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ABSTRACT
Changes in “blue water”, which is the total supply of fresh water available for human extraction over land, are quite closely related 
to changes in runoff or equivalently precipitation minus evaporation, P − E. This article examines how climate change-driven re-
cent past and future changes in the regional water cycle relate to blue water availability and changes in human blue water demand. 
Although at the largest scales theoretical and numerical model predictions are in broad agreement with observations, at continental 
scales and below models predict large ranges of possible future P − E and runoff especially at the scale of individual river catchments 
and for shorter timescale subseasonal floods and droughts. Nevertheless, it is expected that the occurrence and severity of floods will 
increase and that of droughts may increase, possibly compounded by human-driven non-climatic changes such as changes in land 
use, dam water impoundment, irrigation and extraction of groundwater. Contemporary assessments predict that increases in 21st 
century human water extraction in many highly-populated regions are unlikely to be sustainable given projections of future P − E

. To reduce uncertainty in future predictions, there is an urgent need to improve modeling of atmospheric, land surface and human 
processes and how these components are coupled. This should be supported by maintaining the observing network and expanding it 

Abbreviations: E, Evaporation; Ep, Potential evaporation; GCM, General Circulation Model; GHM, Global Hydrological Model; I, Stream and groundwater inflow; P, Precipitation; P—E, 
Precipitation minus Evaporation; Q, Runoff; X, Human water demand.
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to improve measurements of land surface, oceanic and atmospheric variables. This includes the development of satellite observations 
stable over multiple decades and suitable for building reanalysis datasets appropriate for model evaluation.

1   |   Introduction

Human societies may experience severe water scarcity when ex-
tracting a substantial proportion of “blue water”, which is the 
total supply of land surface and groundwater (Greve et al. 2018). 
Because blue water is difficult to quantify precisely, this arti-
cle uses changes in Q, or equivalently P − E, as a proxy for blue 
water changes that can be linked to climate processes and cli-
mate change in much of its analysis. In the absence of changes 
in land water storage, precipitation at the Earth's land surface, P, 
is balanced by evaporation, E, and runoff,Q such that P − E = Q. 
However, because P − E and Q analysis neglects the influence 
of important hydrological processes such as stream and ground-
water flow, and does not accurately reflect short-term changes 
in water availability where land water storage may be important 
such as during drought (Peña-Gallardo et al. 2019), we discuss 
changes in soil moisture and groundwater where observations 
and modeling allow.

A range of recent work we present has changed our view of past 
and future blue water change, motivating the need for a new re-
view. Two linked issues stand out. First, as pointed out by (Mankin 
et  al.  2019), older literature held that either warming-driven in-
creases in atmospheric evaporative demand would lead to reduc-
tions in future runoff and available blue water, or that stomatal 
closure due to increases in atmospheric CO2 would lead to reduc-
tions in evapotranspiration, increasing future available blue water. 
Contemporary assessments recognize that reductions in evapo-
transpiration due to stomatal closure are opposed by increases in 
plant leaf area that increase evapotranspiration. Both effects are 
potentially large but poorly understood, meaning that it is difficult 
to forecast changes in future blue water in many highly populated 
regions. Second, although acknowledging that large populations 
live with severe water scarcity at present, older work did not pre-
dict large increases in water stressed populations in most future 
scenarios, partly linked to the expectation that plant stomatal clo-
sure would protect water resources (Oki and Kanae 2006). More 
recent work predicts that population increases will cause large 
increases in water scarcity that are not likely to be replenished by 
increases in water supply (Wada and Bierkens 2014).

We discuss regional water cycle changes and their interaction 
with societies through five broad topics that focus on progressively 
smaller spatial scales and shorter timescales. Section  2 asks (1) 
How well do we understand changes in large-scale multi-decadal 
mean P − E and how relevant are they below continental scales? 
Section 3 asks (2) At the hydrological catchment scale most import-
ant to humans, how does multi-decadal mean P − E and runoff 
change and how do changes interact with the land surface? And 
(3) What are the current issues in theoretical and modeling efforts 
that predict P − E and blue water and how do these hamper our 
efforts to constrain future changes? Section 4 asks (4) How well 
do we understand changes in high and low P − E and runoff sub-
seasonal extremes and longer-term variability and what are their 
impacts? Section 5 asks (5) Are likely changes in human demand 
and the impacts of human activities not linked to climate change 

sustainable given expected climate change-driven changes in blue 
water supply? In summary, we find that there is broad agreement 
between observations and model simulations above continental 
scale and over multi-decadal timescales, and that this is in line 
with the expectations of basic theory. However, below continental 
scale and especially for seasonal timescales and below, there are 
large differences between simulations from different models and 
between model simulations and observations. This is particularly 
the case where coupling between atmosphere and land surface are 
important, such as for drought. Great uncertainty stems from the 
heterogeneity of the land surface, our lack of knowledge of land 
surface processes and fundamental differences between whether 
and how those processes are represented in models and how land 
and atmosphere models are coupled. As with the use of P − E and 
Q for estimating changes in blue water availability, specific metrics 
that are used to assess components of the hydrological cycle may 
have limitations but their use may be necessary where more accu-
rate options are not available. For example, evaporative demand 
may be an inadequate proxy for evaporation where land surface 
processes or moisture availability constrain surface water loss. 
However, available data or limited understanding may make esti-
mation of true evaporation impractical and hence evaporative de-
mand has been used by many studies including some we describe. 
All of these large uncertainties make it very difficult to assess 
whether future changes in human water demand are likely to be 
met by available supply. Nevertheless, future projections suggest 
that large increases in human water demand expected in some 
highly populated regions already under high water stress may not 
be satisfied by increases in water supply.

