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The global energy budget is fundamental for understanding climate change. It states that
the top-of-atmosphere imbalance between radiative forcing (which drives climate change)
and radiative response (which resists the forcing) equals energy storage in Earth’s heat
reservoirs (i.e. the ocean, atmosphere, land and cryosphere). About 90% of Earth’s energy
imbalance is stored as heat content in the ocean interior, which is poorly sampled before
1960. Here, we reconstruct Earth’s energy imbalance since 1880 by inferring subsurface
ocean warming from surface observations via a Green’s function approach. Our estimate of
Earth’s energy imbalance is consistent with the current best estimates of radiative forcing and
radiative response during 1880–2020. The consistency is improved in this study compared to
previous ones. We find two distinct phases in the global energy budget. In 1880–1980, Earth’s
energy imbalance closely followed the radiative forcing. After 1980, however, Earth’s energy
imbalance increased at a slower rate than the forcing; in 2000–2020, the imbalance amounted
to less than 50% of the forcing. In simulations of historical climate change, the model-mean
energy imbalance is consistent with observations within uncertainties, but individual models
with a “weak” response to anthropogenic aerosol agree better with observations than those
with a “strong” response. Because the global energy budget before and after 1980 imply very
different global warming in the future, further studies are required to better understand the
cause of this historical variation.

global energy budget | ocean heat uptake | radiative forcing | radiative response | climate model

The global energy budget is a fundamental aspect of Earth’s climate system.
Human-induced changes in the atmospheric composition have resulted in a

positive radiative forcing F at the top of the atmosphere (TOA) since 1750, which
warms the Earth’s surface (1, 2). A warmer Earth tends to radiate more energy to
space, counteracting the effect of F ; this is referred to as Earth’s radiative response
R (3). The imbalance between F and R determines the net TOA radiative flux,
which must be equal to N , the change in Earth’s heat storage (4), as required by
energy conservation, i.e. N = F + R. Reproducing the historical global energy
budget is a basic test for climate models. The energy budget itself provides a useful
constraint on the Earth’s equilibrium temperature response to CO2 forcing (3, 5, 6).

The global energy budget has been analysed using observation-based data (2, 7–
9). Earth’s energy imbalance N can be derived from observed changes in Earth’s
heat reservoirs. During 1971–2020, observations suggest that about 90% of N is
stored in the ocean, followed by 6% in the ground, 4% in the cryosphere and 1% in
the atmosphere (4, 10). From 2000 onwards, satellite radiometers have provided
a direct estimate of N , which agrees well with the N inferred from Earth’s heat
storage (11). In contrast, the radiative forcing F and the radiative response R are
not observable directly. F can be derived from radiative transfer models forced
with observed changes in the atmospheric composition. R can be calculated as
the product of the observed global surface warming T and the climate feedback
parameter α, with the caveat that α exhibits a large uncertainty in the literature
(2). The fifth assessment report of the Intergovernmental Panel on Climate Change
(IPCC) demonstrated that the global energy budget is closed within uncertainties
during 1971–2010 (8). The IPCC sixth assessment report extended this analysis to
2018 with improved consistency (2).

Global ocean heat content (OHC) change (unit: J) is an important measure of
Earth’s energy imbalance N (unit: W m−2) stored in the ocean, i.e. dOHC/dt ≈
90% × N × A, where A is the Earth’s surface area. Conventionally, OHC estimates
are derived from mapping in-situ temperature data to a global ocean grid (“in-situ”
means that data is collected at the point where the instrument is located). The
historical temperature data are sparse in space and time and suffer from systematic
instrument biases, especially during early periods (12, 13). This has prevented an
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estimate of global OHC change before 1960, which leaves a
gap in the global energy budget record. Since 2006, Argo
autonomous floats have provided high-quality temperature
measurements with unprecedented spatial coverage of the
global ocean, greatly improving the accuracy of the OHC
estimate (14).

Recently, methods have been developed for reconstructing
OHC before 1960 (15, 16). In particular, Zanna et al. (16)
estimated OHC change starting from 1870 by propagating
observed sea surface temperatures (SSTs) into the ocean
interior using a Green’s function (GF) approach (17–19).

In this study, we derive Earth’s energy imbalance N since
1880 from an OHC reconstruction based on an improved GF
approach. Our estimate of Earth’s energy imbalance N agrees
with the sum of radiative forcing F and radiative response R
derived from independent sources. This allows us to present
a continuous record of the global energy budget starting from
1880 using observation-based data.

Green’s Function Method in a Nutshell

In this section, we explain the procedure of computing OHC
change and associated uncertainties using the GF method.
The GF method is detailed in Materials and Methods (MM)
A and contrasted with the in-situ method in Table 1.

Ocean heat uptake (OHU) is caused by surplus heat being
added to the ocean surface via air-sea fluxes and then carried
to depth by ocean transport (advection and mixing). The
GF method exploits this fact and attempts to reconstruct
ocean warming at depth from its surface signature. For a
given interior location, the GF estimate of ocean warming
can be written as

Θe(t) =
∑

rs

∑
ts<t

G(rs, t − ts)Θs
e(rs, ts), [1]

where Θe and Θs
e are the interior and surface ocean tempera-

ture change relative to a pre-industrial state, respectively, t
and ts their corresponding time variables, and rs (longitude
and latitude) the location vector of Θs

e. Basically, Θe(t)
is reconstructed as the weighted sum of the Θs

e values
everywhere at the ocean surface and any time prior to t,
with the GF kernel G providing the weightings. Physically,
the GF kernel partitions a water parcel at a given location
according to the time and place of its last surface contact; i.e.
the joint water-mass and transit-time distribution (17, 19).
Importantly, the GF method does not rely on subsurface
temperature measurements, in contrast to the in-situ method
(Table 1).

The GF method requires two inputs: the GF kernel G and
the boundary condition Θs

e. These are derived as follows.
The GF kernel G is derived from observations of ocean

transient tracers CFC-11 and CFC-12 via an inverse approach,
using simulations of G as an initial guess (18, 20) (MM B).
This method exploits the fact that the GF is an intrinsic
property of ocean circulation (advection and mixing) and
thus applies to any conservative tracer in the ocean.

