables between men and women were compared using 

independent sample t test. The results for descriptive statistics are presented as means and 

standard deviation. The distribution of the data was tested using Shapiro-Wilk test and non-

normally distributed variables (all the variables except fasting glucose) were log-

transformed before the analysis. The frequencies of the alleles were determined by gene 

counting and Hardy-Weinberg Equilibrium (HWE) was calculated using the Chi-Square test. 

The 39 SNPs were all in HWE (P>0.05) (Supplementary Table S7.2). 

The association of the GRS with the outcome variables (BMI, WC, fasting glucose, 

fasting insulin, HbA1c, TC, HDL-C, LDL-C, TAG, SBP and DBP) was examined using linear 

regression with adjustment for sex, family history of diabetes, smoking status, physical 

activity level and BMI wherever appropriate. To determine interactions between the GRS and 

dietary macronutrient (fat, carbohydrate, protein) and fibre intake (g/day) on the outcome 

variables, the interaction term was added to the regression model. The analysis was adjusted 

for sex, BMI, family history of diabetes, smoking status, physical activity level and total 

energy intake. The statistically significant interaction (P<0.05) was explored further by 

stratifying participants according to tertiles of dietary intake and examining the association 

of the GRS with the outcome variable in each tertile. The Bonferroni adjusted P-value for 



  

189 

interaction was 0.001 (1 GRS*11 outcome variables*4 dietary factors = 44 tests; 

0.05/44=0.001). The Statistical Package for the Social Sciences (SPSS) software (version 28; 

SPSS Inc., Chicago, IL, USA) was used to perform the analyses and the data analysis plan is 

attached as an appendix (Appendix D). 

7.3.7 Characteristics of the study participants 

The characteristics of the participants included in this study are summarised in Table 

7.1. The mean age of the sample was 20 ± 1 years and men had significantly higher WC 

(P=0.008), TAG (P=0.03), SBP (P=1.0 × 10-24), fasting glucose (P=0.001) and HbA1c (P=1.92 

× 10-16) but lower fasting insulin (P=0.003) than women. Men and women did not have 

significantly different BMI, HDL-C, LDL-C or TC. Regarding dietary intake, men had 

significantly higher intakes of energy (P=6.8 × 10-12), total fat (P=0.000002), carbohydrate 

(P=5.2 × 10-14) and protein (P=1.0 × 10-9) than women, whereas fibre intake did not vary 

between sexes (P=0.60).  
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Table 7.1 Characteristics of study participants by sex 

 
All (n=468) Women (n=210) Men (n=258) 

P Value 
Mean SD Mean SD Mean SD 

Age (years) 20.4  0.5 20.4  0.5 20.5  0.5 0.88 

BMI (kg/m2) 24.3 4.1 24.4  4.2 24.2  4.2 0.60 

WC (cm) 81.2  10.2 79.9  9.5 82.2  10.6 0.008 

TAG (mmol/L) 1.1 0.7 1.0  0.6 1.1  0.7 0.03 

HDL-C (mmol/L) 1.1 0.3 1.1  0.4 1.1  0.3 0.92 

LDL-C (mmol/L) 2.0  0.6 1.9   0.6 2.0  0.6 0.22 

TC (mmol/L) 3.6  0.9 3.5  1.0 3.6  0.9 0.10 

SBP (mmHg) 103.5  11.0 98.5  9.1 107.5  10.7 1.0 × 10-24 

DBP (mmHg) 66.5 7.5 65.9  7.0 67.0 7.8 0.07 

Fasting glucose 
(mmol/L) 

4.4  0.8 4.3  0.8 4.5 0.7 0.001 

Fasting insulin 
(pmol/L) 

63.0 47.8 69.7  52.3 57.5  43.0 0.003 

HbA1c (%) 5.4 0.3 5.3  0.3 5.5  0.3 1.92 × 10-16 

Energy (kcal/day) 3304.0  1427.7 2870.8  1116.6 3660.4  1553.4 6.8 × 10-12 
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Kcal/kg of body 
weight 

53.4 24.8 55.3 23.9 55.1 25.5 0.09 

Total fat [(g/day)/ % 
energy] 

109.2 (29)  57.8 (6) 97.0 (30)  48.2 (6) 119.2 (28) 62.9 (7) 0.000002 

Carbohydrate 
[(g/day)/ % energy] 

417.9 (51)  180.8 (8) 357.9 (50) 139.8 (8) 467.1 (52) 195.3 (8) 5.2 × 10-14 

Protein [(g/day)/ % 
energy] 

172.8 (21)  80.5 (4) 151.0 (21) 62.6 (3) 190.7 (21)  88.8 (4) 1.0 × 10-9 

Protein/kg of body 
weight 

2.8 1.4 2.7 1.4 2.9 1.5 0.14 

Fiber (g/day) 11.1  7.3 10.9  7.4 11.3  7.3 0.60 

Dietary GI 57.2 4.0 56.6 4.0 58.0 3.8 0.00003 

Dietary GL 152.9 83.5 139.8 59.4 186.3 81.9 2.6 × 10-14 

Data is presented as mean ± standard deviation. BMI, body mass index; WC – waist circumference; TAG  –  triacylglycerol; HDL-C  – high-

density lipoprotein cholesterol; LDL-C  –  low-density lipoprotein cholesterol; TC  –  total cholesterol; SBP  –  systolic blood pressure; DBP  –  

diastolic blood pressure; HbA1c  –  glycated haemoglobin. 

P values for the differences in means between men and women were calculated using independent sample t test. 
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7.3.8 Association of the GRS with cardiometabolic traits 

There were no significant associations between the GRS and any of the outcome 

variables after adjusting for the confounding factors, sex, family history of diabetes, smoking 

status, physical activity level, and BMI wherever appropriate (Supplementary Table S7.3). 

No regional effects were observed when participants were stratified according to region of 

residence. 

7.3.9 Interaction of the GRS with dietary macronutrient intake on cardiometabolic 

traits 

A significant interaction was observed between the GRS and carbohydrate intake on 

the concentration of HDL-C (Pinteraction=0.0007, Table 7.2). As shown in Figure 7.1, in the 

first tertile of carbohydrate intake (≤327 g/day), participants with a high GRS (>37 risk 

alleles) had a higher concentration of HDL-C than those with a low GRS (≤37 risk alleles) 

[Beta=0.06 mmol/L, 95% confidence interval (CI) 0.01–0.10; P=0.02]. In the third tertile of 

carbohydrate intake (>452 g/day), participants with a high GRS had a lower concentration 

of HDL-C than those with a low GRS (Beta=–0.04 mmol/L, 95% CI –0.01 to –0.09; P=0.03). 

When the effect of GL and GI were tested, a significant interaction was observed between 

GRS and GL on the concentration of HDL-C (Pinteraction=0.002), however no significant 

differences were observed when all the participants were stratified according to tertiles of 

GL. For participants with a high GRS, there was a lower concentration of HDL-C across 

tertiles of GL as shown in Figure 7.2. No significant interaction was identified between GRS 

and GI on the concentration of HDL-C. 

 Although other significant interactions were observed as shown in Table 7.2, four of 

the interactions (GRS*carbohydrate on TC, GRS*fat on HDL-C, GRS*fat on glucose and 

GRS*protein on HDL-C) were not significant after Bonferroni correction for multiple testing. 

Two of the interactions (GRS*carbohydrate on serum fasting glucose and GRS*protein on 

serum fasting glucose) passed the Bonferroni correction, but no significant differences were 

found when participants were stratified according to the quantity of carbohydrate and 

protein intake. No regional effects were observed when participants were stratified 

according to region of residence. When the participants were stratified by sex, significant 

interactions were observed in both men and women, as shown in Table 7.2, but only two of 

the interactions (GRS*carbohydrate on the concentration of HDL-C, and GRS*fat on the 

concentration of HDL-C in men) met the Bonferroni threshold. However, no significant 
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differences were found when the participants were stratified according to the quantity of 

carbohydrate and fat intake. 
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Table 7.2 Interaction of GRS with dietary macronutrient intake on cardiometabolic traits 

 All: GRS≤37 risk alleles (n=228); GRS>37 risk alleles (n=240) 

Women: GRS≤37 risk alleles (n=107); GRS>37 risk alleles (n=104) 

Men: GRS≤37 risk alleles (n=138); GRS>37 risk alleles (n=119) 

Trait Beta Coefficient ± SE (Pinteraction) 

GRS * Carbohydrate (g/day) GRS * Fat (g/day) GRS * Protein (g/day) GRS * Fiber (g/day) 

HDL-C 
(mmol/L) 

All 0.24 ± 0.07 (0.0007) 0.14 ± 0.06 (0.009) 0.17 ± 0.06 (0.006) 0.03 ± 0.05 (0.51) 

Women –0.08 ± 0.11 (0.50)  0.02 ± 0.09 (0.82)  –0.05 ± 0.11 (0.63)  –0.13 ± 0.08 (0.12)  

Men –0.38 ± 0.09 (0.00007)  –0.23 ± 0.07 (0.0008)  0.24 ± 0.08 (0.002)  –0.04 ± 0.06 (0.54)  

LDL-C (mmol/L) All 0.07 ± 0.08 (0.40) 0.04 ± 0.06 (0.55) 0.06 ± 0.07 (0.39) –0.03 ± 0.05 (0.63) 

Women –0.08 ± 0.12 (0.50)  –0.06 ± 0.10 (0.51)  –0.12 ± 0.11 (0.31)  0.00 ± 0.08 (0.98)  

Men –0.07 ± 0.11 (0.52)  –0.02 ± 0.08 (0.78)  –0.05 ± 0.09 (0.61)  0.004 ± 0.07 (0.95)  

TAG (mmol/L) All 0.04 ± 0.11 (0.73) –0.02 ± 0.09 (0.78) –0.01 ± 0.10 (0.93) –0.02 ± 0.08 (0.83) 

Women –0.24 ± 0.17 (0.16)  –0.11 ± 0.14 (0.44)  –0.17 ± 0.17 (0.31)  –0.03 ± 0.13 (0.81)  

Men 0.03 ± 0.16 (0.86)  0.07 ± 0.12 (0.57)  0.05 ± 0.13 (0.72)  –0.01 ± 0.10 (0.90)  

TC (mmol/L) All 0.12 ± 0.06 (0.04) 0.06 ± 0.05 (0.18) 0.09 ± 0.05 (0.10) –0.002 ±  0.04 (0.97) 

Women –0.12 ± 0.10 (0.25)  –0.05 ± 0.83 (0.52)  –0.11 ± 0.10 (0.25)  –0.52 ± 0.07 (0.48)  

Men –0.16 ± 0.08 (0.05)  –0.07 ± 0.06 (0.21)  –0.10 ± 0.07 (0.14)  0.02 ± 0.05 (0.72)  
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SBP (mmHg) All 0.12 ± 0.02 (0.55) 0.004 ± 0.02 (0.78) 0.01 ± 0.02 (0.51) 0.001 ± 0.01 (0.94) 

Women 0.03 ± 0.03 (0.38)  0.00 ± 0.02 (0.90)  0.02 ± 0.03 (0.58) 0.00 ± 0.02 (0.99)  

Men –0.03 ± 0.03 (0.25)  –0.002 ± 0.02 (0.93)  –0.02 ± 0.02 (0.44)  –0.01 ± 0.02 (0.49)  

DBP (mmHg) All 0.001 ± 0.03 (0.97) 0.003 ± 0.02 (0.86) 0.004 ± 0.02 (0.86) 0.02 ± 0.02 (0.24) 

Women 0.02 ± 0.04 (0.57)  0.02 ± 0.03 (0.53)  0.04 ± 0.04 (0.26) –0.03 ± 0.03 (0.27)  

Men –0.02 ± 0.04 (0.55)  –0.02 ± 0.03 (0.56)  –0.03 ± 0.03 (0.36)  –0.03 ± 0.02 (0.31)  

Fasting glucose 
(mmol/L) 

All 1.38 ± 0.39 (0.0005) 0.93 ± 0.31 (0.003) 1.19 ± 0.35 (0.0008) 0.41 ± 0.28 (0.15) 

Women –1.01 ± 0.66 (0.13)  –0.58 ± 0.55 (0.29) –1.16 ± 0.63 (0.07) –0.99 ± 0.48 (0.04)  

Men –1.51 ± 0.53 (0.005)  –0.98 ± 0.38 (0.01)  –1.07 ± 0.43 (0.02)  –0.20 ± 0.34 (0.57)  

Fasting insulin 
(pmol/L)  

All 0.03 ± 0.11 (0.81) –0.09 ± 0.09 (0.35) –0.07 ± 0.10 (0.48) –0.01 ± 0.08 (0.94) 

Women –0.001 ± 0.18 (0.99)  0.09 ± 0.15 (0.55) 0.13 ± 0.17 (0.45)  0.03 ± 0.13 (0.85)   

Men –0.003 ± 0.16 (0.99)  0.13 ± 0.11 (0.26) 0.09 ± 0.13 (0.51)  –0.01 ± 0.10 (0.92)  

HbA1c (%) All 0.02 ± 0.01 (0.07) 0.01 ± 0.01 (0.52) 0.02 ± 0.01 (0.14) 0.02 ± 0.01 (0.03) 

Women –0.01 ± 0.02 (0.61) –0.00 ± 0.01 (0.73) –0.00 ± 0.01 (0.92) 0.00 ± 0.01 (0.95) 

Men –0.05 ± 0.02 (0.02) –0.01 ± 0.02 (0.69) –0.04 ± 0.02 (0.04) –0.05 ± 0.02 (0.002) 

BMI (kg/m2) All 0.05 ± 0.04 (0.17) 0.02 ± 0.03 (0.47) 0.05 ± 0.03 (0.11) 0.05 ± 0.03 (0.06) 

Women –0.09 ± 0.06 (0.12)  –0.07 ± 0.05 (0.14)  –0.13 ± 0.05 (0.02)  –0.09 ± 0.04 (0.03)  

Men –0.04 ± 0.05 (0.46)  0.00 ± 0.04 (0.96)  –0.02 ± 0.05 (0.65)  –0.02 ± 0.04 (0.59) 
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WC** (cm) All 0.04 ± 0.03 (0.16) 0.02 ± 0.02 (0.47) 0.04 ± 0.03 (0.09) 0.04 ± 0.02 (0.07) 

Women –0.05 ± 0.23 (0.84)  –0.02 ± 0.19 (0.91)  –0.19 ± 0.21 (0.39)  0.01 ± 0.16 (0.95)  

Men –0.03 ± 0.04 (0.52)  0.00 ± 0.03 (0.92)  –0.02 ± 0.03 (0.62)  –0.02 ± 0.03 (0.42)  

P values were obtained from linear regression analysis with adjustment for sex, family history of diabetes, smoking status, physical activity 

level, total energy intake and BMI wherever appropriate. Log-transformed variables were used for the analysis and values in bold represent 

significant interactions. GRS – genetic risk score; TAG –  triacylglycerol; HDL-C – high-density lipoprotein  cholesterol; LDL-C – low-density 

lipoprotein cholesterol; TC – total cholesterol; SBP – systolic blood pressure; DBP –  diastolic blood pressure; HbA1c  –  glycated haemoglobin; 

BMI  –  body mass index; WC  –  waist circumference. 

** 457 participants had data for waist circumference. 
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Figure 7.1 Interaction of GRS and carbohydrate intake on HDL-C concentration 

In the first tertile of carbohydrate intake (≤327 g/day), participants with a high GRS (>37 

risk alleles) had higher HDL-C concentration than those with a low GRS (≤37 risk alleles). 

However, in the third tertile of carbohydrate intake (>452 g/day), participants with a high 

GRS had a lower HDL-C concentration than those with a low GRS. The analysis was adjusted 

for sex, BMI, family history of diabetes, smoking status, physical activity level and total 

energy intake. 

 

 

Figure 7.2 Association of glycaemic load (GL) with HDL-C concentration in individuals with 

a high GRS. 

The concentration of HDL-C was lower across tertiles of GL. The analysis was adjusted for 

sex, BMI, family history of diabetes, smoking status, physical activity level and total energy 

intake. 

 



  

198 

7.4 Discussion 

Our study indicates that carbohydrate intake might modulate genetic influences on 

HDL-C concentration in urban Peruvian young adults. We found a significant interaction 

between GRS and carbohydrate intake on the concentration of HDL-C where individuals with 

a higher genetic risk had a lower HDL-C concentration when their intake of carbohydrate 

was higher (>452 g/day). Conversely, when the intake of carbohydrate was lower (≤327 

g/day), the concentration of HDL-C was higher. For participants with a high GRS, there was 

a lower concentration of HDL-C across tertiles of GL.  

This study builds on previous research and emphasises the potential of personalised 

nutrition based on a GRS for the prevention and management of lipid abnormalities in those 

with a high genetic risk. Given that low HDL-C concentrations have been identified as the 

most common lipid abnormality in LACP [592], and is related to a higher risk of CVDs [48, 

640, 641], our findings have considerable public health implications. According to the 

dietary guidelines for Americans (2020–2025) [642], carbohydrates should make up 45–

65% of total daily calories. The WHO [643] also recommends that carbohydrates should 

predominantly be sourced from whole grains, vegetables, fruits and legumes. The mean 

carbohydrate intake as a percentage of total energy intake (TEI) in the current study was 

51%, which is within the recommended intake for Americans [642]. The mean carbohydrate 

intake in the first tertile was 42% of TEI while the mean intake for the third tertile was 60% 

of TEI. The mean HDL-C concentration on the other hand was 1.10 mmol/L for both men and 

women which is within the recommended level for men [≥40mg/dL (1.03mmol/L)], but 

lower than the recommended level for women [≥50mg/dL (1.30 mmol/L)] [644]. A 1mg/dL 

(0.03mmol/L) increase in the concentration of HDL-C has been associated with a 2–3% 

lower risk of coronary heart disease [645]. However, it has been recognised that, the 

concentration of HDL-C does not necessarily correlate with the function of HDL  [32, 50]. 

In line with our findings, a cross-sectional study of 8,314 Korean adults from the 

Ansan and Ansung cohort of the Korean Genome and Epidemiology Study [646] observed 

that, among individuals with a high GRS (third tertile of a weighted GRS using 18 SNPs), those 

with a high low-carbohydrate diet score, indicating a low carbohydrate content (64.6% of 

TEI), had significantly lower risk of low HDL-C (odds ratio, 0.759; 95% CI, 0.625–0.923; 

P<0.05) than those with a low score [high carbohydrate content (78.8% of TEI)]. However, 

it should be noted that the low carbohydrate diet score represented a low content of 

carbohydrate and a high content of protein and fat, which could have a positive effect on 

HDL-C depending on the type of fat [646]. Moreover, the carbohydrate intake (% of TEI) in 
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the current study was lower than the Korean study [646]. The mean carbohydrate intake in 

the first tertile was 42% of TEI while the mean intake for the third tertile was 60% of TEI, 

suggesting that Peruvians might benefit from an intake of less than 60% of TEI. Similarly, a 

study consisting of 920 participants from the Genetics of Lipid Lowering Drugs and Diet 

Network (GOLDN) Study in the US [647] observed a significant interaction between genetic 

variants and carbohydrate intake on HDL-C concentration (Pinteraction<0.001–0.038), in which 

individuals with the ‘GG’ genotype of potassium channel tetramerization domain containing 

10 (KCTD10) SNP i5642G→C and metabolism of cobalamin associated B (MMAB) SNP 

3U3527G→C; as well as those with the ‘CC or TC’ genotype of KCTD10 SNP V206VT→C had 

lower HDL-C concentration only when they consumed diets higher in carbohydrates (≥231 

g/day) (P<0.001–0.011). In comparison to our study, the carbohydrate intake in this study 

[647] was lower (median intake of 231 g/day compared to 387 g/day in the current study). 

Our finding of an inverse association between GL and HDL-C concentration has also been 

reported in previous studies [648, 649]. The first study [648] consisted of 1,026 adults from 

the Insulin Resistance Atherosclerosis Study [648] where GL was found to be inversely 

associated with the concentration of HDL-C  (Beta =–0.0009, P<0.001). Accordingly, the 

second study [649] which involved 5,011 participants from the third National Health and 

Nutrition Examination Survey found a negative association between GL and the 

concentration of HDL-C (P<0.01). Collectively, these findings demonstrate that carbohydrate 

intake might modulate genetic influences on HDL-C concentration in different ethnic groups. 

The mechanisms linking carbohydrate intake to HDL-C concentrations are unclear. 

However, it has been suggested that a lower carbohydrate diet might lead to an increase in 

HDL-C concentration possibly through an improvement in insulin resistance [650]. A high 

carbohydrate diet, consisting mainly of refined carbohydrates, was also reported to increase 

serum TAG concentrations by stimulating de novo lipogenesis (fatty acid production) in the 

liver and suppressing the activity of lipoprotein lipase through increased production of 

apolipoprotein CIII, especially when insulin resistance was present [35, 651]. Furthermore, 

there is a recognised reciprocal relationship between serum TAG and HDL-C concentrations 

due to the exchange of neutral lipids (TAG with cholesterol esters) between TAG-rich 

lipoproteins and LDL and HDL, resulting in elevated atherogenic small dense LDL and 

reduced HDL [652, 653]. Different types of carbohydrates however, can have varying effects 

on HDL-C concentration [654] and it has been suggested that GL serves as a measure of both 

the quality and quantity of dietary carbohydrates [649]. Foods with a high GL tend to induce 

more pronounced glycaemic and insulinemic reactions compared to those with a low GL 
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[655]. Hence, public health strategies targeting the consumption of whole grains and fruits 

and vegetables might be beneficial for the Peruvian population. 

Regarding the genetic risk of low HDL-C concentration in LACP and future prospects, 

a systematic review conducted by our team [106] indicated that, the concentration of HDL-

C might be influenced by interactions between genetic variants and different dietary factors, 

but most of the studies had not been replicated. In Brazilians, a high polyunsaturated fatty 

acid intake (> twice a week) was linked to higher HDL-C concentrations in individuals 

without the ‘E4’ allele of apolipoprotein E (APOE), and lower concentrations in those with 

the ‘E4’ allele [438], while in Costa Ricans, a high saturated fatty acid intake (13.5% energy) 

was associated with lower HDL-C concentrations in carriers of the ‘E2’ allele of APOE [442]. 

To promote comparison across studies and facilitate the implementation of personalised 

dietary guidelines, future studies should focus on replicating previously identified gene-diet 

interactions. Once findings have been replicated, the evidence can further be strengthened 

by conducting genotype-based dietary intervention studies. 

One of the strengths of our study is the use of a GRS which reflects an individual’s 

overall genetic predisposition to cardiometabolic traits by combining several genetic 

variants. Moreover, our study is the first gene-diet interaction study in Peru, capturing 

different regions of Peru (Coast, Highland and the Jungle), and the first to be conducted in 

adolescents, an unstudied non-Caucasian group which has an increasing prevalence of CVDs 

[392, 656, 657] and lipid abnormalities which significantly increase the risk of developing 

atherosclerotic CVDs later in life [658-662]. Another strength is the employment of validated 

methods and skilled professionals to evaluate dietary consumption, anthropometric and 

biochemical measurements, thereby enhancing the precision of the assessments. However, 

several limitations need to be acknowledged, including a small sample size which could have 

affected our ability to detect interactions with small effect sizes [393, 394]. The cross-

sectional design also prevents establishment of causality [105]. Moreover, we did not 

investigate types of carbohydrates which can have varying effects on cardiometabolic traits 

[663, 664]. Additionally, using recalled FFQ rather than weighed diet diaries or biomarkers 

of intake can lead to underestimation of dietary intake [154, 665]. 

7.5 Conclusion 

In conclusion, our study suggests that carbohydrate intake might modulate genetic 

influences on HDL-C concentration in urban Peruvian young adults. The results suggest that 

young adults who consume a higher carbohydrate diet and have a higher GRS have a lower 

HDL-C concentration, which in turn is linked to CVDs. Our findings support the dietary 
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guidelines of the WHO and indicate that personalised dietary guidelines targeting a 

reduction in carbohydrate intake might be beneficial for Peruvian individuals with a high 

genetic risk. However, randomised controlled trials and longitudinal studies with large 

sample sizes are required to confirm our findings. 
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8.1 Abstract 

Cardiometabolic diseases pose a significant threat to global public health, with a 

substantial majority of cardiovascular disease mortality (more than three-quarters) 

occurring in low- and middle-income countries. There have been remarkable advances in 

recent years in identifying genetic variants that alter disease susceptibility by interacting 

with dietary factors. Despite the remarkable progress, several factors need to be considered 

before the translation of nutrigenetics insights into personalised and precision nutrition in 

ethnically diverse populations. Some of these factors include variations in genetic 

predispositions, cultural and lifestyle factors as well as socioeconomic factors. This review 

aimed to explore the factors that need to be considered in bridging the gap between existing 

nutrigenetics insights and the implementation of personalised and precision nutrition 

across diverse ethnicities. Several factors might influence variations among individuals with 

regards to dietary exposures and metabolic responses and these include genetic diversity, 

cultural and lifestyle factors as well as socioeconomic factors. A multi-omics approach 

involving disciplines such as metabolomics, epigenetics and the gut microbiome might 

contribute to improved understanding of the underlying mechanisms of gene-diet 

interactions and the implementation of precision nutrition although more research is 

needed to confirm the practicality and effectiveness of this approach. Conducting gene-diet 

interaction studies in diverse populations is essential and studies utilising large sample sizes 

are required as this improves the power to detect interactions with minimal effect sizes. 

Future studies should focus on replicating initial findings to enhance reliability and promote 

comparison across studies. Once findings have been replicated in independent samples, 

dietary intervention studies will be required to further strengthen the evidence and facilitate 

their application in clinical practice. Nutrigenetics has a potential role to play in the 

prevention and management of cardiometabolic diseases. Conducting gene-diet interaction 

studies in diverse populations is essential giving the genetic diversity and variations in 

dietary patterns. Integrating data from disciplines such as metabolomics, epigenetics and the 

gut microbiome could help in early identification of individuals at risk of cardiometabolic 

diseases as well as the implementation of precise dietary interventions for preventing and 

managing cardiometabolic diseases. 
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8.2 Introduction 

Cardiometabolic diseases pose a significant threat to global public health, with a 

substantial majority of cardiovascular disease (CVD) mortality (more than three-quarters) 

occurring in low- and middle-income countries (LMICs) [25]. According to the Centres for 

Disease Control and Prevention [26], individuals in LMICs are often affected by 

cardiometabolic diseases during the peak of their productivity, which, coupled with huge 

healthcare expenses and limited employment opportunities worsens the financial burden of 

cardiometabolic diseases in these countries. Thus, cardiometabolic diseases present severe 

health and economic consequences for individuals, families, and communities [25], 

necessitating further research into the prevention and management of these conditions. Risk 

factors such as dyslipidaemia, hypertension and obesity have been shown to be influenced 

by genetic factors [5-9].  However, unlike monogenic disorders like sickle cell anaemia which 

are usually caused by mutations in a single gene [666], most cardiometabolic diseases, such 

as CVDs are influenced by numerous genes and are also impacted by environmental factors 

[132, 165, 167, 667, 668].   

There have been remarkable advances in recent years in identifying genetic variants 

that alter disease susceptibility by interacting with dietary factors [163-168]. Thus, a genetic 

variant might not always pose a higher risk of a disease as its effects might be modulated by 

the environmental factors that interact with it [109]. Defined as the scientific field that 

investigates the impact of genetic variability on individual responses to diet [18], 

nutrigenetics focuses on understanding gene-diet interactions that predispose to specific 

diseases, offering the potential to design personalised dietary guidelines for preventing and 

managing cardiometabolic diseases [19, 20].  

Gene-diet interaction studies have been extended to cover previously under-

represented populations [99, 137-141], although there is still limited research in some areas 

[542, 669] and most studies have not been replicated [169, 542]. Despite the remarkable 

progress in nutrigenetics research, several factors need to be considered before the 

translation of existing nutrigenetics insights to personalised and precision nutrition in 

ethnically diverse populations [17, 670]. Ethnic diversity covers a broad range of factors 

including variations in genetic predispositions, cultural and lifestyle factors which can 

hinder the worldwide application of nutrigenetics findings [671]. Therefore, this review 

aims to explore the potential barriers and challenges in bridging the gap between existing 

nutrigenetics insights and the implementation of personalised and precision nutrition 

across diverse ethnicities. 
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8.3 Genetic diversity 

One of the main challenges (shown in Figure 8.1) in translating existing nutrigenetics 

insights to personalised and precision nutrition in various ethnic groups is the genetic 

diversity that exists among populations. Numerous studies have shown that individuals of 

different ethnic backgrounds have distinct genetic variations that impact how their bodies 

metabolise certain nutrients [18, 106, 130-132]. Therefore, research covering populations 

that represent different ethnicities is required to gain a better understanding of the genetic 

variations and specific nutritional requirements within these groups. Research by the Gene–

Nutrient Interactions (GeNuIne) collaboration identified that, the genetic influence on 

obesity in different Asian populations was influenced by different dietary factors [18, 104, 

105, 128, 131, 170, 565, 613]. Using a genetic risk score (GRS), it was observed that, South 

Asians with a higher GRS had a greater susceptibility to obesity when consuming a high-

carbohydrate diet, whereas South East and Western Asian populations with a higher GRS 

displayed an increased risk of central obesity in response to a high-protein diet [18]. 

Similarly, research by the Diabetes Heart Study [114-116] indicates that African Americans 

have elevated levels of circulating arachidonic acid (AA) in comparison to individuals of 

European ancestry. Notable differences were also observed in allele frequencies of various 

SNPs within the fatty acid desaturase (FADS) gene cluster which have been shown to play a 

significant role in determining circulating levels of fatty acids. In particular, the ‘GG’ genotype 

of the SNP rs174537, which is linked to elevated AA levels was present in 81% of African 

Americans compared to 46% of European Americans [116]. Thus, while research conducted 

on individuals of European descent suggests that only a small fraction of dietary linoleic acid 

is converted to AA in humans, this minimal conversion rate may not be consistent across all 

populations [114-116]. Given that AA and its metabolites play crucial roles in immune 

responses and inflammation, thereby influencing the onset and advancement of various 

diseases including diabetes and CVDs [133, 134], tailored dietary recommendations 

regarding the intake of PUFA might be beneficial for this population. 

One of the most widely studied genes in relation to cardiometabolic diseases is the 

Apolipoprotein E (APOE) gene [95, 124, 203-205, 672] and variations in the frequency of the 

E4 isoform of the gene, which is associated with increased risk of CVDs, have been reported 

[112, 113]. African and Asian populations tend to have higher frequencies of the E4 isoform 

(29-40% in Central Africa) compared to Caucasians [112, 113] which could contribute to 

differences in susceptibility to certain diseases among these populations. Furthermore, 

within Europe there are regional variations in the frequency of the E4 isoform, ranging from 
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5-10% in Spain, Portugal, Italy, and Greece; up to 16% in France, Belgium, and Germany; and 

further rises to up to 23% in the Scandinavian peninsula, with the Saami population of 

Finland showing frequencies as high as 31% [112, 113]. However, the link between the E4 

isoform and increased low-density lipoprotein cholesterol levels is more pronounced in 

populations with diets high in saturated fat and cholesterol compared to other groudps [673, 

674], suggesting that interventions targeting a reduction in saturated fatty acids (SFA) 

intake could be effective for CVD prevention and management in populations with a high 

frequency of the E4 isoform. 

The use of a GRS has been shown to be effective in assessing the genetic contribution 

to complex traits such as dyslipidaemia since it allows the combined effects of multiple 

genetic variants to be analysed [370, 371, 675]. A weighted GRS, which takes into account 

the effect sizes of the risk alleles, is used by some studies [369, 676, 677]. However, most of 

the published data on effective sizes come from GWA studies which have been conducted in 

populations of European ancestry and it has been reported that effective sizes may vary 

across populations [105, 369], suggesting that using a weighted GRS might not be ideal for 

populations which are under-represented in GWA studies. In a study by the National Heart, 

Lung, and Blood Institute’s Candidate Gene Association Resource (CARe), consisting of 

10,366 African American, 26,647 European American, 1410 Hispanic, and 717 Chinese 

American individuals from nine cohorts [117], there were marked differences in effect sizes 

across the ethnic groups for some of the SNPs, and this has also been reported in a review of 

nutrigenetic studies [130]. The effect size of the cholesteryl ester transfer protein (CETP) 

SNP rs4783961, the 'A' allele of which is associated with higher concentration of high-

density lipoprotein cholesterol (HDL-C), was uniformly larger in African American cohorts 

(0.17 to 0.24) compared to European Americans (0.09 to 0.15) [117]. In contrast, another 

HDL-C-associated SNP, rs17231506, also in CETP, had larger effect sizes in European 

Americans and Hispanics (0.21 to 0.28) compared to African Americans (0.06 to 0.26). A 

potential reason for this finding as explained by the authors [117] is that, African Americans 

and European Americans possess the same underlying causal variant within a gene, yet 

because of ethnicity-specific variations in the frequencies of major and minor alleles, a SNP 

might have varying degrees of correlation with the underlying variant, resulting in varying 

effect sizes and degrees of association. 
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Figure 8.1 Barriers affecting the translation of existing nutrigenetics insights to precision 

nutrition in ethnically diverse populations 

 

8.4 Methodological factors 

Aside genetic diversity, another barrier that affects the translation of nutrigenetics is 

the lack of replication in most gene-diet interaction studies [106, 169, 678]. Conducting 

replication studies, especially in diverse populations is vital in enhancing the reliability of 

findings and facilitating their application in clinical practice [109]. In a systemic review of 

gene-diet interaction studies in relation to  CVDs [169], it was observed that many of the 

studies that identified significant interactions had not been replicated, with only a small 

number of studies examining the same dietary and genetic factors. Similarly, a lack of 

replication was reported in a systemic review of gene-lifestyle interaction studies conducted 

by our team [106] in which it was identified  that most of the studies were conducted only 

once. Furthermore, a systematic review of nutrigenetic studies focusing on omega-3 fatty 

acid and plasma lipid, lipoprotein, and apolipoproteins [678] highlighted a lack of replication 

of previously identified interactions. To strengthen the evidence and enhance comparability 

across studies, it is important for studies to be replicated in independent samples [106, 169]. 
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In addition to the lack of replication, sample size has been cited as a methodological 

issue that affects the quality of the evidence generated by gene-diet interaction studies [106, 

130, 169, 678]. A large sample size improves the power to detect interactions with minimal 

effect sizes and this is especially important for multifactorial traits where the main effects of 

genetic variants is often subtle [169, 393, 394]. Moreover, there is a scarcity of genotype-

based dietary intervention studies [18]. It has been highlighted that, dietary intervention 

studies can help to raise the evidence level of gene-diet interactions identified in 

observational studies once they have been replicated [109]. In a 12-week randomised 

controlled trial involving 145 participants with overweight or obesity, participants were 

first identified as being responsive to fat or carbohydrate based on a GRS, before being 

randomised to a high-fat or high-carbohydrate diet [679]. Although no differences in weight 

loss were observed between participants who were randomised to the appropriate diet 

based on their genotype and those who were not [679], studies utilising this approach could 

help to determine the effectiveness of dietary interventions based on genotypes and 

facilitate the translation of nutrigenetics into precision nutrition. 

8.5 Cultural and lifestyle factors 

Cultural and lifestyle factors also need to be considered in translating nutrigenetics 

and implementing precision nutrition. Ethnic groups often have longstanding dietary 

traditions, specific food preferences, and cooking practices that have been passed down 

through generations, making them a fundamental part of their cultural identity [680, 681]. 

Therefore, incorporating precision nutrition based on nutrigenetics into these cultural 

practices without compromising their valued traditions might be challenging. A systematic 

review of 20 qualitative studies revealed that the food preferences of individuals of Asian, 

African and other minority ethnic communities was impacted by social and cultural elements 

besides nutritional and health considerations [680]. It was observed that individuals from 

African, Asian and other minority ethnic backgrounds place significant value on traditional 

foods, viewing them as symbols of their ethnic identity and belonging [680]. Similarly, in 

African Americans, despite a disproportionate prevalence of cardiometabolic diseases in 

comparison to white Americans [682, 683], adherence to dietary guidelines has been found 

to be influenced by a preference for a dietary intake that reflects a cultural tradition known 

as “soul food” [682]. This diet often consists of fatty meats, added fat, sugar and salt and 

involves methods of cooking such as deep frying and others that raise the amount of calories 

and sodium in the diet [682]. Accordingly, African Caribbean individuals living in Britain 
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were found to prioritize spending on traditional foods such as yams over potatoes, thereby 

preserving their cultural food preferences [684]. Moreover, specific practices such as 

adhering to a vegetarian diet, avoidance of pork and beef and following certain cooking 

procedures are considered valuable to people of Asian and African backgrounds [680, 685]. 

Moreover, the concept of ‘local food’ has attracted a lot of attention in recent years, with 

many consumers preferring products that have travelled short distances or directly 

marketed by producers [686-688]. However, the extent to which individuals adhere to their 

traditional dietary practices is influenced by several factors, with younger individuals more 

likely to adopt new dietary habits [681, 689]. 

With regard to diet and cardiometabolic diseases, examining the overall dietary 

pattern is believed to offer several advantages since foods and the nutrients they contain 

often have synergistic effects, which can make it difficult to identify the influence of a single 

food or nutrient [690]. Moreover, it has been shown that it is not specific nutrients but rather 

the overall dietary pattern that exerts the most significant impact on cardiometabolic 

diseases [690-692]. Dietary pattern is defined as the regular consumption of various foods, 

drinks, and nutrients in specific quantities and combinations, including the frequency at 

which they are consumed [693]. Recognising a dietary pattern could lead to a stronger 

correlation with a specific health indicator and provide a broader and more inclusive 

understanding of how  nutrients and other bioactive compounds in our food are consumed, 

as well as how patterns of consumption affect health outcomes [693, 694]. In a study 

involving South Asian Surinamese, African Surinamese and Dutch participants in the 

Netherlands [695], three dietary patterns, categorised as 'noodle/rice and white meat', 'red 

meat, snacks, and sweets' and 'vegetables, fruits, and nuts' were identified. In contrast to 

Dutch participants, those of Surinamese origin had a stronger adherence to the 'noodle/rice 

and white meat' pattern, which reflected the dietary preferences typical of the traditional 

Surinamese diet. Dutch participants on the other hand showed a higher level of adherence 

to the  'red meat, snacks, and sweets' and 'vegetables, fruits, and nuts' patterns [696]. 

Variations in dietary consumption and factors shaping dietary behaviours across different 

ethnic groups were also observed in a systematic review of 49 studies [121]. Consumption 

of fruits and vegetables was found to be low in populations of African ancestry and higher in 

Hispanic and Latino populations while fish consumption was low in White and Hispanic 

populations. In contrast, White and Asian populations were found to have the highest dairy 

intake (2.17 and 1.3 servings per day, respectively) compared to populations of African 

ancestry (0.58 servings per day) [121]. These findings indicate a low tendency towards fruit 
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and vegetable consumption as well as reduced intake of dairy in African ancestry 

populations in comparison to the other ethnic groups, highlighting a need for ethnic-specific 

initiatives. It should be noted that within the same ethnic group, there are variations in 

dietary pattern depending on whether they are living in developed countries or in their 

native countries [696], indicating that public health priorities with regards to diet and 

disease prevention might differ based on geographic location. 

Traditional diets for certain ethnic groups have often been associated with health 

benefits [697]. The traditional South Asian diet in particular is composed mainly of fresh 

fruits and vegetables along with beans, legumes, nuts and spices [697]. However, a rise in 

type 2 diabetes (T2D) and CVDs has been seen in South Asians [18, 105] and this has partly 

been linked to unhealthy modifications to the traditional diet, shifting from nutrient-rich 

fresh produce to refined products and the use of large amounts of saturated cooking oils 

[697]. Similarly, the traditional African diet is enriched with fresh vegetables such as okra, 

spinach and other green leafy vegetables [698, 699]. Nonetheless, a shift away from 

traditional meals towards processed foods and soft drinks has been reported across African 

countries [700]. Hence understanding cultural and lifestyle factors that shape food 

preferences and dietary habits is vital in translating existing nutrigenetic insights to various 

ethnic groups.  

8.6 Socioeconomic factors 

Socioeconomic and geographical disparities are also important factors to consider in 

the translation of nutrigenetics to precision nutrition. Ethnic populations may experience 

disparities in access to healthcare, technologies, and resources required for implementing 

precision nutrition effectively. The allocation of money to healthcare has been reported to 

vary across countries depending on their level of economic development, with high-income 

countries allocating on average,  $3,000 per person towards healthcare, while low-income 

countries only spend around $30 per person [122]. Similarly, a report by the World Health 

Organisation [396] indicated that healthcare costs in low-income countries were mainly 

covered by individuals paying directly (44%) and aid from external sources (29%), while 

government funding played a predominant role in high-income countries (70%). Moreover, 

socioeconomic and political factors also influence the distribution of food, adjustments in 

food composition or the implementation of optional taxes on unhealthy food products as 

well as the adoption of dietary guidelines promoting the consumption of healthy options 

such as fruits and vegetables [701, 702].  
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Aside cost and infrastructure, the knowledge and attitudes of healthcare providers, 

including dietitians, towards nutrigenetics are crucial for its integration into clinical practice, 

which may also be influenced by socioeconomic-related educational opportunities [172]. 

Healthcare professionals need to understand genetic influences on  public health, evaluate 

the clinical relevance and utility of genetic tests as well as analyse the individual’s 

background in order to recommend genetic assessments, screening or lifestyle adjustments 

[703]. It has been highlighted that nutritional genetics has emerged as a relatively new field 

over the past two decades, with much of its scientific knowledge not integrated into 

healthcare education [704]. Consequently, healthcare professionals lack the essential 

foundation to provide effective nutrigenetic counselling [704]. Available evidence on 

knowledge and attitudes of healthcare professionals towards nutrigenetics mainly comes 

from studies conducted in high income countries and the findings indicate a general lack of 

awareness among healthcare professionals [705-708]. In a survey of 390 dietitians in the UK 

[706], it was observed that, despite being involved in the management of polygenic 

conditions such as diabetes, obesity and CVDs which are influenced by both genetic and 

dietary factors, majority of the participants were not engaged in activities related to genetics 

or nutrigenetics and expressed low confidence in undertaking such activities. Similarly, a 

survey involving 1,844 dietitians from Australia (390), the USA (461), and the UK (993) 

[707] revealed that, the participants had limited knowledge, engagement, and confidence in 

nutrigenetics. Giving the lack of resources in LMICs, knowledge and awareness of 

nutrigenetics is likely to be even lower. In this regard, initiatives such as the GeNuIne 

Collaboration are required [131]. Through funding from the British Nutrition Foundation 

(BNF), the GeNuIne collaboration was started at the University of Reading in 2013, and it has 

been instrumental not only in conducting nutrigenetics studies in diverse ethnic groups, but 

also in facilitating training and resource development to improve the ability of professionals 

and policymakers in low-income countries to effectively apply nutrigenetics findings within 

their domains [18, 106, 131, 170, 172, 173].  

8.7 Financial and technological challenges 

Funding from public bodies is vital for developing innovative approaches within 

nutrition programmes, promote collaboration among scientists, facilitate the distribution of 

nutrigenetics information through modern virtual communication technologies as well as 

establishing a well-trained public health nutrition workforce [709]. Several studies have 

highlighted the necessity for enhancing capacity in public health nutrition across individual, 
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organisational, and systemic levels [709-712].  However, global initiatives such as the Scaling 

Up Nutrition (SUN) movement which is focused on addressing the complex causes of 

malnutrition through the implementation of evidence-based, nutrition-specific 

interventions in developing countries, face challenges due to financial constraints in most 

countries [713].  

In a report by Sight and Life [714] it was noted that, personalised nutrition appears 

not only feasible and rational but also cost-effective in terms of developing effective nutrition 

interventions to alleviate the burden of diseases and improve health outcomes in LMICs. 

However, several implementation challenges were highlighted including how to extend the 

application of personalised nutrition approaches to benefit a larger population giving the 

financial constraints, deciding which methods offer the greatest potential for successful 

adoption, what resources are necessary to expand the implementation of personalised 

nutrition and whether there is sufficient support and interest in introducing personalised 

nutrition approaches to LMICs [714]. Moreover, it has been recognised that the integration 

of nutrigenetics into healthcare systems requires a multisystem approach that includes the 

gut microbiome, and environmental factors [20], which poses a huge challenge in LMICs. 

According to Sight for Life [714], personalised nutrition approaches that are more specific 

are less readily available in LMICs and these include genetic and microbiome analysis and 

counselling, alongside tools for assessing metabolic markers such as glucose monitors and 

energy intake sensors.  

8.8 Consumer attitudes towards nutrigenetics and personalised nutrition 

There is a growing interest in nutrigenetics and personalised nutrition, although at 

present, accessibility is limited to a narrow group of highly motivated individuals with high 

socioeconomic status [715]. Commercial companies offering nutrigenetic testing exist 

mostly in Europe and North America [716], with the aim of enabling consumers to identify 

their genetic susceptibility to diseases and offering personalised dietary recommendations 

to promote health [716, 717]. The growing interest in direct-to-consumer (DTC) genetic 

testing has been associated with social elements such as enhanced internet access to 

information and a cultural shift towards individuals taking greater responsibility for their 

health and lifestyle choices, while relying less on conventional expert guidance [718]. 

However, there are concerns about the accuracy and usefulness of the health-related data 

provided by DTC genetic testing companies as well as potential adverse outcomes if 

consumers or their healthcare providers misinterpret such information [719-722]. In a 
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study of 1,648 participants [723], it was observed that before undertaking personalised DTC 

genetic testing, consumers were mostly interested in information about ancestry (73.7%), 

traits (72.2%) and disease risks (71.9%). In terms of susceptibility to disease, heart disease 

(68%), breast cancer (67%), and Alzheimer's disease (66%) attracted a high level of interest 

[723]. It should be noted that the participants were mostly women, Caucasian and from a 

high socioeconomic background [723]. Similarly, a survey of 1,048 customers of DTC genetic 

testing [718] indicated that, the customers’ individual circumstances and subjective 

understanding of disease susceptibility were linked to specific health-related behaviours 

they undertake upon receiving their test results. More specifically, various aspects of the 

participants’ lives such as having a chronic condition, a family history of diseases tested by 

the DTC service, self-reported health issues and regular visits to a doctor were significantly 

correlated with several health-related behaviours individuals displayed following receipt of 

their results [718]. Along these lines, a survey of 2,037 customers of DTC services showed 

that the response to genetic testing was influenced by both the perceived severity and sense 

of control over the condition of interest. Higher perceived severity and lower perceived 

control were linked to increased, though not clinically significant, levels of anxiety and 

distress [724]. 

With regard to attitudes of the general public towards personalised nutrition, a 

survey of 9,381 participants across nine European countries (the UK, Germany, Ireland, 

Spain, Greece, Poland, Portugal, the Netherlands, and Norway) [725] indicated that the trust 

and preference consumers have for personalised nutrition services are key indicators of 

their likelihood to embrace such services. Variations in trust in the national health service as 

a regulatory body and source of information, as well as trust in dietitians and nutritionists 

as service providers were observed across the countries, although in all the countries, family 

doctors emerged as the most relied-upon sources of information [725]. Similarly, a study 

conducted in the UK and Ireland by Food4Me [726] identified that there was a preference 

for government-led services delivered in person, which was believed to enhance trust, 

transparency, and overall value. In both countries, paying for nutritional advice was 

associated with heightened commitment and motivation to adhere to guidelines [726]. 

Furthermore, a study involving 438 Dutch participants [727] showed that consumers 

acceptance of personalised nutrition was positively influenced by consensus among expert 

stakeholders, benefits for consumers or scientists, ease of implementation, and freedom of 

choice. In line with these findings, a study consisting of 1,425 Canadian participants [728] 

revealed that most of the participants (93.3%) regarded dietitians as the most suitable 
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professionals to provide personalised dietary advice based on nutrigenetic testing. In this 

study [728], health and disease prevention were cited as the primary benefits for 

nutrigenetic testing and there were concerns regarding accessibility to genetic testing 

through telemarketing companies and spam as well as companies using personal genetic 

data to promote sales [728]. Although there is limited data on the attitudes of consumers in 

LMICs towards nutrigenetics, previous studies by our group indicated a reluctance to give 

blood samples for genetic testing. Hence individuals from various socio-demographic 

backgrounds may have varying levels of trust in service providers, regulators and online 

information delivery. Consequently, preferences regarding the manner and source of 

personalised nutrition services might vary across countries and cultural settings [725].   

8.9 Integration of data from multiple fields 

Precision nutrition is centred around integrating data from multiple disciplines such 

as metabolomics, epigenetics and the gut microbiome as this is argued to be important in 

enhancing the scientific understanding of inter-individual variability in response to dietary 

interventions, although the practicality and effectiveness of this process are still being 

explored [180, 181]. So far, progress has been made in the mechanistic understanding of 

dietary interventions through the integration of omics technologies such as metabolomics 

and the gut microbiome [182]. Metabolomics focuses on analysing small molecules 

(metabolites) found in biological samples to understand changes in metabolism under 

various conditions [180]. Metabolites are the direct products of dietary consumption and 

metabolism, enabling a more accurate assessment of biological and physiological pathways 

as well as the related biomarkers for diet or disease [182]. Metabolic profiles have been 

linked to variations in nutritional needs and responses to diet, which offers the potential to 

stratify populations with similar metabolic and phenotypic profiles, enabling the 

development of tailored dietary recommendations [729]. Moreover, an accurate assessment 

of dietary intake is essential in understanding the link between diet and diseases, and 

methods currently used to assess dietary intake such as food frequency questionnaires, 

weighed food diaries and 24-h recalls are prone to errors including under estimation of 

energy intake [180]. By applying metabolomics, specific biomarkers associated to foods 

eaten can be obtained, and this involves participants consuming specific foods and the 

collection of biofluid samples over time [180]. These biomarkers could provide useful 

information to supplement self-reported dietary intake [729]. 
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 Using metabolomics, a possible explanation of the mechanisms underlying the health 

benefits of low glycaemic index (GI) diets was reported in a 6-month parallel randomised 

trial involving 122 adult participants with overweight and obesity [730]. An analysis of 

plasma metabolites revealed that, a low GI diet resulted in higher levels of serine, lower 

levels of valine and leucine, and alterations in a group of two sphingomyelins, two 

lysophosphatidylcholines, and six phosphatidylcholines. These changes in plasma amino 

acids and lipid species were found to be correlated with changes in body weight, glucose 

levels, insulin, and certain inflammatory markers [730]. Similarly, a metabolomic study 

identified underlying risks for T2D, insulin resistance and related comorbidities through 

analysis of blood metabolites in participants who had normoglycaemia and no clinical 

symptoms [731]. In this study [731], metabolomic analysis was performed at baseline and 

after the implementation of a personalised lifestyle intervention for 100 days. By combining 

metabolites associated with specific disease risks and calculating risk scores, the baseline 

analysis showed that some of the participants had  moderate to high risks for insulin 

resistance, T2D and CVDs. However, when the analysis was repeated following the 

personalised lifestyle intervention, specific metabolites that were previously outside the 

normal range had returned to the normal range, thereby reducing potential health risks 

during the second time point [731]. 

The gut microbiome supports the host by interacting directly or indirectly with host 

cells through the production of bioactive molecules, and this interaction allows the gut 

microbiome to regulate various biological processes related to immunity and energy balance 

[183]. This ability to interact with the host depends on the types of bacteria present and their 

distribution within the gut microbial community [732]. The application of the gut 

microbiome in precision nutrition involves using the gut microbiome as a biomarker to 

predict how specific dietary components affect host health, and the use of this information 

to design precision dietary interventions aimed at promoting health [183]. It has been 

highlighted that, the way individuals respond to certain dietary interventions may be 

influenced by the composition and function of the gut microbiota which differs among 

individuals with distinct metabolic profiles [732]. In a study involving 14 men with obesity 

[733], controlled diets supplemented with resistant starch or non-starch polysaccharide and 

a weight-loss diet were found to result in distinct changes in the microbiota composition. 

The resistant starch diet was linked to an increase in several Ruminococcaceae phylotypes, 

while the non-starch polysaccharide primarily resulted in an increase in Lachnospiraceae 

phylotypes, and the weight-loss diet significantly decreased Bifidobacteria. It was concluded 
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that since the dietary response of an individual's microbiota varied significantly and was 

inversely related to its diversity, individuals could be classified as responders or non-

responders based on the characteristics of their intestinal microbiota [733]. In another study 

involving a cohort of 800 participants with no previous diagnosis of T2D [734], variations in 

post-prandial glycaemic responses to similar standardized meals were observed. A machine 

learning algorithm was then developed by integrating blood parameters, dietary habits, 

anthropometric data, physical activity and gut microbiota information from the same  cohort 

and was found to be effective in predicting personalised postprandial glycaemic responses 

to real-life meals. Subsequently, a blinded randomised controlled dietary intervention based 

on the algorithm resulted in significantly reduced postprandial responses and consistent 

changes in gut microbiota composition [734]. 

Epigenetics covers the molecular processes that can alter the activity of genes 

without changing the DNA sequence, and these processes include DNA methylation, histone 

modifications and alterations in noncoding RNAs [184]. Epigenetic changes might explain 

individual differences in metabolic health and responses to diet, and have the potential to 

identify novel biomarkers for precision nutrition and targets for precise interventions [185]. 

Similarly, transcriptomics technologies have been applied in nutrition research to 

understand the molecular and signalling pathways associated with nutrients [735]. In an 

interventional study, a transcriptomic approach was used to assess the impact of a high-

carbohydrate or high-protein diet on gene expression profiles in blood leukocytes [736]. The 

findings showed that, the high-carbohydrate breakfast resulted in changes in the expression 

of genes related to glycogen metabolism, while the high-protein breakfast led to changes in 

the expression of genes associated with protein biosynthesis [736]. Another interventional 

study [737], utilising a transcriptomic approach to assess the postprandial effect of 

consuming different fatty acids on the gene expression profiles of peripheral blood 

mononuclear cells reported that, intake of PUFA was associated with a decrease in the 

expression of genes in liver X receptor signalling, while consumption of SFA led to an 

increase in the expression of these genes. Consumption of PUFA also resulted in an increase 

in the expression of genes linked to cellular stress responses, while MUFA had a moderate 

effect on several genes [737]. The findings suggest that data from multiple individuals 

undergoing postprandial gene expression profiling in peripheral blood mononuclear cells 

could enable the stratification of gene expression profiles as ‘healthy’ or ‘unhealthy’, as well 

as the identification of particular meals that could be categorized as healhty or unhealthy for 

such individuals [180].  
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With regard to obesity, a significant interaction was observed between SFA intake 

and the APOA2 SNP rs5082 on the risk of obesity in a study of 3462 participants from three 

populations in the United States [the Framingham Offspring Study (1,454 whites), the 

Genetics of Lipid Lowering Drugs and Diet Network Study (1,078 whites), and the Boston–

Puerto Rican Centers on Population Health and Health Disparities Study (930 Hispanics of 

Caribbean origin)] [137]. This finding was also replicated in Chinese, Asian Indians and 

whites from the Valencia Region of Spain [738]. Individuals with the ‘CC’ genotype had an 

increased risk of obesity compared to those with the ‘TT’ or ‘TC’ genotypes only when their 

SFA intake was high (≥22g/day) [137, 738]. To explore the mechanisms underlying this 

interaction, the authors performed a multi-omics study involving methylome, transcription 

and metabolomic analyses from three different populations (the Boston Puerto Rican Health 

Study, the Genetics of Lipid Lowering Drugs and Diet Network Study, and the Framingham 

Heart Study)[538]. The epigenetic state of the APOA2 regulatory region was found to be 

linked to SFA intake and the rs5082 genotype, causing differences in APOA2 expression 

between the ‘CC’ and ‘TT’ genotypes on a high-SFA diet and influencing branched-chain 

amino acid and tryptophan metabolism [538]. Therefore, integrating data from 

nutrigenetics, metabolomics, the gut microbiome, epigenetics, phenotypic traits and lifestyle 

factors might help in designing personalised and precise nutrition interventions. Machine 

learning and artificial intelligence enables the integration of data from various fields by 

identifying patterns in large datasets and grouping similar data to create predictive models 

and algorithms [739]. A machine learning model utilising age, systolic blood pressure, 

routine blood and urine tests as well as dietary intake values has been reported to be 

effective in identifying young, asymptomatic individuals at higher risk of CVDs [740]. 

Similarly, integrating data on lifestyle factors, gut microbiome, clinical variables, 

subcutaneous adipose tissue gene expression and metabolomics derived from serum, urine 

and faeces, was found to be effective in identifying biomarkers linked to insulin sensitivity 

[741]. Thus, integrating data from multiple disciplines could help in designing personalised 

and precise dietary interventions for the prevention and management of cardiometabolic 

diseases, although the effectiveness and practicality of this approach are still being explored 

(Figure 8.2). 
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Figure 8.2 List of factors that should be considered for the implementation of precision 

nutrition 

 

8.10 Conclusion 

Nutrigenetics has a potential role to play in the prevention and management of 

cardiometabolic diseases. Several factors might influence variations among individuals with 

regards to dietary exposures and metabolic responses and these include genetic diversity, 

cultural and lifestyle factors as well as socioeconomic factors. A multi-omics approach 

involving disciplines such as metabolomics, epigenetics and the gut microbiome might 

contribute to improved understanding of the underlying mechanisms of gene-diet 

interactions and the implementation of precision nutrition although more research is 

needed to confirm the practicality and effectiveness of this approach. Therefore, conducting 

gene-diet interaction studies in diverse populations is essential to improve their clinical 

application worldwide. To bridge the gap between existing nutrigenetic insights and their 

application in clinical practice, it is vital for initial findings to be replicated in independent 

samples, followed by dietary intervention studies. Studies utilising large sample sizes are 

required as this improves the power to detect interactions with minimal effect sizes. Future 

studies should focus on replicating initial findings to enhance reliability and promote 

comparison across studies. Once findings have been replicated in independent samples, 

dietary intervention studies will be required to further strengthen the evidence and facilitate 
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their application in clinical practice. The issues discussed in this review are particularly 

important, given the current diverse climate, which poses significant risks to food security 

and diet quality, making vulnerable populations across the world susceptible to various 

forms of malnutrition [742]. 
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Chapter 9 Discussion and conclusion 

9.1 Discussion 

Nutrigenetics is an innovative field that investigates the impact of genetic variability 

on individual responses to diet, offering the potential to design personalised dietary 

guidelines for preventing and managing cardiometabolic diseases. Thus, a genetic variant 

might not always pose a higher risk of a disease as its effects might be modulated by the 

environmental factors that interact with it [109]. Dietary factors may interact with an 

individual’s genetic characteristics and impair metabolic processes, which may contribute 

to the development of lipid-related traits such as CVDs [20]. Therefore, understanding gene-

diet interactions that predispose to altered blood lipid levels could help to design 

personalised or precise dietary guidelines for preventing and managing lipid-related traits 

[19, 20]. The findings of this thesis add to the field of nutrigenetics by showing the presence 

of genetic heterogeneity in gene-diet interactions on lipid-related traits in different ethnic 

groups. These findings will contribute to improved understanding of how genetic and 

dietary factors interact to alter the susceptibility to CVDs in different ethnic groups. 

Additionally, factors that need to be considered to facilitate the translation of nutrigenetics 

to personalised and precision nutrition in diverse ethnic groups have been examined in this 

thesis, which is important, given the current diverse climate, which poses significant risks to 

food security and diet quality, making vulnerable populations across the world susceptible 

to various forms of malnutrition [742].   

Studies investigating gene-diet interactions have produced inconsistent results 

which can be attributed to genetic heterogeneity and small sample sizes. As a result, these 

findings could not be utilised to design personalised dietary guidelines for each ethnic group 

[18, 131]. Although nutrigenetic studies have been extended to cover previously under-

represented populations, there is still limited research in some developing countries due to 

insufficient funding, a lack of expertise and inadequate infrastructure [131, 170]. In this 

thesis, a genetic approach was used to investigate the association of SNPs as a GRS with lipid-

related traits in different ethnic groups. In addition, a nutrigenetic approach was used to 

examine the interaction of the GRS with dietary factors (intake of fat, carbohydrate and 

protein) on lipid-related traits. 

Gene-diet interactions were examined in the following populations: Brazilian young 

adults, Asian Indian adults, and Peruvian young adults. The inclusion of individuals from 

different ethnic groups with different genetic characteristics enabled the objectives of the 
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project to be met through the identification of ethnic-specific gene-diet interactions and the 

generation of evidence which can be utilised to design personalised dietary guidelines based 

on ethnicity. The studies included two cross-sectional cohort studies: [the Obesity, Lifestyle 

and Diabetes in Brazil (BOLD) study, Brazilian young adults, n=190; and the Study of Obesity, 

Nutrition, Genes and Social factors (SONGS), Peruvian young adults, n=468] and a case-

control study [the Chennai Urban Rural Epidemiological Study (CURES), Asian Indian adults, 

n=497]. Statistical analyses were performed using the Statistical Package for the Social 

Sciences (SPSS) software (version 28; SPSS Inc., Chicago, IL, USA) and the R software version 

4.3.1 [372]. Linear and logistic regression models were used to test for associations and 

interactions. The models were adjusted for age, sex, BMI, type 2 diabetes, smoking status, 

physical activity, and total energy intake, wherever appropriate. The findings from this 

thesis are summarised below.  

9.2 A nutrigenetic update on CETP gene-diet interactions on lipid‑related outcomes 

The global burden of CVDs is well recognised and ischaemic heart disease alone 

accounted for 9 million deaths in 2019, making it the top cause of death in all parts of the 

world [186]. An abnormal lipid profile, usually indicated by low concentrations of HDL-C and 

elevated levels of LDL-C or TG, is considered a major risk factor for CVDs [107, 187]. Several 

studies have demonstrated CETP-diet interactions on blood lipids; however, the findings 

have been inconsistent [99, 100, 189-192]. The objective of this review was to identify and 

discuss nutrigenetic studies assessing the interactions between CETP SNPs and dietary 

factors on blood lipids. 

Significant interactions were identified between 17 dietary factors and 8 SNPs of the 

CETP gene on blood lipids in the following populations: Mexican, Iranian, Spanish, White 

American, Chinese, Malay, Indian, Irish, French, Japanese, New Zealander, Dutch, Greek, 

Icelandic, Inuit, Canadian, Taiwanese and residents of the USA. The SNPs showing significant 

interactions with dietary factors (such as total fat intake, MUFA, n-3 PUFA, Mediterranean 

diet, olive oil and sesame-canola oil) were TaqIB (rs708272 G>A); rs5882 (I405V); 

rs3764261 (C>A); rs1800775 (C-629A); rs183130(C-4502T); rs4783961 (G-971A); 

rs289714 (C>T) and rs1800774 (C>A). The macronutrient investigated by majority of the 

studies was dietary fat, comprising of total fat, SFA, MUFA and PUFA. Total fat intake 

accounted for majority of the interactions across different SNPs, being associated with 

unfavourable lipid outcomes in some individuals but not others.   
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Overall, the findings suggest that CETP SNPs might alter blood lipid profiles by 

modifying responses to diet, but further research utilising large sample sizes in multiple 

ethnic groups is warranted to identify individuals at risk of adverse lipid response to diet 

which is essential in developing dietary guidelines that are tailored to specific groups of 

people. 

9.3 Higher intake of dairy is associated with lower cardiometabolic risks and 

metabolic syndrome in Asian Indians 

There is conflicting evidence about the association between dairy products and 

cardiometabolic risk (CMR) [256, 266, 267, 270]. This study aimed to assess the association 

of total dairy intake with CMR factors and to investigate the association of unfermented and 

fermented dairy intake with CMR in Asian Indians who are known to have greater 

susceptibility to type 2 diabetes and CVDs compared to white Europeans [105, 119, 120, 

255]. The study comprised of 1033 Asian Indian adults with normal glucose tolerance 

chosen from the CURES. Dietary intake was assessed using a validated open-ended semi-

quantitative food frequency questionnaire. 

In line with previous studies [256, 266-269], dairy consumption was found to have a 

protective effect against metabolic syndrome (MS). We found a reduced risk with an 

increased intake of dairy products, where consumption of ≥5 cups per day of total, ≥4 cups 

per day of unfermented or ≥2 cups per day of fermented dairy was associated with a reduced 

risk of high fasting plasma glucose. A total dairy intake of ≥5 cups per was also associated 

with a lower risk of high blood pressure, low HDL-C and MS. Consumption of ≥4 cups per day 

of unfermented dairy was also associated with a decreased incidence of high BMI; while an 

intake of ≥2 cups per day of fermented dairy was also associated with a lower risk of MS.  

Given that Asian Indians have high prevalence of CVDs and T2D [105, 119, 255, 274], 

these findings are of public health importance. India is the largest producer of milk and it is 

commonly consumed by all classes of income groups, providing value for money and 

nutrients [275]. The results indicate that increasing the consumption of dairy products 

might help to reduce the risk of MS and its individual components in Asian Indians. 
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9.4 Interaction between genetic risk score and dietary fat intake on lipid-related 

traits in Brazilian young adults 

CVDs are a top cause of mortality globally, accounting for 32% of all deaths 

worldwide in 2019 [305]. Over three-quarters of mortality from CVDs has been reported to 

occur in low- and middle-income countries [305], highlighting the enormous impact of CVDs 

in these countries. In Brazil, ischaemic heart disease and stroke accounted for most deaths 

in 2019, with a percentage increase of 18 and 14%, respectively from 2009 [306]. GWA 

studies have implicated several genetic loci for the development of dyslipidaemia, a key risk 

factor for CVDs [95, 124, 201, 204, 318], but these variants account for a small proportion of 

variability in blood lipid concentrations, and there is growing evidence that an interaction 

between genetic variants and environmental factors is responsible for part of the missing 

heritability [105, 106, 126-129]. Only a few studies have utilised a GRS to assess the 

interactions between dietary intake and genetic variants on CVD traits in Brazilians [139, 

319, 327], with even fewer studies focusing on young adults. Hence, the aim of this study 

was to assess the genetic associations and the interaction of the GRS with dietary factors on 

lipid-related traits in Brazilian young adults. The study consisted of 190 Brazilian young 

adults, and dietary intake was assessed using three 24-hour dietary recalls. The GRS was 

constructed using 7 SNPs known to be associated with lipid-related traits at a genome-wide 

significance level: CETP rs3764261, glucokinase regulator (GCKR) rs1260326, endothelial 

lipase (LIPG) rs7241918, sortilin 1 (SORT1) rs629301, hepatic lipase (LIPC) rs1532085, 

apolipoprotein AI (APOAI) rs964184 and ATPase plasma membrane Ca2+ transporting 1 

(ATP2BI) rs2681472. 

The findings provide evidence that the genetic risk for disturbances in blood lipids 

concentration might be modulated by dietary fat intake. Significant interactions were found 

between the GRS and total fat intake on TG:HDL-C ratio; and between the GRS and SFA intake 

on TG:HDL-C ratio. Increased consumption of total fat (>31.5% of energy) and SFA (>8.6% 

of energy) was associated with higher TG:HDL-C ratio in participants carrying ≥6 risk alleles 

compared to those with <6 risk alleles. The results suggest that the TG:HDL ratio in Brazilian 

young adults with a high genetic risk for disturbances in lipid-related traits might be 

responsive to dietary fat intake; hence, interventions targeting a reduction in total fat and 

SFA intake could potentially benefit these individuals. 

The ratio of TG:HDL-C  has been identified as an independent predictor of CHD, 

mortality from CVDs and insulin resistance [74, 75, 375, 376]. Hence, our findings have 
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significant public health implications in terms of prevention and management of 

dyslipidaemia in individuals with a high genetic risk. 

9.5 Interactions between genetic and lifestyle factors on cardiometabolic disease-

related outcomes in Latin American and Caribbean populations: A systematic review 

Cardiometabolic diseases such as hypertension and T2D are accountable for most 

NCD deaths and impose an economic burden on low- and middle-income countries [396]. In 

LACP, the prevalence of hypertension, T2D and obesity is 47, 22, and above 20%, 

respectively [397, 398]. The aetiology of cardiometabolic diseases is multifactorial where 

studies have demonstrated an interaction between the environment, genetic, behavioural, 

physiological, and socioeconomic factors [18, 170, 171, 281, 399, 400]. Therefore, this 

systematic review was conducted to identify gene-lifestyle interactions that modify the risk 

of cardiometabolic diseases in LACP. 

We identified 122 significant interactions between genetic and lifestyle factors on 

cardiometabolic traits and the vast majority of studies come from Brazil (29), Mexico (15) 

and Costa Rica (12) with FTO, APOE, and TCF7L2 being the most studied genes. The results 

of the gene-lifestyle interactions suggest effects which are population-, gender-, and ethnic-

specific. Most of the gene-lifestyle interactions were conducted once, necessitating 

replication to reinforce these results. The findings of this review indicate that 27 out of 33 

LACP have not conducted gene-lifestyle interaction studies and only five studies have been 

undertaken in low-socioeconomic settings. Most of the studies were cross-sectional, 

indicating a need for longitudinal/prospective studies. Future gene-lifestyle interaction 

studies will need to replicate primary research of already studied genetic variants to enable 

comparison, and to explore the interactions between genetic and other lifestyle factors such 

as those conditioned by socioeconomic factors and the built environment. 

9.6 Impact of lipid genetic risk score and saturated fatty acid intake on central obesity 

in an Asian Indian population 

Asian Indians are more prone to developing type 2 diabetes (T2D) and cardiovascular 

diseases (CVDs) at a lower body mass index (BMI) than Caucasians, due to the ‘Asian Indian 

phenotype’, which is characterised by central obesity, dyslipidaemia, and increased levels of 

total fat, visceral fat, insulin resistance and faster decline in beta cell function [105, 119, 120]. 

The location of body fat is thought to be more important in predicting adverse cardiovascular 

events [555-557]. Central obesity has been linked to several conditions, including insulin 
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resistance and increased mortality from CVDs [559, 560], necessitating studies to fully 

understand the underlying mechanisms for the development of central obesity in Asian 

Indians. Therefore, this study utilised a nutrigenetic approach to establish a link between 

lipids and obesity in Asian Indians. The sample consisted of 497 Asian Indian individuals 

(260 with type 2 diabetes and 237 with normal glucose tolerance) with a mean age of 44 ± 

10 years. The participants were randomly chosen from the Chennai Urban Rural 

Epidemiological Study (CURES). Dietary intake was assessed using a previously validated 

questionnaire and a GRS was constructed using three SNPs of established lipid-pathway 

genes (CETP SNP rs4783961 and LPL SNPs rs327 and rs3200218). 

This study has shown that SFA intake may modify the effect of lipid-pathway genes 

on central obesity in Asian Indians. The findings indicate that the combined effect 

of LPL and CETP SNPs (rs327, rs3200218 and rs4783961) on obesity traits may be altered 

by SFA intake, where consumption of high amounts of SFA may increase the combined 

genetic risk of central obesity posed by LPL and CETP SNPs while a low intake of SFA may 

help to reduce this risk. These findings are of public health importance considering the 

burden of central obesity in Asian Indians. The results suggest that Asian Indians with a 

higher genetic risk for central obesity are responsive to SFA intake and could benefit from 

dietary modifications to help prevent central obesity. 

9.7 Interaction between genetic risk score and dietary carbohydrate intake on high-

density lipoprotein cholesterol levels: Findings from the Study of Obesity, Nutrition, 

Genes and Social factors (SONGS)   

Cardiometabolic diseases including CVDs remain a threat to global public health, and 

in 2019, around 32% of worldwide mortality was attributable to CVDs [589]. These diseases 

place a significant burden on low- and middle-income countries, where more than three-

quarters of CVD deaths occur [25, 589]. Obesity, a key risk factor for cardiometabolic 

diseases has been increasing in Latin America, affecting over 26% of women and 21% of men 

in Peru [590]. Similarly, a high prevalence of dyslipidaemia, in particular, low concentration 

of HDL-C (48%) has been reported in LACP [592]. Moreover, Peru experienced a substantial 

increase in fatalities related to CVDs (77.8%) between 2020 to 2022 [593].  

GWA studies have identified many genetic variants associated with cardiometabolic 

traits such as overweight/obesity, dyslipidaemia, high blood pressure and high fasting 

glucose levels, however, these variants explain a small fraction of variation in BMI [8, 609, 

610] and blood lipid levels [5, 10, 11]. Moreover, the genetic susceptibility to cardiometabolic 
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traits has been shown to be impacted by lifestyle factors such as dietary intake and physical 

activity level [18, 104, 105, 245, 611-613]. To our knowledge, no studies have examined 

gene-lifestyle interactions on cardiometabolic traits in the Peruvian population. Hence, this 

study aimed to assess the interaction between GRS and dietary macronutrient intake on 

cardiometabolic traits in an urban Peruvian young adult population. The GRS approach has 

been shown to be more effective in predicting the genetic risk of complex traits, where the 

effect size of single variants is often modest [104, 245, 370, 613]. The study consisted of 468 

urban Peruvian young adults and dietary intake was assessed using a previously validated 

food frequency questionnaire. 

The GRS was constructed using 39 SNPs which have shown an association with 

cardiometabolic traits at a genome-wide significance level: alpha-ketoglutarate-dependent 

dioxygenase (FTO) rs1558902; transmembrane protein 18 (TMEM18) rs13021737; 

melanocortin 4 receptor (MC4R) rs6567160; glucosamine-6-phosphate deaminase 2 

(GNPDA2) rs10938397; SEC16 homolog B, endoplasmic reticulum export factor (SEC16B) 

rs543874; BCDIN3 domain containing RNA methyltransferase (BCDIN3D) rs7138803;  

transcription factor AP-2 beta (TFAP2B) SNP rs2207139; neuronal growth regulator 1 

(NEGR1) rs3101336; adenylate cyclase 3 (ADCY3) rs10182181; ETS variant transcription 

factor 5 (ETV5) rs1516725; glutaminyl-peptide cyclotransferase like (QPCTL) rs2287019; G 

protein-coupled receptor class C group 5 member B (GPRC5B) rs12446632; mitochondrial 

carrier 2 (MTCH2) SNP rs3817334; centriolar protein (POC5) SNP rs2112347; mitogen-

activated protein kinase 5 (MAP2K) SNP rs16951275; zinc finger CCCH-type containing 4 

(ZC3H4) rs3810291; FPGT-TNNI3K read through (FPGT-TNNI3K) SNP rs12566985; leucine-

rich repeat and immunoglobulin-like domain-containing nogo receptor-interacting protein 

2 (LINGO2) rs10968576; cell adhesion molecule 1 (CADM1) SNP rs12286929; protein kinase 

D1 (PRKD1) SNP rs12885454; AGBL carboxypeptidase 4 (AGBL4) SNP rs657452; 

polypyrimidine tract binding protein 2 (PTBP2) rs11165643; NLR family CARD domain 

containing 3 (NLRC3) rs758747; syntaxin binding protein 6 (STXBP6) rs10132280; 

Huntingtin interacting protein 1 (HIP1) rs1167827; cell adhesion molecule 2 (CADM2) 

rs13078960; far upstream element binding protein 1 (FUBP1) rs12401738; olfactomedin 4 

(OLFM4) rs12429545; RAS p21 protein activator 2 (RASA2) rs16851483; hypoxia inducible 

factor 1 subunit alpha inhibitor (HIF1AN) rs17094222; hepatocyte nuclear factor 4 gamma 

(HNF4G) rs17405819; toll like receptor 4 (TLR4) rs1928295; neurexin 3 (NRXN3) 

rs7141420; inflammation and lipid regulator with UBA-like and NBR1-like domains (ILRUN 

or C6orf106) rs205262; fragile histidine triad diadenosine triphosphatase (FHIT) 
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rs2365389; neuron navigator 1 (NAV1) rs2820292; tripartite motif containing 66 (TRIM66) 

rs4256980; erb-b2 receptor tyrosine kinase 4 (ERBB4) rs7599312; and lysine 

acetyltransferase 8 (KAT8) rs9925964.  

This study indicates that carbohydrate intake might modulate genetic influences on 

HDL-C concentration in urban Peruvian young adults. A significant interaction was observed 

between the GRS and carbohydrate intake on HDL-C concentration. In the first tertile of 

carbohydrate intake (≤327 g/day), participants with a high GRS (>37 risk alleles) had a 

higher concentration of HDL-C than those with a low GRS (≤37 risk alleles). In the third 

tertile of carbohydrate intake (>452 grams/day), participants with a high GRS had a lower 

concentration of HDL-C than those with a low GRS. Furthermore, for participants with a high 

GRS, there were lower concentrations of HDL-C across tertiles of glycaemic load. This study 

builds on previous research and emphasises the potential of personalised nutrition based on 

a GRS for the prevention and management of lipid abnormalities in those with a high genetic 

risk. Given that low HDL-C concentrations have been identified as the most common lipid 

abnormality in LACP [592], and is related to a higher risk of CVDs [48, 640, 641], these 

findings have considerable public health implications. 

9.8 Barriers in translating existing nutrigenetics insights to precision nutrition for 

cardiometabolic health in ethnically diverse populations 

Cardiometabolic diseases pose a significant threat to global public health, with a 

substantial majority of CVD mortality (more than three-quarters) occurring in low- and 

middle-income countries [25]. There have been remarkable advances in recent years in 

identifying genetic variants that alter disease susceptibility by interacting with dietary 

factors [163-168]. Despite the remarkable progress in nutrigenetics research, several factors 

need to be considered before the translation of existing nutrigenetics insights to 

personalised and precision nutrition in ethnically diverse populations [17, 670]. Therefore, 

this review aimed to explore the potential barriers and challenges in bridging the gap 

between existing nutrigenetics insights and the implementation of personalised and 

precision nutrition across diverse ethnicities. 

The findings indicate there are numerous factors that can affect the translation of 

existing nutrigenetics insights to personalised and precision nutrition in diverse populations 

including genetic diversity, methodological factors, cultural and lifestyle factors as well as 

socioeconomic factors. Additionally, integration of data from disciplines such as 

metabolomics, epigenetics and the gut microbiome could help to facilitate the 
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implementation of precision nutrition based on nutrigenetics. Therefore, conducting gene-

diet interaction studies in diverse populations is essential to improve their clinical 

application worldwide. To bridge the gap between existing nutrigenetic insights and their 

application in clinical practice, it is vital for initial findings to be replicated in independent 

samples, followed by dietary intervention studies. Studies utilising large sample sizes are 

required as this improves the power to detect interactions with minimal effect sizes. Future 

studies should focus on replicating initial findings to enhance reliability and promote 

comparison across studies. Once findings have been replicated in independent samples, 

dietary intervention studies will be required to further strengthen the evidence and facilitate 

their application in clinical practice.  

9.9 General trends observed across the studies 

Variations in the intake of macronutrients were observed among the three ethnic 

groups studied (Table 9.1). Brazilian young adults had the highest intake of total fat as 

percentage of calories (32±6%) compared to Peruvian young adults (29 ± 6%) and Asian 

Indian adults (23 ± 5%). The intake in Brazilian young adults exceeded the recommended 

total fat intake of less than 30% of total energy intake [71] while the intakes in Peruvian 

young adults and Asian Indian adults were within the recommended level. Asian Indian 

adults however had the highest carbohydrate intake as percentage of calories (64 ± 7%). 

Brazilian and Peruvian young adults had a similar carbohydrate intake of 51 ± 7% and 51 ± 

8% respectively. The recommended intake range of carbohydrates for adolescents aged 14 

and older as well as adults is 45-65% of total daily energy intake [642], indicating that all the 

groups met the recommended range. With regard to protein intake, Peruvian young adults 

had the highest intake as percentage of calories (21 ± 4%), followed by Brazilian young 

adults (17 ± 1%) and Asian Indian adults (11 ± 1%). 

The sampling strategy used in the studies could have influenced the comparison of 

dietary intake across the three groups. The Brazilian and Peruvian populations consisted of 

young adults aged 19 to 24 and 19 to 21 years respectively, while the Asian Indian 

population included adults and elderly individuals aged 20 to 88 years. It has been 

highlighted that younger individuals are more likely to adopt new dietary habits than older 

individuals [689]. Therefore, offering dietary advice to younger population could be an 

effective approach to preventing diseases later in life such as obesity and CVDs. Additionally, 

participants for the BOLD and SONGS studies were recruited from urban areas, while the 

CURES study included individuals recruited from both urban and rural areas. There is a  need 
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for further research covering both urban and rural populations and accounting for 

confounding factors such as socioeconomic status. Furthermore, different methods were 

used to collect dietary intake data which could also influence the assessment of dietary 

intake across the groups. Three 24-h dietary recalls were used in the BOLD study, while an 

FFQ was used in the CURES and SONGS studies.  

As shown in Table 9.1, Asian Indian adults had the highest mean BMI (25 ±5) and 

WC (87 ± 11) compared to the other groups. Asian Indian adults also had the highest 

concentrations of TG (165 ± 150 mg/dL), LDL-C (119 ± 32 mg/dL) and TC (191 ± 40 mg/dL). 

Brazilian young adults on the other hand had the highest concentration of HDL-C (55 ± 1), 

while Peruvian young adults had an HDL-C concentration similar to that of Asian Indian 

adults (42 ± 13 mg/dL vs 42 ± 10 mg/dL). With regard to the gene-diet interactions, an 

interaction between GRS and SFA intake on TG:HDL ratio was observed in Brazilian young 

adults, while an interaction between GRS and SFA intake on WC was observed in Asian 

Indian Adults, suggesting that different outcomes might be influenced by similar gene-diet 

interactions in different ethnic groups. In Peruvian young adults however, an interaction 

between GRS and carbohydrate intake on the concentration of HDL-C was observed. 