In Section 6 we conclude with recommendations for future obser-
vational campaigns, and modeling and theoretical work that we 
believe would improve our understanding of future water cycle 
changes. We believe that maintaining the existing observing 
network is vital and argue that it should be extended to improve 
observation of poorly constrained quantities such as evaporation 
and precipitation over both land and ocean, and river discharge 
and water mass balance over land as well as human impacts on 
land use and water consumption. New modeling and theory that 
improve representation of small-scale and poorly understood pro-
cesses are important, including those that take advantage of new 
developments in kilometer-scale simulations and machine learn-
ing. The production and analysis of kilometer-scale simulations 
are useful not only in themselves but also for the training of low-
resolution models or those that use new machine learning tech-
niques and that allow the production of much larger numbers of 
simulations at lower computational cost.

2   |   Changes in the Large-Scale Multi-Decadal 
Mean Water Cycle

Uncertainty in assessments of future changes in water cycle 
variables is substantial, and depends on uncertainty in emis-
sions that drive climate change, internal climatic variability, 
and deficiencies in modeling and observing systems (Douville 

 17577799, 2025, 2, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
cc.70005 by T

est, W
iley O

nline L
ibrary on [10/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



3 of 21

et al. 2021). In particular, precipitation over land at continental 
scales and below shows large variations in space and time and 
can depend on the details of atmospheric circulation and subtle 
interactions between the atmosphere and the surface.

Projections of regional changes in future climate are made 
using numerical global climate models (GCMs) (Christensen 
et al. 2013; Douville et al. 2021). As we discuss below, contem-
porary GCMs cannot normally be used alone to make reliable 
forecasts at the spatial scale of hydrological catchments, which 
are the drainage basins of large, ocean-reaching rivers (Dai 
et al. 2009), or at the timescale of sub-seasonal extreme water 
cycle changes. However, they remain primary tools for predict-
ing future changes in large-scale precipitation and atmospheric 
demand for evaporation, which are fundamental to understand-
ing changes in blue water. An important activity is comparing 
climate model simulations of the past to observations to improve 
understanding of both models and observations and to inform 
our confidence in model projections of the future. In this review, 
we present results from the Coupled Model Intercomparison 
Project Phase 5 (CMIP5) (Taylor et al. 2012) and Phase 6 (CMIP6) 
(Eyring et al. 2016) experiments, which collate simulations from 
current climate models.

Changes in future global-mean time-mean P − E are con-
strained to be small because atmospheric water storage is com-
paratively small. Changes in separate global-mean P or E are 
not well-observed. Satellite-based estimates over the ocean 
have only been available since 1979 and land-based observing 
stations are not uniformly distributed. Surface observations 
of E are particularly sparse and not available before the 1990s 
(Dorigo et al. 2021). Over land, gridded estimates of E are made 
using water balance models driven by satellite data or using 
machine learning algorithms trained using point observations. 
Despite differences between estimates of E, there is broad agree-
ment in multi-annual mean E and P − Q derived from surface-
based precipitation and river discharge measurements (Miralles 
et al. 2016). Changes of both P and E are likely to be of the order 
of a few % per °C global-mean surface air temperature warming, 
based on available observations (Adler et al. 2017) and theoret-
ical studies that use energy and water conservation arguments 
to constrain changes (Fläschner et al. 2016). These conservation 
arguments are useful down to length scales over which the water 
and energy cycles can be considered approximately closed—per-
haps as small as 4000 km (Muller and O'Gorman 2011; Dagan 
et  al.  2019)—but do not constrain changes at smaller scales, 
meaning that local P changes in particular could be much larger. 
Understanding global scale P and E is important for building 
and evaluating physical models of climate change, but is less 
relevant to local impacts on human populations. Global-mean 
changes have been reviewed extensively elsewhere (Hegerl 
et al. 2015; Allan et al. 2020) and we do not discuss them further.

For multi-decadal mean continental-scale and zonal-mean 
changes in P − E, a body of theory exists that can help to identify 
useful climate change metrics and highlight areas for improve-
ment in modeling and observing systems. Of particular inter-
est are scalings that link changes in P − E to changes in better 
observed and better understood quantities such as near surface 
air temperature, TS, and specific humidity, q. Zonal-mean large-
scale multi-decadal mean Δ(P − E) over the oceans broadly 

follows the Held and Soden “wet-get-wetter, dry-get-drier” 
(WWDD) scaling (Held and Soden 2006) in both modeling and 
observational studies. By water conservation, P − E must equal 
the local atmospheric moisture convergence in the time-mean. 
If changes in horizontal atmospheric moisture flux are domi-
nated by changes in moisture and not changes in winds, and it 
is assumed that oceanic q increases so as to maintain constant 
surface relative humidity (1

q

dq

dTS
= � ∼ 7 % per °C at present-

day Earth surface temperatures) then it is possible to estimate 
Δ(P − E) over ocean as the product �(P − E)ΔTS. WWDD is a 
reasonable representation of future multi-decadal mean zonal-
mean oceanic changes for climate models (Taylor et al. 2012; Li 
et al. 2013; Douville et al. 2021) when ΔTS is known (Figure 1a). 
Observations of surface salinity since the 1950s are also con-
sistent with this picture (Durack et  al.  2012; Grist et  al.  2016; 
Douville and Cheng 2024).