The GF derived here has two caveats. First, CFC
observations only constrain G for lead times less than ∼50
years because CFC emissions started in the 1950s. We expect
this caveat has little impact on our result because we focus on
historical climate change, which is dominated by responses on
multi-decadal timescales (21). While tracers such as argon-39

can further constrain G on centennial timescales, very few
measurements are available (22). Second, we assume G is
stationary in time because observations are insufficient to
constrain its time evolution. That is, we ignore potential
changes in ocean circulation under global warming, which may
lead to a roughly 10% overestimate of global OHC increase
between 2008 and 1980 (16, 23).

Technically, the boundary condition Θs
e should be surface

excess temperature (23). By that we mean the part of
SST change that originates at the surface, excluding SST
redistribution due to changes in ocean circulation. Because Θs

e
is not observable, we construct it by combining observations
and model simulations (MM C). We separate Θs

e into the
global mean and regional anomalies. The former is derived
from the global-mean SST change in observations, while
the latter are diagnosed from climate model simulations.
Deriving the global-mean Θs

e from the global-mean SST
change introduces a cold bias because the latter contains
a weak cooling signal from SST redistribution (MM C). This
leads to an underestimate of global OHC increase, which
partly compensates the overestimate due to G discussed
earlier.

We differ from Zanna et al. (16) in that we impose
observational constraints on the GF kernel and we use
a different construction of boundary conditions (Table 1).
These changes bring the GF OHC estimate closer to the
in-situ estimate during the Argo period (shown later).

We quantify the uncertainty of the GF OHC estimate
using sets of alternative estimates of the GF kernel G and the
boundary condition Θs

e. We derive twelve G estimates from
three first-guess solutions and four realisations of ocean tracer
observations (MM B). We also derive six Θs

e estimates from
three observational SST datasets and two excess temperature
simulations (MM C). In total, our sensitivity test produces
12 × 6 = 72 members of the GF OHC estimate. Results are
reported as the ensemble mean ± 2 × standard deviation
(σ). Uncertainties from other studies are converted to the
2σ-range when discussed here, assuming a Gaussian error
distribution.

SST datasets have two potential biases in early periods:
a cold excursion in 1900–1920 and the World War 2 warm
anomaly in 1939–1945 (24–28). To examine how these biases
affect the GF OHC estimate qualitatively, we apply the
following simple corrections. We remove the 1900–1920 cold
excursion by setting SST anomaly in that period to its 1880–
1900 time mean, and remove the 1939–1945 warm anomaly
by scaling down SST anomaly in that period by 50% (i.e. a
reduction of 0.15 K). In both case, the anomaly is relative
to the 1870–1880 time mean. The bias corrections and the
resulting differences in our OHC estimate are shown in Fig.
S5. In what follows, we focus on the results with the bias
corrections and discuss the differences that arise without
them when relevant.

Global Ocean Heat Uptake

In this section, we compare the GF OHC estimate of this
study against (i) the in-situ OHC estimates of Cheng (31),
Levitus (32), Ishii (33) and Bagnell (34) and (ii) the GF
OHC estimates of Zanna (16) and Gebbie (15). The results
of Cheng, Levitus, Ishii are shown in Fig. 1, while those of
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Table 1. A comparison of different methods for estimating ocean heat uptake

Method Green’s function G boundary condition Θs
e

subsurface temperature
measurements

This study
observation-based, constrained by CFC-11
and CFC-12 in the ocean, initial guesses are
derived from ocean models

SST anomaly relative to 1870–1880 + correc-
tions for a) excess temperature, b) the 1900–
1920 cold excursion, and c) the World War 2
warm anomaly

not used

Zanna (16) derived from an ocean state estimate (29) SST anomaly relative to 1870–1880 not used

Gebbie (15)
observation-based, inferred from climatology
of ocean tracers (30)

SST anomaly relative to 0015 not used

In situ N/A N/A XBT, CTD, Argo, etc.

Bagnell and Gebbie are shown separately in Fig. S6 for clarity.
All of them are integrated over the upper 2000 m.

Ocean Heat Content Change. The GF OHC estimate of this
study exhibits an upward trajectory during the historical
period (Fig. 1a). The global OHC change between 2006–2015
and 1956–1965 is 265±142 ZJ from our estimate (black dot,
Fig. 1b, leftmost column), 230±38 ZJ from Levitus (blue dot)
and 258±54 ZJ from Cheng (green dot), for instance; other
OHC estimates are consistent with those numbers within
uncertainties (Figs. 1b and S6b). 1956–1965 is a common
starting period for the in-situ datasets.

Different choices of SST dataset and excess temperature
estimate (MM C) result in a ±110 ZJ (±2σ) spread in the
GF OHC change between 2006–2015 and 1956–1965 (Fig. 1b,
rightmost column), while the corresponding spread due to
uncertainties in the GF kernel is ±85 ZJ (Fig. 1b, middle
column). The latter arises because existing observations are
insufficient to fully constrain the GF kernel.

Ocean Heat Uptake Rate. We evaluate the rate of OHU (i.e.
its time-derivative) using linear trends derived from a 20-
year moving window, and express the result per unit area
of Earth surface. The choice of 20 years for the window is
a compromise between filtering out the unforced variability
and resolving the time evolution. Altering the window span
from 20 years to 10, 15 or 30 years does not affect the time
evolution of the OHU rate in Fig. 1 very much, although
a longer window does give a smoother timeseries (Fig. S7).
The uncertainty of the in-situ OHU rate has been assessed
in the literature using different methods, as summarised in
Meyssignac et al. (10) table 1. We use the 1993–2008 error
of ±0.13 W m−2 in Lyman et al. (35) as the 2σ-error of the
in-situ OHU rate, because it accounts for a comprehensive
list of uncertainties. In addition, we assume that the in-situ
error of ±0.13 W m−2 is constant in time. We note that
this choice likely underestimates the in-situ error before the
1990s (36), but using a larger in-situ error does not affect our
discussion below.