Generalising these findings is difficult due to the heterogeneity among these ethnic groups 

and the small sample sizes of the populations studied. 
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Table 9.1 A comparison of macronutrient intakes, anthropometric and biochemical 

parameters among the BOLD, CURES and SONGS studies 

Parameter 
BOLD 
(Brazilian) 
n=190 

CURES 
(Asian Indian) 
n=497 

SONGS 
(Peruvian) 
n=468 

Age (years) 21  ± 2 44 ± 10 20 ± 1 

Sex (Men/Women) 49/141 225/272 258/210 

BMI (kg/m2) 23  ± 1 25 ± 5 24 ± 4 

WC (cm) 72  ± 1 87 ± 11 81 ± 10 

TG (mg/dL) 76  ±  2 165 ± 150 96 ± 60 

HDL-C (mg/dL) 55 ± 1 42 ± 10 42 ± 13 

LDL-C (mg/dL) 99 ± 1 119 ± 32 77 ± 24 

TC (mg/dL) 174 ± 1 191 ± 40 138 ± 36 

TG:HDL ratio 2 ± 2 N/A N/A 

SBP (mmHg) 107 ± 1 122 ± 20 104 ± 11 

DBP (mmHg) 64 ± 1 76 ± 11 67 ± 8 

Energy (kcal/day) 1735 ± 1 2560 ± 822 3304 ± 1428 

Total fat (% of energy) 32 ± 6 23 ± 5 29 ± 6 

Carbohydrate (% of energy) 51 ± 7 64 ± 7 51 ± 8 

Protein (% of energy) 17 ± 1 11 ± 1 21 ± 4 

BOLD – Obesity, Lifestyle and Diabetes in Brazil; CURES – Chennai Urban Rural 

Epidemiological Study; SONGS – Study of Obesity, Nutrition, Genes and Social factors; BMI 

– body mass index; WC – waist circumference; TG – triglycerides; HDL-C – high-density 

lipoprotein cholesterol; LDL-C – low-density lipoprotein cholesterol; TC – total 

cholesterol; TG:HDL-C – ratio of triglycerides to high-density lipoprotein cholesterol; SBP 

– systolic blood pressure; DBP – diastolic blood pressure. 
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9.10 Limitations and strengths 

The studies included in this project have some limitations that need to be considered. 

One of the main limitations is the small sample size of some of the studies, which could have 

influenced our findings since large sample sizes improve the power to detect interactions 

with modest effect sizes [393, 394]. However, we were able to detect significant interactions 

in all the populations studied. Additionally, a cross-sectional design was used in all the 

studies which prevents the establishment of a causal relationship between the GRS-diet 

interactions and the lipid-related traits. Another limitation is the use of self-reported 

measures to assess dietary intake, which can introduce bias through overestimation and 

underestimation of dietary intake [152, 395]. However, validated questionnaires were used 

to reduce potential errors. The CURES study included participants with T2D which could 

have introduced selection bias, but T2D was adjusted for in the analysis. Furthermore, we 

did not investigate types or food sources of SFA which have been reported to have different 

effects on CVD traits [294, 390]. Moreover, we did not investigate types of carbohydrates 

which can also have varying effects on cardiometabolic traits [663, 664]. 

The main strengths of this thesis include the use of well-defined populations and the 

development of various GRSs using multiple genetic variants. The GRS approach has been 

shown to be more effective in assessing the genetic contribution to complex traits such as 

blood lipid concentrations since single variants often have moderate effect sizes and hence 

less likely to accurately predict the genetic risk of multifactorial traits [370, 371, 675]. The 

study in the Peruvian population (SONGS) is the first gene-diet interaction study in Peru, 

capturing different regions of Peru (Coast, Highland and the Jungle), as well as the first to be 

conducted in adolescents, an unstudied non-Caucasian group which has an increasing 

prevalence of CVDs [392, 656, 657] and lipid abnormalities which significantly increase the 

risk of developing atherosclerotic CVDs later in life [658-662]. Moreover, validated FFQs 

were used in the CURES [282] and SONGS [152] studies to assess the populations’ long-term 

macronutrient intake, while in the BOLD study, the multiple-pass method [332] was used to 

enhance the accuracy of the 24-h dietary recalls. All the studies employed trained personnel 

to enhance the accuracy of the assessments. 
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9.11 Future prospects 

In this thesis, a significant interaction was identified between SFA intake and WC, an 

indicator of central obesity, in Asian Indians. The results suggest a link between lipids and 

central obesity, calling for further research in this area. Asian Indians are more prone to 

developing cardiometabolic diseases, and these findings indicate that lipid abnormalities 

could play a role in the development of central obesity which is an independent biomarker 

of cardiometabolic disease [558, 560]. Future studies should focus on using a large number 

of lipid-related SNPs to construct a GRS which can then be used to confirm a link between 

lipids and central obesity in a large sample. Once the findings have been confirmed, dietary 

intervention studies focusing on low SFA diets in genetically susceptible individuals could 

help to further confirm the findings. Similarly, low HDL-C concentration has been identified 

as the most common lipid abnormality in LACP [592] and findings from this thesis indicate 

that SFA intake might modulate genetic influences on the ratio of TG:HDL-C in Brazilians 

while carbohydrate intake might modify genetic influences on the concentration of HDL-C in 

Peruvians. 

Looking at the dietary patterns of these populations, a shift from nutrient-rich fresh 

produce to refined products and the use of large amounts of cooking oil has been reported 

among South Asians [697]. Additionally, some of the commonly consumed foods in India 

such as potato chips have been found to contain high amounts of palmitic acid, which can be 

attributed to the type of cooking oil used [573]. Although milk and milk products have been 

found to be a main source of SFA in India, the CURES dairy intake study found a negative 

association between dairy intake and cardiometabolic risk factors, suggesting that SFA from 

dairy sources might not be accountable for the increased risk of cardiometabolic diseases. In 

Brazil, the dietary pattern is characterised by increased consumption of  processed foods 

rich in fat and added sugar [384, 385].  Furthermore, the fat content of processed foods in 

Brazil was found to be composed of high amounts of SFA, ranging from 9.3 to 12 grams per 

100 grams of food products [317]. A shift in dietary pattern has also been reported in Peru 

in which there is increased consumption of high-caloric foods and sugar sweetened 

beverages [604-606]. An analysis of the primary food sources that contribute to energy 

intake in urban populations from eight Latin American countries [604] showed that Peru 

had the highest proportion of energy derived from carbohydrates (62.9 %). Given that a high 

carbohydrate intake was found to be linked to low-HDL-C concentration in individuals with 

a high GRS, dietary guidelines targeting a reduction in carbohydrate intake might be 

beneficial for Peruvian individuals who are genetically susceptible to low HDL-C 
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concentration. As with Asian Indians, interventions targeting a reduction in SFA intake might 

be effective in preventing and managing lipid abnormalities in Brazilian individuals with a 

high genetic risk. 

These gene-diet interactions require replication in longitudinal and interventional 

studies with larger sample sizes prior to implementing public health guidelines. It has been 

highlighted that dietary intervention studies can help to raise the evidence-level of gene-diet 

interactions once they have been replicated [109]. In a 12-week RCT, a GRS was used to 

identify participants as being responsive to fat or carbohydrate before randomisation to a 

high-fat or high carbohydrate diet [679]. Studies utilising this approach could help to 

determine the effectiveness of dietary interventions based on genotypic information and 

facilitate the clinical application of nutrigenetics. 

Additionally, the underlying mechanisms of the gene-diet interactions are unclear, 

indicating a need for mechanistic studies. Understanding the mechanisms involved is 

important in enhancing the validity of the findings, and this will require a collaborative 

approach among experts in biological, statistical and computational sciences to  design 

models based on real biological phenomena [143]. Moreover, examining the overall dietary 

pattern is believed to offer several advantages since foods and the nutrients they contain 

often have synergistic effects, which can make it difficult to identify the influence of a single 

food or nutrient [690]. By using metabolomics, specific biomarkers associated with food 

intake and dietary patterns can be identified to supplement the information obtained from 

self-reported dietary intake, thus enabling a more objective and reliable measurement of 

dietary exposure [729, 743]. It is also important to examine gene-diet interactions in groups 

at risk of lipid-related traits such as the elderly. 

The findings from this thesis support the use of personalised nutrition to prevent or 

manage cardiometabolic diseases. Genetic information can help to determine an individual’s 

susceptibility to lipid-related traits such as CVDs which can be altered by dietary intake. 

While gene-diet interaction studies have been extended to cover previously under-

represented populations, a systematic review conducted as part of this thesis [106] 

identified that, 27 out of 33 countries in Latin America and the Caribbean had not conducted 

gene-diet interaction studies. Hence, further nutrigenetic research in LMICs is required 

given the enormous burden of NCDs, variations in genetic susceptibility, and cultural 

practices leading to distinct environmental exposures [106, 130, 143]. The GeNuIne 

Collaboration was established to address this gap in human nutrition research in LMICs, and 



  

234 

this initiative has identified significant gene-diet interactions on cardiometabolic traits in 

these regions [18, 131]. 

Finally, nutrigenomic research has provided insights into the molecular actions of 

nutrients and other dietary components as well as their roles in maintaining both normal 

and impaired cellular homeostasis [743]. Nutrigenomics involves the application of 

biochemistry, physiology, nutrition, genomics, proteomics, metabolomics, transcriptomics, 

and epigenomics to explore the interactions between genes and nutrients at the molecular 

level [744]. Integrating data from nutrigenetics and nutrigenomic approaches such as 

metabolomics, epigenetics and the gut microbiome is argued to be important in enhancing 

the scientific understanding of inter-individual variability in response to dietary 

interventions, although the practicality and effectiveness of this process are still being 

explored [180, 181]. So far, progress has been made in the mechanistic understanding of 

dietary interventions through the integration of omics technologies such as metabolomics 

and the gut microbiome [182]. Metabolomics focuses on analysing small molecules 

(metabolites) found in biological samples to understand changes in metabolism under 

various conditions [180]. Metabolites are the direct products of dietary consumption and 

metabolism, enabling a more accurate assessment of biological and physiological pathways 

as well as the related biomarkers for diet or disease [182]. The gut microbiome supports the 

host by interacting directly or indirectly with host cells through the production of bioactive 

molecules, and this interaction allows the gut microbiome to regulate various biological 

processes related to immunity and energy balance [183]. The application of the gut 

microbiome in precision nutrition involves using the gut microbiome as a biomarker to 

predict how specific dietary components affect host health, and the use of this information 

to design precision dietary interventions aimed at promoting health [183]. Epigenetics on 

the other hand covers the molecular processes that can alter the activity of genes without 

changing the DNA sequence, and these processes include DNA methylation, histone 

modifications and alterations in noncoding RNAs [184]. Epigenetic changes might explain 

individual differences in metabolic health and responses to diet, and have the potential to 

identify novel biomarkers for precision nutrition and targets for precise interventions [185]. 

In summary, nutrigenetics is considered the cornerstone of personalised/precision 

nutrition [17, 178]. Differences in dietary responses and susceptibility to cardiometabolic 

diseases is attributable to genetic variations, particularly, in the form of SNPs [17, 670]. 

Nutrigenetic research has the potential to predict the risk of various cardiometabolic 

diseases, and with personalised dietary interventions, these diseases could be prevented or 
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managed more effectively [745]. Although significant gene-diet interactions have been 

identified by various studies, many of the studies have not been replicated and there is a 

need for large scale longitudinal and dietary intervention studies covering different ethnic 

groups to raise the evidence level and facilitate the translation of nutrigenetics to 

personalised and precision nutrition. 

9.12 Conclusion 

In LACP, CVDs are the top cause of mortality and a key contributor to disability, and 

this is mainly attributed to CVD risk factors. Similarly, the CVD epidermic in India is marked 

by an early onset, greater relative risk, a higher fatality rate and an increased number of 

premature deaths. The findings of this thesis indicate that personalised nutrition based on 

GRS could be an effective strategy for preventing and managing CVD risk factors in these 

populations. In Asian Indians, interventions targeting a reduction in SFA intake might help 

to reduce the genetic risk of central obesity, while in Brazilians these interventions might 

benefit individuals with a genetic susceptibility to disturbances in blood lipid 

concentrations. In Peruvians, on the other hand, dietary guidelines focusing on lowering the 

intake of carbohydrates could help to reduce the genetic risk of low HDL-C concentration. In 

the CURES dairy intake study, a negative association was found between dairy intake and 

cardiometabolic risk factors in Asian Indians, indicating that while dairy is a source of SFA, 

increased consumption of dairy products might be beneficial for Asian Indians. 

With regard to nutrigenetic studies examining the CETP gene, total fat intake 

accounted for majority of the interactions across different SNPs of the gene, being associated 

with unfavourable lipid outcomes in some populations but not others. In LACP, several gene-

lifestyle interactions on cardiometabolic traits have been identified in Brazilians, Mexicans, 

Costa Ricans, Chileans, Argentinians, Colombians and LACP diaspora, highlighting effects 

which are population-, sex- and ethnic-specific. However, most of the studies were 

conducted once, necessitating replication to reinforce the results.  

The evidence indicates that nutrigenetics has a potential role to play in the prevention 

and management of cardiometabolic diseases. However, numerous factors need to be 

considered before the translation of existing nutrigenetic insights to personalised and 

precision nutrition in diverse populations including genetic diversity, cultural and lifestyle 

factors as well as socioeconomic factors. Additionally, integration of data from disciplines 

such as metabolomics, epigenetics and the gut microbiome could help to facilitate the 

implementation of precision nutrition based on nutrigenetics.  Therefore, conducting gene-
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diet interaction studies in diverse populations is essential to improve their clinical 

application worldwide. To bridge the gap between existing nutrigenetic insights and their 

application in clinical practice, it is vital for initial findings to be replicated in independent 

samples from ethnically diverse populations. Once findings have been replicated in 

independent samples, dietary intervention studies will be required to further strengthen the 

evidence and facilitate their application in clinical practice. Studies utilising large sample 

sizes are required as this improves the power to detect interactions with minimal effect 

sizes.  
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Figure 9.1 The main findings of the thesis 

GeNuIne – Gene-Nutrient Interactions; BOLD – Obesity, Lifestyle and Diabetes in Brazil;  CURES – Chennai Urban Rural Epidemiological Study; 

SONGS – Study of Obesity, Nutrition, Genes and Social factors; GRS – genetic risk score; TG – triglycerides; LDL-C – low-density lipoprotein 

cholesterol; HDL-C – high-density lipoprotein cholesterol; TC – total cholesterol; TG:HDL-C – ratio of triglycerides to high-density lipoprotein 

cholesterol; WC – waist circumference. 
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Appendix A - Data analysis plan: Higher intake of dairy is associated with lower 

cardiometabolic risks and metabolic syndrome in Asian Indians 

 

In this document: 

       1. Background 

2. Study data and design 

3. Statistical analyses 

4. Expected outcomes 

5. Proposed deadline 

 

1. Background 

Asian Indians have been shown to have distinct biochemical and clinical characteristics 

that put them at risk of type 2 diabetes (T2D) and cardiovascular diseases (CVDs) [105, 

119, 120, 255]. The distinct features include central obesity, dyslipidaemia, insulin 

resistance, increased levels of visceral fat, total fat, and propensity to beta cell dysfunction 

[105, 119, 120, 255]. The increasing prevalence of cardiometabolic risk factors has been 

linked to genetic and environmental factors [18, 105, 126, 128, 265] and there is growing 

interest in the role of different types of food in the development of these risk factors [105, 

128, 256, 265]. Several studies have reported a protective effect of dairy consumption on 

the risk of cardiometabolic diseases [256, 266-269]. However, one study [270] reported 

that a low dairy intake was linked to lower cardiometabolic risks than a high dairy intake. 

a. Aims and objectives of the study 

To test the association between dairy intake and cardiometabolic risks.   

b. Hypothesis 

Dairy intake is associated with lower cardiometabolic risks. 

 

2. Study data and design 

Participants for this study were randomly selected from the Chennai Urban Rural 

Epidemiological Study (CURES), which is a cross-sectional epidemiology study conducted 

on a representative sample of the population of Chennai, formerly Madras, in southern 

India [105, 280].  The sample for the current study consists of 1,033 adults with normal 

glucose tolerance [105, 280]. 

a. Phenotypes (exposure, outcome, covariates) 

- Main exposure 
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  Dairy intake 

- Main outcome 

Levels of high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein 

cholesterol (LDL-C), triglycerides (TG), total cholesterol (TC), and fasting plasma 

glucose (FPG); blood pressure; body mass index (BMI); waist circumference 

(WC); general obesity and central obesity. 

- Confounders 

• Sex 

• Age 

• BMI 

• Smoking status 

• Physical activity 

• Total energy intake 

• Tea and coffee intake 

 

3. Statistical analyses 

a.  Descriptive statistics 

Descriptive characteristics will be presented as median and interquartile range 

for continuous variables, and as proportions for categorical variables [105] as 

detailed in Table 1. The Kruskal-Wallis test will be used to compare differences 

between the medians of continuous variables, and the Chi-Squared test will be 

used to test for differences in proportions [105]. BMI will be calculated as weight 

in kg divided by the square of the height (m2). Individuals with BMI <25 kg/m2 

will be classified as non-obese and those with BMI ≥25 kg/m2 will be classified as 

obese, in accordance with the World Health Organisation (WHO) Asia Pacific 

Guidelines [283].  

b. Graphs 

Bar graphs will be used for levels of HDL-C, LDL-C, TG, TC, FPG and blood pressure 

according to dairy intake.  A bar graph will also be used for BMI, risk of central 

obesity and general obesity according to dairy intake.  

c. Models 

The Cox proportional hazards model will be used to test for association between 

dairy intake and cardiometabolic risk. The lowest, medium and highest intakes of 

total dairy, unfermented and fermented dairy will be derived by stratifying the 
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data into deciles and regrouping as lowest (quartile 1(Q1)–quartile 4 (Q4)), 

medium (Q5–Q8) and highest intake (Q9–Q10) to test the association with 

cardiometabolic risk using the regression model. The hazard ratio (HR) for 

incidence of cardiometabolic risk in each group of dairy intake (lowest, medium 

and highest intake) and its subdivision (fermented and unfermented) will be 

calculated using the Cox proportional hazards model, adjusting for age, sex, BMI, 

smoking status, physical activity level, total energy, tea and coffee intake where 

appropriate [105] as shown in Table 1. The linear trend across the lowest, 

medium and highest dairy intake and incidence of cardiometabolic risk will be 

tested  using the regression model [287]. Differences between the dairy product 

and its subdivisions will be assessed using the Kruskal-Wallis test for all the 

continuous variables. A P value <0.05 will be considered statistically significant. 

d.  Software 

      SAS software version 9.4 

 

4.  Expected outcomes 

     The findings from this project are expected to be published in a journal and will be written 

     up as a chapter of my thesis. 

 

5.  Proposed deadline 

     20-04-2022 
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Table 1 Statistical analyses 

Objectives Statistical test used Reason for statistical test 
used 

Outcome of statistical test 
used 

Covariates (When 
appropriate) 

1. To produce descriptive statistics for the study participants who had completed an assessment on demographics and fasting 
biochemical/anthropometric measurements. 
To generate descriptive 
statistics of the participants 
who completed the study 
assessment on 
demographics, 
anthropometric and 
biochemical outcomes of 
interest. 

Descriptive statistics 
Or 
Descriptive statistics 
frequencies 

Descriptive for continuous 
variables 
 
Frequencies for categorical 
variables 
 

To determine the median 
and inter-quartile range of 
the anthropometric and 
biochemical variables as 
well as frequencies for 
categorical variables: 
age (years), height (cm), 
weight (kg), waist 
circumference (cm), obese 
cases (%), PAL, smoking 
status, SBP and DBP 
(mmHg), serum TC, HDL-C, 
LDL-C, TG (mg/dL), FPG 
(mg/dL),  and total energy 
(kcal). 
 
 
 

 

2. To test the relationship between dairy intake and anthropometric/fasting biochemical measurements (TC, HDL-C, LDL-C, TG, FPG, SBP, DBP, BMI, 
and WC) 
To test the association 
between dairy intake and 
anthropometric/biochemic
al traits while adjusting for 
covariates. 

Univariate linear 
regression 

The exposure/independent 
variable [dairy intake (low, 
medium and high)] is a 
categorical variable and the 
outcome/dependent 
variable (anthropometric 
trait/biochemical trait) is a 
continuous variable. 

To identify the effect of 
dairy intake on 
cardiometabolic traits. 

- Age, sex, BMI, smoking 
status, PAL, total energy, tea 
and coffee intake will be 
adjusted for when the 
outcome is a lipid trait (TC, 
HDL-C, LDL-C and TG), FPG, or 
blood pressure. 
- BMI will not be adjusted for 
when obesity/BMI is the 
outcome [105]. 
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3. To test the relationship between dairy intake and cardiometabolic risk 
To test the association 
between dairy intake and 
cardiometabolic risk while 
adjusting for covariates. 

Cox proportional hazard 

analysis 

The exposure/independent 

variable [dairy intake (low, 

medium and high)] is a 

categorical variable and the 

outcome/dependent 

variable (general obesity, 

central obesity and 

cardiometabolic risk) is a 

categorical variable. 

To identify the effect of 
dairy intake on  general 
obesity, central obesity and 
cardiometabolic risk. 
 

- Age, sex, BMI, smoking 
status, PAL, total energy, tea 
and coffee intake will be 
adjusted for when the 
outcome is a lipid trait or 
blood pressure. 
- BMI will not be adjusted for 
when obesity is the outcome 
[105]. 
 

BMI – body mass index; WC – waist circumference; HDL-C – high-density lipoprotein cholesterol; LDL-C – low-density lipoprotein cholesterol; TG – 
triglycerides; TC – total cholesterol; SBP – systolic blood pressure; DBP – diastolic blood pressure; FPG – fasting plasma glucose; PAL – physical activity 
level 
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Appendix B - Data analysis plan: Interaction between genetic risk score and dietary 

fat intake on lipid-related traits in Brazilian young adults 

 

In this document: 

1. Background 

2. Study data and design 

3. Statistical analyses 

4. Expected outcomes 

5. Proposed deadline 

 

1. Background 

Cardiovascular diseases (CVDs) remain a leading cause of death and disability worldwide 

[746] and one of the major risk factors is dyslipidaemia which is characterised by a 

decrease in the concentration of high-density lipoprotein cholesterol (HDL-C) and an 

elevation in the levels of triglycerides (TG) or low-density lipoprotein cholesterol (LDL-

C) [3, 107]. Dyslipidaemia is a complex trait and genome-wide association (GWA) studies 

have identified several loci associated with blood lipid levels [94-96, 200, 204, 321]. 

However, these variants account for a small proportion of variability in lipid traits, and 

there is growing evidence that an interaction between genetic variants and 

environmental factors is responsible for part of the missing heritability of complex traits 

[105, 126-129]. Single variants often have small effect sizes and an effective approach to 

assessing the genetic contribution to complex traits is the use of a genetic risk score (GRS) 

which allows the combined effect of multiple variants to be analysed [245, 319]. 

a.  Aims and objective of the study 

To investigate whether dietary factors interact with GRS to influence lipid-related 

traits. The dietary factors to be considered include dietary intake of fat, 

carbohydrate, and protein. 

b.  Hypothesis 

GRS and dietary factors interact to modify lipid-related traits. 

 

2. Study data and design 

The sample consists of 203 healthy young adults aged 19-24 years from the Obesity, 

Lifestyle and Diabetes in Brazil (BOLD) cross-sectional study [128, 319]. Participants 
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were recruited between March and June 2019 from the Federal University of Goia s (UFG). 

The study was performed as part of the Gene-Nutrient Interactions (GeNuIne) 

collaboration which is aimed at investigating how genetic and lifestyle factors interact to 

influence chronic diseases in diverse ethnic groups, with the goal of preventing and 

managing chronic diseases through personalised nutrition [18, 131, 170, 171]. 

a. Phenotypes (exposure, outcome, covariates) 

- Main exposure  

      GRS 

- Main outcome 

Lipid traits: HDL-C, LDL-C, TG, total cholesterol (TC) and TG:HDL-C 

ratio. 

Blood pressure: Systolic blood pressure (SBP) and diastolic blood 

pressure (DBP). 

Obesity-related traits: Waist circumference (WC) and body mass index 

(BMI). 

- Confounders 

• Sex 

• Age 

• BMI 

3. Statistical analyses 

a.  Descriptive statistics 

Descriptive characteristics of the study participants by sex will be presented as 

means and standard deviation for continuous variables, and as percentages for 

categorical variables [105] as detailed in Table 1. An independent sample t-test 

will be used to compare the means of continuous variables and a goodness of fit 

Chi-squared test will be performed to examine if the observed genotype counts 

are in Hardy-Weinberg equilibrium [105]. Normality test will be done by Shapiro-

Wilk test and variables which are not normally distributed will be log-

transformed before the analysis. BMI will be calculated as weight in kg divided by 

the square of the height (m2).  

b.  Graphs 

Bar graphs will be used to display lipid levels, blood pressure and dietary factor, 

stratified by GRS.  A bar graph will also be used for obesity-related traits and 

dietary factor, stratified by GRS.  
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c.  Models 

Linear and logistic regression models will be used to test for genetic associations 

with the continuous and categorical outcomes respectively adjusting for age, sex, 

and BMI where appropriate [105] as shown in Table 1. Interactions between GRS 

and dietary intake will be analysed by adding the interaction terms in the models 

and adjusting for total energy intake in addition to the covariates above [105]. 

Interactions between GRS and dietary intake reaching statistical significance 

(P<0.05) will be explored further by grouping participants based on the quantity 

of dietary intake [128]. A median dietary intake will be used to classify 

participants into ‘low’ (lower than median) and ‘high’ (higher than median) 

groups. Participants will also be grouped based on tertiles of dietary intake into 

first, second and third tertiles [245]. Seven SNPs (CETP rs3764261, GCKR 

rs1260326, LIPG rs7241918, SORT1 rs629301, LIPC rs1532085, APOA1 rs964184, 

and ATP2B1 rs2681472) will be used to generate an unweighted GRS. An 

unweighted GRS will used because information on effect sizes is often limited to 

certain traits [245, 369]. Moreover, effect sizes may vary between populations and 

data from a GWA conducted in one population may not apply to another 

population [105, 369]. The unweighted GRS will be calculated by adding the risk 

alleles across the seven SNPs for each participant [564]. The SNPs have been 

selected based on their associations with lipid traits at a genome-wide significance 

level (P<5×10-8) [94, 124, 195, 200, 201, 203, 205, 207, 208, 357]. 

d.  Software 

SPSS version 28 and R software version 4·3·1  

 

4. Expected outcomes 

The findings from this project are expected to be published in a journal and will be 

written up as a chapter of my thesis. 

 

5. Proposed deadline 

30-06-2022 
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Table 1 Statistical analyses 

Objectives Statistical test used Reason for statistical test 

used 

Outcome of statistical 

test used 

Covariates (When 

appropriate) 

1. To check whether the selected SNPs are in Hardy-Weinberg equilibrium (HWE) 

To determine whether the 

observed genotype counts are 

in HWE. 

Goodness of fit Chi-

Squared test 

To compare the observed 

genotype counts with the 

expected values under HWE. 

To test whether the study 

population is in HWE for 

the loci under study [105]. 

 

2. To produce descriptive statistics for the study participants who had completed an assessment on demographics and biochemical and anthropometric 

measurements. 

To generate descriptive 

statistics of the participants 

who completed the study 

assessment on demographics, 

anthropometric and 

biochemical outcomes of 

interest. 

Descriptive statistics  

Or 

Descriptive statistics 

frequencies 

Descriptive for continuous 

variables 

Frequencies for categorical 

variables 

 

To determine the mean 

and standard deviation of 

the demographic, 

anthropometric and 

biochemical variables: age 

(years), height (cm), 

weight (kg), waist 

circumference (cm), serum 

TC, HDL-C, LDL-C, TG 

(mg/dL), TG:HDL-C ratio, 

SBP (mmHg), DBP 

(mmHg), total fat (g), total 

fat (% energy), total 

SFA(g), MUFA (g), PUFA 

(g), carbohydrate (g), 

carbohydrate (% energy),  

protein (g), protein (% 

energy), and total energy 

(kcal). 
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3. To test the association between the GRS and fasting biochemical/anthropometric measurements (TC, HDL-C, LDL-C, TG, TG:HDL-C ratio, SBP, DBP, 

BMI, and WC) 

To test the association between 

GRS and 

anthropometric/biochemical 

traits while adjusting for 

covariates. 

Univariate linear 

regression 

The exposure/independent 

variable (GRS) is a categorical 

variable, and the 

outcome/dependent variable 

(anthropometric 

trait/biochemical trait) is a 

continuous variable. 

To identify the effect of 

genetic variants on lipid-

related traits. 

- Age, sex, and BMI will be 

adjusted for when the 

outcome is a lipid trait 

(TC, HDL-C, LDL-C, TG and 

TG:HDL-C ratio) or blood 

pressure.  

- BMI will not be adjusted 

for when the outcome is 

an obesity related trait or 

BMI [105].    

4. To test the interaction between the GRS and dietary factors on fasting biochemical/anthropometric measurements (TC, HDL-C, LDL-C, TG, TG:HDL-C 

ratio, SBP, DBP, BMI and WC) 

To test the interaction between 

macronutrients and GRS on 

fasting biochemical and 

anthropometric traits. 

Univariate linear 

regression 

The exposure/independent 

variable (GRS) is a categorical 

variable, and the 

outcome/dependent variable 

(fasting biochemical 

trait/anthropometric trait) is a 

continuous variable. 

To determine the effect of 

the genetic variants and 

the macronutrients: 

carbohydrate, protein, and 

fat on fasting biochemical 

and anthropometric traits.  

 

- Age, sex, and BMI will be 

adjusted for when the 

outcome is a lipid trait 

(TC, HDL-C, LDL-C, TG and 

TG:HDL-C ratio)  or blood 

pressure [105].  

- BMI will not be adjusted 

for when the outcome is 

an obesity related trait or 

BMI  [105].    

- Total energy will be 

adjusted for when the 

dietary variable is 

measured in grams. 

To test whether the 

interactions are caused by high, 

low or medium intake of these 

macronutrients. 

Univariate linear 

regression 

The exposure/independent 

variable (GRS) is a categorical 

variable, and the 

outcome/dependent variable 

To determine the effect of 

the genetic variants and 

the macronutrients: 

carbohydrate, protein, and 

- Age, sex, and BMI will be 

adjusted for when the 

outcome is a lipid trait 

(TC, HDL-C, LDL-C, TG and 
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(fasting 

biochemical/anthropometric 

trait) is a continuous variable. 

fat on fasting biochemical 

and anthropometric traits.  

Data will be split based on 

tertiles of carbohydrate, 

protein, and fat. 

TG:HDL-C ratio) or blood 

pressure.   

- BMI will not be adjusted 

for when an obesity-

related trait or BMI is the 

outcome [105].    

- Total energy will be 

adjusted for when the 

dietary variable is 

measured in grams. 

NOTES 

When examining fat, 

carbohydrate and proteins in 

grams, total energy intake will 

be adjusted for.  When using 

the percentage energy intake of 

the macronutrients, there is no 

need to adjust for total energy 

intake. 

Computer variables For GRS - Carbohydrate interactions: 1g of carbohydrate = 4 kcal 

 

For GRS - Fat interactions: 1g of fat = 9 kcal 

 

For GRS - Protein interactions: 1g protein=4 kcal 

 

 

GRS – genetic risk score; BMI – body mass index; WC – waist circumference; HDL-C – high-density lipoprotein cholesterol; LDL-C – low-density 

lipoprotein cholesterol; TG – triglycerides; TC – total cholesterol; SBP – systolic blood pressure; DBP – diastolic blood pressure. 
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Appendix C - Data analysis plan: Impact of lipid genetic risk score and saturated fatty 

acid intake on central obesity in an Asian Indian population 

 

In this document: 

1. Background 

2. Study data and design 

3. Statistical analyses 

4. Expected outcomes 

5. Proposed deadline 

1.  Background 

Evidence has shown that Asian Indians are more prone to insulin resistance and diabetes 

in comparison with Europeans owing to what is described as the ‘Asian Indian’ 

phenotype, which is characterised by higher levels of insulin, total fat and central obesity 

despite having a lower body mass index (BMI) [105, 119]. A number of studies have 

demonstrated that cardiometabolic traits such as lipid levels and obesity are influenced 

by single nucleotide polymorphism (SNPs) in the lipoprotein lipase (LPL) and cholesteryl 

ester transfer protein (CETP) genes [126, 189, 242, 747, 748].  However, the effect size of 

individual SNPs is small and a more effective approach involves combining several risk 

alleles [370] to generate a genetic risk score (GRS) [245]. 

a.  Aims and objective of the study 

To test for interaction between GRS and dietary factors on cardiometabolic traits.   

b.  Hypothesis 

GRS and dietary factors interact to modify cardiometabolic traits. 

2.  Study data and design 

Participants for this case-control study were randomly selected from the Chennai Urban 

Rural Epidemiological Study (CURES), which is a cross-sectional epidemiology study 

conducted on a representative sample of the population of Chennai, formerly Madras, in 

southern India [105, 280].  The sample for the current study consists of 497 unrelated 

individuals, 260 with type 2 diabetes (cases) and 237 with normal glucose tolerance 

(NGT) (controls) [105, 280]. 

a.  Phenotypes (exposure, outcome, covariates) 

- Main exposure  

      GRS 
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- Main outcome 

Levels of high-density lipoprotein cholesterol (HDL-C), low-density 

lipoprotein cholesterol (LDL-C), triglycerides (TG), total cholesterol 

(TC), body mass index (BMI), waist circumference (WC), general 

obesity and central obesity. 

- Confounders 

• Sex 

• Age 

• BMI 

• Type 2 diabetes 

3. Statistical analyses 

a.  Descriptive statistics 

Descriptive characteristics will be presented as means and standard deviation 

(SD) for continuous variables, and as percentages for categorical variables [105] 

as detailed in Table 1. An independent sample t-test will be used to compare the 

means of continuous variables, and a goodness of fit Chi-squared test will be used 

to examine if the observed genotype counts are in Hardy-Weinberg equilibrium 

[105]. Variables which are not normally distributed will be log-transformed 

before the analysis [564]. BMI will be calculated as weight in kg divided by the 

square of the height (m2).  Individuals with BMI <25 kg/m2 will be classified as 

non-obese and those with BMI ≥25 kg/m2 will be classified as obese, in accordance 

with the World Health Organisation (WHO) Asia Pacific Guidelines [283]. The 

dietary factors to be investigated are total dietary intake of fat, carbohydrate and 

protein.    

b. Graphs 

Bar graphs will be used for levels of HDL-C, LDL-C, TG, TC and dietary factor, 

stratified by GRS.  A bar graph will also be used for BMI and dietary factor, stratified 

by GRS.  

c. Models 

Linear and logistic regression models will be used to test for genetic associations 

with the continuous and categorical outcomes respectively adjusting for age, sex, 

BMI and type 2 diabetes where appropriate [105] as shown in Table 1.  

Interactions between GRS and dietary intake will be analysed by adding the 
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interaction terms in the models and adjusting for total energy intake in addition 

to the covariates above  [105].  Interactions between GRS and dietary intake 

reaching statistical significance (P<0.05) will be explored further using binary 

analysis [128]. A median intake of total fat, saturated fatty acids (SFA), 

polyunsaturated fatty acids (PUFA) and monounsaturated fatty acids (MUFA) will 

be used to classify individuals into two groups: ‘lower than median group’ and 

‘higher than median group’ [245].  Participants will also be grouped using tertiles 

of carbohydrate intake (% energy) as: first tertile; second tertile; and third tertile 

[105]. Five SNPs (CETP SNP: rs4783961; and LPL SNPs: rs327, rs3200218, 

rs1800590 and rs268) will be used to generate an unweighted GRS.  The risk 

alleles will not be weighed due to limited available information on effect sizes of 

the SNPs for the Asian Indian population. Moreover, it has been demonstrated that 

assigning weights to risk alleles only has minimal effect [370]. The GRS will be 

calculated by adding the risk alleles across the SNPs [564]. The SNPs have been 

selected based on previously reported associations with lipid traits, obesity and 

type 2 diabetes [99, 126, 190, 747]. 

d. Software 

SPSS version 26 

 
4.  Expected outcomes 

The findings from this project are expected to be published in a journal and will be 

written up as a chapter of my thesis. 

 

5.  Proposed deadline 

25-08-2021 
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Table 1 Statistical analyses 

Objectives Statistical test used Reason for statistical test 
used 

Outcome of statistical test 
used 

Covariates (When 
appropriate) 

1. To check whether the selected SNPs are in Hardy-Weinberg equilibrium (HWE) 

To determine whether the observed 

genotype counts are in HWE. 

Goodness of fit Chi-

Squared test 

To compare the observed 

genotype counts with the 

expected values under HWE. 

To test whether the study 

population is in HWE for 

the loci under study [105]. 

 

2. To produce descriptive statistics for the study participants who had completed an assessment on demographics and biochemical and anthropometric 

measurements 

To generate descriptive statistics of 

the participants who completed the 

study assessment on demographics, 

anthropometric and biochemical 

outcomes of interest. 

Descriptive statistics  
Or 
Descriptive statistics 

frequencies 

Descriptive for continuous 
variables 
Frequencies for categorical 
variables 
 

To determine the mean and 
standard deviation of the 
anthropometric and 
biochemical variables as 
well as frequencies for 
categorical variables: 
age (years), height (cm), 
weight (kg), waist 
circumference (cm), WHR, 
obese cases (%), diabetes 
cases (%), fasting blood 
glucose (mg/dL), fasting 
serum insulin ( μIU/ml),  
glycated haemoglobin 
(HbA1c),  PAL (sedentary 
(%), moderate (%), 
vigorous (%), serum TC, 
HDL-C, LDL-C, TG (mg/dL), 
total fat (g), total fat (% 
energy), SFA(g), MUFA (g), 
PUFA (g), carbohydrate (g), 
carbohydrate (% energy), 
protein (g), protein (% 
energy), and total energy 
(kcal). 
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3. To test the relationship between the GRS and anthropometric/fasting biochemical measurements (TC, HDL-C, LDL-C, TG, SBP, DBP, BMI, and WC) 

a. To test the association between GRS 

and anthropometric/biochemical 

traits while adjusting for covariates. 

Univariate linear 

regression 

The exposure/independent 

variable (GRS) is a 

categorical variable, and the 

outcome/dependent 

variable 

(anthropometric/biochemic

al trait) is a continuous 

variable. 

To identify the effect of 

genetic variants on 

anthropometric/biochemic

al traits. 

- Age, sex, BMI and T2D will 
be adjusted for when the 
outcome is a lipid trait (TC, 
HDL-C, LDL-C and TG) or 
blood pressure.  

- BMI will not be adjusted for 

when obesity/BMI is the 

outcome [105].    

b. To test the association between the 

GRS and obesity while adjusting for 

covariates. 

Logistic regression The exposure/independent 

variable (GRS) is a 

categorical variable, and the 

outcome/dependent 

variable (general and 

central obesity) is a 

categorical variable. 

To identify the effect of 
genetic variants on general 
and central obesity. 

Age, sex and T2D. 

4: To test the interaction between the GRS and dietary factors on fasting biochemical/anthropometric measurements (TC, HDL-C, LDL-C, TG, SBP, DBP, BMI, 

and WC) 
a. To test the interaction between 

macronutrients and GRS on fasting 

biochemical and anthropometric 

traits. 

Univariate linear 

regression 

The exposure/independent 

variable (GRS) is a 

categorical variable, and the 

outcome/dependent 

variable (fasting 

biochemical/anthropometri

c trait) is a continuous 

variable. 

To determine the effect of 
the genetic variants and the 
macronutrients: 
carbohydrate, protein and 
fat on fasting biochemical 
and anthropometric traits.  
 

- Age, sex, BMI and T2D will 
be adjusted for when the 
outcome is a lipid trait (TC, 
HDL-C, LDL-C and TG) or 
blood pressure [105].   
- BMI will not be adjusted for 
when obesity/BMI is the 
outcome [105].    
- Total energy will be 

adjusted for when the dietary 

variable is measured in 

grams. 
b. To test whether the interactions are 

caused by high, low or medium 

intake of these macronutrients. 

Univariate linear 

regression 

The exposure/independent 

variable (GRS) is a 

categorical variable, and the 

To determine the effect of 
the genetic variants and the 
macronutrients: 
carbohydrate, protein and 

- Age, sex, BMI and T2D will 
be adjusted for when the 
outcome is a lipid trait (TC, 
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outcome/dependent 

variable (fasting 

biochemical/anthropometri

c trait) is a continuous 

variable. 

fat on fasting biochemical 
and anthropometric traits.  
Data will be split based on 

tertiles of carbohydrate, 

protein, and fat. 

HDL-C, LDL-C and TG) or 
blood pressure.   
- BMI will not be adjusted for 
when obesity/BMI is the 
outcome [105].    
- Total energy will be 

adjusted for when the dietary 

variable is measured in 

grams. 

NOTES 

When examining fat, carbohydrate and 

protein in grams, total energy intake 

will be adjusted for.  When using the 

percentage energy intake of the 

macronutrients, there is no need to 

adjust for total energy intake. 

Computer variables For GRS - Carbohydrate interactions: 1g of carbohydrate = 4 kcal 
 
For GRS - Fat interactions: 1g of fat = 9kcal 
 
For GRS - Protein interactions: 1g protein=4 kcal 

GRS – genetic risk score; BMI – body mass index; WC – waist circumference; HDL-C – high-density lipoprotein cholesterol; LDL-C – low-density lipoprotein 

cholesterol; TG – triglycerides; TC – total cholesterol; PAL – physical activity level 
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Appendix D - Data analysis plan: Interaction between genetic risk score and dietary 

carbohydrate intake on high-density lipoprotein cholesterol levels: Findings from the 

Study of Obesity, Nutrition, Genes and Social factors (SONGS) 

 

In this document: 

1.  Background 

2.  Study data and design 

3.  Statistical analyses 

4.  Expected outcomes 

5.  Proposed deadline 

 

1. Background 

Cardiometabolic diseases including cardiovascular diseases (CVDs) remain a threat to 

global public health, and in 2019, around 32% of worldwide mortality was attributable 

to CVDs [589]. These diseases place a significant burden on low- and middle-income 

countries, where more than three-quarters of CVD deaths occur [25, 589]. Dyslipidaemia, 

obesity and hyperglycaemia are major risk factors for cardiometabolic diseases [74, 749-

751] and multiple factors including genetic, environmental and lifestyle factors have been 

implicated in the development of these traits [18, 104, 105, 130, 327, 611]. Interactions 

between genetic variants and lifestyle factors including dietary intake have been 

reported to contribute to interindividual variation in lipid, glycaemic and obesity related 

traits in several populations [104, 107, 245, 251, 327, 613, 752, 753]. However, to our 

knowledge, no studies have examined gene-diet interactions on cardiometabolic traits in 

the Peruvian population. Hence, the aim of this study is to examine the association of a 

genetic risk score (GRS) and its interaction with dietary factors on cardiometabolic traits 

in the Peruvian population. The GRS approach has been shown to be more effective in 

predicting the genetic risk of complex traits such as dyslipidaemia where the effect size 

of single variants is often modest [104, 245, 370, 613].  

a.  Aims and objectives of the study 

To determine whether dietary factors interact with GRS to influence 

cardiometabolic traits. The dietary factors to be considered are dietary intakes of 

macronutrients (fat, carbohydrate and protein). 

b.  Hypothesis 

Dietary factors and GRS interact to modify cardiometabolic traits. 
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2. Study data and design 

This study is part of the Study of Obesity, Nutrition, Genes and Social factors (SONGS) 

project, a sub-study nested in the Young Lives Study (YLS) in Peru. The YLS is a 

multicentre longitudinal survey established in 2002 that follows two birth cohorts (a 

younger cohort born in 2001–2002, and an older cohort, born in 1994–1995) of children 

in Peru, India (Andhra Pradesh and Telangana), Ethiopia and Vietnam. In Peru, the 

original sample corresponds to 2,053 children aged 6 to 18 months in 2002. The YLS 

sample was selected in two stages. First, 20 clusters were randomly selected from the 

universe of districts in the country, excluding the wealthiest 5%. Second, approximately 

100 households were chosen at random in each cluster [614]. The sample covers the 

diversity of living standard conditions observed in the country [614].  

Participants for this sub-study come from 12 of the original 20 clusters and include 833 

urban participants. The clusters were purposively chosen to capture the diversity of the 

country, thus districts located in the Coast, Highland and Jungle regions were selected. 

Participants were visited by the fieldworkers between July and October 2022 to obtain 

the specific data for this sub-study. 

a.  Phenotypes (exposure, outcome, covariates) 

- Main exposure  

GRS 

- Main outcome 

Lipid traits: HDL-C, LDL-C, TG, and TC. 

Blood pressure: Systolic blood pressure (SBP) and diastolic blood pressure 

(DBP). 

Glycaemic traits: Fasting glucose, fasting insulin and glycated haemoglobin 

(HbA1c). 

Obesity-related traits: waist circumference and body mass index (BMI). 

- Confounders 

• Sex 

• BMI 

• Smoking status 

• Physical activity level 

• Family history of diabetes 

 

 



  

345 

3. Statistical Analyses 

a.  Descriptive Statistics 

Descriptive characteristics of the study participants will be presented as means 

and standard deviation for continuous variables, and as percentages for 

categorical variables [105] as detailed in Table 1. An independent sample t-test 

will be used to compare the means of continuous variables and the Chi-squared 

test will be performed to examine if the observed genotype counts are in Hardy-

Weinberg equilibrium [105]. Normality test will be done by Shapiro-Wilk test and 

non-normally distributed variables will be log-transformed before the analysis. 

BMI will be calculated as weight in kilograms (kg) divided by the square of the 

height (m2).   

a. Graphs 

Bar graphs will be used to display lipid levels, blood pressure, glycaemic traits, 

obesity-related traits and lifestyle factors stratified by GRS. 

b. Models 

Linear and logistic regression models will be used to test for genetic associations 

with the continuous and categorical outcomes respectively, adjusting for sex, BMI, 

physical activity level, smoking status and family history of diabetes where 

appropriate [105] as shown in Table 1. Interactions between GRS and dietary 

factors will be analysed by adding the interaction terms in the models and 

adjusting for total energy intake in addition to the covariates above if the dietary 

intake variable is in grams [105].  Interactions between GRS and dietary intake 

reaching statistical significance (P<0.05) will be explored further by grouping 

participants based on the quantity of dietary intake [128]. The median of the 

interacting variable will be used as a cut-off point to classify participants into 

‘low’ (lower than or equal to median) and ‘high’ (higher than median) groups. 

Participants will also be grouped based on tertiles of the interacting variable into 

first, second and third tertiles [245]. An unweighted GRS will be constructed 

using 39 SNPs of metabolic pathway genes: alpha-ketoglutarate-dependent 

dioxygenase (FTO) SNP rs1558902 [8, 622-625]; transmembrane protein 18 

(TMEM18) SNP rs13021737 [8, 352, 626-629]; melanocortin 4 receptor (MC4R) 

SNP rs6567160 [7, 8, 629-631]; glucosamine-6-phosphate deaminase 2 

(GNPDA2) SNP rs10938397 [7, 8, 401, 632]; SEC16 homolog B, endoplasmic 

reticulum export factor (SEC16B) SNP rs543874 [8, 352, 629, 632, 633]; BCDIN3 
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domain containing RNA methyltransferase (BCDIN3D) SNP rs7138803 [8, 352, 

401, 629, 632];  transcription factor AP-2 beta (TFAP2B) SNP rs2207139 [8, 352, 

401, 628]; neuronal growth regulator 1 (NEGR1) SNP rs3101336 [8, 626-629]; 

adenylate cyclase 3 (ADCY3) SNP rs10182181 [8, 626, 627, 634]; ETS variant 

transcription factor 5 (ETV5) SNP rs1516725 [5, 8, 401, 626]; glutaminyl-peptide 

cyclotransferase like (QPCTL) SNP rs2287019 [8, 629, 632, 635]; G protein-

coupled receptor class C group 5 member B (GPRC5B) SNP rs12446632 [8, 401, 

629, 634]; mitochondrial carrier 2 (MTCH2) SNP rs3817334 [626, 627, 633, 634]; 

centriolar protein (POC5) SNP rs2112347 [7, 8, 629, 632]; mitogen-activated 

protein kinase 5 (MAP2K) SNP rs16951275 [8, 628, 636]; zinc finger CCCH-type 

containing 4 (ZC3H4) SNP rs3810291 [7, 8, 630, 632]; FPGT-TNNI3K read through 

(FPGT-TNNI3K) SNP rs12566985 [8, 628, 637]; leucine-rich repeat and 

immunoglobulin-like domain-containing nogo receptor-interacting protein 2 

(LINGO2) SNP rs10968576 [8, 352, 633, 638]; cell adhesion molecule 1 (CADM1) 

SNP rs12286929 [8, 627, 629]; protein kinase D1 (PRKD1) SNP rs12885454 [8, 

632, 633]; AGBL carboxypeptidase 4 (AGBL4) SNP rs657452 [8, 352, 627]; 

polypyrimidine tract binding protein 2 (PTBP2) SNP rs11165643 [7, 8, 352, 626]; 

NLR family CARD domain containing 3 (NLRC3) SNP rs758747 [8, 627]; syntaxin 

binding protein 6 (STXBP6) SNP rs10132280 [8, 629, 632]; Huntingtin interacting 

protein 1 (HIP1) SNP rs1167827 [8, 633]; cell adhesion molecule 2 (CADM2) SNP 

rs13078960 [8]; far upstream element binding protein 1 (FUBP1) SNP 

rs12401738 [8, 634]; olfactomedin 4 (OLFM4) SNP rs12429545 [626, 628, 632]; 

RAS p21 protein activator 2 (RASA2) SNP rs16851483 [8, 628]; hypoxia inducible 

factor 1 subunit alpha inhibitor (HIF1AN) SNP rs17094222 [8, 633]; hepatocyte 

nuclear factor 4 gamma (HNF4G) SNP rs17405819 [627, 629, 639]; toll like 

receptor 4 (TLR4) SNP rs1928295 [8, 352]; neurexin 3 (NRXN3) SNP rs7141420 

[8, 401]; inflammation and lipid regulator with UBA-like and NBR1-like domains 

(ILRUN or C6orf106) SNP rs205262 [8]; fragile histidine triad diadenosine 

triphosphatase (FHIT) SNP rs2365389 [8, 633]; neuron navigator 1 (NAV1) SNP 

rs2820292 [8]; tripartite motif containing 66 (TRIM66) SNP rs4256980 [8, 629]; 

erb-b2 receptor tyrosine kinase 4 (ERBB4) SNP rs7599312 [8, 623]; and lysine 

acetyltransferase 8 (KAT8) SNP rs9925964 [8, 627]. The risk alleles will not be 

weighed because information on effect sizes is often limited to certain traits [245, 

369]. Moreover, data on effect sizes from a GWA conducted in one population may 
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not be applicable to another population because of variations in effect sizes [105, 

369]. The unweighted GRS will be calculated by adding the risk alleles across the 

SNPs for each participant [564]. The SNPs have been selected based on their 

association with cardiometabolic traits at a genome-wide significance level (P<5 

× 10−8)  as shown in Table 2. The risk alleles of the SNPs and the traits they have 

been associated with are presented in Table 2.   

c. Software 

SPSS version 28 

4.  Expected outcomes 

The findings from this project are expected to be published in a journal and will be 

written up as a chapter of my thesis. 

 

5.  Proposed deadline 

30-05-2023 
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Table 1 Statistical analyses 

Objectives Statistical test used Reason for statistical test 
used 

Outcome of statistical test 
used 

Covariates (When 
appropriate) 

1. To check whether the selected SNPs are in Hardy-Weinberg equilibrium (HWE) 
To determine whether the 
observed genotype counts are in 
HWE. 

Goodness of fit Chi-
Squared test 

To compare the observed 
genotype counts with the 
expected values under HWE. 

To test whether the study 
population is in HWE for the 
loci under study [105]. 

 

2. To produce descriptive statistics for the study participants who had completed an assessment on demographics, biochemical and anthropometric 
measurements. 
To generate descriptive statistics of 
the participants who completed the 
study assessment on demographics, 
anthropometric and biochemical 
outcomes of interest. 

Descriptive statistics  

or 

Descriptive statistics 

frequencies 

 

 

 

 

 

 
 

Descriptive for continuous 

variables 

Frequencies for categorical 

variables 
 

To determine the mean and 

standard deviation of the 

anthropometric and 

biochemical variables as 

well as frequencies for 

categorical variables: age 

(years), height (cm), weight 

(kg), waist circumference 

(cm), BMI (kg/m2), obese 

cases (%), serum TC, HDL-C, 

LDL-C, TG (mmol/L), SBP 

(mmHg), DBP (mmHg), 

fasting glucose, fasting 

insulin, HbA1c, total fat (g), 

total fat (% energy), total 

SFA(g), MUFA (g), PUFA (g), 

carbohydrate (g), 

carbohydrate (% energy),  

protein (g), protein (% 

energy), and total energy 

(kcal). 

 

3. To test the association between the GRS and anthropometric and biochemical measurements [TC, HDL-C, LDL-C, TG, SBP, DBP, fasting glucose, fasting 
insulin, HbA1c, BMI, and WC] 
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To test the association between 
GRS and 
anthropometric/biochemical traits 
while adjusting for covariates. 

Univariate linear 

regression 

The exposure/independent 

variable (GRS) is a categorical 

variable, and the 

outcome/dependent variable 

(anthropometric/biochemical 

trait) is a continuous variable. 

To identify the effect of 

genetic variants on 

anthropometric and 

biochemical traits. 

- Sex, BMI, smoking 

status, physical activity 

level and family history of 

T2D will be adjusted for 

when the outcome is a 

lipid trait (TC, HDL-C, 

LDL-C and TG) or blood 

pressure.  
- BMI will not be adjusted 
for when the outcome is 
an obesity related trait or 
BMI [105].    

4. To test the interaction between the GRS and dietary factors on fasting biochemical/anthropometric measurements (TC, HDL-C, LDL-C, TG, SBP, DBP, 

fasting glucose, fasting insulin, HbA1c, BMI, and WC). 
a. To test the interaction between 

macronutrients and GRS on 
fasting biochemical and 
anthropometric traits. 

Univariate linear 

regression 

The exposure/independent 

variable (GRS) is a categorical 

variable, and the 

outcome/dependent variable 

(fasting 

biochemical/anthropometric 

trait) is a continuous variable. 

To determine the effect of 

the genetic variants and the 

macronutrients: 

carbohydrate, protein and 

fat on fasting biochemical 

and anthropometric traits.  

 

-  Sex, BMI, smoking 

status, physical activity 

level and family history of 

T2D will be adjusted for 

when the outcome is a 

lipid trait (TC, HDL-C, 

LDL-C, and TG)  or blood 

pressure [105].  

- BMI will not be adjusted 

for when the outcome is 

an obesity related trait or 

BMI  [105].    

- Total energy will be 

adjusted for when the 

dietary variable is 

measured in grams. 
a. To test whether the interactions 

are caused by high, low or 
Univariate linear 

regression 

The exposure/independent 

variable (GRS) is a categorical 

variable, and the 

To determine the effect of 

the genetic variants and the 

macronutrients: 

-  Sex, BMI, smoking 

status, physical activity 

level and family history of 
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medium intake of these 
macronutrients. 

outcome/dependent variable 

(fasting 

biochemical/anthropometric 

trait) is a continuous variable. 

carbohydrate, protein and 

fat on fasting biochemical 

and anthropometric traits.  

Data will be split using the 

median of the dietary 

variable:  carbohydrate, 

protein and fat; or based on 

tertiles of the dietary 

variable. 

T2D will be adjusted for 

when the outcome is a 

lipid trait (TC, HDL-C, 

LDL-C, and TG) or blood 

pressure.   

- BMI will not be adjusted 

for when an obesity-

related trait or BMI is the 

outcome [105].    

- Total energy will be 

adjusted for when the 

dietary variable is 

measured in grams. 

NOTES 
When examining fat, carbohydrate 
and protein in grams, total energy 
intake will be adjusted for. When 
using the percentage energy intake 
of the macronutrients, there is no 
need to adjust for total energy 
intake. 

Computer variables For GRS - Carbohydrate interactions: 1g of carbohydrate = 4 kcal 

 

For GRS - Fat interactions: 1g of fat = 9 kcal 

 

For GRS – Protein interactions: 1g protein=4 kcal 

 

 

GRS – genetic risk score; BMI – body mass index; WC – waist circumference; HDL-C – high-density lipoprotein cholesterol; LDL-C – low-density 
lipoprotein cholesterol; TG – triglycerides; TC – total cholesterol; SBP – systolic blood pressure; DBP – diastolic blood pressure; HbA1c – 
glycated haemoglobin. 
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Table 2 Single nucleotide polymorphisms to be included in the GRS and the reported traits by genome-wide association (GWA) studies 

SNP Gene name Gene Symbol 
Chromosome 
Location 

Location of 
SNP 

Alleles 
Risk/Other 

Traits GWA Study 

rs1558902 

Alpha-
ketoglutarate 
dependent 
dioxygenase 

FTO  16:53769662 Intronic A/T 

HDL-C, BMI, 
HC, WC, 
HbA1c and 
obesity 

Locke et al. (2015) [8]  
Ligthart et al. (2016) 
[622] 
Tachmazidou et al. 
(2017) [623]  
Wheeler et al. (2017) 
[624]  
Scherag et al. (2010) 
[625]  

rs13021737 
Transmembrane 
protein 18 

TMEM18  2:632348 Intergenic G/A BMI 

Locke et al. (2015) [8]  
Akiyama et al. (2017) 
[626]  
Hoffmann et al. (2018) 
[627] 
Justice et al. (2017) 
[628] 
Pulit et al. (2019) [629] 
Koskeridis et al. (2022) 
[352] 
 

rs6567160 
Melanocortin 4 
receptor 

MC4R  18:60161902 Upstream C/T 
HDL-C, TG, 
WHR, T2D, 
BMI 

Locke et al. (2015) [8] 
Pulit et al. (2019) [629] 
Vujkovic et al. (2020) 
[631] 
Martin et al. (2021) [7] 
Mahajan et al. (2018) 
[630] 

rs10938397 
Glucosamine-6-
phosphate 
deaminase 2 

GNPDA2  4:45180510 Intergenic G/A 
HDL-C, LDL-
C, BMI, WC, 
obesity 

Locke et al. (2015) [8] 
Martin et al. (2021) [7] 
Berndt et al. (2013) 
[401] 
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Shungin et al. (2015) 
[632] 

rs543874 

SEC16 homolog B, 
endoplasmic 
reticulum export 
factor 

SEC16B  1:177920345 Upstream  G/A 
HDL-C, BMI, 
HC, WHR 

Locke et al. (2015) [8]  
Pulit et al. (2019) [629] 
Koskeridis et al. (2022) 
[352] 
Shungin et al. (2015) 
[632] 
Huang et al. (2022) 
[633] 

rs7138803 
BCDIN3 domain 
containing RNA 

BCDIN3D  12:49853685 Intergenic A/G 
HDL-C, BMI, 
HC, WHR, 
obesity 

Locke et al. (2015) [8] 
Pulit et al. (2019) [629] 
Koskeridis et al. (2022) 
[352] 
Berndt et al. (2013) 
[401] 
Shungin et al. (2015) 
[632] 

rs2207139 
Transcription 
factor AP-2 beta 

TFAP2B  6:50877777 Intergenic G/A BMI 

Locke et al. (2015) [8] 
Justice et al. (2017) 
[628] 
Koskeridis et al. (2022) 
[352] 
Berndt et al. (2013) 
[401] 

rs3101336 
Neuronal growth 
regulator 1 

NEGR1  1:72285502 Intronic C/T BMI 

Locke et al. (2015) [8] 
Akiyama et al. (2017) 
[626]  
Hoffmann et al. (2018) 
[627] 
Justice et al. (2017) 
[628] 
Pulit et al. (2019) [629] 

rs10182181 
Adenylate cyclase 
3 

ADCY3  2:24927427 Intergenic G/A BMI Locke et al. (2015) [8] 



  

353 

Akiyama et al. (2017) 
[626]  
Hoffmann et al. (2018) 
[627] 
Winker et al. (2015) 
[634] 

rs1516725 
ETS variant 
transcription 
factor 5 

ETV5  3:186106215 Intronic C/T BMI 

Locke et al. [8] 
Akiyama et al. (2017) 
[626] 
Berndt et al. (2013) 
[401] 
Graham et al. (2021) [5] 

rs2287019 

Glutaminyl-
peptide 
cyclotransferase 
like 

QPCTL 19:45698914 Intronic C/T 
LDL-C, TC, 
SBP, BMI, 
WC, WHR,  

Locke et al. (2015) [8] 
Pulit et al. (2019) [629]  
Shungin et al. (2015) 
[632]  
Lee et al. (2022) [635]  

rs12446632 
G protein-coupled 
receptor class C 
group 5 member B 

GPRC5B  16:19924067 Intergenic G/A BMI 

Locke et al. (2015) [8]  
Hoffman et al. (2018) 
[627] 
Berndt et al. (2013) 
[401] 

rs3817334 
Mitochondrial 
carrier 2 

MTCH2  11:47,607,569 Intronic T/C BMI 

Akiyama et al. (2017) 
[626] 
Hoffman et al. (2018) 
[627] 
Huang et al. (2022) 
[633] 
Winker et al. (2015) 
[634] 
Speliotes et al. (2010) 
[754] 

rs2112347 
POC5 centriolar 
protein 

POC5  5:75719417 Upstream T/G 
HDL-C, LDL-
C, TG BMI, 
WC, HC, 

Locke et al. (2015) [8]  
Pulit et al. (2019) [629]  
Martin et al. (2021) [7]   



  

354 

WHR, body 
fat 
percentage 

Shungin et al. (2015) 
[632]  

rs16951275 
Mitogen-activated 
protein kinase 5 

MAP2K5  15:67784830 Intronic T/C BMI 

Locke et al. (2015) [8]  
Justice et al. (2017) 
[628]  
Wood et al. (2016) 
[636] 

rs3810291 
zinc finger CCCH-
type containing 4 

ZC3H4 
 
19:47065746 

3 prime 
UTR 

A/G 
HDL-C, TG, 
BMI, WC, 
T2D, HC 

Locke et al. (2015) [8] 
Martin et al. (2021) [7]   
Mahajan et al. (2018) 
[630] 
Shungin et al. (2015) 
[632] 

rs12566985 
FPGT-TNNI3K 
readthrough 

FPGT-TNNI3K  1:74536509 Intronic G/A BMI 
Locke et al. (2015) [8]  
Felix et al. (2022) [637]  

rs10968576 

Leucine rich 
repeat and Ig 
domain 
containing 2 

LINGO2  9:28414341 Intronic G/A 
HDL-C, BMI, 
WC  

Locke et al. (2015) [8] 
Koskeridis et al. (2022) 
[352] 
Huang et al. (2022) 
[633] 
Liu et al. (2017) [638]  

rs12286929 
Cell adhesion 
molecule 1 

CADM1  11:115151684 Intergenic G/A BMI 

Locke et al. (2015) [8] 
Hoffman et al. (2018) 
[627] 
Pulit et al. (2019) [629]  

rs12885454 Protein kinase D1 PRKD1  
 
14:29267632 

Exonic C/A BMI, WC 

Locke et al. (2015) [8] 
Hoffman et al. (2018) 
[627] 
Shungin et al. (2015) 
[632] 
Huang et al. (2022) 
[633] 



  

355 

rs657452 
AGBL 
carboxypeptidase 
4 

AGBL4  1:49124175 Intronic A/G BMI 

Locke et al. (2015) [8] 
Hoffman et al. (2018) 
[627] 
Koskeridis et al. (2022) 
[352] 

rs11165643 
Polypyrimidine 
tract binding 
protein 2 

PTBP2  1:96458541 Intergenic T/C 
BMI, body fat 
percentage 

Locke et al. (2015) [8] 
Akiyama et al. (2017) 
[626]  
Koskeridis et al. (2022) 
[352]  
Martin et al. (2021) [7]   

rs758747 
NLR family CARD 
domain 
containing 3 

NLRC3 16:3577357 
5 prime 
UTR 

T/C BMI 
Locke et al. (2015) [8] 
Hoffman et al. (2018) 
[627]  

rs10132280 
Syntaxin binding 
protein 6 

STXBP6  14:25458973 Intergenic C/T 
BMI, WC, HC, 
WHR 

Locke et al. (2015) [8] 
Pulit et al. (2019) [629]  
Shungin et al. (2015) 
[632] 
Graff et al. (2017) [639] 

rs1167827 
Huntingtin 
interacting 
protein 1 

HIP1  7:75533848 
3 prime 
UTR 
 

G/A BMI 

Locke et al. (2015) [8]  
Huang et al. (2022) 
[633] 
 

rs13078960 
Cell adhesion 
molecule 2 

CADM2  3:85758440 Intronic G/T BMI Locke et al. (2015) [8] 

rs12401738 
Far upstream 
element binding 
protein 1 

FUBP1  1:77981077 Intronic A/G BMI 
Locke et al. (2015) [8] 
Winkler et al. 2015 
[634] 

rs12429545 Olfactomedin 4 OLFM4  13:53528071 Intronic A/G BMI, WC 

Akiyama et al. (2017) 
[626]  
Justice et al. (2017) 
[628]  
Shungin et al. (2015) 
[632]  



  

356 

rs16851483 
RAS p21 protein 
activator 2 

RASA2  3:141556594 Intronic T/G BMI 
Locke et al. (2015) [8] 
Pulit et al. (2019) [629] 

rs17094222 
Hypoxia inducible 
factor 1 subunit 
alpha inhibitor 

HIF1AN  10:100635683 Intergenic C/T BMI 
Locke et al. (2015) [8] 
Huang et al. (2022) 
[633] 

rs17405819 
Hepatocyte 
nuclear factor 4 
gamma 

HNF4G  8:75894349 Intergenic T/C BMI 

Hoffman et al. (2018) 
[627] 
Pulit et al. (2019) [629] 
Graff et al. (2017) [639] 

rs1928295 
Toll like receptor 
4 

TLR4  9:117616205 Intergenic T/C BMI 
Locke et al. (2015) [8]  
Koskeridis et al. (2022) 
[352] 

rs7141420 Neurexin 3 NRXN3  14:79433111 Intronic T/C BMI, obesity 
Locke et al. (2015) [8] 
Berndt et al. (2013) 
[401] 

rs205262 

Inflammation and 
lipid regulator 
with UBA-like and 
NBR1-like 
domains 

C6orf106  6:34595387 Intronic G/A BMI Locke et al. (2015) [8] 

rs2365389 
Fragile histidine 
triad diadenosine 
triphosphatase 

FHIT  3:61250788 Intronic C/T BMI 
Locke et al. (2015) [8] 
Huang et al. (2022) 
[633] 

rs2820292 
Neuron navigator 
1 

NAV1  1:201815159 Intronic C/A BMI 
Locke et al. (2015) [8] 
 

rs4256980 
Tripartite motif 
containing 66 

TRIM66  11:8652392 Intronic G/C BMI 
Locke et al. (2015) [8] 
Pulit et al. (2019) [629] 

rs7599312 
Erb-b2 receptor 
tyrosine kinase 4 

ERBB4  2:212548507 
Regulatory 
region 

G/A BMI 
Locke et al. (2015) [8] 
Tachmazidou et al. 
(2017) [623]  

rs9925964 
 Lysine 
acetyltransferase 
8 

KAT8  16:31118574  
Splice 
region  

A/G BMI 
Locke et al. (2015) [8] 
Hoffman et al. (2018) 
[627] 

SNP – single nucleotide polymorphism; GRS – genetic risk score; HDL-C – high-density lipoprotein cholesterol; LDL-C – low-density 
lipoprotein cholesterol; TG – triglycerides; TC – total cholesterol; SBP – systolic blood pressure; HbA1c – glycated haemoglobin. 
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Appendix E - Supplementary Material 

Appendix E1 - Supplementary Table S2.1 Lipid-related genes identified by genome-wide association studies 

Gene & SNP 
Lipid Trait & P-valueab Population & 

Sample Size 
Age Group 

TC HDL LDL TG 

Khushdeep et al. (2019) [94] 

CELSR2 
rs646776 

6.19×10-3    
Northern India, 

healthy 
individuals 

n=1036 

45 – 60 (Men) 
44 – 60 

(Women) 
CELSR2 

rs646776 
  4.59×10−3  

CETP 
rs3764261 

 6.291×10-12   

CETP 
rs1532624 

 5.279×10-9   

CETP 
rs1800775 

 3.968×10-10   

LPL 
rs10096633 

 0.1   

LPL 
rs12678919 

 0.2   

CETP 
rs9989419 

 1.35×10-3   

LPL 
rs4128744 

 0.03   



  

358 

Gene & SNP 
Lipid Trait & P-valueab Population & 

Sample Size 
Age Group 

TC HDL LDL TG 

CETP 
rs4783961 

 1.32×10-4   

  

ZNF259 
rs964184 

   2.99×10-6 

BUD13 
rs7350481 

   6.03×10-7 

ZNF259 
rs6589567 

   
 

1.73×10-4 

LPL 
rs10096633 

   1.09×10-6 

LPL 
rs4128744 

   9.78×10-6 

QKI 
rs9458854 

0.01    

QKI 
rs9458855 

0.01    

REEP3 
rs7083226 

9.42×10-4    

REEP3 
rs7083226 

  0.01  

TMCC2 
rs2290265 

  0.01  

FAM129C 
rs4544358 

 0.28     



  

359 

Gene & SNP 
Lipid Trait & P-valueab Population & 

Sample Size 
Age Group 

TC HDL LDL TG 

FAM241B 
rs12771265 

   4.73×10-6 

FAM241B 
rs4746882 

   2.71×10-5 

LOC100506207 
rs9393071 

   1.01×10-5 

Zhou et al. (2013) [193] 

DOCK7 
rs11207995 

3.27×10-9    
Han Chinese 

Healthy 
individuals 

n=3,451 
 

63.0 ± 8.1 
(Cohort 1) 
37.5 ± 11.1 
(Cohort 2) HMGCR 

rs10045497 
3.80×10-6    

HMGCR 
rs10045497 

  4.93×10-7  

LPL 
rs328 

   1.91×10-8 

LPL 
rs328 

 9.75×10-12   

ABO 
rs507666 

2.91×10-7    

ABO 
rs507666 

  9.25×10-8  

  
APOA1/C3/A4/A5 

rs651821 
   1.35×10-28 



  

360 

Gene & SNP 
Lipid Trait & P-valueab Population & 

Sample Size 
Age Group 

TC HDL LDL TG 

LIPC 
rs2043085 

 3.02×10-7   

TOMM40 
rs1160985 

  6.13×10-6  

CETP 
rs3764261 

 6.65×10-12   

Tekola-Ayele et al. (2015) [755] 

KSR2 
rs11610896 

   1.70×10-5 
African (Ghana 

and Nigeria) 
n=1427 

45.73 ± 16.02 

KSR2 
rs7964157 

   9.92×10-6 

KSR2 
rs11610896 

   1.14×10-5 

KSR2 
rs7964157 

   2.06×10-5 

EDEM1-GRM7 
rs1377212 

 7.20×10-6   

EDEM1-GRM7 
rs1377212 

 1.54×10-5   

  
EDEM1-GRM7 

rs1377212 
 1.71×10-5   

EDEM1-GRM7 
rs116357511 

 2.16×10-5   



  

361 

Gene & SNP 
Lipid Trait & P-valueab Population & 

Sample Size 
Age Group 

TC HDL LDL TG 

EDEM1-GRM7 
rs116357511 

 2.11×10-5   

Deek et al. (2019) [194] 

Unknown 
rs4288204 

 2.29×10-6   
Lebanese 
patients 
Patients 

undergoing 
cardiac 

catherisation: 
n=7,710 

T2D: n=775 

62.32 ± 11.01 

RORA 
rs2062091 

 6.06×10-6   

CETP 
rs3764261 

 6.70×10-7   

CYP2B6 
rs17799912 

 5.41×10-7   

Graff et al. (2017) [756] 

CD86 
rs114378860 

6.62×10-9    
 

Hispanic/Latino 
TC: n=12,731 

TG & HDL: 
n=12,730 

LDL: n=12,467 

 
18 - 74 

DNAH5 
rs183336356 

2.80×10-7    

RP1-39 J2.1; SMOC2 
rs77635931 

   2.54×10-7 



  

362 

Gene & SNP 
Lipid Trait & P-valueab Population & 

Sample Size 
Age Group 

TC HDL LDL TG 

SYNE1 
rs78768981 

 9.29×10-9   

DAGLB/GRID2IP 
rs77071750 

 1.01×10-7   

AUTS2 
rs191891263 

 2.06×10-11   

APOC3 
rs184637772 

 2.57×10-6   

DNAL1 
rs149886784 

  1.05×10-8  

Hebbar et al. (2018) [757] 

RPS6KA1 
rs1002487 

   7.17×10-11 

Arab (Kuwait) 
Healthy and 

Diabetic 
individuals 

n=1,913 

46.77 ± 13.79 

LAD1 
rs11805972 

   8.55×10-11 

OR5V1 
rs7761746 

   1.89×10-9 



  

363 

Gene & SNP 
Lipid Trait & P-valueab Population & 

Sample Size 
Age Group 

TC HDL LDL TG 

CTTNBP2, LSM8 
rs39745 

   3.63×10-9 

PGAP3 
rs2934952 

   3.17×10-9 

RP11-191L9.4, 
CERK 

rs9626773 
   1.42×10-9 

ST6GALNAC5 
rs10873925 

   4.11×10-8 

SPP2, ARL4C 
rs4663379 

   8.38×10-9 

  
NPY1R 

rs10033119 
   8.79×10-9 

LINC00911, FLRT2 
rs17709449 

   5.12×10-8 



  

364 

Gene & SNP 
Lipid Trait & P-valueab Population & 

Sample Size 
Age Group 

TC HDL LDL TG 

CDK12, NEUROD2 
rs11654954 

   2.18×10-8 

CDK12, NEUROD2 
rs11654954 

   3.75×10-8 

STARD3 
rs9972882 

   1.81×10-8 

Kathiresan et al. (2008) [95] 

CELSR2, PSRC1, 
SORT1 rs646776 

  8×10–8  
European 
(Denmark, 

Norway, 
Sweden) 
n=2,758 

Type 2 diabetic 
cases and 
controls 

61.5 ± 10.5 

Unknown 
rs599839 

  9×10-8  

CILP2, PBX4 
rs16996148 

  0.04  

APOB 
rs693 

  7×10-7  

APOE-C1-C4- C2 
rs4420638 

  3×10-13  

HMGCR 
rs12654264 

  0.0004  



  

365 

Gene & SNP 
Lipid Trait & P-valueab Population & 

Sample Size 
Age Group 

TC HDL LDL TG 

LDLR 
rs6511720 

  9×10-7  

GALNT2 
rs4846914 

 3×10-4   

ABCA1 
rs3890182 

 3×10-5   

APOA1-C3-A4-A5, 
ZNF259, BUD13 

rs28927680 
 0.31   

CETP 
rs1800775 

 3×10-13   

  

LIPC 
rs1800588 

 3×10-5   

LIPG, ACAA2 
rs2156552 

 0.02   

LPL 
rs328 

 3×10-4   

BCL7B, TBL2, 
MLXIPL rs17145738 

   0.003 

TRIB1 
rs17321515 

   7×10-4 

GALNT2 
rs4846914 

   9×10-5 



  

366 

Gene & SNP 
Lipid Trait & P-valueab Population & 

Sample Size 
Age Group 

TC HDL LDL TG 

CILP2, PBX4 
rs16996148 

   0.05 

ANGPTL3, DOCK7, 
ATG4C 

rs12130333 
   0.0006 

APOA1-C3- 
A4-A5, 

ZNF259, 
BUD13 

rs28927680 

   6x10-5 

APOB 
rs693 

   7×10-4 

  
GCKR 

rs780094 
   4×10-8 

LPL 
rs328 

   4×10-7 

Oh et al. (2020) [195] 

GCKR 
rs780092 

   4.82×10-9 

Korean 
Metabolic 

Syndrome cases 
and controls 

Cases: n=1,362 
Controls: 
n=6,061 

53.5 ± 9.5 
(Cases) 

49.9 ± 10.2 
(Controls) 



  

367 

Gene & SNP 
Lipid Trait & P-valueab Population & 

Sample Size 
Age Group 

TC HDL LDL TG 

GCKR 
rs780093 

   2.55×10-12 

  

GCKR 
rs780094 

   6.49×10-12 

GCKR 
rs1260326 

   3.89×10-12 

GCKR 
rs1260333 

   5.20×10-12 

C2orf16 
rs1919127 

   1.18×10-8 

  

C2orf16 
rs1919128 

   7.39×10-9 

APOA5 
rs662799 

   4.97×10-34 

APOA5 
rs2075291 

   3.67×10-19 

APOA5 
rs2266788 

   9.26×10-15 

ZPR1 
rs603446 

   6.24×10-9 

ZPR1 
rs964184 

   1.47×10-14 

BUD13 
rs2075295 

   4.56×10-10 



  

368 

Gene & SNP 
Lipid Trait & P-valueab Population & 

Sample Size 
Age Group 

TC HDL LDL TG 

BUD13 
rs11216126 

   1.34×10-11 

BUD13 
rs1558861 

   5.85×10-14 

APOA5 
rs662799 

 2.26×10-16   

APOA5 
rs2075291 

 9.28×10-9   

  

ALDH1A2 
rs4775041 

 2.28×10-8   

ALDH1A2 
rs10468017 

 7.27×10-8   

ALDH1A2 
rs1800588 

 5.62×10-8   

HERPUD1 
rs72786786 

 1.65×10-10   

HERPUD1 
rs173539 

 1.13×10-8   

HERPUD1 
rs247616 

 1.29×10-16   

HERPUD1 
rs247617 

 7.70×10-17   



  

369 

Gene & SNP 
Lipid Trait & P-valueab Population & 

Sample Size 
Age Group 

TC HDL LDL TG 

HERPUD1 
rs3764261 

 5.27×10-17   

HERPUD1 
rs4783961 

 9.93×10-9   

CETP 
rs708272 

 6.09×10-8   

  CETP 
rs7499892 

 1.57×10-8   

CETP 
rs2303790 

 5.31×10-11   

Zhu et al. (2017) [243] 

APOA5 
rs651821 

   7.8×10-16 
Han Chinese 

Metabolic 
Syndrome cases 

and controls 
Cases: n=862 

Controls: n=880 
 

59.9 ± 10.7 
(Cases) 

55.3 ± 12.0 
(Controls) BUD13 

rs180326 
   3.9×10-7 

TPBG||UBE2CBP 
rs209411 

 9.5×10-6   

TLE1||FLJ43950 
rs7864030 

 1.0×10-6   

APOA5 
rs651821 

 6.5×10-7   



  

370 

Gene & SNP 
Lipid Trait & P-valueab Population & 

Sample Size 
Age Group 

TC HDL LDL TG 

STRBP||CRB2 
rs10985976 

  6.2×10-6  

MYO19 
rs12602787 

  3.6×10-6  

  

CUX1 
rs420437 

  3.3×10-6  

APOC1 
rs445925 

  4.1×10-12  

APOA5 
rs651821 

   7.8×10-16 

Wu et al. (2013) [196] 

APOE 
rs7412 

  2.7×10-53  

Filipino Women 
Mothers: 
n=1,782 

Offspring: 
n=1,719 

48.4 ± 6.1 
(Mothers) 
21.5 ± 0.3 

(Offspring) 
 

APOE 
rs7412 

1.5×10-30    

  

APOA5 
rs662799 

   5.7×10-24 

GCKR 
rs780092 

   1.8×10-09 

CETP 
rs1800775 

 3.4×10-9   



  

371 

Gene & SNP 
Lipid Trait & P-valueab Population & 

Sample Size 
Age Group 

TC HDL LDL TG 

TOM1 
rs138777 

 4.0×10-5   

  

LPL 
rs328 

   1.6×10-3 

MLXIPL 
rs17145738 

   4.2×10-3 

ANGPTL3 
rs2131925 

   5.1×10-3 

LIPC 
rs588136 

 1.5×10-12   

LIPG 
rs2156552 

 4.6×10-3   

MMAB-MVK 
rs10774708 

 0.011   

ABO 
rs2519093 

  3.0×10-5  

APOB 
rs1367117 

  7.4×10-3  

TIMD4 
rs6882076 

4.0×10-3    

DNAH11 
rs5008148 

0.012    

Chasman et al. (2009) [339] 



  

372 

Gene & SNP 
Lipid Trait & P-valueab Population & 

Sample Size 
Age Group 

TC HDL LDL TG 

PCSK9 
rs11591147 

  
1.6×10-7 

 
 

White American 
Women: n=6,382 

52 (49–58) 

CELSR2, PSRC1, 
SORT1 

rs646776 
  4.9×10-19  

APOB 
rs506585 

  9.3×10-09  

GCKR 
rs1260326 

   1.3×10-16 

LPL 
rs328 

   4.7×10-11 

LPL 
rs331 

 9.1×10-7  1.7×10-9 

APOA5-APOA1 
rs3135506 

   5.5×10-12 

APOA5-APOA1 
rs662799 

   2.9×10-15 

APOA5-APOA1 
rs12225230 

 5.3×10-5   

LIPC 
rs1532085 

 1.3×10-10   

Keller et al. (2013) [758] 



  

373 

Gene & SNP 
Lipid Trait & P-valueab Population & 

Sample Size 
Age Group 

TC HDL LDL TG 

TMPRSS2 
rs2298857 

 3.85×10-7   
Eastern Germany 

(The Sorbs) 
n=839 

46 ± 16 

SSTR1 
rs1954021 

 7.39×10-6   

FRMD1 
rs3816859 

 8.79×10-6   

SOX6 
rs297360 

 9.02×10-6   

Unknown 
rs7081043 

 9.68×10-6   

ABHB5 
rs883212 

  4.80×10-7  

MIST 
rs10488946 

  1.78×10-6  

HTR5A 
rs1730206 

  2.91×10-6  

FAM112A 
rs3127065 

  3.03×10-6  

ABHB5 
rs17583742 

  3.08×10-6  

  
TNFSF4 

rs10127728 
  6.41×10-6  



  