Over land, the wettest and driest percentiles of multi-decadal 
mean precipitation have also become wetter and drier respec-
tively over the past 30 years (Schurer et  al.  2020). However, 
at geographical locations, WWDD does not apply (Greve 
et  al.  2014). Notably it cannot produce reductions in multi-
decadal mean land P − E found in some regions in all CMIP6 
models because multi-annual-mean P − E and ΔTS are always 
positive over land. Byrne and O'Gorman proposed an extended 
scaling (Byrne and O'Gorman 2015) accounting for changes in 
land surface relative humidity, temperature gradients, and how 
these are mediated by transient atmospheric eddies (cyclones). 
The extended scaling improves the estimate markedly over land 
in the extratropics (Figure 1b, green), but less so in the tropics 
where the neglected influence of changes in mean circulation is 
important (not shown). Pietschnig et al. (Pietschnig et al. 2019) 
approximated changes in multi-decadal mean tropical land P 
through the difference between changes in local and tropical 
mean relative humidity, effectively parameterizing spatial shifts 
in the mean circulation. In contrast to Byrne and O'Gorman, 
they neglected the influence of transient eddies, which are less 
important to moisture transport in the tropics than in the extra-
tropics. If we further assume that the evaporative index, E ∕P, 
is unchanged under climate change—effectively linearising the 
Budyko relationship (see Box  1) – then Δ(P − E) ≃ (1 − �)ΔP, 
where � is control climatological mean E ∕P. This yields a rea-
sonable estimate of zonal-mean land Δ(P − E) in the tropics 
(Figure 1b, solid red). Note, however, that the fraction of P that 
becomes E is likely to change in ways that are difficult to predict 
in future due to uncertain land surface processes, and this is 
likely to have large impacts on regional blue water availability, 
as we discuss in the next section.

Another substantial obstacle to both the Pietschnig and Byrne 
and O'Gorman estimates is our lack of understanding of changes 
in future relative humidity over land. Progress has been made, 
however, in estimating associated changes in specific humidity, 
q. If we assume that oceanic q increases with TS so as to maintain 
constant oceanic relative humidity, and atmospheric sources 
and sinks of q see the same percentage increase as oceanic 
q, then q over land is expected to increase by the same percent-
age amount as q from its ultimate oceanic source (Rowell and 
Jones 2006). The oceanic source is usually taken to be mean oce-
anic q at the same latitude as the land in question. This method 
provides good estimates of multi-decadal mean Δq in most land 
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regions when compared to observations or future changes pro-
jected by climate models (Byrne and O'Gorman 2018; Chadwick 
et al. 2016b), although there are weaknesses in regions of large 
changes in land-atmosphere interactions such as Amazonia. 
Combining this estimate of land q change with the Pietschnig 
et al. estimate of Δ(P − E) change yields a reasonable estimate of 
multi-decadal mean tropical Δ(P − E), which is useful as a con-
sistency check (Figure 1b, dashed red). A climate model must 
be used to calculate land ΔTS, however, as relative humidity de-
pends on both TS and q. It is important to note that observations 
suggest a larger decrease in multi-decadal mean land relative 
humidity than expected from theory or models, although defi-
ciencies in measurements cannot be ruled out (Dunn et al. 2017; 
Willett et al. 2020; Simpson et al. 2023). It is difficult to deter-
mine causes for relative humidity changes using observations 
alone, but 1979–2014 mean changes in relative humidity appear 
to be associated with reductions in land evapotranspiration in 
some regions in addition to oceanic influences (Vicente-Serrano 
et al. 2018). Oceanic influences include land relative humidity 
reductions that are expected as the land warms more than the 
ocean while importing oceanic q that increases only to main-
tain constant oceanic relative humidity as explained above 
(Joshi et  al.  2008; Byrne and O'Gorman  2013). A GCM study 
using four CMIP5 GCMs demonstrated that land surface pro-
cesses linked to soil moisture should tend to increase modeled 
reductions in multi-decadal mean zonal-mean relative humidity 

under warming (Berg et al. 2016). We discuss the link between 
land surface processes, relative humidity and evaporation fur-
ther in the next section.

An interesting aspect of these large-scale scaling arguments 
is that they link Δ(P − E) to changes in temperature but not 
directly to radiative forcing that drives climate change. 
Radiative forcing can produce “rapid adjustments” to P and 
E associated with how forcing is absorbed in the atmosphere 
and at the surface that produce climate impacts on times-
cales of a few months to a few years (Richardson et al. 2018). 
Although changes in large-scale precipitation in climate mod-
els are dominated by the surface temperature-driven com-
ponent, at continental scales and below the direct effects of 
radiative forcing are more substantial and must be considered 
separately—even for comparatively spatially-uniform CO2 
forcing (Dunning et  al.  2018). Future scaling arguments for 
regional climate change might therefore also include forcing 
terms, particularly in regions of strong aerosol forcing. Due to 
their short lifetime, the radiative effects of aerosol are often re-
gional, driving gradients in atmospheric and surface heating, 
that can be associated with regional precipitation changes, 
such as in the monsoon regions (Bollasina et  al.  2011) and 
the Sahel (Zhang et  al.  2021), and associated with shifts in 
the zonal peak of tropical precipitation in the intertropical 
convergence zone (Rotstayn and Lohmann  2002). A wide 