The OHU rate has exhibited a robust acceleration since the
1960s (36–38). The GF OHU rate (this study) increased from
0.12±0.23 W m−2 in 1960–1980 to 0.63±0.23 W m−2 in 2000–
2020 (Fig. 1c, black line), i.e. a linear trend of 0.12±0.07
W m−2 per decade over 1960–2020. The Cheng estimate
shows a similar OHU rate increase over the same period,
from 0.10±0.13 W m−2 to 0.60±0.13 W m−2. The in-situ
OHU rates may be underestimated before 1990 because of
linear vertical interpolation and the XBT data biases (39).
The in-situ OHU rates differ from one another regarding

detailed time evolution, but the difference is not significant
considering their uncertainties (±0.13 W m−2). The Zanna
OHU rate exhibits a weaker upward trend than the in-situ
estimates in 1980–2020, while the Gebbie OHU rate exhibits
a downward trend after 1990 (Figs. 1c and S6c). Note that
the Gebbie estimate was built to study OHU on a much
longer timescale than the one focused here (past 2000 years
vs. past 140 years).

Prior to 1960, the GF estimate (this study) suggests that
the OHU rate was accelerating in 1920–1940 (central years),
and decelerating in 1950–1970 (Fig. 1c, black line). The
transition between the two episodes coincides with the ramp-
up of anthropogenic aerosol emission (40, 41).

The potential biases in SST datasets have a marked impact
on the GF OHU rate prior to 1960 (Fig. 1c compare the
black solid and dashed line). Removing the cold excursion in
1900–1920 changes the OHU rate in 1900 from -0.21±0.19 to
0.06±0.12 W m−2. Halving the World War 2 warm anomaly
reduces the OHU rate in 1940 from 0.47±0.19 to 0.31±0.17 W
m−2. Whether the above bias corrections can be justified is
examined later through the lens of the global energy budget.
The Zanna and Gebbie estimates both show a reversal in
the trend of OHU rate between 1920–1940 and 1950–1970,
similar to our estimate (Fig. S6c). However, the peak OHU
rate at 1940 is higher in their estimates compared to ours;
this difference is potentially related to the World War 2 SST
biases discussed above.

The Argo Era. We compare the OHU rate from different
estimates for 2006–2020, when the Argo floats have achieved
a near-global coverage in 0–2000 m. During 2006–2020, the
GF estimate (this study) suggests an OHU rate of 0.69±0.23
W m−2, consistent with the in-situ estimates of 0.57±0.13,
0.60±0.13, 0.66±0.13 and 0.59±0.13 W m−2 from Cheng,
Levitus, Ishii and Bagnell, respectively (Figs. 1d and S6d).
Different choices of SST dataset and excess temperature
estimate (MM C) result in ±0.20 W m−2 spread in the GF
OHU rate, while uncertainties in the GF kernel lead to ±0.11
W m−2 spread (Fig. 1d). Note that the GF OHC uncertainty
is no smaller during the Argo era than in earlier periods (Fig.
1c grey shading). This is because the GF method uses the
full SST history to infer OHC change (Eq. 1), i.e. the OHU
rate at any time is affected by SSTs at all previous times,
including their uncertainties. During the Argo era, the Zanna
OHU rate sits near the lower limit of our estimate (Fig. 1d);
this difference is mostly due to our use of excess temperature
for the boundary condition (Fig. S8). The Gebbie estimate is
excluded for this comparison because it is not available after
2015.

Wu et al. PNAS — March 5, 2025 — vol. XXX — no. XX — 3
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±142 ±85 ±110

0.69

±0.23 ±0.11 ±0.20

Fig. 1. Global ocean heat uptake during the historical period (0–2000 m). Different estimates are color coded. “This study” and “Zanna” are based on the Green’s function
(GF) method; the other three are in-situ estimates. a) time evolution of ocean heat content change relative to the 2006-2015 baseline (1 ZJ = 1021J). b) ocean heat content
change between 2006–2015 and 1956–1965. c) time evolution of ocean heat uptake rate per unit area of Earth’s surface. d) ocean heat uptake rate during the Argo period
(2006–2020). In (c), the rate of change is computed as linear trends of a 20-year running window. In (b) and (d), the spread of our GF estimate is decomposed into that due to
the GF kernel G and that due to the boundary condition Θs

e; individual members are shown as circles. Shading and error bars indicate the 2σ-error. In (a) and (c), the dashed
black line is the same as the solid black line, except that it is computed from SST datasets without bias corrections.
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Global Energy Budget

In this section, we analyse the global energy budget since
1880 using our GF OHU reconstruction. Methods for deriving
the energy budget terms and associated uncertainties are
summarised in Table 2. All the energy budget terms are
shown as anomalies with respect to the 1870–1880 time mean.

Observation-Based Data. We derive Earth’s energy imbalance
N from our GF OHU reconstruction, because heating rates
in other Earth system components are poorly known prior to
1960. We do not use the GF estimate for OHU below 2000 m
because the GF kernel is poorly constrained by observations
at those depths (SI Appendix 1C). We obtain the full-depth
OHU rate by combining: (i) the GF OHU rate for 0–2000 m
depth with (ii) 0.07±0.04 W m−2 from Johnson et al. (42)
for below 2000 m; the latter only applies to the 1980–2020
period. Earth’s heat inventory in recent decades (e.g. 1971–
2020) suggests that OHU accounts for 90±6% of N (2, 4, 8).
We therefore divide the full-depth OHU rate by 90±6% to
derive N . Note that, due to insufficient observations, we
assume that: 1) OHU below 2000 m is negligible before 1980
and 2) the fraction of N stored in the ocean is constant in
time. These assumptions should be revisited in the future
when extended records of Earth’s heat inventory become
available.

We derive the radiative forcing F and the radiative
response R using methods that are independent of the global
energy budget, that is N = F + R is not guaranteed by
construction. F is obtained from the assessed range in the
IPCC sixth assessment report (AR6) (2), which combines lines
of evidence from models and observations. R is computed
by two methods. The first method (Rsimple) considers R
due to the global-mean surface warming T and a constant
climate feedback parameter α (i.e. Rsimple = αT ). The mean
and 2σ of T are derived from the HadCRUT5 dataset (43)
using its 200 ensemble members. The feedback parameter
α = −1.16 ± 0.79 W m−2 K−1 is obtained from the assessed
range in the IPCC AR6 (2). The uncertainty of Rsimple comes
from propagation of error. The second method (Rspatial)
considers R due to spatially-varying SST and sea ice changes
in observations using 3D atmosphere general circulation
models. The Cloud Feedback Model Intercomparison project
(44) specifically designed an experiment (amip-piForcing)
to diagnose Rspatial; we use the results of eight atmosphere
models to compute the mean and 2σ of Rspatial (MM E).