374 

Gene & SNP 
Lipid Trait & P-valueab Population & 

Sample Size 
Age Group 

TC HDL LDL TG 

PCSK5 
rs10869740 

   1.86×10-6 

REPS1 
rs9484217 

   4.66×10-6 

C6ORF166 
rs4707385 

   4.93×10-6 

Waterworth et al. (2010)c [197] 

PCSK9 
rs11206510 

 0.52 1.2×10−10 0.04 

White European 
(British, Swedish, 

Finnish and 
Italian) 

n=17,543 

31d (0.0) – 75d 
(5.0) 

CELSR2 
rs660240 

 0.22 1.2×10−26 0.56 

  
APOB 

rs515135 
 0.47 2.4×10−20 0.25 

HMGCR 
rs12916 

 0.80 1.4×10−11 0.64 

  
TRIB1 

rs2954021 
 1.3×10−4 1.4×10−7 6.3×10−11 

BUD13, ZNF259, 
APOA5-A4-C3-A1 

rs1558861 
 

1.7×10−7 
 

2.0×10−6 2.0×10−30 



  

375 

Gene & SNP 
Lipid Trait & P-valueab Population & 

Sample Size 
Age Group 

TC HDL LDL TG 

LDLR 
rs2738459 

 0.34 6.6×10−6 0.31 

SF4–CILP2 
rs10401969 

 0.26 9.5×10−12 8.4×10−14 

APOE-C1-C4-C2 
rs4420638 

 2.0×10−7 1.7×10−40 5.5×10−7 

GALNT2 
rs10489615 

 3.8×10−9 
 

0.25 
2.4×10−4 

APOB 
rs11902417 

 3.7×10−7 4.0×10−3 2.7×10−7 

LPL 
rs325 

 7.8×10−25 0.34 4.9×10−24 

ABCA1 
rs3890182 

 4.7 × 10−7 0.43 0.16 

ZNF259, APOA5-A4-
C3-A1 

rs964184 
 1.6 × 10−11 

6.4 × 10−6 
 

9.0 × 10−53 

  

MYO1H, KCTD10, 
UBE3B, MMAB, MVK 

rs9943753 
 3.2×10−6 0.20 0.51 

LIPC 
rs261334 

 4.9×10−22 0.65 0.01 

CETP 
rs9989419 

 1.3×10−32 0.58 0.67 



  

376 

Gene & SNP 
Lipid Trait & P-valueab Population & 

Sample Size 
Age Group 

TC HDL LDL TG 

GFOD2–LCAT 
rs12449157 

 2.3×10−7 0.31 0.02 

LIPG 
rs2156552 

 1.7×10−12 0.01 0.02 

DOCK7, ANGPTL3 
rs1168013 

 0.97 
6.7 × 10−3 

 
6.4×10−8 

APOB 
rs6544366 

 5.3×10−7 3.8 × 10−3 1.9×10−7 

GCKR 
rs1260333 

 0.08 0.36 1.7×10−19 

BAZ1B, BCL7B, TBL2, 
MLXIPL 

rs1178979 
 

8.0 × 10−3 
 

2.5 × 10−3 2.3×10−12 

LPL 
rs10105606 

 
1.7×10−14 

 
0.94 

 
3.6×10−25 

  
TRIB1 

rs2954029 
 

 
4.5×10−5 

9.2×10−7 1.8×10−11 

BUD13, ZNF259, 
APOA5-A4-C3-A1 

rs4938303 
 9.6×10−8 0.02 4.1×10−21 



  

377 

Gene & SNP 
Lipid Trait & P-valueab Population & 

Sample Size 
Age Group 

TC HDL LDL TG 

CETP, 
LOC100130044, 

NLRC5 
rs16965220 

 
 

0.04 
0.01 9.6×10−6 

CILP2–ZNF101 
rs2304130 

 0.55 1.1×10−7 3.9×10−8 

Dumitrescu et al. (2011) [759] 

SGSM2 
rs2429917 

  7.01×10-06  
African 

n=66 
 

7.2 ± 4 
 

Intergenic 
rs12190789 

  3.32×10-06  

CD96 
rs16858329 

   4.29×10-06 

Intergenic 
rs6477578 

   6.13×10-06 
European 

n=282 
7.0 ± 5 

 

FRMD3 
rs10868008 

  1.66×10-06  
Mexican 

n=63 
6.4 ± 4 

FRMD3 
rs11140077 

  1.66×10-06  

Hiura et al. (2009) [96] 

CETP 
rs3764261 

 6.17e   
Japanese 

n=900 
59.8 ± 7.3 

(Men) 



  

378 

Gene & SNP 
Lipid Trait & P-valueab Population & 

Sample Size 
Age Group 

TC HDL LDL TG 

Unknown 
rs10945991 

 5.90e   
58.2 ± 6.8 
(Women) 

ZNF665 
rs6509732 

 5.50e   

SLC23A2 
rs6133175 

 4.98e   

FLJ45139 
rs467571 

 4.97e   

Unknown 
rs10485472 

 4.90e   

Unknown 
rs1469918 

 4.82e   

Unknown 
rs6790597 

 4.78e   

  

Unknown 
rs12225506 

 4.72e   

BCL2L14 
rs1544669 

 4.70e   

Unknown 
rs12206635 

 4.64e   

C14orf118 
rs2246454 

 4.62e   

Unknown 
rs980861 

 4.58e   



  

379 

Gene & SNP 
Lipid Trait & P-valueab Population & 

Sample Size 
Age Group 

TC HDL LDL TG 

RAP1GAP 
rs12134357 

 4.49e   

TMEM200A 
rs17059002 

 4.45e   

PSMB6, PLD2 
rs11654690 

 4.44e   

CCT8L2 
rs2236639 

 4.42e   

ACCN1 
rs280049 

 4.34e   

ESRRG 
rs7547186 

 4.31e   

  

Unknown 
rs7550051 

 4.31e   

Unknown 
rs4656747 

 4.30e   

ADARB2 
rs2813397 

 4.29e   

Unknown 
rs12586473 

 4.27e   

SLC23A2 
rs3914810 

 4.27e   

Unknown 
rs10493889 

 4.24e   



  

380 

Gene & SNP 
Lipid Trait & P-valueab Population & 

Sample Size 
Age Group 

TC HDL LDL TG 

Unknown 
rs9956878 

 4.17e   

CLASP1 
rs10496565 

 4.14e   

TMC2 
rs4815298 

 4.13e   

Unknown 
rs6990139 

 4.13e   

  

GABRR1 
rs9359845 

 4.12e   

UGT3A1 
rs2242225 

 4.11e   

TAF1B 
rs450286 

 4.04e   

Unknown 
rs12453139 

 4.04e   

Unknown 
rs4404877 

 4.01e   

Smith et al. (2010) [198] 



  

381 

Gene & SNP 
Lipid Trait & P-valueab Population & 

Sample Size 
Age Group 

TC HDL LDL TG 

HERPUD1/CETP 
rs247616 

 6.6×10-7   
Individuals of 

European 
ancestry in the 

USA 
n=525 

4 – 48 

MRPS6/KCNE2 
rs8131349 

  1.4×10-8  

APOE/APOC1 
rs7412 

  1.6×10-8  

C6orf170/GJA1 
rs7738656 

  2.5×10-7  

  

KIF4B/SGCD 
rs10044666 

  4.7×10-7  

MRPS6/KCNE2 
rs8131349 

4.6×10-8    

ABLIM2 
rs6829649 

9.6×10-8    

C6orf170/GJA1 
rs7738656 

2.1×10-7    

ST3GAL1/ZFAT 
rs4897695 

2.7×10-7    

Tan et al. (2012) [209] 

RYR2 
rs16835705 

1.15×10-6    

Chinese Men 
n=1,999 

37.54 ± 11.10 



  

382 

Gene & SNP 
Lipid Trait & P-valueab Population & 

Sample Size 
Age Group 

TC HDL LDL TG 

LPL 
rs328 

4.90×10-8    

SLCO5A1 
rs10504457 

1.05×10-6    

  

APOA5 
rs651821 

6.10×10-15    

ALDH2 
rs671 

4.85×10-6    

Intergenic 
rs1532085 

1.01×10-6    

TOMM40 
rs157581 

8.48×10-7    

Zabaneh et al. (2010) [199] 

CETP 
rs3764261 

 1.3×10-48   
Men of Indian 
Asian descent 

from West 
London 
n=2,684 

50.0 ± 11.0 

CETP 
rs9989419 

 1.4×10-20   

LPL 
rs2083637 

 1.9×10-10   



  

383 

Gene & SNP 
Lipid Trait & P-valueab Population & 

Sample Size 
Age Group 

TC HDL LDL TG 

LPL 
rs4523270 

 1.0×10-07   

  

FLJ41733 
rs496300 

 3.9×10-07   

FADS1 
rs174546 

 6.0×10-07   

FADS2 
rs1535 

 6.5×10-07   

Lettre et al. (2011)c [97] 

GALNT2 
rs2144300 

 0.0015   African American 
n=8,090 

 

24.4d ± 3.8 –  
73.4d ± 2.9 

 PPP1R3B 
rs9987289 

 4.3×10-5   

LPL 
rs10503669 

 7.2×10-5   

  

Unknown 
rs10096633 

 1.5×10-9   

ABCA1 
rs3905000 

 0.054   

Unknown 
rs13284054 

 0.0011   



  

384 

Gene & SNP 
Lipid Trait & P-valueab Population & 

Sample Size 
Age Group 

TC HDL LDL TG 

FADS1, FADS2, 
FADS3 

rs174547 
 0.068   

  

Unknown 
rs1535 

 6.7×10-5   

LIPC 
rs1800588 

 1.5×10-8   

Unknown 
rs8034802 

 1.3×10-9   

CETP 
rs3764261 

 8.6×10-18   

Unknown 
rs247617 

 1.2×10-43   

LCAT 
rs255052 

 6.6×10-11   

PLTP 
rs7679 

 0.22   

Unknown 
rs6065904 

 7.4×10-5   

DOCK7 
rs10889353 

  0.0040  

Unknown 
rs10889335 

  1.2×10-4  



  

385 

Gene & SNP 
Lipid Trait & P-valueab Population & 

Sample Size 
Age Group 

TC HDL LDL TG 

CELSR2, PSRC1, 
SORT1 

rs12740374 
  1.3×10-16  

  

PCSK9 
rs10493178 

  4.7×10-12  

APOB 
rs562338 

  3.1×10-7  

Unknown 
rs503662 

  2.5×10-9  

LDLR 
rs6511720 

  7.2×10-8  

APOE, APOC1, 
APOC4, APOC2 

rs1160985 
  7.2×10-21  

Carlson et al. (2020) [200] 

APOB 
rs754523 

6.25×10-6    
Samoans 
n=2,849 

44.8 ± 11.1 
(Women) 

45.6 ± 11.1 
(Men) 

 

PDE4D 
rs7711093 

3.01×10-6    

LUCAT1 
rs10072084 

9.48×10-6    

FILIP1 
rs2951921 

9.04×10-7      



  

386 

Gene & SNP 
Lipid Trait & P-valueab Population & 

Sample Size 
Age Group 

TC HDL LDL TG 

ZHX2 
rs7841763 

4.82×10-6    

APOA1 
rs964184 

5.37×10-5    

SIRT2 
rs10405150 

6.34×10-6    

ZNF283 
rs16976816 

9.78×10-6    

APOE 
rs1160985 

2.13×10-13    

STON1-GTF2A1L 
rs6739536 

 1.58×10-6   

MGAT1 
rs1038143 

 3.72×10-6   

AKAP7 
rs3777486 

 3.09×10-6   

CSMD1 
rs1626142 

 7.67×10-6   

RAB21 
rs328733 

 2.57×10-6   

ZNF10 
rs2292029 

 4.05×10-6   

  
HS6ST3 

rs16953620 
 8.48×10-6   
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Gene & SNP 
Lipid Trait & P-valueab Population & 

Sample Size 
Age Group 

TC HDL LDL TG 

LIPC 
rs10438284 

 4.00×10-7   

CETP 
rs289708 

 1.19×10-11   

LIPG 
rs16950739 

 1.07×10-7   

APOE 
rs1160985 

 0.003   

CDH4 
rs817687 

 2.31×10-6   

APOB 
rs754523 

  3.25×10-6  

KALRN 
rs6789134 

  3.22×10-6  

ZHX2 
rs7841763 

  1.80×10-6  

SH2D4B 
rs10509415 

  7.96×10-6  

ALG10 
rs3912355 

  2.12×10-6  

  
ALG10B 

rs10880642 
  5.56×10-6  

CPNE8 
rs11169807 

  4.77×10-6  



  

388 

Gene & SNP 
Lipid Trait & P-valueab Population & 

Sample Size 
Age Group 

TC HDL LDL TG 

LINC02408 
rs17104016 

  9.29×10-6  

LINC00922 
rs254371 

9.04×10-6    

ZNF283 
rs16976816 

1.78×10-6    

APOE 
rs1160985 

2.61×10-20    

GCKR 
rs780094 

   9.84×10-7 

CD200 
rs2399416 

   5.12×10-6 

SPIN1 
rs7861888 

   4.24×10-6 

APOA1 
rs964184 

   2.37×10-17 

KIRREL3 
rs3018434 

   4.16×10-6 

  
APOE 

rs1160985a 
   0.312 

Kurano et al. (2016) [201] 

CELSR2 
rs660240 

  4.56×10-5  
Japanese, healthy 

individuals 
20 – Over 40 



  

389 

Gene & SNP 
Lipid Trait & P-valueab Population & 

Sample Size 
Age Group 

TC HDL LDL TG 

n=2,994 

CELSR2 
rs646776 

  4.93×10-5  

  

CELSR2 
rs629301 

  3.22×10-5  

PSRC1 
rs599839 

  7.86×10-5  

CELSR2 
rs629301 

  3.22×10-5  

APOB 
rs1367117 

  3.19×10-2  

HMGCR 
rs12916 

  1.19×10-4  

HMGCR 
rs3846662 

  1.10×10-4  

HMGCR 
rs12916 

  1.19×10-4  

  

TIMD4-HAVCR1 
rs58198139 

  2.25×10-4  

TIMD4 
rs6882076 

  2.86×10-4  

HPR 
rs2000999 

  9.65×10-3  



  

390 

Gene & SNP 
Lipid Trait & P-valueab Population & 

Sample Size 
Age Group 

TC HDL LDL TG 

TOMM40 
rs1160985 

  2.69×10-6  

APOC1 
rs4420638 

  1.39×10-5  

PABPC4 
rs4660293 

 4.24×10-2   

LOC100130996 
rs1779824 

 2.45×10-2   

GALNT2 
rs2144300 

 1.69×10-2   

LPL 
rs327 

 2.58×10-4   

LPL 
rs328 

 6.47×10-7   

LPL-RPL30P9 
rs17482753 

 1.33×10-6   

  

LPL 
rs328 

 6.47×10-7   

ABCA1 
rs12686004 

 3.05×10-2   

ABCA1 
rs1883025 

 5.33×10-3   

FADS1 
rs174548 

 6.81×10-3   
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Gene & SNP 
Lipid Trait & P-valueab Population & 

Sample Size 
Age Group 

TC HDL LDL TG 

FADS1 
rs174547 

 6.86×10-3   

FADS1 
rs174546 

 9.05×10-3   

MMAB 
rs7134594 

 1.38×10-2   

NCOR2-SCARB1 
rs838880 

 1.10×10-3   

LIPC 
rs1800588 

 2.14×10-4   

RPL28P4-LIPC 
rs1532085 

 7.30×10-4   

LIPC 
rs1800588 

 2.14×10-4   

  

CETP 
rs12708980 

 4.79×10-3   

HERPUD1-CETP 
rs9989419 

 1.12×10-6   

HERPUD1-CETP 
rs3764261 

 1.18×10-16   

CETP 
rs1800775 

 1.01×10-2   

NUTF2 
rs2271293 

 4.76×10-2   
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Gene & SNP 
Lipid Trait & P-valueab Population & 

Sample Size 
Age Group 

TC HDL LDL TG 

PSKH1 
rs16942887 

 4.98×10-2   

HNF4A 
rs1800961 

 6.83×10-3   

DOCK7 
rs1748195 

   0.001273 

GCKR 
rs780092 

   0.01145 

GCKR 
rs1260326 

   0.00072 

GCKR 
rs780094 

   0.003526 

  

TIMD4 
rs6882076 

   0.002649 

TBL2 
rs17145738 

   0.000647 

TBL2 
rs2286276 

   0.000277 

LPL 
rs327 

   2.81×10-8 

LPL-RPL30P9 
rs17410996 

   1.75×10-8 

LPL-RPL30P9 
rs17410996 

   1.75×10-8 



  

393 

Gene & SNP 
Lipid Trait & P-valueab Population & 

Sample Size 
Age Group 

TC HDL LDL TG 

LPL-RPL30P9 
rs10105606 

   2.24×10-7 

LPL-RPL30P9 
rs7841189 

   1.75×10-8 

LPL-RPL30P9 
rs17482753 

   2.26×10-8 

LPL 
rs328 

   4.47×10-8 

  

XKR6 
rs7819412 

   0.01766 

TRIB1-LINC00861 
rs17321515 

   0.0137 

SIK3 
rs2075292 

   8.80×10-7 

APOA5 
rs651821 

   1.01×10-30 

RPL15P15, BUD13 
rs4938303 

   0.01347 

Coram et al (2013) [202] 



  

394 

Gene & SNP 
Lipid Trait & P-valueab Population & 

Sample Size 
Age Group 

TC HDL LDL TG 

PCSK9 
rs17111684 

  2.40×10-17  
African American 

Women 
HDL: n=7,917 
LDL: n=7,861 
TG: n=7,918 

50–79 

APOB 
rs12713956 

  
 

3.74×10-08 
 

GCKR 
rs4665972c 

   1.05×10-08 

ABCG8 
rs4245791 

  1.24×10-09  

  

CD36 
rs2366858 

 5.59×10-10   

PPP1R3B 
rs1461729 

 7.39×10-09   

LPL 
rs326 

 1.23×10-08   

LPL 
rs326 

   1.02×10-08 

APOA/APOC 
rs6589566 

   4.99×10-14 

APOA/APOC  
chr11: 116,799,496 

 1.08×10-12   

CETP 
rs247617 

 1.48×10-44   

LDLR 
rs17249141 

  2.43×10-17  
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Gene & SNP 
Lipid Trait & P-valueab Population & 

Sample Size 
Age Group 

TC HDL LDL TG 

LOC55908 
rs12979813 

 
 

1.99×10-09 
  

APOE 
rs1160985 

  
 

1.87×10-21 
 

APOC1 
rs12721054 

   2.86×10-19 

  
PPP1R3B 

rs1461729 
 7.39×10-09   

Unknown 
rs13046373 

 
 

2.26×10-08 
  

GCKR 
rs780094 

   7.35×10-09 
Hispanic 
American 
Women 

n=3,506 (HDL) 
n=3,425 (LDL) 

n=3,506 (TG 

50–79 

LPL 
rs17410962 

   
 

7.35×10-09 

APOA/APOC 
rs964184 

 2.81×10-12   

APOA/APOC 
rs964184 

   3.66×10-33 

CETP 
rs247617 

 3.48×10-16   

Aulchenko et al. (2008)c [203] 

TMEM57 
rs10903129 

5.4×10-10 0.02 
1.8×10-5 

 
0.48 

Different 
European 

18–104 
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Gene & SNP 
Lipid Trait & P-valueab Population & 

Sample Size 
Age Group 

TC HDL LDL TG 

countries 
including Austria 

and Finland 
n=17,797–

22,562 

DOCK7 
rs1167998 

6.4×10-10 3.8×10-3 1.1×10-5 2.0×10-12 

  

DOCK7 
rs10889353 

3.7×10-12 1.8×10-3 7.9×10-6 8.2×10-11 

CELSR2 
rs646776 

8.5×10-22 6.2×10-3 7.8×10-23 0.63 

APOB 
rs693 

8.7×10-23 1.3×10-7 3.6×10-17 1.4×10-4 

APOB 
rs6754295 

1.8×10-6 4.4×10-8 1.6×10-7 2.5×10-8 

APOB 
rs673548 

7.4×10-05 7.4×10-7 3.6×10-5 1.1×10-8 

GCKR 
rs780094 

0.02 0.12 0.85 3.1×10-20 

ABCG5 
rs6756629 

1.5×10-11 0.74 2.6×10-10 0.26 

HMGCR 
rs3846662 

2.5×10-19 
0.57 

 
1.5×10-11 0.03 

DNAH11 
rs12670798 

9.2×10-7 0.14 6.1×10-9 0.68 



  

397 

Gene & SNP 
Lipid Trait & P-valueab Population & 

Sample Size 
Age Group 

TC HDL LDL TG 

MLXIPL 
rs2240466 

0.80 0.02 0.44 1.1×10-12 

LPL 
rs2083637 

0.73 5.5×10-18 0.76 1.0×10-14 

  

LPL 
rs10096633 

0.91 
6.1×10-16 

 
0.53 1.9×10-18 

TRIB1 
rs6987702 

3.3×10-9 0.44 2.9×10-6 5.2×10-5 

ABCA1 
rs3905000 

5.0×10-5 8.6×10-13 0.90 0.20 

MADD-FOLH1 
rs7395662 

0.63 6.0×10-11 0.31 0.54 

FADS2/3 
rs174570 

1.5×10-10 3.9×10-6 4.4×10-13 2.9×10-5 

APO(A1/A4/A5/C3) 
rs12272004 

7.3×10-7 0.01 9.9×10-4 5.4×10-13 

LIPC 
rs1532085 

3.7×10-7 9.7×10-36 0.60 0.33 

CETP 
rs1532624 

0.01 9.4×10-94 3.3×10-3 1.1×10-3 

CTCF-PRMT8 
rs2271293 

0.14 8.3×10-16 
0.33 

 
0.04 

LIPG 
rs4939883 

2.4×10-7 1.6×10-11 0.06 0.11 
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Gene & SNP 
Lipid Trait & P-valueab Population & 

Sample Size 
Age Group 

TC HDL LDL TG 

LDLR 
rs2228671 

9.3×10-24 0.54 4.2×10-14 0.59 

  

NCAN 
rs2304130 

2.0×10-15 0.75 1.5×10-7 2.9×10-6 

TOMM40-APOE 
rs2075650 

2.9×10-19 1.9×10-4 9.3×10-19 2.4×10-4 

TOMM40-APOE 
rs157580 

5.1×10-17 3.6×10-7 2.1×10-19 1.2×10-8 

TOMM40-APOE 
rs439401 

3.7×10-4 2.7×10-3 1.1×10-2 1.8×10-9 

Adeyemo et al (2012) [204] 

CILP2/SF4 
rs10401969 

   0.006 
African 

Americans non-
diabetic 
n=887 

45.5 ± 12.4 
(Men) 

46.4 ± 13.3 
(Women) STARD3 

rs11869286 
 0.02   

LPL 
rs12678919 

 
 

  
 

0.01 

CYP7A1 
rs2081687 

 
 

 
 

0.04 
 

ANGPTL3 
rs2131925 

 
0.04 

   

APOE 
rs4420638 

 0.02     



  

399 

Gene & SNP 
Lipid Trait & P-valueab Population & 

Sample Size 
Age Group 

TC HDL LDL TG 

SORT1 
rs629301 

  0.005  

IRS1 
rs2943652 

 0.01   

CETP 
rs173539 

 
 

0.0003 
  

CETP 
rs1800775 

 
 

0.03 
  

CETP 
rs4783961 

 
 

0.0009 
  

UBASH3B 
rs6589939 

0.005    

Hoffmann et al (2018) [9] 

FAF1 
rs144432213 

   6.1×10-9 
Non-Hispanic 

white 
Latino 

East Asian 
African American 

South Asian 
n=94, 674 

45.2 – 57.8 

NFIA 
rs55878063 

 1.5×10-8   

DR1 
rs145882729 

 6.1×10-10   

PIGC 
rs7519429 

   1.4×10-10 

  
LAMC1 

rs4651135 
1.2×10-8  h  



  

400 

Gene & SNP 
Lipid Trait & P-valueab Population & 

Sample Size 
Age Group 

TC HDL LDL TG 

OPTC 
rs6695980 

   2.8×10-8 

RP11-95P13.1 
rs2791547 

   3.1×10-10 

TIA1 
rs2706770 

1.1×10-8    

TGOLN2 
rs10198423 

 5.1×10-9   

AC096670.3 
rs77004761 

   6.7 ×10-10 

TIA1 
rs2706770 

1.1×10-8    

TGOLN2 
rs10198423 

 5.1×10-9   

AC096670.3 
rs77004761 

   6.7 ×10-10 

IL1RN 
rs55709272 

1.8 × 10-8    

KPNA1 
rs72285796 

  4.3 ×10-12  

  
RP11-550I24.2 

rs78086267 
   1.8×10-8 

ETV5 
rs112545201 

 2.5×10-19   



  

401 

Gene & SNP 
Lipid Trait & P-valueab Population & 

Sample Size 
Age Group 

TC HDL LDL TG 

TMPRSS11E 
rs13114070 

1.6×10-8    

TET2 
rs201330646 

 2.2×10-9   

FCHO2 
rs62362194 

 4.2×10-8   

C5orf56 
rs2522061 

  4.4×10-11  

RP11-32D16.1 
rs1651274 

 3×10-9   

GNMT 
rs10948059 

 8.1×10-9   

GSTA5 
rs12529923 

 1.4×10-8   

RP3-332B22.1 
rs181937009 

   1.7×10-9 

RGS17 
rs1281955 

 2.2×10-8   

  

TRGC2 
rs2534596 

 2.1×10-8   

CALCR 
rs2299247 

   1.3×10-9 

SH2D4A 
rs2958557 

   2.6×10-8 



  

402 

Gene & SNP 
Lipid Trait & P-valueab Population & 

Sample Size 
Age Group 

TC HDL LDL TG 

SNTB1 
rs13248499 

 1.4×10-11   

DENND4C 
rs202246180 

3.1×10-8    

DFNB31 
rs74551598 

1.6×10-8    

OIT3 
rs57176252 

  1.2×10-8  

RP11-159H3.2 
rs7079858 

 4.9×10-8   

NAP1L4 
rs7935422 

 1.5×10-8   

TRIM5 
rs11601507 

  6.6×10-9  

MACROD1 
rs11231698 

   5.9×10-9   

Sabatti et al (2009) [205] 

APOB 
rs673548 

   2.01×10-8 
Northern Finland 

Birth Cohort 
n=4,763 

31 

GCKR 
rs1260326 

   3.56×10-10 

LPL 
rs10096633 

   5.16×10-8 



  

403 

Gene & SNP 
Lipid Trait & P-valueab Population & 

Sample Size 
Age Group 

TC HDL LDL TG 

Unknown 
rs2624265 

   4.31×10-7 

NR1H3 
rs2167079 

 5.13×10-8   

NR1H3 
rs7120118 

 3.57×10-8   

LIPC 
rs1532085 

 1.77×10-10   

CETP 
rs3764261 

 6.97×10-29   

LCAT 
rs255049 

 3.06×10-8   

Unknown 
rs9891572 

 2.33×10-7   

  

CELSR2-PSRC1 
SORT1 

rs646776 
  2.19×10-12  

CR1L 
rs4844614 

  2.38×10-7  

APOB 
rs693 

  2.99×10-11  

FADS1-FADS2 
rs174537 

  2.10×10-7  



  

404 

Gene & SNP 
Lipid Trait & P-valueab Population & 

Sample Size 
Age Group 

TC HDL LDL TG 

FADS1-FADS2 
rs102275 

  1.52×10-7  

FADS1-FADS2 
rs174546 

  1.30×10-7  

FADS1-FADS2 
rs174556 

  3.49×10-7  

FADS1-FADS2 
rs1535 

  3.65×10-7  

LDLR 
rs11668477 

  1.51×10-7  

APO cluster 
rs157580 

  4.96×10-8  

AR 
rs5031002 

  2.37×10-7  

  

ANGPTL3-DOCK7-
ATG4C 

rs1167998 
   1.60×10-4 

ANGPTL3-DOCK7-
ATG4C 

rs12130333 
   3.60×10-3 

GALNT2 
rs4846914 

   2.80×10-1 

APOB 
rs693 

   3.40×10-3 



  

405 

Gene & SNP 
Lipid Trait & P-valueab Population & 

Sample Size 
Age Group 

TC HDL LDL TG 

GCKR 
rs780094 

   5.03×10-9 

BCL7B-TBL2-MLXIPL 
rs17145738 

   2.70×10-5 

LPL 
rs328 

   4.50×10-8 

TRIB1 
rs6982636 

   1.43×10-2 

APOA1/C3/A4/A5, 
ZNF259, BUD13 

rs12292921 
   1.35×10-3 

LIPC 
rs4775041 

   5.85×10-1 

  

NCAN-CILP2-PBX4 
rs16996148 

   8.40×10-1 

GALNT2 
rs4846914 

 5.60×10-4   

LPL 
rs328 

 7.18×10-6   

ABCA1 
rs2740491 

 3.12×10-4   

ABCA1 
rs3847303 

 3.22×10-3   



  

406 

Gene & SNP 
Lipid Trait & P-valueab Population & 

Sample Size 
Age Group 

TC HDL LDL TG 

APOA1/C3/A4/A5, 
ZNF259, BUD13 

rs28927680 
 Not given   

MVK-MMAB 
rs2338104 

 4.40×10-2   

LIPC 
rs4775041 

 1.70×10-2   

LIPC 
rs1800588 

 4.11×10-3   

CETP 
rs3764261 

 6.97×10-29   

CETP 
rs1800775 

 1.32×10-9   

  

LCAT 
rs255052 

 2.36×10-7   

LIPG-ACAA2 
rs2156552 

 1.15×10-2   

PCSK9 
rs12117661 

  1.95×10-12  

CELSR2-PSRC1- 
SORT1 

rs646776 
  2.19×10-12  

APOB 
rs693 

  2.99×10-11  



  

407 

Gene & SNP 
Lipid Trait & P-valueab Population & 

Sample Size 
Age Group 

TC HDL LDL TG 

APOB 
rs562338 

  1.97×10-7  

HMGCR 
rs12654264 

  2.63×10-5  

B3GALT4 
rs2254287 

  6.98×10-1  

LDLR 
rs6511720 

  1.48×10-9  

NCAN-CILP2-PBX4 
rs16996148 

  8.20×10-1  

APO cluster 
rs2075650 

  1.05×10-5    

Heid et al. (2008) [206] 

CETP 
rs1800775 

 6.05×10-15   
German 
n=1643 

33 – 93 

PRICKLX10 
rs17569297 

 1.51×10-6   

CETP 
rs9989419 

 1.86×10-6   

PRICKLX10 
rs10506210 

 2.22×10-6   

UBXD2 
rs16831992 

 2.44×10-6   



  

408 

Gene & SNP 
Lipid Trait & P-valueab Population & 

Sample Size 
Age Group 

TC HDL LDL TG 

CACNA2D4 
rs11062008 

 3.73×10-6   

SORCS2 
rs734526 

 5.34×10-6   

SHB 
rs10973646 

 6.32×10-6   

PBX1 
rs4657374 

 1.04×10-5   

DKFZP434C171 
rs248426 

 1.06×10-5   

  

ENST00000277244 
rs1970528 

 1.08×10-5   

NUP160 
rs6485788 

 1.22×10-5   

EDARADD 
rs600988 

 1.29×10-5   

EDARADD 
rs660351 

 1.41×10-5   

ITGB8 
rs11973964 

 1.59×-5   

EDARADD 
rs585537 

 1.63×-5   

SCARB1 
rs12831105 

 1.72×-5   



  

409 

Gene & SNP 
Lipid Trait & P-valueab Population & 

Sample Size 
Age Group 

TC HDL LDL TG 

DGKH 
rs10492434 

 1.97×-5   

ITGB8 
rs6973059 

 2.21×-5   

ITGKB 
rs3768371 

 2.22×-5   

NCAM1 
rs7111410 

 2.31×10-5   

  

LPL 
rs17482753 

 2.71×10-5   

FZD10 
rs1532724 

 2.83×10-5   

ENST00000357331 
rs2526100 

 3.03×10-5   

NCAM1 
rs4936266 

 3.13×10-5   

EDARADD 
rs2463198 

 3.22×10-5   

SYNE1 
rs11752725 

 3.26×10-5   

CTNNA2 
rs1861700 

 3.56×10-5   

LPL 
rs1919484 

 3.79×10-5   



  

410 

Gene & SNP 
Lipid Trait & P-valueab Population & 

Sample Size 
Age Group 

TC HDL LDL TG 

PBX1 
rs3767364 

 3.83×10-5   

ITGB8 
rs6954502 

 3.91×10-5   

TNNI3 
rs2288529 

 4.58×10-5   

  

CNDP1 
rs12961730 

 4.62×10-5   

SCARB1 
rs11615630 

 4.79×10-5   

NCAM1 
rs2846915 

 5.37×10-5   

ENST00000357331 
rs12699252 

 5.39×10-5   

LPL 
rs7461111 

 5.60×10-5   

ITGB8 
rs17365098 

 5.80×10-5   

PARVG 
rs139265 

 5.89×10-5   

TYRP1 
rs7863023 

 5.97×10-5   

NFYA 
rs7760860 

 6.07×10-5   



  

411 

Gene & SNP 
Lipid Trait & P-valueab Population & 

Sample Size 
Age Group 

TC HDL LDL TG 

LPL 
rs17411024 

 6.66×10-5   

NRXN3 
rs766024 

 7.03×10-5   

  

SORCS2 
rs16840358 

 7.45×10-5   

LOC387882 
rs11112741 

 7.89×10-5   

C14orf147 
rs10130824 

 8.03×10-5   

LPL 
rs1837842 

 8.55×10-5   

CRYBA4 
rs5761635 

 9.04×10-5   

CDKL2 
rs6851864 

 9.12×10-5   

ENST00000078131 
rs2478884 

 9.12×10-5   

PBX1 
rs3767368 

 9.37×10-5   

CNDP1 
rs9319909 

 9.59×10-5   

SHB 
rs943938 

 
9.61×10-5 

 
  



  

412 

Gene & SNP 
Lipid Trait & P-valueab Population & 

Sample Size 
Age Group 

TC HDL LDL TG 

SYT5 
rs12461195 

 9.94×10-5   

  

LPL 
rs17411126 

 1.67×10-4   

LPL 
rs17489268 

 2.01×10-4   

LPL 
rs271 

 2.30×10-4   

LPL 
rs10503669 

 2.58×10-4   

LPL 
rs17411031 

 3.07×10-4   

LIPG 
rs7240405 

 3.19×10-4   

LIPG 
rs2156552 

 3.71×10-4   

LIPG 
rs1943981 

 4.41×10-4   

LIPG  
rs4939883 

 8.45×10-4   

Saxena et al. (2007)c [92] 



  

413 

Gene & SNP 
Lipid Trait & P-valueab Population & 

Sample Size 
Age Group 

TC HDL LDL TG 

GCKR 
rs780094 

   3.7×10−8 
Finnish and 

Swedish 
T2D: n=1,464 

Controls: 
n=1,467 

Not given 

GCKR 
rs780094 

   8.7×10−8 

APOE cluster 
rs4420638 

  3.4×10−13  

APOB 
rs693 

  7.1×10−7  

CETP 
rs1800775 

 2.5×10−13   

LPL 
rs17482753 

 3.6×10−5   

LIPC 
rs261332 

 3.4×10−5   

LPL 
rs17482753 

   4.9×10−7 

APOA5 
rs481843 

   3.3×10−5 

Sandhu et al. (2008)c [357] 

APOC1 
rs4420638 

  1.2×10-2⁰  
White European 39–79 



  

414 

Gene & SNP 
Lipid Trait & P-valueab Population & 

Sample Size 
Age Group 

TC HDL LDL TG 

PSRC1 
rs599839 

  1.7×10-1⁵  
(British, Swedish, 

Finnish and 
Italian) 

n=11,685 CELSR2 
rs4970834 

  3.0×10-11  

APOB 
rs562338 

  1.4×10-⁹  

APOB 
rs7575840 

  1.9×10-⁹  

APOB 
rs478442 

  8.1×10-⁹  

APOB 
rs4591370 

  8.2×10-⁹  

APOB 
rs4560142 

  8.3×10-⁹  

APOB 
rs576203 

  9.0×10-⁹  

APOB 
rs506585 

  1.0×10-⁸  

APOB 
rs488507 

  2.0×10-⁸  

  
APOB 

rs538928 
  2.7×10-⁸  

BCAM 
rs10402271 

  4.1×10-⁸  



  

415 

Gene & SNP 
Lipid Trait & P-valueab Population & 

Sample Size 
Age Group 

TC HDL LDL TG 

APOB 
rs693 

  4.4×10-⁸  

TOMM40 
rs2075650 

  7.1×10-14  
British Birth 

Cohort 
n=4,337 

39 - 79 

BCL3 
rs4803750 

  2.4×10-11  

CELSR2 
rs646776 

  4.3×10-⁹  

APOB 
rs1713222 

  1.0×10-⁸  

LDLR 
rs2228671 

  1.1×10-⁸  

LDLR 
rs11668477 

  1.5×10-⁸  

BCAM 
rs4605275 

  4.7×10-⁸  

CELSR2 
rs646776 

  3.0×10-14  
White European 

(British, Swedish, 
Finnish and 

Italian) 
n=9,988 

39–79 

CELSR2 
rs629301 

  3.1×10-14  

CELSR2 
rs12740374 

  3.2×10-14  

CELSR2 
rs660240 

  3.8×10-14  



  

416 

Gene & SNP 
Lipid Trait & P-valueab Population & 

Sample Size 
Age Group 

TC HDL LDL TG 

CELSR2 
rs602633 

  5.7×10-14  

CELSR2 
rs599839 

  7.8×10-11  

CELSR2 
rs611917 

  1.5×10-10  

CELSR2 
rs4970834 

  6.7×10-10  

CELSR2 
rs6657811 

  2.0×10-8  

Surakka et al (2012) [760] 

SRGAP2 
rs2483058 

 3.98×10-8   
European 

(Monozygotic 
women twin-

pairs) 
n=1,720 

20 - 80 

SRGAP2 
rs9242 

 1.08×10-7   

CD47 
rs17826288 

   8.16×10-7 

Wallace et al (2008) [123] 



  

417 

Gene & SNP 
Lipid Trait & P-valueab Population & 

Sample Size 
Age Group 

TC HDL LDL TG 

ApoA5 
rs6589567 

7.76×10-7    

British 
(Hypertensive) 

n=1,955 
 

Median=58 
Interquartile 
range 49 - 65 

CELSR2 
rs4970834 

1.70×10-6    

  

Unknown 
rs10514542 

6.98×10-6    

TBPL2 
rs4470077 

9.04×10-6    

Unknown 
rs11017236 

 5.67 × 10-7   

Unknown 
rs11826048 

 9.70 × 10-7   

  

COLQ 
rs905648 

 4.58 × 10-6   

PSRC1, CELSR2 
rs599839 

  1.05 × 10-7  

Unknown 
rs11889082 

  1.22×10-6  

NA 
rs6470600 

  8.68×10-6  



  

418 

Gene & SNP 
Lipid Trait & P-valueab Population & 

Sample Size 
Age Group 

TC HDL LDL TG 

APOA5 
rs6589566 

   2.89×10-11 

LPL 
rs17482753 

   
1.17×10-9 

 

GCKR 
rs780094 

   4.99×10-7 

Unknown 
rs17545624 

   2.13×10-6 

Weissglas-Volkov et al (2013) [207] 

APOA5 
rs964184 

   5.5×10-35 
Mexican 
n=2,240 

Not given 

GCKR 
rs1260326 

   2.2×10-13 

LPL 
rs12678919 

   2.7×10-10 

MLXIPL 
rs2286276 

   2.2×10-6 

TIMD4 
rs2036402 

   3.4×10-6 

CILP2 
rs2228603 

   3.0×10-5 



  

419 

Gene & SNP 
Lipid Trait & P-valueab Population & 

Sample Size 
Age Group 

TC HDL LDL TG 

ANGPTL3 
rs10889337 

   3.3×10-5 

CETP 
rs1532624 

 1.39×10-24   

LIPC 
rs1077835 

 2.1×10-14   

LOC55908 
rs2278426 

 3.44×10-9   

ABCA1 
rs9282541 

 6.4×10-26   

  
Unknown 

rs4149310 
 5.54×10-8   

a P values are for the discovery stage of the genome-wide association study. 

b For meta-analysis where the combined P-value is provided, this has been given in the table. 

c Meta-analysis.  

d Lowest mean age and highest mean age. 

e P values are expressed as -Log10P. 

SNP – single-nucleotide polymorphism; TC – total cholesterol; HDL – high-density lipoprotein cholesterol; LDL – low-density lipoprotein 

cholesterol; TG – triglycerides;  T2D –  type 2 diabetes. 
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Appendix E2 - Supplementary Table S2.2 Observational studies examining interaction between CETP polymorphisms and diet on blood lipids 

SNP 

(Nucleotide 

Change)a 

Minor Allele/ 

Effect Allele 

Ethnicity & 

Sample Size 

Age 

(Years) 

Dietary 

Factor 

Design Lipid Trait 

Examined 

Results for 

Interactionb 

References 

TaqIB 

(rs708272) 

(G > A) 

 

 

A/A Mexican - 

Mestizo 

n=215 

36.9 ± 11.7 Energy, 

proteins, fat, 

SFA, MUFA, 

PUFA, ratio n-

6:n-3, 

carbohydrates, 

simple 

carbohydrates, 

sucrose, 

cholesterol 

and fiber.  

Cross-sectional; 

three – day food 

intake record.  

TC, HDL, LDL 

and TG 

Among participants with 

a higher intake of 

sucrose (≥5% of the 

total kcal/day), those 

carrying the minor allele 

(A) had higher TC (mean 

TC (mg/dL): 200.19 vs 

165.55, Pinteraction=0.034) 

and higher LDL (mean 

LDL (mg/dL): 128.64 vs 

99.29, Pinteraction=0.037) 

compared with those 

carrying 2 copies of the 

major allele (G).  

None of the other SNP-

diet interactions were 

statistically significant. 

Campos-Perez 

et al.  

(2020) [98] 

 

 

 

 

 

TaqIB 

(rs708272) 

(G > A) 

A/G Iranian 

patients with 

T2D without 

dyslipedaemia: 

n=129 

Patients with 

T2D and 

dyslipedemia: 

52.9 ± 0.6 Energy, total 

fat, PUFA, 

MUFA, 

cholesterol, 

carbohydrate, 

fiber and 

alcohol intake.  

Cross-sectional; 

food frequency 

questionnaire. 

HDL Among participants 

without dyslipidaemia, a 

higher intake of total fat 

(>34.9 % from total 

energy intake) was 

associated with higher 

HDL in individuals with 

2 copies of the major 

Kalantar et al. 

(2018) [99] 
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SNP 

(Nucleotide 

Change)a 

Minor Allele/ 

Effect Allele 

Ethnicity & 

Sample Size 

Age 

(Years) 

Dietary 

Factor 

Design Lipid Trait 

Examined 

Results for 

Interactionb 

References 

n=55 

 

allele (G) compared with 

those carrying 2 copies 

of the minor allele (A) 

(mean HDL (mg/dL) for 

high total fat vs low total 

fat intake (≤34.9% from 

total energy) in ‘GG’: 

58.6 ± 4.1 vs 36.5 ± 6.5;   

Pinteraction=0.02).  

None of the other SNP-

diet interactions were 

statistically significant. 

TaqIB 

(rs708272) 

(G > A) 

A/ Spanish 

Patients with 

T2D, obesity, 

hypertension 

or 

dyslipedaemia: 

n=4210 

 

66.9 ± 6.3 Energy, 

total fat, SFA, 

MUFA, PUFA, 

proteins, 

carbohydrates 

and alcohol 

intake. 

Nested case-

control 

Food frequency 

questionnaire. 

 

 

TC, HDL, LDL 

and TG. 

None of the SNP-diet 

interactions were 

statistically significant. 

Corella et al. 

(2010b) [223] 

TaqIB 

(rs708272) 

(G > A) 

A/ Spanish  

patients with 

CHD:  

n=557 

Healthy 

controls:  

53.9 ± 7.3 Alcohol 

consumption. 

Nested case-

control; validated 

computerised 

diet history 

questionnaire. 

TC, HDL, LDL 

and TG  

 

None of the SNP-diet 

interactions were 

statistically significant. 

Corella et al. 

(2010a) [222] 



  

422 

SNP 

(Nucleotide 

Change)a 

Minor Allele/ 

Effect Allele 

Ethnicity & 

Sample Size 

Age 

(Years) 

Dietary 

Factor 

Design Lipid Trait 

Examined 

Results for 

Interactionb 

References 

n=1180 

TaqIB 

(rs708272) 

(G > A) 

A/G Men with T2D 

without CVD in 

the USA 

(96% white 

participants) 

n=603 

 

 

 

40 - 75 Energy, total 

fat, animal fat, 

vegetable fat, 

cholesterol, 

PUFA, MUFA, 

trans fat, SFA 

and alcohol 

intake. 

Prospective 

cohort; food-

frequency 

questionnaire. 

 

HDL, LDL, TG 

and non-HDL 

cholesterol.  

 

A higher intake of total 

fat (>33.5% from total 

energy intake), animal 

fat (>19.9% from total 

energy intake), SFA 

(>11.47% from total 

energy intake) and 

MUFA (>12.75% from 

total energy intake) was 

associated with lower 

HDL in participants with 

2 copies of the major 

allele (G) compared with 

those with AA genotype 

(Pinteraction=0.003, 0.02, 

0.02 and 0.04 

respectively). 

None of the other SNP-

diet interactions were 

statistically significant. 

Li et al. 

(2007)[190] 
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SNP 

(Nucleotide 

Change)a 

Minor Allele/ 

Effect Allele 

Ethnicity & 

Sample Size 

Age 

(Years) 

Dietary 

Factor 

Design Lipid Trait 

Examined 

Results for 

Interactionb 

References 

TaqIB 

(rs708272) 

(G > A) 

A/A Multi-ethnic 

Chinese: 

n=2858 

Malay: n=761 

Asian Indian:  

n=588 

37.2c – 

41.1c 

Energy, 

percentage of 

energy as fat 

and 

cholesterol 

intake. 

Cross-sectional; 

food frequency 

questionnaire.  

TC, HDL, LDL 

and TG  

 

In Malay and Asian 

Indian participants, a 

higher dietary 

cholesterol (cholesterol 

intake as continuous) 

was linked to higher 

HDL in participants with 

2 copies of the A allele 

compared with those 

with GG genotype 

(Pinteraction=0.046 for 

Malay; Pinteraction=0.023 

for Indian).  The 

interaction was not 

statistically significant 

in Chinese. 

None of the other SNP-

diet interactions were 

statistically significant. 

Tai et al. 

(2003) [100] 

TaqIB 

(rs708272) 

(G > A) 

A/A Irish and 

French 

Male MI 

patients: 

n=608 

Healthy 

controls: 

 n=724 

52.7c - 

53.7c   

Alcohol 

consumption. 

Case-control; 

questionnaire. 

HDL, LDL, TG 

and VLDL 

Among healthy controls, 

a higher intake of 

alcohol (≥75g /day) was 

associated with higher 

levels of HDL in 

participants carrying the 

minor allele (A) (30% 

higher for ‘AA’ and 13% 

Fumeron et al. 

(1995) [217] 
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 higher for ‘GA’) 

compared with those 

with GG genotype 

(Pinteraction<0.0001).  

None of the other SNP-

diet interactions were 

statistically significant. 

TaqIB 

(rs708272) 

(G > A) 

A/A 

 

Multi-ethnic 

(11 US States) 

CHD patients: 

n=505 

Healthy 

controls:  

n=999 

62c – 66c Alcohol 

consumption. 

Nested case-

control; food 

frequency 

questionnaire. 

TC, HDL, LDL 

and 

 TG  

 

In healthy controls, a 

higher alcohol intake 

(≥15 g/day) was linked 

to higher HDL in 

participants carrying the 

minor allele (A), with 

those carrying 2 copies 

having the highest HDL 

(Pinteraction<0.01). 

None of the other SNP-

diet interactions were 

statistically significant. 

Jensen et al. 

(2008) [101] 

TaqIB 

(rs708272) 

(G > A) 

A/A 

 

Japanese 

(Western 

Japan) 

n=1729 

57.2 ± 15.7 Alcohol 

consumption. 

Cross-sectional; 

questionnaire. 

TC, HDL and 

TG 

A higher alcohol intake 

(≥2 drinks/day) was 

associated with higher 

HDL in men carrying the 

minor allele (A) 

compared with men 

carrying 2 copies of the 

Tsujita et al. 

(2007) [216] 
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major allele (G) (mean 

HDL (mmol/l): ‘GG’, 1.37 

± 0.03; ‘GA’, 1.44 ± 0.03; 

‘AA’, 1.49 ± 0.05; 

Pinteraction=0.049).  In 

women, consumption of 

any amount of alcohol 

was linked to higher 

HDL in individuals with 

2 copies of the A allele 

compared with those 

with GG or GA genotypes 

(mean HDL (mmol/l): 

‘GG’, 1.57±0.03; ‘GA’, 

1.57±0.03; ‘AA’, 

1.79±0.06; 

Pinteraction=0.022). 

None of the other SNP-

diet interactions were 

statistically significant 

TaqIB 

(rs708272) 

(G > A) 

A/G and A 

 

Hei Yi Zhuang 

Chinese 

Healthy 

participants 

n=758  

39.9c – 

42.4c 

Alcohol 

consumption. 

Cross-sectional; 

questionnaire. 

TC, HDL, LDL 

and TG 

In participants with 2 

copies of the major 

allele (G), those who 

consumed any amount 

of alcohol had higher 

HDL (mean HDL 

(mmol/l): 2.09 ± 0.46 vs 

Zhou et al. 

(2008) [215] 
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1.94 ± 0.38; P<0.01) and 

TG (mean TG (mmol/l): 

1.42 ± 2.71 vs 0.94 ± 

0.36; P< 0.05 ) and 

lower LDL (mean LDL 

(mmol/l): 2.24 ± 0.65 vs 

2.65 ± 3.01; P<0.01) 

compared with those 

who did not drink 

alcohol.  

In heterozygotes (GA), 

HDL was higher in 

drinkers than non-

drinkers (mean HDL 

(mmol/l): 2.17 ± 0.55 vs 

2.02 ± 0.50; P<0.05).  

Those with GA genotype 

who drank any amount 

of alcohol also had lower 

TG than individuals with 

GG who drank any 

amount of alcohol 

(mean TG (mmol/l): 

1.01 ± 0.86 vs 1.42 ± 

2.71; P<0.05). 

None of the other SNP-

diet interactions were 

statistically significant. 
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TaqIB 

(rs708272) 

(G > A) 

A/ Scottish 

Healthy 

participants 

n=220 

39 ± 11 Alcohol 

consumption. 

Cross-sectional; 

questionnaire. 

TC, HDL, LDL, 

VLDL and TG 

None of the SNP-diet 

interactions were 

statistically significant. 

Freeman et al. 

(1994) [221] 

TaqIB 

(rs708272) 

(G > A) 

A/ White 

American and 

African 

American 

n=15,792 

53.7 ± 0.5 Alcohol 

consumption. 

Longitudinal; 

dietary 

questionnaire. 

TC and HDL None of the SNP-diet 

interactions were 

statistically significant. 

Volcik et al. 

(2007) [220] 

TaqIB 

(rs708272) 

(G > A) 

A/ White British 

Healthy men 

n=2773 

56 ± 3.4 Alcohol 

consumption. 

Longitudinal; 

questionnaire. 

TC, HDL and 

TG 

None of the SNP-diet 

interactions were 

statistically significant. 

Talmud et al. 

(2002) [219] 

TaqIB 

(rs708272) 

(G > A) 

A/ Inuit 

(Nunavik Inuit) 

n=553 

 

 

37.2 ± 8.5 

 

n-3 PUFA in 

red blood cells 

(RBCs) and 

total energy 

intake. 

Cross-sectional: 

gas 

chromatographic 

analysis; food 

frequency 

questionnaire. 

TC, HDL, LDL 

and TG. 

 

None of the SNP-diet 

interactions were 

statistically significant. 

Rudkowska et 

al. (2013b) 

[237] 
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TaqIB 

(rs708272) 

(G > A) 

A/ Inuit 

(Nunavik Inuit) 

n=553 

 

37.2 ± 8.5 

 

Total energy, 

total fat and 

total SFA 

intake. 

Cross-sectional; 

food frequency 

questionnaire. 

TC, HDL, 

LDL and TG 

None of the SNP-diet 

interactions were 

statistically significant. 

Rudkowska et 

al. (2013a) 

[192] 

TaqIB 

(rs708272) 

(G > A) 

A/ White 

American 

n=8,968 

African 

American 

n=2, 677 

 

53.6 ± 0.5 Energy, 

protein, 

carbohydrate, 

total fat, SFA, 

MUFA, PUFA,  

cholesterol 

and fiber 

intake. 

Cross-sectional; 

food frequency 

questionnaire. 

TC, HDL, LDL 

and TG  

 

None of the SNP-diet 

interactions were 

statistically significant. 

Nettleton et al. 

(2007) [761] 

TaqIB 

(rs708272) 

(G > A) 

A/ Finnish 

Male alcohol 

drinkers: 

n=98 

Male healthy 

non-alcoholic 

controls: 

n=82 

41.6 ± 9.7 Alcohol 

consumption. 

Cross-sectional; 

interview. 

TC, HDL, LDL, 

VLDL, TG and 

VLDL-TG  

 

None of the SNP-diet 

interactions were 

statistically significant. 

Hannuksela et 

al. (1994) 

[218] 
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rs5882 

(I405V) 

(G > A) 

G/G Iranian  

n=4700 

 

40.9 ± 13.9 Energy, 

carbohydrate, 

protein, total 

fat, MUFA, 

PUFA, SFA, 

fish and fiber 

intake. 

Longitudinal: 3.6 

years of follow-

up; food 

frequency 

questionnaire. 

TC, HDL, LDL 

and TG 

Higher total fat intake 

was associated with 

increased levels of TG in 

participants carrying the 

minor allele (G) 

compared to those 

carrying 2 copies of the 

major (A) allele (mean 

changes in TG (mg/dL) 

across quartiles of total 

fat intake: −1.90, 2.6, 

6.06, 8.88; 

Pinteraction=0.001). 

Higher MUFA intake was 

also linked to increased 

levels of TG in G allele 

carriers compared to 

participants with AA 

genotype (mean changes 

in TG (mg/dL)  across 

quartiles of MUFA 

intake: −3.03, 1.73, 8.06, 

8.85; Pinteraction=0.001); 

while higher 

carbohydrate intake 

correlated with 

decreased levels of TG in 

those carrying the G 

Hosseini-

Esfahani et al. 

(2019) [231] 
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allele (changes in TG 

(mg/dL) across 

quartiles of 

carbohydrate intake: 

6.65, 7.29, 4.42, −3.28; 

Pinteraction=0.01). 

None of the other SNP-

diet interactions were 

statistically significant. 

rs5882 

(I405V) 

(G > A) 

G/G Iranian 

Participants 

with Metabolic 

Syndrome 

(MetS): n=441 

Healthy 

controls: 

n=844 

36.9 ± 10.5 Energy, 

carbohydrate, 

protein, total 

fat, PUFA, 

MUFA, trans-

fatty acids, 

cholesterol 

and omega3 

fatty acids. 

Nested case-

control: 3 years of 

follow-up; food 

frequency 

questionnaire. 

HDL and TG Minor allele (G) carriers 

had a lower risk of low 

HDL with a lower intake 

of MUFA and a higher 

risk of low HDL with a 

higher intake of MUFA 

(9.6-11% of total energy 

intake) compared to 

participants with AA 

genotype 

(Pinteraction=0.02).   
None of the other SNP-

diet interactions were 

statistically significant. 

Esfandiar et al. 

(2018) [232] 
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rs5882 

(I405V) 

(G > A) 

G/G Multi-ethnic 

(USA) 

n=101 

 

 

36.2 ± 5.8 Energy, total 

fat, SFA, MUFA 

and PUFA 

intake. 

Cross-sectional 

analysis from an 

ongoing clinical 

trial 

(NCT02740439)7

-day food record. 

TC, HDL and 

TG 

A higher MUFA intake 

(>31g/day) was linked 

to lower TG in 

participants carrying the 

minor allele (G) 

(Pinteraction=0.006). 

None of the other SNP-

diet interactions were 

statistically significant. 

Hannon et al. 

(2020) [189]  

rs5882 

(I405V) 

(G > A) 

 

G/A Inuit 

(Nunavik Inuit) 

n=553 

 

 

37.2 ± 8.5 

 

n-3 PUFA in 

red blood cells 

(RBCs) and 

total energy 

intake. 

Cross-sectional: 

gas 

chromatographic 

analysis; food 

frequency 

questionnaire. 

TC, HDL, 

LDL and TG. 

 

A higher level of n-3 

PUFA in RBCs was 

associated with lower 

TC in participants with 2 

copies of the major 

allele (A) compared to 

those with ‘GG’ or ‘AG’ 

genotype (β (mmol/l)  = 

-0.0290 ± 0.0307; 

Pinteraction=0.0334) and 

higher HDL in carriers of 

the A allele compared to 

those with ‘GG’ genotype 

(β (mmol/l) = 0.0263 ± 

0.0115 for ‘AG’ 

genotype, β (mmol/l) = 

0.0017 ± 0.0131 for ‘AA’ 

Rudkowska et 

al. (2013b) 

[237] 
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genotype; 

Pinteraction=0.0271). 

None of the other SNP-

diet interactions were 

statistically significant. 

rs5882 

(I405V) 

(G > A) 

G/A Inuit 

(Nunavik Inuit) 

n=553 

 

37.2 ± 8.5 

 

Total energy, 

total fat and 

SFA intake. 

Cross-sectional; 

food frequency 

questionnaire. 

TC, HDL, 

LDL and TG 

In participants with 2 

copies of the major 

allele (A), a higher total 

fat intake resulted in a 

greater increase in TC 

compared with 

participants with ‘GG’ or 

‘AG’ genotype (β 

(mmol/l) = 0·0024 ± 

0·0026; Pinteraction=0.046). 

None of the other SNP-

diet interactions were 

statistically significant. 

Rudkowska et 

al. (2013a) 

[192] 

rs5882 

(I405V) 

(G > A) 

G/ Spanish 

n=1315  

49.7 ± 0.2 Plasma 

selenium 

Cross-sectional; 

inductively 

coupled-plasma 

mass 

spectrometry. 

TC, HDL, LDL 

and TG 

None of the SNP-diet 

interactions were 

statistically significant. 

Galan-Chilet et 

al. (2015) 

[252] 
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rs5882 

(I405V) 

(G > A) 

G/ Irish and 

French  

Male 

participants 

MI patients: 

n=568 

Healthy 

controls: 

n=668 

53.2 ± 8.5 Alcohol 

consumption. 

Case-control; 

questionnaire. 

HDL None of the SNP-diet 

interactions were 

statistically significant. 

Corbex et al. 

(2000) [248] 

rs5882 

(I405V) 

(G > A) 

G/G Icelandic 

Healthy 

participants 

Men: n=152 

Women: n=166 

15 - 78 Alcohol 

consumption. 

Cross-sectional; 

questionnaire. 

HDL and TG  In men, alcohol 

consumption was 

associated with higher 

HDL (13.7% higher HDL 

than ‘AA’ genotype) in 

carriers of 2 copies of 

the minor allele (G) 

compared with men 

with  AG and AA 

genotypes 

(Pinteraction=0.026). 

None of the other SNP-

diet interactions were 

statistically significant. 

Gudnason et al. 

(1997) [236] 
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rs3764261 

(C > A) 

A/A Iranian  

n=4,700 

 

40.9 ± 13.9 Energy, 

carbohydrate, 

protein, total 

fat, MUFA, 

PUFA, SFA, 

fish and fiber 

intake. 

Longitudinal: 3.6 

years of follow-

up; food 

frequency 

questionnaire. 

TC, HDL, LDL 

and TG 

A higher fish intake was 

associated with a larger 

decrease in TC in 

participants carrying the 

minor allele (A) (mean 

changes in TC (mg/dL) 

with quartiles of fish 

intake: 8.02, 6.93, 6.54, 

5.58) compared to those 

with CC genotype (mean 

changes in TC (mg/dL) 

with quartiles of fish 

intake: 3.65, 6.62, 4.57, 

8.93) (Pinteraction=0.02). 

None of the other SNP-

diet interactions were 

statistically significant. 

Hosseini-

Esfahani et al. 

(2019) [231] 

rs3764261 

(C > A) 

 

A/ Iranian 

Participants 

with MetS: 

n=441 

Healthy 

controls: 

n=844 

36.9 ± 10.5 Energy, 

carbohydrate, 

protein, total 

fat, PUFA, 

MUFA, trans-

fatty acids, 

cholesterol 

and omega3 

fatty acids. 

Nested case-

control: 3 years of 

follow-up; food 

frequency 

questionnaire. 

 

HDL and TG None of the SNP-diet 

interactions were 

statistically significant. 

Esfandiar et al. 

(2018) [232] 
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rs3764261 

(C > A) 

 

A/A Indian 

(Lucknow, 

Nagpur, 

Hyderabad and 

Bangalore) 

n=3342 

39.9 ± 10.3  

Average daily 

fat intake 

Cross-sectional; 

food frequency 

questionnaire. 

TC, HDL, LDL 

and TG 

Participants carrying the 

minor allele (A) who had 

a higher dietary fat 

intake (≥76.98g/day) 

had increased levels of 

TC (β (mmol/l) = 0.097 

± 0.041; Pinteraction=0.018) 

and LDL (β (mmol/l) = 

0.085 ± 0.041; 

Pinteraction=0.042). 

None of the other SNP-

diet interactions were 

statistically significant. 

Walia et al. 

(2014) [242] 

rs3764261 

(C > A) 

A/ White 

American 

Participants 

with CVD 

n=772 

66.2 ± 9.4 

 

Cholesterol 

and total 

caloric intake. 

Cross-sectional; 

food frequency 

questionnaire. 

TC None of the SNP-diet 

interactions were 

statistically significant. 

Kim et al. 

(2013) [762] 

 

C-629A 

(rs1800775) 

(C > A) 

 

C/ Multi-ethnic 

Chinese: 

n=1366 

Malay: n=467 

Indian: n=387 

39.1 ± 12.3 Cholesterol, 

energy intake 

and 

percentage of 

energy as fat. 

Cross-sectional; 

food frequency 

questionnaire.  

HDL None of the SNP-diet 

interactions were 

statistically significant. 

Tai et al. 

(2003) [100] 
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C-629A 

(rs1800775) 

(C > A) 

C/A Irish and 

French  

Men 

MI patients: 

n=568 

Healthy 

controls: 

n=668 

53.2 ± 8.5 Alcohol 

consumption. 

Case-control; 

questionnaire. 

HDL Among participants 

carrying the A allele, 

alcohol consumption 

was associated with 

higher HDL in healthy 

participants 

(Pinteraction<0.002) and 

patients who were not 

treated with lipid-

lowering medication 

(Pinteraction<0.001). 

None of the other SNP-

diet interactions were 

statistically significant. 

Corbex et al. 

(2000) [248] 

C-629A 

(rs1800775) 

(C > A) 

C/ Inuit 

(Nunavik Inuit) 

n=553 

 

 

37.2 ± 8.5 

 

n-3 PUFA in 

red blood cells 

(RBCs) and 

total energy 

intake. 

Cross-sectional: 

Gas 

chromatographic 

analysis; Food 

frequency 

questionnaire. 

TC, HDL, 

LDL and TG. 

 

None of the SNP-diet 

interactions were 

statistically significant. 

Rudkowska et 

al. (2013b) 

[237] 

C-629A 

(rs1800775) 

(C > A) 

C/ Inuit 

(Nunavik Inuit) 

n=553 

 

37.2 ± 8.5 

 

Total energy, 

total fat and 

SFA intake. 

Cross-sectional, 

food frequency 

questionnaire. 

TC, HDL, 

LDL and TG 

None of the SNP-diet 

interactions were 

statistically significant. 

Rudkowska et 

al. (2013a) 

[192] 
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C-629A 

(rs1800775) 

(C > A) 

C/C Taiwanese 

n=9075 

53.5 ± 0.4 Coffee 

consumption. 

Cross-sectional; 

questionnaire. 

HDL Coffee consumption was 

associated with lower 

HDL in women carrying 

the minor allele (C) 

compared to women 

with ‘AA’ genotype (β = -

1.8095 (standard error 

not given) for ‘AC’ 

genotype, β (mg/dL) = -

2.8151 for ‘CC’ 

genotype; 

Pinteraction<0.0001); and in 

men carrying the ‘C’ 

allele compared to men 

with the ‘AA’ genotype 

[β (mg/dL) = -1.9623 for 

‘AC’ genotype, β 

(mg/dL) = -2.7153 for 

‘CC’ genotype; 

Pinteraction<0.0001]  

None of the other SNP-

diet interactions were 

statistically significant. 

Hsu et al. 

(2019) [247] 
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C-4502T 

(rs183130) 

(C > T) 

 

T/ Spanish 

Patients with 

T2D, Obesity, 

Hypertension 

or 

Dyslipedemia. 

n=4210 

 

66.9 ± 6.3 Energy, 

total fat, SFA, 

MUFA, PUFA, 

protein, 

carbohydrate 

and alcohol 

intake. 

Nested case-

control 

Food frequency 

questionnaire 

TC, HDL, LDL 

and TG. 

None of the SNP-diet 

interactions were 

statistically significant. 

Corella et al. 

(2010b)  [223] 

C-4502T 

(rs183130) 

(C > T) 

T/T and C Inuit 

(Nunavik Inuit) 

n=553 

 

 

37.2 ± 8.5 

 

n-3 PUFA in 

red blood cells 

(RBCs) and 

total energy 

intake. 

Cross-sectional: 

gas 

chromatographic 

analysis; food 

frequency 

questionnaire. 

TC, HDL, 

LDL and TG. 

 

A higher level of n-3 

PUFA in RBCs was 

associated with lower 

TC in carriers of the 

minor allele (T) 

compared to those with 

‘CC’ genotype [β 

(mmol/l) = −0.0632 ± 

0.0241 for CT, β 

(mmol/l) = −0.0421 ± 

0.0343 for TT; 

Pinteraction=0.0326] and 

lower TG in 

heterozygotes compared 

to those with TT 

genotype [β (mmol/l)  = 

−0.0095 ± 0.0051 vs 

0.0073 ± 0.0073; 

Pinteraction=0.0300]. 

Rudkowska et 

al. (2013b) 

[237] 
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None of the other SNP-

diet interactions were 

statistically significant. 

C-4502T 

(rs183130) 

(C > T) 

T/ Inuit 

(Nunavik Inuit) 

n=553 

 

37.2 ± 8.5 

 

Total energy, 

total fat and 

SFA intake. 

Cross-sectional, 

food frequency 

questionnaire. 

TC, HDL, 

LDL and TG 

None of the SNP-diet 

interactions were 

statistically significant. 

Rudkowska et 

al. (2013a) 

[192] 

rs4783961 

(G > A) 

A/G Inuit 

(Nunavik Inuit) 

n=553 

 

 

37.2 ± 8.5 

 

n-3 PUFA in 

red blood cells 

(RBCs) and 

total energy 

intake. 

Cross-sectional: 

gas 

chromatographic 

analysis; food 

frequency 

questionnaire. 

TC, HDL, 

LDL and TG. 

 

A higher level of n-3 

PUFA in RBCs was 

associated with lower 

TG (β (mmol/l) = -

0.0106 ± 0.0057; 

Pinteraction=0.0032) and 

lower TC:HDL ratio (β 

(mmol/l) = -0.0055 ± 

0.0033; 

Pinteraction=0.0483) in 

heterozygotes compared 

to participants with 2 

copies of the minor 

allele (A). 

Rudkowska et 

al. 

(2013b)[237] 
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SNP 

(Nucleotide 

Change)a 

Minor Allele/ 

Effect Allele 

Ethnicity & 

Sample Size 

Age 

(Years) 

Dietary 

Factor 

Design Lipid Trait 

Examined 

Results for 

Interactionb 

References 

rs4783961 

(G > A) 

A/ Inuit 

(Nunavik Inuit) 

n=553 

 

37.2 ± 8.5 

 

Total energy, 

total fat and 

SFA intake. 

Cross-sectional; 

food frequency 

questionnaire. 

TC, HDL, 

LDL and TG 

None of the SNP-diet 

interactions were 

statistically significant. 

Rudkowska et 

al. (2013a) 

[192] 

rs9989419 

(A > G) 

A/ Swiss 

n=5409 

53.4 ± 10.8 Alcohol 

consumption. 

Cross-sectional; 

reported alcohol 

consumption of 

the last 7 days. 

TC, HDL and 

TG. 

None of the SNP-diet 

interactions were 

statistically significant. 

Marques-Vidal 

et al. (2010) 

[763] 

rs6499861 

(C > G) 

G/ Swiss 

n=5409 

53.4 ± 10.8 Alcohol 

consumption. 

Cross-sectional; 

reported alcohol 

consumption of 

the last 7 days. 

TC, HDL and 

TG. 

None of the SNP-diet 

interactions were 

statistically significant. 

Marques-Vidal 

et al. (2010) 

[763] 

C>T/In9 

(rs289714) 

(G > A) 

 G/A Multi-ethnic 

(USA) 

n=101 

 

36.2 ± 5.8 Energy, total 

fat, SFA, MUFA 

and PUFA 

intake. 

Cross-sectional 

analysis from an 

ongoing clinical 

trial 

(NCT02740439)7

-day food record. 

TC, HDL and 

TG 

Among participants with 

2 copies of the major 

allele (A), those with an 

intake of >92g of total 

fat /day had lower TG 

(103 ± 63 vs 135 ± 15 

mg/dL) than those who 

consumed <31g of total 

Hannon et al. 

(2020) [189]   
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SNP 

(Nucleotide 

Change)a 

Minor Allele/ 

Effect Allele 

Ethnicity & 

Sample Size 

Age 

(Years) 

Dietary 

Factor 

Design Lipid Trait 

Examined 

Results for 

Interactionb 

References 

fat /day 

(Pinteraction=0.001). 

None of the other SNP-

diet interactions were 

statistically significant. 

rs1800774 

(C > T) 

T/C Spanish 

n=1315  

49.7 ± 0.2 Plasma 

selenium 

Cross-sectional; 

inductively 

coupled-plasma 

mass 

spectrometry. 

TC, HDL, LDL 

and TG 

Higher plasma selenium 

levels were associated 

elevated LDL in all the 

three genotypes but 

participants with 2 

copies of the major 

allele (C) had lower LDL 

compared to those with 

‘CT’ and ‘TT’ genotypes 

[odds ratio per an 

interquintile range 

increase in plasma 

selenium (95% 

confidence interval): 

0.97 (0.74 to 1.27) for 

‘CC’, 1.76 (1.38 to 2.25) 

for ‘CT’, 3.20 (1.93 to 

5.28) for ‘TT’ genotype; 

Pinteraction=0.0002]. 

Galan-Chilet et 

al. (2015) 

[252] 
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SNP 

(Nucleotide 

Change)a 

Minor Allele/ 

Effect Allele 

Ethnicity & 

Sample Size 

Age 

(Years) 

Dietary 

Factor 

Design Lipid Trait 

Examined 

Results for 

Interactionb 

References 

None of the other SNP-

diet interactions were 

statistically significant. 

rs4783962 

(T > A / T > C) 

T/ Spanish 

n=1315  

49.7 ± 0.2 Plasma 

selenium 

Cross-sectional; 

inductively 

coupled-plasma 

mass 

spectrometry. 

TC, HDL, LDL 

and TG 

None of the SNP-diet 

interactions were 

statistically significant. 

Galan-Chilet et 

al. (2015) 

[252] 

rs820299 

(G > A / G > C) 

G/ Taiwanese 

n=3000 

49.2 ± 11.0 Alcohol 

consumption. 

Cross-sectional; 

questionnaire. 

HDL and TG None of the SNP-diet 

interactions were 

statistically significant. 

Lin et al. 

(2016) [764] 

C373 

(Ala > Pro) 

Pro/ Irish and 

French 

Male 

participants 

MI patients: 

n=568 

Healthy 

controls: 

53.2 ± 8.5 Alcohol 

consumption. 

Case-control; 

questionnaire. 

HDL None of the SNP-diet 

interactions were 

statistically significant. 

Corbex et al. 

(2000) [248] 
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SNP 

(Nucleotide 

Change)a 

Minor Allele/ 

Effect Allele 

Ethnicity & 

Sample Size 

Age 

(Years) 

Dietary 

Factor 

Design Lipid Trait 

Examined 

Results for 

Interactionb 

References 

n=668 

C451 

(Arg > Gln) 

Gln/ Irish and 

French 

Male 

participants 

MI patients:  

n=568 

Healthy 

controls: 

n=668 

53.2 ± 8.5 Alcohol 

consumption. 

Case-control; 

questionnaire. 

HDL None of the SNP-diet 

interactions were 

statistically significant. 

Corbex et al. 

(2000) [248] 

–631 

(C > A) 

A/ Irish and 

French  

Male 

participants 

MI patients:  

n=568 

Healthy 

controls: 

n=668 

53.2 ± 8.5 Alcohol 

consumption. 

Case-control; 

questionnaire. 

HDL None of the SNP-diet 

interactions were 

statistically significant. 

Corbex et al. 

(2000) [248] 
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SNP 

(Nucleotide 

Change)a 

Minor Allele/ 

Effect Allele 

Ethnicity & 

Sample Size 

Age 

(Years) 

Dietary 

Factor 

Design Lipid Trait 

Examined 

Results for 

Interactionb 

References 

+524 

(G > T) 

T/ Irish and 

French  

Male 

participants 

MI patients:  

n=568 

Healthy 

controls: 

n=668 

53.2 ± 8.5 Alcohol 

consumption. 

Case-control; 

questionnaire. 

HDL None of the SNP-diet 

interactions were 

statistically significant. 

Corbex et al. 

(2000) [248] 

rs1532624 

(C > A) 

A/ Multi-ethnic 

(USA) 

n=101 

 

36.2 ± 5.8 Energy, total 

fat, SFA, MUFA 

and PUFA 

intake. 

Cross-sectional 

analysis from an 

ongoing clinical 

trial 

(NCT02740439)7

-day food record. 

TC, HDL and 

TG 

None of the SNP-diet 

interactions were 

statistically significant. 

Hannon et al. 

(2020) [189] 

TaqIA 

(A1 > A2) 

A2/ Finnish 

Male alcohol 

drinkers: 

n=98 

Male healthy 

non-alcoholic 

controls: 

  n=82 

41.6 ± 9.7 Alcohol 

consumption. 

Cross-sectional; 

interview. 

TC, HDL, LDL, 

VLDL, TG and 

VLDL-TG.  

 

None of the SNP-diet 

interactions were 

statistically significant. 

Hannuksela et 

al. (1994) 

[218] 
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SNP 

(Nucleotide 

Change)a 

Minor Allele/ 

Effect Allele 

Ethnicity & 

Sample Size 

Age 

(Years) 

Dietary 

Factor 

Design Lipid Trait 

Examined 

Results for 

Interactionb 

References 

EcoNI 

(N1 > N2) 

N2/ Finnish 

Male alcohol 

drinkers: 

n=98 

Male healthy 

non-alcoholic 

controls: 

n=82 

41.6 ± 9.7 Alcohol 

consumption. 

Cross-sectional; 

interview. 

TC, HDL, LDL, 

VLDL, TG and 

VLDL-TG.  

 

None of the SNP-diet 

interactions were 

statistically significant. 

Hannuksela et 

al. (1994) 

[218] 

a Alleles are reported in the forward direction in line with dbSNP. 

b Pinteraction values are reported only for the significant SNP-diet interactions. 

c Lowest mean age and highest mean age 

SNP – single-nucleotide polymorphism; TC – total cholesterol; HDL – high-density lipoprotein cholesterol; LDL – low-density lipoprotein cholesterol; 

VLDL – very low-density lipoprotein cholesterol; TG – triglycerides; VLDL-TG – very low-density lipoprotein triglycerides; SFA – saturated fatty acids; 

PUFA – polyunsaturated fatty acids; MUFA – monounsaturated fatty acids; n-6 – omega 6 polyunsaturated fatty acids; n-3 – omega 3 polyunsaturated 

fatty acids; T2D – type 2 diabetes; CHD – coronary heart disease; CVD – cardiovascular disease; MI –  myocardial infarction. 
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Appendix E3 - Supplementary Table S2.3 Interventional studies examining interaction between CETP polymorphisms and diet on blood lipids 

SNP 

(Nucleotide 

Change)a 

Minor Allele/ 

Effect Allele 

Ethnicity & 

Sample Size 

Age 

(Years) 

Dietary 

Factor 

Intervention Lipid Trait 

Examined 

Results for Interactionb References 

TaqIB 

(rs708272) 

(G > A) 

A/G Iranian 

 patients with 

T2D:   

n=95 

Healthy controls: 

n=73 

48.0 ± 1.7 Sesame oil, 

Canola oil and 

Sesame-canola 

oil. 

Randomised triple-

blind crossover trial; 

Three diets: Sesame 

oil; canola oil; 40% 

sesame oil and 60% 

canola oil. 4-week 

washout period with 

sunflower oil; three 9-

week intervention 

periods, separated by 

4-week washout 

periods.  

TC, HDL, LDL 

and TG 

In healthy participants, 

none of the SNP-diet 

interactions were 

statistically significant.  

In patients with T2D, 

carriers of 2 copies of the 

major allele (G) had a 

reduction in lipid ratios 

after intake of sesame oil 

and sesame-canola oil 

(change in LDL: HDL 

(mg/dL), -1.29, 

Pinteraction=0.027; 

change in TC: HDL 

(mg/dL), -2.82, 

Pinteraction=0.024; and 

change in TG: HDL 

(mg/dL), -7.00; 

Pinteraction=0.025).   

None of the other SNP-

diet interactions were 

statistically significant.  

 

Ramezani-

Jolfaie et al. 

(2020) [227] 
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SNP 

(Nucleotide 

Change)a 

Minor Allele/ 

Effect Allele 

Ethnicity & 

Sample Size 

Age 

(Years) 

Dietary 

Factor 

Intervention Lipid Trait 

Examined 

Results for Interactionb References 

TaqIB 

(rs708272) 

(G > A) 

A/G Spanish 

Prepubertal 

children 

with mild 

hypercholesterole

mia 

n=36 

8.4 ± 2.9 MUFA from 

virgin olive oil. 

Crossover: Cow’s skim 

milk vs cow’s skim 

milk enriched with 

virgin olive oil; 2 

periods of 6 weeks. 

HDL, LDL and 

TG.  

Intake of olive-oil-

enriched skim milk 

resulted in a higher 

increase in HDL [mean 

change in HDL (mmol/) 

(95% confidence 

interval) l: 0.179 (0.096 

to 0.262) vs 0.089 (0.032 

to 0.146); 

Pinteraction<0.001] and a 

decrease in LDL:HDL 

ratio [mean change in 

LDL:HDL (mmol/l) (95% 

confidence interval): -

0.470 (-0.729 to 0.211)  

vs -0.097 (-0.275 to 

0.081); Pinteraction<0.001] 

in participants with 2 

copies of the major allele 

(G) compared with 

carriers of the minor 

allele (A).  

None of the other SNP-

diet interactions were 

statistically significant. 

 

Estévez-

González et 

al. (2010) 

[211] 
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SNP 

(Nucleotide 

Change)a 

Minor Allele/ 

Effect Allele 

Ethnicity & 

Sample Size 

Age 

(Years) 

Dietary 

Factor 

Intervention Lipid Trait 

Examined 

Results for Interactionb References 

TaqIB 

(rs708272) 

(G > A) 

A/G Iranian 

Patients with MetS 

n=80 

38.91 ± 

6.90 

Artichoke leaf 

extract (ALE) 

Double-blind RCT: 

1800 mg /day of ALE 

vs placebo for 12 

weeks. 

TC, HDL, LDL 

and TG  

 

None of the SNP-diet 

interactions were 

statistically significant.  

 

Rezazadeh et 

al. (2018) 

[765] 

TaqIB 

(rs708272) 

(G > A) 

A/ Spanish  

Participants at 

high risk of CVD 

n=650 

Unavaila

ble 

Mediterranean 

diet 

Three diets: 

Mediterranean diet 

with olive oil; 

Mediterranean diet 

with nuts; and control 

(low-fat diet); 3 

months. 

Plasma lipids None of the SNP-diet 

interactions were 

statistically significant. 

Frances et al. 

2006 

(Abstract) 

[210]  

TaqIB 

(rs708272) 

(G > A) 

A/ Brazillian 

Participants with 

moderate primary 

Hypercholesterole

mia 

n=60 

20–60 Plant sterol 

ester (PSE) 

Double-blind cross-

over:  20g /day 

margarine with (PSE) 

vs 20g /day 

margarine without 

PSE; 4 weeks.  Food 

record. 

TC, HDL, LDL 

and TG. 

None of the SNP-diet 

interactions were 

statistically significant. 

Lottenberg et 

al. (2003) 

[766] 
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SNP 

(Nucleotide 

Change)a 

Minor Allele/ 

Effect Allele 

Ethnicity & 

Sample Size 

Age 

(Years) 

Dietary 

Factor 

Intervention Lipid Trait 

Examined 

Results for Interactionb References 

TaqIB 

(rs708272) 

(G > A) 

A/G New Zealander 

Men with 

Hypercholesterola

emia  

n=85 

 

48.5 ± 9.5 Kiwifruit RCT: 4-week healthy 

diet, followed by 4-

week healthy diet vs 

healthy diet plus 2 

kiwifruit per day. 