FIGURE 1    |    Theoretical estimates of zonal-mean 2081–2100 SSP585 minus 1995–2014 historical Δ(P − E) compared with model output: 
Simulation results for 21 CMIP6 models mean (black) and maxima and minima (orange shading), and theoretical estimates of CMIP6 mean from 
Held and Soden WWDD equation 6 (Held and Soden 2006) (blue), Byrne and O'Gorman equation 7 (Byrne and O'Gorman 2015) (green), Pietschnig 
et al. equation 3 (Pietschnig et al. 2019) multiplied by (1 − �), where � is 30°N—30°S 1995–2014 mean P ∕E (red), and Pietschnig et al. when changes 
in q are estimated via oceanic moisture scaling using Chadwick et al. equation 1 (Chadwick et al. 2016b) and taking the oceanic moisture source to be 
mean near surface oceanic 30°N—30°S q (red-dashed). (a) Ocean-only. The maximum value extends to 2.41 mm day−1 in the tropics due to CESM2-
WACCM. Other models are below 1.5 mm day−1 at all latitudes. (b) Land-only. Due to data availability, the Byrne and O'Gorman extratropical esti-
mate is only available for 11 CMIP6 models. Taking the same model subset for the other results does not make a qualitative difference (not shown). 
CMIP6 data are described by (Eyring et al. 2016).
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range of aerosol effects on cloud and hence precipitation have 
been hypothesized, but their impact remains uncertain (Stier 
et al. 2024).

Overall, observations, theory and modeling suggest that WWDD 
adequately describes long-term mean zonal Δ(P − E) over ocean. 
Over land, a pattern of tropical and mid-latitude P − E increase 
and subtropical decrease is still seen, but changes are compli-
cated by changes in relative humidity, atmospheric circulation 
and the direct effects of radiative forcing, especially below con-
tinental scales. Future theoretical work that constrains climate 
change regionally and on shorter timescales will be useful be-
cause current climate models predict substantial but uncertain 
changes at these scales that can be masked by taking the model 
ensemble-mean (Chadwick et  al.  2016a) and the time-mean 
(Duan et al. 2023).

3   |   Changes in the Time-Mean Catchment-Scale 
Water Cycle

3.1   |   Understanding Observed and Modeled 
Changes at the Catchment-Scale

River catchments are the drainage basins of large ocean-
reaching rivers (Dai et  al.  2009). The spatial scale of catch-
ments is local but potentially more relevant to assessments 
of blue water availability than smaller scales across which 
water transfers can more easily occur (Schewe et  al.  2014). 
Catchment analysis is also useful for model development and 
verification because streamflow observations can be used to 
verify modeled runoff (Dai 2021). At the catchment scale, the 
Budyko framework can provide a helpful conceptual sum-
mary of how E is linked to P and atmospheric demand for 

BOX 1    |    Aridity Index and the Budyko Framework.

A popular form of the Budyko framework is the Fu equation (Fu 1981), which relates land E to Ep, P and a catchment parameter 
calibrated to local data, �. Important physical processes are concealed by �, such as precipitation frequency, whether precipita-
tion falls as rain or snow, land surface processes such as water transport and vegetation functioning, and timing of water demand 
versus supply (Padrón et al. 2017). Where these change with climate change, the Budyko framework does not describe catchment 
level ΔQ and therefore Δ(P − E) accurately. Nevertheless, the framework does provide a concise description of the relationship 
between ΔP and ΔQ as a function of aridity index, Ep ∕P, and assists in the interpretation of the effects of climatological biases in 
P, E and Ep. (Note that the Budyko framework was originally established to analyze differences between different catchments. 

Here we analyze differences due to climate change in individual catchments. This choice is justifiable as we treat each catchment 
separately and do not calibrate analysis across multiple catchments (Berghuijs and Woods 2016).)

Panel a shows how increases in Ep lead to increases in E at a given value of P, limiting water available for Q and therefore human 
extraction for three sample values of � under the Fu equation. Climates with higher Ep ∕P are termed arid or “water-limited” 
because evaporation varies principally with precipitation and may approach E = P (dotted horizontal line on panel a). Less arid 
climates have Ep < P and are termed “energy-limited”: precipitation is plentiful and changes in evaporation more strongly resem-
ble E = Ep (dotted diagonal line).
Panel b demonstrates how a bias in precipitation climatology can lead to a large error in the predicted change in evaporation by 
showing the relationship between evaporation and precipitation at one value of Ep. An increase in precipitation, ΔP, occurs in an 
arid climate with low P∕Ep. This leads to a large increase in E and a small increase in Q, by water conservation, as demand for 
evaporation is high relative to precipitation supply (red lines). If the same ΔP instead occurs in a non-arid climate with high P∕Ep
, then the increase in E is slight and the increase in Q will be large as evaporative demand is almost satisfied by climatological 
rainfall (blue lines).
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evaporation, Ep, when changes in land water storage, land 
cover and vegetation functioning can be assumed to be neg-
ligible (Roderick et al. 2014) (see Box 1). The Budyko frame-
work implies that the evaporative index, E ∕P, is expected to 
increase with the aridity index, Ep ∕P. At low aridity index, 
P is relatively plentiful, and changes in E are dominated by 
changes in atmospheric demand, Ep. At high aridity index, P 
is small compared with Ep and changes in E are dominated by 
changes in P. Hence, over higher P land regions, increases in 
aridity index due to greater atmospheric demand for evapora-
tion driven by warming would be expected to reduce runoff 
and groundwater. Observations of the 20th century, however, 
show both increases and decreases in aridity index in the time 
mean (Greve et al. 2014) and few catchments with statistically 
significant changes in streamflow (Dai 2016, 2021).