The energy imbalance N is derived from the 20-year
running window used to compute the OHU rate. For
consistency, the radiative forcing F and radiative response
R are smoothed by a 20-year running mean. Note that this
makes dips in F after volcanic eruptions less obvious.

Budget Closure. Our estimate of Earth’s energy imbalance N
(Fig. 2a blue line) agrees with the sum of the TOA radiative
forcing F and radiative response R within uncertainties all
the time since 1880, indicating a closure of the global energy
budget. This conclusion is robust regardless of (i) the choice
of the R estimate (Fig. 2a black and gray line) and (ii) whether
OHU is derived from SST with bias corrections (compare
Figs. 2a with S9a). We also use the Zanna and Gebbie
OHC estimate to derive N estimates following the method
described above. The resulting N estimates agree with F +R

during 1880–2020 when considering uncertainties estimated
in this study (Fig. S10).

Central Estimate. We compare N against F +R for the central
estimate. Our estimate of N closely follows F + Rspatial (Fig.
2a blue and black line); both feature a weak positive trend
before 1950 and a stronger one after 1980. The root-mean-
squared error between them is 0.14 W m−2 over 1880–2014.
In comparison, the Zanna and Gebbie N estimates do not
track F +Rspatial as closely as our estimate does; both of them
suggest a strong decadal variability in N during 1900–1960,
which is not seen in F + Rspatial (Fig. S10). The root-mean-
squared error between N and F + Rspatial is 0.17 and 0.28 W
m−2 for the Zanna and Gebbie estimates, respectively.

Our estimate of N (Fig. 2a blue line) agrees better with F +
Rspatial (black line) than with F +Rsimple (grey line), wherein
Rsimple and Rspatial are derived from R = αT and atmosphere
models, respectively. This suggests that atmosphere models
provide a more realistic estimate of R than the simple model
with a constant α. Recent studies have shown that surface
warming at different locations affects R differently (45, 46);
this mechanism is resolved in Rspatial, but not in Rsimple.

Distinct Phases. We find two distinct phases in the global
energy budget. Before 1980, the evolution of Earth’s energy
imbalance N (Fig. 2b blue line) closely followed that of the
radiative forcing F (orange line); the two are not significantly
different, considering their uncertainties. Deriving N from
SST datasets without bias corrections does not alter this
finding (compare Figs. 2b with S9b). After 1980, however,
the energy imbalance N started to increase at a slower rate
than the radiative forcing F , and the two became significantly
different in 2010 (Fig. 2b). N/F measures the fraction of the
forcing that went into heating the Earth. The N/F ratio is
close to unity before 1980, but gradually decreases after that,
reaching 38±15% in 2010 (Table 2). Note that N/F is highly
uncertain before 1980 because F is not significantly different
from zero during that time.

Reduced Historical Forcing Uncertainty. We infer the radia-
tive forcing F as the difference between N and R following
previous studies (7, 47), and compare the result against the
F estimate in the IPCC AR6. The uncertainty of the inferred
F is derived via propagation of error.

We focus on the 1960–1980 period, for which the F in the
IPCC AR6 has a large uncertainty (0.08±0.71 W m−2). The
inferred F range is 0.38±0.29 W m−2 from N − Rsimple and
0.17±0.29 W m−2 from N − Rspatial. In both cases, the lower
bound of the inferred F is substantially less negative than the
IPCC AR6 estimate, and the range is about 60% narrower.
This uncertainty reduction is comparable to that found by
Andrews and Forster (47), who consider the 2005–2015 period.
The inferred F also has a smaller uncertainty than the F of
IPCC AR6 in 1920–1940 and 2000–2020 (Table 2), but the
improvement is less pronounced than in 1960–1980.

Pre-1880 Period. Our global energy budget analysis assumes
that Earth’s climate is near equilibrium in 1870–1880,
consistent with the IPCC AR6 (48). However, some studies
argue that an earlier baseline should be used because CO2
concentration increases started before 1870 (49). As a
sensitivity test, we evaluate the global energy budget for
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Fig. 2. Evaluating the global energy budget since 1880 using observation-based data. The three components examined here are: Earth’s energy imbalance N , the radiative
forcing F , and Earth’s radiative response R. Methods for deriving N , F and R are summarised in Table 2. In all panels, shading indicates the 2σ-error. F and R are both
smoothed by a 20-year running mean. The N estimate of this study is shown as the blue line in (a-c), the same in each panel. The N estimate in the dashed blue line is the
same as that in the solid blue line, except that it is computed from SST datasets without bias corrections. In (b-d), simulations from climate models are shown as pale dots,
plotted every 20 years for clarity; different panels contain different numbers of model results due to data availability. In (c), the models are split into those with a “weak” and
“strong” response to anthropogenic aerosol forcing, respectively.

1700–1880 using surface temperature change reconstructed
from palaeoclimate records (MM D). The result shows that
Earth’s energy imbalance N is dominated by responses to
volcanic eruptions in 1700–1800, without a clear sign of long-
term increase (Fig. S11). In 1860–1880, the energy imbalance
N is close to zero, consistent with our choice of the reference
period, i.e. 1870–1880.

Evaluating Climate Model Simulations

In this section, we evaluate the radiative forcing F , the
radiative response R and the energy imbalance N simulated in
17 climate models (i.e. atmosphere–ocean general circulation
models) participating in the Coupled Model Intercomparison
Project Phase 6 (CMIP6) (50) against the observation-based
estimates described in the previous section. The energy
imbalance N is available for all 17 models up to 2020, while
the radiative forcing F and radiative response R are available

for 7 models only (up to 2014 in 3 models and 2020 in 4)
because they are low priority outputs. We focus on the 1920–
1940 and 2000–2020 periods, which sample distinct phases in
the observed energy budget. Model results are shown as pale
dots in Figs. 2b-d and individually in Figs. S12-15. Methods
for deriving the global energy budget from climate models
are described in MM E and summarised in Tables 2 and 3.
All model results are smoothed by a 20-year running mean
to be consistent with the observation-based estimates.