TC, HDL, LDL 

and TG 

 

In participants with 2 

copies of the major allele 

(G), consumption of 

kiwifruit resulted in 

lower TG:HDL ratio than 

the control diet (mean 

change in TG:HDL ratio 

(mmol/l), -0.23 ± 0.58 vs 

0.09 ± 0.56, P = 0.03; 

Pinteraction<0.05). 

None of the other SNP-

diet interactions were 

statistically significant. 

 

Gammon et 

al. (2014) 

[228] 

TaqIB 

(rs708272) 

(G > A) 

A/A Han Chinese 

Healthy 

participants 

n=56 

  

22.9 ± 1.8   Carbohydrate 

and fat intake. 

Washout diet of 31% 

fat and 54% 

carbohydrate for 7 

days; followed by high 

carbohydrate/low fat 

diet (HC/LF) of 70% 

carbohydrate and 

15% fat for 6 days. 

 

TC, HDL, LDL 

and TG 

After the HC/LF diet, 

carriers of the minor 

allele (A) had higher HDL 

(mean HDL (mg/dL): 

56.14 ± 10.69 after 

washout diet vs 59.77 ± 

10.62 after high 

carbohydrate/ low fat; 

Pinteraction<0.05). 

None of the other SNP-

diet interactions were 

statistically significant. 

 

Du et al. 

(2010) [224] 
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SNP 

(Nucleotide 

Change)a 

Minor Allele/ 

Effect Allele 

Ethnicity & 

Sample Size 

Age 

(Years) 

Dietary 

Factor 

Intervention Lipid Trait 

Examined 

Results for Interactionb References 

TaqIB 

(rs708272) 

(G > A) 

A/ New Zealander  

n=70 

 

48.25 ± 

9.5 

Energy, 

carbohydrate, 

protein, total 

fat, SFA, PUFA, 

MUFA and 

dietary 

cholesterol. 

 

Single crossover trial; 

high SFA vs high 

PUFA; two 4-week 

phases. 

 

TC, HDL, LDL 

and TG. 

None of the SNP-diet 

interactions were 

statistically significant. 

 

Aitken et al. 

(2006) [767] 

TaqIB 

(rs708272) 

(G > A) 

A/ Multi-ethnic 

(British, German, 

Danish and 

Italian) 

n=117 

 

57.7 ± 5.4 Isoflavone-

enriched 

cereal bars. 

Double-blind RCT: 

Cereal bars enriched 

with Isoflavone 

(genistein – to – 

daidzein ratio of 2:1; 

50mg/day) or placebo 

cereal bars for 8 

weeks with a washout 

period of 8 weeks 

before crossover. 

 

TC, HDL, LDL 

and TG. 

None of the SNP-diet 

interactions were 

statistically significant. 

 

Hall et al. 

(2006) [768]  

TaqIB 

(rs708272) 

(G > A) 

A/ Dutch  

Healthy 

participants 

n=112 

 

33 ± 16 Rapeseed oil 

and plant 

stanol ester. 

A low erucic acid 

rapeseed oil-based 

margarine and 

shortening for 4 

weeks; followed by 

the same margarine 

(control) or 1 of 2 

HDL, LDL and 

TG. 

None of the SNP-diet 

interactions were 

statistically significant. 

 

Plat and 

Mensink 

(2002) [769] 
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SNP 

(Nucleotide 

Change)a 

Minor Allele/ 

Effect Allele 

Ethnicity & 

Sample Size 

Age 

(Years) 

Dietary 

Factor 

Intervention Lipid Trait 

Examined 

Results for Interactionb References 

treatment groups:  the 

same margarine and 

shortening + 

vegetable-oil-based 

plant stanol ester 

mixture or the same 

margarine and 

shortening + wood – 

based plant stanol 

ester mixture for 8 

weeks. 

 

TaqIB 

(rs708272) 

(G > A) 

A/A  Greek 

Men and 

postmenopausal 

women 

heterozygous for 

Familial 

Hypercholesterole

mia (HFH)  

men: n=41 

women: n=39  

Healthy controls: 

n=11 

 

44.37 ± 

12.15 

 

Fatty meal Oral fat tolerance test: 

12-hour overnight fast 

followed by 

consumption of fatty 

meal within 20 

minutes. 

TC, HDL and 

TG 

 

Among all participants, 

none of the SNP-diet 

interactions were 

statistically significant. 

In HFH participants, 

women with the minor 

allele (A) had lower TG 

after 4 hours of fat intake 

(239 ± 65 vs 279 ± 95 

mg/dL; P=0.03) 

compared with men with 

the A allele. 

 

 

Anagnostopo

ulou et al. 

(2009) [226] 
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SNP 

(Nucleotide 

Change)a 

Minor Allele/ 

Effect Allele 

Ethnicity & 

Sample Size 

Age 

(Years) 

Dietary 

Factor 

Intervention Lipid Trait 

Examined 

Results for Interactionb References 

TaqIB 

(rs708272) 

(G > A) 

A/ New Zealander 

n=55 

45.5 ± 9.5 SFA and PUFA. Double cross-over: 

Lipid-lowering diet 

(baseline diet) for 3 

weeks; high SFA vs 

high PUFA; 4 weeks. 

TC, HDL, LDL 

and TG. 

None of the SNP-diet 

interactions were 

statistically significant. 

Wallace et al. 

(2000a) 

[320] 

TaqIB 

(rs708272) 

(G > A) 

A/ New Zealander 

n=46 

45.5 ± 9.9 SFA and PUFA. Double cross-over: 

Lipid-lowering diet 

(baseline diet) for 3 

weeks; high SFA; high 

PUFA for 4 weeks. 

TC, HDL, LDL, 

TG, light LDL 

and dense 

LDL. 

None of the SNP-diet 

interactions were 

statistically significant. 

Wallace et al. 

(2000b) 

[770] 

TaqIB 

(rs708272) 

(G > A) 

A/A  Dutch 

Healthy 

participants 

n=405 

29 ± 12 SFA, trans fat, 

dietary 

cholesterol 

and coffee 

diterpenes 

cafestol and 

kahweol. 

7 trials with SFA; 2 

trials with trans fat; 8 

trials with dietary 

cholesterol; and 9 

trials with coffee 

diterpenes cafestol 

and kaweol. 

TC, HDL and 

LDL. 

Participants with 2 

copies of the minor allele 

(A) had higher changes 

in HDL in response to 

SFA (mean change in 

HDL (mmol): 0.08 ± 0.02 

for ‘AA’, 0.03 ± 0.01 for 

‘GA’, 0.04 ± 0.02 for ‘GG’ 

genotype; P=0.04) than 

participants with ‘GG’ or 

‘GA’ genotype. 

Changes in LDL in 

response to dietary 

cholesterol were smaller 

Weggemans 

et al. (2001) 

[225] 
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SNP 

(Nucleotide 

Change)a 

Minor Allele/ 

Effect Allele 

Ethnicity & 

Sample Size 

Age 

(Years) 

Dietary 

Factor 

Intervention Lipid Trait 

Examined 

Results for Interactionb References 

in participants carrying 

the major allele (G) than 

those with AA genotype 

(mean change in LDL 

mmol/l: 0.27 ± 0.14 for 

‘GG’, 0.35 ± 0.08 for ‘GA’, 

0.75 ± 0.15 for ‘AA’; GG 

vs AA, P=0.03; GA vs AA, 

P = 0.01). 

None of the other SNP-

diet interactions were 

statistically significant. 

 

rs5882 

(I405V) 

(G > A) 

G/ A Canadian 

Sedentary men 

(12 pairs of 

monozygotic 

twins). 

n=24 

21 ± 2.0 Overfeeding. Overfeeding by 

1000Kcal /day, 6 days 

per week for a period 

of 100 days. 

TC, HDL, LDL, 

VLDL, TG, 

HDL2 and 

HDL3,  

 

Overfeeding was 

associated with 

decreased HDL (mean 

change in HDL (mmol/l): 

-0.12 ± 0.04 vs 0.02 ± 

0.04; P=0.02), HDL2 

(mean change in HDL2 

(mmol/l), -0.08 ± 0.03 vs 

0.03 ± 0.03; P=0.04) and 

HDL3 (mean change in 

HDL3 (mmol/l), -0.04 ± 

0.02 vs -0.004 ± 0.02; 

P=0.002) in carriers of 2 

copies of the major allele 

Terán-García 

et al. (2008) 

[240] 
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(Nucleotide 

Change)a 

Minor Allele/ 

Effect Allele 

Ethnicity & 

Sample Size 

Age 

(Years) 

Dietary 

Factor 

Intervention Lipid Trait 

Examined 

Results for Interactionb References 

(A) compared to 

homozygotes for the 

minor allele (G). 

None of the other SNP-

diet interactions were 

statistically significant.  

 

rs5882 

(I405V) 

(G > A) 

G/ Brazillian 

Participants with 

moderate primary 

hypercholesterole

mia 

n=60 

20–60 Plant sterol 

ester 

Double-blind cross-

over:  20 g /day 

margarine with plant 

sterol ester (PSE) vs 

20 g /day margarine 

without PSE for 4 

weeks.  Food record. 

TC, HDL, LDL 

and TG 

None of the SNP-diet 

interactions were 

statistically significant. 

Lottenberg et 

al. (2003) 

[766] 

rs5882 

(I405V) 

(G > A) 

G/ Canadian 

Individuals with 

mild 

hypercholesterole

mia 

n=71 

 

 

30 – 75 Plant sterol Dual centre single 

blind randomised 

crossover trial. 

Margarine with 2g 

plant sterol/day vs 

margarine without 

plant sterol for 28-day 

periods. 

TC, HDL, LDL 

and TG 

None of the SNP-diet 

interactions were 

statistically significant. 

MacKay et al. 

(2015) [771] 
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(Nucleotide 

Change)a 

Minor Allele/ 

Effect Allele 

Ethnicity & 

Sample Size 

Age 

(Years) 

Dietary 

Factor 

Intervention Lipid Trait 

Examined 

Results for Interactionb References 

rs5882 

(I405V) 

(G > A) 

G/ Iranian 

Healthy 

participants 

n=85  

20 ± 2 PUFA and SFA A high PUFA:SFA (1.2) 

followed by a low 

PUFA:SFA (0.3).  Two 

consecutive 28-day 

periods. 

HDL, LDL and 

TG 

None of the SNP-diet 

interactions were 

statistically significant. 

Darabi et al. 

(2009) [772] 

rs5882 

(I405V) 

(G > A) 

G/ Israeli 

Healthy 

participants 

n=214 

 

 

45.2 (14 - 

74) 

Energy intake, 

total fat, SFA 

and 

cholesterol. 

Cross over: high SFA 

and cholesterol vs low 

SFA and low 

cholesterol.  Two 4-

week periods and a 4-

week washout period. 

TC, HDL, LDL 

and TG. 

None of the SNP-diet 

interactions were 

statistically significant. 

Friedlander 

et al. (2000) 

[773] 

rs5882 

(I405V) 

(G > A) 

G/ Greek 

Men and 

postmenopausal 

women 

heterozygous for 

Familial 

Hypercholestrole

mia  

men: n=41 

women: n=39  

Healthy 

participants: 

n=11 

 

44.4 ± 

12.2 

 

Fatty meal Oral fat tolerance test: 

12 hour overnight fast 

followed by 

consumption of fatty 

meal within 20 

minutes. 

TC, HDL and 

TG 

 

None of the SNP-diet 

interactions were 

statistically significant. 

Anagnostopo

ulou et al. 

(2009) [226] 
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(Nucleotide 

Change)a 

Minor Allele/ 

Effect Allele 

Ethnicity & 

Sample Size 

Age 

(Years) 

Dietary 

Factor 

Intervention Lipid Trait 

Examined 

Results for Interactionb References 

rs3764261 

(C > A) 

A/A Spanish 

ACS/CHD patients. 

with MetS: n=424  

60.0 ± 0.3 Mediterranean 

diet and low-

fat diet. 

1-year dietary 

intervention involving 

Mediterranean diet 

(35% fat, 22% MUFA) 

vs Low-fat diet (28% 

fat, 12% MUFA). 

TC, HDL, LDL 

and TG. 

Intake of Mediterranean 

diet was associated with 

higher HDL (mean HDL 

(mg/dL): 41 vs. 38; 

Pinteraction=0.006) and 

lower TG (mean TG 

(mg/dL): 130 vs 146; 

Pinteraction=0.04) in 

participants carrying the 

minor allele (A) 

compared to those with 

CC genotype. 

None of the other SNP-

diet interactions were 

statistically significant. 

 

Garcia-Rios 

et al. (2018) 

[191] 

rs3764261 

(C > A) 

A/C US residents 

White: n=747 

Black: n=111 

Hispanic, Asian or 

other: n=36 

 

51.0 ± 7.7  High-fat diet, 

low-fat diet 

and 

carbohydrate. 

2-year randomised 

weight-loss trial 

(POUNDS LOST): Low-

fat diet (20%) vs high-

fat diet (40%)  

n=732 

2-year RCT (DIRECT): 

Low-fat diet vs low 

carbohydrate (high 

fat) diet 

n=171 

TC, HDL, LDL 

and TG 

Among participants with 

2 copies of the major 

allele (C), those in the 

high-fat diet (40% fat) 

group had a higher 

increase in HDL (11.7 vs 

4.5%; Pinteraction=0.01) and 

a larger decrease in TG (-

25.1 vs. -11.7%; 

Pinteraction=0.0007) 

compared with those in 

Qi et al. 

(2015) [214] 
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SNP 

(Nucleotide 

Change)a 

Minor Allele/ 

Effect Allele 

Ethnicity & 

Sample Size 

Age 

(Years) 

Dietary 

Factor 

Intervention Lipid Trait 

Examined 

Results for Interactionb References 

the low-fat diet (20% fat) 

group. 

None of the other SNP-

diet interactions were 

statistically significant. 

 

C-629A 

(rs1800775

) 

(C > A) 

C/ Multi-ethnic 

White: n=395 

South and South 

East Asian: n=46 

Black African: 

n=38 

 

 

51.5 ± 9.5 SFA, MUFA, 

low fat, 

carbohydrate 

(CHO). 

RCT:  4-week  

reference diet (∼18% 

SFA, 12% MUFA, 38% 

total fat, 45% CHO) 

followed by 1 of 3 

diets: a MUFA diet 

(∼10% SFA, 20% 

MUFA, 38% total fat, 

45% CHO); a low fat 

diet (∼10% SFA, 11% 

MUFA, 28% total fat, 

55% CHO); or the 

reference diet for 24 

weeks.    

TC, HDL, LDL 

and TG 

 

None of the SNP-diet 

interactions were 

statistically significant. 

Walker et al. 

(2011) [249] 
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SNP 

(Nucleotide 

Change)a 

Minor Allele/ 

Effect Allele 

Ethnicity & 

Sample Size 

Age 

(Years) 

Dietary 

Factor 

Intervention Lipid Trait 

Examined 

Results for Interactionb References 

rs9989419 

(A > G / A > 

T) 

A/ Multi-ethnic 

White: n=395 

South and South 

East Asian: n=46 

Black African: 

n=38 

 

 

51.5 ± 9.5 SFA, MUFA, 

low fat, 

carbohydrate 

(CHO). 

 

RCT:  4-week 

reference diet (∼18% 

SFA, 12% MUFA, 38% 

total fat, 45% CHO) 

followed by 1 of 3 

diets: a MUFA diet 

(∼10% SFA, 20% 

MUFA, 38% total fat, 

45% CHO); a low fat 

diet (∼10% SFA, 11% 

MUFA, 28% total fat, 

55% CHO); or the 

reference diet for 24 

weeks.    

TC, HDL, LDL 

and TG 

 

None of the SNP-diet 

interactions were 

statistically significant. 

Walker et al. 

(2011) [249] 

C>T/In9 

(rs289714) 

(G > A / G > 

C) 

C/ Canadian 
Sedentary men 
(12 pairs of 
monozygotic 
twins): n=24 

21 ± 2.0 Overfeeding. Overfeeding by 

1000Kcal per day, 6 

days per week for a 

period of 100 days. 

TC, HDL, LDL, 

VLDL, TG, 

HDL2 and 

HDL3,  

 

None of the SNP-diet 

interactions were 

statistically significant. 

Terán-García 

et al. (2008) 

[240] 
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SNP 

(Nucleotide 

Change)a 

Minor Allele/ 

Effect Allele 

Ethnicity & 

Sample Size 

Age 

(Years) 

Dietary 

Factor 

Intervention Lipid Trait 

Examined 

Results for Interactionb References 

rs173539 
(C > T) 

T/ Multi-ethnic 
White: n=395 
South and South 
East Asian: n=46 
Black African: 
n=38 
 
 

51.5 ± 9.5 SFA, MUFA, 
low fat, 
carbohydrate 
(CHO). 

RCT:  4-week 
reference diet (∼18% 
SFA, 12% MUFA, 38% 
total fat, 45% CHO) 
followed by 1 of 3 
diets: a MUFA diet 
(∼10% SFA, 20% 
MUFA, 38% total fat, 
45% CHO); a low fat 
diet (∼10% SFA, 11% 
MUFA, 28% total fat, 
55% CHO); or the 
reference diet for 24 
weeks.    

TC, HDL, LDL 
and TG 
 

None of the SNP-diet 
interactions were 
statistically significant. 

Walker et al. 
(2011) [249] 
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Appendix E4 - Supplementary Figure S3.1 Selection of participants from the Chennai 

Urban Rural Epidemiological Study (CURES) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure S3.1 A flow chart showing the selection of participants from the 

Chennai Urban Rural Epidemiological Study (CURES) 
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Appendix E5 - Supplementary Figure S3.2 Dairy intake and insulin resistance/metabolic 

syndrome 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure S3.2 Dairy intake and insulin resistance/metabolic syndrome 

(a): The association of total dairy intake with insulin resistance in the Chennai urban adults. 

Model adjusted for age (years), sex, income, weight (kg), alcohol, energy (kcal), added 

sugar(g), total fat(g), saturated fatty acid (g), tea and coffee intake. 

(b): Unfermented dairy intake and its association with Metabolic Syndrome. Data presented 

as median. Adjusted variables are age (years), sex, BMI, income, smoking, alcohol, major 

cooking oil, total poly unsaturated fatty acids (PUFA) (g), added sugar (g), physical activity 

level, total energy (kcal), tea and coffee intake. 
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Appendix E6 - Supplementary Table S3.1 Tea and coffee consumption and its association with components of cardiometabolic risk 

 Hazards Ratio (95% Confidence Interval) 
 Lowest intake Medium intake Highest intake 

Tea and coffee (g/day) 
Milk (g/day) in the tea/coffee 

Serving in cup 

170 (219) 
85 

3/4 cups 

470 (144) 
235 

2.5 cups 

1176(470) 
588 

5 cups 

Blood pressure (mmHg) ≥ 140/90 1 (ref) 0.84(0.65 – 1.07) 0.60(0.39 – 0.91)* 

BMI (kg/m2) ≥ 22.9 1 (ref) 0.78(0.59 – 1.03) 0.56(0.36 – 0.88)* 

Waist circumference (cm) (> 80: F; > 90: M) 1 (ref) 0.91(0.76 – 1.09) 0.81(0.62 – 1.07) 

Total cholesterol (> 200 mg/dL) 1 (ref) 0.63(0.44 – 0.90) 0.57(0.34 – 0.95)* 

Triglyceride (> 150 mg/dL) 1 (ref) 0.73(0.54 – 0.99)* 0.60(0.38 – 0.93)* 

High density lipoprotein (mg/dL) (≤ 40: F; ≤ 50: 
M) 

1 (ref) 0.86(0.70 – 1.06) 0.77(0.55 – 1.08) 

Low density lipoprotein (> 100 mg/dL) 1 (ref) 0.80(0.66 – 0.97)* 0.77(0.58 – 1.03) 

Fasting plasma glucose (> 100 mg/dL) 1 (ref) 0.90(0.69 – 1.17) 1.02(0.69 – 1.50) 

Data presented as median (interquartile range). *P-value<0.05 considered as significant. Adjusted variables are age, sex, BMI, income, 

smoking, alcohol, major cooking oil, total poly unsaturated fatty acids (PUFA) (g), added sugar (g), physical activity level, and total energy 

(kcal). 
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Appendix E7 - Supplementary Table S4.1 Allele frequencies and Hardy-Weinberg 

Equilibrium P-value (n=190) 

Gene & SNP Genotype Count 
Allele Frequency in 

this study (%) 

Hardy-Weinberg 
Equilibrium P-

value 

CETP 
rs3764261 

 

GG = 107 
GT = 70 
TT = 13 

G = 75 
T = 25 

0.74 
 

GCKR 
rs1260326 

CC = 82 
CT = 81 
TT = 27 

C = 64 
T = 36 

0.34 
 

LIPG 
rs7241918 

TT = 150 
TG = 36 
GG = 4 

T = 88 
G = 12 

0.30 

SORT1 
rs629301 

TT = 117 
TG = 59 
GG = 14 

T = 77 
G = 23 

0.10 
 

LIPC 
rs1532085 

GG = 67 
GA = 91 
AA = 32 

G = 59 
A = 41 

0.91 
 

APOA1 
rs964184 

CC = 115 
CG = 68 
GG = 7 

C = 78 
G = 22 

0.43 

ATP2B1 
rs2681472 

AA = 134 
AG = 53 
GG = 3 

A = 84 
G = 16 

0.38 

SNP – single nucleotide polymorphism; CETP – cholesteryl ester transfer protein; GCKR 

– glucokinase regulator; LIPG – endothelial lipase; SORT1 – sortilin 1; LIPC – hepatic 

lipase; APOA1 – apolipoprotein A1; ATP2B1 – ATPase plasma membrane Ca2+ 

transporting 1. 
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Appendix E8 - Supplementary Figure S4.1 Selection of participants from the Obesity, 

Lifestyle and Diabetes in Brazil (BOLD) cross-sectional study 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Supplementary Figure S4.1 A flow chart showing the selection of participants from the 

Obesity, Lifestyle and Diabetes in Brazil (BOLD) cross-sectional study. 
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Appendix E9 - Supplementary Figure S4.2 The distribution of the GRS across deciles of 

TC, LDL-C, TG and TG:HDL ratio 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure S4.2 The distribution of the GRS across deciles of TC, LDL-C, TG 

and TG:HDL ratio. 
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Section 1: Search strings 

Appendix E10 - Supplementary Table S5.1 Number of hits and search strings per 

database 

Search 
engine/database 

Search string Nº of 
HITS 

Web of Science Genetic*(all fields) and interaction*(all fields) 
and diet* (all fields) and Latin (all fields) 

34 

Gene*(all fields) AND interact*(all fields)  AND 
Caribbean (all fields)  AND diet*(all fields) 

47 

Genetic*(all fields) AND interact*(all fields)  
AND latin*(all fields) AND physical*(all fields) 

25 

Gene*AND interact* AND caribbean AND 
physical* 

12 

gene (All fields) and interaction (All 
fields) and haiti (All fields) 

4 

gene (All fields) and interaction (All 
fields) and Cuba (All fields) 

126 

gene (All fields) and interaction (All 
fields) and Dominican (All fields) 

37 

gene (All fields) and interaction (All 
fields) and Jamaica (All fields) 

70 

gene (All fields) and interaction (All 
fields) and Trinidad (All fields) 

94 

gene (All fields) and interaction (All 
fields) and Bahamas (All fields) 

16 

gene (All fields) and interaction (All 
fields) and Barbados (All fields) 

17 

gene (All fields) and interaction (All 
fields) and Saint Lucia (All fields) 

574 

gene (All fields) and interaction (All 
fields) and Grenada (All fields) 

20 

gene (All fields) and interaction (All 
fields) and Grenadines (All fields) 

1 

gene (All fields) and interaction (All 
fields) and Antigua and Barbuda (All fields) 

0 

gene (All fields) and interaction (All 
fields) and Dominica (All fields) 

10 

gene (All fields) and interaction (All 
fields) and Saint Kitts & Nevis (All fields) 

0 

gene (All fields) and interaction (All 
fields) and Mexico (All fields) 

3,116 

gene (All fields) and interaction (All 
fields) and Guatemala (All fields) 

24 

gene (All fields) and interaction (All 
fields) and Honduras (All fields) 

19 

gene (All fields) and interaction (All 
fields) and Nicaragua (All fields) 

11 

gene (All fields) and interaction (All 
fields) and Salvador (All fields) 

405 
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gene (All fields) and interaction (All 
fields) and costa rica (All fields) 

125 

gene (All fields) and interaction (All 
fields) and Panama (All fields) 

145 

gene (All fields) and interaction (All 
fields) and Belize (All fields) 

8 

gene (All fields) and interaction (All 
fields) and Brazil (All fields) 

5,344 

gene (All fields) and interaction (All 
fields) and colombia (All fields) 

571 

gene (All fields) and interaction (All 
fields) and argentina (All fields) 

1,621 

gene (All fields) and interaction (All 
fields) and peru (All fields) 

139 

gene (All fields) and interaction (All 
fields) and venezuela (All fields) 

131 

gene (All fields) and interaction (All 
fields) and chile (All fields) 

1,061 

gene (All fields) and interaction (All 
fields) and Ecuador (All fields) 

106 

gene (All fields) and interaction (All 
fields) and bolivia (All fields) 

29 

gene (All fields) and interaction (All 
fields) and paraguay (All fields) 

33 

gene (All fields) and interaction (All 
fields) and uruguay (All fields) 

229 

gene (All fields) and interaction (All 
fields) and guyana (All fields) 

8 

gene (All fields) and interaction (All 
fields) and suriname (All fields) 

2 

PubMed 
 

(((genetic*) AND (interaction*)) AND (diet*)) 
AND (latin) 

45 

(gene-diet interaction) AND (latin*) 8 
(((genetic*) AND (interaction*)) AND 
(nutrient)) AND (Caribbean) 

7 

(((genetic*) AND (interaction*)) AND 
(nutrient)) AND (latin) 

16 

(((genetic*) AND (interaction*)) AND 
(physical)) AND (latin) 

18 

(gene-nutrient interaction) AND (latin*) 3 
"gene"[Title/Abstract] AND 
"interaction"[Title/Abstract] AND "Puerto 
Rico"[Title/Abstract] 

18 

"gene"[Title/Abstract] AND 
"interaction"[Title/Abstract] AND 
"Falkland"[Title/Abstract] 

0 

"gene"[Title/Abstract] AND 
"interaction"[Title/Abstract] AND 
"Montserrat"[Title/Abstract] 

0 
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"gene"[Title/Abstract] AND 
"interaction"[Title/Abstract] AND 
"Anguilla"[Title/Abstract] 

15 

"gene"[Title/Abstract] AND 
"interaction"[Title/Abstract] AND "British 
Virgin Islands"[Title/Abstract] 

0 

"gene"[Title/Abstract] AND 
"interaction"[Title/Abstract] AND 
"Caicos"[Title/Abstract] 

1 

"gene"[Title/Abstract] AND 
"interaction"[Title/Abstract] AND "Cayman 
Islands"[Title/Abstract] 

0 

"gene"[Title/Abstract] AND 
"interaction"[Title/Abstract] AND "Caribbean 
Netherlands"[Title/Abstract] 

0 

"gene"[Title/Abstract] AND 
"interaction"[Title/Abstract] AND 
"Maarten"[Title/Abstract] 

0 

"gene"[Title/Abstract] AND 
"interaction"[Title/Abstract] AND 
"Aruba"[Title/Abstract] 

0 

"gene"[Title/Abstract] AND 
"interaction"[Title/Abstract] AND 
"Curaçao"[Title/Abstract] 

2 

"gene"[Title/Abstract] AND 
"interaction"[Title/Abstract] AND 
"Guiana"[Title/Abstract] 

3 

"gene"[Title/Abstract] AND 
"interaction"[Title/Abstract] AND 
"Martinique"[Title/Abstract] 

1 

"gene"[Title/Abstract] AND 
"interaction"[Title/Abstract] AND 
"Guadeloupe"[Title/Abstract] 

4 

"gene"[Title/Abstract] AND 
"interaction"[Title/Abstract] AND 
"Suriname"[Title/Abstract] 

0 

"gene"[Title/Abstract] AND 
"interaction"[Title/Abstract] AND 
"Guyana"[Title/Abstract] 

3 

"gene"[Title/Abstract] AND 
"interaction"[Title/Abstract] AND 
"Uruguay"[Title/Abstract] 

6 

"gene"[Title/Abstract] AND 
"interaction"[Title/Abstract] AND 
"Paraguay"[Title/Abstract] 

1 

"gene"[Title/Abstract] AND 
"interaction"[Title/Abstract] AND 
"Bolivia"[Title/Abstract] 

3 

"gene"[Title/Abstract] AND 
"interaction"[Title/Abstract] AND 
"Ecuador"[Title/Abstract] 

4 



  

469 

"gene"[Title/Abstract] AND 
"interaction"[Title/Abstract] AND 
"Chile"[Title/Abstract] 

18 

"gene"[Title/Abstract] AND 
"interaction"[Title/Abstract] AND 
"Venezuela"[Title/Abstract] 

9 

"gene"[Title/Abstract] AND 
"interaction"[Title/Abstract] AND 
"Peru"[Title/Abstract] 

11 

"gene"[Title/Abstract] AND 
"interaction"[Title/Abstract] AND 
"Argentina"[Title/Abstract] 

19 

"gene"[Title/Abstract] AND 
"interaction"[Title/Abstract] AND 
"Colombia"[Title/Abstract] 

22 

"gene"[Title/Abstract] AND 
"interaction"[Title/Abstract] AND 
"Brazil"[Title/Abstract] 

126 

"gene"[Title/Abstract] AND 
"interaction"[Title/Abstract] AND 
"Belize"[Title/Abstract] 

2 

"gene"[Title/Abstract] AND 
"interaction"[Title/Abstract] AND 
"Panama"[Title/Abstract] 

7 

"gene"[Title/Abstract] AND 
"interaction"[Title/Abstract] AND "Costa 
Rica"[Title/Abstract] 

14 

"gene"[Title/Abstract] AND 
"interaction"[Title/Abstract] AND 
"salvador"[Title/Abstract] 

13 

"gene"[Title/Abstract] AND 
"interaction"[Title/Abstract] AND 
"Honduras"[Title/Abstract] 

4 

"gene"[Title/Abstract] AND 
"interaction"[Title/Abstract] AND "Guatemala 
"[Title/Abstract] 

6 

((gene) AND (interaction)) AND (latin) 210 
((((polymorphism OR gene OR SNP OR single 
nucleotide polymorphism OR genetic variation 
OR genetic variant) AND ("gene-diet 
interaction" OR "diet-gene interaction" OR SNP-
diet interaction OR diet-SNP interaction OR 
"gene-nutrient interaction" OR "nutrient-gene 
interaction" OR "gene-lifestyle interaction" OR 
"gene-environment interaction")) AND 
(carbohydrate OR protein OR fat OR fibre OR 
sugar OR SFA OR saturated fat OR 
monounsaturated fat OR polyunsaturated fat 
OR MUFA OR PUFA OR Mediterranean diet OR 
Nordic diet OR B12 OR vitamin D OR amino 
acids OR polyphenols OR egg intake OR caffeine 

1,948 
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intake OR green tea OR alcohol intake OR meat 
intake OR energy intake OR physical activity 
level OR social factors OR socioeconomic)) AND 
(Obesity OR weight OR BMI OR waist 
circumference OR waist hip ratio OR hip 
circumference OR adiposity OR diabetes OR 
fasting glucose OR insulin OR HbA1c OR 
cardiovascular disease OR coronary heart 
disease OR ischaemic heart disease OR stroke 
OR lipids OR HDL OR LDL OR VLDL OR total 
cholesterol OR triglycerides OR triacylglycerol 
OR blood lipids OR serum lipids OR metabolic 
syndrome)) AND (Latin American OR 
Caribbean OR Haiti OR Cuba OR Dominican 
Republic OR Jamaica OR Trinidad and Tobago 
OR Bahamas OR Barbados OR Saint Lucia OR 
Grenada OR St. Vincent and Grenadines OR 
Antigua and Barbuda OR Dominica OR Saint 
Kitts & Nevis OR Mexico OR Guatemala OR 
Honduras OR Nicaragua OR El Salvador OR 
Costa Rica OR Panama OR Belize OR Brazil OR 
Colombia OR Argentina OR Peru OR Venezuela 
OR Chile OR Ecuador OR Bolivia OR Paraguay 
OR Uruguay OR Guyana OR Suriname OR 
Guadeloupe OR Martinique OR French Guiana 
OR Curacao OR Aruba OR Sint Maarten OR 
Caribbean Netherlands OR Cayman Islands OR 
Turks and Caicos OR British Virgin Islands OR 
Anguilla OR Montserrat OR Falkland Islands OR 
Puerto Rico OR U.S. Virgin Islands)" 

Science Direct  Title, abstract, keywords: genetic AND 
interaction AND diet AND latin 

6 

Title, abstract, keywords: gene-diet interaction 
AND latin 

5 

Title, abstract, keywords: gene AND interaction 
AND latin 

29 

Title, abstract, keywords: gene AND interaction 
AND caribbean 

22 

SciELO (ab:(*genetic)) AND (ab:(interaction)) AND 
(ab:(latin)) 

7 

(ab:(gen )) AND (ab:(interaccion)) 74 
(ab:(*genetic)) AND (ab:(interaction)) AND 
(ab:(caribbean)) 

3 

Scopus ( ALL ( gene )  AND  TITLE-ABS-KEY ( 
interaction* )  AND  TITLE-ABS-KEY ( latin* ) ) 

771 

( ALL ( gene ) AND TITLE-ABS-KEY ( 
interaction* ) AND TITLE-ABS-KEY ( 
caribbean* ) ) 

414 

( ALL ( gene ) AND TITLE-ABS-KEY ( 
interaction* ) AND TITLE-ABS-KEY ( diet* ) 
AND TITLE-ABS-KEY ( latin ) ) 

133 
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( ALL ( gene )  AND  TITLE-ABS-KEY ( 
interaction* )  AND  TITLE-ABS-KEY ( haiti ) ) 

9 

( ALL ( gene )  AND  TITLE-ABS-KEY ( 
interaction* )  AND  TITLE-ABS-KEY ( cuba ) ) 

89 

( ALL ( gene )  AND  TITLE-ABS-KEY ( 
interaction )  AND  TITLE-ABS-KEY ( 
Dominican Republic ) ) 

32 

( ALL ( gene )  AND  TITLE-ABS-KEY ( 
interaction* )  AND  TITLE-ABS-KEY ( jamaica ) 
) 

46 

( ALL ( gene )  AND  TITLE-ABS-KEY ( 
interaction )  AND  TITLE-ABS-KEY (Trinidad 
and Tobago) ) 

27 

( ALL ( gene )  AND  TITLE-ABS-KEY ( 
interaction )  AND  TITLE-ABS-KEY (Bahamas) 
) 

27 

( ALL ( gene )  AND  TITLE-ABS-KEY ( 
interaction )  AND  TITLE-ABS-KEY (Barbados) 
) 

19 

(ALL ( gene )  AND  TITLE-ABS-KEY ( 
interaction )  AND  TITLE-ABS-KEY (Saint 
Lucia) ) 

2 

( ALL ( gene )  AND  TITLE-ABS-KEY ( 
interaction )  AND  TITLE-ABS-KEY (Grenada) ) 

8 

( ALL ( gene )  AND  TITLE-ABS-KEY ( 
interaction )  AND  TITLE-ABS-KEY (St. Vincent 
& Grenadines) ) 

0 

( ALL ( gene )  AND  TITLE-ABS-KEY ( 
interaction )  AND  TITLE-ABS-KEY (Antigua 
and Barbuda) ) 

0 

( ALL ( gene )  AND  TITLE-ABS-KEY ( 
interaction )  AND  TITLE-ABS-KEY (Dominica) 
) 

24 

( ALL ( gene )  AND  TITLE-ABS-KEY ( 
interaction )  AND  TITLE-ABS-KEY (Saint Kitts 
& Nevis) ) 

0 

( ALL ( gene )  AND  TITLE-ABS-KEY ( 
interaction )  AND  TITLE-ABS-KEY (Mexico) ) 

1242 

( ALL ( gene )  AND  TITLE-ABS-KEY ( 
interaction )  AND  TITLE-ABS-KEY 
(Guatemala) ) 

55 

( ALL ( gene )  AND  TITLE-ABS-KEY ( 
interaction )  AND  TITLE-ABS-KEY (Honduras) 
) 

26 

( ALL ( gene )  AND  TITLE-ABS-KEY ( 
interaction )  AND  TITLE-ABS-KEY (Nicaragua) 
) 

25 

( ALL ( gene )  AND  TITLE-ABS-KEY ( 
interaction )  AND  TITLE-ABS-KEY (El 
Salvador) ) 

110 
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( ALL ( gene )  AND  TITLE-ABS-KEY ( 
interaction )  AND  TITLE-ABS-KEY (Costa Rica) 
) 

154 

( ALL ( gene )  AND  TITLE-ABS-KEY ( 
interaction )  AND  TITLE-ABS-KEY (Panama) ) 

160 

( ALL ( gene )  AND  TITLE-ABS-KEY ( 
interaction )  AND  TITLE-ABS-KEY (Belize) ) 

32 

( ALL ( gene )  AND  TITLE-ABS-KEY ( 
interaction )  AND  TITLE-ABS-KEY (Brazil) ) 

2238 

( ALL ( gene )  AND  TITLE-ABS-KEY ( 
interaction )  AND  TITLE-ABS-KEY (Colombia) 
) 

297 

( TITLE-ABS-KEY ( gene )  AND  TITLE-ABS-
KEY ( interaction* )  AND  TITLE-ABS-KEY ( 
argentina ) ) 

204 

(TITLE-ABS-KEY ( gene )  AND  TITLE-ABS-KEY 
( interaction )  AND  TITLE-ABS-KEY (Peru) ) 

88 

(TITLE-ABS-KEY ( gene )  AND  TITLE-ABS-KEY 
( interaction )  AND  TITLE-ABS-KEY 
(Venezuela) ) 

61 

( TITLE-ABS-KEY ( gene )  AND  TITLE-ABS-
KEY ( interaction )  AND  TITLE-ABS-KEY 
(Chile) ) 

177 

( TITLE-ABS-KEY ( gene )  AND  TITLE-ABS-
KEY ( interaction )  AND  TITLE-ABS-KEY 
(Ecuador) ) 

63 

( TITLE-ABS-KEY ( gene )  AND  TITLE-ABS-
KEY ( interaction )  AND  TITLE-ABS-KEY 
(Bolivia) ) 

26 

( TITLE-ABS-KEY ( gene )  AND  TITLE-ABS-
KEY ( interaction )  AND  TITLE-ABS-KEY 
(Paraguay) ) 

17 

( TITLE-ABS-KEY ( gene )  AND  TITLE-ABS-
KEY ( interaction )  AND  TITLE-ABS-KEY 
(Uruguay) ) 

35 

( TITLE-ABS-KEY ( gene )  AND  TITLE-ABS-
KEY ( interaction )  AND  TITLE-ABS-KEY 
(Guyana) ) 

9 

( TITLE-ABS-KEY ( gene )  AND  TITLE-ABS-
KEY ( interaction )  AND  TITLE-ABS-KEY 
(Suriname) ) 

5 

Taylor & Francis 
Online 

[Abstract: gene] AND [All: interaction] AND 
[All: latin] 

733 

MEDLINE 
(EBSCOhost) 

AB gene AND AB interact AND AB latin 0 
AB gene AND AB interact AND AB caribbean 0 

Cochrane trails gene in Title Abstract Keyword AND 
"interaction" in Title Abstract Keyword AND 
"Latin" in Title Abstract Keyword - (Word 
variations have been searched) 

7 

gene in Title Abstract Keyword AND 
"interaction" in Title Abstract Keyword AND 

1 

https://web.p.ebscohost.com/ehost/breadbox/search?term=AB%20gene%20AND%20AB%20interact%20AND%20AB%20caribbean&sid=e2a596df-4b94-4188-ad58-6c59e953f92a%40redis&vid=70
https://web.p.ebscohost.com/ehost/breadbox/search?term=AB%20gene%20AND%20AB%20interact%20AND%20AB%20caribbean&sid=e2a596df-4b94-4188-ad58-6c59e953f92a%40redis&vid=70
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"caribbean" in Title Abstract Keyword - (Word 
variations have been searched) 

ERIC (EBSCOhost) AB gene AND AB interact AND AB latin 0 
LILACS gen [Palavras do resumo] and interacción 

[Palavras do resumo] 
77 

 interação [Palabras del resumen] and 
obesidade [Palabras del resumen] 

114 

 interação [Palabras del resumen] and genética 
[Palabras del resumen] and diabetes [Palabras 
del resumen] 

23 

 interação [Palabras del resumen] and genética 
[Palabras del resumen] and cardiovascular 
[Palabras del resumen] 

33 

IBECS  gen AND interacción 80 
Google Scholar genetic* interaction latin* "gene-interaction" 4,472 
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Section 2: Risk of bias assessment 

Appendix E11 - Appraisal tool for Cross-sectional studies (AXIS) 

Introduction 

1. Were the aims/ Objectives of the study clear? 

Methods  
2. Was the study design appropriate for the stated aim(s)? 

3. Was the sample size justified? 

4. Was the target/reference population clearly defined? (Is it clear who the research was 

about? 

5. Was the sample frame taken from an appropriate population base so that it closely 

represented the target/reference population under investigation? 

6. Was the selection process likely to select subjects/participants that were 

representative of the target/reference population under investigation? 

7. Were measures undertaken to address and categorize non-responders? 

8. Were the risk factor and outcome variables measured appropriate to the aims of the 

study? 

9. Were the risk factor and outcome variables measured correctly using instruments/ 

measurements that had been trialled, piloted or published previously? (Only dietary, 

nutritional, physical activity assessment were evaluated) 

10. Is it clear what was used to determined statistical significance and/or precision 

estimates? (e.g., p-values, CIs) 

11. Were the methods (including statistical methods) sufficiently described to enable 

them to be repeated? 

Results 
12. Were the basic data adequately described? 

13. Does the response rate raise concerns about non-response bias? 

14. If appropriate, was information about non-responders described? 

15. Were the results internally consistent? 

16. Were the results for the analyses described in the methods, presented? 

Discussion 
17. Was the author´s discussion and conclusions justified by the results? 

18. Were the limitations of the study discussed? 

19. Were there any funding sources or conflicts that may affect the authors 

interpretations of the results?  

20. Was ethical approval or consent of participants attained?
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Appendix E12 - Supplementary Table S5.2 Summary outcome of assessment with the Appraisal Tool for Cross-Sectional Studies (AXIS) 
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1)  Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 

2)  Y N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 

3)  Y Y Y Y Y Y Y N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 

4)  Y N Y Y Y Y Y Y Y Y Y N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 

5)  Y N Y Y Y Y Y N Y Y Y N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 

6)  Y Y Y Y N Y Y Y Y Y Y N Y Y Y Y Y Y Y Y Y Y Y Y Y - Y N Y Y Y Y Y Y Y 

7)  Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 

8)  Y N N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 

9)  Y N Y Y Y Y Y N Y Y Y Y Y Y Y Y Y Y Y Y Y - Y - Y Y Y Y Y Y Y Y Y Y Y 

10)  Y Y Y Y N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y - Y Y Y Y Y Y 

11)  Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 

12)  Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 

13)  Y N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N 

14)  N Y Y Y Y Y Y y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 

15)  Y Y Y Y - Y Y y Y - Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 

16)  Y Y Y Y Y Y Y y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 

17)  Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 

18)  Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N Y Y Y Y Y Y Y Y Y Y 

19)  N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N 

20)  Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y 

Note: Numbered questions are listed apart.  
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Continuation of Supplementary Table S5.2 
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 Introduction   

1)   Y Y Y Y Y Y Y Y Y Y Y Y Y Y 

 Methods   

2)   Y Y Y Y Y Y Y Y Y Y Y Y Y Y 

3)   Y Y Y Y Y Y Y Y Y Y Y Y Y Y 

4)   Y Y Y Y Y Y Y Y Y Y Y Y Y Y 

5)   Y Y Y Y Y Y Y Y Y Y Y Y Y Y 

6)   Y Y Y Y Y Y Y Y Y Y Y Y Y Y 

7)   Y Y Y Y Y Y Y Y Y Y Y Y Y Y 

8)   Y Y Y Y Y Y Y Y Y Y Y Y Y Y 

9)   Y Y Y Y Y Y Y Y Y Y Y Y Y Y 

10)   Y Y Y Y Y Y Y Y Y Y Y Y Y Y 

11)   Y Y Y Y Y Y Y Y Y Y Y Y Y Y 

 Results   

12)   N N N N N N N N N N N N N N 

13)   - - - - - - - - - - - - - - 

14)   Y Y Y Y Y Y Y Y Y Y Y Y Y Y 

15)   Y Y Y Y Y Y Y Y Y Y Y Y Y Y 

16)   N N N N N N N N N N N N N N 

 Discussion   

17)   Y Y Y Y Y Y Y Y Y Y Y Y Y Y 

18)   Y Y Y Y Y Y Y Y Y Y Y Y Y Y 

19)   N N N N N N N N N N N N N N 

20)   Y Y Y Y Y Y Y Y Y Y Y Y Y Y 
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Appendix E13 - Supplementary Table S5.3 Assessment with the Comments Appraisal Tool for Cross-Sectional Studies 
 

Introduction Method Results Discussion  

1.        2.     3. 4.        5.        6.        7.     8. 9.       10.      11. 12.  13. 14.      15.      16. 17.   18.      19.  20.      

Vilella et al. (2017) Y Y Y Y Y Y Y N Y Y Y Y Y Y Y Y Y Y N Y 

8. 24-h diet recall and global BMI values to establish percentiles in which participants were fixed into are both measures leading to bias 

13. > 5 % of the data were measing 

Young et al. (2016) Y N Y N N Y Y N Y Y Y Y N Y Y Y Y Y N Y 

2. No methodology available in full text 

4. Only characteristics "Latino children and adults" 

5. N/A 

8. Physical activity was measured via a dichotomic question 

Andrade et al. (2010) Y Y Y Y Y N Y Y Y N Y Y N Y Y Y Y Y N Y 

6. In Brazil has the highest admixture index in the world an only European ancestry population were included. 

10. Not clarified in the methods 

Ma et al. (2014) Y Y N Y N Y Y Y N Y Y Y N Y Y Y Y Y N Y 

5. Subgroup representing a minority   

9. Food frequency questionnaire not adapted to the subgroup´s gastronomic culture 

Zheng et al. (2014) Y Y Y Y Y Y Y Y Y Y Y Y N Y - Y Y Y N Y 

15. Data available in graphs not in tables hence consistency of results was no possible to determine 

Davis et al. (2010) Y Y Y N N N Y Y Y Y Y Y N Y Y Y Y Y N Y 

4. Samples from other studies, brief description, "Hispanic children and adolescents" 

5. The sample was taken from protocols and measures conducted by a third party during the past 6 years. 

6. Hispanic children recruited from schools, community centers, health clinics, health fairs via word of mouth, flyers and in-person contact. 

Barcelos et al. (2015) Y Y Y Y Y Y Y Y Y Y Y Y N Y Y Y Y N N Y 

18. No limitations were discussed 

Note: Questions are listed above, Table S5.2 summarises Table S5.3. 
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Appendix E14 - Supplementary Table S5.4 Assessment using the Risk of Bias in Non-Randomized Studies – of Interventions (ROBINS-I) 

ROBINS-I assessment 1.1 Is there potential for confounding of the effect of exposure in this study? If N or PN to 1.1: the study can be considered to be at low risk of bias due to 

confounding and no further signalling questions need be considered Y / PY / PN / N 

Smith et al 2008 PN 

[Description] "Dietary intake was assessed using a FFQ that was designed for and tested in this population". "The interactions were tested with control for potential confounders including 

age, sex, alcohol (never, past, current), smoking (never, past, current), physical activity, diabetes medications, and dietary fibre". 

Smith et al 2013 PN 

[Description] "The modified FFQ, which includes foods commonly consumed by Hispanics and open-ended portion sizes, more accurately estimated nutrients and energy intake in older 

Hispanics than the original FFQ based on its improved correlation with dietary recall data" "The interactions were tested with control for potential confounders including age, 

sex, alcohol intake (g/d), smoking (current vs. never and former), physical activity, antiglycemic medication, and ancestral admixture." 

Moon et al 2017 PN 

[Description] "Conducted various sensitivity analyses and subgroup analyses. Used a DXA and measured weight to the nearest 0.1kg. 

Portillo et al 2022 PN 

[Description] Dietary questionnaire "applied by previously trained personnel" "Adjusted for possible confounders: adjusted for: age, sex, BMI, waist circumference, physical activity, 

schooling, socioeconomic level, smoking, consumptions: fruit, vegetables, sugar, processed meats, alcoholic beverages and % Amerindian ancestry" 

Torres Sánchez et al 2014 PN 

[Description] Uses a validated questionnaire carried out by trained personnel, and the methodology is being replicated from 2 other studies. "The following known risk factors for foetal 

development were selected as potential confounders: maternal age (years), height (cm), education (years), paid occupation (yes/no), parity (none/1–2) and body mass index 

during the first trimester of pregnancy (kg/m2) and usage of vitamin supplements during pregnancy." "After adjusting separately for potential confounding variables in each 

model and correcting by bootstrap resampling..." 



  

479 

Horta et al 2018 PN 

[Description] Used DXA and stadiometer with accuracy, visceral and subcutaneous abdominal fat thickness were estimates with ultrasound. WC was measured twice. It acknowledges 

possible confounders and adjusts.  

Guevara-Cruz et al 2014 PN 

[Description] Methodology explained  thoroughly . Nutritionist assigned for the follow up. Analysis stratified and visible in tables.  

Lopez-Ortiz et al 2016 PN 

[Description] "Dietary evaluations were carried out using 24-h recall questionnaires and 3-d dietary records, and these were applied to evaluate 2 weekdays and 1 weekend day using 

standardised measures of food portions; the information was collected by direct interview." "We compared changes in end points across genotype groups according to diet 

groups at 8 weeks. To assess the effects of genotype, dietary treatment and their interaction, we used a general linear model (GLM) repeated-measures analysis, and age was 

included in the model as a covariate." 

Sir-Petermann et al 2004 PN 

[Description] Pre-established protocol, and clear inclusion and exclusion criteria,  

Prieto et al 2016 PN 

[Description] Use of previously used and validated scale “lifestyle cardiovascular risk score (LCRS)”. Clear adjustment in analysis “We examined interaction and joint associations for each 

component of the LCRS separately and controlling for each other (i.e., adjusted for the other lifestyles in the LCRS). 

Yang et al 2007 PN 

[Description] “Trained personnel visited all study participants”. “Generalized linear models adjusted for age, sex, body mass index, and physical activity were used to report the relationship 

between plasma lipid levels, saturated fat intake, and APOE genotype”. 

Ruiz-Narvaez et al 2007 PN 

[Description] “Trained personnel visited all study participants at their homes for data collection, biological specimen collection, and anthropometric measurements.” 

Hartiala et al 2012 PN 
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[Description] Study that aims to replicate previous observations by another study. “Trained personnel visited all study participants at their homes for data collection”. Use of fully adjusted 

model including age, sex, county of residence, % of total energy from fat, smoking, household income, history of diabetes, hypertension, or hypercholesteremia, obesity, and 

family history of MI. 

Zheng et al 2016 PN 

[Description] Clear aim. Use of culturally adapted food-frequency questionnaire (FFQ) “FFQ that was developed and validated specifically for the Costa Rican population”. Clear assessment 

of covariates plus transparency in statistical analysis. 

Cornelis et al 2007 PN 

[Description] Clear objective, description of cases and matched controlled. Transparency in statistical analysis, and adjustment for confounding variables.  Besides use of trained personnel 

and closed ended questionnaires: “ All data were collected by trained fieldworkers during an interview using 2 questionnaires consisting of closed-ended questions” 

Sen-Banerjee et al 2000 PN 

[Description] Clear purpose of the study, description of cases and controls, inclusion and exclusion criteria, transparency in statistical analysis, and adjustment for covariates. However, 

data sources from self-reported diabetes and hypertension, but it was validated using standardized definitions. 

Costa-Urrutia et al 2017 PN 

[Description] Clear aim, inclusion and exclusion criteria, transparent statistical analysis and adjusted for covariates. Furthermore, pre-established power calculations.  

Guevara-Cruz et al 2013 PN 

[Description] Clear aim, inclusion and exclusion criteria, transparent statistical analysis and adjustment for covariates, consideration of limitations in the study “the determination of only a 

single gene polymorphism and the subjects participating in this study belong to a specific ethnic group” 

Nascimento et al 2018 PN 

[Description] Appropriate methods for aim, clear inclusion and exclusion criteria, adjustment for covariates and transparent statistical test, consideration of limitations “This study was 

limited to analysis of the biochemical variable sin these individuals, some of the, were analysed in a previous study that was limited to anthropometric variable analysis.”  

Nascimento et al 2019 PN 

[Description] Clear study design. Nevertheless, the small sample size may have influenced the identification of minor effects.  
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Cornelis et al 2004 PN 

[Description] Clear aim and study design. Inclusion of univariate and multivariate analysis with adjustment for confounding variables.  

El-Sohemy et al 2007 PN 

[Description] Case-control study clear inclusion and exclusion criteria, appropriate study design, adjustment for confounding variables, and use of validated and culturally adapted FFQ  

 

1.1 Is there potential for 

confounding of the effect 

of exposure in this 

study? If N or PN to 1.1: 

the study can be 

considered to be at low 

risk of bias due to 

confounding and no 

further signalling 

questions need be 

considered Y / PY / PN / 

N 

If Y/PY to 1.1, 

answer 2.1 and 

1.3 to 

determine 

whether there 

is a need to 

assess time-

varying 

confounding: 

1.2. If Y or PY 

to 1.1: Was 

the analysis 

based on 

splitting, 

follow up 

time 

according to 

exposure 

received? 

If N or PN to 

1.2, answer 

questions 

1.4 to 1.6, 

which relate 

to baseline 

confounding 

1.3. If Y or PY to 

1.2: Were 

exposure 

discontinuations 

or switches 

likely to be 

related to 

factors that are 

prognostic for 

the outcome? 

If N or PN to 

1.3, answer 

questions 

1.4 to 1.6, 

which relate 

to baseline 

confounding 

Bias in 

selection of 

participants 

into the 

study 

2.1. Was 

selection of 

participants 

into the study 

(or into the 

analysis) 

based on 

variables 

measured 

after the start 

of the 

exposure? 

If N or 

PN to 

2.1 go 

to 2.4 

2.4 Do start of 

follow-up and 

start of exposure 

coincide for most 

participants? 

Correa et al 2013 PY 

 

Y 

 

Y 

  

N 

 

PY 

[Description] No established calibration 

of instruments, however 

rigorous methods for 

estimating alcohol 

consumption. 

   

"Completers, lost 

because of drop 

out, lost because 

of death" and it 

was measuring 

alcohol intake. 

Deaths and drop 

out could have 

been related. 

    

"The baseline 

cohort population 

consisted of all 

residents aged 

≥60 years on 1 

January 1997, who 

were identified by 

means of a 

complete census 

of the town." 
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Appendix E15 - Supplementary Table S6.1 Allele frequencies and Hardy-Weinberg 

Equilibrium P-value (n=497) 

Gene & SNP Genotype Count 
Allele Frequency 
in this study (%) 

Hardy-Weinberg 
Equilibrium P-
value 

CETP rs4783961 
 

GG = 152 
GA = 241 
AA = 104 

G = 55 
A = 45 

0.64 
 

LPL rs327 
TT = 286 
TG = 190 
GG = 21 

T = 77 
G = 23 

0.13 
 

LPL rs3200218 
AA = 407 
AG = 83 
GG = 7 

A = 90 
G = 10 

0.25 
 

LPL T93G 
(rs1800590) 

TT = 480 
TG = 17 
GG = 0 

T = 98 
G = 2 

0.70 
 

LPL rs268 
GG = 472 
GA = 25 
AA = 0 

G = 97 
A = 3 

0.57 
 

Values in bold have a minor allele frequency less than 5%. SNP – single nucleotide 

polymorphism; CETP – cholesteryl ester transfer protein; LPL – lipoprotein lipase. 
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Appendix E16 - Supplementary Table S6.2 Association of GRS with blood lipids, blood pressure and obesity-related traits 

Trait 
Mean ± Standard Deviation  

P value 
GRS<2 (n=239) GRS≥2 (n=258) 

BMI (kg/m2) 24.3 ± 1.2  24.0 ± 1.2 0.70a 

Waist circumference (cm)  87.1 ± 1.1  86.3 ± 1.1  0.65a 

Waist hip ratio 0.90 ± 1.10  0.90 ± 1.10 0.73b 

Systolic BP (mmHg) 121.3 ± 1.2  119.3 ± 1.2 0.51b 

Diastolic BP (mmHg) 74.8 ± 1.2  74.4 ± 1.2  0.93b 

HDL (mg/dL) 41.1 ± 1.3  41.4 ± 1.3  0.92b 

LDL (mg/dL) 114.1 ± 1.3 114.7 ± 1.3  0.81b 

TG (mg/dL) 138.4 ± 1.8  130.9 ± 1.8  0.43b 

Total cholesterol (mg/dL) 188.2 ± 1.2  186.7 ± 1.2  0.74b 

GRS – genetic risk score; BMI – body mass index; HDL – high-density lipoprotein cholesterol; LDL – low-density lipoprotein cholesterol; TG –

triglycerides. P values were obtained from linear regression analysis using log-transformed variables. 

a P values adjusted for age, sex, type 2 diabetes, duration of diabetes, anti-diabetic medication, smoking status, and alcohol intake. 

b P values adjusted for age, sex, BMI, type 2 diabetes, duration of diabetes, anti-diabetic medication, smoking status, and alcohol intake. Log-

transformed variables were used for the analysis. 
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Appendix E17 - Supplementary Table S6.3 Association of GRS with obesity 

Trait 
Odds ratio (95% 
C.I) 

n 
P value 

GRS<2 GRS≥2 

Common obesity 1.34 (0.89 – 2.01) 214 236 0.16 

Central obesity 1.20 (0.81 – 1.80) 227 248 0.37 

GRS – genetic risk score. 

P values were obtained from logistic regression analysis, adjusted for age, sex, type 2 

diabetes, duration of diabetes, anti-diabetic medication, smoking status, and alcohol 

intake. Log-transformed variables were used for the analysis.   
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Appendix E18 - Supplementary Figure S7.1 Selection of participants from the Study of 

Obesity, Nutrition, Genes and Social factors (SONGS) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure S7.1 A flow chart showing the selection of participants from the 

Study of Obesity, Nutrition, Genes and Social factors (SONGS) 

GRS, genetic risk score. 

Data from the younger cohort living in imminently urban areas from the Children of the 

Millennium study which was collected between the months of July and October 2022 was 

used for this study. Supplementary Figure S7.1 shows how the main sample of young 

people used in this study was obtained. Out of a sample of 833 participants, 96% of them 

consented to participate in the main survey and about 95% of the respondents consented to 

the various components of the laboratory survey, including taking anthropometric 

measurements, blood samples and blood pressure measurement.
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Appendix E19 - Supplementary Table S7.1 Single nucleotide polymorphisms included in the GRS and the reported traits by genome-wide 

association (GWA) studies 

SNP Gene name Gene Symbol 
Chromosome 
Location 

Location of 
SNP 

Alleles 
Risk/Other 

Traits GWA Study 

rs1558902 

Alpha-
ketoglutarate 
dependent 
dioxygenase 

FTO  16:53769662 Intronic A/T 

HDL-C, BMI, 
HC, WC, 
HbA1c and 
obesity 

Locke et al. (2015) [8]  
Ligthart et al., (2016) 
[622] 
Tachmazidou et al. 
(2017) [623]  
Wheeler et al. (2017) 
[624]  
Scherag et al. (2010) 
[625]  

rs13021737 
Transmembrane 
protein 18 

TMEM18  2:632348 Intergenic G/A BMI 

Locke et al. (2015) [8]  
Akiyama et al. (2017) 
[626]  
Hoffmann et al. (2018) 
[627] 
Justice et al. (2017) 
[628] 
Pulit et al. (2019) [629] 
Koskeridis et al. (2022) 
[352] 
 

rs6567160 
Melanocortin 4 
receptor 

MC4R  18:60161902 Upstream C/T 
HDL-C, TG, 
WHR, T2D, 
BMI 

Locke et al. (2015) [8] 
Pulit et al. (2019) [629] 
Vujkovic et al. (2020) 
[631] 
Martin et al. (2021) [7] 
Mahajan et al. (2018) 
[630] 
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rs10938397 
Glucosamine-6-
phosphate 
deaminase 2 

GNPDA2  4:45180510 Intergenic G/A 
HDL-C, LDL-
C, BMI, WC, 
obesity 

Locke et al. (2015) [8] 
Martin et al. (2021) [7] 
Berndt et al. (2013) 
[401] 
Shungin et al. (2015) 
[632] 

rs543874 

SEC16 homolog B, 
endoplasmic 
reticulum export 
factor 

SEC16B  1:177920345 Upstream  G/A 
HDL-C, BMI, 
HC, WHR 

Locke et al. (2015) [8]  
Pulit et al. (2019) [629] 
Koskeridis et al. (2022) 
[352] 
Shungin et al. (2015) 
[632] 
Huang et al. (2022) 
[633] 

rs7138803 
BCDIN3 domain 
containing RNA 

BCDIN3D  12:49853685 Intergenic A/G 
HDL-C, BMI, 
HC, WHR, 
obesity 

Locke et al. (2015) [8] 
Pulit et al. (2019) [629] 
Koskeridis et al. (2022) 
[352] 
Berndt et al. (2013) 
[401] 
Shungin et al. (2015) 
[632] 

rs2207139 
Transcription 
factor AP-2 beta 

TFAP2B  6:50877777 Intergenic G/A BMI 

Locke et al. (2015) [8] 
Justice et al. (2017) 
[628] 
Koskeridis et al. (2022) 
[352] 
Berndt et al. (2013) 
[401] 

rs3101336 
Neuronal growth 
regulator 1 

NEGR1  1:72285502 Intronic C/T BMI 

Locke et al. (2015) [8] 
Akiyama et al. (2017) 
[626]  
Hoffmann et al. (2018) 
[627] 
Justice et al. (2017) 
[628] 
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Pulit et al. (2019) [629] 

rs10182181 Adenylate cyclase 3 ADCY3  2:24927427 Intergenic G/A BMI 

Locke et al. (2015) [8] 
Akiyama et al. (2017) 
[626]  
Hoffmann et al. (2018) 
[627] 
Winker et al. (2015) 
[634] 

rs1516725 
ETS variant 
transcription factor 
5 

ETV5  3:186106215 Intronic C/T BMI 

Locke et al. [8] 
Akiyama et al. (2017) 
[626] 
Berndt et al. (2013) 
[401] 
Graham et al. (2021) [5] 

rs2287019 
Glutaminyl-peptide 
cyclotransferase 
like 

QPCTL 19:45698914 Intronic C/T 
LDL-C, TC, 
SBP, BMI, 
WC, WHR,  

Locke et al. (2015) [8] 
Pulit et al. (2019) [629]  
Shungin et al. (2015) 
[632]  
Lee et al. (2022) [635]  

rs12446632 
G protein-coupled 
receptor class C 
group 5 member B 

GPRC5B  16:19924067 Intergenic G/A BMI 

Locke et al. (2015) [8]  
Hoffman et al. (2018) 
[627] 
Berndt et al. (2013) 
[401] 

rs3817334 
Mitochondrial 
carrier 2 

MTCH2  11:47,607,569 Intronic T/C BMI 

Akiyama et al. (2017) 
[626] 
Hoffman et al. (2018) 
[627] 
Huang et al. (2022) 
[633] 
Winker et al. (2015) 
[634] 
Speliotes et al. (2010) 
[754] 
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rs2112347 
POC5 centriolar 
protein 

POC5  5:75719417 Upstream T/G 

HDL-C, LDL-
C, TG BMI, 
WC, HC, 
WHR, body 
fat 
percentage 

Locke et al. (2015) [8]  
Pulit et al. (2019) [629]  
Martin et al. (2021) [7]   
Shungin et al. (2015) 
[632]  

rs16951275 
Mitogen-activated 
protein kinase 5 

MAP2K5  15:67784830 Intronic T/C BMI 

Locke et al. (2015) [8]  
Justice et al. (2017) 
[628]  
Wood et al. (2016) 
[636] 

rs3810291 
zinc finger CCCH-
type containing 4 

ZC3H4 
 
19:47065746 

3 prime UTR A/G 
HDL-C, TG, 
BMI, WC, 
T2D, HC 

Locke et al. (2015) [8] 
Martin et al. (2021) [7]   
Mahajan et al. (2018) 
[630] 
Shungin et al. (2015) 
[632] 

rs12566985 
FPGT-TNNI3K 
readthrough 

FPGT-TNNI3K  1:74536509 Intronic G/A BMI 
Locke et al. (2015) [8]  
Felix et al. (2022) [637]  

rs10968576 
Leucine rich repeat 
and Ig domain 
containing 2 

LINGO2  9:28414341 Intronic G/A 
HDL-C, BMI, 
WC  

Locke et al. (2015) [8] 
Koskeridis et al. (2022) 
[352] 
Huang et al. (2022) 
[633] 
Liu et al. (2017) [638]  

rs12286929 
Cell adhesion 
molecule 1 

CADM1  11:115151684 Intergenic G/A BMI 

Locke et al. (2015) [8] 
Hoffman et al. (2018) 
[627] 
Pulit et al. (2019) [629]  

rs12885454 Protein kinase D1 PRKD1  
 
14:29267632 

Exonic C/A BMI, WC 

Locke et al. (2015) [8] 
Hoffman et al. (2018) 
[627] 
Shungin et al. (2015) 
[632] 
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Huang et al. (2022) 
[633] 

rs657452 
AGBL 
carboxypeptidase 4 

AGBL4  1:49124175 Intronic A/G BMI 

Locke et al. (2015) [8] 
Hoffman et al. (2018) 
[627] 
Koskeridis et al. (2022) 
[352] 

rs11165643 
Polypyrimidine 
tract binding 
protein 2 

PTBP2  1:96458541 Intergenic T/C 
BMI, body fat 
percentage 

Locke et al. (2015) [8] 
Akiyama et al. (2017) 
[626]  
Koskeridis et al. (2022) 
[352]  
Martin et al. (2021) [7]   

rs758747 
NLR family CARD 
domain containing 
3 

NLRC3 16:3577357 5 prime UTR T/C BMI 
Locke et al. (2015) [8] 
Hoffman et al. (2018) 
[627]  

rs10132280 
Syntaxin binding 
protein 6 

STXBP6  14:25458973 Intergenic C/T 
BMI, WC, HC, 
WHR 

Locke et al. (2015) [8] 
Pulit et al. (2019) [629]  
Shungin et al. (2015) 
[632] 
Graff et al. (2017) [639] 

rs1167827 
Huntingtin 
interacting protein 
1 

HIP1  7:75533848 
3 prime UTR 
 

G/A BMI 

Locke et al. (2015) [8]  
Huang et al. (2022) 
[633] 
 

rs13078960 
Cell adhesion 
molecule 2 

CADM2  3:85758440 Intronic G/T BMI Locke et al. (2015) [8] 

rs12401738 
Far upstream 
element binding 
protein 1 

FUBP1  1:77981077 Intronic A/G BMI 
Locke et al. (2015) [8] 
Winkler et al. 2015 
[634] 

rs12429545 Olfactomedin 4 OLFM4  13:53528071 Intronic A/G BMI, WC 

Akiyama et al. (2017) 
[626]  
Justice et al. (2017) 
[628]  
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Shungin et al. (2015) 
[632]  

rs16851483 
RAS p21 protein 
activator 2 

RASA2  3:141556594 Intronic T/G BMI 
Locke et al. (2015) [8] 
Pulit et al. (2019) [629] 

rs17094222 
Hypoxia inducible 
factor 1 subunit 
alpha inhibitor 

HIF1AN  10:100635683 Intergenic C/T BMI 
Locke et al. (2015) [8] 
Huang et al. (2022) 
[633] 

rs17405819 
Hepatocyte nuclear 
factor 4 gamma 

HNF4G  8:75894349 Intergenic T/C BMI 

Hoffman et al. (2018) 
[627] 
Pulit et al. (2019) [629] 
Graff et al. (2017) [639] 

rs1928295 Toll like receptor 4 TLR4  9:117616205 Intergenic T/C BMI 
Locke et al. (2015) [8]  
Koskeridis et al. (2022) 
[352] 

rs7141420 Neurexin 3 NRXN3  14:79433111 Intronic T/C BMI, obesity 
Locke et al. (2015) [8] 
Berndt et al. (2013) 
[401] 

rs205262 

Inflammation and 
lipid regulator with 
UBA-like and 
NBR1-like domains 

C6orf106  6:34595387 Intronic G/A BMI Locke et al. (2015) [8] 

rs2365389 
Fragile histidine 
triad diadenosine 
triphosphatase 

FHIT  3:61250788 Intronic C/T BMI 
Locke et al. (2015) [8] 
Huang et al. (2022) 
[633] 

rs2820292 Neuron navigator 1 NAV1  1:201815159 Intronic C/A BMI 
Locke et al. (2015) [8] 
 

rs4256980 
Tripartite motif 
containing 66 

TRIM66  11:8652392 Intronic G/C BMI 
Locke et al. (2015) [8] 
Pulit et al. (2019) [629] 

rs7599312 
Erb-b2 receptor 
tyrosine kinase 4 

ERBB4  2:212548507 
Regulatory 
region 

G/A BMI 
Locke et al. (2015) [8] 
Tachmazidou et al. 
(2017) [623]  

rs9925964 
 Lysine 
acetyltransferase 8 

KAT8  16:31118574  Splice region  A/G BMI 
Locke et al. (2015) [8] 
Hoffman et al. (2018) 
[627] 
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Abbreviations: SNP – single nucleotide polymorphism; GRS – genetic risk score; HDL-C – high-density lipoprotein cholesterol; LDL-C – low-density 
lipoprotein cholesterol; TG – triglycerides; TC – total cholesterol; SBP – systolic blood pressure; HbA1c – glycated haemoglobin;  BMI – body mass index; 
WC – waist circumference; WHR  – waist-hip ratio; HC – hip circumference; T2D – type 2 diabetes; UTR – untranslated region. 
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Appendix E20 - Supplementary Table S7.2 Allele frequencies and Hardy-Weinberg 

Equilibrium P-value (n=468) 

Gene & SNP Genotype Count Allele 
Frequency in 
this study (%) 

Hardy-Weinberg 
Equilibrium P-
value 

FTO rs1558902 TT = 402 
TA = 63 
AA = 3 

T = 93 
A = 7 

0.76 

TMEM18 rs13021737 GG = 384 
GA = 79 
AA = 5 

G = 90 
A = 10 

0.68 

MC4R rs6567160 TT = 417 
TC = 49 
CC = 2 

T = 94 
C = 6 

0.66 

GNPDA2 rs10938397 AA = 193 
GA = 201 
GG = 74 

A = 63 
G = 37 

0.08 

SEC16B rs543874 AA = 292 
GA = 148 
GG = 28 

A = 78 
G = 22 

0.12 

BCDIN3D rs7138803 GG = 348 
GA = 116 
AA = 4 

G = 87 
A = 13 

0.09 

TFAP2B rs2207139 AA = 134 
GA = 222 
GG = 112 

A = 52 
G = 48 

0.29 

NEGR1 rs3101336 CC = 230 
CT = 189 
TT = 49 

C = 69 
T = 31 

0.28 

ADCY3 rs10182181 AA = 321 
GA = 130 
GG = 17 

A = 82 
G = 18 

0.40 

QPCTL rs2287019 CC = 422 
TC = 46 
TT = 0 

C = 95 
T = 5 

0.26 

GPRC5B rs12446632 GG = 453 
AG = 15 
AA = 0 

G = 98 
A = 2 

0.72 

MTCH2 rs3817334 TT = 166 
CT = 215 
CC = 87 

T = 58 
C = 42 

0.24 

POC5 rs2112347 TT = 142 G = 55 0.79 
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TG = 229 
GG = 97 

T = 45 

MAP2K5 rs16951275 CC = 261 
CT = 171 
TT = 35 

C = 74 
T = 26 

0.34 

ZC3H4 rs3810291 GG = 170 
GA = 227 
AA = 71 

G = 61 
A = 39 

0.74 

FPGT-TNNI3K rs12566985 GG = 243 
AG = 177 
AA = 48 

G = 71 
A = 29 

0.07 

LINGO2 rs10968576 AA = 285 
GA = 160 
GG = 23 

A = 78 
G = 22 

0.93 

CADM1 rs12286929 GG = 137 
GA = 228 
AA = 103 

A = 54 
G = 46 

0.66 

PRKD1 rs12885454 CC = 316 
CA = 136 
AA = 16 

C = 82 
A = 18 

0.77 

AGBL4 rs657452 GG = 149 
GA = 217 
AA = 102 

G = 55 
A = 45 

0.17 

PTBP2 rs11165643 TT = 272 
TC = 161 
CC = 35 

T = 75 
C = 25 

0.11 

NLRC3 rs758747 CC = 351 
TC = 105 
TT = 12 

C = 86 
T = 14 

0.23 

STXBP6 rs10132280 CC = 280 
AC = 159 
AA = 29 

A = 77 
C = 23 

0.32 

HIP1 rs1167827 AA = 318 
AG = 130 
GG = 20 

A = 82 
G = 18 

0.16 

FUBP1 rs12401738 GG = 195 
AG = 211 
AA = 62 

G = 64 
A = 36 

0.68 

OLFM4 rs12429545 GG = 147 
AG = 226 
AA = 95 

A = 56 
G = 44 

0.63 

RASA2 rs16851483 GG = 141 
TG = 229 
TT = 98 

G = 55 
T = 45 

0.78 
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CADM2 rs13078960 TT = 432 
GT = 35 
GG = 1 

T = 96 
G = 4 

0.74 

HIF1AN rs17094222 TT = 242 
CT = 188 
CC = 38 

C = 72 
T = 28 
 

0.86 

HNF4G rs17405819 TT = 207 
CT = 214 
CC = 47 

T = 67 
C = 33 

0.44 

TLR4 rs1928295 TT = 245 
CT = 183 
CC = 40 

T = 72 
C = 28 

0.39 

NRXN3 rs7141420 TT = 284 
TC = 162 
CC = 22 

T = 78 
C = 22 
 

0.84 

C6orf106 rs205262 AA = 381 
GA = 81 
GG = 6 

A = 90 
G = 10 

0.48 

FHIT rs2365389 TT = 366 
TC = 93 
CC = 9 

T = 88 
C = 12 
 

0.28 

NAV1 rs2820292 AA = 251 
CA = 176 
CC = 41 

A = 72 
T = 28 

0.21 

TRIM66 rs4256980 GG = 190 
GC = 223 
CC = 55 

G = 64 
C = 36 

0.39 

ERBB4 rs7599312 GG = 378 
AG = 87 
AA = 3 

G = 90 
A = 10 
 

0.40 

KAT8 rs9925964 AA = 133 
GA = 232 
GG = 103 

A = 53 
G = 47 

0.92 

ETV rs1516725 CC = 423 
CT = 45 

C = 95 
T =  5 

0.27 

SNP – single nucleotide polymorphis; FTO – alpha-ketoglutarate-dependent dioxygenase; 

TMEM18 – transmembrane protein 18; MC4R – melanocortin 4 receptor; GNPDA2 – 

glucosamine-6-phosphate deaminase 2; SEC16B – SEC16 homolog B, endoplasmic 

reticulum export factor; BCDIN3D – BCDIN3 domain containing RNA methyltransferase; 

TFAP2B – transcription factor AP-2 beta; NEGR1 – neuronal growth regulator 1; ADCY3 – 

adenylate cyclase 3; QPCTL – glutaminyl-peptide cyclotransferase like; GPRC5B – G protein-

coupled receptor class C group 5 member B; MTCH2 – mitochondrial carrier 2; POC5 – 
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centriolar protein; MAP2K – mitogen-activated protein kinase 5; ZC3H4 – zinc finger CCCH-

type containing 4; FPGT-TNNI3K – FPGT-TNNI3K readthrough; LINGO2 – leucine-rich 

repeat and immunoglobulin-like domain-containing nogo receptor-interacting protein 2; 

CADM1 – cell adhesion molecule 1; PRKD1 – protein kinase D1; AGBL4 – AGBL 

carboxypeptidase 4; PTBP2 – polypyrimidine tract binding protein 2; NLRC3 – NLR family 

CARD domain containing 3; STXBP6 – syntaxin binding protein 6; HIP1 – Huntingtin 

interacting protein 1; FUBP1 – far upstream element binding protein 1; OLFM4 – 

olfactomedin 4; RASA2 – RAS p21 protein activator 2; HIF1AN – hypoxia inducible factor 1 

subunit alpha inhibitor; HNF4G – hepatocyte nuclear factor 4 gamma; TLR4 – toll like 

receptor 4; NRXN3 – neurexin 3; ILRUN or C6orf106 – inflammation and lipid regulator 

with UBA-like and NBR1-like domains; FHIT – fragile histidine triad diadenosine 

triphosphatase; NAV1 – neuron navigator 1; TRIM66 – tripartite motif containing 66; 

ERBB4 – erb-b2 receptor tyrosine kinase 4; KAT8 – lysine acetyltransferase 8; and ETV5 – 

ETS variant transcription factor 5. 
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Appendix E21 - Supplementary Table S7.3 Association of GRS with cardiometabolic traits 

Trait 

Mean ± SE 

GRS≤37 risk alleles  
(n=228) 

GRS>37 risk alleles  
(n=240) 

P value 

HDL-C (mmol/L)  1.02 ± 1.02   1.04 ± 1.02  0.634 

LDL-C (mmol/L) 1.88 ± 1.02 1.89 ± 1.02 0.851 

TAG (mmol/L) 0.97 ± 1.03 0.93 ± 1.03 0.368 

TC (mmol/L) 3.45 ± 1.02 3.45 ± 1.02 0.993 

SBP (mmHg) 102.95 ± 1.01 103.28 ± 1.01 0.693 

DBP (mmHg) 66.03 ± 1.01 66.47 ± 1.01 0.512 

Fasting glucose  
(mmol/L) 

4.32 ± 0.05 4.44 ± 0.05 0.103 

Fasting insulin 
(pmol/L) 

51.75 ± 1.03 53.23 ± 1.03 0.550 

HbA1c (%) 5.43 ± 1.00 5.43 ± 1.00 0.829 

BMI (kg/m2) 23.81 ± 1.01 24.00 ± 1.01 0.599 

WC* (cm) 80.52 ± 1.01 80.61 ± 1.01 0.919 

 

P values were obtained from linear regression analysis with adjustment for sex, family 

history of diabetes, smoking status, physical activity level, and BMI wherever appropriate. 

Log-transformed variables were used for the analysis (except fasting glucose) and values 

in bold represent significant associations. GRS – genetic risk score; TAG – triacylglycerol; 

HDL-C – high-density lipoprotein cholesterol; LDL-C – low-density lipoprotein cholesterol; 

TC – total cholesterol; SBP – systolic blood pressure; DBP – diastolic blood pressure; 

HbA1c – glycated haemoglobin; BMI – body mass index; WC – waist circumference. 

*The number of participants with data for waist circumference was 457. 
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Abstract
Purpose of Review An abnormal lipid profile is considered a main risk factor for cardiovascular diseases and evidence 
suggests that single nucleotide polymorphisms (SNPs) in the cholesteryl ester transfer protein (CETP) gene contribute to 
variations in lipid levels in response to dietary intake. The objective of this review was to identify and discuss nutrigenetic 
studies assessing the interactions between CETP SNPs and dietary factors on blood lipids.
Recent Findings Relevant articles were obtained through a literature search of PubMed and Google Scholar through to July 
2021. An article was included if it examined an interaction between CETP SNPs and dietary factors on blood lipids. From 
49 eligible nutrigenetic studies, 27 studies reported significant interactions between 8 CETP SNPs and 17 dietary factors on 
blood lipids in 18 ethnicities. The discrepancies in the study findings could be attributed to genetic heterogeneity, and dif-
ferences in sample size, study design, lifestyle and measurement of dietary intake. The most extensively studied ethnicities 
were those of Caucasian populations and majority of the studies reported an interaction with dietary fat intake. The rs708272 
(TaqIB) was the most widely studied CETP SNP, where ‘B1’ allele was associated with higher CETP activity, resulting 
in lower high-density lipoprotein cholesterol and higher serum triglycerides under the influence of high dietary fat intake.
Summary Overall, the findings suggest that CETP SNPs might alter blood lipid profiles by modifying responses to diet, but 
further large studies in multiple ethnic groups are warranted to identify individuals at risk of adverse lipid response to diet.