A contributing factor in observed changes may be plant phys-
iology, which exerts multiple opposing influences on surface 
evapotranspiration. Two important effects that occur in re-
sponse to increases in atmospheric CO2 concentration are (1) 
plant stomatal closure, which increases surface resistance to 
evapotranspiration, reducing Ep and hence E (Swann et al. 2016; 
Yang et al. 2019), and (2) increases in leaf area which increase 
evapotranspiration (Mankin et al. 2019; McDermid et al. 2021). 
Tree ring evidence for the past few decades is inconclusive as to 
what extent decreases due to stomatal closure or increases due 
to increased leaf area dominate plant effects on multi-decadal 
mean evaporation (Douville et al. 2021) with responses differ-
ing regionally (van der Sleen et al. 2015; Guerrieri et al. 2019). 
Meanwhile, observations of Australia for recent decades see 
streamflow reductions and increases in evapotranspiration 
(Ukkola, Prentice, et  al.  2016; Trancoso et  al.  2017), although 
(Ukkola, Prentice, et al. 2016) note statistically insignificant in-
creases in streamflow and decreases in streamflow in both very 
wet energy-limited and very arid catchments. Evidence from 
model simulations is mixed, with some studies finding that 
changes in stomatal conductance dominate (Swann et al. 2016; 
Yang et  al.  2019), and some finding that changes in leaf area 
dominate (Mankin et al. 2017, 2018, 2019; McDermid et al. 2021; 
Verma and Ghosh  2024). A further complication is that in-
creases in leaf area index have been found to increase precipita-
tion by increasing land surface moisture recycling in both recent 
observations (Cui et  al.  2022) and model simulations (Zeng 
et al. 2018; McDermid et al. 2021; Lesk et al. 2025) leading to 
increases in P − E with warming in some regions. Multi-decadal 
mean streamflow changes are also influenced by shorter-term 
variations in other climate variables. Changes in the seasonality 
and shorter timescale variations of P, whether P falls as rain or 
snow and the relationship between the seasonal cycles of P and 
Ep control streamflow to different degrees in different climate 
regimes in addition to land surface controls from topography 
and vegetation (Padrón et al. 2017).

Overall it seems likely that changes in P are the dominant cause 
of changes in multi-decadal mean P − E in 20th century obser-
vations (Yang et al. 2018). P shows both increases and decreases 
that are strongly related to shifts in atmospheric circulation 
tied to both climate change and internal climatic variability 
(Chadwick et  al.  2016a; Vicente-Serrano, Dominguez-Castro, 
et al. 2021; Vicente-Serrano, Garcia-Herrera, et al. 2021). CMIP5 
and CMIP6 21st century projections of Δ(P − E) vary regionally, 

with increases in the tropics, a muted response or decreases in the 
mid-latitudes and increases at high latitudes (Swann et al. 2016; 
Mankin et al. 2017, 2019; McDermid et al. 2021), broadly reflect-
ing the zonal mean shown in Figure  1b. Changes in regional 
precipitation remain key to Δ(P − E) (Roderick et al. 2014; Yang 
et al. 2018), with plant effects amplifying or reducing changes.

The Budyko framework also does not explicitly consider soil 
moisture. Although, in general, high P low aridity regions 
would be expected to have high soil moisture and low P high 
aridity regions would be expected to have low soil moisture in 
the multi-decadal mean, further insight into climate change re-
sponses is gained by analyzing soil moisture directly. In GCMs 
it has been established that the largest climate change impacts 
of land-atmosphere interactions are seen in “transitional” en-
vironments on the boundary of moisture-limited and energy-
limited states (Koster et al. 2004; Seneviratne et al. 2010). Duan 
et  al. analyzed daily-mean 30°N—30°S warm season changes 
in response to a 4× CO2 increase in CMIP5 and CMIP6 GCMs 
(Duan et al. 2023). Although there are large inter-model differ-
ences, in the model-mean they found that critical soil moisture 
values that separate energy and moisture limited environments 
move to lower values of aridity. This leads to large reductions 
in latent heat flux in transitional regimes even as Ep increases, 
and larger values of surface temperature increase in transitional 
regimes compared with all but the most arid desert regimes. 
The result is an increase in P − E with warming in transitional 
regimes that occurs because E decreases more strongly than P. 
The authors emphasized the importance of analyzing daily data 
because differences in climate change response occur not only 
in the mean but also through the redistribution of P − E on daily 
timescales and that redistribution depends on the soil moisture 
regime. As with long-term mean changes analyzed above, high 
P energy-limited regimes show increases in P − E dominated by 
increases in P and low P moisture-limited regimes show only 
small changes in P − E associated with small changes in P.

3.2   |   Numerical Modeling of Future Blue 
Water Change

Contemporary projections of future blue water change are typi-
cally made using detailed numerical land surface global hydro-
logical models (GHMs) that take meteorological driving data 
from GCMs but are uncoupled from them and the GCMs own 
land surface schemes (Schewe et al. 2014). On the face of it, this 
seems a sensible choice, as driving data may be corrected to re-
move biases that may impact changes in runoff and blue water. 
However, as we explain here, the use of uncoupled GHMs also 
has drawbacks.