The CMIP6 simulations of F , R and N agree with the
observation-based estimates within the 2σ inter-model spread
(Figs. 2b-d and Table 2). Notably, CMIP6 models tend to
simulate a more negative R than Rspatial in 1920–1940 (-0.10
vs. 0.00 W m−2) and a less positive F than the F of IPCC
AR6 in 2000–2020 (1.71 vs. 2.02 W m−2) (Table 2).

We next compare the CMIP6 simulations of F , R and N
in individual models against the observation-based estimates.
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Table 2. Radiative forcing F , radiative response R and Earth’s energy imbalance N from observation-based estimates and climate model
simulations. The rate of ocean heat uptake is denoted as “dOHU/dt”. All quantities are in units of W m−2 of Earth’s surface area. The 1920–1940
and 2000–2020 averages are selected to demonstrate two distinct phases in the global energy budget. The two R estimates, Rsimple and Rspatial,
are both computed from observed surface warming; the difference is that Rsimple only considers the global-mean warming, whereas Rspatial
considers the spatially-varying warming using 3D atmosphere models. For climate model simulations, the data source shows the experiment
name, with the ensemble size denoted in parentheses. The 2σ-error is derived from various sources/approaches for observation-based
estimates, but it is always computed from the inter-model spread for climate model simulations. Different climate model experiments are
contrasted in Table 3.

Observation-based estimates
Variable 1920–1940 2000–2020 Data source Uncertainty
dOHU/dt 0–2000 m 0.25±0.13 0.63±0.23 GF method perturbation of inputs
dOHU/dt >2000 m negligible 0.07±0.04 Johnson et al. (42) Johnson et al. (42)
dOHU/dt full depth 0.25±0.14 0.70±0.23 sum of previous two propagation of error
Imbalance N 0.28±0.16 0.78±0.27 dOHU/dt÷(0.90±0.06) propagation of error
Forcing F 0.23±0.28 2.02±0.82 Forster et al. (2) Forster et al. (2)
Response Rsimple -0.11±0.11 -1.07±0.74 simple model R = αT propagation of error
Response Rspatial 0.00±0.17 -1.15±0.51 atmosphere models inter-model spread
N ÷ F 1.22±1.28 0.38±0.15 N and F propagation of error
Inferred N 0.23±0.20 0.87±0.58 F + Rspatial propagation of error
Inferred F 0.28±0.21 1.93±0.54 N − Rspatial propagation of error
Inferred R 0.05±0.24 -1.25±0.71 N − F propagation of error

Climate model simulations
Variable 1920–1940 2000–2020 Data source CMIP6 variable
dOHU/dt full depth 0.15±0.14 0.71±0.29 historical (17) hfds
Imbalance N 0.16±0.15 0.72±0.28 historical (17) rsdt, rsut, rlut
Forcing F 0.26±0.19 1.71±0.54 piClim-histall (7) rsdt, rsut, rlut
Response R -0.10±0.15 -0.98±0.45 N and F (7) N/A
N ÷ F 0.61±0.58 0.43±0.17 N and F (7) N/A

For a given model, uncertainties of F , R and N are obtained
as the standard deviation of the TOA radiative flux in its
pre-industrial simulation, after applying the 20-year running
mean. This accounts for the fact that model simulations may
differ from observations because their unforced variability are
in different phases.

For the energy imbalance N , we spilt the 17 models into
those with a “weak” response to anthropogenic aerosol forcing
(9 models), and those with a “strong” one (8 models) (MM E);
their respective multi-model means are shown as the green
and red line in Fig. 2c. Eight of the nine “weak” models
simulate N that agrees with the observed N (within the
2σ-range) over 90% of the time in 1880–2010 (Fig. S12), but
only two of the eight “strong” models do so (Fig. S13). The
agreement between the observation-based and simulated N
is worse when the former is computed from SST datasets
without bias corrections (Fig. 2c compare the blue solid and
dashed line).

The radiative forcing F and radiative response R are
available for 7 of the 17 climate models. Here we use the
inferred F (N −Rspatial) and Rspatial as the observation-based
F and R, respectively. Six of the seven models simulate F
that agrees with the observation about 90% of the time in
1880–2004 (Fig. S14), while only two do so for R (Fig. S15).
Four of the seven models are the “weak” models, while the

rest are the “strong” models. The “weak” models have a
more positive F and a more negative R than the “strong”
models in the model mean (Fig. S16).

Regional Ocean Heat Uptake

The GF OHC estimate, by construction, only accounts for the
OHC change originating from the surface (16, 23); we refer
to this as the “excess” OHC change. The difference between
the observed total OHC change and the excess OHC change
gives the “redistributed” OHC change, which integrates to
zero over the global ocean volume (51, 52). In this section,
we examine the excess and redistributed contributions to the
observed total OHC change at different latitudes. We focus
on the zonal-and-depth integrated change over 0–2000 m; a
change is computed as the linear trend over 1980–2020, when
greenhouse gas forcing dominates. The observed total OHC
change is derived from the average of three in-situ datasets:
Cheng, Levitus and Ishii.

Latitudinal Distribution. The excess OHC change of this study
(i.e. the GF OHC change) has two peaks in both the Indo-
Pacific and the Atlantic, located at around 40°S and 30°N
(Figs. 3a and b, black line). For the central estimate, the
excess OHC change at high latitudes is about twice as large
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as that at low latitudes. We compare our estimate with
the Bronselaer et al. estimate (52) for excess OHC change
(Figs. 3a and b, purple line); the latter is inferred from
observed anthropogenic carbon change. The two estimates
agree with each other broadly; both of them suggest a
greater excess OHC change in the Southern Ocean than
the Zanna estimate (16) (Figs. 3a and b, red line). We
infer the OHC redistribution as the observed total OHC
change minus the excess OHC change. The result suggests
that OHC redistribution exhibits alternating positive and
negative changes across latitudes (Figs. 3c and d), consistent
with previous studies (16, 52, 53).

Regional Integral. We examine the role of OHC redistribution
in shaping the observed total OHC change for the North
Atlantic integral (30°N–90°N) and the Southern Ocean
integral (90°S–30°S). In 1980–2020, the observed global OHC
change is about 7.1 ZJ per year, equivalent to 0.45 W m−2

over the Earth’s surface. The North Atlantic accounts for
about 8% of the global change, while the Southern Ocean
account for 40%.