Keywords Cholesteryl ester transfer protein · Polymorphisms · Diet · Lipids · Genetic Epidemiology

Background

The global burden of cardiovascular diseases (CVDs) is well 
recognised and ischaemic heart disease alone accounted for 
9 million deaths in 2019, making it the top cause of death 
in all parts of the world [1]. An abnormal lipid profile (dys-
lipidaemia), indicated by low concentrations of high-density 
lipoprotein cholesterol (HDL) and elevated levels of low-
density lipoprotein cholesterol (LDL) or triglycerides (TG), 
is considered a major risk factor for CVDs [2, 3]. The car-
dioprotective role of HDL is thought to be dependent on 
the function of HDL rather than the levels of HDL, which 

is reflected in individuals with scavenger receptor class B 
member 1 (SCARB1) gene mutations who have higher levels 
of HDL but higher CVD risk [4]. There is evidence to sug-
gest that a combination of genetic susceptibility and envi-
ronmental factors including diet is responsible for CVDs 
[5••, 6, 7]. Single nucleotide polymorphisms (SNPs) in 
lipid-related genes such as the cholesteryl ester transfer pro-
tein (CETP), lipoprotein lipase (LPL) and apolipoprotein E 
(ApoE) genes have been found to contribute to changes in 
lipid profiles in response to diet [8, 9, 10•]. Of these three 
genes, CETP has been shown to have more associations with 
blood lipids (Supplemental Table 1). CETP regulates the 
concentration and particle size of HDL cholesterol in the 
plasma (Fig. 1) and is considered to play an important role 
in reverse cholesterol transport which is a protective mecha-
nism against atherosclerosis [11]. Increased CETP activity 
has been shown to result in lower HDL levels and is linked 
to higher risk of CVDs [12].

Several studies have demonstrated CETP–diet inter-
actions on blood lipids; however, the findings have been 
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inconsistent [10•, 13–17]. The objective of this review was 
therefore to identify and discuss studies assessing the inter-
actions between CETP SNPs and dietary factors on blood 
lipids and to identify the factors that can be attributed to 
these discrepancies.

Cholesteryl ester transfer protein (CETP) is a plasma gly-
coprotein which is secreted by the liver and is responsible 
for transporting cholesteryl esters and triglycerides between 
HDL and apolipoprotein B–containing lipoproteins such as 
very-low-density lipoprotein (VLDL) and low-density lipo-
protein (LDL) [18]. HDL is formed from lipid-free apolipo-
protein A1 (ApoA1) in a process involving the removal of 
free cholesterol from peripheral tissues and the subsequent 
esterification of some of the free cholesterol into cholesteryl 
esters via the actions of adenosine triphosphate binding cas-
sette transporter A1 and lecithin:cholesterol acyltransferase 
(LCAT) [11]. The enrichment of HDL with triglycerides 
makes it a substrate for hepatic lipase (HL) which then 
hydrolyses the triglycerides, resulting in dissociation of the 
lipid-free ApoA1 and a decrease in size of the HDL particle, 
forming small-dense HDL [18].

Materials and Methods

Selection of the Candidate Gene for the Review

To identify candidate genes which have been reported by 
genome-wide association (GWA) studies to influence blood 
lipid levels, a literature search was undertaken in December 
2020, using the following keywords: (genome-wide associa-
tion study OR genome-wide association scan OR genome-
wide association analysis OR GWAS OR GWA) AND 
(Lipids OR HDL OR LDL OR VLDL OR total cholesterol 
OR triglycerides OR triacylglycerol OR blood lipids). The 
results showed that, out of 32 identified studies (Supplemen-
tal Table 1), 20 GWA studies reported statistically significant 
associations between CETP and lipids [19–38], while LPL 
was reported by 18 GWA studies [19, 20, 22, 24, 25, 28, 

29, 31–41] and APOE was reported by 10 GWA studies [22, 
24, 25, 27, 29, 30, 32, 33, 34, 37]. CETP was then chosen 
for the review as it had the highest number of hits compared 
to LPL and APOE.

Study identification

To identify published articles, a literature search was under-
taken using PubMed (https:// pubmed. ncbi. nlm. nih. gov/) and 
Google Scholar (https:// schol ar. google. com/). The search 
covered the earliest date of indexing through to July 2021. 
For PubMed, the following key terms were used: (CETP 
OR cholesteryl ester transfer protein) AND (polymorphism 
OR gene OR SNP OR single nucleotide polymorphism OR 
genetic variation OR genetic variant OR rs3764261 OR 
rs1532624 OR rs1800775 OR rs9989419 OR rs4783961 
OR rs708272 OR rs7499892 OR rs2303790 OR rs16965220 
OR rs247616 OR rs289708 OR rs12708980 OR rs247617 
OR rs173539) AND (‘gene-diet interaction’ OR ‘diet-gene 
interaction’ OR ‘SNP-diet interaction’ OR ‘diet-SNP inter-
action’ OR ‘gene-nutrient interaction’ OR ‘nutrient-gene 
interaction’) AND (carbohydrate OR protein OR fat OR 
fibre OR sugar OR SFA OR MUFA OR PUFA OR Medi-
terranean diet OR Nordic diet OR B12 OR amino acids OR 
polyphenols OR egg intake OR caffeine intake OR green tea 
OR alcohol intake OR meat intake) AND (lipids OR HDL 
OR LDL OR VLDL OR total cholesterol OR triglycerides 
OR triacylglycerol OR blood lipids OR serum lipids). The 
key terms for Google Scholar were (CETP AND ‘gene-diet 
interaction’ AND lipids). Only studies published in English 
were included.

Study Selection

The search strategies above yielded a total of 448 articles 
from the two databases (227 from PubMed and 221 from 
Google Scholar) as shown in Fig. 2. Titles of all the studies 
were first read to determine their relevance to the topic. Full-
text of those found to be relevant were then read in detail to 
determine eligibility for inclusion. The criteria for inclusion 
in the review were as follows: gene–diet interaction stud-
ies involving CETP gene polymorphisms and blood lipids. 
Only studies conducted in humans were included and, after 
applying the inclusion and exclusion criteria, 49 articles 
were found to be eligible, of which one article was pub-
lished as an abstract. The studies excluded after reading the 
full-text were those focusing on interaction between CETP 
and physical activity on lipids; gene–diet interaction on 
lipids not including CETP; and gene–diet interaction review 
articles. Full-text of 48 eligible studies was read in detail 
and the results were extracted for analysis (Supplemental 
Tables 2 and 3). The results of one study [42] which was 
published as an abstract were also extracted and included in 

Fig. 1  The role of cholesteryl ester transfer protein in lipid metabo-
lism
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the tables. The studies consisted of 28 observational studies 
(Supplemental Table 2) and 21 interventional studies (Sup-
plemental Table 3).

Data Extraction

The studies were identified by a single investigator and the 
following data were double-extracted independently by one 
reviewer: first author, publication year, location or ethnicity 
of participants, sample size, mean age, study design, refer-
ence SNP (rs) ID, genotype and minor allele. Corresponding 
authors were contacted to provide additional information 
where needed.

Results of Database Search

This section reviews studies examining the interaction 
between dietary factors and CETP SNPs on blood lipids. 
The rs708272 (TaqIB), the most widely studied CETP SNP, 
was investigated by 31 studies. The second most studied 
SNP was rs5882 (I405V), accounting for 16 studies. The 
CETP SNPs rs3764261 and rs1800775 were each examined 
by 6 studies. All the studies were conducted in adults except 
for one study which was carried out in prepubertal children 
[43]. The ethnicities covered by the studies included British, 
White American, Spanish, Mexican, Chinese and Iranian as 
shown in Fig. 3. A wide range of dietary factors were inves-
tigated by the 28 observational studies, and these included 
dietary carbohydrate, protein, saturated fatty acids (SFA), 
monounsaturated fatty acids (MUFA), polyunsaturated fatty 
acids (PUFA), coffee, sucrose, total energy intake and alco-
hol consumption. The 21 dietary intervention studies also 
focused on a variety of diets including Mediterranean diet, 
plant sterol ester, sesame oil, canola oil and rapeseed oil.

TaqIB (SNP rs708272 G > A)

The major allele (‘G’) is also called the ‘B1’ allele while the 
minor allele (‘A’) is also referred to as the ‘B2’ allele. Eight 
out of seventeen observational studies reported a signifi-
cant association between TaqIB genotypes, dietary factors 
and blood lipids. In a cross-sectional study involving 129 
Iranian patients with type 2 diabetes (T2D) without dyslipi-
daemia [15], a higher intake of total fat (>34.9% from total 
energy intake) was associated with higher HDL in partici-
pants with ‘B1B1’ genotype (mean HDL (mg/dl) for high 
total fat intake (>34.9% from total energy) vs low total fat 
intake (≤ 34.9% from total energy) = 58.6 ± 4.1 vs 36.5 ± 
6.5; Pinteraction = 0.02). Those with ‘B2B2’ genotype who 
had a higher intake of total fat (>34.9% from total energy) 
also had higher HDL (mean HDL (mg/dl) for high total fat 
intake (>34.9% from total energy) vs low total fat intake (≤ 
34.9% from total energy) = 59.0 ± 4.2 vs 55.8 ± 3.3) but 
the interaction was more pronounced in individuals with 
‘B1B1’ genotype, while in those with ‘B1B2’ genotype, the 
interaction was not observed. A prospective cohort study of 
603 men with T2D in the USA (96% of whom were white) 
[13] on the other hand reported that a higher intake of total 
fat (>33.5% from total energy intake), animal fat (>19.9% 
from total energy intake), SFA (>11.47% from total energy 
intake) and MUFA (>12.75% from total energy intake) was 
associated with lower HDL in participants with ‘B1B1’ 
genotype compared to those with ‘B2B2’ genotype (mean 
HDL (mg/dl) for low total fat intake (≤ 33.5% of energy) 
vs high total fat intake (>33.5% of energy): 40.0 ± 0.03 
vs 36.2 ± 0.02 for ‘B1B1’, 41.5 ± 0.03 vs 44.9 ± 0.03 for 
‘B2B2’, Pinteraction = 0.003; mean HDL (mg/dl) for low 
animal fat intake (≤ 19.9% of energy) vs high animal fat 
intake (>19.9% of energy): 39.7 ± 0.02 vs 36.2 ± 0.03 for 
‘B1B1’, 42.2 ± 0.04 vs 43.5 ± 0.03 for ‘B2B2’, Pinteraction 

Fig. 2  Flowchart of studies 
identified in the literature for 
CETP–diet interaction on lipids
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= 0.02; mean HDL (mg/dl) for low SFA intake (≤ 11.47% 
of energy) vs high SFA intake (>11.47% of energy): 39.8 ± 
0.02 vs 36.2 ± 0.03 for ‘B1B1’, 42.2 ± 0.04 vs 43.8 ± 0.03 
for ‘B2B2’, Pinteraction = 0.02; mean HDL (mg/dl) for low 
MUFA intake (≤ 12.75% of energy) vs high MUFA intake 
(>12.75% of energy): 39.3 ± 0.03 vs 36.5 ± 0.02 for ‘B1B1’, 
41.9 ± 0.03 vs 44.2 ± 0.03 for ‘B2B2’, Pinteraction = 0.04). 
The difference in the findings might be due to the type of 
fat consumed since the Iranian study only considered total 
fat intake while the American study investigated types of 
fat. Furthermore, the variation in frequency of the TaqIB 
SNP might also contribute to the difference in the findings. 
In the Iranian study [15], only 8 out of 127 normolipidemic 
individuals had the ‘B1B1’ genotype, but in the American 
study [13] 192 out of 603 participants had the ‘B1B1’ geno-
type. Thus, while these two studies were both conducted in 
patients with T2D, there is a wide variation in frequency of 
the ‘B1B1’ genotype between the two studies and this affects 
the interpretation of the findings. In an animal study per-
formed in feral adult male St. Kitts vervet monkeys (Cerco-
pithecus aethiops sabeus) [44], SFA was shown to increase 
CETP activity, thereby reducing HDL levels which might 
explain the findings of the study in the American popula-
tion [13]. However, in the animal study [44], the effect of 
SFA on CETP activity was only observed when cholesterol 
was added to the diet. SFA has also been shown to lower 
the number of LDL receptors in the liver, which slows the 
removal of apolipoprotein B (ApoB)–containing lipoproteins 
[45], with the resulting effect of a decrease in HDL levels. 

It has also been demonstrated that the effect of dietary fat 
on CETP expression is not dependent solely on the com-
position of fat, but also on the amount of fat [46], although 
the mechanisms under which total fat affects CETP expres-
sion are still unclear [15]. A cross-sectional study of 2858 
Chinese participants, 761 Malay participants and 588 Asian 
Indian participants [17] demonstrated that participants with 
‘B2B2’ genotype had a significantly higher increase in HDL 
in response to a higher intake of dietary cholesterol com-
pared to those with ‘B1B1’ and ‘B1B2’ genotypes, but the 
interaction was only significant in Asian Indians (Pinteraction 
= 0.0230) and Malays (Pinteraction = 0.0460). A cross-sec-
tional study of 215 Mexican-Mestizos [47] also showed 
that a higher sucrose intake (≥ 5% of total energy per day) 
was linked to increased levels of total cholesterol and LDL 
in individuals with ‘B1B2’/‘B2B2’ genotype compared to 
those with ‘B1B1’ genotype (mean total cholesterol (mg/
dl) (95% confidence interval): 200.19 (184.79–215.60) vs 
165.55(142.21–188.89), Pinteraction = 0.0340; mean LDL 
(mg/dl) (95% confidence interval): 128.64 (113.59–143.69) 
vs 99.29 (75.52–123.05), Pinteraction = 0.0370). As this study 
[47] was the only one which investigated sucrose intake, and 
considering that the sample size was 215, further studies are 
needed to corroborate these findings.

Several studies have investigated the interaction 
between alcohol intake and TaqIB genotype on HDL, 
LDL and TG [48–51]. In a cross-sectional study of 
758 healthy Chinese participants [48], individuals with 
‘B1B1’ genotype who consumed any amount of alcohol 

Fig. 3  CETP–diet interaction studies and the interaction findings in multiple ethnicities
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had higher HDL (mean HDL (mmol/l): 2.09 ± 0.46 vs 
1.94 ± 0.38; Pinteraction < 0.01), higher TG (mean TG 
(mmol/l): 1.42 ± 2.71 vs 0.94 ± 0.36; Pinteraction < 0.05 
) and lower LDL (mean LDL (mmol/l): 2.24 ± 0.65 vs 
2.65 ± 3.01; Pinteraction < 0.01) compared to those with 
‘B1B1’ genotype who did not drink alcohol. Those with 
‘B1B2’ genotype who consumed any amount of alcohol 
also had higher HDL (mean HDL (mmol/l): 2.17 ± 0.55 
vs 2.02 ± 0.50; Pinteraction<0.05) compared to individu-
als with ‘B1B2’ genotype who did not drink alcohol; and 
lower TG (mean TG (mmol/l): 1.01 ± 0.86 vs 1.42 ± 2.71; 
Pinteraction<0.05) compared to those with ‘B1B1’ who con-
sumed any amount of alcohol. There were no significant 
interactions between alcohol intake and TG or HDL in par-
ticipants with ‘B2B2’ genotype. This study also observed 
that ‘B2B2’ individuals who drank any amount of alco-
hol had lower LDL than ‘B2B2’ participants who did not 
drink alcohol (mean LDL in mmol/l: 2.20 ± 0.52 vs 2.41 
± 0.86; Pinteraction < 0.0500), while there were no signifi-
cant interactions between alcohol intake and LDL in those 
with ‘B1B2’ genotype. Similar findings were reported in a 
nested case-control study involving 505 patients with coro-
nary heart disease (CHD) and 1010 healthy controls from 
different ethnicities in the US population [49] in which it 
was observed that, among healthy individuals, a higher 
intake of alcohol (≥ 15g/day) was linked to higher HDL 
in participants carrying the ‘B2’ allele compared to those 
with ‘B1B1’ genotype, with ‘B2B2’ individuals having 
the highest HDL (Pinteraction < 0.0100). These findings are 
consistent with the results of a case-control study consist-
ing of 608 Irish and French men with myocardial infarc-
tion (MI) and 742 healthy controls [51], which reported 
that, among individuals with a higher alcohol intake (≥ 
75g/day), those carrying the ‘B2’ allele had higher mean 
plasma HDL (30% higher for ‘B2B2’ and 13% higher for 
‘B1B2’) than those with the ‘B1B1’ genotype (Pinteraction 
< 0.0001). Likewise, a cross-sectional study of 1729 Japa-
nese participants [50] reported that, among women who 
consumed any amount of alcohol, those with ‘B2B2’ geno-
type had higher HDL than those with ‘B1B1’ or ‘B1B2’ 
genotype (mean HDL (mmol/l): 1.57 ± 0.03 for ‘B1B1’; 
1.57 ± 0.03 for ‘B1B2’; 1.79 ± 0.06 for ‘B2B2’; Pinteraction 
= 0.0220); while in men who consumed ≥ 2 drinks/day, 
those carrying the ‘B2’ allele had higher HDL than those 
with ‘B1B1’ genotype (mean HDL (mmol/l): 1.37 ± 
0.03 for ‘B1B1’, 1.44 ± 0.03 for ‘B1B2’, 1.49 ± 0.05 for 
‘B2B2’; Pinteraction = 0.0490). These findings suggest that 
alcohol intake could alter lipid profiles by increasing HDL 
in both ‘B1’ and ‘B2’ carriers; however, the underlying 
mechanism is unclear and considering that alcohol intake 
has been linked to other health issues such as liver cirrho-
sis, the overall benefit needs to be carefully considered. 
Moreover, interaction between alcohol intake and TaqIB 

genotype on blood lipids has been investigated by 12 stud-
ies and eight of the studies have not found significant inter-
actions [13, 15, 52–57].

Six out of fourteen dietary intervention studies found sig-
nificant interactions between TaqIB genotype, dietary factors 
and blood lipids. Three of the interactions were observed 
in participants carrying the ‘B2’ allele while the remaining 
three were reported in those with the ‘B1B1’ genotype. A 
6-day dietary intervention study [58], using high carbohy-
drate/low-fat diet in 56 healthy Chinese individuals, showed 
that those carrying the ‘B2’ allele had higher HDL concen-
trations (mean HDL (mg/dl): 56.14 ± 10.69 after washout 
diet vs 59.77 ± 10.62 after high carbohydrate/low-fat diet; 
Pinteraction < 0.0500) but the interaction was not observed 
in individuals with ‘B1B1’ genotype. As the duration of 
this intervention was only 6 days, intervention studies with 
longer duration are required to confirm the effect of carbo-
hydrate on HDL in individuals carrying the ‘B2’ allele. In a 
meta-analysis of 26 dietary interventions using SFA, trans 
fat, dietary cholesterol and the coffee diterpene cafestol in 
405 healthy Dutch participants over a 20-year period [59], 
participants with ‘B2B2’ genotype had a larger increase in 
HDL in response to SFA compared to those with ‘B1B1’ 
or ‘B1B2’ genotypes (mean change in HDL (mmol/l): 0.08 
± 0.02 for ‘B2B2’, 0.03 ± 0.01 for ‘B1B2’, 0.04 ± 0.02 for 
‘B1B1’ genotype; P = 0.0400), while participants carrying 
the ‘B1’ allele had a smaller increase in LDL in response 
to dietary cholesterol than those with the ‘B2B2’ genotype 
(mean change in LDL (mmol/l): 0.27 ± 0.14 for ‘B1B1’, 
0.35 ± 0.08 for ‘B1B2’, 0.75 ± 0.15 for ‘B2B2’; ‘B1B1’ vs 
‘B2B2’, P = 0.0300; ‘B1B2’ vs ‘B2B2’, P = 0.0100). In an 
oral fat tolerance test performed in 80 Greek participants 
who were heterozygous for familial hypercholesterolemia 
(HFH) and 11 control participants [60], it was demonstrated 
that, among participants in the HFH group who showed an 
abnormal postprandial TG response (TG concentration of 
>220 mg/dl), men with the ‘B2’ allele had higher levels 
of TG than women with the ‘B2’ allele after 4 hours of fat 
intake (279 ± 95 vs 239 ± 65 mg/dl, P = 0.0300) but there 
were no reports of significant interactions in participants 
with ‘B1B1’ genotype.

Statistically significant interactions between carriers of 
the ‘B1’ allele and dietary factors were reported by three 
dietary intervention studies [43, 61, 62]. In a randomised 
triple-blind crossover trial performed in 95 Iranian patients 
with T2D and 73 healthy controls using three diets: sesame 
oil, canola oil and sesame-canola oil [61], it was demon-
strated that, in the T2D group, those with ‘B1B1’ genotype 
had a significant reduction in lipid ratios after consuming 
sesame oil and sesame-canola oil (change in LDL:HDL (mg/
dl): −1.29, Pinteraction = 0.0270; change in TC:HDL (mg/dl): 
−2.82, Pinteraction = 0.0240; and change in TG:HDL (mg/
dl): −7.00, Pinteraction = 0.0250) but there were no reports of 
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significant reductions in lipid ratios in participants carrying 
the ‘B2’ allele. Another randomised controlled trial (RCT) 
performed in 85 New Zealander men with hypercholester-
olemia, involving a 4-week healthy diet vs healthy diet plus 
two kiwi fruits per day [62], also showed that, among par-
ticipants with ‘B1B1’ genotype, consumption of kiwi fruit 
resulted in lower TG:HDL ratio than the control diet (mean 
change in TG:HDL (mmol/l): −0.14 ± 0.51 for kiwifruit vs 
0.09 ± 0.56 for control diet, P = 0.03; Pinteraction < 0.05), 
while in individuals carrying the ‘B2’ allele, the interac-
tion was not observed. Similar results were also observed 
in a crossover intervention conducted in Spanish prepu-
bertal children with mild hypercholesterolemia, consisting 
of consumption of cow’s skim milk vs cow’s skim milk 
enriched with virgin olive oil for two periods of 6 weeks 
[43]. It was observed that intake of olive oil–enriched skim 
milk resulted in a larger increase in HDL and a decrease 
in LDL:HDL ratio in participants with ‘B1B1’ genotype 
compared to those carrying the ‘B2’ allele (mean change 
in HDL (mmol/l) (95% confidence interval): 0.179 (0.096 
to 0.262) for ‘B1B1’ vs 0.089 (0.032 to 0.146) for carri-
ers of ‘B2’, Pinteraction < 0.0010; mean change in LDL:HDL 
ratio (mmol/l) (95% confidence interval): −0.470 (−0.729 to 
0.211) for ‘B1B1’ vs −0.097 (−0.275 to 0.081) for carriers 
of ‘B2’, Pinteraction < 0.0010). While these studies show that 
individuals with the ‘B1B1’ genotype could benefit from 
consuming these diets, the interactions were reported only 
in those with either T2D [61] or hypercholesterolemia [43, 
62] indicating that these results may not apply to healthy 
participants and hence, this limits the wider application of 
the findings.

The TaqIB, located in intron 1 of the CETP gene, is con-
sidered to be non-functional and is believed to serve as a 
marker for functional SNPs in the promoter region [13, 17, 
63]. The ‘B1’ allele differs from the ‘B2’ allele by the pres-
ence of a restriction site for TaqI endonuclease [17]. The 
‘B1’ allele is believed to be associated with higher CETP 
activity, resulting in lower HDL and higher serum TG, and 
is considered a risk factor for dyslipidaemia [47]. This is 
supported by some of the studies as participants with the 
‘B1B1’ genotype tended to have lower HDL [15, 17, 49, 
56]. Nonetheless, the results suggest that people with this 
genotype can increase their HDL and modify their genetic 
risk by consuming sesame oil, canola oil, olive oil and kiwi 
fruit among others, although larger studies covering different 
ethnicities are warranted to tailor nutritional advice based on 
ethnicity and genetic profile.

SNP rs5882 (I405V G > A)

The SNP rs5882 (I405V) results in a substitution of 
valine (V) for isoleucine (I); hence, the ‘G’ allele is also 
called the ‘V’ allele while the ‘A’ allele is also known 

as the ‘I’ allele. The frequency of the ‘V’ allele is 34% 
globally but in Africans it is 58%, while in Asians it is 
48% and in Europeans it is 32% [64]. Six out of eight 
observational studies found statistically significant inter-
actions between this SNP and dietary factors on blood 
lipids. A cross-sectional analysis of 101 individuals from 
different ethnicities in the US population [10•] showed 
that a higher MUFA intake (>31g/day) was associated 
with lower TG in participants carrying the minor allele 
(‘V’) (Pinteraction = 0.0060) but there were no reports of 
significant interactions in individuals with ‘II’ genotype. 
A longitudinal study of 4700 Iranian participants over 
3.6 years [65] reported that a higher MUFA intake was 
linked to increased levels of TG in participants carrying 
the ‘V’ allele (mean changes in TG (mg/dl) across quar-
tiles of MUFA intake: −3.03, 1.73, 8.06, 8.85; Pinteraction 
= 0.0010), but the interaction was not observed in those 
with ‘II’ genotype. This study also observed that a higher 
intake of total fat correlated with increased levels of TG in 
those carrying the ‘V’ allele (mean changes in TG (mg/dl) 
across quartiles of total fat intake: −1.90, 2.6, 6.06, 8.88; 
Pinteraction = 0.0010) but the interaction was not significant 
in those with ‘II’ genotype. A higher carbohydrate intake 
was also found to be associated with decreased levels of 
TG in ‘V’ allele carriers (mean changes in TG (mg/dl) 
across quartiles of carbohydrate intake: 6.65, 7.29, 4.42, 
−3.28; Pinteraction = 0.0100) but the interaction was not sig-
nificant in individuals with ‘II’ genotype [65]. Interactions 
with MUFA were also reported in a nested case-control of 
441 Iranian participants with metabolic syndrome and 844 
healthy controls [66] wherein carriers of the ‘V’ allele had 
a reduced risk of low HDL with a low intake of MUFA 
(<8.4% of energy) and an increased risk of low HDL with 
a higher intake of MUFA (9.6–11% of total energy intake) 
compared to those with ‘II’ genotype (odds ratio for low 
HDL across quartiles of MUFA intake: 0.49, 0.66, 0.88, 
0.66 for carriers of ‘V’ allele vs 1, 0.61, 0.62, 0.68 for ‘II’ 
genotype; Pinteraction = 0.0200). The findings of these stud-
ies suggest that the SNP rs5882 (I405V) may modify the 
link between fat intake and blood lipids. A higher intake 
of MUFA and total fat appears to be unfavourable in Ira-
nian participants carrying the ‘V’ allele by leading to an 
increase in TG levels and the risk of low HDL while car-
bohydrate intake seems to be beneficial in reducing TG 
levels in these ‘V’ allele carriers [65, 66]. Conversely, 
the study in the US population [10•] implies MUFA is 
beneficial in individuals carrying the ‘V’ allele. As this 
study [10•] was performed in participants from different 
ethnicities, it is difficult to confirm ethnicity as a reason 
for the differential response to MUFA. Moreover, the study 
was performed in participants with overweight and obe-
sity which could influence the findings since obesity is 
known to alter the interaction between diet and genotype 
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on lipids [10•]. Nonetheless, the Iranian case-control study 
[66] also involved participants with metabolic syndrome 
as well as healthy controls; but, the study did not report 
the findings for healthy controls. It has been demonstrated 
that CETP transgenic mice fed with MUFA had improved 
LDL receptor activity with a corresponding increase in 
the uptake of ApoB-containing lipoproteins by the liver 
[67], which could explain the reduction in TG levels asso-
ciated with a high MUFA diet. The lipid-lowering effect 
of MUFA has also been linked to a decrease in expres-
sion of the transcription factor liver X receptor α (LXRα) 
which is involved in CETP activation [68]. Moreover, it 
has been argued that animal-based sources of MUFA also 
contain substantial amounts of SFA which could mask the 
effects of MUFA [69], implying that the source of MUFA 
needs to be taken into account when assessing the impact 
of MUFA on lipid-related outcomes.

In a cross-sectional study of Icelandic participants (152 
men and 166 women) [70], alcohol intake was found to be 
associated with higher HDL in men with ‘VV’ genotype 
(13.7% higher HDL than ‘II’ genotype) compared to men 
with ‘II’ or ‘IV’ genotype (Pinteraction < 0.0200) but the inter-
action was not statistically significant in women. Interactions 
with HDL were also observed in a cross-sectional study of 
553 Inuit participants [71] in which higher levels of omega 
3 polyunsaturated fatty acids (n-3 PUFA) in red blood cells 
(RBCs) was associated with higher HDL in participants car-
rying the major allele (‘I’) compared to those with ‘VV’ 
genotype (β (mmol/l) = 0.0263 ± 0.0115 for ‘IV’ genotype, 
β (mmol/l) = 0.0017 ± 0.0131 for ‘II’ genotype; Pinteraction 
= 0.0271). The study also found that n-3 PUFA in RBCs 
had a negative correlation with total cholesterol in partici-
pants with ‘II’ genotype compared to those with ‘VV’ or 
‘IV’ genotype (β (mmol/l) = −0.0290 ± 0.0307; Pinteraction 
= 0.0334). In another cross-sectional study of 553 Inuit par-
ticipants [16], individuals with ‘II’ genotype had a greater 
increase in total cholesterol with a higher intake of total fat 
than those with ‘VV’ or ‘IV’ genotype (β (mmol/l) = 0·0024 
± 0·0026; Pinteraction = 0.0460). These findings imply that 
while n-3 PUFA intake was beneficial for Inuit participants 
carrying the ‘I’ allele [71], higher total fat intake was not 
favourable for these participants [16]. PUFA is believed to 
promote the synthesis of LDL receptors which has the effect 
of increasing hepatic uptake of ApoB-containing lipopro-
teins [72], thereby raising the levels of HDL. To understand 
how PUFA affects regulation of the CETP gene, a study 
[73] was conducted in CETP transgenic mice which demon-
strated that n-3 PUFA resulted in elevated CETP messenger 
RNA (mRNA) and protein levels, possibly by being a ligand 
for peroxisome proliferator–activated receptors α (PPARα), 
which is involved in the regulation of lipid-related genes 
[73]. However, increased CETP activity is known to have 
an inverse effect on HDL levels and does not explain the 

beneficial effect on HDL observed in the Inuit study. This 
raises the question of whether particular CETP SNPs dictate 
the response of the CETP protein to n-3 PUFA.

Only one of the six dietary intervention studies reported 
significant interactions between the I405V SNP and dietary 
factors on blood lipids. In this study [74], Canadian monozy-
gotic twins (12 pairs) who were overfed by 1000 kcal per 
day for a period of 100 days showed a significant decrease 
in HDL,  HDL2 and  HDL3 in those with ‘II’ genotype com-
pared to individuals with ‘VV’ genotype (mean change in 
HDL (mmol/l): −0.12 ± 0.04 vs 0.02 ± 0.04, P = 0.02; mean 
change in  HDL2 (mmol/l): −0.08 ± 0.03 vs 0.03 ± 0.03, P 
= 0.04; mean change in  HDL3 (mmol/l): −0.04 ± 0.02 vs 
−0.004 ± 0.02, P = 0.0020), but there were no reports of 
significant interactions in individuals with ‘IV’ genotype. 
The ‘II’ genotype of SNP rs5882 is believed to affect the 
ability of the CETP protein to mediate the exchange of cho-
lesteryl esters for TG, resulting in increased TG concentra-
tions [66], although this SNP has not been reported by any 
of the 32 GWASs to impact on lipids.

It has also been shown that the ‘VV’ genotype of the 
SNP rs5882 is associated with lower plasma CETP levels 
and increased HDL concentration [75]; however, baseline 
HDL data for participants with the ‘VV’ genotype was not 
available for all the studies because there were not enough 
participants with the ‘VV’ genotype in the two Iranian stud-
ies [65, 66]. Also, in the two Inuit studies [16, 71], baseline 
HDL data was not recorded separately for ‘VV’, ‘IV’ or ‘II’ 
genotype. However, in the Icelandic study [70], those with 
the ‘VV’ genotype had higher baseline HDL levels. Over-
all, the findings indicate that the SNP rs5882 may modify 
dietary response to lipids, but further studies are needed to 
clarify the differences in the results of some of the studies.

SNP rs3764261 (C > A)

Significant interactions between dietary factors and SNP 
rs3764261 on blood lipids were observed in two out of four 
observational studies. In a longitudinal study of 4700 Iranian 
participants over 3.6 years [65], it was reported that a higher 
fish intake was associated with a larger decrease in total 
cholesterol (TC) in participants carrying the minor allele 
(‘A’) (mean changes in TC (mg/dl) with quartiles of fish 
intake: 8.02, 6.93, 6.54, 5.58) compared to those carrying 
two copies of the major allele (‘C’) (mean changes in TC 
(mg/dl) with quartiles of fish intake: 3.65, 6.62, 4.57, 8.93) 
(Pinteraction = 0.02). Interactions with fat intake were also 
observed in a cross-sectional study of 3342 Indian partici-
pants [76] in which a high dietary fat intake (≥ 76.98g/day) 
was associated with increased levels of TC (β (mmol/l) = 
0.097 ± 0.041; Pinteraction = 0.018) and LDL (β (mmol/l) = 
0.085 ± 0.041; Pinteraction = 0.0420) in participants carrying 
the ‘A’ allele but there were no reports of interactions in 
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those with ‘CC’ genotype. A high-fat diet has been dem-
onstrated to increase CETP activity in transgenic mice 
[77] which has the effect of increasing TC and LDL and 
could account for the findings reported. Moreover, the SNP 
rs3764261 (C > A) is located in the  51 region of the CETP 
gene and has been shown to regulate expression of the gene, 
the ‘C’ allele being associated with increased CETP expres-
sion and reduced HDL levels [78].

Two dietary intervention studies reported statistically sig-
nificant interactions between the SNP rs3764261 and dietary 
factors on blood lipids. In a prospective, randomized, single-
blind controlled dietary intervention trial carried out in 424 
Spanish patients who had acute coronary syndrome (ACS) 
or CHD and also had metabolic syndrome [14], wherein 
participants consumed either a Mediterranean diet or a 
low-fat diet, it was observed that, after 1 year, consump-
tion of Mediterranean diet was associated with higher HDL 
and lower TG in participants carrying the ‘A’ allele com-
pared to those with ‘CC’ genotype (mean HDL (mg/dl): 41 
vs 38, Pinteraction = 0.0060; mean TG (mg/dl): 130 vs 146, 
Pinteraction = 0.0400). This finding indicates that Mediter-
ranean diet might be beneficial in increasing HDL in Span-
ish participants with ACS or CHD who carry the ‘A’ allele 
[14]; however, this finding might not be applicable to healthy 
individuals. In another study which was performed on par-
ticipants from different ethnicities and involved a 2-year ran-
domised weight loss trial, consisting of low-fat diet (20% 
fat) vs high-fat diet (40% fat), and a 2-year RCT consisting 
of low-fat diet (30% fat) vs low carbohydrate (high-fat) diet 
[46], the combined results of the two interventions showed 
that, among participants with ‘CC’ genotype, those in the 
high-fat diet group had a higher increase in HDL (11.7 vs 
4.5%; Pinteraction = 0.01) and a larger decrease in TG (−25.1 
vs −11.7%; Pinteraction = 0.0007) than those in the low-fat 
diet group, but there were no significant interactions in par-
ticipants with ‘CA’ or ‘AA’ genotype. These results suggest 
that a high-fat diet (40% fat) in individuals from different 
ethnicities who have the ‘CC’ genotype might contribute 
to increased HDL and reduced TG levels [46] although the 
findings are not in agreement with the study performed in 
CETP transgenic mice [77] in which a high-fat diet resulted 
in increased CETP activity which lowered HDL levels. Con-
sidering that this was a weight loss intervention, it is unclear 
whether the changes in lipid levels were due to the high-fat 
diet or the loss of weight or both since physical activity has 
been shown to interact with genetic risk score and impact 
on waist-hip ratio [79]. Moreover, the ‘C’ allele of the SNP 
rs3764261 is regarded as a significant risk factor for low 
HDL [78, 80] although it has been demonstrated that this 
risk can be overcome by weight gain prevention [78]. The 
SNP rs3764261 has also been shown by GWASs to influ-
ence HDL levels in Asian Indians [19, 28], Japanese [26, 
31], African-American [29], Chinese [20], Lebanese [21] 

and Finnish [35] but the evidence indicates that this SNP 
has not been extensively studied by gene–diet interaction 
studies. Therefore, further studies in different ethnicities 
are required to confirm the effect of the SNP in modifying 
dietary response to lipids.

C‑629A (SNP rs1800775 C > A)

The SNP rs1800775 has been shown to be associated with 
HDL in seven of the nineteen GWASs [19, 22, 24, 31, 34, 
35, 37]. Two out of five observational studies reported sig-
nificant interactions between dietary factors and the SNP 
rs1800775 (C-629A) on blood lipids. In a cross-sectional 
study of 9075 Taiwanese participants [81], consumption of 
coffee was found to be associated with lower HDL in women 
carrying the minor allele (‘C’) compared to women with 
‘AA’ genotype (β (mg/dl) = −1.8095 for ‘AC’ genotype, β 
(mg/dl) = −2.8151 for ‘CC’ genotype; Pinteraction<0.0001), 
and in men carrying the ‘C’ allele compared to men with the 
‘AA’ genotype (β (mg/dl) = −1.9623 for ‘AC’ genotype, β 
(mg/dl) = −2.7154 for ‘CC’ genotype; Pinteraction<0.0001). 
A case-control study consisting of 568 Irish and French men 
with MI and 668 healthy controls [82] showed that, among 
individuals carrying the major allele (‘A’), alcohol consump-
tion was associated with higher HDL in healthy participants 
(Pinteraction<0.0020) and in patients who were not treated 
with lipid-lowering medication (Pinteraction<0.0010), while 
in individuals with ‘CC’ genotype, there was no association 
between alcohol intake and HDL. The results suggest that 
dietary factors other than fat intake may also play a role in 
modulating lipid levels, but these interactions need to be 
explored further to allow for comparison of results across 
multiple ethnic groups. The SNP rs1800775 (C-629A) is 
located in the promoter region of the CETP gene and the 
‘A’ allele is associated with reduced CETP expression and 
higher HDL levels [17]. The ‘A’ allele of SNP rs1800775 
(C-629A) is in a high degree of linkage disequilibrium with 
the ‘B2’ allele of SNP TaqIB and it is believed that this 
association is responsible for the protective effect of the ‘B2’ 
allele [17]. However, some are of the view that there might 
be other functional SNPs that are in linkage disequilibrium 
with TaqIB apart from SNP rs1800775 (C-629A) but it is 
unclear what these SNPs are [13, 63]. Moreover, despite 
the SNP rs1800775 (C-629A) being reported by several 
GWASs to be associated with blood lipids, this SNP has 
not been extensively studied in gene–diet interaction stud-
ies. To date, only one dietary intervention study [83] inves-
tigated the SNP rs1800775 (C-629A) which also failed to 
demonstrate any significant SNP–diet interactions on lipids. 
This study was an RCT performed in 490 participants from 
different ethnicities in the UK population and involved a 
reference diet (∼18% SFA, 12% MUFA, 38% total fat, 45% 
carbohydrate (CHO)) for 4 weeks, followed by 1 of three 
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diets: a MUFA diet (∼10% SFA, 20% MUFA, 38% total fat, 
45% CHO); a low-fat diet (∼10% SFA, 11% MUFA, 28% 
total fat, 55% CHO); or the reference diet for 24 weeks. The 
findings overall indicate that further large studies are needed 
to confirm the effect of the SNP rs1800775 in altering lipid 
profiles in response to diet.

Other SNPs

Other CETP SNPs which have been reported to interact 
with dietary factors and influence blood lipids are SNPs 
rs183130 (C-4502T), rs4783961 (G-971A), rs289714 (C>T) 
and rs1800774 (C > A). In the cross-sectional study of 553 
Inuit participants [84], higher levels of n-3 PUFA in RBCs 
was linked to lower TC levels in participants carrying the 
minor allele (‘T’) of the SNP rs183130 (C-4502T) com-
pared to those with ‘CC’ genotype (β (mmol/l) = −0.0632 ± 
0.0241 for ‘CT’ genotype, β (mmol/l) = −0.0421 ± 0.0343 
for ‘TT’ genotype; Pinteraction = 0.0326); and lower TG lev-
els in those with the ‘TC’ genotype of the SNP rs183130 
(C-4502T) compared to individuals with ‘TT’ genotype (β 
(mmol/l) = −0.0095 ± 0.0051 vs β (mmol/l) = 0.0073 ± 
0.0073; Pinteraction = 0.0300), while there were no reports 
of significant interactions between n-3 PUFA in RBCs and 
TG in participants with ‘CC’ genotype. This study also 
reported that individuals with the ‘GA’ genotype of the SNP 
rs4783961 (G-971A) who had higher levels of n-3 PUFA in 
RBCs had lower TG levels (β (mmol/l) = −0.0106 ± 0.0057; 
Pinteraction = 0.0032) and lower TC:HDL ratio (β (mmol/l) = 
−0.0055 ± 0.0033; Pinteraction = 0.0483) compared to par-
ticipants with 2 copies of the minor allele (‘A’) of the SNP 
rs4783961 (G-971A). These findings point to a beneficial 
role of PUFA in Inuit participants carrying the ‘T’ allele 
of the SNP rs183130(C-4502T) and the ‘G’ allele of the 
SNP rs4783961 (G-971A). PUFA is believed to improve the 
breakdown of ApoB-containing particles, thereby reducing 
TG concentrations [66], which is consistent with this find-
ing. However, in a cross-sectional study of 821 participants 
who were normal glucose tolerant and 861 participants with 
T2D, involving the transcription factor 7-like 2 (TCF7L2) 
gene [85], higher PUFA intake (mean PUFA intake of 29g/
day) was linked to 1.64 mg/dl lower HDL while lower PUFA 
intake (mean PUFA intake of 9g/day) was associated with 
1.96 mg/dl higher HDL in Asian Indian participants car-
rying the ‘T’ allele of the TCF7L2 SNP rs12255372 com-
pared to those with the ‘GG’ genotype (Pinteraction<0.0001 
). In another cross-sectional study involving 101 partici-
pants of different ethnicities in the US population [10•], it 
was reported that, among participants with two copies of 
the major allele (‘A’) of the SNP rs289714, those who con-
sumed >92 g of total fat per day had lower TG levels (103 
± 63 mg/dl) than those who consumed <31 g of total fat per 
day (135 ± 15 mg/dl) (Pinteraction = 0.0010). The interaction 

was significant for both the dominant and recessive modes 
of inheritance (Pinteraction = 0.0010 and Pinteraction = 0.0230 
respectively), but there were no reports of significant interac-
tions in individuals with ‘GG’ genotype. In another cross-
sectional study of 1315 Spanish participants [86], higher 
plasma selenium levels were found to be associated with 
elevated LDL levels in all the three genotypes of the SNP 
rs1800774 but participants with two copies of the major 
allele (‘C’) had lower LDL compared to those with ‘CT’ 
and ‘TT’ genotypes (odds ratio per an interquartile range 
increase in plasma selenium (95% confidence interval): 0.97 
(0.74 to 1.27) for ‘CC’, 1.76 (1.38 to 2.25) for ‘CT’, 3.20 
(1.93 to 5.28) for ‘TT’ genotype; Pinteraction = 0.0002). Sele-
nium was also reported to be associated with lipid levels in 
a systematic review and meta-analysis [87], but it was shown 
to be linked to significant improvement in the levels of TC 
and TG and had no significant effect on LDL levels. A sys-
tematic review published in 2017, in which the results of 23 
gene–diet interaction studies involving CETP were analysed 
[88], concluded that SNPs in the CETP gene may influence 
the effect of dietary factors on metabolic traits but that the 
findings from these studies were inconsistent and suggest 
that multiple factors might be involved.

Conclusion

In summary, this review has identified statistically significant 
interactions between 17 dietary factors and 8 SNPs in the CETP 
gene on blood lipids in the following populations: Mexican, 
Iranian, Spanish, White American, Chinese, Malay, Indian, 
Irish, French, Japanese, New Zealander, Dutch, Greek, Ice-
landic, Inuit, Canadian, Taiwanese and residents of the USA. 
The SNPs showing significant interactions with dietary factors 
(such as total fat intake, MUFA, n-3 PUFA, Mediterranean diet, 
olive oil and sesame-canola oil) were TaqIB (rs708272 G > 
A); rs5882 (I405V); rs3764261 (C > A); rs1800775 (C-629A); 
rs183130(C-4502T); rs4783961 (G-971A); rs289714 (C>T) 
and rs1800774 (C > A). The macronutrient investigated by 
majority of the studies was dietary fat, comprising of total fat, 
SFA, MUFA and PUFA. Total fat intake accounted for majority 
of the interactions across different SNPs, being associated with 
unfavourable lipid outcomes in some individuals but not others.

Studies reporting significant interactions in individuals with 
the B1B1 genotype of the SNP TaqIB (rs708272) have been 
performed in participants with either T2D or hypercholester-
olemia. Similarly, those reporting significant interactions in 
individuals carrying the ‘V’ allele of the SNP rs5882 have 
been conducted in participants with overweight and obesity or 
metabolic syndrome. Moreover, some of the significant inter-
actions involving the SNP rs3764261 have also been reported 
in patients with ACS or CHD, suggesting that some of the 
findings of these studies may not apply to healthy participants. 
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Overall, the findings suggest that CETP SNPs might alter 
blood lipid profiles by modifying responses to diet, but fur-
ther large studies in multiple ethnic groups are warranted to 
identify individuals at risk of adverse lipid response to diet 
which is essential in developing dietary guidelines that are 
tailored to specific groups of people. Information on the under-
lying genetic factors for dyslipidaemia will also contribute to 
improved understanding of the mechanisms involved, which is 
central to the development of effective preventative strategies 
as well as identifying areas for further research.
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Abstract: There is conflicting evidence about the association between dairy products and car-
diometabolic risk (CMR). We aimed to assess the association of total dairy intake with CMR factors
and to investigate the association of unfermented and fermented dairy intake with CMR in Asian
Indians who are known to have greater susceptibility to type 2 diabetes and cardiovascular diseases
compared to white Europeans. The study comprised 1033 Asian Indian adults with normal glucose
tolerance chosen from the Chennai Urban Rural Epidemiological Study (CURES). Dietary intake was
assessed using a validated open-ended semi-quantitative food frequency questionnaire. Metabolic
syndrome (MS) was diagnosed based on the new harmonising criteria using central obesity, dyslip-
idaemia [low high-density lipoprotein cholesterol (HDL) and increased serum triglycerides (TG)],
hypertension and glucose intolerance. Increased consumption of dairy (≥5 cups per day of total,
≥4 cups per day of unfermented or ≥2 cups per day of fermented dairy) was associated with a lower
risk of high fasting plasma glucose (FPG) [hazards ratio (HR), 95% confidence interval (CI): 0.68,
0.48–0.96 for total dairy; 0.57, 0.34–0.94 for unfermented dairy; and 0.64, 0.46–0.90 for fermented
dairy; p < 0.05 for all] compared to a low dairy intake (≤1.4 cups per day of total dairy; ≤1 cup
per day of unfermented dairy; and ≤0.1 cup per day of fermented dairy). A total dairy intake of
≥5 cups per day was also protective against high blood pressure (BP) (HR: 0.65, 95% CI: 0.43–0.99,
p < 0.05), low HDL (HR: 0.63, 95% CI: 0.43–0.92, p < 0.05) and MS (HR: 0.71, 95% CI: 0.51–0.98,
p < 0.05) compared to an intake of ≤1.4 cups per day. A high unfermented dairy intake (≥4 cups per
day) was also associated with a lower risk of high body mass index (BMI) (HR: 0.52, 95% CI: 0.31–0.88,
p < 0.05) compared to a low intake (≤1 cup per day), while a reduced risk of MS was observed with a
fermented dairy intake of ≥2 cups per day (HR: 0.71, 95% CI: 0.51–0.98, p < 0.05) compared to an
intake of ≤0.1 cup per day. In summary, increased consumption of dairy was associated with a lower
risk of MS and components of CMR.

Keywords: metabolic syndrome; Asian Indians; dairy intake; fermented dairy; unfermented dairy;
CURES

1. Introduction

Asian Indians have been shown to have distinct biochemical and clinical characteristics
that put them at risk of type 2 diabetes (T2D) and cardiovascular diseases (CVDs) [1–4]. The
distinct features include central obesity, dyslipidaemia, insulin resistance, increased levels
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of visceral fat, total fat, and propensity to beta cell dysfunction [1–4]. The components of
the ‘Asian Indian Phenotype’ are included in the metabolic syndrome (MS), which refers to
a group of interconnected risk factors that make an individual susceptible to CVDs and
T2D [5]. According to a systematic review and meta-analysis involving 133,926 participants
from 111 studies [6], MS affects 1 in 3 adults in India, and the prevalence is higher among
people in urban areas (32%) than those living in rural areas (22%). MS is associated with
increased CVDs and all-cause mortality [7,8], warranting studies in Asian Indians who are
known to have a predisposition to MS.

The existence of an entity called MS is surrounded by controversies, partly due to
variations in the definition of MS [9–12]. However, it is generally agreed that the risk
factors of central obesity, high blood pressure (BP), elevated levels of triglycerides (TG), low
concentration of high-density lipoprotein cholesterol (HDL) and elevated fasting plasma
glucose (FPG) tend to co-exist and are important indicators of an individual’s risk of
CVDs and T2D [9–13]. The increasing prevalence of these risk factors has been linked to
genetic and environmental factors [1,14–17], and there is growing interest in the role of
different types of food in the development of MS [1,5,16,17]. Several studies have reported
a protective effect of dairy consumption on the risk of MS [5,18–21]. Consumption of at
least two servings of dairy per day compared to no dairy intake, has been linked to a
lower prevalence of MS [5]. Increased consumption of dairy (>7 times per week) was
also found to be associated with a reduced risk of MS and central obesity compared to no
dairy intake [21]. However, one study [22] reported that participants who did not consume
milk had a lower risk of insulin resistance and MS compared to those who drank milk,
making the findings inconsistent. Moreover, it has been suggested that fermented dairy
might confer greater anti-inflammatory and cardiometabolic benefits than unfermented
dairy [23,24]. Possible mechanisms for the proposed benefits of fermented dairy include
the action of microbial cultures on gut microbiota, changes in lipid and glyceride profiles
and the release of more bioactive compounds involved in regulating several metabolic and
immune pathway genes [23–25].

Furthermore, consumption of dairy is high among Asian Indians [26–28] who also
have a high prevalence of MS [6,29,30]. An examination of the dietary profile of 2042 Asian
Indian participants [26] showed that, dairy intake was within the national recommendation
of 300 g/day (g/day) [31]. However, despite dairy consumption being linked to lower risk
of MS [5,18–20], few studies have examined the impact of dairy intake on the risk of MS in
Asian Indians. Hence, the present study sought to investigate the association of total dairy
consumption with MS and components of cardiometabolic risk (CMR) in Asian Indians.
We also aimed to determine the association of fermented and unfermented dairy products
with MS and components of CMR.

2. Methods
2.1. Study Population

The current study consisted of 1033 adults with normal glucose tolerance chosen from
the Chennai Urban Rural Epidemiological Study (CURES), and details of the study design
have been given in previous publications [1,15,32–34]. In brief, a total of 26,001 adults were
recruited between 2001 to 2003 from the urban part of Chennai in Southern India through
systematic random sampling, and the follow-up study was conducted between 2012 and
2013 and consisted of 2410 participants. The sample for the current study was chosen from
the follow-up cohort as shown in Supplementary Figure S1. Approval was obtained from
the Institutional Ethics Committee, and written informed consent obtained from all the
study participants.

2.2. Data Collection

Demographic (including medical history and physical activity), anthropometric, bio-
chemical and dietary data were collected both at baseline (2001–2003) and after 10 years
(2012–2013) using a structured, pretested, and validated interviewer-administered ques-
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tionnaire [35]. Family history of diabetes was considered as positive if either parents or
sibling/s had diabetes. Smokers were defined as those who were currently smoking, and
alcohol use was defined as current alcohol consumption.

Height, weight, waist circumference (WC) and BP were measured using standard-
ised techniques [32], and body-mass index (BMI) was calculated as weight in kilograms
(kg) divided by height in meters squared (m2). Biochemical analyses, including fasting
plasma glucose (FPG) and lipids, were performed in all individuals; in addition, plasma
glucose estimation 2 h after a 75 g oral glucose load was performed in individuals with-
out diabetes [32]. Biochemical analyses were performed in a laboratory certified by the
National Accreditation Board for Testing and Calibration Laboratories and the College of
American Pathologists on a Hitachi 912 autoanalyzer (Hitachi, Mannheim, Germany) using
kits supplied by Roche Diagnostics (Basel, Switzerland) for estimation of plasma glucose
(GOD-POD method).

2.2.1. Outcome Ascertainment
General Obesity

General obesity was defined as BMI ≥ 25 kg/m2 and overweight as BMI ≥ 22.9 kg/m2

in accordance with the Asia Pacific guidelines [36].

Metabolic Syndrome

MS was diagnosed based on the new harmonising criteria [37]. Individuals with any three
of the following abnormalities viz. high WC (Asia Pacific cut-off ≥80 cm for female, ≥90 cm for
male), hypertriglyceridemia [serum TG ≥ 1.70 mmol/L (≥150 mg/dL)], low HDL [male par-
ticipants ≤ 1.04 mmol/L (≤40 mg/dL); female participants ≤ 1.30 mmol/L (≤50 mg/dL)],
abnormal glucose metabolism [defined as FPG ≥ 5.6 mmol/L (≥100 mg/dL)] and elevated
BP [systolic BP (SBP) ≥ 130 mmHg or diastolic BP (DBP) ≥ 85 mmHg] were considered to
have MS.

The term “cardiometabolic risk” was first employed by the American Diabetes As-
sociation as an umbrella term to include all the risk factors for diabetes and CVD [38].
The components of CMR given in the present analysis are central and general obesity;
elevated levels of triglycerides, total cholesterol and LDL and reduced HDL concentration;
hyperglycaemia; hypertension; and insulin resistance.

2.2.2. Dietary Assessment

Dietary intake was assessed by trained dietitians using a validated open-ended semi-
quantitative 222-item food frequency questionnaire (FFQ) both at baseline and follow-up.
The FFQ was designed to estimate the usual dietary intake of participants, the development
and validation of which have been described elsewhere [35]. The FFQ included both the
frequency as well as the servings of food items consumed by the individuals which was
then converted to standardised portion sizes. However, any new food item reported (new
market foods over 10-year period) during the follow-up period was updated in the in-house
Nutritional Epidemiology (‘EpiNu’) software. Dairy intake was estimated from the FFQ
using the ‘EpiNu’ software. Total dairy intake consists of unfermented plain milk and milk
included in tea and coffee; Indian milk sweets and desserts; and fermented milk, which
consists of Indian yoghurt (curd) and buttermilk. The ‘EpiNu’ software which contains
information on the nutritional composition of food that is mainly consumed in the Chennai
area was developed for the local population using recipes from a wide range of sources,
including fast-food and home-made. Details of the development of the ‘EpiNu’ software
are available in a previous publication [35].

2.3. Statistical Analyses

Statistical analyses were performed using SAS software version 9.4 (SAS Institute
Inc., Cary, NC, USA). All food groups and nutrients were energy adjusted by the residual
method [39]. As nutrients and food groups were not normally distributed, estimates were
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expressed in median and interquartile range (IQR). The Mann-Kruskal Wallis test was used
to compare differences between the medians of continuous variables, and the chi-squared
test was used to test differences in proportions. The lowest, medium and highest intakes
of total dairy, unfermented and fermented dairy were derived by stratifying the data into
deciles and regrouping as lowest (quartile 1(Q1)–quartile 4 (Q4)), medium (Q5–Q8) and
highest intake (Q9–Q10) to test the association with CMR using the regression model. The
hazard ratio (HR) for incidence of CMR and MS in each group of dairy intake (lowest intake,
medium intake and highest intake) and its subdivision (fermented and unfermented) was
calculated using Cox proportional hazards analysis. Potential confounders were identified
by the univariate analysis and entered simultaneously into the multiple Poisson regression
model with p-value < 0.2. The model was adjusted for age, sex, BMI, income, smoking,
alcohol, major cooking oil, total poly unsaturated fatty acids (PUFA) (g), added sugar
(g), physical activity level (PAL), total energy (kcal) and tea and coffee intake. The linear
trend across the lowest, medium and highest dairy intake and incidence of CMR and MS
were tested with the regression model [40]. Difference between the dairy product and its
subdivisions was assessed using the Kruskal-Wallis test for all the continuous variables.
The p values were tested for statistical significance at <0.05 level.

3. Results
3.1. Characteristics of the Study Participants

The median age of the study participants was 36 (IQR: 15) years. As shown in
Table 1, smoking and alcohol consumption were reported by 16% and 23% of participants,
respectively. Nearly half of the participants (44%) had a family history of diabetes. The
median SBP (113 mmHg), DBP (72 mmHg), FPG (84 mg/dL) and postprandial glucose
(106 mg/dL) were within the normal ranges. Consumption of tea and coffee was the
main source of dairy (80%) as shown in Figure 1a and Table 2. The medians of the lowest,
medium, and the highest total dairy intake were 208, 411 and 755 g/day (1.4, 3 and 5 cups
per day), respectively.

Table 1. Baseline Characteristics of the Study Population (n = 1033).

Variables Overall Median (Interquartile Range)/n (%)

Age (years) 36 (15)
Gender n (%)
Men n (%) 433 (42)
Women n (%) 600 (58)
Smoking (yes) n (%) 160 (15)
Alcohol (yes) n (%) 242 (23)
Income per month n (%)
INR. < 2000 24 (2)
INR. 2000–5000 197 (19)
INR. 5000–10,000 415 (40)
INR. > 10,000 397 (39)
Family history of diabetes (yes) n (%) 449 (43)
Weight (kg) 58 (17)
BMI (kg/m2) 23.2 (6.2)
Waist circumference (cm) 84 (16)
Systolic BP (mmHg) 113 (19)
Diastolic BP (mmHg) 72 (13)
Fasting blood glucose (mg/dL) 84 (12)
Postprandial blood glucose (mg/dL) 106 (33)
Total Cholesterol (mg/dL) 175 (47)
Triglyceride (mg/dL) 96 (65)
High density lipoprotein (mg/dL) 42 (13)
Low density lipoprotein (mg/dL) 109 (39)

Data presented as median (interquartile range) for continuous variables; and as number (n) (%) for categorical
variables. INR—Indian rupees; BMI—body mass index; BP—blood pressure.
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Table 2. Consumption of Dairy and its Products (g/day).

Median (Interquartile Range)

Dairy and Its Products (g/Day) Lowest Intake
Q1–Q4

Medium Intake
Q5–Q8

Highest Intake
Q9–Q10

Total dairy products 208 (116) 411 (144) 755 (228)
Fermented dairy products
(curd and buttermilk) 32 (66) 75 (119) 167 (215)

Milk 10 (39) 37 (94) 74 (148)
Tea and coffee (contribution by milk) 118 (118) 235 (176) 471 (353)
Milk sweets and desserts
(milk sweets, ice cream, milk shake
and other milk beverages)

2 (8) 3 (10) 5 (22)

3.2. Association of Total Dairy Consumption and Components of CMR

A total dairy intake of ≥5 cups compared to ≤1.4 cups per day was associated with
a decreased risk of three of the components of CMR [high BP, FPG and low HDL] and
MS as shown in Table 3 and Figure 1b, respectively. A decreased incidence of two of the
components of CMR (high FPG and low HDL) was also observed among individuals in
the medium total dairy intake group (≥3 cups per day) compared to those in the low total
dairy intake group (≤1.4 cups per day) (Table 3). There was no association between total
dairy intake and insulin resistance as shown in Supplementary Figure S2.

Table 3. Total Dairy Consumption and its Association with Components of Cardiometabolic Risk.

Hazards Ratio (95% Confidence Interval)

Lowest Intake
Q1–Q4

Medium Intake
Q5–Q8

Highest Intake
Q9–Q10

Total Dairy Products (g/Day) 208 (116)
1.4 Cups

411 (144)
3 Cups

755 (228)
5 Cups

Blood pressure (mmHg) ≥ 140/90 1 (ref) 0.82 (0.63–1.08) 0.65 (0.43–0.99) *
BMI (kg/m2) ≥ 22.9 1 (ref) 0.84 (0.66–1.08) 0.78 (0.53–1.15)
Waist circumference (cm) (>80: F;
>90: M) 1 (ref) 0.87 (0.7–1.09) 0.87 (0.62–1.24)

Total cholesterol (>200 mg/dL) 1 (ref) 0.72 (0.51–1.01) 0.70 (0.42–1.18)
Triglyceride (>150 mg/dL) 1 (ref) 1.05 (0.76–1.44) 0.74 (0.45–1.22)
High-density lipoprotein (mg/dL)
(≤40: F; ≤50: M) 1 (ref) 0.74 (0.59–0.93) * 0.63 (0.43–0.92) *

Low-density lipoprotein (>100
mg/dL) 1 (ref) 0.95 (0.77–1.17) 0.83 (0.61–1.12)

Fasting plasma glucose (>100 mg/dL) 1 (ref) 0.75 (0.6–0.95) * 0.68 (0.48–0.96) *
Data presented as median (interquartile range). * p-value < 0.05 considered as significant. Adjusted variables are
age, sex, BMI, income, smoking, alcohol, major cooking oil, total poly unsaturated fatty acids (PUFA) (g), added
sugar (g), physical activity level, total energy (kcal) and tea and coffee intake (g/day).
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Figure 1. (a) The sources of dairy and its products among the Chennai urban adults. Milk sweets
and desserts include Indian milk sweets, ice cream, milk shakes and other milk beverages. * Cheese
and paneer intake was reported by only three individuals in the sample, and this resulted in a
median value of 0. (b) Total dairy consumption and its association with metabolic syndrome. Data
presented as median. * p-value < 0.05 considered as significant. Adjusted variables are age (years),
sex, BMI, income, smoking, alcohol, major cooking oil, total poly unsaturated fatty acids (PUFA) (g),
added sugar (g), total energy (kcal) and tea and coffee intake. (c) Fermented dairy consumption and
its association with metabolic syndrome. Data presented as median. * p-value < 0.05 considered as
significant. Adjusted variables are age (years), sex, BMI, income, smoking, alcohol, major cooking oil,
PUFA (g), added sugar (g), physical activity level, total energy (kcal) and tea and coffee intake.

3.3. Association of Unfermented Dairy Consumption and Components of CMR

Consumption of 4 cups per day or more of unfermented dairy was associated with a
lower incidence of high BMI and FPG (Table 4) compared to an intake of ≤1 cup per day of
unfermented dairy. There was no significant association between unfermented dairy intake
and MS (Supplementary Figure S2).
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3.4. Association of Fermented Dairy Consumption and Components of CMR

Consumption of 2 cups per day or more of fermented dairy was associated with a
lower incidence of high FPG (Table 4) compared to an intake of ≤0.1 cups per day. A high
fermented dairy intake (≥2 cups per day) was also associated with a lower risk of MS
compared to a low fermented dairy intake (≤0.1 cups per day) (hazards ratio (HR): 0.71,
95% confidence interval (CI): 0.51–0.98, p < 0.05) as shown in Figure 1c.

Table 4. Fermented and Unfermented Dairy Consumption and its Association with Components of
Cardiometabolic Risk.

Hazards Ratio (95% Confidence Interval)

Unfermented Dairy Products (g/Day) Fermented Dairy Products (g/Day)

Lowest Intake
Q1–Q4

Medium Intake
Q5–Q8

Highest Intake
Q9–Q10

Lowest Intake
Q1–Q4

Medium Intake
Q5–Q8

Highest Intake
Q9–Q10

Dairy Product (g/Day) 138 (86)
1 Cup

290 (103)
2 Cups

581 (175)
4 Cups

11 (23)
0.1 Cup

86 (54)
0.6 Cup

300 (116)
2 Cups

Blood pressure (mmHg) ≥
140/90 1 (ref) 1.01 (0.73–1.41) 0.75 (0.45–1.27) 1 (ref) 0.83 (0.63–1.10) 0.71 (0.49–1.03)

BMI (kg/m2) ≥ 22.9 1 (ref) 0.70 (0.50–0.99) 0.52 (0.31–0.88) * 1 (ref) 0.83 (0.63–1.10) 0.71 (0.49–1.03)
WC (cm)
(>80: F; >90: M) 1 (ref) 0.91 (0.71–1.15) 0.89 (0.62–1.26) 1 (ref) 1.12 (0.92–1.37) 1.03 (0.81–1.34)

Total cholesterol
(>200 mg/dL) 1 (ref) 0.78 (0.5–1.22) 0.59 (0.3–1.16) 1 (ref) 10 (0.72–1.39) 0.83 (0.54–1.28)

Triglyceride
(>150 mg/dL) 1 (ref) 0.83 (0.57–1.2) 0.68 (0.38–1.22) 1 (ref) 1.14 (0.84–1.53) 0.98 (0.69–1.4)

HDL (mg/dL)
(≤40: F; ≤50: M) 1 (ref) 1.02 (0.77–1.34) 0.93 (0.63–1.37) 1 (ref) 0.86 (0.69–1.06) 0.76 (0.57–1.01)

LDL (>100 mg/dL) 1 (ref) 0.92 (0.71–1.19) 0.77 (0.53–1.13) 1 (ref) 1.09 (0.9–1.33) 0.88 (0.69–1.13)
Fasting plasma glucose
(>100 mg/dL) 1 (ref) 0.62 (0.44–0.88) 0.57 (0.34–0.94) * 1 (ref) 0.96 (0.74–1.24) 0.64 (0.46–0.90) *

Data presented as median (interquartile range). * p-value < 0.05 considered as significant. Adjusted variables are
age, sex, BMI, income, smoking, alcohol, major cooking oil, total polyunsaturated fatty acids (PUFA) (g), added
sugar (g), physical activity level (PAL), total energy (kcal) and tea and coffee intake. HDL—high-density lipopro-
tein cholesterol; LDL—low-density lipoprotein cholesterol; BMI—body mass index; WC—waist circumference.

4. Discussion

The present study has found evidence of a protective effect of dairy consumption
against CMR factors in Asian Indians. We found a reduced risk with an increased intake
of dairy products, where consumption of ≥5 cups per day of total, ≥4 cups per day of
unfermented or ≥2 cups per day of fermented dairy was associated with a reduced risk of
high FPG. A total dairy intake of ≥5 cups per was also associated with a lower risk of high
BP, low HDL and MS. Consumption of ≥4 cups per day of unfermented dairy was also
associated with a decreased incidence of high BMI; while an intake of ≥2 cups per day of
fermented dairy was also associated with a lower risk of MS. Given that Asian Indians have
high prevalence of CVDs and T2D [1–3,26], these findings are of public health importance.
India is the largest producer of milk and it is commonly consumed by all classes of income
groups, providing value for money and nutrients [27]. The results indicate that increasing
the consumption of dairy products might help to reduce the risk of MS and its individual
components in Asian Indians.

At baseline, the most widely consumed dairy products were reported to be tea and
coffee with milk [26], and the same trend continued in the follow-up period after 10 years.
In the Chennai area, a large quantity of milk is typically used in the preparation of tea
and coffee, hence milk added to tea and coffee is a main source of dairy in the study
population. Given that tea and coffee intake may independently influence the risk of
CVDs (Supplementary Table S1), we adjusted for tea and coffee intake in our analysis.
Our findings are consistent with previous studies in which dairy consumption showed
a protective effect against MS [5,18–21]. In the Prospective Urban Rural Epidemiology
(PURE) study [5], a large, multinational cohort study involving 112,922 individuals from
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21 countries with a median follow-up of 9.1 years, a higher total dairy intake (≥2 servings
per day) compared with no intake, was associated with a decreased prevalence of MS [odds
ratio (OR), 0.76; 95% CI, 0.71–0.80; ptrend < 0.0001]. Similarly, the Brazilian Longitudinal
Study of Adult Health (ELSA-Brasil), which involved 9835 participants [18], observed that
total dairy intake was inversely associated with metabolic risk score (Beta = −0.04 ± 0.01,
p = 0.009). The French Data from the Epidemiological Study on the Insulin Resistance
Syndrome (DESIR) [20], a cohort study of 3435 participants also observed a negative
association between consumption of dairy products, except cheese, and incidence of MS
(OR, 0.88; 95% CI, 0.79–0.97; p = 0.01) and impaired fasting glycaemia/T2D (OR, 0.85; 95%
CI 0.76–0.94; p = 0.001). A prospective study of 7240 Koreans [21] also reported that, a high
consumption of dairy (≥7 times a week) was associated with a decreased risk of MS (HR,
0.72; 95% CI, 0.62–0.84; ptrend < 0.001) compared to no consumption of dairy. Overall, these
findings indicate that consumption of dairy might be beneficial in reducing the risk of MS
in different ethnic groups, but large dietary intervention studies will help to corroborate
the findings.

The inverse association between dairy consumption and the risk of individual com-
ponents of CMR observed in our study is also consistent with previous studies. In the
PURE study [5], a higher total dairy intake (≥2 servings per day) compared to no intake,
was associated with a decreased incidence of hypertension (HR, 0.89; 95% CI, 0.82–0.97;
ptrend = 0.02) and T2D (HR 0.88; 95% CI, 0.76–1.02, ptrend = 0.01). The Caerphilly Prospective
Study of 2512 men [41] also reported that participants in the highest milk consumption
group had a 10.4 mmHg lower SBP (ptrend = 0.023) than those who did not consume
milk after a 22.8 year follow-up. This study [41] also observed lower levels of glucose
(ptrend = 0.032) with increasing intake of milk and dairy products. Furthermore, a cross-
sectional study of 205 Indian participants with MS [42] showed that, consumption of milk
and milk products (>4 servings/day) was associated with a lower risk of hypertension (OR,
0.54 95% CI, 0.18–1.67). A study involving 133 Indian women with gestational diabetes [43]
also found an inverse association between consumption of dairy products and adverse
neonatal outcomes (OR, 0.14, 95% CI, 0.02–0.8; p = 0.03). Moreover, a systematic review of
randomised controlled trials [44] reported that dairy intake had a beneficial effect on body
weight. All in all, the findings call for large, randomised trials to confirm the effect of dairy
products on BP, BMI and blood glucose levels.

Our finding of a positive association between dairy intake and high HDL is also sup-
ported by a cohort study of 11,377 Norwegian participants (The Tromsø Study) [45] where
consumption of cheese was positively associated with HDL concentration
(Beta = 0.02 mmol/L, 95% CI, 0.01–0.03)). However, this association was only observed for
total dairy intake in our study. The study [45] also reported that, a high intake of fermented
dairy (250 g/day) was associated with lower TG concentration (Beta = −1.11, 95% CI,
−1.96 to −0.24; p = 0.01) than a low intake, but this was not observed in our study. One
possible explanation is that, cheese was a main part of fermented dairy in the Norwegian
study [45] while in our study, the median intake of cheese was zero. On the whole, the
findings indicate a need for large scale randomised trials to confirm the association of dairy
products with blood lipids.

The average intake of SFA (% of energy) for this study population, Chennai urban area
was 9% of total energy intake (TEI), which is within the recommended daily allowance of
<10% of TEI [46]. Dairy is known to contain high amounts of SFA which is linked to elevated
LDL concentration and high risk of CVDs leading to concerns about the health benefits of
dairy, with some people resorting to low-fat dairy alternatives [17,47]. However, it has been
noted that, SFAs are a large group of fatty acids, and their effects may vary depending on
the type of food [17]. Moreover, a large multinational cohort study of 136,384 individuals
from 21 countries (PURE) [17] observed no significant association between higher intake of
SFA from dairy sources and total mortality or major CVD. Furthermore, odd chain fatty
acids are the major SFAs in milk and they have been associated with better CVD outcomes
with regards to lipids [48,49]. The association of dairy intake with favourable lipid levels
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has also been linked to the presence of oleic acid, a monounsaturated fatty acid (MUFA) in
dairy products [45] which is known to increase the concentration of HDL and lower the
levels of LDL and TG [50–52]. Fatty acids derived from milk have also been associated with
a decrease in the number of small dense LDL particles, which is linked to a favourable lipid
profile since small dense LDL is negatively associated with HDL and positively associated
with TG and fasting insulin levels [53]. Milk is a rich source of different nutrients [17,47],
and it has been suggested that the protective effect of dairy consumption on the risk of
MS is dependent on the individual as well as joint effect of the different nutrients [54,55].
Milk protein is believed to suppress angiotensin I-converting enzyme, which is involved
in BP regulation [56]. Milk is also a rich source of potassium, which helps in regulating
BP [57]. Whey protein derived from milk has also been reported to influence glucose levels
through its involvement in the regulation of gastrointestinal hormones [55]. Fermented
dairy is believed to confer greater anti-inflammatory and cardiometabolic benefits than
unfermented dairy [23,24], but intake of fermented dairy was relatively low in this study,
and this could have influenced our findings of fewer associations between fermented dairy
and CMR. It has also been suggested that, the associations of dairy with blood lipids may be
impacted by dairy matrix and fat content [45]. Moreover, findings from a large mendelian
randomisation analysis of 1,904,220 individuals from three population-based studies [58]
indicate that, genetic variants linked to milk consumption, might also influence BMI and
lipid levels, suggesting that multiple factors are involved in the association of dairy intake
with reduced risk of MS.

The strength of our study is the large sample size and the use of validated instruments
in a well-characterised population. This study is one of few studies which have examined
the association of total, unfermented and fermented dairy with the risk of MS in Asian
Indians. Our study has some limitations. Comparing the benefits of fermented and
unfermented dairy intake was not possible due to the relatively low intake of fermented
dairy compared to unfermented dairy. Additionally, we did not investigate the effect of
individual dairy products on the risk of MS. Furthermore, the fat content of the dairy
products was not analysed in our study. Coffee and tea might also influence CVD risk
independently as shown in Supplementary Table S1, but data on intake of caffeine and
phenolic compounds was not available. However, we adjusted for coffee and tea intake
in the regression model. Moreover, evidence from nutrigenetic studies shows that genetic
variants might be involved in modifying responses to diet, which is outside the scope
of this study. Nonetheless, our findings support previous work and add to the evidence
linking dairy consumption to lower risk of MS and components of CMR.

5. Conclusions

We found that increased consumption of dairy (≥5 cups per day of total, ≥4 cups
per day of unfermented or ≥2 cups per day of fermented dairy) was associated with a
lower risk of high FPG. A total dairy intake of ≥5 cups per day was also protective against
high BP, low HDL and MS. A high unfermented dairy intake (≥4 cups per day) was also
associated with a lower risk of high BMI, while a reduced risk of MS was observed with
a fermented dairy intake of ≥2 cups per day. The findings indicate that increasing the
consumption of dairy might help to reduce CMR factors (high BP, BMI, FPG and low HDL)
and MS in Asian Indians. Larger studies are needed to confirm our findings. Once our
findings are confirmed, dietary guidelines focusing on increasing the consumption of dairy
might be effective in reducing the risk of MS and components of CMR in Asian Indians.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nu14183699/s1, Figure S1: Study Design; Table S1: Tea and
coffee consumption and its association with components of cardiometabolic risk; Figure S2: (a) total
dairy intake and insulin resistance, (b) unfermented dairy intake and metabolic syndrome.
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Abstract
The occurrence of dyslipidaemia, which is an established risk factor for cardiovascular diseases, has been attributed tomultiple factors including
genetic and environmental factors. We used a genetic risk score (GRS) to assess the interactions between genetic variants and dietary factors on
lipid-related traits in a cross-sectional study of 190 Brazilians (mean age: 21 ± 2 years). Dietary intake was assessed by a trained nutritionist using
three 24-h dietary recalls. The high GRS was significantly associated with increased concentration of TAG (beta= 0·10 mg/dl, 95 % CI 0·05–0·16;
P< 0·001), LDL-cholesterol (beta= 0·07 mg/dl, 95 % CI 0·04, 0·11; P< 0·0001), total cholesterol (beta= 0·05 mg/dl, 95 % CI: 0·03, 0·07;
P< 0·0001) and the ratio of TAG to HDL-cholesterol (beta= 0·09 mg/dl, 95 % CI: 0·03, 0·15; P= 0·002). Significant interactions were found
between the high GRS and total fat intake on TAG:HDL-cholesterol ratio (Pinteraction= 0·03) and between the high GRS and SFA intake on TAG:
HDL-cholesterol ratio (Pinteraction= 0·03). A high intake of total fat (>31·5 % of energy) and SFA (>8·6 % of energy) was associated with higher
TAG:HDL-cholesterol ratio in individuals with the high GRS (beta= 0·14, 95 % CI: 0·06, 0·23; P< 0·001 for total fat intake; beta= 0·13, 95 % CI:
0·05, 0·22; P= 0·003 for SFA intake). Our study provides evidence that the genetic risk of high TAG:HDL-cholesterol ratiomight bemodulated by
dietary fat intake in Brazilians, and these individuals might benefit from limiting their intake of total fat and SFA.

Keywords: Genetic risk score: Brazil: TAG to HDL-cholesterol ratio: Fat intake: SFA

CVD are a top cause of mortality globally, accounting for 32 % of
all deaths worldwide in 2019(1). Over three-quarters of mortality
fromCVDhas been reported to occur in low- andmiddle-income
countries(1), highlighting the enormous impact of CVD in these
countries. In Brazil, ischaemic heart disease and stroke
accounted for most deaths in 2019, with a percentage increase
of 18 and 14 %, respectively, from 2009(2). An analysis of the
factors contributing to death in Brazil using data from the Global
Burden ofDisease 2019 study(3) indicated that, more than 80 %of
deaths from CVD is attributable to cardiovascular risk factors.
Among the risk factors for CVD is an altered blood lipid profile
(dyslipidaemia), which is evidenced by a rise in the concen-
tration of triacylglycerol (TAG) or LDL-cholesterol and a
reduction in the concentration of HDL-cholesterol(4,5).

The occurrence of dyslipidaemia has been attributed to
multiple factors including genetic and environmental factors(6–11).
Dietary fatty acids are involved in modulating the metabolism of
lipids and lipoproteins(12,13), and dietary recommendations to
reduce CVD risk advocate for a reduction in SFA and total fat
intake(14). A high SFA intake has been associated with a rise in
TAG-rich lipoproteins, which is associated with increased risk of
myocardial infarction, ischaemic stroke, and other CVD(15–17).
Consumption of SFA has also been linked to a rise in circulating
levels of inflammatory biomarkers(18,19) which contributes to the
development of cardiometabolic diseases, including CVD(20–22). A
meta-analysis involving a total of forty-nine prospective studies(23)

identified that higher concentration of circulating SFA was
associated with a 50 % increased risk of CVD, 63% increased
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risk of CHD and 38% increased risk of stroke. In a cross-sectional
study of 282 Brazilian adults(24), consumption of SFAwas found to
be higher than the recommended intake in 79·7% of the
participants. The fat content of processed foods in Brazil was
also found to be composed of high amounts of SFA, ranging from
9·3 to 12 g per 100 g of food products(25).

Evidence from genome-wide association studies has impli-
cated several genetic loci for the development of dyslipidae-
mia(26–30), but these variants account for a small proportion of
variability in blood lipid concentrations, and there is growing
evidence that an interaction between genetic variants and
environmental factors is responsible for part of the missing
heritability(31–36). Single variants often have small effect sizes and
an effective approach to assessing the genetic contribution to
complex traits is the use of a genetic risk score (GRS), which
allows the combined effect of multiple variants to be
analysed(37,38). Single nucleotide polymorphisms (SNP) of
lipid-pathway genes have been reported to contribute to
variations in blood lipid concentrations(7,39–41), and the proteins
encoded by these genes include cholesteryl ester transfer protein
(CETP), which regulates HDL-cholesterol concentration and
particle size by promoting the transfer of cholesteryl esters and
TAG between lipoproteins(42); apolipoprotein A1 (APOA1),
which is themain component of HDL-cholesterol and is involved
in the maturation of HDL-cholesterol(43); glucokinase regulatory
protein, which regulates the activity of glucokinase(44,45); sortilin,
which regulates plasma LDL-cholesterol by facilitating hepatic
uptake of ApoB100-containing lipoproteins(46) and hepatic
lipase (LIPC) and endothelial lipase (LIPG) which hydrolyse
lipoproteins to release free fatty acids(47,48). Only a few studies
have utilised a GRS to assess the interactions between dietary
intake and genetic variants on CVD traits in Brazilians(37,49,50),
with even fewer studies focusing on young adults. Two of the
studies(37,49) used data from theObesity, Lifestyle andDiabetes in
Brazil (BOLD) cross-sectional study and involved 187 and 200
participants aged 19–24 years, respectively. Significant GRS–diet
interactions were found in relation to vitamin D and glycaemic
traits, respectively. The third study(50), which was also a cross-
sectional study, consisted of 228 adults (19–60 years) and
significant GRS–diet interactions on dyslipidaemia were
reported. Hence, the aim of this study was to assess the genetic
associations and the interaction of the GRS with dietary factors
on lipid-related traits in Brazilian young adults.

Methods

Study participants

The study consisted of 190 young adults aged 19–24 years from
the BOLD cross-sectional study(34,37). Participants were recruited
between March and June 2019 from the Federal University of
Goiás. The study was performed as part of the gene–nutrient
interactions (GeNuIne) collaboration, which is aimed at
investigating how genetic and lifestyle factors interact to
influence chronic diseases in diverse ethnic groups, with the
goal of preventing and managing chronic diseases through
personalised nutrition(6,51–53). Details of the study design are
published elsewhere(37,49). In brief, a total of 416 individuals

expressed interest in the study, but 207 individuals were found to
be eligible. Participants were excluded if they were using lipid-
lowering medication, vitamins or mineral supplements; had
undergone dietary interventions in the past 6 months or
undertaking vigorous physical activity or had a diagnosis of
any chronic disease such as type 2 diabetes, dyslipidaemia or
hypertension. Out of the 207 eligible participants, 200 completed
the study; however, 190 participants were included in the
present analysis after excluding participants with missing data
for genetic and phenotypic measurements. The selection of the
participants is shown in online Supplementary Fig. S1.

The study was approved by the Ethics Committee of the
Federal University of Goiás (protocol number 3·007·456, 08/11/
2018), and written informed consent was obtained from all the
study participants. The study was performed in accordance with
the ethical principles in the Declaration of Helsinki.