Although the difference between GHMs and GCM land sur-
face schemes is not well-defined, GHMs typically focus on 
representing a range of hydrological processes (e.g., infil-
tration, runoff and streamflow) whilst climate model land 
surface schemes focus more on the land surface energy and 
carbon budgets (Haddeland et  al.  2011). As above, because 
GHMs represent surface processes only, simulations of future 
changes must be driven by estimates of changes in precipita-
tion and other atmospheric variables taken from elsewhere. 
These are usually provided from GCM output, meaning that 
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GHM projections of hydrological change will still contain 
errors associated with climate models. Climate model sim-
ulations show errors in predicting the observed time-mean 
state and long-term historical changes for both relative hu-
midity (Douville and Plazzotta  2017; Dunn et  al.  2017) and 
precipitation (Mehran et  al.  2014; Koutroulis et  al.  2016; 
Vicente-Serrano, Dominguez-Castro, et  al.  2021; Vicente-
Serrano, Garcia-Herrera, et al. 2021). The non-linear form of 
the Budyko framework shows how even the mean state bias 
for precipitation has the potential to impact GHM predic-
tions substantially. A precipitation change, ΔP, will produce 
a larger Δ(P − E) where the climatological aridity index is low 
and a smaller Δ(P − E) where the climatological aridity index 
is high (see Box 1). Projections of future hydrological change 
are therefore made by removing biases in climate model out-
put with respect to present day observations before applying 
the data to GHMs. However, using GHMs driven by bias-
corrected GCM data introduces at least two potential prob-
lems into GHM predictions as we discuss below: (i) GHMs 
are tuned to reproduce present day streamflow, meaning that 
successful validation against recent historical observations 
may lead to overconfidence in their ability to represent future 
streamflow changes and (ii) Incompatibilites between repre-
sentation of physical processes in GHMs and driving GCMs 
may lead to errors such as double counting of some physical 
effects.

We analyze an ensemble of runs from three GHMs driven by 
bias-corrected data from four CMIP5 GCMs (making a total of 
12 runs each for a variety of CMIP5-era RCP scenarios) from 
the Inter-Sectoral Impact Model Intercomparison Project 
(ISIMIP) (Warszawski et  al.  2014). The three GHMs differ 
widely in formulation. H08 (Hanasaki et  al.  2008) is an ex-
tension of the simple Manabe bucket model (Manabe  1969), 
which represents the land surface as a set of finite capacity 
buckets whose evaporation is equal to EP when the buckets 
are full but decreases once the amount of water in a bucket 
decreases below some threshold. H08 introduces irrigation, 
reservoirs and a simple representation of crops through a 
series of empirical relationships, and has a surface energy 
budget formulation that is able to represent the diurnal cycle. 
Hanasaki et al.'s approach was that a relatively simple GHM 
formulation simplifies parameter estimation and helps avoid 
overfitting of empirical model components that may lead to 
overconfidence in hydrological projections. PCR-GLOBWB, 
on the other hand, is a much more complex model, that addi-
tionally simulates a wide range of empirical relationships for 
snow, inflitration and runoff, transpiration and evaporation, 
vertical water fluxes, interflow, baseflow and other vegetation 
and soil processes (Wada et al. 2014). WaterGAP is interme-
diate in complexity between H08 and PCR-GLOBWB (Müller 
Schmied et al. 2014).

Contemporary GCM land surface schemes and GHMs are in-
creasingly difficult to differentiate from one another (Haddeland 
et  al.  2011). However, some clear differences remain between 
sophisticated GHMs such as PCR-GLOBWB and sophisticated 
land surface schemes such as JULES (Best et  al.  2011) and 
CLM (Lawrence et  al.  2019) that were used in CMIP6. First, 
although containing a simple representation of plants, the 
GHMs do not consider the land carbon cycle explicitly, either 

ignoring or representing plant function without reference to 
conservation of energy or carbon fluxes. This includes the ne-
glect of changes in leaf area and plant stomata, which may in-
crease or decrease evapotranspiration in a high CO2 climate as 
discussed above, potentially leading to systematic differences 
between GHM and GCM predictions that occur in addition to 
pseudo-random differences introduced by other differences in 
formulation. Second, GHMs are tuned by catchment to repro-
duce present day streamflow as closely as possible. GCM land 
surface models are not. This tuning may lead to an illusory 
superiority of GHMs over GCMs when comparing simulations 
of the recent past to observations. In addition, we should note 
that although GHMs can indeed simulate 20th century evapo-
transpiration and streamflow interannual variability and trends 
adequately (Zhang et al. 2016), they are less able to reproduce 
observed extremes. GHMs show “low to moderate” ability to 
represent annual seven-day-maxima (Do et al. 2020) and strug-
gle to represent drought frequency and persistence (Tallaksen 
and Stahl 2014). Performance below continental scale is better 
when observations-derived input data are used rather than bias-
corrected climate model data, however, suggesting the impor-
tance of unforced climate variability to 20th century streamflow 
(Do et al. 2020).

GCM land surface schemes can be run either “offline” driven 
by but uncoupled from a model atmosphere as in GHM sim-
ulations or “online” coupled fully-interactively to a model 
atmosphere as in GCM simulations. Comparison of the two 
configurations shows that coupling to the atmosphere can 
impact predictions of surface water and energy fluxes sub-
stantially. Analysis of EP calculations shows that offline cal-
culations do not reproduce online CMIP5 GCM calculations, 
even when using a formulation that is conceptually very sim-
ilar (i.e., Penman-Monteith) (Milly and Dunne  2016, 2017). 
Laguë et al. made a direct comparison by imposing the same 
change in the land surface (albedo, evaporative resistance, and 
roughness) and calculating changes in surface temperature re-
sulting from solving either the surface fluxes and atmospheric 
state simultaneously in a GCM (online), or the surface fluxes 
with the atmospheric fields imposed as inputs (offline) (Laguë 
et al. 2019). Allowing the atmosphere to adjust to changes in 
the surface as in the online simulation amplifies the tempera-
ture responses by more than 50% almost everywhere.