In the North Atlantic (Fig. 3b), the excess change of this
study (1.5 ZJ yr−1), Bronselaer et al. (52) (0.9 ZJ yr−1)
and Zanna et al. (16) (1.1 ZJ yr−1) all exceed the observed
total change (0.6 ZJ yr−1) for the central estimate; the ratio
of excess to total is 2.5, 1.5 and 1.8, respectively. This
implies a net southward heat redistribution, or a weakening
of the northward heat transport, across 30°N. Note that our
estimate of excess change is highly uncertain in the North
Atlantic (Fig. 3b), which prevents an accurate estimate of
the redistributed change there.

In the Southern Ocean (Figs. 3a and b), the excess change
of this study and Bronselaer et al. (52) are about the same as
the observed total change, especially in the Indo-Pacific sector
(Fig. 3a, numbers). This indicates that the redistributed
change is close to zero when aggregated over the Southern
Ocean, despite its marked patterns there, in contrast with
the North Atlantic case.

Summary and Discussion

Earth’s energy imbalance N , the radiative forcing F and the
radiative response R are essential quantities for monitoring
the trajectory of anthropogenic climate change; they are
linked through the global energy budget N = F + R. The
ocean volume-integrated warming dominates Earth’s energy
imbalance N on multiannual timescales. Poor observational
sampling prevents an estimate of global ocean warming before
1960, which leaves a gap in the global energy budget record.

In this study, we produce a reconstruction of global
ocean heat uptake beginning in 1880 via a Green’s function
approach that relies on surface observations, hence alleviating
the sampling issue in early periods. Our estimate of
ocean warming is consistent with those derived from in-situ
temperature profiles since 1960. From our estimate we obtain
a timeseries of Earth’s energy imbalance N , i.e. the net global-
mean top-of-atmosphere (TOA) radiative flux, since 1880.

We highlight two findings in this study. First, our
estimate of Earth’s energy imbalance N is consistent with the
current best estimates of radiative forcing F (2) and radiative
response R (Rspatial) during 1880–2020. In particular, our N
estimate reduces the discrepancy between F +R and N during

1900–1960 in previous studies (Fig. S10), improving the
understanding of historical climate change in early periods.

Second, our analysis reveals two distinct phases in the
global energy budget. In 1880–1980, Earth’s energy imbalance
N closely followed the radiative forcing F . After 1980,
however, the imbalance N increased at a slower rate than
the forcing F ; N only amounts to 38±15% of F in 2000–
2020. While the causes of those distinct phases are unclear,
this finding is consistent with recent studies showing that the
climate feedback parameter α has been more negative (stable)
since 1980 than it was in the preceding decades (45, 46). That
is, Earth’s radiative response R per unit global warming is
increasing, which promotes a more negative R, hence a lower
N/F ratio. The change in α is linked to the change in SST
warming pattern; the recent La-Nina-like pattern makes α
more negative because it increases low cloud cover (54).

A major consequence of OHU is sea-level rise through
ocean thermal expansion. The ocean thermal expansion
derived from the GF OHC estimate (this study) agrees with
that derived from the total sea-level rise minus ocean-mass
change, considering uncertainties (Fig. S17a, MM F). This
indicates that the GF OHC estimate is consistent with the
sea-level budget. Nonetheless, we note there are marked
differences in the central estimates of thermal expansion
derived from the above two approaches (Fig. S17a). This
hinders a tight constraint on OHC change from the sea-level
budget in the early 20th century.

Any systematic error in SST datasets will result in
systematic errors in our estimate of Earth’s energy imbalance
N , because SST errors are propagated to N via the Green’s
function. Past studies suggest that the cold excursion in
1900–1920 and the World War 2 warm anomaly in 1939–
1945 may be artefacts of the SST datasets, due to poor
sampling coverage and inhomogeneity of instrumentation
(24–28). We find that removing those two features produces
a N estimate that agrees better with: 1) the observation-
based TOA radiation budget (F + R) and 2) the historical
simulation of N in climate models.

Materials and Methods

A. Excess Heat and Green’s Function. Excess heat is the additional
heat entering the ocean from the surface. The governing equation
of excess heat, written in terms of excess temperature Θe, is given
by:

( ∂

∂t
+ L)Θe(r, t) = Qa(r, t), [2]

Initial condition: Θe(r, 0) = 0,

where t is time and r a 3D position vector in the ocean. Qa is
the surface heat flux anomaly relative to the climatology. L is
the 3D ocean transport operator, which evolves an ocean tracer
field forward in time; it encodes the net effect of ocean transport,
from large-scale advection to small-scale mixing. Multiplying Θe
with the specific heat and density of seawater gives excess heat.
Integrating excess heat over the global ocean volume gives global
ocean heat content (OHC) change. Diagnostics similar to Θe
have been used in the literature, for instance, the fixed-circulation
temperature change in Winton et al. (55), the added temperature
in Gregory et al. (51) and the material warming in Zika et al. (53).

The Green’s function (GF) approach solves Θe in Eq. 2 by
propagating its boundary condition Θs

e. The propagation is done
via the boundary GF G, which encodes the ocean’s surface-to-
interior transport (advection+mixing). The above process can be
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Fig. 3. Excess and redistributed OHC change integrated zonally and vertically (0–2000 m) for ocean basins. The change is computed as the linear trend over 1980–2020, and
refers to the left-hand axis. The excess OHC change is from: this study (black), Zanna et al. (16) (red) and Bronselaer et al. (52) (purple). The observed total OHC change
(green) is included for comparison. The redistributed OHC change is computed as the difference between the observed total and excess change. The basin-integrated change
is shown by the “+” sign in the rightmost portion of each panel, referring to the right-hand axis. The numbers show the changes integrated over three latitude bands, separated
by vertical dashed lines, in units of 1022 J yr−1. The colors of the numbers and the plus signs match those of the lines, indicated in the legends. Shading, horizontal bar and
the “±” sign indicate the 2σ-range.
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written as the following sum over space and time:

Θe(r, t) =
∫

Ω
d2rs

∫ t

−∞
G(rs, t − ts | r)Θs

e(rs, ts) dts, [3]

where Ω denotes the global ocean surface and (rs, ts) are coordinate
variables for surface quantities. Note that Eq. 3 is a generalisation
of Eq. 1.