Anthropometric and biochemical measurements

Measurement of anthropometric parameters was done by trained
staff from the Nutritional Genomics research group of The Federal
University of Goiás, Brazil. A Tanita® (Tanita Corporation)
portable electronic scale, which has a maximum capacity of
150 kg, was used to weigh participants. For height, a stadiometer
with a movable rod was used, and the volunteers were asked to
keep upright with heels, calves, shoulder blades and shoulders
pressed against the wall, knees straight, feet together and arms
extended along the body; the head raised (making a 90º angle
with the ground), with the eyes looking at a horizontal plane
ahead, in accordancewith the Frankfurt plane.Weight and height
were used to calculate the BMI using the formula: weight (kg)/the
square of the height (m2). Waist circumference was measured
using an inelastic measuring tape at the midpoint between the
lowest rib margin and the iliac crest(54).

Blood pressure was measured when the patient was seated,
positioning the arm at heart level. Three measurements were
taken, with 5-min intervals between them. At the end, the
average of the threemeasurements was considered, as proposed
by the American Heart Association(55) and approved by the VI
Brazilian Guideline on Hypertension(54).

Approximately 10 ml of venous blood was collected from the
medial cubital vein following a 12-h fasting period. The blood
collection procedure was performed by a trained healthcare
professional using single-use materials. Participants were
instructed to abstain from consuming alcohol for 72 h and
avoid engaging in strenuous physical activity for 24 h prior to the
blood collection. The samples were processed immediately after
collection at the Romulo Rocha Laboratory (Goiânia, Brazil). The
levels of TAG, total cholesterol (TC) and HDL-cholesterol were
assessed using direct enzymatic colorimetry. LDL-cholesterol
levels were calculated using the Friedewald, Levy, and
Fredrickson equation (1972)(56).

Dietary assessment

Dietary intake was assessed by a trained nutritionist using three
24-h dietary recalls consisting of non-consecutive days, includ-
ing one weekend(57). The nutritionist conducted the first
interview in person according to multiple-pass method(58), and
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the following two interviews were conducted via phone calls. To
assist in estimating portion sizes of various foods, participants
were provided with measuring equipment such as measuring
cups and spoons. Intake of nutrients and energywas determined
from the dietary recalls using the Avanutri Online® diet
calculation software (Avanutri Informática Ltda) with three
Brazilian food composition databases, Brazilian Institute of
Geography and Statistics, 2011(59), food composition table-
support for nutritional decision making (2016)(60) and food
studies and research centre-Brazilian food composition table
(2011)(61). For processed or ultra-processed foods that were not
in the databases, the information in the label was man-
ually added.

Single nucleotide polymorphism selection and genotyping

A total of seven SNP representing seven loci were selected for
this study based on their association with lipid-related traits at a
genome-wide significance level (P< 5 × 10–8): CETP SNP
rs3764261(26,62–66), glucokinase regulator (GCKR) SNP
rs1260326(26,41,65,67–70), endothelial lipase (LIPG) SNP
rs7241918(26,71–73), sortilin 1 (SORT1) SNP rs629301(26,71,72),
hepatic lipase (LIPC) SNP rs1532085(26,65,70,74), apolipoprotein
A1 (APOA1) SNP rs964184(26,27,68,75–79) and ATPase plasma
membrane Ca2þ transporting 1 (ATP2B1) SNP rs2681472(80–83).
Table 1 shows the SNP, effect sizes, P-values and the genome-
wide association studies. A review by our team(7) indicated that
the CETP gene had the highest number of reported associations
with lipid traits, and it was concluded that SNP of the CETP gene
could potentially alter blood lipid profiles by interacting with
diet. The GCKR gene was chosen as it has been reported to
influence alterations in blood lipid profiles(90–95). The LIPG gene,
another key lipid metabolism gene has been reported to play a
role in inflammation and could influence the risk of CVD(48,96,97).
Furthermore, the SORT1 gene is considered the strongest
genome-wide LDL-cholesterol associated locus(27,62,98–101) and
the LIPC gene is also a main lipid-pathway gene which has been
associated with abnormal lipid profiles(26,65,72,74,88). Additionally,
the APOA1 gene has been widely studied and has been linked
with variations in blood lipid levels(26,28,76,78,85) and the risk of
CVD(102–105). Similarly, the ATP2B1 gene has been reported to
influence the risk of developing CVD(80,81,83,89,104). Six of the SNP
included in our GRS (rs3764261, rs1260326, rs7241918,
rs629301, rs1532085, rs964184) had previously been included
in a GRS by a genetic association study involving 6358
participants from the Multi-Ethnic Study of Atherosclerosis
Classic cohort(106) which observed significant associations
between the GRS and lipid traits. The genotyping procedure
has been previously published(49). Briefly, blood samples (3 ml
each) for genotyping were collected in BD Vacutainer®
ethylenediamine tetraacetic acid (EDTA) tubes and kept at a
controlled temperature of –80ºC during transportation by the
World Courier Company. Genotyping was performed by LGC
Genomics, London, UK (http://www.lgcgroup.com/services/ge
notyping), using the competitive allele-specific PCR-
KASP® assay.

Construction of genetic risk score

To construct the GRS, each SNP was first tested for independent
association with the lipid-related traits using linear regression
analysis, adjusted for age, sex and BMI. An unweighted GRS was
then constructed by summing the number of risk alleles across all
the seven SNP (CETP rs3764261, GCKR rs1260326, LIPG
rs7241918, SORT1 rs629301, LIPC rs1532085, APOA1 rs964184
and ATP2B1 rs2681472) for each participant. For each SNP, a
score of 0, 1 or 2 was assigned depending on whether the
participant carried no risk alleles (homozygous for the non-risk
allele), one risk allele (heterozygote) or two risk alleles
(homozygous for the risk allele). The scores for the seven SNP
were then added up to create theGRS. The effect sizes of the SNP
were not considered and the GRS for each participant
represented the total number of risk alleles they carried from
the seven SNP. An unweighted GRS was used because although
we selected SNP which have shown associations with lipid-
related traits, the studies were not conducted in the Brazilian
population, and it has been reported that effect sizes may vary
across populations and data from a genome-wide association
study conducted in one population may not apply to another
population(31,107). Moreover, assigning weights to risk alleles has
been shown to have minimal effect(108). The risk alleles were
defined as alleles previously reported to be associated with
increased concentration of TAG, LDL-cholesterol or TC; or
reduced concentration of HDL-cholesterol; or increased risk of
coronary artery disease or myocardial infarction. The GRS
ranged from 1 to 10, and themedianGRS (6 risk alleles) was used
as a cut-off point for grouping participants as low risk (GRS< 6
risk alleles) or high risk (GRS≥ 6 risk alleles).

Statistical analysis

An independent sample t test was used to compare the means of
continuous variables between men and women. The results for
descriptive statistics are presented as means and SD. To test for
normality, the Shapiro–Wilk test was used and all the
biochemical, anthropometric and dietary variables, except total
fat, carbohydrate, and MUFA intake (percentages of total energy
intake (TEI)), were log-transformed prior to the analysis. Allele
frequencies were determined by gene counting and Hardy–
Weinberg equilibrium was calculated using the Chi-square test.
All the seven SNP were in Hardy–Weinberg equilibrium
(P> 0·05) (online Supplementary Table S1), and the alleles
had a frequency >5 %.

Linear regression was used to test the association of the GRS
with lipid levels and blood pressure, with adjustment for age, sex
andBMI. To determine interactions between theGRS and dietary
factors on the outcome variables (TAG, TAG:HDL-cholesterol
ratio, HDL-cholesterol, LDL-cholesterol, TC, systolic blood
pressure (SBP), and diastolic blood pressure (DBP)), the
interaction term was included in the regression model. The
dietary factors examined were the intakes of fat, carbohydrate,
and protein. Statistically significant GRS–diet interactions
(P< 0·05) were investigated further by stratifying participants
according to the quantity of dietary intake. A significant
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Table 1. SNP used to construct the GRS and the reported traits by genome-wide association studies

Gene and SNP
Effect
allele

Lipid trait and effect size in mg/dl (P value)

Population and sample size GWA StudyHDL-cholesterol LDL-cholesterol TAG TC

CETP rs3764261 A þ0·24 1 × 10–769 –0·05 2 × 10–34 –0·04 2 × 10–25 þ0·05 4 × 10–31 European ancestry (UK, Finland, Sweden, USA, Italy, Greece,
Germany, Estonia, Norway)

n 94 595

Willer et al.
(2013)(72)

A þ3·39 7 × 10–380 –2·88 1 × 10–12 þ1·67 7 × 10–14 European ancestry (Finland, Sweden, USA, Australia, Iceland,
Italy, Netherlands, Germany, UK, Croatia, Switzerland,
Austria, France, Denmark)

n 99 900 for HDL
n 96 598 for TAG
n 100 184 for TC

Teslovich et al.
(2010)(26)

A þ3·48 7 × 10–29 Northern Finnish Founder
n 4763

Sabatti et al.
(2009)(65)

A þ0·20* 9 × 10–18 African American
n 7813

Lettre et al.
2011(63)

A þ3·18* 7 × 10–43 Indian
n 1036

Khushdeep et al.
2019(66)

CETP rs3764261 A þ6·20 3 × 10–12 Japanese
n 900

Hiura et al.
2009(64)

LIPG rs7241918 G –1·31 3 × 10–49 European ancestry
(Finland, Sweden, USA, Australia, Iceland, Italy, Netherlands,

Germany, UK, Croatia, Switzerland, Austria, France,
Denmark)

n 99 900

Teslovich et al.
(2010)(26)

A –1·94 2 × 10–19 European ancestry
(Finland, Sweden, USA, Australia, Iceland, Italy, Netherlands,

Germany, UK, Croatia, Switzerland, Austria, France,
Denmark)

n 100 184

Teslovich et al.
(2010)(26)

G –0·09* 1 × 10–44 –0·06* 4 × 10–18 European ancestry (UK, Finland, Sweden, USA, Italy, Greece,
Germany, Estonia, Norway)

n 94 595

Willer et al.
(2013)(72)

LIPG rs7241918 G –0·08* 4 × 10–55 –0·02* 1 × 10–8 European ancestry
n 115 082

Richardson et al.
(2022)(84)

A þ0·02* 3 × 10–27 Multi-ancestry
(African: n 23 761; Asian: n 13 171;
European: n 90 272; Hispanic or Latin American: n 6620)

Bentley et al.
2019(71)

GCKR
rs1260326

T þ8·76 6 × 10–133 þ1·91 7 × 10–27 European ancestry
(Finland, Sweden, USA, Australia, Iceland, Italy, Netherlands,

Germany, UK, Croatia, Switzerland, Austria, France,
Denmark)

n 96 598 for TAG
n 100 184 for TC

Teslovich et al.
(2010)(26)

T þ0·12 2 × 10–239 þ0·05* 3 × 10–42 European ancestry
(UK, Finland, Sweden, USA, Italy, Greece, Germany, Estonia,

Norway)
n 94 595

Willer et al.
(2013)(72)

GCKR
rs1260326

T þ0·12* 2 × 10–31 European (UK, Finland, Sweden, USA, Italy, France)
n 19 840

Kathiresan et al.
(2009)(28)
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Table 1. (Continued )

Gene and SNP
Effect
allele

Lipid trait and effect size in mg/dl (P value)

Population and sample size GWA StudyHDL-cholesterol LDL-cholesterol TAG TC

T þ0·12* 5 × 10–88 þ0·05* 3 × 10–13 European (UK, Finland, Sweden, Iceland, Netherlands,
Germany, Estonia)

n 62 166

Surakka et al.
(2015)(85)

T þ0·03* 6 × 10–60 European ancestry
n 440 546

Richardson et al.
(2020)(73)

T 1·41† 2 × 10–13 Mexican
n 2240

Weissglas-Volkov
et al. (2013)(41)

T þ0·03* 7 × 10–10 Multi-ancestry
(European: n 76 627; Hispanic: n 7795; East Asian: n 6855;

African American: n 2958; South Asian: n 439)

Hoffman et al.
2018(86)

SORT1
rs629301

G –5·65 1 × 10–170 –5·41 6 × 10–131 European ancestry (UK, Finland, Sweden, USA, Australia,
Iceland, Italy, Netherlands, Germany, Croatia, Switzerland,
Austria, France, Denmark)

n 100 184 for TC
N 95 454 for LDL-C

Teslovich et al.
(2010)(26)

G –0·17* 5 × 10–241 –0·13* 2 × 10–170 European ancestry (UK, Finland, Sweden, USA, Italy, Greece,
Germany, Estonia, Norway)

n 94 595

Willer et al.
(2013)(72)

G þ0·04* 4 × 10–15 –0·14* 7 × 10–135 Multi-ancestry
(European: n 76 627; Hispanic: n 7795; East Asian: n 6855;

African American: n 2958; South Asian: n 439)

Hoffman et al.
2018(86)

T þ4·46* 1 × 10–128 Multi-ancestry
(African: n 23 761; Asian: n 13 171;
European: n 90 272; Hispanic or Latin American: n 6620)

Bentley et al.
2019(71)

SORT1
rs629301

G –6·03* 2 × 10–72 –5·80* 2 × 10–57 European
n 29 902

Kulminski et al.
(2020)(87)

T þ0·11* 2 × 10–31 Japanese
n 72 866

Sakaue et al.
(2021)

(83)

LIPC
rs1532085

A þ0·11* 1 × 10–188 þ0·05* 7 × 10–47 European ancestry (UK, Finland, Sweden, USA, Italy, Greece,
Germany, Estonia, Norway)

n 94 595

Willer et al.
(2013)(72)

A þ0·11* 1 × 10–213 Multi-ancestry
European: n 187 167;
East Asian (China, Japan, Republic of Korea, Philippines,

Singapore, Taiwan): n 34 930

Spracklen et al.
(2017)(88)

LIPC
rs1532085

G –0·13* 1 × 10–35 European ancestry (UK, Finland, Sweden, Australia, Italy,
Netherlands, Germany, Croatia, Norway, Denmark)

n 21 412

Aulchenko et al.
2009

(74)

G þ2·99 2 × 10–13 European ancestry
(Finland, Sweden, USA, Australia, Iceland, Italy, Netherlands,

Germany, UK, Croatia, Switzerland, Austria, France,
Denmark)

n 96 598

Teslovich et al.
(2010)(26)

A þ1·90 2 × 10–10 Northern Finnish Founder
n 4763

Sabatti et al.
2009(65)

APOA1 rs964184 G þ2·85 1 × 10–26 þ16·95 7 × 10–240 European ancestry (UK, Finland, Sweden, USA, Australia,
Iceland, Italy, Netherlands, Germany, Croatia, Switzerland,
Austria, France, Denmark)

Teslovich et al.
(2010)(26)
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Table 1. (Continued )

Gene and SNP
Effect
allele

Lipid trait and effect size in mg/dl (P value)

Population and sample size GWA StudyHDL-cholesterol LDL-cholesterol TAG TC

n 96 598 for TAG;
n 95 454 for LDL-cholesterol

APOA1 rs964184 G þ0·24* 2 × 10–157 European (UK, Finland, Sweden, Iceland, Netherlands,
Germany, Estonia)

n 62 166

Surakka et al.
(2015)(85)

G –0·03* 2 × 10–11 European (UK, Finland, Italy, Switzerland)
n 17 723

Waterworth et al.
2010(76)

G –0·05* 3 × 10–12 þ0·16* 4 × 10–33 African American: n 7601, Hispanic: n 3335 for TAG;
African American: n 7917, Hispanic: n 3506 for HDL-cholesterol

Coram et al.
2013(78)

G –0·17 1 × 10–12 þ0·30* 4 × 10–62 European ancestry (UK, Finland, Sweden, USA, Italy, France)
n 19 840

Kathiresan et al.
(2009)(28)

CAD MI

ATP2B1
rs2681472

G 1·07† 8 × 10–11 European
n 63 731

Nelson
et al.
2017(81)

ATP2B1
rs2681472

G þ0·07* 1 × 10–11 European (UK, Finland): n 461 823; Japanese: n 161 206 Sakaue
et al.
(2021)(83)

G 1·08† 6 × 10–9 European: n 126630, Hispanic or Latin American (USA):
n 3615, Middle Eastern, North African or Persian: n 754, African American or Afro-Caribbean (USA):
n 2908, South Asian (India, UK, Pakistan): n 23 156; East Asian (Republic of Korea, China): n 9396

Nikpay
et al.
(2015)(80)

G 1·07† 1 × 10–12 European
n ∼472 000

Hartiala
et al.
(2021)(89)

SNP, single nucleotide polymorphism; GRS, genetic risk score; TC, total cholesterol; GWA, genome-wide association.
* Effect sizes are in units of SD.
† OR.
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interaction between the GRS and total fat intake was explored
further by analysing the effects of subtypes of fat (SFA, MUFA
and PUFA). The median intake of total fat, SFA, MUFA and PUFA
was used as a cut-off point to place participants into groups: ‘low’

(for participants with an intake lower than or equal to the
median) and ‘high’ (for those with an intake higher than the
median); and the effect of the GRS on the outcome was
examined for participants in each group. The Bonferroni
adjusted P-value for association was 0·007 (1GRS * 7 outcome
variables= 7 tests; 0·05/7= 0·007), and for interaction, it was
0·002 (1GRS * 7 outcome variables*3 dietary factors= 21 tests;
0·05/21= 0·002). The statistical analyses were performed using
the Statistical Package for the Social Sciences (SPSS) software
(version 28; SPSS Inc., Chicago, IL, USA). Additionally, the GRS
was scaled by converting the scores to units of standard
deviation from the mean(109) and the association of the GRS as a
continuous variable with the lipid-related traits was tested by
linear regression using the R software version 4·3·1(110).

Power and sample size calculation. Power calculation was
performed using the QUANTO software, version 1·2·4 (May
2009)(111) in the form of minimum detectable effect at 80 %
power and a significance level of 5 %. For an SNP with a minor
allele frequency of 5 %, the minimum detectable effect at 80 %
power was 6·6 mg/dl for TC, LDL-cholesterol and TAG. For an
SNP with a minor allele frequency of 50 %, the minimum
detectable effect at 80 % power was 2·9 mg/dl for TC, LDL-
cholesterol and TAG.

Results

Characteristics of the study participants

The demographic and clinical characteristics of the participants
in this study are summarised in Table 2. The mean age of the
sample was 21 ± 2 years, and men had higher BMI and waist

circumference than women (P= 0·01 and P< 0·001, respec-
tively). Women, however, had higher concentrations of
HDL-cholesterol (P< 0·0001) and TC (P= 0·01) but lower
TAG:HDL-cholesterol ratio (P= 0·006), SBP (P< 0·0001), and
DBP (P< 0·001) than men. Intakes of total energy and protein
were higher in men than in women (P= 0·003 and P= 0·04,
respectively), but consumption of total fat, SFA, MUFA, PUFA
and carbohydrate did not differ significantly between men and
women. Table 3 shows the characteristics of the study
participants according to GRS. Participants with a high GRS
had a significantly lower intake of energy (P= 0·02) than those
with a low GRS. No other significant differences were observed
between participants in the two groups. The distribution of the
GRS across deciles of TC, LDL-cholesterol, TAG and TAG:HDL
ratio is presented in online Supplementary Fig. S2.

Association of the genetic risk score with blood lipids

Four significant associations were identified between the GRS
and lipid traits where individuals carrying six or more risk alleles
had significantly higher TAG, LDL-cholesterol and TC concen-
trations, as well as higher TAG:HDL-cholesterol ratio compared
with participants with less than six risk alleles (Table 3). When
the GRS was tested as a continuous variable, each standard
deviation increase in the GRS was associated with a 1·05 mg/dl
increase (95 % CI 1·02, 1·07) in the concentration of TC
(P= 0·002); 1·07 mg/dl increase (95 % CI 1·03, 1·12) in the
concentration of LDL-cholesterol (P< 0·001); 1·14 mg/dl
increase (95 % CI 1·07, 1·21) in the concentration of TAG
(P< 0·0001) and a 1·16 mg/dl increase (95 % CI 1·09, 1·24) in
TAG:HDL-cholesterol ratio (P< 0·0001). All the associations
remained significant after Bonferroni correction for multiple
testing. The distribution of the lipid-related traits across deciles of
the GRS is presented in Fig. 1. As the decile of the GRS increased,
the concentration of TC, TAG, LDL-cholesterol and TAG:HDL
also increased.

Table 2. Characteristics of study participants by sex

All (n 190) Women (n 141) Men (n 49)

P ValueMean SD Mean SD Mean SD

Age (years) 21 2 21 2 22 2 0·17
BMI (kg/m2) 23 1 23 1 24 1 0·01
WC (cm) 72 1 69 1 83 1 <0·001
TAG (mg/dl) 76 2 76 2 75 2 0·81
TAG:HDL ratio 2 2 1 2 2 2 0·01
HDL-cholesterol (mg/dl) 55 1 59 1 46 1 <0·0001
LDL-cholesterol (mg/dl) 99 1 100 1 99 1 0·80
TC (mg/dl) 174 1 178 1 163 1 0·01
SBP (mmHg) 107 1 105 1 114 1 <0·0001
DBP (mmHg) 64 1 63 1 67 1 <0·001
Energy (kcal/day) 1735 1 1668 1 1944 1 0·003
Total fat (% of energy) 32 6 32 6 31 6 0·14
SFA (% of energy) 9 1 9 1 9 1 0·84
MUFA (% of energy) 8 3 8 3 8 3 0·07
PUFA (% of energy) 5 2 5 2 5 2 0·08
Carbohydrate (% of energy) 51 7 51 7 51 8 0·88
Protein (% of energy) 17 1 16 1 18 1 0·04

WC, waist circumference; TC, total cholesterol; SBP, systolic blood pressure; DBP, diastolic blood pressure.
P values for the differences in means between men and women were calculated using independent sample t test.
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Interaction between genetic risk score and dietary factors
on blood lipids

There was a significant interaction between GRS and total fat
intake on TAG:HDL-cholesterol ratio (Pinteraction= 0·03) as
shown in Table 4. In the high total fat intake group (>31·5 %
of TEI), participants carrying six or more risk alleles had a higher
TAG:HDL-cholesterol ratio compared with those carrying less
than six risk alleles (beta= 0·14, 95 % CI: 0·06, 0·23; P< 0·001)

(Fig. 2(a)). No significant difference in TAG:HDL-cholesterol
ratio was found between participants with a high GRS (≥6 risk
alleles) and those with a lowGRS (<6 risk alleles) in the low total
fat intake group (≤31·5 % of TEI). When subtypes of fat were
investigated, a significant interaction was found between GRS
and SFA intake on TAG:HDL-cholesterol ratio (Pinteraction= 0·03)
(Fig. 2(b)), where a high SFA intake (>8·6 % of TEI) was
associated with a higher TAG:HDL-cholesterol ratio in

Table 3. Association of GRS with blood lipids and blood pressure and the characteristics of the participants stratified by GRS

Trait

GRS< 6 (n 92) GRS ≥ 6 (n 98)

Mean SE Mean SE P value

TAG (mg/dl) 67·3 1·0 84·9 1·0 <0·001
TAG:HDL-cholesterol ratio 1·2 1·0 1·5 1·0 0·002
HDL-cholesterol (mg/dl) 54·5 1·0 55·5 1·0 0·56
LDL-cholesterol (mg/dl) 91·4 1·0 107·6 1·0 <0·0001
TC (mg/dl) 164·1 1·0 183·7 1·0 <0·0001
SBP (mmHg) 106·9 1·0 107·2 1·0 0·69
DBP (mmHg) 63·2 1·0 64·1 1·0 0·48

Characteristic

GRS < 6 (n 92) GRS ≥ 6 (n 98)

P value*Mean SD Mean SD

Age (years) 21 2 21 2 0·28
Sex (W/M) 67/27 – 78/26 – 0·56
BMI (kg/m2) 23 1 23 1 0·97
WC (cm) 73 1 72 1 0·59
Energy (kcal/day) 1827 1 1648 1 0·02
Total fat (% of energy) 32 6 32 6 0·99
SFA (% of energy) 9 1 9 1 0·45
MUFA (% of energy) 8 2 8 3 0·27
PUFA (% of energy) 5 1 4 2 0·12
Carbohydrate (% of energy) 51 7 50 7 0·68
Protein (% of energy) 17 1 17 1 0·84

GRS, genetic risk score; TC, total cholesterol; SBP, systolic blood pressure; DBP, diastolic blood pressure; W, women; M, men.
P values were obtained from linear regression analysis with adjustment for age, sex and BMI. Log-transformed variables were used for the analysis and values in bold represent
significant associations.
* P values for the differences in means between participants with low GRS and those with high GRS were obtained using independent sample t test. The distribution of sex in the two
groups was compared using the χ2 test.
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(triacylglycerol), TAG:HDL-cholesterol (TAG to high-density lipoprotein cholesterol ratio). GRS, genetic risk score; TC, total cholesterol.
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Table 4. Interaction between GRS and dietary factors on blood lipids and blood pressure

Trait

GRS * Protein (% of energy) GRS * Fat (% of energy) GRS * Carbohydrate (% of energy)

Beta coefficient SE Pinteraction Beta coefficient SE Pinteraction Beta coefficient SE Pinteraction

TAG (mg/dl) 0·33 0·30 0·27 0·01 0·01 0·26 –0·004 0·004 0·30
TAG:HDL-cholesterol ratio 0·28 0·32 0·39 0·01 0·01 0·03 –0·01 0·004 0·06
HDL-cholesterol (mg/dl) 0·06 0·14 0·70 –0·01 0·002 0·007 0·004 0·002 0·05
LDL-cholesterol (mg/dl) 0·29 0·18 0·12 –0·001 0·003 0·75 0·001 0·002 0·69
TC (mg/dl) 0·22 0·13 0·10 –0·002 0·002 0·35 0·001 0·002 0·46
SBP (mmHg) 0·002 0·05 0·96 –0·0002 0·001 0·83 –0·001 0·001 0·17
DBP (mmHg) –0·03 0·08 0·71 0·00004 0·001 0·98 –0·001 0·001 0·31

GRS, genetic risk score; TC, total cholesterol; SBP, systolic blood pressure; DBP, diastolic blood pressure.
P values were obtained from linear regression analysis with adjustment for age, sex and BMI. Log-transformed variables were used for the analysis and values in bold represent
significant interactions.
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Fig. 2. (a) Interaction betweenGRS (genetic risk score) and total fat intake on TAG:HDL-cholesterol (TAG to high-density lipoprotein cholesterol) ratio. Low refers to total
fat intake lower or equal to the median and high refers to total fat intake above the median. In the high total fat intake group, participants with a high GRS (≥6 risk alleles)
had higher TAG:HDL-cholesterol ratio than those with a low GRS (<6 risk alleles). There was no significant difference in TAG:HDL-cholesterol ratio in the low total fat
intake group. (b) Interaction betweenGRS (genetic risk score) and SFA intake on TAG:HDL-cholesterol (TAG toHDL-cholesterol ratio). Low refers to SFA intake lower or
equal to the median and high refers to SFA intake above the median. A high intake of SFA was associated with higher TAG:HDL-cholesterol in participants with a high
GRS compared with those with a low GRS, but no significant difference in TAG:HDL-cholesterol was observed when SFA intake was low. GRS, genetic risk score.
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participants with a high GRS compared with those with a low
GRS (beta= 0·13, 95 %CI: 0·05, 0·22;P= 0·003), but therewas no
significant difference in TAG:HDL-cholesterol ratio when SFA
intake was low (≤8·6 % of TEI). A significant interaction was also
observed between GRS and total fat intake on HDL-cholesterol
concentration (Pinteraction = 0·007). However, when individuals
were stratified according to quantity of total fat intake, there was
no significant association between the GRS and HDL-cholesterol
concentration. The interactions did not pass the Bonferroni
threshold.

Discussion

Our findings provide evidence that the genetic risk for
disturbances in blood lipids concentration might be modulated
by dietary fat intake. Significant interactionswere found between
the GRS and total fat intake on TAG:HDL-cholesterol ratio and
between the GRS and SFA intake on TAG:HDL-cholesterol ratio.
Increased consumption of total fat (>31·5 % of energy) and SFA
(>8·6 % of energy) was associated with higher TAG:HDL-
cholesterol ratio in participants carrying≥6 risk alleles compared
with those with <6 risk alleles. The results suggest that the TAG:
HDL ratio in Brazilian young adults with a high genetic risk for
disturbances in lipid-related traits maybe responsive to dietary
fat intake; hence, interventions targeting a reduction in total fat
and SFA intake could potentially benefit these individuals.
Although the interactions did not pass the Bonferroni threshold,
three of the SNP included in our GRS (CETP rs3764261, APOA1
rs964184 and GCKR rs1260326) have previously been reported
to interact with dietary fat intake and influence lipid-related
traits. In a study involving two trials (a 2-year randomised weight
loss trial (POUNDS LOST) consisting of 732 overweight/obese
adults and a replication in 171 overweight/obese adults from an
independent 2-year randomised weight loss trial (DIRECT))(112),
significant interactions were observed between the CETP SNP
rs3764261 and dietary fat intake on changes in the concentration
of HDL-cholesterol and TAG (pooled Pinteraction < 0·01).
Similarly, a prospective, randomised, single-blind controlled
dietary intervention trial (Coronary Diet Intervention With Olive
Oil and Cardiovascular Prevention) involving 424 Spanish
individuals with metabolic syndrome(113) found significant
interactions between the CETP SNP rs3764261 and
Mediterranean diet on the concentration of HDL-cholesterol
(Pinteraction= 0·006) and TAG (Pinteraction = 0·04). In another study
consisting of 734 overweight/obese adults from the POUNDS
LOST trial(114), the APOA1 SNP rs964184 was also found to
interact with dietary fat intake in relation to changes in the
concentration of HDL-cholesterol, LDL-cholesterol and total
cholesterol (Pinteraction= 0·006, 0·02 and 0·007, respectively).
Additionally, a cross-sectional study of 3342 individuals (1671 sib
pairs) in India(115) found a significant interaction between the
APOA1 SNP rs964184 and dietary fat intake on the concentration
of TAG (P= 0·04). This study(115) also observed significant
interactions between the CETP SNP rs3764261 and dietary fat
intake on the concentrations of total cholesterol (P= 0·02) and
LDL-cholesterol (P= 0·04). Furthermore, an interaction between
the GCKR SNP rs1260326 and MUFA intake on HDL-cholesterol

concentration was reported in a cross-sectional study of 101
participants of different ethnicities in the USA population
(Pinteraction= 0·02)(116). Therefore, the interactions in our study
cannot be ruled out completely; hence, a replication is
warranted.

The ratio of TAG:HDL-cholesterol has been identified as an
independent predictor of CHD, mortality from CVD and insulin
resistance(16,17,117,118). Hence, our findings have significant public
health implications in terms of prevention and management of
dyslipidaemia in individuals with a high genetic risk. Our data
support the recommendations of the WHO(14) to reduce the
intake of total fat and SFA to less than 30 % and 10 % of energy
intake, respectively, to help prevent cardiometabolic diseases.
Our findings are also in agreement with the dietary guidelines for
Brazilians which recommend decreasing the intake of food rich
in solid fat and added sugar and limiting the daily energy intake
from total fat to less than 30 %(119,120).

In the current study, the GRS was positively associated with
the concentration of TAG, LDL-cholesterol and TC and the ratio
of TAG:HDL-cholesterol. Our findings are consistent with those
of a study involving 8526 participants from two Danish
cohorts(121) (a randomised nonpharmacological intervention
study (Inter99), n 5961; and a population-based epidemiological
study (Health2006), n 2565), in which a positive association was
identified between lipid-GRS and the concentration of TAG
(beta= 1·4 %mmol/l, P< 0·0001); LDL-cholesterol (beta= 0·024
mmol/l, P< 0·0001) and TC (beta= 0·027 mmol/l, P< 0·0001).
Similarly, a prospective study of 3495 Swedish participants(122)

reported significant associations between lipid-GRS and changes
in the concentration of TC and TAG after a 10-year follow up
(beta= 0·02 mmol/l per effect allele, P< 0·0001 for TC;
beta= 0·02 mmol/l per effect allele, P< 0·0001 for TAG). The
European Prospective Investigation of Cancer-Norfolk cohort
study, consisting of 20 074 participants(123), also found a positive
association between a lipid-GRS and the concentration of TAG
(beta= 0·25 mmol/l, 95 % CI 0·22, 0·27 per allele change;
P< 0·001), indicating the role of genetic polymorphisms in
predicting variability in blood lipid concentration.

A systematic review and meta-analysis of six prospective
studies including 10 222 participants(16) reported that, in patients
with CHD, those with elevated TAG:HDL-cholesterol ratio had
increased risk of all-cause mortality (hazard ratio= 2·92, 95 % CI
1·75, 4·86; P< 0·05) and major adverse cardiovascular events
(hazard ratio = 1·56, 95 % CI 1·11, 2·18; P< 0·05) comparedwith
those with lower TAG:HDL-cholesterol ratio. In line with our
findings, a study conducted in 228 Brazilian adults(50) reported a
significant interaction between a GRS based on lipid metabolism
genes and intake of solid fat, alcoholic beverages and added
sugar on the risk of dyslipidaemia (Pinteraction< 0·001), where
participants with a high GRS had a lower risk of dyslipidaemia
when their intake of solid fat, alcoholic beverages and added
sugar was below the median. Similarly, a prospective rando-
mised controlled trial involving 523 Spanish patients with
coronary artery disease from the Coronary Diet Intervention
With Olive Oil and Cardiovascular Prevention study(124) reported
that, carriers of the risk allele (‘G’ allele) of APOA1 SNP rs964184
who consumed a low-fat diet (containing <30 % of total fat) had
reduced post-prandial TAG concentrations after 3 years, while
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‘G’ allele carriers on aMediterranean diet (containing aminimum
of 35 % of total fat) continued to have higher post-prandial TAG
concentrations. Along these lines, a fat response genetic score
based on SNP showing a positive interaction with dietary fat in
relation to LDL-cholesterol was found to predict a 1-year change
in LDL-cholesterol in a sample of 422 Black and Hispanic
participants from the Women’s Health Initiative cohort(125). A
significant interaction was identified between the dietary
modification trial arm and fat response genetic score for LDL-
cholesterol concentration (P= 0·002), where participants in the
control arm showed a trend towards minimal reductions in LDL-
cholesterol concentrations at higher fat response genetic scores,
while the opposite trend was observed in participants following
a low-fat diet(125). Taking together, these findings suggest that the
genetic susceptibility to dyslipidaemia could be modulated by
dietary fat intake in different populations.

A nationwide dietary survey involving 32 749 Brazilian
individuals (≥10 years old)(126) highlighted a change in dietary
pattern in Brazil which is characterised by increased consump-
tion of processed foods rich in fat and simple sugars. An increase
in the consumption of ultra-processed food among Brazilians
aged ≥10 years was also reported in a study using food
consumption data from 2008–2009 (n 34 003) to 2017–2018
(n 46 164) Household Budget Surveys(127). Similarly, an assess-
ment of the diet quality of Brazilians using data from the national
survey(119) showed that, in 60 % of the population, the mean SFA
intake was 10·7 % of TEI, which exceeds the WHO’s recom-
mendation of <10 % of TEI(14). The study(119) also reported that
solid fat and added sugar contributed more than 45 % of TEI. In
the present study, themedian intake of total fat was 31·5 % of TEI
which is more than the recommended intake of <30 %(14);
however, the median intake of SFA (8·6 % TEI) was within the
recommended level(14). This suggests that individuals who have
a genetic predisposition to dyslipidaemia may find greater
benefit from adhering to dietary recommendations.

The mechanisms through which dietary fat intake affects
blood lipid concentration have been examined by several
studies(12,128–131). Dietary fatty acids affect lipid metabolism
through the activation of several transcription factors and
nuclear receptors including PPAR and liver X receptors(128,131).
PPAR regulate the expression of different genes involved in
lipid and lipoprotein metabolism, and the activation of PPAR is
positively correlated with the chain length and degree of
unsaturation of fatty acids(12,128,131). SFA are also believed to
decrease LDL-cholesterol receptor activity which slows the
clearance of TAG-rich lipoproteins(128), and this could explain
the increased TAG:HDL-cholesterol ratio observed among
participants in the high SFA intake group. Consumption of SFA
has also been shown to suppress the expression of genes
involved in fatty acid oxidation and synthesis of TAG(12) and
promote the expression of inflammatory genes(132). However,
SFA of different chain lengths and from different food sources
have been reported to exert different effects on cardiometa-
bolic traits(133,134).

The main strength of our study is the use of a GRS based on
established lipid metabolism genes. Our study is one of few
studies which have utilised this approach to explore CVD traits in

Brazilian young adults, considering the increased prevalence of
CVD in young people aged 15–49 years in Brazil in 2019(135). The
GRS approach is more effective in assessing the genetic
contribution to complex traits such as blood lipid concentration
since single variants often have moderate effect sizes and hence
less likely to accurately predict the genetic risk of multifactorial
traits(11,35,136). Another strength is the use of validated techniques
and trained personnel to assess biochemical, anthropometric
and dietary variables, which enhances the accuracy of the
assessments. However, our study has some limitations. The
small sample size could have influenced our findings since large
sample sizes improve the power to detect interactions with small
effects(137,138). Given that we did not have access to another
Brazilian young adult cohort, we were not able to replicate our
study findings. However, we were able to replicate previously
reported associations and interactions. Another limitation is the
use of self-reported dietary recalls that can introduce bias
through overestimation and underestimation of dietary
intake(139,140). Moreover, we did not investigate types or food
sources of SFA, which have been reported to have different
effects on CVD traits(133,141). Additionally, the cross-sectional
design means that causality between dietary fat intake and TAG:
HDL-cholesterol ratio cannot be established(31).

In conclusion, our study provides evidence that the genetic
risk of increased TAG:HDL-cholesterol ratio might bemodulated
by dietary fat intake. The findings indicate that Brazilian young
adults with a high genetic risk for dyslipidaemia might benefit
from limiting their intake of total fat and SFA. Our results support
the dietary guidelines of the WHO which recommend reducing
total fat and SFA to help prevent cardiometabolic diseases. The
findings suggest that personalised nutrition strategies based on
GRS might be effective for the prevention and management of
dyslipidaemia but confirmation in dietary intervention studies
with large sample sizes is required.
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Introduction: The prevalence of cardiometabolic diseases has increased in

Latin American and the Caribbean populations (LACP). To identify gene-lifestyle

interactions that modify the risk of cardiometabolic diseases in LACP, a systematic

search using 11 search engines was conducted up to May 2022.

Methods: Eligible studies were observational and interventional studies in either

English, Spanish, or Portuguese. A total of 26,171 publications were screened for

title and abstract; of these, 101 potential studies were evaluated for eligibility, and

74 articles were included in this study following full-text screening and risk of bias

assessment. The Appraisal tool for Cross-Sectional Studies (AXIS) and the Risk Of

Bias In Non-Randomized Studies—of Interventions (ROBINS-I) assessment tool were

used to assess the methodological quality and risk of bias of the included studies.

Results: We identified 122 significant interactions between genetic and lifestyle

factors on cardiometabolic traits and the vast majority of studies come from Brazil

(29), Mexico (15) and Costa Rica (12) with FTO, APOE, and TCF7L2 being the most

studied genes. The results of the gene-lifestyle interactions suggest effects which

are population-, gender-, and ethnic-specific. Most of the gene-lifestyle interactions

were conducted once, necessitating replication to reinforce these results.

Discussion: The findings of this review indicate that 27 out of 33 LACP have

not conducted gene-lifestyle interaction studies and only five studies have been

undertaken in low-socioeconomic settings. Most of the studies were cross-

sectional, indicating a need for longitudinal/prospective studies. Future gene-lifestyle

interaction studies will need to replicate primary research of already studied genetic

variants to enable comparison, and to explore the interactions between genetic

and other lifestyle factors such as those conditioned by socioeconomic factors and
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the built environment. The protocol has been registered on PROSPERO, number

CRD42022308488.

Systematic review registration: https://clinicaltrials.gov, identifier CRD420223

08488.

KEYWORDS

systematic review, nutrigenetics, Latin American and Caribbean, genetics, gene-lifestyle
interaction, dietary intake, physical activity

1. Introduction

Cardiometabolic diseases such as hypertension and type 2
diabetes (T2D) are accountable for most non-communicable
disease (NCD) deaths and impose an economic burden on low-
and middle-income countries (1). In Latin American and the
Caribbean populations (LACP), the prevalence of hypertension,
T2D and obesity is 47, 22, and above 20%, respectively (2, 3).
The etiology of cardiometabolic diseases is multifactorial where
studies have demonstrated an interaction between the environment,
genetic, behavioral, physiological, and socioeconomic factors (4–
9). These intertwined mechanisms interact, modifying the risk of
developing cardiometabolic diseases. Genetic variations or single
nucleotide polymorphisms (SNPs) may modify the susceptibility
to cardiometabolic diseases conditioned by the exposure to
lifestyle factors (4, 5). Genome-wide association studies have
identified several genetic loci associated with cardiometabolic traits
but most of these studies have been performed in Caucasian
populations (10–15). Similarly, majority of nutrigenetic studies
have been performed in Western countries and the findings
might not be applicable to low-income countries due to variations
in allele frequencies, dietary pattern, and environmental factors
(5, 16).

Factors such as changes in patterns of food consumption,
the process of urbanization, increased health and socioeconomic
disparities, underfinanced healthcare systems, lower levels of income
and productivity, and the rise in sedentary lifestyle have led to
an increase in NCDs (17–21). Moreover, studies have shown that
metabolic responses to lifestyle factors such as diet and physical
activity vary between ethnicities due to genetic heterogeneity (4, 5,
22, 23), and hence we sought to determine which lifestyle factors
are interacting with genetic variants in different LACP with regards
to cardiometabolic disease traits. The discovery of gene-lifestyle
interactions in LACP will help to identify population subgroups that
will respond to lifestyle interventions.

The influence of gene-lifestyle interactions on obesity, T2D and
cardiovascular diseases (CVDs) has been broadly studied, and there
is evidence that the genetic risk of cardiometabolic traits can be
modified (4, 5, 24–27). However, to our knowledge, no previous
systematic reviews have been conducted regarding the interactions
of genetic and lifestyle factors on cardiometabolic disease traits
in LACP. Thus, the objective of this systematic review was to
identify studies examining the interactions between genetic variants
and lifestyle factors such as diet, nutrient intake, nutritional status,
physical activity, socioeconomic factors, and the built environment
on obesity, CVDs, and T2D-related traits in LACP.

2. Methods

2.1. Inclusion and exclusion criteria

Eligible for inclusion were articles that explored the interaction
between genetic variations and lifestyle factors on cardiometabolic
disease traits in LACP. All cardiometabolic diseases and traits were
considered including CVDs, cerebrovascular diseases such as stroke,
blood lipid levels, obesity-related traits such as body mass index
(BMI) and T2D-related traits such as fasting glucose. The eligible
articles included observational and dietary intervention studies
and were in either English, Spanish, or Portuguese. Articles that
did not explore gene-lifestyle interactions or were not based on
LACP were excluded.

2.2. Information sources and search
strategy

A literature search was conducted in MEDLINE (via PubMed
and EBSCO Host), Web of Science, ScienceDirect, SciELO, SCOPUS,
Taylor & Francis Online, Cochrane library, LILACS (Latin American
and Caribbean Health Sciences Literature), IBECS, Google Scholar,
and ERIC (Education Resources Information Center via EBSCO
Host) search engines until the 25th of May 2022. To reach
literature saturation, the researchers conducted independent search
strings (Supplementary Table 1), and the included publications
were searched through to identify potential articles in reference
lists. We followed the Peer Review of Electronic Search Strategies
(PRESS) guideline (28) and the literature search was limited to
human participants and had no dates of publication restrictions. The
protocol was registered on PROSPERO, number CRD42022308488.

2.3. Study selection, synthesis methods,
effect measures, and data collection
process

Duplicate articles were removed using Rayyan software (29),
titles and abstracts were blindly screened to assess against the pre-
established inclusion criteria, followed by full-text screening and
discussion until consensus between E.F.V. and R.W. All the data
required to assess the eligibility of the studies was available, hence
study investigators were not contacted to obtain or confirm the data.
The reviewers ensured consistency across the data that needed to
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be extracted, and a narrative synthesis was conducted to collate the
data, including populations, lifestyle factors, study designs, genetic
variations, cardiometabolic disease traits, and P-values for gene-
lifestyle interactions on obesity, diabetes and CVD traits. P-values for
gene-lifestyle interactions were used as indicators of the relationship
between the exposure (genetic and lifestyle factors) and the outcome
(cardiometabolic traits). P-values < 0.05 were considered statistically
significant. Pinteraction refers to the P-value for the interaction between
the genetic variant and dietary/lifestyle factors on cardiometabolic
traits. To synthesize the findings, we categorized the outcomes into
four categories: obesity, diabetes, CVD, and overall cardiometabolic
risk. We then coded the exposures considering major themes;
proteins, carbohydrates, fats, and fiber as well as plasma fatty acids,
polyunsaturated fatty acids (PUFA), saturated fatty acids (SFA),
breastfeeding, smoking, alcohol, coffee, and lifestyle (if the exposure
was multiple, including factors embracing diet, physical activity,
smoking, and/or socioeconomic status, education), macronutrients
(when the exposures included at least proteins, carbohydrates, fats,
and fiber), and micronutrients (when the exposure referred to
minerals or vitamins). The final graphical representation of the
interaction between the genetic variations, and the coded lifestyle
factors on the clustered outcomes was a heat map, where the
intensity of the color corresponds to the P-values of the gene-lifestyle
interactions (Figures 1–4). All heat maps were produced using
the ggplot2 package (30) in R software with RStudio environment
(31). A meta-analysis could not be conducted due to the wide
range of dietary factors, genetic variants and cardiometabolic traits
investigated by the included studies, in addition to heterogeneity in
the methods used.

2.4. Data items

Data was extracted in Table 1 and the main outcomes were
diabetes, obesity, CVD, and their related traits including lipid levels,
blood pressure and anthropometric measurements.

2.5. Risk of bias and certainty of
assessment

To evaluate the methodological quality and risk of bias (RoB) of
cross-sectional studies we used the Appraisal tool for Cross-Sectional
Studies (AXIS) (32) (Supplementary Tables 2, 3). Cohort studies,
case-control studies, and non-randomized trials were assessed
by using the RoB in Non-randomized Studies—of Interventions
(ROBINS-I) assessment tool (32, 33) (Supplementary Table 4). Risk
of bias due to missing results was assessed using the AXIS RoB
(questions 12–14) and the ROBINS-I assessment [part 5 (questions
5.1–5.4)]. The current article adheres to the recommendations of
the Synthesis without Meta-analysis (SWiM) in Systematic Reviews:
Reporting Guideline (34).

3. Results

3.1. Study selection and characteristics

The search string results had an output of 29,092 articles and
from these, 101 articles were identified as potential studies. After

the full-text screening, 27 articles were excluded for the following
reasons: six studies were not based on LACP (35–40), five studies
aimed to identify the effect of genomic ancestry (41–45), six
studies focused only on genetic associations (46–51), eight studies
did not include cardiometabolic diseases (52–59), and two studies
investigated gene x phenotype interactions (60, 61) as shown in
Figure 5. Finally, after excluding the irrelevant articles based on the
exclusion criteria, 74 studies were included in this systematic review
as shown in Table 1.

3.2. Gene-lifestyle interactions in LACP

The 74 studies conducted in LACP encompass ethnicities from
Argentina, Colombia, Chile, Costa Rica, Mexico, Brazil, and LACP
diaspora, including Dominicans, Puerto Ricans, Mexicans, and other
Hispanic ethnicities residing in the United States of America (USA).
Most of the studies are focused on four countries: Brazil (29),
Mexico (15), Costa Rica (12), and Puerto Ricans in Boston (10). The
studies have identified 122 significant gene-lifestyle interactions on
cardiometabolic traits (p < 0.05), as shown in Table 1. The results
are stratified by country to enable identification of ethnic-specific
gene-lifestyle interactions and to present a structured mapping of the
research gaps for a multidisciplinary audience.

3.3. Gene x lifestyle interactions in
Brazilians

3.3.1. Interaction between dietary fat intake and
genetic variants on CVD traits

Interaction between dietary fat intake and genetic variants on
CVD-related traits was examined by five Brazilian studies (62–66).
In a cross-sectional study of 567 participants (62), a significant
interaction was reported between olive oil intake and Apolipoprotein
E (APOE) genotype on low-density lipoprotein cholesterol (LDL)
(Pinteraction = 0.028), where a high intake of olive oil (≥ once a
week) was associated with lower LDL levels in men carrying the
“ε2” allele but had no effect in men without the “ε2” allele. In this
study (62), a high polyunsaturated fatty acid (PUFA) intake (> twice
a week) was associated with increased LDL levels in carriers of the
“ε4” allele, but this was not observed in participants without the
“ε4” allele (Pinteraction = 0.04). A reduction in triglyceride levels
in response to a high PUFA intake was also observed in carriers
of the “ε2” allele but not in participants without the “ε2” allele
(Pinteraction = 0.04). A high PUFA intake was also associated with
increased high-density lipoprotein cholesterol (HDL) concentration
in participants without the “ε4” allele and reduced HDL levels in
carriers of the “ε4” allele (Pinteraction = 0.018) (62). In contrast,
a cross-sectional study of 252 Brazilian women (63) observed
increased triglyceride and very-low density lipoprotein cholesterol
(VLDL) in response to a low PUFA or a high fat diet intake
in carriers of the “ε4” allele of APOE, but not in non-carriers
(Pinteraction < 0.05 for both). The findings of the first study (62)
indicate that, PUFA intake might be beneficial in increasing HDL
levels in individuals without the “ε4” allele, while in those with the
“ε4” allele, PUFA intake might contribute to a rise in triglyceride
and LDL levels which is associated with higher risk of CVDs
(67). Nonetheless, the findings of the second study (63) suggest
a detrimental effect of low PUFA intake in carriers of the “ε4”
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FIGURE 1

A heat map showing the findings for gene-lifestyle interactions on overall cardiometabolic disease risk. Alsulami et al. (72), Metabolic-GRS = TCF7L2
(rs12255372, rs7903146); MC4R (rs17782313, rs2229616); PPAR γ (rs1801282); FTO (rs8050136); CDKN2A/2B (rs10811661); KCNQ1 (rs2237892); CAPN10
(rs5030952); Alathari et al. (73), Vitamin D-GRS = VDR (rs2228570, rs7975232), DHCR7 (rs12785878), CYP2R1(rs12794714), CYP24A1(rs6013897), GC
(rs2282679), FTO (rs8050136, rs10163409), TCF7L2 (rs12255372, rs7903146), MC4R (rs17782313), KCNQ1 (rs2237895, rs2237892), CDKN2A (rs10811661),
PPAR γ (rs1801282), CAPN10 (rs5030952); Costa-Urrutia et al. (118), Obesity-GRS = ABCA1 (rs2230806, rs9282541); ADIPOQ (rs2241766); ADRB2
(rs1042713); AGT (rs699); APOA4 (rs675); APOB (rs512535); APOE (rs405509); CAPN10 (rs2975760, rs2975762, rs3792267); FTO (rs1121980, rs9939609);
HNF4 (rs745975); LIPC (rs1800588); LPL (rs320); PPAR-α (rs1800206); PPAR-γ (rs1801282); SCARB1 (rs1084674); TCF7L2 (rs7903146); TNF (rs361525);
TRHR (rs1689249, rs7832552); Norde et al. (79), 5-SNPs = IL10 rs1554286, rs1800871, rs1800872, rs1800890, rs3024490; Oki et al. (78), 4-SNPs = TNF-α
rs1799724, rs1800629, rs361525, rs1799964; Norde et al. (76), 4-SNPs = TLR4 rs11536889, rs4986790, rs4986791, rs5030728; Oki et al. (77),
3-SNPs = CRP rs1205, rs1417938, rs2808630; Norde et al. (79), 4-SNPs = IL1B rs16944, rs1143623, rs1143627, rs1143643; 3-SNPs = rs1800795,
rs1800796, rs1800797; BR, Brazilian; ME, Mexican; PR, Puerto Rican; AR, Argentinian.

FIGURE 2

A heat map showing the findings for gene-lifestyle interactions on cardiovascular disease traits. Sotos-Prieto et al. (144), MI-GRS = CDKN2A/2B
(rs4977574, rs10757274, rs2383206, rs1333049); CELSR2-PSRC1-SORT1 (rs646776, rs599839); CXCL12(rs501120, rs1746048); HNF1A, C12orf43
(rs2259816); MRAS (rs9818870); SLC22A3 (rs2048327); LPAL2 (rs3127599); LPA (rs7767084, rs10755578); Fujii et al. (64), Cardiometabolic-GRS = APOA5
(rs662799); APOB (rs693, rs1367117); LDLR (rs688, rs5925); LIPC (rs2070895, rs1800588); Brown et al. (125), 3-SNPs = APOE rs7412, rs449647, rs429358;
Fiegenbaum et al. (92), 3-SNPs = APOC3 rs2854116, rs2854117, rs5128; Maintinguer Norde et al. (75), 5-SNPs = ADIPOQ rs2241766, rs16861209,
rs17300539, rs266729, rs1501299; Carvalho et al. (65), 3-SNPs = FADS rs174575, rs174561, rs3834458; Barcelos et al. (88), 3-SNPs = eNOS rs2070744,
rs1799983, rs61722009; Zheng et al. (135), 3-SNPs = Chromosome 9p21 rs4977574, rs2383206, rs1333049. BR, Brazilian; CR, Costa Rican.

allele. The differences in the findings could be attributed to the
small sample sizes and the fact that, the second study (63) was
conducted in women unlike the first study (62). PUFA is a ligand
for peroxisome proliferator-activated receptors (PPARs) which are

involved in regulating several lipid-pathway genes and it has been
suggested that, increased consumption of PUFA might promote the
expression of APOE and hepatic uptake of “ε4”-containing VLDL
particles (68, 69).
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FIGURE 3

A heat map showing the findings for gene-lifestyle interactions on obesity traits. Vilella et al. (80), 10-SNPs = FTO rs79149291, rs62048379, rs115530394,
rs75066479, rs2003583, rs115662052, rs114019148, rs62034079, rs1123817, rs16952663; Smith et al. (146), 4-SNPs = LRP1 rs1799986, rs1799986,
rs1800191, rs715948; Cao et al. (107), 3-SNPs = CAPN10 rs5030952, rs3792267, rs2975762. BR, Brazilian; PR, Puerto Rican; ME, Mexican; CO, Colombian.

FIGURE 4

A heat map showing the findings for gene-lifestyle interactions on diabetes traits. López-Portillo et al. (161), GRS-16 Type 2 Diabetes (T2D) risk
SNPs = MTNR1B (rs10830963); TCF7L2 (rs7903146); CDKAL1 (rs7756992); ADCY5 (rs11717195); ANK1 (rs516946); BCAR1 (rs7202877); CDC123
(rs11257655); DUSP9 (rs5945326); GRB14 (rs3923113); RASGRP1 (rs7403531); TLE4 (rs17791513); TLE1 (rs2796441); ZBED3 (rs6878122).

Furthermore, a cross-sectional study of 228 Brazilian participants
from the Health Survey of São Paulo (HS-SP) (64) observed
significant interactions between a GRS based on seven SNPs (Table 1)
and the Brazilian Healthy Eating Index Revised (BHEI-R) on the
risk of dyslipidaemia. Participants with a higher GRS (5–8) had a
lower odds ratio for dyslipidaemia with an intake of BHEI-R oil
component above the median (Pinteraction = 0.019); while those with
a GRS > 9 had a lower odds ratio for dyslipidaemia with an intake of
BHEI-R solid fats, alcoholic beverages and added sugars (SoFAAS)
component below the median (Pinteraction < 0.001). Similarly, a
cross-sectional study involving 250 pregnant women (65) observed
significant interactions between fatty acid desaturase (FADS) SNPs

(rs174561 and rs3834458) and dietary α-linolenic acid (ALA) and
linoleic/α-linolenic acid ratio (LA/ALA) on plasma concentrations
of omega-3 (n-3) PUFAs. It was reported that, in women with high
ALA intake, plasma ALA concentrations were higher in homozygotes
for the minor allele (p < 0.05), compared to carriers of the major
allele (MM and Mm) of rs174561 and rs3834458. However, the
P-values given in the study (p = 0.004 for rs174561 and p = 0.028
for rs3834458) seem to represent associations stratified by genotype,
instead of interactions. FADS are involved in the synthesis of PUFA
and their activation is linked to inflammation and coronary artery
disease (70, 71), and these findings suggest that SNPs which alter the
activation of FADS might affect plasma concentration of PUFA. In
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another cross-sectional study of 113 adolescents from the Obesity,
Lifestyle and Diabetes in Brazil (BOLD) study (66), no significant
interactions were reported between seven genes involved in the
one-carbon metabolism pathway (Table 1) and fat intake on lipid-
related traits.

3.3.2. Interaction between dietary fat intake and
genetic variants on glycemic traits

Interaction between dietary fat intake and genetic variants
on glycemic traits was investigated by two cross-sectional studies
(72, 73) using data from the BOLD study. In the first study
which consisted of 200 participants (72), a high total fat intake
[37.98% of total energy intake (TEI)/day] was shown to interact
with a 10-SNP metabolic-GRS (Table 1), where individuals with 5
or more risk alleles had increased homeostasis model assessment
estimate of insulin secretion (HOMA-B) (Pinteraction = 0.016), fasting
insulin (Pinteraction = 0.017), body fat mass (Pinteraction = 0.009),
and decreased insulin:glucose ratio (Pinteraction = 0.01), but the
interaction did not influence homeostasis model assessment estimate
of insulin resistance (HOMA-IR), glycated hemoglobin (HbA1c), or
waist circumference (WC). Similarly, the second BOLD study (73)
which also examined the interaction between dietary fat intake and a
10-SNP metabolic-GRS did not find significant interactions between
the GRS and dietary fat intake on fasting glucose, fasting insulin or
HbA1c (Table 1). The mechanisms through which dietary fat intake
influence glycemic traits are unclear, although a sustained increase in
blood glucose levels following a high fat meal has been reported (74).

3.3.3. Interaction between plasma fatty acid profile
and genetic variants on systemic inflammation

Five Brazilian cross-sectional studies (75–79) investigated the
interaction between plasma fatty acids and genetic variants on
systemic inflammation, using data from the HS-SP. The first study
(75) consisted of 262 adults, and significant interactions were
identified between plasma n-3 and adiponectin (ADIPOQ) SNP
rs2241766 (Pinteraction = 0.019); arachidonic acid and ADIPOQ
rs16861209 (Pinteraction = 0.044); docosapentaenoic acid and
ADIPOQ rs16861209 (Pinteraction = 0.037); and SFA and ADIPOQ
rs17300539 (Pinteraction= 0.019) on the risk of systemic inflammation.
Carriers of the “G” allele of rs2241766 had a reduced odds ratio of
having inflammatory biomarkers when plasma n-3 levels were above
the median, while participants with the “CC” genotype of rs16861209
had a lower odds ratio of having inflammatory biomarkers in the
50th percentile of plasma arachidonic acid and docosapentaenoic
acid. Moreover, carriers of the “A” allele of rs17300539 had a
higher odds ratio of having inflammatory biomarkers in the upper
50th percentile of plasma SFA compared to those with the “GG”
genotype (75). In the second study (76), which consisted of 262
participants, an interaction was also observed between plasma
arachidonic acid/eicosapentaenoic acid ratio and toll-like receptor
4 (TLR4) SNP rs11536889, in which individuals with the “C” allele
had an increased odds ratio of having inflammatory biomarkers at
the higher percentile of arachidonic acid/eicosapentaenoic acid ratio
(Pinteraction = 0.034). Similarly, the third study consisting of 262
participants (77) identified a significant interaction between plasma
palmitoleic acid and C-reactive protein (CRP) SNP rs1417938, where
individuals with the “AA” genotype had a higher odds ratio of having
inflammatory biomarkers with a plasma palmitoleic acid above the
median (Pinteraction = 0.047).

In line with these findings, an increasing risk of having
inflammatory biomarkers in response to increasing plasma SFA was
observed in carriers of the “A” allele of tumor necrosis factor-
α (TNF-α) SNP rs180062 (−308G/A) (Pinteraction = 0.041); while
a decreasing risk with increasing plasma stearic acid was found
in participants with the “GG” genotype (Pinteraction = 0.046), in
a sample of 281 participants from the HS-SP (78). Furthermore,
a decreasing risk of metabolic syndrome (MetS) was observed in
response to increasing plasma stearic acid levels in “A” allele carriers
of interleukin 1 beta (IL1B) SNP rs16944 (Pinteraction = 0.043), and
in response to increasing plasma arachidonic acid levels in those
with the “GG” genotype of interleukin 10 (IL10) SNP rs1800896
(Pinteraction = 0.007), in a sample of 301 participants from the
HS-SP (79). However, no significant interactions were identified
between total SFA, myristic acid, palmitic acid, stearic acid and
ADIPOQ SNPs rs1501299 and rs266729; TLR4 SNPs rs11536889
and rs5030728; and CRP SNP rs1205 on inflammatory biomarkers
in three of the studies (75, 78, 79). Plasma fatty acid profile is
considered an indicator of dietary fatty acid intake (75) and these
findings suggest that plasma fatty acid profile can interact with SNPs
of several genes and modify the risk of systemic inflammation which
is linked to cardiometabolic diseases such as type 2 diabetes and
CVDs (75).

3.3.4. Interaction between carbohydrate intake and
genetic variants on cardiometabolic traits

Three Brazilian cross-sectional studies (66, 72, 73) investigated
the interactions between carbohydrate intake and genetic
variants on cardiometabolic traits, using data from the BOLD
study. In the first study which consisted of 113 participants
(66), a total carbohydrate intake of 47.7% TEI was associated
with a significantly increased homocysteine concentration
(Pinteraction = 0.031) in carriers of the “AA” genotype of
fucosyltransferase 2 (FUT2) SNP rs602662. Carbohydrate intake
also interacted with Catechol-O-Methyltransferase (COMT) SNP
rs4680, increasing oxidized-LDL more in carriers of “AA” than
“GG” genotype (Pinteraction = 0.005) (66). Notwithstanding, after
applying Bonferroni correction for multiple testing, none of
the interactions were considered significant (66). Moreover, the
other two studies (72) which consisted of 200 participants and
(73) which consisted of 187 participants, from the BOLD study,
did not identify significant interactions between carbohydrate
intake and a metabolic-GRS based on 10 SNPs (Table 1) on
cardiometabolic traits.

3.3.5. Interaction between protein intake and
genetic variants on cardiometabolic traits

Three studies (66, 73, 80) investigated the interaction between
protein intake and genetic variants on cardiometabolic traits, two of
which (66, 73) used data from the BOLD study. A cross-sectional
study of 1191 overweight and normal weight children (80) observed
a significantly increased BMI (p= 0.01) among participants carrying
the “T” allele of FTO SNP rs79149291 with a protein intake above
12.7% TEI/day (80). Similarly, in the BOLD study discussed above
(66), those with a protein intake of 16.99% TEI who were carriers
of the “AA” genotype of FUT2 SNP rs602662 (Pinteraction = 0.007)
had increased homocysteine levels (66). However, in the other BOLD
study (73), there were no interactions between protein intake and a
GRS based on 10 SNPs (Table 1) on obesity or diabetes traits.
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TABLE 1 Summary table of gene-lifestyle interactions and study characteristics.

Gene and SNP Population and
sample size

Study
design

Dietary/lifestyle
factor

Outcome Pinteraction* References

FTO

rs9939609 Brazilian
n= 1,088

LS Plasma vitamin D BMI 0.02–0.04 Lourenço et al.
(84)

rs9939609 Brazilian
n= 1,215

C-S Screen time Cardiometabolic risk score 0.047 Sehn et al. (96)

rs9939609 Brazilian
n= 432

C-C Physical activity intervention TC, HDL, LDL, TG, glucose,
insulin, HOMA-IR, QUICKI

NS do Nascimento
et al. (98)

rs9939609 Brazilian
n= 3,701

P-C Breastfeeding BMI, overweight, fat mass, lean
mass, WC, visceral, and

subcutaneous abdominal fat
thickness

0.01–0.02 Horta et al. (102)

rs9939609 Brazilian
n= 434

C-C hypocaloric diet, physical
exercise program

BMI, WC, AC 0.047 do Nascimento
et al. (99)

rs17817449 Colombian
n= 212/212

C-C Physical activity BMI NS Orozco et al. (163)

rs17817449 Colombian
n= 1,081

C-S Socioeconomic stratum,
maternal education year,
maternal breastfeeding

BMI NS Muñoz et al. (164)

rs79149291, rs62048379,
rs115530394, rs75066479,
rs2003583, rs115662052,
rs114019148, rs62034079,
rs1123817, rs16952663

Brazilian
n= 1,191

C-S Carbohydrate, protein, total
fat, MUFA, PUFA:SFA intake

Overweight/ obesity 0.01 Vilella et al. (80)

APOE

rs7412, rs429358 Brazilian
n= 567

C-S Olive oil, PUFA, sucrose,
soluble and insoluble fiber

LDL, TG, TC 0.018–0.04 de Andrade et al.
(62)

rs7412 Brazilian
n= 252

C-S Total fat, PUFA: SFA LDL, TG, VLDL <0.05 Paula et al. (63)

rs7412 Brazilian
n= 851

P-C Alcohol intake SBP, DBP NS Correa Leite et al.
(89)

rs7412 Mexican
n= 224

C-S MUFA intake, n-3:n-6 TC, Non-HDL, LDL, HbA1c 0.016–0.035 Torres-Valadez
et al. (103)

rs7412 Costa Rican
n= 420

C-S SFA TG, TC, VLDL, LDL, HDL, Apo
A1, Apo B, LDL particle size

0.02–0.03 Campos et al.
(124)

rs7412, rs429358,
rs449647

Costa Rican
n= 1,927/1,927

C-C SFA TC, HDL, LDL, TG, MI 0.0157 Yang et al. (125)

APOA5

rs3135506 Brazilian
n= 567

C-S Olive oil, PUFA, sucrose,
soluble and insoluble fiber

LDL, TG, TC 0.018–0.04 de Andrade et al.
(62)

rs3135506, rs662799 Mexican
n= 100/100

C-C SFA, total fat TC, TG, LDL, HDL, obesity 0.001–0.02 Domínguez-Reyes
et al. (105)

rs3135506, rs662799 Puerto Rican
n= 802

LS Total fat WC, serum glucose, SBP, DBP,
HDL, LDL, TC, VLDL

0.002–0.032 Mattei et al. (152)

APOA5

rs3135506 Puerto Rican
n= 821

LS Total fat WC, SBP, DBP 0.001–0.005 Mattei et al. (147)

MTHFR

rs1801133, rs1801131 Brazilian
n= 3,803

C-S Physical activity, alcohol
intake, and blood folate

Homocysteine <0.001–0.002 Oliveira et al. (85)

rs1801133, rs1801131 Brazilian
n= 113

C-S Fat, protein, carbohydrate
intake, physical activity

Vitamin B12, homocysteine,
folic acid, HDL, LDL, TG,

oxidized LDL

0.005–0.034 Surendran et al.
(66)

(Continued)
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TABLE 1 (Continued)

Gene and SNP Population and
sample size

Study
design

Dietary/lifestyle
factor

Outcome Pinteraction* References

rs1801133 Mexican
n= 996 (women); 231

(new-borns)

P-C Folate and Vitamin B12 Weight, length and BMI of
new-born

0.02 Torres-Sánchez
et al. (115)

rs1801133 Mexican
n= 130

C-S Vitamin B12, alcohol intake Plasma Folate, total
homocysteine

0.01 Torres-Sánchez
et al. (116)

ACE

rs4340 Brazilian
n= 335

C-S Sodium, potassium, calcium,
magnesium

SBP, DBP 0.004–0.009 Giovanella et al.
(81)

rs4340 Colombian
n= 1,081

C-S Socioeconomic stratum,
maternal education year,
maternal breastfeeding

BMI NS Muñoz et al. (164)

rs4646994 Brazilian
n= 234

C-C Sodium Hypertension NS Freire et al. (82)

ACE

rs4646994 Brazilian
n= 34

RCT Physical activity SBP, DBP 0.02 –0.002 Goessler et al. (97)

TCF7L2

rs7903146 Mexican
n= 137

P-LS Two diets: Nopal tortilla and
whole grain bread

Weight, BMI, WC, HC, WHR,
glucose, HbA1c, TG, TC, HDL,

LDL, insulin, HOMA-B,
HOMA-IR, GLP-1

NS López-Ortiz et al.
(185)

rs7903146 Colombian
n= 1,081

C-S Socioeconomic stratum,
maternal education year,
maternal breastfeeding

BMI NS Muñoz et al. (164)

rs7903146, rs12255372,
rs7903146, rs12255372

Puerto Rican
n= 1,120

C-S Mediterranean diet score BMI, WC, weight 0.014–0.036 Sotos-Prieto et al.
(150)

ABCA1

rs5888 Brazilian
n= 567

C-S Olive oil, PUFA, sucrose,
soluble and insoluble fiber

LDL, TG, TC 0.018–0.04 de Andrade et al.
(62)

rs9282541 Mexican
n= 3,591

C-S Carbohydrate HDL 0.037 Romero-Hidalgo
et al. (112)

rs2230806 Colombian
n= 1,081

C-S Socioeconomic stratum,
maternal education year,
maternal breastfeeding

BMI NS Muñoz et al. (164)

LIPC

rs2070895 Brazilian
n= 567

C-S Olive oil, PUFA, sucrose,
soluble and insoluble fiber

LDL, TG, TC 0.018–0.04 de Andrade et al.
(62)

rs1800588 Mexican
n= 167/398

C-C Maximal oxygen
consumption (VO2 max),
muscle endurance (ME)

pre-diabetes (fasting glucose
concentrations)

NS Costa-Urrutia
et al. (119)

rs1800588 Dominican/Puerto
Rican, other Caribbean

Hispanics
n= 41

RCT High fat diet HDL, LDL, TC, TG, glucose NS Smith et al. (153)

APOC3

rs2854116, rs2854117, rs5128 Brazilian
n= 673

C-S Smoking TG 0.009 Fiegenbaum et al.
(92)

rs2854116, T-625del Costa Rican
n= 336

C-S SFA TG, TC, LDL, HDL, Apo B, LDL
diameter

0.0004 –0.01 Brown et al. (126)

rs138326449 Puerto Rican
n= 821

LS Total fat WC, SBP, DBP 0.001–0.005 Mattei et al. (147)

CETP

rs708272 Brazilian
n= 567

C-S Olive oil, PUFA, sucrose,
soluble and insoluble fiber

LDL, TG, TC 0.018–0.04 de Andrade et al.
(62)

(Continued)
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TABLE 1 (Continued)

Gene and SNP Population and
sample size

Study
design

Dietary/lifestyle
factor

Outcome Pinteraction* References

rs708272 Mexican
n= 215

C-S Sucrose intake, physical
activity

TC, LDL, TG, HDL, TG:HDL,
BMI, WC

0.033–0.037 Campos-Perez
et al. (113)

CETP

rs708272 Colombian
n= 1,081

C-S Socioeconomic stratum,
maternal education year,
maternal breastfeeding

BMI NS Muñoz et al. (164)

ADIPOQ

rs2241766, rs16861209, rs17300539,
rs266729, rs1501299

Brazilian
n= 262

C-S Plasma fatty acids (14:0, 16:0,
16:1 n-7, 18:0, 18:1, 18:2 n-6,
18:3 n-3, 20:3 n-6, AA, EPA,

DPA, DHA, SFA, MUFA, n-6,
n-3, PUFA, n-3 HUFA,

SCD-16, SCD-18, D5D, D6D)

Systemic Inflammation 0.019–0.044 Maintinguer
Norde et al. (75)

rs17300539 Mexican
n= 394

C-S MUFA, physical activity adiponectin level NS Garcia-Garcia
et al. (120)

rs2241766 Mexican
n= 167/398

C-C VO2 max, ME pre-diabetes (fasting glucose
concentrations)

NS Costa-Urrutia
et al. (119)

PPAR-γ

rs1801282 Mexican
n= 167/398

C-C VO2 max, ME pre-diabetes (fasting glucose
concentrations)

NS Costa-Urrutia
et al. (119)

rs1801282 Costa Rican
n= 1,805/1,805

C-C PUFA intake MI, PUFA in adipose tissue 0.016 –0.03 Ruiz-Narváez
et al. (127)

PPAR-γ

rs1801282 Argentina
n= 572

C-S Smoking status MetS, fasting plasma glucose,
SBP, DBP, WC, HDL, TG, fasting
insulin, loginsulin, HOMA-IR,

LogHOMA-IR, QUICKI

0.031 Tellechea et al.
(165)

PPAR-γ C1A

rs8192678 Mexican
n= 167/398

C-C VO2 max, ME pre-diabetes (fasting glucose
concentrations)

NS Costa-Urrutia
et al. (119)

PPAR-α

rs1800206 Mexican
n= 167/398

C-C VO2 max, ME pre-diabetes (fasting glucose
concentrations)

NS Costa-Urrutia
et al. (119)

rs1800206 Mexican
n= 608

C-C VO2 max, ME BMI, WC, fat mass, pre-DM 0.001–0.007 Costa-Urrutia
et al. (118)

APOA4

rs693, rs675, rs5110 Brazilian
n= 391

C-S Smoking, alcohol intake,
physical activity

BMI, WC 0.007–0.02 Fiegenbaum et al.
(91)

rs5104 Puerto Rican
n= 821

LS Total fat WC, SBP, DBP 0.001–0.005 Mattei et al. (147)

IRS1

rs2943641 Puerto Rican
n= 1,144

LS 25(OH)D HOMA-IR 0.004–0.023 Zheng et al. (159)

rs1801278 Chile
n= 243

NRCT 3-day unrestricted diet
containing 300 g/d of

carbohydrate, an overnight
fast of 10 h and 75 g glucose

Fasting glucose, fasting insulin,
fasting HOMA-IR,

insulinogenic index, insulin
sensitivity index composite

NS Sir-Petermann
et al. (162)

IRS2

rs1805097 Colombian
n= 1,081

C-S Socioeconomic stratum,
maternal education year,
maternal breastfeeding

BMI NS Muñoz et al. (164)
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TABLE 1 (Continued)

Gene and SNP Population and
sample size

Study
design

Dietary/lifestyle
factor

Outcome Pinteraction* References

PON1

rs662 Mexican
n= 206

C-S Urinary 1-hydroxypyrene Serum asymmetric
dimethylarginine (ADMA)

0.02 Ochoa-Martínez
et al. (121)

rs662 Mexican
n= 185

C-S Urinary arsenic levels ADMA, fatty acid-binding
protein 4, micro-RNAs

< 0.001 – < 0.010 Ochoa-Martínez
et al. (122)

rs662, rs854560 Costa Rican
n= 492/518

C-C Smoking status MI 0.04 Sen-Banerjee et al.
(138)

AGT

rs699 Brazilian
n= 335

C-S Sodium, potassium, calcium,
magnesium

SBP, DBP 0.004–0.009 Giovanella et al.
(81)

rs699 Colombian
n= 1,081

C-S Socioeconomic stratum,
maternal education year,
maternal breastfeeding

BMI NS Muñoz et al. (164)

ADRB2

rs1042713, rs1042714 Brazilian
n= 197

P-C Physical exercise intervention Body fat, AC, BMI, DBP, SBP,
TC, HDL, LDL, TG, glucose,
insulin, HOMA-IR, QUICK,

TG-glucose index

0.001 de Souza et al. (94)

rs1042713 Mexican
n= 608

C-C VO2 max, ME BMI, WC, fat mass, pre-DM 0.001–0.007 Costa-Urrutia
et al. (118)

TNF-α

rs1799724, rs1800629, rs361525,
rs1799964

Brazilian
n= 281

C-S Plasma fatty acids (C14:0,
C16:0, C18:0, C16:1, C18:1,

n-6, C18:2, C20:3, C20:4, n-3,
C18:3, C20:5, C22:5, C22:6,

n-3 HUFA, SCD-16, SCD-18,
D5D, D6D, n-6:n-3, SFA,

MUFA, PUFA)

Systemic inflammation 0.026 –0.044 Oki et al. (78)

TNF-α

rs361525, rs7832552 Mexican
n= 608

C-C VO2 max, ME BMI, WC, fat mass, pre-diabetes 0.001–0.007 Costa-Urrutia
et al. (118)

CAPN10

rs5030952, rs3792267, rs2975762 Mexican
n= 31

P-C Low SFA diet, soy protein,
soluble fiber

TC, TG, HDL, LDL NS Guevara-Cruz
et al. (107)

rs3842570 Colombian
n= 212/212

C-C Physical activity BMI NS Orozco et al. (163)

rs3842570 Colombian
n= 1,081

C-S Socioeconomic stratum,
maternal education year,
maternal breastfeeding

BMI NS Muñoz et al. (164)

PCSK9

rs11206510 Costa Rican
n= 1,932/2,055

C-C LC n-3 PUFA, EPA, DPA,
DHA

MI 0.012 Yu et al. (128)

rs11206510 Mexican American
n= 1,734

C-S Serum Vitamin A LDL 7.65× 10−5 Dumitrescu et al.
(158)

CYP1A2

rs762551 Costa Rican
n= 2,014/2,014

C-C Coffee intake MI 0.04 El-Sohemy et al.
(136)

rs762551 Costa Rican
n= 873/932

C-C Smoking MI NS Cornelis et al.
(139)

CYP1A1

rs1048943 Costa Rican
n= 873/932

C-C Smoking MI NS Cornelis et al.
(139)
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TABLE 1 (Continued)

Gene and SNP Population and
sample size

Study
design

Dietary/lifestyle
factor

Outcome Pinteraction* References

APOA2

rs5082 Mexican
n= 100/100

C-C SFA, total fat TC, TG, LDL, HDL, obesity 0.001–0.02 Domínguez-Reyes
et al. (105)

rs5082 Puerto Rican
n= 930

C-S SFA BMI 0.02 Corella et al. (145)

APOA1

rs1799837 Puerto Rican
n= 821

LS Total fat WC, SBP, DBP 0.001–0.005 Mattei et al. (147)

rs1799837 Brazilian
n= 567

C-S Olive oil, PUFA, sucrose,
soluble and insoluble fiber

LDL, TG, TC 0.018–0.04 de Andrade et al.
(62)

APOB

rs512535 Mexican
n= 608

C-C VO2 max, ME BMI, WC, fat mass, pre-DM 0.001–0.007 Costa-Urrutia
et al. (118)

rs693 Mexican American
n= 1,734

C-S Serum Vitamin E LDL 8.94× 10−7 Dumitrescu et al.
(158)

LPL

rs320 Puerto Rican
n= 1,171

LS Low PUFA, n-3 PUFA,
n-6 PUFA intake

BMI, WC 0.02–0.04 Ma et al. (148)

rs285 Colombian
n= 1,081

C-S Socioeconomic stratum,
maternal education year,
maternal breastfeeding

BMI NS Muñoz et al. (164)

UCP3

rs1800849 Colombian
n= 212/212

C-C Physical activity BMI NS Orozco et al. (163)

rs1800849 Colombian
n= 1,081

C-S Socioeconomic stratum,
maternal education year,
maternal breastfeeding

BMI NS Muñoz et al. (164)

TLR4
rs11536889, rs4986790,
rs4986791, rs5030728

Brazilian
n= 262

C-S Systemic Inflammation 0.034 Norde et al. (76) Systemic
inflammation

BDKRB2
rs1799722

Brazilian
n= 335

C-S Sodium, potassium, calcium,
magnesium

SBP, DBP 0.004–0.009 Giovanella et al.
(81)

FADS
rs174575, rs174561, rs3834458

Brazilian
n= 250

C-S α-linolenic acid,
linoleic:α-linolenic acid ratio.