The relevance of the coupling issue to bias-corrected GHM pre-
dictions is twofold. First, calculating surface fluxes offline is 
subject to the inconsistency between the climate state and the 
expected surface fluxes described above even if the same equa-
tions are used. Second, GHMs and GCMs may use different for-
mulations for surface fluxes, which also means that processes 
included in the atmospheric state are not necessarily included 
in the offline calculation—especially plant responses as dis-
cussed earlier (Milly and Dunne 2016; Swann et al. 2016). This 
could lead to double counting. For example, if relative humid-
ity decreases due to stomatal closure in a GCM due to its own 
land surface model, then this is perceived by an offline GHM 
calculation as a greater atmospheric demand leading to larger 
evaporation, while in the GCM land surface model, it is actu-
ally associated with smaller evaporation. These issues are po-
tentially compounded if the atmospheric information is being 
bias corrected.
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The ISIMIP ensemble allows direct comparison of raw CMIP5 
GCM and bias-corrected CMIP5 GCM-driven GHM results 
(Warszawski et  al.  2014). Ensemble-mean GHM predictions 
show that both positive and negative P − E time-mean changes 
are expected in the upper mid-range RCP6.0 scenario for a 
range of large river catchments (Figure 2). Comparing these 
with ensemble-mean raw projections of the driving CMIP5 
models, discrepancies are large in some cases, with CMIP5 
predicting increases in P − E where ISIMIP predicts decreases 
and vice-versa. CMIP5 GCMs show substantial evaporation 
biases in the present-day land-mean compared with estimates 
from reanalysis and observations that have been attributed 
to biases in precipitation, implying aridity biases in CMIP5 
output. The GCMs show regions of both positive and negative 
bias, but the land-mean bias is positive in the large majority of 
models (Mueller and Seneviratne 2014). Here, we apply a sim-
ple aridity index bias correction of the CMIP5 data using the 
Budyko framework (Osborne and Lambert 2018) that reduces 
disagreement between CMIP5 and ISIMIP projections for most 
of the largest differences (Figure 2c). However, the aridity ad-
justed differences remain substantial, indicating that more 
than climatological aridity errors in CMIP5 separate CMIP5 
and ISIMIP predictions. There also does not appear to be an 
obvious systematic difference between the ISIMIP and CMIP5 
results that could be explained by the fact that ISIMIP GHMs 
ignore vegetation responses whereas CMIP5 GCMs consider 
them (Fowler et al. 2019; Yang et al. 2019). Still, the Budyko 
framework is only one method for attempting to understand 
and correct model biases. An alternative approach by Lehner 
et al. used a linear model of the form ΔQ = aΔP + bΔT, where 
a and b are constants estimated from observed interannual 
variability, and a GCM-derived estimate of the vegetation re-
sponse to changing atmospheric CO2 concentration is added. 
They found that estimates of future multi-decadal mean ΔQ 
derived from CMIP5 ΔP and ΔT and the linear model showed 
reduced inter-model disagreement in two of three North 
American catchments they investigated compared with raw 
GCM estimates (Lehner et al. 2019).

Future climate-driven changes in groundwater, which is a key 
component of blue water in many parts of the world, have been 
predicted using both coupled GCMs and offline GHMs. Using 
the CNRM fully-hydrogeologically coupled GCM, Costantini 
et  al. find that water table depth reduces (approaches the 
surface indicating a larger supply of groundwater) on aver-
age in both historical and future scenario simulations, but 
with increases in areas that also see reductions in runoff and 
soil moisture in many CMIP5 and CMIP6 models, such as 
Western North and South America, the Mediterranean, and 
parts of East Asia (Costantini et al. 2023). Reinecke et al. used 
eight ISMIP GHMs driven by four different GCMs to inves-
tigate groundwater recharge rate. Crucially, they used not 
only GHMs with limited representation of vegetation includ-
ing H08, WaterGAP, and PCR-GLOBWB, but also CLM4.5, 
JULES, CLM4.5 LPJmL, and MATSIRO, that represent plant 
effects including changes in stomatal conductance and leaf 
area index. Ensemble means broadly support the conclusions 
of (Costantini et al. 2023). However, there are large differences 
between results from different models, with the choice of GHM 
rather than the choice of driving GCM typically dominating 
uncertainty. GHMs that represent plant effects generally show 

more positive changes in groundwater recharge than other 
GHMs, but disagreements between GHMs that represent plant 
effects are substantial, highlighting the importance of other 
model uncertainties (Reinecke et al. 2021).