The GF approach is useful because it can provide an OHC
estimate without subsurface temperature measurements; it only
requires surface temperature as input, given that the GF G is
known. For this reason, the GF approach has been used to
reconstruct OHC in the past 2000 years (56). The GF approach,
however, has a number of limitations. First, the GF is assumed
to be stationary in time, ignoring potential changes in ocean
transports due to changes in climate states. Second, estimating
the GF from observations is a highly underdetermined problem as
there are many more unknowns than tracer constraints, a challenge
compounded by poor sampling of ocean transient tracers in space
and time. Lastly, the boundary condition Θs

e is not observable and
must be partly inferred from model simulations.

B. Observational Green’s Functions. To infer the GF G from
observations, we first rewrite Eq. 3 into a general form

X(r, t) =
∫

Ω
d2rs

∫ t

−∞
G(rs, t − ts | r)Xs(rs, ts) dts, [4]

where X is the concentration of a given tracer; e.g. Θe or CFC-11.
Xs is X at the surface. Eq. 4 holds because all tracers in the
ocean experience the same ocean transports (i.e. velocities and
diffusivities) (17). Each tracer observation, i.e. X(r, t), forms a
constraint on G at r via Eq. 4. Here r and t are the location and
time of observations, respectively. A collection of n observations at
r thus forms n equations for G there. In practice, observations are
insufficient constraints of G, because the number of observations
is much smaller than the number of unknowns in G. Note that
G is a function of ocean surface locations and transit times. We
solve this underdetermined problem using the Maximum Entropy
method (18, 20). Among infinitely many G solutions that satisfy
observations, the Maximum Entropy method chooses the one that
is the most “similar” to a prior estimate of G (measured by their
“relative entropy”). This procedure can be cast into a constrained
optimisation problem and solved using standard numerical routines.

Details on formulating and solving the Maximum Entropy
problem are documented in Wu and Gregory (23) and summarised
in Fig. S1. We use four observations of tracers to infer G at
every r; they are CFC-11 and CFC-12 in the GLODAP data (57)
(observed at 1994) and the climatological temperature and salinity.
We combine these tracers together because their distributions
are primarily controlled by the climatological ocean transport.
Treatment of the observations is described in SI Appendix 1.
We generate four realisations of the GLODAP data by randomly
perturbing the central estimate with the standard error of the data.
We use G computed from two climate models and an ocean state
estimate as first-guess solutions for inferring G from observations.
The climate models are HadCM3 (1.25°×1.25°) (58) and FAMOUS
(3.75°×2.50°) (59). The state estimate is ECCO-GODAE (1°×1°)
(29). The 4 sets of observational constraints and 3 first-guess
solutions result in 12 sets of observational GFs.

A lack of diversity in the first-guess solution of G is a limitation
of this study. We only use three first-guess solutions here
because computing G requires carrying out customised ocean tracer
simulations, which have not been done in other models.

None of our first-guess solutions is derived from eddy-resolving
models. In all of them, horizontal eddy mixing of tracers is
parameterised using the Redi (60) and Gent and McWilliams
(61) schemes. Errors in eddy parameterisation affect our results
by affecting the first-guess solutions. Although observational
constraints would correct some of the errors, it is unclear how
much still remains. In future studies, deriving G with different
eddy parameterisation schemes and model resolutions would help
to address this question.

The GF OHC estimate and the Cheng OHC estimate (31) are
not fully independent, because HadCM3 is used in both, although

in different ways. To test the impact of this dependency, we
have re-computed the GF OHC estimate using the first guess
from FAMOUS and ECCO-GODAE, i.e. removing the HadCM3
information. This results in little change in our OHC estimate.

C. Ocean Heat Uptake Boundary Conditions. We refer Θs
e as “sea

surface excess temperature” (SSTe) to correspond with “sea surface
temperature anomaly” (SSTa) used in Zanna et al. (16). The
main difference between SSTa and SSTe is that the latter does
not contain ocean temperature redistribution (51). Keeping
redistributed temperature in the boundary condition may bias
the GF OHC estimate. This is because the GF method only
accounts for tracers originating from the surface, but redistributed
temperature has sources/sinks throughout water columns (23).

We estimate SSTe by combining three SSTa datasets from
observations with two SSTe simulations from climate models (SI
Appendix 2, summarised in Fig. S3). Specifically, we replace the
global mean of SSTe from climate models with the global mean of
SSTa from observations. That is, we only use the spatial anomalies
(relative to global mean) from model simulations, not their global
means. Note that we omit the difference between SSTe and SSTa
in the global mean. A model simulation suggests that SSTe is
about 0.1 K warmer than SSTa in the global mean after 1960 (23),
probably due to reduced ocean convection. This suggests that our
SSTe boundary condition may contain a cold bias in recent decades.
Both SSTa and SSTe are expressed as anomalies relative to the
1870–1880 time mean, assuming that the ocean is near equilibrium
during that period. Our result is not sensitive to small changes
in the baseline. For instance, adding a constant offset of 0.1 K to
SSTe, as suggested by Jarvis and Forster (62), only increases our
estimate of Earth’s energy imbalance N by ∼0.01 W m−2 after
1930 (Fig. S18).

We process the global mean of SSTa in two steps. The first step
applies a low-pass filter to reduce the impact from interannual heat
redistribution. The second step removes two potential biases in
SST datasets before 1960 (shown in Fig. S5), which are discussed
in the main text. See SI Appendix 2 for further information of the
two-step processing.

The SSTe used here is physically connected to the SSTa used
in MM E to derive Earth’s radiative response Rspatial. Specifically,
SSTe is the part of SSTa that originates from surface heat flux
change Qa (23). We enforce this relationship by first identifying
climate models that well reproduce the observed SSTa trends, and
then using their Qa fields to carry out SSTe simulations following
Eq. 2 (SI Appendix 2).

D. Global Energy Budget in 1700–1880 . This supplementary analy-
sis uses the same method as the main analysis for 1880–2022.
Because temperature datasets used in the main analysis are
not available before 1850, we replace them with PAGES2k data
(63), which is based on palaeoclimate proxies. The PAGES2k
temperature is used for computing Earth’s radiative response
R as well as providing the global mean for the SSTe boundary
condition, which is assumed to be globally uniform. PAGES2k
data is derived from 7 distinct reconstruction methods, each with
1000 ensemble members. The SSTe boundary condition consists of
7 members, each of which is the ensemble mean of a reconstruction
method. This choice is to reduce the cost of evaluating Eq. 3. All
7000 members are used to derive the 2σ-range for computing R.
Temperature change is computed with respect to the 1700–1750
baseline.