Plasma concentration of PUFA 0.004–0.028 Carvalho et al.
(65)

CYBA (p22phox)
rs4673

Brazilian
n= 1,298

C-S Urinary sodium SBP, DBP, hypertension <0.001–0.004 Schreiber et al.
(83)

eNOS
rs2070744, rs1799983, rs61722009

Brazilian
n= 113

C-S Alcohol intake SBP, DBP, nitrite levels in plasma 0.033 Barcelos et al. (88)

FNDC5
rs16835198

Brazilian
n= 1,701

C-S Cardiorespiratory fitness,
lower limb strength

WC, BMI 0.007–0.044 Todendi et al. (95)

LEPR rs8179183, rs1137101 Mexican
n= 100/100

C-C SFA, total fat intake TC, TG, LDL, HDL, obesity 0.001–0.02 Domínguez-Reyes
et al. (105)

ACSL1 rs9997745 Mexican
n= 167/398

C-C VO2 max, ME pre-diabetes NS Costa-Urrutia
et al. (119)

TRHR rs16892496 Mexican
n= 608

C-C VO2 max, ME BMI, WC, fat mass, pre-diabetes 0.001–0.007 Costa-Urrutia
et al. (118)

DRD2/ANKK1 rs1800497 Mexican
n= 175

C-S Maltose, total fat, MUFA,
dietary cholesterol

TG 0.001 –0.041 Ramos-Lopez
et al. (104)

GFOD2 rs12449157 Mexican
n= 41

P-C Low SFA diet, soy protein
and soluble fiber

TC, LDL, HDL, TG 0.002–0.006 Guevara-Cruz
et al. (106)

PLA2G4A rs12746200 Costa Rican
n= 1,936/2,035

C-C n-6 PUFA intake MI 0.005 Hartiala et al.
(129)
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TABLE 1 (Continued)

Gene and SNP Population and
sample size

Study
design

Dietary/lifestyle
factor

Outcome Pinteraction* References

CRP
rs1205, rs1417938, rs2808630

Brazilian
n= 262

C-S Plasma fatty acids (Myristic
acid, Palmitic acid, Stearic

acid, C16:1, C18:1, n-6,
C18:2, C20:3, C20:4, n-3,

C18:3, C20:5, C22:5, C22:6,
n-3 HUFA, SFA, MUFA,
PUFA, SCD-16, SCD-18,

D5D, D6D, n-6/n-3)

Systemic Inflammation 0.047 Oki et al. (77)

GSTM1 rs366631
GSTP1 rs1695
GSTT1 rs17856199

Costa Rican
n= 2,042/2,042

C-C Cruciferous vegetables,
smoking

MI 0.008 Cornelis et al.
(137)

IL1B
rs16944, rs1143623, rs1143627,
rs1143643
IL6
rs1800795, rs1800796, rs1800797
IL10
rs1554286, rs1800871, rs1800872,
rs1800890, rs3024490

Brazilian
n= 301

C-S Plasma fatty acid (C14:0,
C16:0, C16:1 n-9, C18:0,

C18:1 n-9, C18:2 n-6, C18:3
n-3, AA, EPA, DHA, n-6,
n-3); desaturates activity
(SCD-16, SCD-18, D6D,

D5D)

MetS 0.007–0.043 Norde et al. (79)

MTR rs1805087
MTRR rs1801394
TCN2 rs1801198
COMT rs4680, rs4633
BHMT rs492842, rs3797546
FUT2 rs602662

Brazilian
n= 113

C-S Fat, protein, carbohydrate
intake,

physical activity

Vitamin B12, homocysteine,
folic acid, HDL, LDL,

triglycerides, oxidized LDL

0.005–0.034 Surendran et al.
(66)

GSTM1 rs366631
GSTP1 rs1695
GSTT1 rs17856199

Costa Rican
n= 2,042/2,042

C-C Cruciferous vegetables,
smoking

MI 0.008 Cornelis et al.
(137)

LRP1 rs1799986, rs1799986,
rs1800191, rs715948

Puerto Rican
n= 676

P-C SFA, palmitic acid (C16:0),
stearic acid (C18:0),

butyric acid (C4:0), caproic
acid (C6:0), caprylic acid

(C8:0), capric acid (C10:0),
lauric acid (C12:0), myristic

acid (C14:0)

BMI, WC, HC 0.002–0.004 Smith et al. (146)

PLIN rs894160 Puerto Rican
n= 920

LS Complex carbohydrate, total
carbohydrate, simple sugars

WC, HC, BMI 0.004–0.035 Smith et al. (155)

Chromosome 9p21
rs4977574, rs4977574,
rs2383206, rs1333049

Costa Rican
n= 1,560/1,751

C-C Sugar sweetened beverages,
fruit juice

MI 0.005–0.03 Zheng et al. (135)

BDNF rs6265 Puerto Rican
n= 1,340

LS PUFA,
n-3: n-6, food intake

BMI, WC, HC 0.002–0.043 Ma et al. (149)

PNPLA3 rs738409 Hispanic ancestry
n= 153

C-S Carbohydrate, sugar Hepatic fat 0.01–0.04 Davis et al. (156)

SRBI rs4238001 Brazilian
n= 567

C-S Olive oil, PUFA, sucrose,
soluble and insoluble fiber

LDL, TG, TC 0.018–0.04 de Andrade et al.
(62)

GRS:TCF7L2 (rs12255372,
rs7903146); MC4R (rs17782313,
rs2229616); PPARγ (rs1801282);
FTO (rs8050136); CDKN2A/2B
(rs10811661); KCNQ1 (rs2237892);
CAPN10 (rs5030952)

Brazilian
n= 200

C-S Total fat, SFA, PUFA, MUFA,
carbohydrate, protein

HbA1c, HOMA-IR, HOMA-B,
fasting glucose, fasting insulin,
insulin:glucose, body fat mass,

BMI, WC

0.002–0.017 Alsulami et al.
(72)

GRS: VDR (rs2228570, rs7975232),
DHCR7 (rs12785878),
CYP2R1(rs12794714),
CYP24A1(rs6013897), GC
(rs2282679), FTO (rs8050136,
rs10163409), TCF7L2 (rs12255372,
rs7903146), MC4R (rs17782313),
KCNQ1 (rs2237895, rs2237892),
CDKN2A (rs10811661), PPARγ

(rs1801282), CAPN10 (rs5030952)

Brazilian
n= 187

C-S Carbohydrate, protein, fat
and fiber

BMI, WC, body fat, glucose,
HbA1c, fasting insulin

0.006 Alathari et al. (73)
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TABLE 1 (Continued)

Gene and SNP Population and
sample size

Study
design

Dietary/lifestyle
factor

Outcome Pinteraction* References

GRS: ABCA1 (rs2230806,
rs9282541); ADIPOQ (rs2241766);
ADRB2 (rs1042713); AGT (rs699);
APOA4 (rs675); APOB (rs512535);
APOE (rs405509); CAPN10
(rs2975760, rs2975762, rs3792267);
FTO (rs1121980, rs9939609); HNF4
(rs745975); LIPC (rs1800588); LPL
(rs320); PPAR-α (rs1800206);
PPAR-γ (rs1801282); SCARB1
(rs1084674); TCF7L2 (rs7903146);
TNF (rs361525); TRHR (rs1689249,
rs7832552)

Mexican
n= 608

C-C VO2 max, ME BMI, WC, fat mass, pre-diabetes 0.001–0.007 Costa-Urrutia
et al. (118)

GRS: CDKN2A/2B (rs4977574,
rs10757274, rs2383206, rs1333049);
CELSR2-PSRC1-SORT1 (rs646776,
rs599839); CXCL12(rs501120,
rs1746048); HNF1A, C12orf43
(rs2259816); MRAS (rs9818870);
SLC22A3 (rs2048327); LPAL2
(rs3127599); LPA (rs7767084,
rs10755578)

Costa Rican
n= 1,534/1,534

C-C Lifestyle cardiovascular risk
score (unhealthy diet,

physical inactivity, smoking,
elevated waist:hip ratio, high

alcohol intake, low
socioeconomic status.)

MI NS Sotos-Prieto et al.
(144)

GRS based on 97 BMI associated
SNPs

Puerto Rican,
Mexicans,

Dominicans, Cuban,
Central American,
South American

n= 9,645

P-C Total physical activity,
physical activity at a

moderate to vigorous
intensity, sedentary behavior

BMI, fat mass, fat mass index, fat
percentage, WC

Fat-free mass

0.001 –0.005 Moon et al. (160)

GRS: MTNR1B (rs10830963);
TCF7L2 (rs7903146); CDKAL1
(rs7756992); ADCY5 (rs11717195);
ANK1 (rs516946); BCAR1
(rs7202877); CDC123 (rs11257655);
DUSP9 (rs5945326); GRB14
(rs3923113); RASGRP1 (rs7403531);
TLE4 (rs17791513); TLE1
(rs2796441); ZBED3 (rs6878122)

Chile
n= 2,828

P-C Sugar sweetened beverages
intake

Fasting glucose 0.001–0.02 López-Portillo
et al. (161)

GRS: APOA5 (rs662799); APOB
(rs693, rs1367117); LDLR (rs688,
rs5925); LIPC (rs2070895,
rs1800588)

Brazilian
n= 228

C-S Brazilian Healthy Eating
Index Revised

Dyslipidaemia 0.001 –0.019 Fujii et al. (64)

APOE, Apolipoprotein E; APOA, Apolipoprotein A; ApoB, Apolipoprotein B; SRBI, scavenger receptor class B member 1; ABCA1, ATP binding cassette subfamily A member 1; CETP, cholesteryl
ester transfer protein; APOC3, Apolipoprotein C; ADIPOQ, adiponectin; TLR4, toll like receptor 4; FTO, alpha-ketoglutarate dependent dioxygenase; CRP, C-reactive protein; GRS, genetic risk score;
MTHFR, methylenetetrahydrofolate reductase; FADS, fatty acid desaturase; TNF, tumor necrosis factor; ADRB, adrenoceptor beta; ACE, angiotensin I converting enzyme; AGT, angiotensinogen;
BDKRB, bradykinin receptor; eNOS, endothelial nitric oxide synthase; CYBA, cytochrome B-245 alpha chain; IL, interleukin; FNDC5, fibronectin type III domain containing 5; GRS, genetic
risk score; VDR, vitamin D receptor; DHCR7, 7-dehydrocholesterol reductase; CYP2R1, cytochrome P450 family 2 subfamily R member 1; CYP24A1, cytochrome P450 family 24 subfamily
A member 1; GC, group-specific component; TCF7L2, transcription factor 7 like 2; MC4R, melanocortin-4-receptor; KCNQ1, potassium voltage-gated channel subfamily Q member 1; CDKN,
cyclin dependent kinase inhibitor; PPAR, peroxisome proliferator activated receptor; CAPN, Calpain; MTR, methionine synthase; MTRR, 5-methyltetrahydrofolate-homocysteine methyltransferase
reductase; TCN2, transcobalamin 2; COMT, catechol-O-methyltransferase; BHMT, betaine-homocysteine S-methyltransferase; FUT2 fucosyltransferase 2; LEPR, leptin receptor; TRHR, thyrotropin
releasing hormone receptor; LIPC, hepatic lipase; ACSL, acyl-CoA synthetase long chain family member 1; GFOD2, Glucose-Fructose Oxidoreductase Domain Containing 2; PCSK9, proprotein
convertase subtilisin/kexin type 9; PON1 Paraoxonase 1; CYP1A2, cytochrome P450 family 1 subfamily A member 2; PLA2G4A, phospholipase A2 group IVA; GSTM1, glutathione S-transferase
Mu 1; GSTP1, glutathione S-transferase Pi 1; GSTT1, glutathione S-transferase theta 1; CYP1A1, cytochrome P450 family 1 subfamily A member 1; CELSR2, Cadherin EGF LAG seven-pass G-type
receptor 2; PSRC1, proline and serine rich coiled-coil 1; SORT1, sortilin 1; CXCL12, C-X-C motif chemokine ligand 12; HNF1A, hepatocyte nuclear factor 1; MRAS, muscle RAS oncogene homolog;
SLC22A3, solute carrier family 22 member 3; LPAL2, lipoprotein(A) like 2, pseudogene; LPA, lipoprotein(A); IRS, insulin receptor substrate; MTNR1B, melatonin receptor 1B; CDKAL1, CDK5
regulatory subunit-associated protein 1-like 1; ADCY5, adenylyl cyclase type V; ANK1, ankyrin-1; BCAR1, breast cancer anti-estrogen resistance protein 1; CDC123, cell division cycle 123; DUSP9,
dual specificity phosphatase 9; GRB14, growth factor receptor bound protein 14; RASGRP1, RAS guanyl-releasing protein 1; TLE, transducin-like enhancer protein; ZBED3, zinc finger BED-Type
containing 3; UCP3, uncoupling protein 3; LPL, lipoprotein lipase; MetS, metabolic syndrome; SBP, systolic blood pressure; DBP, diastolic blood pressure; WC, waist circumference; BMI, body mass
index; TG, triglycerides. HDL, high-density lipoprotein cholesterol; HOMA-IR, homeostasis model assessment estimate of insulin resistance; QUICKI, quantitative insulin-sensitivity check index;
AUC, area under the curve; TC, total cholesterol; VLDL, very-low density lipoprotein cholesterol; LDL, low-density lipoprotein cholesterol. MI, myocardial infarction; PUFA, polyunsaturated fatty
acid. MUFA, monounsaturated fatty acid; SFA, saturated fatty acid; n-3, omega-3; LC, long-chain; EPA, eicosapentaenoic acid; DPA, docosapentaenoic acid; DHA, docosahexaenoic acid; C-S, C-S,
cross-sectional; RCT, randomized controlled trial; NRCT, non-randomized controlled trial; P-C, prospective cohort; LS, longitudinal study; C-C, case-control; NS, not significant. *Only significant
Pinteraction values are given.
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FIGURE 5

Flow chart showing the exclusion criteria and selection of studies. Literature search was conducted in MEDLINE (via PubMed and EBSCO Host), Web of
Science, ScienceDirect, SciELO, SCOPUS, Taylor & Francis Online, Cochrane library, LILACS (Latin American and Caribbean Health Sciences Literature),
IBECS, Google Scholar, and ERIC (Education Resources Information Center via EBSCO Host) search engines until the 25th of May 2022.

3.3.6. Interactions between micronutrients and
genetic variants on cardiometabolic traits

The interaction between micronutrients and genetic variants
on cardiometabolic traits was examined by five Brazilian studies
(81–85). A cross-sectional study of 335 healthy young adults
(81), observed a pronounced increase in systolic blood pressure
(SBP) (Pinteraction = 0.016) among carriers of the “G” allele
of Angiotensinogen (AGT) SNP rs699 with a higher plasma
magnesium (209.3 mg). Similarly, among those with a high

calcium intake (573.3 mg), carriers of the “T” allele of Bradykinin
Receptor B2 (BDKRB2) SNP rs1799722 had significantly higher SBP
(Pinteraction = 0.015) and diastolic BP (DBP) (Pinteraction = 0.014)
than carriers of the “CC” genotype (81). In line with these findings, a
case-control study of 234 elderly people (82) reported an interaction
between sodium intake and angiotensin-converting enzyme (ACE)
SNP rs4646994 on the risk of hypertension, where carriers of the
“I/I” genotype with a high sodium intake (>2 g/day) had an
increased risk of hypertension (Pinteraction = 0.007). Furthermore, in
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a cross-sectional study of 1298 healthy adults (83), those carrying
the “T” allele of Cytochrome B-245 Alpha Chain (CYBA) (p22phox)
with more than 86.5 mEq sodium per 12 h of urine collection, had
increased SBP (Pinteraction < 0.001) and DBP (Pinteraction = 0.011).
Sodium is known to increase BP by reducing vasodilation (86),
while dietary calcium is believed to stabilize intracellular calcium
in smooth muscles, thereby reducing vasoconstriction and BP (87).
Additionally, the “A” allele of AGT SNP rs699 is thought to be a risk
factor for elevated SBP, possibly due to its association with a rise in
plasma AGT levels (60, 81), and the findings of the study discussed
above (81) indicate that, the protective effect of the “G” allele might
be lost in the presence of higher plasma magnesium.

Similarly, in a longitudinal study of 1088 children with a follow
up of 4.6 years (84), those with a deficit of plasma vitamin D
(<75 nmol/L) and carriers of the risk allele (“A”) of FTO SNP
rs9939609 had increased BMI (Pinteraction = 0.033). However, a cross-
sectional study examining folate intake in 5914 healthy adults (85)
did not identify interactions between folate intake and MTHFR SNP
rs1801133 on homocysteine concentrations.

3.3.7. Interactions between alcohol intake and
genetic variants on cardiometabolic traits

Three Brazilian studies (85, 88, 89) examined the interaction
between alcohol intake and genetic variants on cardiometabolic traits.
In a cross-sectional study of 113 participants (88), a significant
interaction was observed between alcohol intake and endothelial
nitric oxide synthase (eNOS) SNP rs2070744 (−786 T/C) on plasma
nitrite levels. Individuals carrying the “C” allele who consumed
alcohol had lower plasma nitrite levels (Pinteraction = 0.033).
However, there were no significant interactions between alcohol
intake and rs2070744 on BP (88). Similarly, in a cross-sectional
study of 3,803 participants from the Pelotas Birth Cohort (85), an
interaction was identified between alcohol intake and MTHFR SNP
rs1801133 (C677T), in which men with the “677TT” genotype who
consumed ≥ 15 g of alcohol per day had the highest homocysteine
concentration (Pinteraction = 0.002); but the interaction was not
observed in women. Moreover, a prospective cohort study of 964
postmenopausal women (89), reported no interactions between
alcohol intake and APOE genotype on lipid traits. A rise in
homocysteine concentration is attributed to a deficiency in B
vitamins and folate, and SNPs of MTHFR might affect homocysteine
concentration by impairing folate metabolism (90). However, it is
unclear how alcohol intake modifies the activity of MTHFR, and the
finding of the study (85) suggests a sex-specific response.

3.3.8. Interactions between smoking and genetic
variants on cardiometabolic traits

Two studies (91, 92) investigated the interaction between
smoking and genetic variants on cardiometabolic traits in Brazilians.
In a cross-sectional study of 391 participants (91), smoking
interacted with APOA-IV SNPs rs693 (XbaI), rs675 (Thr347Ser)
and rs5110 (Gln360His), increasing BMI in individuals with the
“X∗2” (Pinteraction = 0.007) and “347Ser” (Pinteraction = 0.02) alleles.
However, men with the “360His” allele who were non-smokers had a
larger WC than homozygotes for the “Gln” allele (Pinteraction = 0.018)
(91). Similarly, in a cross-sectional study of 673 overweight adults
(403 women and 270 men) (92), carriers of the “S2” allele of
APOC3 SNP rs5128 had increased triglycerides and the effect was
more pronounced in women who smoked than in non-smokers

(Pinteraction = 0.009). Serum APOC3 concentration has been shown to
be positively associated with triglyceride levels, and smoking has been
reported to lower the concentration of APOC3 but only in women
without central obesity (93), indicating a sex-specific response which
is influenced by obesity traits.

3.3.9. Interactions between physical activity and
genetic variants on cardiometabolic traits

Interactions between physical activity and genetic variants on
cardiometabolic traits were investigated by nine Brazilian studies
(66, 85, 91, 94–99). In a longitudinal study of 197 overweight or
obese children (94), a physical exercise program (3 sessions/week
for 12 weeks) interacted with adrenoceptor beta 2 (ADRB2) SNP
rs1042714, decreasing triglyceride levels and triglyceride-glucose
index (Pinteraction = 0.001 for both) more in carriers of the
“Glu27Glu” genotype than those carrying the “Gln27” allele. A cross-
sectional study of 1701 children and adolescents (95) also reported
higher BMI and WC in individuals with the “TT” genotype of
fibronectin type III domain containing 5 (FNDC5) SNP rs16835198
compared to carriers of the “G” allele only in those with lower
levels of cardiorespiratory fitness (CRF) (Pinteraction = 0.038 and
Pinteraction = 0.007 for WC and BMI, respectively); and lower limb
strength (Pinteraction = 0.040 and Pinteraction = 0.044 for WC and
BMI, respectively). Physical activity has been proposed to alter the
expression of certain genes (100), and the findings of these studies
indicate that, the effect of physical activity on lipid, glycemic and
anthropometric traits might be influenced by SNPs of ADRB2 and
FNDC5 genes.

Similarly, a sedentary behavior (a screen time of > 378 min/day)
was shown to increase cardiometabolic risk score in carriers of “AA”
genotype of FTO SNP rs9939609 with a low CRF but not in those
with a high CRF in a cross-sectional study of 1,215 children and
adolescents (Pinteraction = 0.047) (96). Along this line, a randomized
controlled trial of 34 participants (97) reported that, a 45-min walk
on a treadmill at moderate intensity resulted in a reduction in SBP
(Pinteraction = 0.02) and DBP (Pinteraction < 0.01) in carriers of the “I”
allele of ACE SNP rs4646994 compared with a non-exercise control
session, but the reduction was not observed in participants with “DD”
genotype. However, five studies (66, 85, 91, 98, 99) did not identify
significant interactions between physical activity and genetic variants
on cardiometabolic traits as shown in Table 1.

3.3.10. Other gene-diet interactions in Brazilians
In the BOLD study consisting of 113 participants (66), a total

fat intake of 25.36% TEI interacted with Betaine-Homocysteine
S-Methyltransferase (BHMT) SNP rs492842, increasing vitamin B12
concentrations (Pinteraction = 0.034) in participants with the “TT”
genotype. A case-control interventional study of 126 obese women
(101) also reported that, a hypocaloric diet (< 600 kcal/day) for
7 weeks was associated with a decreased abdominal circumference
(Pinteraction = 0.04) among carriers of the “A” allele of FTO SNP
rs9939609. Furthermore, in a prospective cohort study of 3,701
women, breastfeeding (> 6 months duration) interacted with FTO
SNP rs9939609, decreasing BMI (Pinteraction = 0.03), fat mass
(Pinteractin = 0.03), and WC (Pinteraction = 0.04) in carriers of the “A”
allele (102).

In summary, research in Brazil stands out in comparison to
the rest of the gene-lifestyle research in LACP for being the
most abundant; twenty-nine studies investigated gene x lifestyle
interactions in the Brazilian population as shown in Table 1, covering
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a wide range of cardiometabolic traits. Dietary fat intake and plasma
fatty acid profile were the most frequently investigated dietary factors
examined by seven and five studies, respectively, although all the
studies examining plasma fatty acid profile used data from the HS-
SP. Carbohydrate intake was examined by only three studies, all of
which used data from the BOLD study. Similarly, protein intake
was investigated by only three studies, two of which used data
from the BOLD study. Physical activity was the most frequently
examined lifestyle factor, followed by smoking and alcohol intake.
Breastfeeding was examined by only one study (102), and lifestyle
factors such as socioeconomic status, level of education, and the effect
of rural and urban environments were not investigated. Only one
study was conducted in rural settings (88), but it was not focused on
interaction of the rural environment with genetic variants. The FTO
SNP rs9939609 was the most studied, being explored by five studies
(84, 85, 96, 98, 99). Overall, the findings call for further research into
lifestyle factors such as socioeconomic status, level of education and
the effect of rural and urban environments as well as other dietary
factors such as fruit and vegetable intake.

3.4. Gene x lifestyle interaction in
Mexicans

3.4.1. Interaction between dietary fat intake and
genetic variants on CVD traits

The interaction between dietary fat intake and genetic variants
on CVD-related traits was examined by five Mexican studies (103–
107). In a cross-sectional study of 224 participants with T2D (103),
interactions between monounsaturated fatty acid (MUFA) intake
and APOE genotype on blood lipid concentrations were reported.
A low MUFA intake (< 10–15% TEI) was found to be associated
with higher total cholesterol (TC) (Pinteraction = 0.016), non-HDL
(Pinteraction = 0.024) and LDL (Pinteraction = 0.030) only in carriers
of the “ε2” allele of APOE SNP rs7412. Similarly, interactions
between MUFA intake (Pinteraction = 0.001), total fat intake
(Pinteraction = 0.001), dietary cholesterol intake (Pinteraction = 0.019)
and Dopamine Receptor D2/Ankyrin Repeat and Kinase Domain
Containing 1 (DRD2/ANKK1) SNP rs1800497, increasing triglyceride
levels in carriers of the “A2A2” genotype were observed in a cross-
sectional study of 175 Mexican adults with T2D (104). MUFA intake
has been linked to decreased triglyceride concentration (108) which
is consistent with the findings of the first study (103). However, the
findings of the second study (104) imply that MUFA intake might not
be beneficial for individuals with the “A2A2” genotype of rs1800497.
Both studies were conducted in participants with T2D which is
known to affect lipid metabolism (109). Moreover, as highlighted by
the authors of the second study (104), the effect of dietary fat intake
on triglycerides concentration may be influenced by other factors
including physical activity and the level of insulin resistance.

A Mexican case-control study consisting of 100 participants
with normal weight and 100 participants with obesity (105)
also found significant interactions between SFA intake and leptin
receptor (LEPR) SNP rs1137101 on TC (Pinteraction = 0.002)
and triglyceride (Pinteraction = 0.02) levels. It was reported that,
a SFA intake of ≥ 12 g/day was associated with a 3.8 times
higher risk of hypercholesteroleamia and a 2.4 times higher risk
of hypertriglycerideamia compared to an intake of < 12 g/day
in participants carrying the “G” allele of rs1137101 (105). An

interaction between total fat intake with LEPR SNP rs1137101 on
TC (Pinteraction = 0.001) was also reported in this study (105), where
a high intake of total fat (≥83 g/d) was associated with a 4.1 times
higher risk of hypercholesteroleamia in carriers of the “G” allele of
rs1137101. Similarly, in a prospective cohort study involving a dietary
intervention in 41 participants with hypercholesterolemia (106),
interactions were observed between consumption of a diet low in SFA
(<6% TEI/day) in addition to another diet containing 15 g of soluble
fiber and 25 g of soy protein for 2 months and Glucose-Fructose
Oxidoreductase Domain Containing 2 (GFOD2) SNP rs12449157 on
TC (Pinteraction = 0.006) and LDL (Pinteraction = 0.025). Participants
carrying the “G” allele had a larger decrease in TC and LDL in
response to the dietary intervention compared to subjects with the
“AA” genotype of rs12449157 (106). In this study (106), baseline
LDL and TC levels were higher in carriers of the “G” allele, but
they responded better to the dietary intervention, which indicates
that the genetic risk of dyslipidaemia can be modified by a dietary
intervention. However, in another study of 31 Mexican participants
with dyslipidaemia (107) from the same cohort as above (106),
using the same dietary intervention, no significant interactions
were identified between the diet and Calpain 10 (CAPN10) SNPs
rs5030952, rs2975762, and rs3792267 on lipid traits. It has been
reported that SFA of different types and from different food sources
might have different effects on cardiometabolic traits (110, 111),
however, both studies (106, 107) used the same dietary intervention.
Nonetheless, factors such as physical activity have also been reported
to influence the effect of dietary fat intake on cardiometabolic traits
(104), which could explain the differences in the findings.

3.4.2. Interaction between carbohydrate intake and
genetic variants on cardiometabolic traits

Interactions between carbohydrate intake and genetic variants
on cardiometabolic traits were examined by three Mexican
studies (104, 112, 113). In a cross-sectional study of 3591 adults
(112), carbohydrate intake was negatively associated with HDL
concentrations in premenopausal women carrying the risk allele
(“C”) of ATP Binding Cassette Subfamily A Member 1 (ABCA1)
SNP rs9282541 (R230C), but not in those carrying the “R” allele
(Pinteraction = 0.037). In another cross-sectional study of 215
healthy adults (113), a high sucrose intake (>5% TEI) significantly
increased TC (Pinteraction = 0.034) and LDL (Pinteraction = 0.037)
more in participants with “B1B2/B2B2” genotype than those with
“B1B1” genotype of cholesteryl ester transfer protein (CETP) SNP
rs708272. However, the interaction did not influence triglycerides,
HDL, BMI nor waist circumference (113). In contrast, the cross-
sectional study discussed above (104), reported that the intake of
maltose (0.68 ± 0.42 g/day) significantly decreased triglycerides
(Pinteraction = 0.023) in carriers of the “A1”allele of DRD2/ANKK1
SNP rs1800497. These findings indicate that carbohydrate intake
might modulate lipid levels in Mexicans with certain genetic variants,
but the mechanism through which carbohydrates affect lipid levels
are unclear. Moreover, it has been reported that, the effect of
carbohydrates on lipids might be dependent on glycemic index or
glycemic load, and highly processed carbohydrates are linked to
unfavorable lipid profiles (114).

3.4.3. Interaction between micronutrients and
genetic variants on cardiometabolic traits

Two cross-sectional studies examined the interaction between
micronutrients and genetic variants on cardiometabolic traits (115,
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116). In the first study which consisted of 231 healthy new-borns
(115), a deficient maternal vitamin B12 (<2.0 mcg/d) was found
to be associated with a smaller size baby at birth in mothers with
the “TT” genotype of MTHFR SNP rs1801133 (Pinteraction = 0.02)
but a deficient maternal folate (<400 mcg/d) was not associated
with anthropometric parameters (weight, length or BMI) of new-
borns (115). A low vitamin B12 intake (<2.0 mcg/d) was also
associated with increased homocysteine levels (Pinteraction = 0.01) in
carriers of the “TT” genotype of MTHFR SNP rs1801133 in a cross-
sectional study of 130 healthy women (116). The “TT” genotype of
MTHFR is associated with decreased enzymatic activity and increased
homocysteine concentration (117) and the findings of these studies
suggest that increasing the intake of vitamin B12 might improve fetal
development in Mexican women with the “TT” genotype.

3.4.4. Interaction between alcohol intake and
genetic variants on cardiometabolic traits

The cross-sectional study of 130 healthy women discussed above
(116), was the only study which examined alcohol intake and no
interaction was found between alcohol intake and MTHFR SNP
rs1801133 on homocysteine levels which could be due to the fact
that 80% of the studied population consumed less than 1 cup/week
of alcohol (116).

3.4.5. Interaction between physical activity and
genetic variants on cardiometabolic traits

Interactions between physical activity and genetic variants on
cardiometabolic traits were investigated by four Mexican studies
(113, 118–120). In the cross-sectional study discussed above (113),
increased concentration of TC (Pinteraction = 0.033) was observed
in individuals carrying the “B2” allele of CETP SNP rs708272
who did not perform physical activity, compared to those with
the “B1B1” genotype. However, there were no interactions on TG,
HDL, TG:HDL ratio, LDL, BMI or WC (113). Similarly, interactions
between physical fitness measured by muscular endurance (ME)
and aerobic capacity with genetic variants were observed in a case-
control study of 608 physically active adults (118), where higher
levels of ME and aerobic capacity were associated with a lower
WC in individuals with a high GRS based on 23 SNPs (Table 1)
(Pinteraction = 0.0001 for both). In this study (118), a higher risk
of obesity was found in older participants (≥ 40 years) with the
“AA” genotypes of APOB SNP rs512535 (Pinteraction = 0.004) and
tumor necrosis factor (TNFA) SNP rs361525 (Pinteraction = 0.007)
with low levels of ME. However, another cross-sectional study of
565 physically active participants (119) did not find significant
interactions between physical fitness and six SNPs (ADIPOQ
rs2241766, ACSL1 rs9997745, LIPC rs1800588, PPARA rs1800206,
PPARG rs1801282 and PPARGC1A rs8192678) on glycemic traits.
Moreover, the fourth cross-sectional study which consisted of 394
participants (120), did not identify interactions between physical
activity and ADIPOQ SNP –11391G/A on adiponectin levels.

3.4.6. Other gene-lifestyle interactions in Mexicans
In a cross-sectional study of 206 Mexican women (121), an

interaction between polycyclic aromatic hydrocarbons (PAHs) and
Paraoxonase 1 (PON1) SNP rs661 (Q192R) on serum asymmetric
dimethylarginine (ADMA) was observed, where individuals carrying
the “R” allele had higher ADMA levels compared to those with
the “QQ” genotype in response to higher levels of urinary 1-
hydroxypyrene (Pinteraction = 0.02). Increased levels of ADMA

(p < 0.01) and fatty acid-binding protein 4 (p < 0.001) were also
identified in individuals with the “RR” genotype of PON1 SNP rs661
with higher urinary arsenic levels (>45.0 µg/g of creatinine) in
comparison with participants with the “QQ” genotype in a sample of
185 Mexican women (122). The mechanisms of the interaction may
be shared in the case of exposure to PAHs as these are also involved
in the generation of reactive oxygen species (123).

Overall, different cardiometabolic traits have been investigated in
Mexico, where eleven out of fifteen studies found significant gene
x lifestyle interactions (103–106, 112, 113, 115, 116, 118, 121, 122)
as shown in Table 1. Dietary fat intake was the most frequently
examined dietary factor, being investigated by five studies (103–
107); followed by carbohydrate intake, which was examined by three
studies (104, 112, 113). Physical activity was the most frequently
examined lifestyle factor, while alcohol intake was investigated by
only one study. Lifestyle factors such as smoking, socioeconomic
status, level of education and the impact of rural and urban
environments were not investigated. Moreover, dietary factors such
as consumption of protein, complex carbohydrates, and fruits and
vegetables have not been investigated, highlighting a need for further
research.

3.5. Gene x lifestyle interaction in Costa
Ricans

3.5.1. Interactions between dietary fat intake and
genetic variants on CVD-related traits

The interaction between dietary fat intake and genetic variants
on CVD-related traits was examined by six Costa Rican studies
(124–129). In a cross-sectional study of 420 participants (124), SFA
intake interacted with APOE genotype and influenced blood lipid
concentrations. A higher SFA intake (13.5% energy) was associated
with higher levels of very-low density lipoprotein cholesterol
(VLDL) (Pinteraction = 0.03) and lower concentration of HDL
(Pinteraction = 0.02) in carriers of the “ε2” allele. However, no
significant interactions were identified between SFA intake and
APOE genotype on lipids in a case-control study involving 1,927
participants with myocardial infarction (MI) and 1,927 matched
controls (125). In another cross-sectional study of 336 participants
(126), SFA intake was found to interact with APOC3 genotype and
impact on the concentration of TC (Pinteraction = 0.0004) and LDL
(Pinteraction = 0.01). Homozygotes for the APOC3-455T-625T alleles
had a 13% increase in TC and a 20% increase in LDL with a
high SFA intake (>11% of energy intake), but the interaction was
not significant in individuals with the APOC3-455C-625del allele
(126). In the case-control study discussed above (125), a significant
interaction between SFA intake and APOE genotype on the risk of MI
(Pinteraction = 0.0157) was also reported, in which carriers of the “ε4”
allele had a 49% increased risk of MI compared to a 2.2 fold increased
risk in those with the “ε2” allele in response to a high SFA intake
(>11.8% of energy intake).

APOE plays a key role in lipid metabolism, being a main
component of triglyceride-rich lipoproteins and HDL, and a ligand
for LDL receptor (124, 130) and it is believed that the metabolism of
fatty acids is impaired in carriers of the “ε4” allele which is considered
a risk factor for CVDs (131). However, the above findings indicate
that, a high SFA intake is more detrimental to carriers of the “ε2” allele
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than those carrying the “ε4” allele, highlighting the potential role of
SFA intake in modifying genetic risk.

In accordance with the findings above, a case-control study
of 1805 participants with a first non-fatal MI and 1,805 matched
controls (127), reported an interaction between PUFA intake and
PPARγ SNP rs1801282, influencing the risk of MI (Pinteraction = 0.03).
Individuals with the “Pro12/Pro12” genotype had a 34% reduced risk
of MI per 5% increment in energy from PUFA compared to a 7%
decreased risk in those carrying the “Ala12” allele (127). Similarly,
a case-control study of 1932 participants with a first non-fatal MI
and 2,055 matched controls (128), reported a significant interaction
between long-chain omega-3 (LC n-3) PUFA intake and Proprotein
Convertase Subtilisin/Kexin Type 9 (PCSK9) SNP rs11206510 on the
risk of MI (Pinteraction = 0.012), where carriers of the “C” allele had
an odds ratio for MI of 0.84 per 0.1% increase in total energy from
LC n-3 PUFA, compared to an odds ratio of 1.02 in participants
without the “C” allele (128). Along similar lines, a case-control study
of 1936 participants with a first non-fatal MI and 2,035 matched
controls (129) reported a significant interaction between omega-6
(n-6) PUFA intake and Phospholipase A2 Group IVA (PLA2G4A)
SNP rs12746200 on the risk of MI (Pinteraction = 0.005), in which
participants with the “G” allele had a reduced risk of MI with an
intake of n-6 PUFA above the median compared to those with the
“AA” genotype. However, there were no significant interactions with
n-3 PUFA intake (129).

These findings indicate that the beneficial effect of PUFA intake
reported by some studies (101, 132) might be limited in individuals
with certain genetic variants. PPARγ is a nuclear receptor which is
involved in adipogenesis and plays a role in the metabolism of glucose
and fatty acids (133, 134), and the “Ala12” allele of PPARγ SNP
rs1801282 has been reported to slow down the release of PUFA from
adipocytes, which could explain the smaller reduction in the risk of
MI in comparison with carriers of the “Pro12/Pro12” genotype (127).

3.5.2. Interaction between other dietary factors
and genetic variants on the risk of MI

Interactions between other dietary factors and genetic variants
on the risk of MI were examined by three Costa Rican studies
(135–137). In a case-control study of 1,560 incident cases of
non-fatal MI and 1,751 matched controls (135), sugar sweetened
beverage (SSB) intake interacted with a GRS based on 3 SNPs of
chromosome 9p21 (rs4977574, rs2383206 and rs1333049), increasing
the risk of MI (Pinteraction = 0.03). SSB intake also interacted with
rs4977574, increasing the risk of MI in carriers of the “G” allele
(Pinteraction = 0.005), but there was no interaction with fruit juice
intake (135). In another case-control study of 2,014 participants
with a first acute non-fatal MI and 2,014 matched controls (136),
an increased risk of MI with increasing coffee intake was observed
in carriers of the “C” allele (also known as “slow metabolizers of
caffeine”) of Cytochrome P450 Family 1 Subfamily A Member 2
(CYP1A2) SNP rs762551 compared to carriers of the “AA” genotype
(Pinteraction = 0.04). Similarly, in a case-control study consisting of
2,042 participants with a first non-fatal MI and 2042 control subjects
(137), cruciferous vegetable intake (0.86 servings/day of half a cup)
interacted with Glutathione S-Transferase Theta 1 (GSTT1) SNP
rs17856199, lowering the risk of MI in carriers of the “∗1” allele,
but not in individuals with the “∗0∗0” genotype (Pinteraction = 0.006).
These findings indicate that, dietary factors other than fat intake,
might also influence the risk of MI in Costa-Ricans with certain
genetic variants.

3.5.3. Interaction between smoking and genetic
variants on the risk of MI

Interaction between smoking and genetic variants on the risk of
MI was investigated by three Costa Rican case-control studies (137–
139), two of which found significant interactions (137, 138). In a
case-control study of 492 participants with a first non-fatal MI and
518 matched controls (138), an interaction was observed between
smoking status and Paraoxonase 1 (PON1192) SNP rs661 on the risk
of MI (Pinteraction = 0.04), where the PON1192Arg allele was associated
with an increased risk of MI only in non-smokers. Similarly, in
the case-control study discussed above (137), the combined intake
of cruciferous vegetables (>5 servings/day) and smoking (1–10
cigarettes/day) in carriers of the “∗1” allele of rs17856199, lowered the
risk of MI (Pinteraction = 0.008). However, there were no significant
interactions with GSTM1 or GSTP1 genotype on the risk of MI (137).
Moreover, in the third Costa Rican case-control study which involved
873 participants with a first non-fatal MI and 932 control subjects
(139), no significant interactions were observed between smoking
and CYP1A1 SNP rs1048943 or CYP1A2 SNP rs762551 on the risk
of MI. Smoking has been linked to increased risk of MI (140, 141)
although the mechanisms are unclear. Smoking is also believed to
impair the activity of PON1, which is linked to increased risk of CVDs
(142, 143), but this is not supported by the findings of the studies
above, suggesting that Costa Ricans with certain genetic variants
might respond differently to smoking.

3.5.4. Other gene-lifestyle interactions in Costa
Ricans

One case-control study consisting of 1534 participants with a
first non-fatal MI and 1,534 matched controls (144), investigated the
interaction between a lifestyle cardiovascular risk score comprising of
physical activity, smoking, alcohol consumption, waist-to-hip ratio,
and socioeconomic status; and a GRS based on 14 SNPs (Table 1) on
the risk of MI, and no significant interactions were identified.

The research in Costa Rica has mainly focused on CVD traits in
adults, with an emphasis on the risk of MI, and dietary fat intake
has been the most frequently examined exposure. Socioeconomic
status was examined by one study (144), and lifestyle factors such
as educational level, the effect of rural and urban environments as
well as dietary factors such as consumption of protein, fiber and
complex carbohydrates have not been explored, highlighting a need
for further research.

3.6. Gene x lifestyle interaction in LACP
diaspora

3.6.1. Interaction between dietary fat intake and
genetic variants on anthropometric traits

Interaction between dietary fat intake and genetic variants on
anthropometric traits were investigated by six studies (145–150), all
of which used data from the Boston Puerto Rican Health Study
(BPRHS). In a cross-sectional study of 930 Puerto Ricans from the
BPRHS (145), a high intake of SFA (≥22 g/day) was associated with
a 7.9% higher BMI in individuals with the “CC” genotype of APOA2
SNP rs5082 than those carrying the “T” allele (Pinteraction = 0.003);
but the SNP had no effect on BMI when SFA intake was low
(<22 g/day). This study also observed that, among individuals with
a high SFA intake (≥22 g/d), those with the “CC” genotype had a
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higher risk of obesity than participants carrying the “T” allele of
the SNP rs5082 [Odds ratio (OR) = 1.84; 95% confidence interval
(CI) = 1.38–2.47; P < 0.0001). A similar finding was reported in
a prospective cohort study of 920 participants from the BPRHS
(146), where a high intake of SFA (≥ 9.3% of total energy) was
linked to higher BMI (Pinteraction = 0.006), WC (Pinteraction = 0.02),
and hip circumference (HC) (Pinteraction = 0.002) in participants
carrying the minor allele (“T”) of LDL receptor related protein
1 (LRP1) SNP rs1799986 compared to individuals with the “CC”
genotype; but the SNP had no effect on anthropometric traits
when SFA intake was low (<9.3% of total energy). The “CC”
genotype of APOA2 rs5082 is believed to affect body fat distribution
by lowering plasma concentration of APOA2 and these findings
indicate that, a low SFA intake might attenuate this genetic risk
(145, 151).

An interaction of total fat intake with APOA1-75 on WC was also
reported in a longitudinal study of 821 participants of the BPRHS
(147), in which individuals carrying two copies of the major allele
had a lower WC with a low total fat intake than those carrying the
minor allele (Pinteraction = 0.005). A longitudinal study performed in
1,171 participants (333 men and 838 women) of the BPRHS (148)
also observed that, women with the “TT” genotype of lipoprotein
lipase (LPL) SNP rs320 had lower BMI (Pinteraction = 0.002) and WC
(Pinteraction = 0.001) with a high intake of PUFA but this was not
observed in minor allele (“G”) carriers and there were no significant
interactions in men. In contrast, another longitudinal study of 1,340
participants (395 men and 945 women) of the BPRHS (149) found
that, men with the “GG” genotype of brain derived neurotrophic
factor (BDNF) SNP rs6265 had higher BMI (Pinteraction = 0.042), WC
(Pinteraction = 0.018), and HC (Pinteraction = 0.009) with a low PUFA
intake (<8.76% of energy) than those carrying the “A” allele but no
difference was observed when PUFA intake was high (≥8.76% of
energy) and the interaction was not observed in women. Interaction
between Mediterranean diet with TCF7L2 SNP rs7903146 on obesity-
related traits was also observed in a cross-section study of 1,120
Puerto Ricans of the BPRHS (150), where carriers of the “T” allele
had lower WC (99.2 ± 0.9 vs. 102.2 ± 0.9 cm; Pinteraction = 0.026)
and weight (77.3 ± 1.0 vs. 80.9 ± 1.0 kg; Pinteraction = 0.024)
with a high Mediterranean diet score than individuals with “CC”
genotype. However, there were no significant differences between
the genotypes when the Mediterranean diet score was low. The
findings suggest that a high intake of PUFA and Mediterranean diet
might be beneficial in reducing the genetic risk of obesity-related
traits in a sex-specific manner and call for further research into the
mechanisms involved.

3.6.2. Interaction between dietary fat intake and
genetic variants on CVD traits

Interaction between total fat intake and genetic variants on CVD
traits were reported by three studies (147, 152, 153). In a longitudinal
study of 802 participants of the BPRHS (152), a significant interaction
was observed between total fat intake and APOA5 SNP -1131T < C
on plasma triglycerides (Pinteraction = 0.032), where a high total
fat intake (≥31% of total energy) was associated with a higher
plasma triglyceride concentration in individuals with the “1131C”
allele, although no difference between the genotypes was observed
when total fat intake was low. This study (152) also observed an
interaction between APOA5 SNP S19W with total fat intake on
SBP (Pinteraction = 0.002) and DBP (Pinteraction = 0.007), where
participants with the minor allele (“G”) had a higher SBP with a

low total fat intake (< 31% of total energy), and a lower SBP with a
high total fat intake in comparison with individuals with the “CC”
genotype. The study on 821 participants of the BPRHS discussed
above (147), also reported significant interactions between total fat
intake and APOC3 -640 on DBP (Pinteraction = 0.003), APOA4 N147S
and APOA5 S19W on SBP (Pinteraction = 0.001 and Pinteraction = 0.002,
respectively). It was observed that, homozygous for the major allele of
APOA1-75, APOA4 N147S and APOA5 S19W had lower SBP with a
low intake of total fat (< 31% of total energy) than those carrying
the minor allele; while heterozygous for APOC3 -640 had lower DBP
with a high total fat intake (≥ 31% from energy) (147). However,
a randomized crossover trial involving 41 adults from Dominican,
Puerto Rican and other Caribbean Hispanic origins (153), did not
find significant interactions between a high fat diet and hepatic
lipase (LIPC) SNP rs1800588 on HDL, LDL, TC or plasma glucose
concentrations. A high intake of total fat has been associated with an
unfavorable lipid profile and high blood pressure (154) and the above
findings indicate that, this association might be influenced by variants
of several genes.

3.6.3. Interaction between carbohydrate intake and
genetic variants on cardiometabolic traits

Two studies investigated the interaction between carbohydrate
intake and genetic variants on cardiometabolic traits (155, 156).
In a longitudinal study involving 920 participants of the BPRHS
(155), a significant interaction was observed between Perilipin 1
(PLIN 1) SNP 1,482 G > A and complex carbohydrate intake
on WC (Pinteraction = 0.002), where individuals carrying the
“A” allele had a higher WC with a low intake of complex
carbohydrate (<144 g/day) and a lower WC with a high intake
of complex carbohydrate (≥144 g/day) than those with the
“GG” genotype. Similarly, a cross-sectional study of 153 children
descendent from Hispanic ancestry (156), identified significant
interaction between carbohydrate intake (211.4 g/day) and total
sugar intake (96.1 g/day), increasing hepatic fat fraction in carriers
of the “GG” genotype of Patatin like phospholipase domain
containing 3 (PNPLA3) SNP rs738409 (Pinteraction = 0.04 and
Pinteraction = 0.01, respectively), but the interaction was not observed
in individuals carrying the “C” allele. It has been reported that,
body weight might be influenced by the type of carbohydrate
consumed (157) which is supported by the findings of these
studies, but the results also indicate that genetic variants might also
play a role.

3.6.4. Interaction between micronutrient intake
and genetic variants on cardiometabolic traits

The interaction between micronutrient intake and genetic
variants on cardiometabolic traits was investigated by two studies
(158, 159). A cross-sectional study involving 1,734 Mexican
Americans (158) reported a significant interaction between vitamin
E and APOB SNP rs693 on LDL (Pinteraction = 8.94 × 10-7),
and between vitamin A and PCSK9 SNP rs11206510 on LDL
(Pinteraction = 7.65 × 10-5), but the direction of the interactions is
unclear. Similarly, in the longitudinal study of 1,144 Puerto Ricans of
the BPRHS discussed above (159), a significant interaction between
vitamin D status and IRS1 rs2943641 on the risk of T2D was
identified in women in which minor allele homozygotes (“TT”)
had a lower risk of T2D compared with “C” allele carriers only
when 25(OH)D was higher than the median [>17 ng/mL (42.4
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nmol/L)] (Pinteraction = 0.007), but the interaction was not observed
in men. The findings of these studies indicate that micronutrients
might modulate the association between genetic variants and lipid
and glycemic traits, but further studies are needed to replicate and
elucidate the mechanisms involved.

3.6.5. Interaction between physical activity and
genetic variants on cardiometabolic traits

Only one study (160) examined the interaction between
physical activity and genetic variants on cardiometabolic traits.
This study (160) was a prospective cohort study of 9,645 adult
Puerto Ricans, Mexicans, Dominicans, Cuban, Central American,
and South American from the Hispanic Community Health
Study/Study of Latinos (HCHS/SOL) cohort, USA, and a positive
association was observed between a GRS based on 97 SNPs
(Table 1) and BMI, but the effect of the GRS was stronger
in the first tertile of moderate to vigorous physical activity
compared to the third tertile (Pinteraction = 0.005). Significant
interactions following the same pattern were observed for fat mass
(Pinteraction = 0.003), fat percentage (Pinteraction = 0.003) and fat mass
index (Pinteraction = 0.002) (160).

In summary, research in LACP diaspora has mainly focused
on Puerto Ricans residing in USA and most of this evidence (10
out of 13 studies) comes from the same study (BPRHS). Dietary
fat intake has been the most frequently studied, with carbohydrate
intake being examined by only two studies. Similarly, physical activity
was investigated by only one study and lifestyle factors such as
socioeconomic status, level of education, and the effect of rural and
urban environments have not been explored.

3.7. Gene x lifestyle interactions in
Chileans

3.7.1. Interaction between carbohydrate intake and
genetic variants on glycemic traits

Two gene-diet interaction studies were reported in Chileans
(161, 162). The first study (161) was a cross-sectional study of
2828 healthy Chilean adults, and a significant interaction was
observed between consumption of SSB and a weighted genetic
risk score (wGRS) based on 16 T2D risk SNPs (Table 1) on
log-fasting glucose (Pinteraction = 0.02), where the strongest effect
was observed between the highest SSB intake (≥2 servings/day of
330 ml) and the highest wGRS. In this study (161), SSB intake
also interacted with additive effects of Transcription Factor 7
Like 2 (TCF7L2) SNP rs7903146 (Pinteraction = 0.002) and with
the “G/G” genotype of Melatonin Receptor 1B (MTNR1B) SNP
rs10830963 (Pinteraction = 0.001), increasing log-fasting glucose
levels. The second Chilean study (162) was a non-randomized
controlled trial performed in 97 healthy women and 147 women
with polycystic ovary syndrome, and there were no reported
interactions between a high glycemic carbohydrate intake (75 g of
glucose) during an oral glucose tolerance test and Insulin Receptor
Substrate 1 (IRS-1) SNP rs1801278 on glycemic traits. In Chile,
research has been limited to diabetes traits as outcomes and simple
carbohydrates as exposure, reflecting a need for further research
into other dietary and lifestyle factors such as socioeconomic
status, level of education and the effect of rural and urban
environments.

3.8. Gene x lifestyle interactions in
Colombians

Two gene-lifestyle interaction studies were conducted in
Colombians (163, 164). The first study (163) was a case-control
study involving 212 normal weight, 112 overweight and 100 obese
teenagers and no significant interactions were observed between
physical activity and three SNPs (Uncoupling Protein 3 (UCP3)
rs1800849, FTO rs17817449, and CAPN10 rs3842570) on excess
weight. However, sub-group analysis showed that, a sedentary
lifestyle was associated with an increased risk of excess weight
only in those with the “GG” or ‘TT’ genotype of FTO rs17817449
(p = 0.0005); and ‘CC’ genotype of UCP3 rs1800849 (p = 0.0032)
(163). It was also observed that, even with an active lifestyle [1.6–1.9
metabolic equivalent task (MET) minute/day], individuals with the
“II” genotype of CAPN10 rs3842570 had a higher risk of excess body
weight compared to those carrying the “D” allele (p = 0.0212) (163).
The second study which was also a cross-sectional study involved
1,081 Colombian teenagers (164), and there were no interactions
between lifestyle factors (socioeconomic stratum, level of education
and maternal breastfeeding) and ten SNPs on BMI (Table 1). As both
studies (163, 164) were conducted in teenagers and focused on obesity
traits, there is a need for further research into other cardiometabolic
traits in the wider Colombian population.

3.9. Gene x lifestyle interactions in
Argentinians

Only one study (165) was conducted in Argentinians, and this
was a cross-sectional study consisting of 572 healthy Argentinian
men. This study (165) reported a significant interaction between
smoking status and PPARγ SNP rs1801282 on the risk of MetS
(Pinteraction = 0.031) where among the non-smokers, carriers of the
“Pro/Ala” genotype (p = 0.0059) and the “Ala12” allele (p = 0.009)
had a higher risk of MetS than non-carriers. It is unclear whether
there were significant interactions between smoking status and
rs1801282 genotype on the other outcomes investigated in the study
(165) (Table 1), since the p-values given are for associations stratified
by smoking status. The study adjusted for BMI and age only, but the
pathophysiological mechanism of MetS is multifactorial (166), and
hence other factors should be considered simultaneously. There have
been no studies in Argentina examining the interactions of genetic
variants with dietary factors, physical activity, or other lifestyle factors
apart from smoking status.

4. Summary of the findings of
commonly investigated interactions
across the countries

The most commonly investigated interactions in LACP related to
dietary fat intake and genetic variants on blood lipids. A high intake
of olive oil was associated with lower LDL in Brazilian men with the
“ε2” allele of APOE (62), while a low MUFA intake was linked to
higher TC, non-HDL and LDL in Mexicans carrying the “ε2” allele of
APOE (103). In contrast, increased TG concentration in response to a
high MUFA intake was observed in Mexicans who were homozygotes
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for the A2 allele of DRD2/ANKK1 SNP rs1800497. A high PUFA
intake was also associated with increased concentration of LDL in
Brazilian carriers of the “ε4” allele, and reduced concentration of
TG in those carrying the “ε2” allele of APOE (62). However, a low
PUFA intake was linked to increased TG and VLDL concentration in
Brazilian women with the “ε4” allele of APOE (63).

Furthermore, a high SFA intake was associated with higher VLDL
and lower HDL concentrations in Costa Rican carriers of the “ε2”
allele of APOE (124), but no significant interactions were identified
between SFA intake and APOE genotype on blood lipids in a
Costa-Rican case-control study involving participants with MI (125).
However, a high SFA intake was linked to increased concentrations of
TC and LDL in Costa Ricans who were homozygotes for the APOC3-
455T-625T alleles (126). Similarly, a high SFA intake was associated
with increased TC and TG concentrations in Mexicans with the “G”
allele of LEPR SNP rs1137101 (105); while a low SFA intake was
linked to a decrease in TC and LDL concentrations in Mexicans with
the “G” allele of GFOD2 SNP rs12449157 (106).

The inconsistencies in the findings of the above studies call for
further research into the interaction between sub-types of fat and
genetic variants on blood lipids. The sources of dietary fat also need
to be considered since SFA from different food sources have been
reported to have different effects on cardiometabolic traits (111).

5. Discussion

This is the first systematic review to investigate gene-lifestyle
interactions on cardiometabolic diseases in LACP, highlighting
several gene-lifestyle interactions with effects being significant
in Brazilians, Mexicans, Costa Ricans, Chileans, Argentinians,
Colombians and LACP diaspora. The most frequently studied genes
have been FTO, examined in Colombians, Mexicans, and Brazilians,
APOE explored in Costa Ricans, Mexicans, and Brazilians, and
TCF7L2 investigated in Chileans, Mexicans, Brazilians and LACP
diaspora. The concentration of blood lipids such as HDL and LDL
was the most widely investigated trait, followed by BMI and WC;
MI was examined by 11 studies and one study looked at hepatic fat
accumulation, while diseases such as stroke and liver cirrhosis were
not investigated. Research has identified gene-lifestyle interactions
that describe effects which are population-, gender-, and ethnic-
specific. The findings of this review indicate that most of the gene
x lifestyle interactions were conducted once, necessitating replication
to strengthen the evidence.

Another issue that could affect the results is the accuracy of
the methods used to measure exposure variables such as dietary
intake and physical activity (167, 168). Some studies used 24-h recall
questionnaires and self-reporting methods (64, 77, 81, 112, 144,
158), which might have induced recall bias, inadequate estimations,
daily variation bias, and over and underreporting of values (169,
170). Measurement of dietary intake is a crucial part of gene-diet
interaction studies as under or overestimation of dietary intake
can weaken or reverse the association between dietary factors and
cardiometabolic traits (170, 171). Moreover, other studies used food
frequency questionnaires with no information on whether they were
tested for validity. Genotyping errors can also affect the results of
gene-diet interactions by leading to deviations from the true genotype
(172, 173).

Sample size has also been highlighted as a key methodological
issue in gene-lifestyle interaction studies (167, 168). For complex

traits where the main effects of genetic variants are often modest, a
large sample size is required to detect small interaction effects (167,
174). Thus, it is important that studies are adequately powered to
detect true interactions (168). Nonetheless, most of the studies had
small sample sizes and only a few included information on statistical
power to detect interactions. There is also the risk of false-positive
finding when there is no correction for multiple comparisons (173,
175), but only a few of the studies provided information on correction
for multiple comparisons.

Overall, the included studies are majorly cross-sectional,
indicating a need for longitudinal/prospective studies. The findings
reflect gaps in covering the genetic risks and the socioeconomic
variables to which the LACP are exposed; 27 out of 33 LACP
have not conducted gene-lifestyle interaction studies yet. Only five
studies have been conducted in contexts of low socioeconomic status,
and from these, only two studies investigated gene-socioeconomic
status interactions (144, 164). Moreover, no studies have examined
the impact of rural and urban environments on the genetic
predisposition to cardiometabolic diseases, highlighting a gap in
knowledge in LACP. The higher number of nutrigenetic studies
in Brazil compared to the other countries could be attributed
to several factors including existing data on genetic studies
(176–181), GWAS done mainly in Brazil (182–184), increased
awareness on nutrigenetics in Brazil or more research facilities
available in Brazil compared to other LACP. Future gene-lifestyle
interaction studies will need to replicate primary research of already
studied genetic variants to enable comparison, and to explore the
interactions between genetic and other lifestyle factors such as those
conditioned by socioeconomic factors and the built environment.
Moreover, the molecular mechanisms that underlie the gene-
lifestyle interactions identified by this systematic review need to be
explored. The strength of this review is the comprehensive search
strategy and the inclusion of all dietary/lifestyle exposures and
cardiometabolic traits. Another strength is the use of standardized
tools to assess the quality of the studies. However, the study has
some limitations.

In conclusion, this systematic review has identified several gene-
lifestyle interactions on cardiometabolic disease traits in Brazilians,
Mexicans, Costa Ricans, Chileans, Argentinians, Colombians and
LACP diaspora, highlighting effects which are population-, gender-,
and ethnic-specific. However, the lack of replication of most
of the gene-lifestyle interactions made it difficult to evaluate
the evidence. Moreover, most of the studies were cross-sectional
meaning that they preclude causal assumptions hence a temporal
relationship cannot be established. Future gene-lifestyle interaction
studies will need to replicate primary research of already studied
genetic variants to enable comparison, and to explore the
interactions between genetic and other lifestyle factors such as those
conditioned by socioeconomic factors and the built environment.
Moreover, the molecular mechanisms that underlie the gene-
lifestyle interactions identified by this systematic review need to
be explored.
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Abstract: Abnormalities in lipid metabolism have been linked to the development of obesity. We
used a nutrigenetic approach to establish a link between lipids and obesity in Asian Indians, who
are known to have a high prevalence of central obesity and dyslipidaemia. A sample of 497 Asian
Indian individuals (260 with type 2 diabetes and 237 with normal glucose tolerance) (mean age:
44 ± 10 years) were randomly chosen from the Chennai Urban Rural Epidemiological Study (CURES).
Dietary intake was assessed using a previously validated questionnaire. A genetic risk score (GRS)
was constructed based on cholesteryl ester transfer protein (CETP) and lipoprotein lipase (LPL) genetic
variants. There was a significant interaction between GRS and saturated fatty acid (SFA) intake on
waist circumference (WC) (Pinteraction = 0.006). Individuals with a low SFA intake (≤23.2 g/day),
despite carrying ≥2 risk alleles, had a smaller WC compared to individuals carrying <2 risk alleles
(Beta = −0.01 cm; p = 0.03). For those individuals carrying ≥2 risk alleles, a high SFA intake
(>23.2 g/day) was significantly associated with a larger WC than a low SFA intake (≤23.2 g/day)
(Beta = 0.02 cm, p = 0.02). There were no significant interactions between GRS and other dietary
factors on any of the measured outcomes. We conclude that a diet low in SFA might help reduce the
genetic risk of central obesity confirmed by CETP and LPL genetic variants. Conversely, a high SFA
diet increases the genetic risk of central obesity in Asian Indians.

Keywords: genetic risk score; Asian Indians; lipids; central obesity; fat intake; gene-diet interaction;
saturated fatty acid

1. Introduction

Asian Indians are more prone to developing type 2 diabetes (T2D) and cardiovas-
cular diseases (CVDs) at a lower body mass index (BMI) than Caucasians, due to the
‘Asian Indian phenotype’, which is characterised by central obesity, dyslipidaemia, and
increased levels of total fat, visceral fat, insulin resistance and faster decline in beta cell
function [1–3]. The location of body fat is thought to be more important in predicting
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adverse cardiovascular events [4–6]. Central obesity has been linked to several conditions,
including insulin resistance and increased mortality from CVDs [7–10], necessitating stud-
ies to fully understand the underlying mechanisms for the development of central obesity
in Asian Indians.

Abnormalities in lipid metabolism have been linked to the development of obesity,
and lipoprotein lipase (LPL), a key enzyme in lipid metabolism, contributes to the devel-
opment of obesity through its role in the partitioning of lipids to different tissues [10–12].
Cholesteryl ester transfer protein (CETP), mainly expressed in adipose tissue, is also a
major enzyme in lipid metabolism, which mediates the transport of cholesteryl esters and
triglycerides (TG) between high-density lipoprotein cholesterol (HDL) and apolipoprotein
B (ApoB)–containing lipoproteins such as very-low-density lipoprotein (VLDL) [13]. In-
creased CETP activity results in lower HDL concentration, which is associated with higher
risk of CVDs [14]. Consumption of a high saturated fatty acid (SFA) diet has also been
shown to contribute to obesity by decreasing cholesterol efflux due to reduced expression of
peroxisome proliferator-activated receptors involved in lipid metabolism [15–17]. Genome-
wide association (GWA) and candidate gene studies have demonstrated that lipid levels
are influenced by single nucleotide polymorphisms (SNPs) in lipid-pathway genes [18–23].
SNPs of the CETP gene have been associated with HDL concentrations [21,24–28], while
SNPs of the LPL gene have been associated with both HDL and TG levels [21,29–31]. A re-
cent review of GWA studies of lipids [32] showed that CETP SNPs had the highest number
of associations with lipids, followed by LPL SNPs. CETP and LPL SNPs have also been
associated with obesity-related traits [33,34].

Several studies have shown significant interactions between genetic variants and lifestyle
factors regarding the association between lipid profile and obesity-related traits [1,19,33,35,36],
but the findings have been inconsistent. Moreover, it has been shown that the effect size of
individual SNPs is modest and less likely to accurately predict the risk of complex diseases,
and a more effective approach involves combining several risk alleles to generate a genetic
risk score (GRS) [35,37]. Nonetheless, studies investigating interactions between GRS and
dietary factors on lipid and obesity-related traits have not been adequately performed in
Asian Indians. Hence, the aim of this study was to examine the effect of a GRS and its
interaction with dietary factors on lipid and obesity-related traits in Asian Indian adults
with and without T2D.

2. Methods
2.1. Study Participants

A sample of 497 individuals (260 with T2D and 237 with normal glucose tolerance
(NGT)) were randomly chosen from an epidemiological study called the Chennai Urban
Rural Epidemiological Study (CURES), details of which have been given in previous
publications [1,19,33,35,38–43]. Briefly, a total of 26,001 adults residing in the urban part of
Chennai in Southern India were recruited by systematic random sampling between 2001 to
2003, and those who reported having T2D (1529 individuals) were tested to confirm their
diagnosis [1,40]. The follow-up study was conducted between 2012 to 2013 and consisted
of 2410 participants (Figure 1). The sample for the current study was selected from the
follow-up cohort. Participants were excluded if they were taking lipid-lowering medication
such as statins and fibrates. Ethical approval was granted by the Madras Diabetes Research
Foundation Institutional Ethics Committee and written informed consent was obtained
from study participants [1].

2.2. Anthropometric and Biochemical Measurements

Anthropometric measurements including height, weight, waist circumference (WC),
hip circumference, and waist–hip ratio (WHR) were obtained using standardized tech-
niques. BMI was calculated as weight in kilograms (kg) divided by the square of the
height in meters (m). Individuals with BMI < 25 kg/m2 were classified as non-obese
and those with BMI ≥ 25 kg/m2 were classified as obese, in accordance with the World
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Health Organisation Asia Pacific Guidelines [44]. Biochemical analyses were conducted
using Hitachi-912 Auto Analyzer (Hitachi, Mannheim, Germany) with kits supplied by
Roche Diagnostics (Mannheim, Germany). Serum total cholesterol was measured by
cholesterol oxidase-phenol-4-amino-antipyrene peroxidase method and HDL by direct
method-polyethylene glycol-pretreated enzymes. Serum TG was measured by glycerol
phosphatase oxidase-phenol-4-amino-antipyrene peroxidase method, and low-density
lipoprotein cholesterol (LDL) was calculated using the Friedewald formula [45]. Serum
insulin concentration was estimated using an enzyme-linked immunosorbent assay (Dako,
Glostrup, Denmark), fasting plasma glucose (FPG) by glucose oxidase-peroxidase method,
and glycated haemoglobin (HbA1c) by high-performance liquid chromatography using a
Variant™ machine (Bio-Rad, Hercules, CA, USA).
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2.3. Dietary Assessment

Dietary intake was assessed by an interviewer using a previously validated semi-
quantitative food frequency questionnaire (FFQ) containing 222 items [46]. Participants
were asked to estimate how much and how often they consumed various food items in
the FFQ (number of times per day, week, month, year or never). The FFQ was designed
to estimate the usual dietary intake of participants on a meal-by-meal basis. Open-ended
questions were used to enable participants to estimate the frequency of their usual dietary
intake. To help in estimating portion sizes, participants were shown common household
measures such as spoons and cups and pictures of different sizes of fruits. The data were
analysed using the Nutritional Epidemiology (‘EpiNu’) software to estimate average daily
intake of macronutrients and total energy. Consumption of SFA, polyunsaturated fatty acid
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(PUFA), monounsaturated fatty acid (MUFA) and other macronutrients was estimated from
the FFQ using the ‘EpiNu’ software which contains information on the nutritional content
of commonly consumed food in the Chennai area. The ‘EpiNu’ software was developed
for the local population using recipes from various sources including home-made and
fast-food. Details of the development of the FFQ and the ‘EpiNu’ software are published
elsewhere [46].

2.4. SNP Selection and Genotyping

Five SNPs (CETP SNP: rs4783961; and LPL SNPs: rs327, rs3200218, rs1800590 and
rs268) were selected for this study based on their association with lipid-related traits in
different ethnic groups, including Asian Indians [21–23,33,47–50]. Two SNPs (rs268 and
rs1800590) had a minor allele frequency < 5% (Supplementary Table S1), and hence, they
were excluded. The remaining three SNPs (rs327, rs3200218 and rs4783961) were included
in the current analysis. The genotyping methodology has been previously published [19].
Briefly, the DNA was extracted from whole blood using the phenol–chloroform method,
and the SNPs were genotyped by the polymerase chain reaction-restriction fragment length
polymorphism method.

2.5. Construction of GRS

An additive model was used to construct an unweighted GRS by adding the number
of risk alleles across the three SNPs (rs327, rs3200218 and rs4783961) for each participant.
The risk alleles were defined as alleles previously reported to be associated with dyslipi-
daemia or obesity-related traits. The risk alleles were not weighed due to limited available
information on effect sizes of the SNPs for the Asian Indian population. Moreover, it has
been demonstrated that assigning weights to risk alleles only has minimal effect [37], and
hence, we used an unweighted GRS. The 3-SNP GRS ranged from 0 to 5, and based on
the median GRS (2 risk alleles), participants were placed into two groups: low-risk group
(for individuals with a GRS < 2 risk alleles) and high-risk group (for individuals with a
GRS ≥ 2 risk alleles).

2.6. Statistical Analysis

Statistical analysis was performed using Statistical Package for the Social Sciences
(SPSS) software (version 28; SPSS Inc., Chicago, IL, USA). Normality test was performed by
Shapiro–Wilk test, and all biochemical and anthropometric variables were log-transformed
before the analysis. Results of descriptive statistics for continuous variables are presented
as means and standard deviation (SD) and categorical variables as percentages [1]. Allele
frequencies were determined by gene counting and a goodness-of-fit Chi-square test
was performed to examine if the observed genotype counts were in Hardy-Weinberg
equilibrium (HWE) (Supplementary Table S1). The three SNPs were all in HWE (p > 0.05),
and the alleles had a frequency greater than 5%. An independent sample t test was used
to compare the means of the quantitative variables between individuals with low GRS
(<2 risk alleles) and those with high GRS (≥2 risk alleles). A Chi-square test was performed
to compare categorical variables such as smoking status between individuals in the low
(GRS < 2 risk alleles) and high-risk (GRS ≥ 2 risk alleles) groups.

Linear and logistic regression analyses were used to examine the association of the
3-SNP GRS with continuous and categorical outcomes, with adjustment for age, sex, BMI,
T2D, duration of diabetes, anti-diabetic medication, smoking status, and alcohol intake
wherever appropriate. Interactions between GRS and dietary factors were analysed by
adding the interaction term in the regression models. For GRS–diet interactions, total
energy was adjusted for, in addition to the other covariates. The dietary factors investigated
in this study were consumption of fat, carbohydrate, protein, and dietary fibre. GRS–
diet interactions reaching statistical significance (p < 0.05) were investigated further by
stratifying individuals based on the quantity of dietary intake. A significant interaction of
GRS with total fat was explored further to include subtypes of fats (SFA, PUFA and MUFA).
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A median intake of total fat, SFA, MUFA, and PUFA was used to classify individuals
into two groups, ‘low’ (lower than median) and ‘high’ (higher than median) group, and
association between GRS and the outcome was then analysed for each group.

3. Results
3.1. Characteristics of the Study Participants

The mean age of the study participants was 44 ± 10 (Table 1). At baseline, there were
no significant differences in anthropometric traits (BMI, WC and WHR), lipid sub-fractions
(HDL, LDL, TG, and total cholesterol), systolic blood pressure (SBP) and diastolic blood
pressure (DBP), or glycaemic traits (FPG, fasting serum insulin, insulin resistance and
HbA1c) between participants with low GRS (<2 risk alleles) and those with high GRS
(≥2 risk alleles). Furthermore, consumption of macronutrients did not differ significantly
between participants with low GRS (<2 risk alleles) and those with high GRS (≥2 risk
alleles) as shown in Table 1. Smoking was higher among individuals with high GRS
(≥2 risk alleles) compared to those with low GRS (<2 risk alleles) (p = 0.03). The base-
line HDL concentration was significantly higher in women than in men (43.5 ± 1.3 vs.
38.7 ± 1.3 mg/dL; p = 2.3 × 10−8).

Table 1. Characteristics of the study participants.

All Participants (n = 497) GRS < 2 (n = 239) GRS ≥ 2 (n = 258) p Value *

Age (years) 44 ± 10 45 ± 10 44 ± 9 0.34
Sex [Men (%), Women (%)] 225 (45), 272 (55) 106 (47), 133 (49) 119 (53), 139 (51) 0.69
BMI (kg/m2) 24.6 ± 4.5 24.7 ± 4.7 24.4 ± 4.3 0.41
WC (cm) 87 ± 11 88 ± 12 87 ± 11 0.39
WHR 0.92 ± 0.08 0.92 ± 0.09 0.91 ± 0.08 0.57
Obese cases (%) 209 (42) 109 (52) 100 (48) 0.12
HDL (mg/dL) 42 ± 10 42 ± 10 42 ± 10 0.79
LDL (mg/dL) 119 ± 32 118 ± 32 119 ± 32 0.81
TG (mg/dL) 165 ± 150 166 ± 120 164 ± 173 0.87
Total cholesterol (mg/dL) 191 ± 40 192 ± 42 190 ± 38 0.64
Systolic BP (mmHg) 122 ± 20 123 ± 22 120 ± 18 0.15
Diastolic BP (mmHg) 76 ± 11 76 ± 12 75 ± 11 0.60
Fasting plasma glucose (mg/dL) 126 ± 65 126 ± 64 127 ± 67 0.79
Fasting serum insulin (µIU/mL) 9 ± 6 9 ± 6 9 ± 7 0.89
Insulin resistance 3 ± 2 3 ± 2 2 ± 2 0.44
HbA1c (%) 7 ± 2 7 ± 2 7 ± 2 0.91
Fat (g) 67 ± 27 67 ± 26 67 ± 27 0.83
Carbohydrate (g) 410 ± 136 410 ± 134 411 ± 138 0.92
Protein (g) 72 ± 24 73 ± 24 72 ± 23 0.63
Dietary fibre (g) 32 ± 12 32 ± 12 32 ± 11 0.77
Energy (kcal/day) 2560 ± 822 2560 ± 809 2559 ± 834 0.99
Total SFA (g) 25 ± 11 25 ± 11 25 ± 11 0.91
Total MUFA (g) 20 ± 8 20 ± 8 21 ± 9 0.79
Total PUFA (g) 19 ± 9 18 ± 9 19 ± 10 0.77
Plant protein (g/day) 41 ± 14 40 ± 13 42 ± 14 0.23
Animal protein (g/day) 23 ± 13 23 ± 12 22 ± 13 0.75
Smokers (%) 88 (18) 33 (38) 55 (63) 0.03
Alcohol drinkers (%) 123 (25) 52 (42) 71 (58) 0.14
T2D cases (%) 260 (52) 131 (50.4) 129 (49.6) 0.28

Data are mean ± standard deviation or frequencies where appropriate. * p values for the differences in
means/frequencies between participants with low GRS and those with high GRS. p values were calculated
using independent sample t test for continuous variables and Chi-square test for categorical variables. BMI—body
mass index; WC—waist circumference; WHR—waist hip ratio; HDL—high-density lipoprotein cholesterol; LDL—
low-density lipoprotein cholesterol; TG—triglycerides; HbA1c—glycated haemoglobin; SFA—saturated fatty
acids; MUFA—monounsaturated fatty acids; PUFA—polyunsaturated fatty acids.
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3.2. Association of GRS with Lipid and Obesity-Related Traits

There was no significant association between GRS and any of the outcomes measured
(HDL, LDL, TG, total cholesterol, SBP, DBP, BMI, WC, WHR and obesity) after adjusting for
the confounding factors, age, sex, BMI, T2D, duration of diabetes, anti-diabetic medication,
smoking status, and alcohol intake where appropriate (Supplementary Tables S2 and S3).

3.3. Interaction of GRS with Dietary Factors on Lipid and Obesity Related Traits

A significant interaction was observed between GRS and total fat intake on WC
(Pinteraction = 0.03) after adjusting for age, sex, T2D, duration of diabetes, anti-diabetic
medication, smoking status, alcohol intake, and total energy intake (Table 2). When indi-
viduals were stratified based on the median intake of total fat, there were no significant
associations between GRS and total fat intake on WC, and when sub-types of fat were
investigated (Figure 2), there was a significant interaction of GRS with SFA intake on WC
(Pinteraction = 0.006) and MUFA intake on WC (Pinteraction = 0.004). In the low SFA intake
group (≤23.2 g/day), individuals carrying ≥2 risk alleles had a smaller WC compared
to those carrying <2 risk alleles (Beta = −0.01 cm, p = 0.03), while in the high SFA in-
take group (>23.2 g/day), there was no significant difference in WC between participants
carrying ≥2 risk alleles and those carrying <2 risk alleles. For those individuals carrying
≥2 risk alleles, a high SFA intake (>23.2 g/day) was significantly associated with a larger
WC than a low SFA intake (≤23.2 g/day) (Beta = 0.02 cm, p = 0.02). When individuals
were grouped based on the median MUFA intake, there was no association between GRS
and MUFA intake on WC. To examine whether the interactions of GRS with fat intake
and SFA intake on WC were mediated by lipids, we included the four lipid subfractions
(HDL, LDL, TG and total cholesterol) as confounding factors in addition to other confound-
ing factors and found that the interaction was no longer significant for total fat intake
(Pinteraction = 0.08), but it remained significant for SFA intake (Pinteraction = 0.02).

Table 2. Interaction of GRS with dietary factors on blood lipids, blood pressure, obesity-related traits,
and obesity.

Trait

GRS ∗ Fat (g) GRS ∗ Carbohydrate (g) GRS ∗ Protein (g) GRS ∗ Dietary Fibre (g)

Beta Coefficient ± SE
(Pinteraction)

Beta Coefficient ± SE
(Pinteraction)

Beta Coefficient ± SE
(Pinteraction)

Beta Coefficient ± SE
(Pinteraction)

BMI (kg/m2) 0.05 ± 0.04 (0.21) a 0.04 ± 0.05 (0.36) a 0.04 ± 0.05 (0.35) a −0.01 ± 0.04 (0.77) a

WC (cm) 0.06 ± 0.03 (0.03) a 0.05 ± 0.03 (0.18) a 0.07 ± 0.04 (0.07) a 0.00 ± 0.03 (0.93) a

Waist hip ratio 0.01 ± 0.02 (0.52) b 0.00 ± 0.02 (0.98) b 0.01 ± 0.02 (0.58) b −0.01 ± 0.02 (0.62) b

Common obesity −1.76 ± 1.14 (0.12) a 0.10 ± 0.08 (0.20) a −2.52 ± 1.41 (0.08) a −0.35 ± 1.26 (0.78) a

HDL (mg/dL) −0.04 ± 0.05 (0.42) b −0.07 ± 0.06 (0.23) b −0.07 ± 0.06 (0.21) b −0.04 ± 0.05 (0.47) b

LDL (mg/dL) 0.02 ± 0.06 (0.82) b 0.02 ± 0.08 (0.79) b −0.01 ± 0.08 (0.90) b −0.02 ± 0.07 (0.81) b

TG (mg/dL) 0.10 ± 0.12 (0.39) b −0.01 ± 0.15 (0.97) b −0.02 ± 0.15 (0.89) b 0.08 ± 0.13 (0.57) b

Total cholesterol
(mg/dL) 0.02 ± 0.04 (0.70) b −0.00 ± 0.06 (0.98) b −0.02 ± 0.06 (0.65) b −0.00 ± 0.05 (0.98) b

Systolic BP
(mmHg) 0.03 ± 0.03 (0.35) b 0.03 ± 0.04 (0.49) b 0.03 ± 0.04 (0.48) b 0.04 ± 0.03 (0.25) b

Diastolic BP
(mmHg) 0.02 ± 0.03 (0.50) b 0.01 ± 0.04 (0.87) b 0.03 ± 0.04 (0.51) b 0.01 ± 0.04 (0.72) b

GRS—genetic risk score; BMI—body mass index; WC—waist circumference; HDL—high-density lipoprotein
cholesterol; LDL—low-density lipoprotein cholesterol; TG—triglycerides. p values were obtained from linear
regression analysis for continuous traits and logistic regression analysis for obesity. a p values adjusted for age,
sex, type 2 diabetes, duration of diabetes, anti-diabetic medication, smoking status, alcohol intake, and total
energy intake. b p values adjusted for age, sex, BMI, type 2 diabetes, duration of diabetes, anti-diabetic medication,
smoking status, alcohol intake, and total energy intake. Log-transformed variables were used for the analysis.
p-value in bold represents statistically significant interaction.
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Figure 2. Interaction of GRS with SFA intake on log-transformed waist circumference. p values
adjusted for age, sex, type 2 diabetes, duration of diabetes, anti-diabetic medication, smoking status,
and alcohol intake. Low (≤23.2) and high (>23.2) refer to lower or equal to median and higher than
median intake of SFA (g/day) respectively. In the low SFA intake group (≤23.2 g/day), individuals
carrying 2 or more risk alleles had a smaller waist circumference compared to those carrying less
than 2 risk alleles (Beta = −0.01, p = 0.03), and in the high SFA intake group (>23.2 g/day), there was
no significant difference in waist circumference between participants carrying 2 or more risk alleles
and those carrying less than 2 risk alleles.

4. Discussion

Our study has shown that SFA intake may modify the effect of lipid-pathway genes
on central obesity in Asian Indians. Our findings indicate that the combined effect of LPL
and CETP SNPs (rs327, rs3200218 and rs4783961) on obesity traits may be altered by SFA
intake, where consumption of high amounts of SFA may increase the combined genetic
risk of central obesity posed by LPL and CETP SNPs while a low intake of SFA may help to
reduce this risk. These findings are of public health importance considering the burden of
central obesity in Asian Indians [2,51–54]. Our results suggest that Asian Indians with a
higher genetic risk for central obesity are responsive to SFA intake and could benefit from
dietary modifications to help prevent central obesity in Asian Indians.

An examination of the fatty acid profile of commonly consumed foods in India showed
that milk and milk products were the main source of SFA and the median intake of SFA was
8.7% of total energy intake per day [55]. However, some of the commonly consumed food,
such as potato chips, contained high amounts of palmitic acid, which could be attributed to
the type of cooking oil used in their preparation [55]. The WHO’s dietary guidelines [56]
state that SFA consumption should be less than 10% of total energy intake, and the National
Dietary Guidelines Consensus Group [57] recommends that for Asian Indians who have
higher LDL concentration (≥100 mg/dL), SFA intake should be <7% of total energy intake
per day. Moreover, intake of SFA at 8.6% of total energy was found to be associated with
increased risk of T2D in Indians [55]. In the present study, the median intake of SFA was
8.5% of total energy intake, which is within the WHO’s dietary guidelines [56], but as
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Indians are predisposed to dyslipidaemia, reducing SFA even further as recommended
by the National Dietary Guidelines Consensus Group [57] might help to prevent central
obesity in individuals with a high genetic risk.

Abnormalities in lipid metabolism have been linked to the development of obe-
sity [16,58]. We used a nutrigenetic approach to see if dietary intake can modify this
link by employing a GRS from the two lipid pathway genes, CETP and LPL, which have
been shown to have the strongest effect on lipid concentrations [21,24,25,27–29,32,59]. To
account for the effect of T2D on lipid levels, we adjusted for T2D status, anti-diabetic
medication, and duration of T2D in our analysis. We found significant interactions between
GRS and total fat, SFA and MUFA intake on WC, where a low intake of SFA (≤23.2 g/day)
was found to be associated with a smaller WC in individuals with a higher genetic risk com-
pared to those with a lower genetic risk. We also found that a high SFA intake (>23.2 g/day)
was significantly associated with a larger WC than a low SFA intake (≤23.2 g/day) in in-
dividuals with a high genetic risk. Our findings are in agreement with the results of a
double-blind, randomized, crossover, controlled-feeding trial performed in 101 participants
from Canada and the United States [16] where consumption of a diet low in SFA and high
in unsaturated fatty acids resulted in increased serum-mediated cholesterol efflux which
showed a negative association with WC (Beta = −0.25, p = 0.01) and abdominal adiposity
(Beta = −0.33, p = 0.02). A parallel controlled-feeding trial performed in 20 individuals who
were centrally overweight [15] also showed that consumption of a high SFA diet resulted
in an increase in the expression of inflammatory genes in adipose tissue and a decrease in
the expression of genes involved in fatty acid β-oxidation and synthesis of triglycerides,
which could explain the increase in WC with a high SFA intake observed in our study.
LPL was chosen as one of the candidate genes for the present nutrigenetic study, given
that significant associations between LPL SNPs and obesity traits have been reported by
previous studies in addition to their association with lipid traits. In a case-control study
of 944 Koreans [48], the LPL SNP rs3200218, which is in the 3′-UTR, was shown to be
associated with WHR (p = 0.009), and in a previous study in CURES participants [33],
carriers of the minor allele (G) of LPL SNP rs1800590 had a larger WC (p = 0.03) and higher
BMI (p = 0.003) compared to those carrying two copies of the major allele (T). Increased risk
of common obesity (2.73-fold increase) among carriers of the minor allele of LPL rs1800590
was also observed in Northern Indians [47]. Furthermore, LPL is a rate-restricting enzyme
for the hydrolysis of TG in chylomicrons and VLDL [11], and it has been suggested that
the level of LPL activity in muscle relative to that in adipose tissue determines body mass
composition and contributes to obesity by influencing the rate at which fatty acids de-
rived from TG are used or stored [10]. This suggests that SNPs that alter LPL activity in
muscle and adipose tissue could affect obesity related traits. It has also been shown that
SFAs are associated with a lower postprandial oxidation rate [60] and decreased energy
expenditure [61] than MUFA.

Another important candidate gene for the study is CETP, the SNPs in which have been
reported to influence obesity and lipid-related traits. The ‘A’ allele of the SNP rs4783961 has
been shown to influence the concentration of CETP mass in plasma by producing binding
motifs for transcription factor SP3, which modulates CETP promoter activity [62,63], but
studies examining the association of rs4783961 with obesity traits are limited. However,
the ‘A’ allele of rs4783961 has been linked to higher HDL concentration in Taiwanese [64]
(an increase of 1.71 mg/dL per allele, standard error (SE) = 0.52; p = 0.001) and African
Americans [22] (Beta = 4.6, SE = 1.3; p = 0.0009). A study involving 10,366 African American,
26,647 European American, 1410 Hispanics and 717 Chinese American participants from
nine cohorts [65] also reported that the ‘A’ allele of rs4783961 was associated with increased
HDL concentration in all the cohorts, but the effect size was larger in African Americans
(0.17 to 0.24) than in European Americans (0.09 to 0.15) (p = 2 × 10−10). The mechanism
under which rs4783961 affects obesity traits are unclear, although it has been proposed that
CETP SNPs might affect deposition of fat in visceral adipose tissue by being in linkage with
SNPs of other genes [65]. Nonetheless, association of other CETP SNPs with obesity traits
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have been previously reported. A cross-sectional study of 1005 Spanish individuals who
were obese [66] reported that participants carrying the ‘A’ allele of CETP SNP rs1800777
compared to non-carriers had higher WC (Delta: 5.6 ± 2.1 cm; p = 0.02), WHR (Delta:
0.04 ± 0.01 cm; p = 0.01) and fat mass (Delta: 4.4 ± 1.1 kg; p = 0.04). Similarly, a study
performed in 571 Chinese individuals [34] observed that participants with the ‘GT’ genotype
of CETP SNP rs3764261 had a reduced risk of central obesity (Odds ratio (OR) = 0.631,
95% confidence interval (CI) = 0.460–0.865; p = 0.004), and a study involving 3575 Dutch
participants [67] reported that the minor allele of CETP SNP rs5882 was associated with a
decreased prevalence of central obesity (OR = 0.90, 95% CI = 0.83–0.97; p = 0.007).

Our findings of significant interactions between GRS and dietary fat intake on WC
are consistent with a previous study [58]. This study [58], which consisted of 199 over-
weight/obese Spanish adolescents and involved a weight loss intervention, showed that
each minor allele of CETP SNP rs1800777 was associated with a −1.4 kg decrease in body
weight after 10 weeks (p = 1.5 × 10−4). Studies examining CETP and obesity have mainly
focused on the impact of body weight on CETP mass and activity [68–70]. A study in-
volving 21 morbidly obese female participants (BMI > 40 kg/m2) [68] who underwent a
weight loss procedure concluded that weight loss was associated with a marked decrease
in CETP mass and activity. Another study involving 51 normal weight individuals [70] also
reported that participants with a body weight of around 46 kg had 15% lower serum CETP
compared to those with a body weight of about 55 kg. However, an anti-adipogenic effect
of CETP in the presence of apolipoprotein CIII (apoCIII) was reported by an animal study
involving CETP and apoCIII transgenic mice [71], where obesity induced by a high-fat diet
was reversed by the expression of CETP. As this study did not look at CETP SNPs, it is
unclear whether different CETP SNPs will have the same effect. Individually, the SNPs in
our study did not show any significant interaction with dietary factors. The discrepancies
in findings between our study and others could be because of allele frequencies and effect
sizes which differ between populations [1,32]. Another plausible explanation is differences
in dietary pattern and the methods used to assess dietary intake [1]. Moreover, a systematic
review of observational studies [72] concluded that SFAs were not linked to CVDs, and
an analysis of data from randomized controlled trials [73] indicated that replacing SFA
with linoleic acid was effective in lowering total cholesterol but there was no benefit in
terms of lower risk of CVDs or death. However, large cohort studies [74,75] have indicated
that the effect of SFA is dependent on the type and food sources of SFA. The European
Prospective Investigation into Cancer and Nutrition—Netherlands (EPIC—NL) cohort
study of 37,421 participants [74] observed that total dietary SFA had no association with
T2D, but SFA derived from cheese and long-chain SFAs were negatively associated with
T2D. The EPIC-InterAct case-cohort study of 27,296 participants [75] also reported that
even-chain SFAs including palmitic acid and myristic acid had a positive association with
T2D, while odd-chain and longer-chain SFAs had a negative association with T2D.

The strength of our study is the use of a GRS based on two established lipid pathway
genes in a well characterised population. Our study is the first of its kind to investigate
the link between lipids and obesity from a nutrigenetic perspective. Another strength
is the use of validated questionnaires and the robust sensitivity analysis incorporating
conventional risk factors including alcohol consumption and smoking as confounding
factors. Nonetheless, our study has several limitations. The small sample size could have
influenced the lack of association between GRS and the measured outcomes (lipids and
obesity). Another limitation is that we did not investigate different types or sources of
SFAs. As this is a cross-sectional study, it is not possible to determine causality between
fat intake and WC. Despite our robust sensitivity analysis, we cannot rule out residual
confounding from unidentified factors [1]. However, we were able to replicate previously
reported interactions between GRS and fat intake on WC.
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5. Conclusions

Our findings suggest that dietary fatty acid intake may modify the effect of SNPs in
lipid-pathway genes on central obesity in Asian Indians. The results indicate that a diet low
in SFA might help to reduce the genetic risk of central obesity while a high SFA diet might
increase the genetic risk of central obesity in Asian Indians. These findings support the
WHO’s dietary guidelines for preventing unhealthy weight gain by limiting SFA intake to
less than 10% of total energy intake, and they indicate that personalised nutrition based on
GRS might be an effective strategy for the management of central obesity in Asian Indians
who have a high genetic risk, but additional studies with large sample sizes are needed to
confirm our findings.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nu14132713/s1, Table S1: Allele Frequencies and Hardy–Weinberg
Equilibrium p value, Table S2: Association of GRS with blood lipids, blood pressure and obesity-
related traits, Table S3: Association of GRS with obesity.
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s u m m a r y

Background & aims: Cardiometabolic traits are complex interrelated traits that result from a combination
of genetic and lifestyle factors. This study aimed to assess the interaction between genetic variants and
dietary macronutrient intake on cardiometabolic traits [body mass index, waist circumference, total
cholesterol, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol, tri-
acylglycerol, systolic blood pressure, diastolic blood pressure, fasting serum glucose, fasting serum in-
sulin, and glycated haemoglobin].
Methods: This cross-sectional study consisted of 468 urban young adults aged 20 ± 1 years, and it was
conducted as part of the Study of Obesity, Nutrition, Genes and Social factors (SONGS) project, a sub-
study of the Young Lives study. Thirty-nine single nucleotide polymorphisms (SNPs) known to be
associated with cardiometabolic traits at a genome-wide significance level (P < 5 � 10�8) were used to
construct a genetic risk score (GRS).
Results: There were no significant associations between the GRS and any of the cardiometabolic traits.
However, a significant interaction was observed between the GRS and carbohydrate intake on HDL-C
concentration (Pinteraction ¼ 0.0007). In the first tertile of carbohydrate intake (�327 g/day), partici-
pants with a high GRS (>37 risk alleles) had a higher concentration of HDL-C than those with a low GRS
(�37 risk alleles) [Beta ¼ 0.06 mmol/L, 95 % confidence interval (CI), 0.01e0.10; P ¼ 0.018]. In the third
tertile of carbohydrate intake (>452 g/day), participants with a high GRS had a lower concentration of
HDL-C than those with a low GRS (Beta ¼ �0.04 mmol/L, 95 % CI e0.01 to �0.09; P ¼ 0.027). A significant
interaction was also observed between the GRS and glycaemic load (GL) on the concentration of HDL-C

Abbreviations: SONGS, Study of Obesity, Nutrition, Genes and Social factors; YLS, Young Lives Study; CVDs, cardiovascular diseases; SNPs, single nucleotide poly-
morphisms; GRS, genetic risk score; HDL-C, high-density lipoprotein cholesterol; HDL, high-density lipoprotein; LDL-C, low-density lipoprotein cholesterol; TAG, tri-
acylglycerol; TC, total cholesterol; BP, blood pressure; SBP, systolic blood pressure; DBP, diastolic blood pressure; HbA1c, glycated haemoglobin; BMI, body mass index; WC,
waist circumference; GI, glycaemic index; GL, glycaemic load; CI, confidence interval; LACP, Latin American and Caribbean populations; HR, hazard ratio; GWA, genome-wide
association; WHO, World Health Organization; FFQ, food frequency questionnaire; HWE, Hardy-Weinberg Equilibrium; SPSS, Statistical Package for the Social Sciences; SD,
standard deviation; SE, standard error; TEI, total energy intake; GOLDN, Genetics of Lipid Lowering Drugs and Diet Network.
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(Pinteraction ¼ 0.002). For participants with a high GRS, there were lower concentrations of HDL-C across
tertiles of GL (Ptrend ¼ 0.017). There was no significant interaction between the GRS and glycaemic index
on the concentration of HDL-C, and none of the other GRS*macronutrient interactions were significant.
Conclusions: Our results suggest that young adults who consume a higher carbohydrate diet and have a
higher GRS have a lower HDL-C concentration, which in turn is linked to cardiovascular diseases, and
indicate that personalised nutrition strategies targeting a reduction in carbohydrate intake might be
beneficial for these individuals.
© 2025 The Author(s). Published by Elsevier Ltd on behalf of European Society for Clinical Nutrition and
Metabolism. This is an open access article under the CC BY license (http://creativecommons.org/licenses/

by/4.0/).

1. Introduction

Cardiometabolic diseases including cardiovascular diseases
(CVDs) remain a threat to global public health, and in 2019, around
32 % of worldwide mortality was attributable to CVDs [1]. These
diseases place a significant burden on low- and middle-income
countries, where more than three-quarters of CVD deaths occur
[1,2]. Obesity, a key risk factor for cardiometabolic diseases has
been increasing in Latin America, affecting over 26 % of women and
21 % of men in Peru [3]. According to a study which examined
mortality and disability in Peru, using data from the Global Burden
of Disease, Injuries and Risk Factors (2019) study [4], high body
mass index (BMI) was among the key risk factors linked to
disability-adjusted life years. Similarly, a high prevalence of dysli-
pidaemia, in particular, low concentration of high-density lipo-
protein cholesterol (HDL-C) (48 %) has been reported in Latin
American and Caribbean populations (LACP) [5]. Moreover, Peru
experienced a substantial increase in fatalities related to CVDs
(77.8 %) between 2020 and 2022 [6].

Obesity is associated with increased risk of CVDs [7e12] which
is partly driven by atherogenic dyslipidaemia [9,13]. Although the
underlying mechanisms are complex, adipose tissue dysfunction
results in several metabolic and cardiovascular disturbances
including impaired lipid metabolism [13e15]. Obesity has been
linked to alterations in the concentration and distribution of high-
density lipoprotein (HDL) particles, and low levels or dysfunctional
HDL contributes to the development of CVDs [9,16,17]. A meta-
analysis of 97 prospective cohort studies with a total of 1$8
million participants [7] indicated that, in contrast to normal weight,
overweight or obesity was linked to a higher risk of coronary heart
disease and stroke, with obesity demonstrating a more substantial
impact than overweight [hazard ratio (HR) and 95 % confidence
interval (CI) for obesity vs normal weight: 1.69 (1.58e1.81) for
coronary heart disease; 1.47 (1.36e1.59) for stroke] [7]. Numerous
studies have indicated that obesity and other risk factors for car-
diometabolic diseases result from multiple factors including ge-
netic and environmental factors [18e25], and in Peru the rise in
cardiometabolic risk factors has coincided with a shift in lifestyle
pattern in which there is increased consumption of high-caloric
foods, animal-based products and sugar-sweetened beverages
[26e28] as well as a decline in physical activity [29,30].

Genome-wide association (GWA) studies have identified many
genetic variants associated with cardiometabolic traits such as
overweight/obesity, dyslipidaemia, high blood pressure and high
fasting glucose levels, however, these variants explain a small frac-
tion of variation in BMI [31e33] and blood lipid levels [34e36].
Moreover, the genetic susceptibility to cardiometabolic traits has
been shown to be impacted by lifestyle factors such as dietary intake
and physical activity level [18,19,23,37e40]. To our knowledge, no
studies have examined geneelifestyle interactions on car-
diometabolic traits in the Peruvian population. Hence, we aimed to
assess the interaction between a genetic risk score (GRS) anddietary

macronutrient intakeon cardiometabolic traits in anurbanPeruvian
young adult population. The GRS approach has been shown to be
more effective inpredicting the genetic risk of complex traits, where
the effect size of single variants is often modest [19,38,40,41].

2. Methods

2.1. Study participants

This study was conducted as part of the Study of Obesity,
Nutrition, Genes and Social factors (SONGS) project, a sub-study
nested in the Young Lives Study (YLS) in Peru. The YLS is a multi-
centre longitudinal survey established in 2002 that follows two
birth cohorts (a younger cohort born in 2001e2002, and an older
cohort, born in 1994e1995) of children in Peru, India (Andhra
Pradesh and Telangana), Ethiopia and Vietnam. In Peru, the original
sample corresponds to 2053 children aged 6e18 months in 2002.
The YLS sample was selected in two stages. First, 20 clusters were
randomly selected from the universe of districts in the country,
excluding the wealthiest 5 %. Second, approximately 100 house-
holds were chosen at random in each cluster [42]. The sample
covers the diversity of living standard conditions observed in the
country [42]. Each cohort of participants was visited personally in
2002, 2006, 2009, 2013, and 2016. In 2020 and 2021, due to COVID-
19 restrictions, the YLS was administered by phone survey and
using an online virtual survey (2021) for collecting specific dietary
data in Peru [43].

Participants for this sub-study come from 12 of the original 20
clusters and include 833 urban participants that responded to the
phone survey call in 2020. The clusters were purposively chosen to
capture the diversity of the country, thus districts located in the
Coast, Highland and Jungle regionswere selected. Participants were
visited by the fieldworkers between July and October 2022 to
obtain the specific data for this sub-study. From an initial sample of
833 participants, 735 participants had dietary intake data and after
excluding those with missing data for genotyping (YLS participants
that refused to provide a blood sample), 620 participants remained.
Out of the 620 participants, 468 met the inclusion criteria and were
included in the current analysis (Supplementary Figure S1). The
inclusion criterion was urban young Peruvian with no diagnosis of
chronic diseases. Participants were excluded if they had any chronic
condition such as diabetes, thyroid disorder, or polycystic ovary
syndrome (n ¼ 148). Participants who were pregnant (n ¼ 1) or
breastfeeding (n ¼ 3) were also excluded.

2.2. Anthropometric, blood pressure and biochemical
measurements

Anthropometric measurements were taken by trained field-
workers. The anthropometric variables included height, weight and
waist circumference (WC) in centimetres (cm). BMI was calculated
using weight (kg) divided by height in meters (m) squared. Weight
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was measured using a digital platform balance (SECA 813) with
100-g precision and 200-kg capacity, while height was measured
using a portable stadiometer (SECA 213) with a 1-mm precision.
Finally, WC was measured using a “ergonomic circumference
measuring/retractable stainless steel” tape with a 1-mm precision.
The reference measurements were obtained following the stand-
ardised protocol by the World Health Organization (WHO) [44,45].

Blood pressure (BP) in mmHg and biochemical measurements
were taken by trained health technicians. The BP was taken from
the left hand after resting quietly in a seated position for 5 min; two
consecutive BP measurements (systolic, SBP and diastolic, DBP)
were taken 3 min apart using a digital upper-arm electronic device
(Omron HEM-7130). After two BP measurements were taken, the
mean of both SBP and DBP were calculated. Standard protocols and
validation of devices have been previously reported [46]. Fasting
serum lipids [total cholesterol (TC), triacylglycerol (TAG) and HDL-
C], glucose and glycated haemoglobin (HbA1c) were quantified by
using the RX Daytona Plus clinical chemistry analyser (Randox
Laboratories Limited, Crumlin, UK) using kits supplied by Randox.
Fasting serum low-density lipoprotein cholesterol (LDL-C) con-
centration was estimated using the Friedewald equation [47] and
non-HDL-C was calculated by subtracting HDL-C from TC. Human
insulin was measured using ELISA kits from Protein Simple (Bio-
Techne) and the Ella automated Simple Plex instrument (Protein
Simple, Bio-Techne). Briefly, plasma samples were centrifuged at
4 �C for 10 min (16,000�g) and the supernatant (50 mL) used for
analysis, following the manufacturer's instructions (samples were
diluted 1:2 prior to analysis).

2.3. Dietary assessment

Dietary intake information was assessed using an online 47-item
semi-quantitative food frequency questionnaire (FFQ) previously
validated in the YLS [48]. The internal consistency of the instruments
demonstrated good performance,with a Cronbach's alpha of 0.82 for
all food groups. For each food item, participants were asked to recall
the frequency and number of portions consumed during the last
month, aswell as the numberof portions consumed at each occasion,
where portion sizes of knownweight (g) were selected from a series
of photographs. Field researchers input thedatawithusual frequency
estimated within food categories, ranging from never or rarely to
more than 5 times daily, which was later converted to number of
timesperday. To estimate thequantityconsumedperday (g/day), the
portion size (g) selected was multiplied by frequency per day. To
estimate the macronutrient (energy, carbohydrate, protein, fat) and
fibre intake, food composition data from the Instituto de Inves-
tigaci�onNutricional database of the CentroNacional deAlimentaci�on
yNutrici�on (Peru), anda Latin-American foodcomposition table from
the INCAP (Venezuela), was used.

The dietary glycaemic index (GI) for each participant was ob-
tained by multiplying the published GI value of each food item by
the amount consumed and the grams of available carbohydrate,
then adding up the values and dividing by the total daily carbo-
hydrate intake [49,50]. The glycaemic load (GL) was calculated by
multiplying the published GI value of the food item by the amount
consumed and the grams of available carbohydrate, then dividing
by 100. The values were then added up to obtain the dietary GL
[50,51].

2.4. SNP selection and genotyping

We selected a total of 39 SNPs which have shown an association
with cardiometabolic traits at a genome-wide significance level
(P < 5 � 10�8) (Supplementary Table S1): alpha-ketoglutarate-
dependent dioxygenase (FTO) SNP rs1558902 [31,52e55];

transmembrane protein 18 (TMEM18) SNP rs13021737 [31,56e60];
melanocortin 4 receptor (MC4R) SNP rs6567160 [31,59,61e63];
glucosamine-6-phosphate deaminase 2 (GNPDA2) SNP rs10938397
[31,61,64,65]; SEC16 homolog B, endoplasmic reticulum export
factor (SEC16B) SNP rs543874 [31,59,60,65,66]; BCDIN3 domain
containing RNA methyltransferase (BCDIN3D) SNP rs7138803
[31,59,60,64,65]; transcription factor AP-2 beta (TFAP2B) SNP
rs2207139 [31,58,60,64]; neuronal growth regulator 1 (NEGR1) SNP
rs3101336 [31,56e59]; adenylate cyclase 3 (ADCY3) SNP rs10182181
[31,56,57,67]; ETS variant transcription factor 5 (ETV5) SNP
rs1516725 [31,36,56,64]; glutaminyl-peptide cyclotransferase like
(QPCTL) SNP rs2287019 [31,59,65,68]; G protein-coupled receptor
class C group 5 member B (GPRC5B) SNP rs12446632 [31,59,64,67];
mitochondrial carrier 2 (MTCH2) SNP rs3817334 [56,57,66,67];
centriolar protein (POC5) SNP rs2112347 [31,59,61,65]; mitogen-
activated protein kinase 5 (MAP2K) SNP rs16951275 [31,58,69];
zinc finger CCCH-type containing 4 (ZC3H4) SNP rs3810291
[31,61,62,65]; FPGT-TNNI3K read through (FPGT-TNNI3K) SNP
rs12566985 [31,58,70]; leucine-rich repeat and immunoglobulin-
like domain-containing nogo receptor-interacting protein 2
(LINGO2) SNP rs10968576 [31,60,66,71]; cell adhesion molecule 1
(CADM1) SNP rs12286929 [31,57,59]; protein kinase D1 (PRKD1)
SNP rs12885454 [31,65,66]; AGBL carboxypeptidase 4 (AGBL4) SNP
rs657452 [31,57,60]; polypyrimidine tract binding protein 2 (PTBP2)
SNP rs11165643 [31,56,60,61]; NLR family CARD domain containing
3 (NLRC3) SNP rs758747 [31,57]; syntaxin binding protein 6
(STXBP6) SNP rs10132280 [31,59,65]; Huntingtin interacting pro-
tein 1 (HIP1) SNP rs1167827 [31,66]; cell adhesion molecule 2
(CADM2) SNP rs13078960 [31]; far upstream element binding
protein 1 (FUBP1) SNP rs12401738 [31,67]; olfactomedin 4 (OLFM4)
SNP rs12429545 [56,58,65]; RAS p21 protein activator 2 (RASA2)
SNP rs16851483 [31,58]; hypoxia inducible factor 1 subunit alpha
inhibitor (HIF1AN) SNP rs17094222 [31,66]; hepatocyte nuclear
factor 4 gamma (HNF4G) SNP rs17405819 [57,59,72]; toll like re-
ceptor 4 (TLR4) SNP rs1928295 [31,60]; neurexin 3 (NRXN3) SNP
rs7141420 [31,64]; inflammation and lipid regulator with UBA-like
and NBR1-like domains (ILRUN or C6orf106) SNP rs205262 [31];
fragile histidine triad diadenosine triphosphatase (FHIT) SNP
rs2365389 [31,66]; neuron navigator 1 (NAV1) SNP rs2820292 [31];
tripartite motif containing 66 (TRIM66) SNP rs4256980 [31,59]; erb-
b2 receptor tyrosine kinase 4 (ERBB4) SNP rs7599312 [31,53]; and
lysine acetyltransferase 8 (KAT8) SNP rs9925964 [31,57].

Blood samples for genotyping (3 ml) were collected in BD
Vacutainer® ethylenediamine tetraacetic acid (EDTA) tubes and
transported by the World Courier Company to London, UK. The
samples were collected in the fasting state through venepuncture
and stored at a controlled temperature of �80 �C during trans-
portation. Genotyping was completed by LGC Genomics, London,
UK (http://www.lgcgroup.com/services/genotyping), using the
competitive allele-specific PCR-KASP® assay.

2.5. Construction of genetic risk score (GRS)

An unweighted GRS was constructed by adding the number of
risk alleles across all the 39 SNPs for each participant. For each SNP,
a score of 0, 1 or 2 was assigned to reflect the number of risk alleles
the participant carried for that SNP [0 for no risk alleles (homozy-
gous for the non-risk allele); 1 for one risk allele (heterozygote);
and 2 for two risk alleles (homozygous for the risk allele)]. The
scores for the 39 SNPs were then combined to calculate the GRS.
Thus, the GRS for each participant represented the total number of
risk alleles the participant carried from the 39 SNPs. The risk alleles
were not weighted because of insufficient information on effect
sizes of the SNPs for the Peruvian population. It has been high-
lighted that, data on effect sizes from a GWA study conducted in
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one population may not be applicable to another population
because of variations in effect sizes [23,73]. Moreover, assigning
weights to risk alleles has been reported to have little effect [41].
The risk alleles were defined as alleles which have shown an as-
sociation with altered blood lipid levels or obesity-related traits.
The risk alleles of the SNPs are shown in Supplementary Table S1.
The GRS had a median of 37 risk alleles and ranged from 27 to 49
risk alleles. Participants were grouped as low risk or high risk using
the median GRS as a cut-off point.

2.6. Statistical analysis

The means of continuous variables between men and women
were compared using independent sample t test. The results for
descriptive statistics are presented as means and standard devia-
tion. The distribution of the data was tested using ShapiroeWilk
test and non-normally distributed variables (all the variables
except fasting glucose) were log-transformed before the analysis.
The frequencies of the alleles were determined by gene counting
and Hardy-Weinberg Equilibrium (HWE) was calculated using the
Chi-Square test. The 39 SNPs were all in HWE (P > 0.05)
(Supplementary Table S2).

The association of the GRSwith the outcome variables (BMI,WC,
fasting glucose, fasting insulin, HbA1c, TC, HDL-C, LDL-C, TAG, SBP
and DBP) was examined using linear regression with adjustment
for sex, family history of diabetes, smoking status, physical activity
level and BMI wherever appropriate. To determine interactions
between the GRS and dietary macronutrient (fat, carbohydrate,
protein) and fibre intake (g/day) on the outcome variables, the
interaction term was added to the regression model. The analysis
was adjusted for sex, BMI, family history of diabetes, smoking
status, physical activity level and total energy intake. The statisti-
cally significant interaction (P < 0.05) was explored further by
stratifying participants according to tertiles of dietary intake and
examining the association of the GRS with the outcome variable in
each tertile. The Bonferroni adjusted P-value for interaction was
0.001 (1 GRS*11 outcome variables*4 dietary factors ¼ 44 tests;
0.05/44 ¼ 0.001). The Statistical Package for the Social Sciences
(SPSS) software (version 28; SPSS Inc., Chicago, IL, USA) was used to
perform the analyses.

3. Results

3.1. Characteristics of the study participants

The characteristics of the participants included in this study are
summarised in Table 1. The mean age of the sample was 20 ± 1
years and men had significantly higher WC (P ¼ 0.008), TAG
(P ¼ 0.03), SBP (P ¼ 1.0 � 10�24), fasting glucose (P ¼ 0.001) and
HbA1c (P ¼ 1.92 � 10�16) but lower fasting insulin (P ¼ 0.003) than
women. Men and women did not have significantly different BMI,
HDL-C, LDL-C or TC. Regarding dietary intake, men had significantly
higher intakes of energy (P ¼ 6.8 � 10�12), total fat (P ¼ 0.000002),
carbohydrate (P ¼ 5.2 � 10�14) and protein (P ¼ 1.0 � 10�9) than
women, whereas fibre intake did not vary between sexes (P¼ 0.60).

3.2. Association of the GRS with cardiometabolic traits

There were no significant associations between the GRS and any
of the outcome variables after adjusting for the confounding fac-
tors, sex, family history of diabetes, smoking status, physical ac-
tivity level, and BMI wherever appropriate (Supplementary
Table S3). No regional effects were observed when participants
were stratified according to region of residence.

3.3. Interaction of the GRS with dietary macronutrient intake on
cardiometabolic traits

A significant interaction was observed between the GRS and
carbohydrate intake on the concentration of HDL-C
(Pinteraction ¼ 0.0007, Table 2). As shown in Fig. 1, in the first ter-
tile of carbohydrate intake (�327 g/day), participants with a high
GRS (>37 risk alleles) had a higher concentration of HDL-C than
those with a low GRS (�37 risk alleles) [Beta ¼ 0.06 mmol/L, 95 %
confidence interval (CI) 0.01e0.10; P ¼ 0.02]. In the third tertile of
carbohydrate intake (>452 g/day), participants with a high GRS had
a lower concentration of HDL-C than those with a low GRS
(Beta ¼ �0.04 mmol/L, 95 % CI e0.01 to �0.09; P ¼ 0.03). When the
effect of GL and GI were tested, a significant interaction was
observed between GRS and GL on the concentration of HDL-C
(Pinteraction ¼ 0.002), however no significant differences were
observed when all the participants were stratified according to
tertiles of GL. For participants with a high GRS, there was a lower
concentration of HDL-C across tertiles of GL as shown in Fig. 2. No
significant interaction was identified between GRS and GI on the
concentration of HDL-C.

Although other significant interactions were observed as shown
in Table 2, four of the interactions (GRS*carbohydrate on TC,
GRS*fat on HDL-C, GRS*fat on glucose and GRS*protein on HDL-C)
were not significant after Bonferroni correction for multiple testing.
Two of the interactions (GRS*carbohydrate on serum fasting
glucose and GRS*protein on serum fasting glucose) passed the
Bonferroni correction, but no significant differences were found
when participants were stratified according to the quantity of
carbohydrate and protein intake. No regional effects were observed
when participants were stratified according to region of residence.
When the participants were stratified by sex, significant in-
teractions were observed in both men and women, as shown in
Table 2, but only two of the interactions (GRS*carbohydrate on the
concentration of HDL-C, and GRS*fat on the concentration of HDL-C
in men) met the Bonferroni threshold. However, no significant
differences were found when the participants were stratified ac-
cording to the quantity of carbohydrate and fat intake.

4. Discussion

Our study indicates that carbohydrate intake might modulate
genetic influences onHDL-C concentration in urban Peruvianyoung
adults. We found a significant interaction between GRS and carbo-
hydrate intake on the concentration of HDL-C where individuals
with a higher genetic risk had a lower HDL-C concentration when
their intake of carbohydrate was higher (>452 g/day). Conversely,
when the intake of carbohydrate was lower (�327 g/day), the con-
centration of HDL-C was higher. For participants with a high GRS,
there was a lower concentration of HDL-C across tertiles of GL.

4.1. Interpretation of main findings

This study builds on previous research and emphasises the po-
tential of personalised nutrition based on a GRS for the prevention
andmanagement of lipid abnormalities in thosewith a high genetic
risk. Given that low HDL-C concentrations have been identified as
the most common lipid abnormality in LACP [5], and is related to a
higher risk of CVDs [74e76], our findings have considerable public
health implications. According to the dietary guidelines for Ameri-
cans (2020e2025) [77], carbohydrates should make up 45e65 % of
total daily calories. The WHO [78] also recommends that carbohy-
drates should predominantly be sourced from whole grains, vege-
tables, fruits and legumes. The mean carbohydrate intake as a
percentage of total energy intake (TEI) in the current studywas 51 %,
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which is within the recommended intake for Americans [77]. The
mean carbohydrate intake in the first tertile was 42 % of TEI while
themean intake for the third tertilewas 60% of TEI. ThemeanHDL-C
concentration on the other hand was 1.10 mmol/L for both men and
women which is within the recommended level for men [�40 mg/
dL (1.03 mmol/L)], but lower than the recommended level for
women [�50 mg/dL (1.30 mmol/L)] [79]. A 1 mg/dL (0.03 mmol/L)
increase in the concentration of HDL-C has been associated with a
2e3% lower risk of coronary heart disease [80]. However, it has been
recognised that, the concentration of HDL-C does not necessarily
correlate with the function of HDL [81,82].

In line with our findings, a cross-sectional study of 8314 Korean
adults from the Ansan and Ansung cohort of the Korean Genome
and Epidemiology Study [83] observed that, among individuals
with a high GRS (third tertile of a weighted GRS using 18 SNPs),
those with a high low-carbohydrate diet score, indicating a low
carbohydrate content (64.6 % of TEI), had significantly lower risk of
low HDL-C (odds ratio, 0.759; 95 % CI, 0.625e0.923; P < 0.05) than
those with a low score [high carbohydrate content (78.8 % of TEI)].
However, it should be noted that the low carbohydrate diet score
represented a low content of carbohydrate and a high content of
protein and fat, which could have a positive effect on HDL-C
depending on the type of fat [83]. Moreover, the carbohydrate
intake (% of TEI) in the current study was lower than the Korean
study [83]. The mean carbohydrate intake in the first tertile was
42 % of TEI while the mean intake for the third tertile was 60 % of
TEI, suggesting that Peruvians might benefit from an intake of less
than 60 % of TEI. Similarly, a study consisting of 920 participants
from the Genetics of Lipid Lowering Drugs and Diet Network
(GOLDN) Study in the US [84] observed a significant interaction
between genetic variants and carbohydrate intake on HDL-C con-
centration (Pinteraction<0.001e0.038), in which individuals with the
‘GG’ genotype of potassium channel tetramerization domain con-
taining 10 (KCTD10) SNP i5642G/C and metabolism of cobalamin
associated B (MMAB) SNP 3U3527G/C; as well as those with the
‘CC or TC’ genotype of KCTD10 SNP V206VT/C had lower HDL-C
concentration only when they consumed diets higher in carbohy-
drates (�231 g/day) (P < 0.001e0.011). In comparison to our study,

the carbohydrate intake in this study [84] was lower (median
intake of 231 g/day compared to 387 g/day in the current study).
Our finding of an inverse association between GL and HDL-C con-
centration has also been reported in previous studies [85,86]. The
first study [85] consisted of 1026 adults from the Insulin Resistance
Atherosclerosis Study [85] where GL was found to be inversely
associated with the concentration of HDL-C (Beta ¼ �0.0009,
P < 0.001). Accordingly, the second study [86] which involved 5011
participants from the third National Health and Nutrition Exami-
nation Survey found a negative association between GL and the
concentration of HDL-C (P < 0.01). Collectively, these findings
demonstrate that carbohydrate intake might modulate genetic in-
fluences on HDL-C concentration in different ethnic groups.

The mechanisms linking carbohydrate intake to HDL-C con-
centrations are unclear. However, it has been suggested that a
lower carbohydrate diet might lead to an increase in HDL-C con-
centration possibly through an improvement in insulin resistance
[87]. A high carbohydrate diet, consisting mainly of refined carbo-
hydrates, was also reported to increase serum TAG concentrations
by stimulating de novo lipogenesis (fatty acid production) in the
liver and suppressing the activity of lipoprotein lipase through
increased production of apolipoprotein CIII, especially when insulin
resistance was present [88,89]. Furthermore, there is a recognised
reciprocal relationship between serum TAG and HDL-C concentra-
tions due to the exchange of neutral lipids (TAG with cholesterol
esters) between TAG-rich lipoproteins and LDL and HDL, resulting
in elevated atherogenic small dense LDL and reduced HDL [90,91].
Different types of carbohydrates however, can have varying effects
on HDL-C concentration [92] and it has been suggested that GL
serves as a measure of both the quality and quantity of dietary
carbohydrates [86]. Foods with a high GL tend to induce more
pronounced glycaemic and insulinemic reactions compared to
those with a low GL [93]. Hence, public health strategies targeting
the consumption of whole grains and fruits and vegetables might
be beneficial for the Peruvian population.

Regarding the genetic risk of low HDL-C concentration in LACP
and future prospects, a systematic review conducted by our team
[21] indicated that, the concentration of HDL-Cmight be influenced

Table 1
Characteristics of study participants by sex.

All (n ¼ 468) Women (n ¼ 210) Men (n ¼ 258) P Value

Mean SD Mean SD Mean SD

Age (years) 20.4 0.5 20.4 0.5 20.5 0.5 0.88
BMI (kg/m2) 24.3 4.1 24.4 4.2 24.2 4.2 0.60
WC (cm) 81.2 10.2 79.9 9.5 82.2 10.6 0.008
TAG (mmol/L) 1.1 0.7 1.0 0.6 1.1 0.7 0.03
HDL-C (mmol/L) 1.1 0.3 1.1 0.4 1.1 0.3 0.92
LDL-C (mmol/L) 2.0 0.6 1.9 0.6 2.0 0.6 0.22
TC (mmol/L) 3.6 0.9 3.5 1.0 3.6 0.9 0.10
SBP (mmHg) 103.5 11.0 98.5 9.1 107.5 10.7 1.0 � 10¡24

DBP (mmHg) 66.5 7.5 65.9 7.0 67.0 7.8 0.07
Fasting glucose (mmol/L) 4.4 0.8 4.3 0.8 4.5 0.7 0.001
Fasting insulin (pmol/L) 63.0 47.8 69.7 52.3 57.5 43.0 0.003
HbA1c (%) 5.4 0.3 5.3 0.3 5.5 0.3 1.92 � 10¡16

Energy (kcal/day) 3304.0 1427.7 2870.8 1116.6 3660.4 1553.4 6.8 � 10¡12

Kcal/kg of body weight 53.4 24.8 55.3 23.9 55.1 25.5 0.09
Total fat [(g/day)/% energy] 109.2 (29) 57.8 (6) 97.0 (30) 48.2 (6) 119.2 (28) 62.9 (7) 0.000002
Carbohydrate [(g/day)/% energy] 417.9 (51) 180.8 (8) 357.9 (50) 139.8 (8) 467.1 (52) 195.3 (8) 5.2 � 10¡14

Protein [(g/day)/% energy] 172.8 (21) 80.5 (4) 151.0 (21) 62.6 (3) 190.7 (21) 88.8 (4) 1.0 � 10¡9

Protein/kg of body weight 2.8 1.4 2.7 1.4 2.9 1.5 0.14
Fiber (g/day) 11.1 7.3 10.9 7.4 11.3 7.3 0.60
Dietary GI 57.2 4.0 56.6 4.0 58.0 3.8 0.00003
Dietary GL 152.9 83.5 139.8 59.4 186.3 81.9 2.6 � 10¡14

Data is presented as mean ± standard deviation. BMI, body mass index; WC, waist circumference; TAG, triacylglycerol; HDL-C, high-density lipoprotein cholesterol; LDL-C,
low-density lipoprotein cholesterol; TC, total cholesterol; SBP, systolic blood pressure; DBP, diastolic blood pressure; HbA1c, glycated haemoglobin; GI, glycaemic index;
GL, glycaemic load.
P values for the differences in means between men and women were calculated using independent sample t test.
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by interactions between genetic variants and different dietary
factors, but most of the studies had not been replicated. In Brazil-
ians, a high polyunsaturated fatty acid intake (> twice a week) was
linked to higher HDL-C concentrations in individuals without the
‘E4’ allele of apolipoprotein E (APOE), and lower concentrations in
those with the ‘E4’ allele [94], while in Costa Ricans, a high satu-
rated fatty acid intake (13.5 % energy) was associated with lower
HDL-C concentrations in carriers of the ‘E2’ allele of APOE [95]. To
promote comparison across studies and facilitate the imple-
mentation of personalised dietary guidelines, future studies should
focus on replicating previously identified geneediet interactions.
Once findings have been replicated, the evidence can further be
strengthened by conducting genotype-based dietary intervention
studies.

4.2. Strengths and limitations

One of the strengths of our study is the use of a GRS which re-
flects an individual's overall genetic predisposition to car-
diometabolic traits by combining several genetic variants.
Moreover, our study is the first geneediet interaction study in Peru,
capturing different regions of Peru (Coast, Highland and the Jungle),
and the first to be conducted in adolescents, an unstudied non-
Caucasian group which has an increasing prevalence of CVDs

[96e98] and lipid abnormalities which significantly increase the
risk of developing atherosclerotic CVDs later in life [99e103].
Another strength is the employment of validated methods and
skilled professionals to evaluate dietary consumption, anthropo-
metric and biochemical measurements, thereby enhancing the
precision of the assessments. However, several limitations need to
be acknowledged, including a small sample size which could have
affected our ability to detect interactions with small effect sizes
[104,105]. The cross-sectional design also prevents establishment of
causality [23]. Moreover, we did not investigate types of carbohy-
drates which can have varying effects on cardiometabolic traits
[106,107]. Additionally, using recalled FFQ rather thanweighed diet
diaries or biomarkers of intake can lead to underestimation of di-
etary intake [108,109].

4.3. Conclusions

In conclusion, our study suggests that carbohydrate intake
might modulate genetic influences on HDL-C concentration in ur-
ban Peruvian young adults. The results suggest that young adults
who consume a higher carbohydrate diet and have a higher GRS
have a lower HDL-C concentration, which in turn is linked to CVDs.
Our findings support the dietary guidelines of the WHO and indi-
cate that personalised dietary guidelines targeting a reduction in

Table 2
Interaction of GRS with dietary macronutrient intake on cardiometabolic traits.

Trait All: GRS � 37 risk alleles (n ¼ 228); GRS > 37 risk alleles (n ¼ 240)
Women: GRS � 37 risk alleles (n ¼ 107); GRS > 37 risk alleles (n ¼ 104)
Men: GRS � 37 risk alleles (n ¼ 138); GRS > 37 risk alleles (n ¼ 119)

Beta Coefficient ± SE (Pinteraction)

GRS * Carbohydrate (g/day) GRS * Fat (g/day) GRS * Protein (g/day) GRS * Fiber (g/day)

HDL-C (mmol/L) All 0.24 ± 0.07 (0.0007) 0.14 ± 0.06 (0.009) 0.17 ± 0.06 (0.006) 0.03 ± 0.05 (0.51)
Women �0.08 ± 0.11 (0.50) 0.02 ± 0.09 (0.82) �0.05 ± 0.11 (0.63) �0.13 ± 0.08 (0.12)
Men �0.38 ± 0.09 (0.00007) �0.23 ± 0.07 (0.0008) 0.24 ± 0.08 (0.002) �0.04 ± 0.06 (0.54)

LDL-C (mmol/L) All 0.07 ± 0.08 (0.40) 0.04 ± 0.06 (0.55) 0.06 ± 0.07 (0.39) �0.03 ± 0.05 (0.63)
Women �0.08 ± 0.12 (0.50) �0.06 ± 0.10 (0.51) �0.12 ± 0.11 (0.31) 0.00 ± 0.08 (0.98)
Men �0.07 ± 0.11 (0.52) �0.02 ± 0.08 (0.78) �0.05 ± 0.09 (0.61) 0.004 ± 0.07 (0.95)

TAG (mmol/L) All 0.04 ± 0.11 (0.73) �0.02 ± 0.09 (0.78) �0.01 ± 0.10 (0.93) �0.02 ± 0.08 (0.83)
Women �0.24 ± 0.17 (0.16) �0.11 ± 0.14 (0.44) �0.17 ± 0.17 (0.31) �0.03 ± 0.13 (0.81)
Men 0.03 ± 0.16 (0.86) 0.07 ± 0.12 (0.57) 0.05 ± 0.13 (0.72) �0.01 ± 0.10 (0.90)

TC (mmol/L) All 0.12 ± 0.06 (0.04) 0.06 ± 0.05 (0.18) 0.09 ± 0.05 (0.10) �0.002 ± 0.04 (0.97)
Women �0.12 ± 0.10 (0.25) �0.05 ± 0.83 (0.52) �0.11 ± 0.10 (0.25) �0.52 ± 0.07 (0.48)
Men �0.16 ± 0.08 (0.05) �0.07 ± 0.06 (0.21) �0.10 ± 0.07 (0.14) 0.02 ± 0.05 (0.72)

SBP (mmHg) All 0.12 ± 0.02 (0.55) 0.004 ± 0.02 (0.78) 0.01 ± 0.02 (0.51) 0.001 ± 0.01 (0.94)
Women 0.03 ± 0.03 (0.38) 0.00 ± 0.02 (0.90) 0.02 ± 0.03 (0.58) 0.00 ± 0.02 (0.99)
Men �0.03 ± 0.03 (0.25) �0.002 ± 0.02 (0.93) �0.02 ± 0.02 (0.44) �0.01 ± 0.02 (0.49)

DBP (mmHg) All 0.001 ± 0.03 (0.97) 0.003 ± 0.02 (0.86) 0.004 ± 0.02 (0.86) 0.02 ± 0.02 (0.24)
Women 0.02 ± 0.04 (0.57) 0.02 ± 0.03 (0.53) 0.04 ± 0.04 (0.26) �0.03 ± 0.03 (0.27)
Men �0.02 ± 0.04 (0.55) �0.02 ± 0.03 (0.56) �0.03 ± 0.03 (0.36) �0.03 ± 0.02 (0.31)

Fasting glucose (mmol/L) All 1.38 ± 0.39 (0.0005) 0.93 ± 0.31 (0.003) 1.19 ± 0.35 (0.0008) 0.41 ± 0.28 (0.15)
Women �1.01 ± 0.66 (0.13) �0.58 ± 0.55 (0.29) �1.16 ± 0.63 (0.07) �0.99 ± 0.48 (0.04)
Men �1.51 ± 0.53 (0.005) �0.98 ± 0.38 (0.01) �1.07 ± 0.43 (0.02) �0.20 ± 0.34 (0.57)

Fasting insulin (pmol/L) All 0.03 ± 0.11 (0.81) �0.09 ± 0.09 (0.35) �0.07 ± 0.10 (0.48) �0.01 ± 0.08 (0.94)
Women �0.001 ± 0.18 (0.99) 0.09 ± 0.15 (0.55) 0.13 ± 0.17 (0.45) 0.03 ± 0.13 (0.85)
Men �0.003 ± 0.16 (0.99) 0.13 ± 0.11 (0.26) 0.09 ± 0.13 (0.51) �0.01 ± 0.10 (0.92)

HbA1c (%) All 0.02 ± 0.01 (0.07) 0.01 ± 0.01 (0.52) 0.02 ± 0.01 (0.14) 0.02 ± 0.01 (0.03)
Women �0.01 ± 0.02 (0.61) �0.00 ± 0.01 (0.73) �0.00 ± 0.01 (0.92) 0.00 ± 0.01 (0.95)
Men �0.05 ± 0.02 (0.02) �0.01 ± 0.02 (0.69) �0.04 ± 0.02 (0.04) �0.05 ± 0.02 (0.002)

BMI (kg/m2) All 0.05 ± 0.04 (0.17) 0.02 ± 0.03 (0.47) 0.05 ± 0.03 (0.11) 0.05 ± 0.03 (0.06)
Women �0.09 ± 0.06 (0.12) �0.07 ± 0.05 (0.14) �0.13 ± 0.05 (0.02) �0.09 ± 0.04 (0.03)
Men �0.04 ± 0.05 (0.46) 0.00 ± 0.04 (0.96) �0.02 ± 0.05 (0.65) �0.02 ± 0.04 (0.59)

WCa (cm) All 0.04 ± 0.03 (0.16) 0.02 ± 0.02 (0.47) 0.04 ± 0.03 (0.09) 0.04 ± 0.02 (0.07)
Women �0.05 ± 0.23 (0.84) �0.02 ± 0.19 (0.91) �0.19 ± 0.21 (0.39) 0.01 ± 0.16 (0.95)
Men �0.03 ± 0.04 (0.52) 0.00 ± 0.03 (0.92) �0.02 ± 0.03 (0.62) �0.02 ± 0.03 (0.42)

P values were obtained from linear regression analysis with adjustment for sex, family history of diabetes, smoking status, physical activity level, total energy intake and BMI
wherever appropriate. Log-transformed variables were used for the analysis and values in bold represent significant interactions. GRS, genetic risk score; TAG, triacylglycerol;
HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TC, total cholesterol; SBP, systolic blood pressure; DBP, diastolic blood pressure;
HbA1c, glycated haemoglobin; BMI, body mass index; WC, waist circumference.

a 457 participants had data for waist circumference.
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carbohydrate intake might be beneficial for Peruvian individuals
with a high genetic risk. However, randomised controlled trials and
longitudinal studies with large sample sizes are required to confirm
our findings.
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Abstract
Background: Cardiometabolic diseases pose a significant
threat to global public health, with a substantial majority of
cardiovascular disease mortality (more than three-quarters)
occurring in low- and middle-income countries. There have
been remarkable advances in recent years in identifying genetic
variants that alter disease susceptibility by interacting with
dietary factors. Despite the remarkable progress, several factors
need to be considered before the translation of nutrigenetics
insights to personalised and precision nutrition in ethnically
diverse populations. Some of these factors include variations in
genetic predispositions, cultural and lifestyle factors as well as
socio-economic factors. Summary: This review aimed to ex-
plore the factors that need to be considered in bridging the gap
between existing nutrigenetics insights and the im-
plementation of personalised and precision nutrition across
diverse ethnicities. Several factors might influence variations
among individuals with regard to dietary exposures and
metabolic responses, and these include genetic diversity, cul-
tural and lifestyle factors as well as socio-economic factors. A

multi-omics approach involving disciplines such as metab-
olomics, epigenetics, and the gut microbiomemight contribute
to improved understanding of the underlying mechanisms of
gene-diet interactions and the implementation of precision
nutrition although more research is needed to confirm the
practicality and effectiveness of this approach. Conducting
gene-diet interaction studies in diverse populations is essential
and studies utilising large sample sizes are required as this
improves the power to detect interactions with minimal effect
sizes. Future studies should focus on replicating initial findings
to enhance reliability and promote comparison across studies.
Once findings have been replicated in independent samples,
dietary intervention studies will be required to further
strengthen the evidence and facilitate their application in
clinical practice. Key Messages: Nutrigenetics has a potential
role to play in the prevention and management of car-
diometabolic diseases. Conducting gene-diet interaction
studies in diverse populations is essential giving the genetic
diversity and variations in dietary patterns. Integrating data
fromdisciplines such asmetabolomics, epigenetics, and the gut
microbiome could help in early identification of individuals at
risk of cardiometabolic diseases as well as the implementation
of precise dietary interventions for preventing and managing
cardiometabolic diseases. © 2024 The Author(s).
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Introduction

Cardiometabolic diseases pose a significant threat to
global public health, with a substantial majority of car-
diovascular disease (CVD) mortality (more than three-
quarters) occurring in low- and middle-income countries
(LMICs) [1]. According to the Centres for Disease
Control and Prevention [2], individuals in LMICs are
often affected by cardiometabolic diseases during the
peak of their productivity, which coupled with huge
healthcare expenses and limited employment opportu-
nities worsens the financial burden of cardiometabolic
diseases in these countries. Thus, cardiometabolic dis-
eases present severe health and economic consequences
for individuals, families, and communities [1], necessi-
tating further research into the prevention and man-
agement of these conditions. Risk factors such as dysli-
pidaemia, hypertension, and obesity have been shown to
be influenced by genetic factors [3–7]. However, unlike
monogenic disorders like sickle cell anaemia which are
usually caused by mutations in a single gene [8], most
cardiometabolic diseases, such as CVDs, are influenced
by numerous genes and are also impacted by environ-
mental factors [9–13].

There have been remarkable advances in recent years
in identifying genetic variants that alter disease suscep-
tibility by interacting with dietary factors [9, 11, 14–17].
Thus, a genetic variant might not always pose a higher
risk of a disease as its effects might be modulated by the
environmental factors that interact with it [18]. Defined
as the scientific field that investigates the impact of ge-
netic variability on individual responses to diet [19],
nutrigenetics focuses on understanding gene-diet inter-
actions that predispose to specific diseases, offering the
potential to design personalised dietary guidelines for
preventing and managing cardiometabolic diseases
[20, 21].

Gene-diet interaction studies have been extended to
cover previously under-represented populations [22–27],
although there is still limited research in some areas [28,
29] and most studies have not been replicated [28, 30].
Despite the remarkable progress in nutrigenetics re-
search, several factors need to be considered before the
translation of existing nutrigenetics insights to person-
alised and precision nutrition in ethnically diverse
populations [31, 32]. Ethnic diversity covers a broad
range of factors including variations in genetic predis-
positions, cultural and lifestyle factors which can hinder
the worldwide application of nutrigenetics findings [33].
Therefore, this review aimed to explore the potential
barriers and challenges in bridging the gap between

existing nutrigenetics insights and the implementation of
personalised and precision nutrition across diverse
ethnicities.

Genetic Diversity

One of the main challenges (shown in Fig. 1) in
translating existing nutrigenetics insights to personalised
and precision nutrition in various ethnic groups is the
genetic diversity that exists among populations. Nu-
merous studies have shown that individuals of different
ethnic backgrounds have distinct genetic variations that
impact how their bodies metabolise certain nutrients [10,
19, 34–36]. Therefore, research covering populations that
represent different ethnicities is required to gain a better
understanding of the genetic variations and specific
nutritional requirements within these groups. Research
by the gene-nutrient interaction (GeNuIne) collaboration
identified that the genetic influence on obesity in different
Asian populations was influenced by different dietary
factors [19, 34, 37–42]. Using a genetic risk score (GRS), it
was observed that South Asians with a higher GRS had a
greater susceptibility to obesity when consuming a high-
carbohydrate diet, whereas South East andWestern Asian
populations with a higher GRS displayed an increased
risk of central obesity in response to a high-protein diet
[19]. Similarly, research by the Diabetes Heart Study
[43–45] indicates that African Americans have elevated
levels of circulating arachidonic acid (AA) in comparison
with individuals of European ancestry. Notable differ-
ences were also observed in allele frequencies of various
SNPs within the fatty acid desaturase (FADS) gene cluster
which have been shown to play a significant role in
determining circulating levels of fatty acids. In particular,
the “GG” genotype of the SNP rs174537, which is linked
to elevated AA levels, was present in 81% of African
Americans compared to 46% of European Americans
[45]. Thus, while research conducted on individuals of
European descent suggests that only a small fraction of
dietary linoleic acid is converted to AA in humans, this
minimal conversion rate may not be consistent across all
populations [43–45]. Given that AA and its metabolites
play crucial roles in immune responses and inflamma-
tion, thereby influencing the onset and advancement of
various diseases including diabetes and CVDs [46, 47],
tailored dietary recommendations regarding the intake of
PUFA might be beneficial for this population.

One of the most widely studied genes in relation to
cardiometabolic diseases is the apolipoprotein E (ApoE)
gene [48–53], and variations in the frequency of the E4
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isoform of the gene, which is associated with increased
risk of CVDs, have been reported [54, 55]. African and
Asian populations tend to have higher frequencies of the
E4 isoform (29–40% in Central Africa) compared to
Caucasians [54, 55] which could contribute to differences
in susceptibility to certain diseases among these pop-
ulations. Furthermore, within Europe there are regional
variations in the frequency of the E4 isoform, ranging
from 5 to 10% in Spain, Portugal, Italy, and Greece; up to
16% in France, Belgium, and Germany; and further rising
to up to 23% in the Scandinavian peninsula, with the
Saami population of Finland showing frequencies as high
as 31% [54, 55]. However, the link between the E4 isoform
and increased low-density lipoprotein cholesterol levels is
more pronounced in populations with diets high in
saturated fat and cholesterol compared to other groups
[56, 57], suggesting that interventions targeting a re-
duction in saturated fatty acid (SFA) intake could be
effective for CVD prevention and management in pop-
ulations with a high frequency of the E4 isoform.

The use of a GRS has been shown to be effective in
assessing the genetic contribution to complex traits such
as dyslipidaemia since it allows the combined effects of
multiple genetic variants to be analysed [58–60]. A
weighted GRS, which takes into account the effect sizes of
the risk alleles, is used by some studies [61–63]. However,
most of the published data on effective sizes come from
GWA studies which have been conducted in populations
of European ancestry and it has been reported that ef-
fective sizes may vary across populations [37, 63], sug-
gesting that using a weighted GRS might not be ideal for
populations which are under-represented in GWA
studies. In a study by the National Heart, Lung, and Blood

Institute’s Candidate Gene Association Resource (CARe),
consisting of 10,366 African American, 26,647 European
American, 1,410 Hispanic, and 717 Chinese American
individuals from nine cohorts [64], there were marked
differences in effect sizes across the ethnic groups for
some of the SNPs, and this has also been reported in a
review of nutrigenetic studies [35]. The effect size of the
cholesteryl ester transfer protein (CETP) SNP rs4783961,
the “A” allele of which is associated with higher con-
centration of high-density lipoprotein cholesterol, was
uniformly larger in African American cohorts (0.17 to
0.24) compared to European Americans (0.09 to 0.15)
[64]. In contrast, another high-density lipoprotein
cholesterol-associated SNP, rs17231506, also in CETP,
had larger effect sizes in European Americans and His-
panics (0.21 to 0.28) compared to African Americans
(0.06 to 0.26). A potential reason for this finding as
explained by the authors [64] is that African Americans
and European Americans possess the same underlying
causal variant within a gene, yet because of ethnicity-
specific variations in the frequencies of major and minor
alleles, a SNP might have varying degrees of correlation
with the underlying variant, resulting in varying effect
sizes and degrees of association.

Methodological Factors

Aside genetic diversity, another barrier that affects the
translation of nutrigenetics is the lack of replication in
most gene-diet interaction studies [30, 36, 65]. Con-
ducting replication studies, especially in diverse pop-
ulations, is vital in enhancing the reliability of findings

Fig. 1. Barriers affecting the translation of
existing nutrigenetics insights to precision
nutrition in ethnically diverse populations.
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and facilitating their application in clinical practice [18].
In a systemic review of gene-diet interaction studies in
relation to CVDs [30], it was observed that many of the
studies that identified significant interactions had not
been replicated, with only a small number of studies
examining the same dietary and genetic factors. Similarly,
a lack of replication was reported in a systemic review of
gene-lifestyle interaction studies conducted by our team
[36] in which it was identified that most of the studies
were conducted only once. Furthermore, a systematic
review of nutrigenetic studies focusing on omega-3 fatty
acid and plasma lipid, lipoprotein, and apolipoproteins
[65] highlighted a lack of replication of previously
identified interactions. To strengthen the evidence and
enhance comparability across studies, it is important for
studies to be replicated in independent samples [30, 36].

In addition to the lack of replication, sample size has
been cited as a methodological issue that affects the
quality of the evidence generated by gene-diet interaction
studies [30, 35, 36, 65]. A large sample size improves the
power to detect interactions withminimal effect sizes, and
this is especially important for multifactorial traits where
the main effects of genetic variants are often subtle [30,
66, 67]. Moreover, there is a scarcity of genotype-based
dietary intervention studies [19]. It has been highlighted
that dietary intervention studies can help raise the evi-
dence level of gene-diet interactions identified in ob-
servational studies once they have been replicated [18]. In
a 12-week randomised controlled trial involving 145
participants with overweight or obesity, participants were
first identified as being responsive to fat or carbohydrate
based on a GRS, before being randomised to a high-fat or
high-carbohydrate diet [68]. Although no differences in
weight loss were observed between participants who were
randomised to the appropriate diet based on their ge-
notype and those who were not [68], studies utilising this
approach could help determine the effectiveness of die-
tary interventions based on genotypes and facilitate the
translation of nutrigenetics into precision nutrition.

Cultural and Lifestyle Factors

Cultural and lifestyle factors also need to be con-
sidered in translating nutrigenetics and implementing
precision nutrition. Ethnic groups often have long-
standing dietary traditions, specific food preferences,
and cooking practices that have been passed down
through generations, making them a fundamental part
of their cultural identity [69, 70]. Therefore, incorpo-
rating precision nutrition based on nutrigenetics into

these cultural practices without compromising their
valued traditions might be challenging. A systematic
review of 20 qualitative studies revealed that the food
preferences of individuals of Asian, African, and other
minority ethnic communities were impacted by social
and cultural elements besides nutritional and health
considerations [70]. It was observed that individuals
from African, Asian, and other minority ethnic back-
grounds place significant value on traditional foods,
viewing them as symbols of their ethnic identity and
belonging [70]. Similarly, in African Americans, despite
a disproportionate prevalence of cardiometabolic dis-
eases in comparison with white Americans [71, 72],
adherence to dietary guidelines has been found to be
influenced by a preference for a dietary intake that re-
flects a cultural tradition known as “soul food” [72]. This
diet often consists of fatty meats, added fat, sugar, and
salt and involves methods of cooking such as deep frying
and others that raise the amount of calories and sodium
in the diet [72]. Accordingly, African Caribbean indi-
viduals living in Britain were found to prioritise
spending on traditional foods such as yams over pota-
toes, thereby preserving their cultural food preferences
[73]. Moreover, specific practices such as adhering to a
vegetarian diet, avoiding pork and beef, and following
certain cooking procedures are considered valuable to
people of Asian and African backgrounds [70, 74].
Moreover, the concept of “local food” has attracted a lot
of attention in recent years, with many consumers
preferring products that have travelled short distances or
been directly marketed by producers [75–77]. However,
the extent to which individuals adhere to their tradi-
tional dietary practices is influenced by several factors,
with younger individuals more likely to adopt new di-
etary habits [69, 78].

With regard to diet and cardiometabolic diseases,
examining the overall dietary pattern is believed to offer
several advantages since foods and the nutrients they
contain often have synergistic effects, which can make it
difficult to identify the influence of a single food or
nutrient [79]. Moreover, it has been shown that it is not
specific nutrients but rather the overall dietary pattern
that exerts the most significant impact on car-
diometabolic diseases [79–81]. Dietary pattern is defined
as the regular consumption of various foods, drinks, and
nutrients in specific quantities and combinations, in-
cluding the frequency at which they are consumed [82].
Recognising a dietary pattern could lead to a stronger
correlation with a specific health indicator and provide a
broader and more inclusive understanding of how nu-
trients and other bioactive compounds in our food are
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consumed, as well as how patterns of consumption affect
health outcomes [82, 83]. In a study involving South
Asian Surinamese, African Surinamese, and Dutch par-
ticipants in the Netherlands [84], three dietary patterns,
categorised as “noodle/rice and white meat,” “red meat,
snacks, and sweets,” and “vegetables, fruits, and nuts,”
were identified. In contrast to Dutch participants, those of
Surinamese origin had a stronger adherence to the
“noodle/rice and white meat” pattern, which reflected the
dietary preferences typical of the traditional Surinamese
diet. Dutch participants on the other hand showed a
higher level of adherence to the “red meat, snacks, and
sweets” and “vegetables, fruits, and nuts” patterns [85].
Variations in dietary consumption and factors shaping
dietary behaviours across different ethnic groups were
also observed in a systematic review of 49 studies [86].
Consumption of fruits and vegetables was found to be low
in populations of African ancestry and higher in Hispanic
and Latino populations, while fish consumption was low
in white and Hispanic populations. In contrast, white and
Asian populations were found to have the highest dairy
intake (2.17 and 1.3 servings per day, respectively) com-
pared to populations of African ancestry (0.58 servings per
day) [86]. These findings indicate a low tendency towards
fruit and vegetable consumption as well as reduced intake
of dairy in African ancestry populations in comparison
with the other ethnic groups, highlighting a need for ethnic-
specific initiatives. It should be noted that within the same
ethnic group, there are variations in dietary pattern de-
pending on whether they are living in developed countries
or in their native countries [85], indicating that public
health priorities with regard to diet and disease prevention
might differ based on geographic location.

Traditional diets for certain ethnic groups have often
been associated with health benefits [87]. The traditional
South Asian diet in particular is composedmainly of fresh
fruits and vegetables along with beans, legumes, nuts, and
spices [87]. However, a rise in type 2 diabetes (T2D) and
CVDs has been seen in South Asians [19, 37] and this has
partly been linked to unhealthy modifications to the
traditional diet, shifting from nutrient-rich fresh produce
to refined products and the use of large amounts of
saturated cooking oils [87]. Similarly, the traditional
African diet is enriched with fresh vegetables such as okra,
spinach, and other green leafy vegetables [88, 89].
Nonetheless, a shift away from traditional meals towards
processed foods and soft drinks has been reported across
African countries [90]. Hence, understanding cultural
and lifestyle factors that shape food preferences and
dietary habits is vital in translating existing nutrigenetic
insights to various ethnic groups.

Socio-Economic Factors

Socio-economic and geographical disparities are also
important factors to consider in the translation of nu-
trigenetics to precision nutrition. Ethnic populations may
experience disparities in access to healthcare, technolo-
gies, and resources required for implementing precision
nutrition effectively. The allocation of money to
healthcare has been reported to vary across countries
depending on their level of economic development, with
high-income countries allocating on average, USD 3,000
per person towards healthcare, while low-income
countries only spend around USD 30 per person [91].
Similarly, a report by theWorld Health Organization [92]
indicated that healthcare costs in low-income countries
were mainly covered by individuals paying directly (44%)
and aid from external sources (29%), while government
funding played a predominant role in high-income
countries (70%). Moreover, socio-economic and politi-
cal factors also influence the distribution of food, ad-
justments in food composition, or the implementation of
optional taxes on unhealthy food products as well as the
adoption of dietary guidelines promoting the con-
sumption of healthy options such as fruits and vegetables
[93, 94].

Aside cost and infrastructure, the knowledge and at-
titudes of healthcare providers, including dietitians, to-
wards nutrigenetics, are crucial for its integration into
clinical practice, which may also be influenced by socio-
economic-related educational opportunities [95].
Healthcare professionals need to understand genetic
influences on public health, evaluate the clinical relevance
and utility of genetic tests as well as analyse the indi-
vidual’s background in order to recommend genetic as-
sessments, screening or lifestyle adjustments [96]. It has
been highlighted that nutritional genetics has emerged as
a relatively new field over the past two decades, with
much of its scientific knowledge not integrated into
healthcare education [97]. Consequently, healthcare
professionals lack the essential foundation to provide
effective nutrigenetic counselling [97]. Available evidence
on knowledge and attitudes of healthcare professionals
towards nutrigenetics mainly comes from studies con-
ducted in high-income countries, and the findings in-
dicate a general lack of awareness among healthcare
professionals [98–101]. In a survey of 390 dietitians in the
UK [98], it was observed that, despite being involved in
the management of polygenic conditions such as diabetes,
obesity, and CVDs which are influenced by both genetic
and dietary factors, majority of the participants were not
engaged in activities related to genetics or nutrigenetics
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and expressed low confidence in undertaking such ac-
tivities. Similarly, a survey involving 1,844 dietitians from
Australia (390), the USA (461), and the UK (993) [99]
revealed that the participants had limited knowledge,
engagement, and confidence in nutrigenetics. Giving the
lack of resources in LMICs, knowledge and awareness of
nutrigenetics are likely to be even lower. In this regard,
initiatives such as the GeNuIne collaboration are required
[34]. Through funding from the British Nutrition
Foundation (BNF), the GeNuIne collaboration was
started at the University of Reading in 2013, and it has
been instrumental not only in conducting nutrigenetics
studies in diverse ethnic groups, but also in facilitating
training and resource development to improve the ability
of professionals and policymakers in low-income coun-
tries to effectively apply nutrigenetics findings within
their domains [19, 34, 36, 41, 95, 102].

Financial and Technological Challenges

Funding from public bodies is vital for developing
innovative approaches within nutrition programmes,
promoting collaboration among scientists, facilitating the
distribution of nutrigenetics information through mod-
ern virtual communication technologies as well as es-
tablishing a well-trained public health nutrition work-
force [103]. Several studies have highlighted the necessity
for enhancing capacity in public health nutrition across
individual, organisational, and systemic levels [103–106].
However, global initiatives such as the Scaling Up Nu-
trition (SUN) movement which is focused on addressing
the complex causes of malnutrition through the im-
plementation of evidence-based, nutrition-specific in-
terventions in developing countries face challenges due to
financial constraints in most countries [107].

In a report by Sight and Life [108], it was noted that
personalised nutrition appears not only feasible and ra-
tional but also cost-effective in terms of developing ef-
fective nutrition interventions to alleviate the burden of
diseases and improve health outcomes in LMICs. How-
ever, several implementation challenges were highlighted
including how to extend the application of personalised
nutrition approaches to benefit a larger population giving
the financial constraints, deciding which methods offer the
greatest potential for successful adoption, what resources
are necessary to expand the implementation of person-
alised nutrition, and whether there is sufficient support
and interest in introducing personalised nutrition ap-
proaches to LMICs [108]. Moreover, it has been recognised
that the integration of nutrigenetics into healthcare sys-

tems requires a multisystem approach that includes the gut
microbiome and environmental factors [21], which poses a
huge challenge in LMICs. According to Sight for Life [108],
personalised nutrition approaches that are more specific
are less readily available in LMICs and these include ge-
netic and microbiome analysis and counselling, alongside
tools for assessing metabolic markers such as glucose
monitors and energy intake sensors.

Consumer Attitudes towards Nutrigenetics and
Personalised Nutrition

There is a growing interest in nutrigenetics and per-
sonalised nutrition, although at present, accessibility is
limited to a narrow group of highly motivated individuals
with high socio-economic status [109]. Commercial
companies offering nutrigenetic testing exist mostly in
Europe and North America [110], with the aim of en-
abling consumers to identify their genetic susceptibility to
diseases and offering personalised dietary recommen-
dations to promote health [110, 111]. The growing in-
terest in direct-to-consumer (DTC) genetic testing has
been associated with social elements such as enhanced
internet access to information and a cultural shift towards
individuals taking greater responsibility for their health
and lifestyle choices, while relying less on conventional
expert guidance [112]. However, there are concerns about
the accuracy and usefulness of the health-related data
provided by DTC genetic testing companies as well as
potential adverse outcomes if consumers or their
healthcare providers misinterpret such information
[113–116]. In a study of 1,648 participants [117], it was
observed that before undertaking personalised DTC ge-
netic testing, consumers were mostly interested in in-
formation about ancestry (73.7%), traits (72.2%), and
disease risks (71.9%). In terms of susceptibility to disease,
heart disease (68%), breast cancer (67%), and Alzheimer’s
disease (66%) attracted a high level of interest [117]. It
should be noted that the participants were mostly women,
Caucasian, and from a high socio-economic background
[117]. Similarly, a survey of 1,048 customers of DTC
genetic testing [112] indicated that the customers’ indi-
vidual circumstances and subjective understanding of
disease susceptibility were linked to specific health-
related behaviours they undertake upon receiving their
test results. More specifically, various aspects of the
participants’ lives such as having a chronic condition, a
family history of diseases tested by the DTC service, self-
reported health issues, and regular visits to a doctor were
significantly correlated with several health-related
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behaviours individuals displayed following receipt of
their results [112]. Along these lines, a survey of 2,037
customers of DTC services showed that the response to
genetic testing was influenced by both the perceived
severity and sense of control over the condition of in-
terest. Higher perceived severity and lower perceived
control were linked to increased, though not clinically
significant, levels of anxiety and distress [118].

With regard to attitudes of the general public towards
personalised nutrition, a survey of 9,381 participants
across nine European countries (the UK, Germany,
Ireland, Spain, Greece, Poland, Portugal, the Netherlands,
and Norway) [119] indicated that the trust and preference
consumers have for personalised nutrition services are
key indicators of their likelihood to embrace such ser-
vices. Variations in trust in the national health service as a
regulatory body and source of information, as well as trust
in dietitians and nutritionists as service providers, were
observed across the countries, although in all the
countries, family doctors emerged as the most relied-
upon sources of information [119]. Similarly, a study
conducted in the UK and Ireland by Food4Me [120]
identified that there was a preference for government-led
services delivered in person, which was believed to en-
hance trust, transparency, and overall value. In both
countries, paying for nutritional advice was associated
with heightened commitment and motivation to adhere
to guidelines [120]. Furthermore, a study involving 438
Dutch participants [121] showed that consumers’ ac-
ceptance of personalised nutrition was positively influ-
enced by consensus among expert stakeholders, benefits
for consumers or scientists, ease of implementation, and
freedom of choice. In line with these findings, a study
consisting of 1,425 Canadian participants [122] revealed
that most of the participants (93.3%) regarded dietitians
as the most suitable professionals to provide personalised
dietary advice based on nutrigenetic testing. In this study
[122], health and disease prevention were cited as the
primary benefits for nutrigenetic testing and there were
concerns regarding accessibility to genetic testing through
telemarketing companies and spam as well as companies
using personal genetic data to promote sales [122]. Al-
though there are limited data on the attitudes of con-
sumers in LMICs towards nutrigenetics, previous studies
by our group indicated a reluctance to give blood samples
for genetic testing. Hence, individuals from various socio-
demographic backgrounds may have varying levels of
trust in service providers, regulators, and online infor-
mation delivery. Consequently, preferences regarding the
manner and source of personalised nutrition services
might vary across countries and cultural settings [119].

Integration of Data from Multiple Fields

Precision nutrition is centred around integrating data
from multiple disciplines such as metabolomics, epige-
netics, and the gut microbiome as this is argued to be
important in enhancing the scientific understanding of
inter-individual variability in response to dietary inter-
ventions, although the practicality and effectiveness of
this process are still being explored [123, 124]. So far,
progress has beenmade in the mechanistic understanding
of dietary interventions through the integration of omics
technologies such as metabolomics and the gut micro-
biome [125]. Metabolomics focuses on analysing small
molecules (metabolites) found in biological samples to
understand changes in metabolism under various con-
ditions [123]. Metabolites are the direct products of di-
etary consumption and metabolism, enabling a more
accurate assessment of biological and physiological
pathways as well as the related biomarkers for diet or
disease [125]. Metabolic profiles have been linked to
variations in nutritional needs and responses to diet,
which offers the potential to stratify populations with
similar metabolic and phenotypic profiles, enabling the
development of tailored dietary recommendations [126].
Moreover, an accurate assessment of dietary intake is
essential in understanding the link between diet and
diseases, and methods currently used to assess dietary
intake such as food frequency questionnaires, weighed
food diaries, and 24-h recalls are prone to errors including
underestimation of energy intake [123]. By applying
metabolomics, specific biomarkers associated with foods
eaten can be obtained, and this involves participants
consuming specific foods and the collection of biofluid
samples over time [123]. These biomarkers could provide
useful information to supplement self-reported dietary
intake [126].

Using metabolomics, a possible explanation of the
mechanisms underlying the health benefits of low gly-
caemic index diets was reported in a 6-month parallel
randomised trial involving 122 adult participants with
overweight and obesity [127]. An analysis of plasma
metabolites revealed that a low glycaemic index diet
resulted in higher levels of serine, lower levels of valine
and leucine, and alterations in a group of two sphingo-
myelins, two lysophosphatidylcholines, and six phos-
phatidylcholines. These changes in plasma amino acids
and lipid species were found to be correlated with changes
in body weight, glucose levels, insulin, and certain in-
flammatory markers [127]. Similarly, a metabolomic
study identified underlying risks for T2D, insulin resis-
tance, and related comorbidities through analysis of
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blood metabolites in participants who had normogly-
caemia and no clinical symptoms [128]. In this study
[128], metabolomic analysis was performed at baseline
and after the implementation of a personalised lifestyle
intervention for 100 days. By combining metabolites
associated with specific disease risks and calculating risk
scores, the baseline analysis showed that some of the
participants had moderate to high risks for insulin re-
sistance, T2D, and CVDs. However, when the analysis
was repeated following the personalised lifestyle inter-
vention, specific metabolites that were previously outside
the normal range had returned to the normal range,
thereby reducing potential health risks during the second
time point [128].

The gut microbiome supports the host by interacting
directly or indirectly with host cells through the pro-
duction of bioactive molecules, and this interaction allows
the gut microbiome to regulate various biological pro-
cesses related to immunity and energy balance [129]. This
ability to interact with the host depends on the types of
bacteria present and their distribution within the gut
microbial community [130]. The application of the gut
microbiome in precision nutrition involves using the gut
microbiome as a biomarker to predict how specific di-
etary components affect host health, and the use of this
information to design precision dietary interventions
aimed at promoting health [129]. It has been highlighted
that the way individuals respond to certain dietary in-
terventions may be influenced by the composition and
function of the gut microbiota which differs among in-
dividuals with distinct metabolic profiles [130]. In a study
involving 14 men with obesity [131], controlled diets
supplemented with resistant starch or non-starch poly-
saccharide and a weight-loss diet were found to result in
distinct changes in the microbiota composition. The
resistant starch diet was linked to an increase in several
Ruminococcaceae phylotypes, while the non-starch
polysaccharide primarily resulted in an increase in
Lachnospiraceae phylotypes, and the weight-loss diet
significantly decreased Bifidobacteria. It was concluded
that since the dietary response of an individual’s mi-
crobiota varied significantly and was inversely related to
its diversity, individuals could be classified as responders
or non-responders based on the characteristics of their
intestinal microbiota [131]. In another study involving a
cohort of 800 participants with no previous diagnosis of
T2D [132], variations in postprandial glycaemic re-
sponses to similar standardised meals were observed. A
machine learning algorithm was then developed by in-
tegrating blood parameters, dietary habits, anthropo-
metric data, physical activity, and gut microbiota infor-

mation from the same cohort and was found to be ef-
fective in predicting personalised postprandial glycaemic
responses to real-life meals. Subsequently, a blinded
randomised controlled dietary intervention based on the
algorithm resulted in significantly reduced postprandial
responses and consistent changes in gut microbiota
composition [132].

Epigenetics covers the molecular processes that can
alter the activity of genes without changing the DNA
sequence, and these processes include DNA methylation,
histone modifications, and alterations in noncoding
RNAs [133]. Epigenetic changes might explain individual
differences in metabolic health and responses to diet, and
have the potential to identify novel biomarkers for pre-
cision nutrition and targets for precise interventions
[134]. Similarly, transcriptomics technologies have been
applied in nutrition research to understand the molecular
and signalling pathways associated with nutrients [135].
In an interventional study, a transcriptomic approach was
used to assess the impact of a high-carbohydrate or high-
protein diet on gene expression profiles in blood leu-
kocytes [136]. The findings showed that the high-
carbohydrate breakfast resulted in changes in the ex-
pression of genes related to glycogen metabolism, while
the high-protein breakfast led to changes in the ex-
pression of genes associated with protein biosynthesis
[136]. Another interventional study [137], utilising a
transcriptomic approach to assess the postprandial effect
of consuming different fatty acids on the gene expression
profiles of peripheral blood mononuclear cells, reported
that intake of PUFA was associated with a decrease in the
expression of genes in liver X receptor signalling, while
consumption of SFA led to an increase in the expression
of these genes. Consumption of PUFA also resulted in an
increase in the expression of genes linked to cellular stress
responses, while MUFA had a moderate effect on several
genes [137]. The findings suggest that data from multiple
individuals undergoing postprandial gene expression
profiling in peripheral blood mononuclear cells could
enable the stratification of gene expression profiles as
“healthy” or “unhealthy,” as well as the identification of
particular meals that could be categorised as healthy or
unhealthy for such individuals [123].

With regard to obesity, a significant interaction was
observed between SFA intake and theAPOA2 SNP rs5082
on the risk of obesity in a study of 3,462 participants from
three populations in the USA (the FraminghamOffspring
Study [1,454 whites], the Genetics of Lipid Lowering
Drugs and Diet Network Study [1,078 whites], and the
Boston-Puerto Rican Centers on Population Health and
Health Disparities Study [930 Hispanics of Caribbean
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origin]) [22]. This finding was also replicated in Chinese,
Asian Indians, and whites from the Valencia Region of
Spain [138]. Individuals with the “CC” genotype had an
increased risk of obesity compared to those with the “TT”
or “TC” genotypes only when their SFA intake was high
(≥22 g/day) [22, 138]. To explore the mechanisms un-
derlying this interaction, the authors performed a multi-
omics study involving methylome, transcription, and
metabolomic analyses from three different populations
(the Boston Puerto Rican Health Study, the Genetics of
Lipid Lowering Drugs and Diet Network Study, and the
Framingham Heart Study) [139]. The epigenetic state of
the APOA2 regulatory region was found to be linked to
SFA intake and the rs5082 genotype, causing differences in
APOA2 expression between the “CC” and “TT” genotypes
on a high-SFA diet and influencing branched-chain amino
acid and tryptophan metabolism [139]. Therefore, inte-
grating data from nutrigenetics, metabolomics, the gut
microbiome, epigenetics, phenotypic traits, and lifestyle
factors might help in designing personalised and precise
nutrition interventions. Machine learning and artificial
intelligence enable the integration of data from various
fields by identifying patterns in large datasets and grouping
similar data to create predictive models and algorithms
[140]. A machine learning model utilising age, systolic
blood pressure, routine blood and urine tests as well as
dietary intake values has been reported to be effective in
identifying young, asymptomatic individuals at higher risk
of CVDs [141]. Similarly, integrating data on lifestyle
factors, gut microbiome, clinical variables, subcutaneous
adipose tissue gene expression, and metabolomics derived
from serum, urine, and faeces were found to be effective in
identifying biomarkers linked to insulin sensitivity [142].

Thus, integrating data frommultiple disciplines could help
in designing personalised and precise dietary interventions
for the prevention and management of cardiometabolic
diseases, although the effectiveness and practicality of this
approach are still being explored (Fig. 2).

Conclusion

Nutrigenetics has a potential role to play in the pre-
vention and management of cardiometabolic diseases.
Several factors might influence variations among indi-
viduals with regard to dietary exposures and metabolic
responses, and these include genetic diversity, cultural and
lifestyle factors as well as socio-economic factors. A multi-
omics approach involving disciplines such as metab-
olomics, epigenetics, and the gut microbiome might con-
tribute to improved understanding of the underlying
mechanisms of gene-diet interactions and the im-
plementation of precision nutrition, although more re-
search is needed to confirm the practicality and effec-
tiveness of this approach. Therefore, conducting gene-diet
interaction studies in diverse populations is essential to
improve their clinical application worldwide. To bridge the
gap between existing nutrigenetic insights and their ap-
plication in clinical practice, it is vital for initial findings to
be replicated in independent samples, followed by dietary
intervention studies. Studies utilising large sample sizes are
required as this improves the power to detect interactions
with minimal effect sizes. Future studies should focus on
replicating initial findings to enhance reliability and pro-
mote comparison across studies. Once findings have been
replicated in independent samples, dietary intervention

Fig. 2. List of factors that should be con-
sidered for the implementation of precision
nutrition.
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studies will be required to further strengthen the evidence
and facilitate their application in clinical practice. The is-
sues discussed in this review are particularly important,
given the current diverse climate, which poses significant
risks to food security and diet quality, making vulnerable
populations across the world susceptible to various forms
of malnutrition [143].
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