E. Climate Model Simulations. We use four climate model experi-
ments here. They are the coupled atmosphere–ocean experiment
historical (1850–2020) with its pre-industrial control piControl,
and the atmosphere-only experiments piClim-histall (1850–2020)
and amip-piForcing (1870–2014). In all of them, the net TOA
radiative flux is computed using TOA incoming shortwave flux
(rsdt), TOA outgoing shortwave flux (rsut) and TOA outgoing
longwave flux (rlut) from CMIP6 standard outputs. The ocean
heat uptake (OHU) rate in the historical experiment is derived
from the net downward heat flux at the sea surface (hfds). Note
that climate models tend to store a greater fraction of the TOA
imbalance in the ocean compare to observations (96% vs. 90%)
because their deficiencies in simulating melting of terrestrial ice and
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warming of solid Earth (64). The standard historical experiment
stops at 2014; we extend it to 2020 using its SSP2-4.5 (medium
emission) extension. The distinguishing features of the experiments
and our uses of them are summarised in Table 3.

E.1. Global Energy Budget Terms. The global energy budget terms
of historical simulations are derived from the historical and
piClim-histall experiments. Earth’s energy imbalance N is
derived from the net TOA flux in the historical experiment.
The contributions of radiative forcing F and radiative response
R to the energy imbalance N cannot be separated in the
historical experiment. We diagnose F using the piClim-histall
experiment (65), which is a parallel experiment to historical. The
piClim-histall, by construction, has the same F as in historical,
but zero R, because its SST and sea ice are fixed to the pre-
industrial condition. We derive R of the historical experiment
as the difference R = N − F . We use the historical experiment
from 17 models, which are listed in Table S1; seven of them have
the piClim-histall experiment: CNRM-CM6-1, GISS-E2-1-G,
IPSL-CM6A-LR, MIROC6, CanESM5, HadGEM3-GC31-LL, and
NorESM2-LM.

The amip-piForcing experiment provides an estimate of the
radiative response R due to observed SST and sea ice changes,
which are prescribed as time-varying boundary conditions, with con-
stant pre-industrial forcing (44, 46). We use the amip-piForcing
experiment from eight models: CanESM5, CESM2, CNRM-CM6-1,
HadGEM3-GC31-LL, IPSL-CM6A-LR, MIROC6, MRI-ESM2-0,
and TaiESM1. Note that the historical and amip-piForcing
experiment with a given model produce different R because their
SST and sea ice fields are different.

E.2. Model Drifts and Energy Leakage. Climate model simulations
often contain “climate drift” (unforced trends) (66) and non-closure
of the energy budget (67, 68), which are collectively referred to as
climate drift here. In practice, the climate drift can be estimated
from the steady-state simulation, and then removed from the
climate change simulation of interest, assuming the same drift to
be present in both simulations (66–68).

For the coupled simulation historical, we remove the climate
drift by removing its parallel steady-state simulation piControl.
The de-drifting substantially improves the energy conservation
in climate models. To demonstrate this we compare the TOA
radiative flux and the OHU rate (both are global means). Before
de-drifting, the TOA radiative flux is much larger than the OHU
rate in several models (Fig. S19), suggesting a non-conservation
of energy. After de-drifting, the TOA radiative flux closely
matches the OHU rate in all 17 models examined here (Fig.
S20), implying that the energy leakage is of similar size between
the historical and piControl simulation. For piClim-histall
and amip-piForcing, we remove the climate drift by removing
their 1870–1880 time mean, because they have no parallel steady-
state simulations. The late 19th-century is a common choice for
defining the steady state climate; e.g. it is used to design the
piControl experiment. The 1870–1880 is also used as the steady-
state reference for estimating OHU in this study (Table 1).

E.3. “Strong” and “Weak” Models. We classify each of the 17 climate
models as having a “strong” or a “weak” response to anthropogenic
aerosol forcing (Table S1). We classify a model as “strong” if its net
surface heat loss relative to the pre-industrial control is stronger
than 2 W m−2, averaged over the North Atlantic (30°N–65°N)
and 1950–1980, when the aerosol forcing dominates. This gives a
similar classification of models as in Robson et al. (69).

F. Sea Level Budget. The global-mean sea-level rise can be de-
composed into contributions from a) ocean-mass change and b)
ocean thermal expansion. Those are termed as the barystatic and
thermosteric component, respectively (70). We derive the global-
mean sea level and its barystatic component from observation-based
reconstructions in Frederikse et al. (71), which covers 1900–2018.
Specifically, the global-mean sea level is obtained from tide-gauge
and satellite-altimetry observations and the barystatic change is
estimated from mass change of glaciers, ice sheets and terrestrial
water. We convert OHC change (ZJ) to thermosteric change
(mm) via the expansion efficiency of heat, 0.11 mm ZJ−1. This

number is derived in Zanna et al. (16) based on climatological
ocean temperature and salinity in observations.

Data and Software Availability. Ocean heat uptake data of this
study is available at https://doi.org/10.5281/zenodo.11107298. CMIP6
data is available at https://esgf-node.llnl.gov. ECCOv4 data can
be downloaded from https://www.ecco-group.org. In-situ ocean
heat content data are downloaded from: http://www.ocean.iap.ac.cn
(Cheng), https://www.data.jma.go.jp (Ishii), and https://www.ncei.noaa.
gov (Levitus).
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Table 3. A comparison of climate model experiments used in this study.

name configuration
atmospheric com-
position

SST TOA net radiative flux is
climate change is
anomaly wrt

piControl
coupled
atmosphere–
ocean

pre-industrial predicted by model model drift N/A

historical
(1850–2014)

coupled
atmosphere–
ocean

time-varying his-
torical

predicted by model model historical N parallel piControl

piClim-histall
(1850–2014)

atmosphere-only
time-varying his-
torical

climatology of
piControl

model historical F
its own 1870–1880 time
mean

amip-piForcing
(1870–2014)

atmosphere-only pre-industrial
observations, time-
varying

observation-based R esti-
mate

its own 1870–1880 time
mean
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