It is clear that continued effort in detailed hydrological mod-
eling, including vegetation representation, and how hydro-
logical models are connected to the atmosphere is important. 
Although modeling of vegetation responses to increasing CO2 
remains very uncertain (Kolby Smith et  al.  2016), the inclu-
sion of plant responses in GHMs will not only improve their 
representation of physical processes but also their consistency 
with GCMs that are used to drive them. We have focused on 

FIGURE 2    |    Maps: Raw CMIP5 (top) and ISIMIP (middle) catch-
ment mean changes in RCP6.0 runoff for 2061–2090 with respect to 
1961–1990 for the GFDL-ESM2M, IPSL-CM5A-LR, HadGEM2-ES, and 
MIROC5 CMIP5 models. Catchments for which CMIP5 and ISIMIP 
means have opposite signs are indicated by hatching. Scatter (bottom): 
Raw ensemble-mean catchment-mean CMIP5 and Budyko-corrected 
changes plotted against ISIMIP. Budyko-corrected estimates are cal-
culated using equation 8 from (Osborne and Lambert 2018) and bias-
corrected to observations as described in Section 3.2 of the same arti-
cle. Correction does not substantially improve agreement between raw 
CMIP5 values and ISIMIP, but some of the largest differences are re-
duced. CMIP5 data are described by (Taylor et al. 2012) and ISIMIP data 
are described by (Warszawski et al. 2014).
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land surface simulation, but deficiencies in atmosphere and 
ocean modeling are also vital to errors in predicting future 
blue water change. All models of the Earth's climate solve 
the equations of thermodynamics and fluid dynamics on a 
resolved model grid and employ physically motivated but ap-
proximate parametrizations to represent poorly understood 
processes that typically occur below grid scale. Increases in 
available computing resources have meant that atmospheric 
models that permit explicit simulation of the key process of at-
mospheric convection can now be integrated globally (Stevens 
et  al.  2019), but even these models must still parameterize 
small-scale mixing and microphysical processes.

Contemporary gridded evapotranspiration datasets against 
which to benchmark models are made either by using ma-
chine learning methods to interpolate between sparse point 
measurements from eddy covariance towers or lysimeters, 
or by using satellite data to drive simple land surface mod-
els (often based on the Penman-Monteith or Priestley-Taylor 
equations). Global land-mean values are fairly similar across 
different methods and similar to results found for GCM land 
surface schemes driven by atmospheric reanalysis data (Pan 
et al. 2020). All datasets show positive land-mean trends since 
the 1980s, attributed to increases in leaf area, evaporative 
demand and precipitation, with leaf area playing the largest 
role (Yang et al. 2023). However, the magnitude of the trend 
varies greatly between different observed estimates. Methods 
that consider plant stomatal effects directly show smaller 
sensitivity of evaporation increases to leaf area increases 
(Forzieri et  al.  2020), but overall trends over recent decades 
can be greater or less than for methods that do not consider 
stomatal effects (Pan et  al.  2020; Yang et  al.  2023). Land-
mean trends predicted by GCM land surface schemes driven 
by reanalysis data are smaller than most observed estimates 
for 1982–2011, although agreement between land surface 
schemes and the Global Land Evaporation Amsterdam Model 
(GLEAM) (Martens et al. 2017), which shows smaller trends 
than some other observed estimates, is closer (Pan et al. 2020). 
Time-mean land-mean values and spatial patterns of Ep cal-
culated using the Penman-Monteith and Priestley-Taylor 
equations shows broad agreement for the latest CMIP6 GCMs 
when compared estimates based on reanalysis and observa-
tions (Bjarke et al. 2023). Despite this, the latest CMIP6 GCMs 
still show substantial time-mean biases even with respect 
to GLEAM (Wang et  al.  2020) for evaporation itself that do 
not appear to have reduced substantially since earlier CMIP5 
comparisons (Mueller and Seneviratne  2014). Given these 
model-observations differences and differences between dif-
ferent observed estimates, the availability of good quality di-
rect evapotranspiration observations remains a concern.

Ultimately, GHMs and GCMs are not the ideal tools for predict-
ing future P − E and blue water change because they cannot 
represent all relevant processes accurately. However, they are 
the tools that we have, and we are forced to rely on the range of 
their predictions conditioned on their ability to represent uncer-
tain observations of the past to give us a measure of uncertainty 
about the future. While acknowledging great uncertainty in cli-
mate model results, we will see in the Section 5 that predicted 
increases in future human demand for blue water are likely to 

dwarf climate model predicted changes in blue water supply in 
many highly-populated regions.

4   |   Changes in Water Cycle Variability and 
Extremes

Sub-seasonal extremes have received substantial attention in 
the literature, but pose a big challenge for both observations 
and modeling. This is partly because the rarity of extremes 
makes it difficult to build large, high quality datasets. A crude 
expectation is that extreme high precipitation events on times-
cales of hours to a few days should increase with the supply of 
local near-surface atmospheric moisture at around 7% per °C. 
Given that global-mean annual-mean precipitation increases 
at only a few % per °C in observations and climate models 
(Adler et al. 2017; Fläschner et al. 2016), the implication is that 
the temporal intensity distribution of precipitation would see 
increases in the intensity of high P extremes and decreases in 
the intensity of less intense P or decreases in precipitation fre-
quency (Trenberth et al. 2003; Pall et al. 2007). Added to this 
are changes in wind convergence, which can further enhance 
the most extreme high P events, or changes in relative hu-
midity that tend to reduce high P events over land, and which 
mean that dewpoint temperature is a more appropriate scal-
ing variable than temperature (Fowler et al. 2021). Analysis of 
recent observations for Europe (Fischer and Knutti 2016) and 
Australia (Guerreiro et al. 2018) broadly support these expec-
tations. Climate model results are sensitive to model formu-
lation and experimental design. High-resolution convection 
permitting models explicitly represent some of the processes 
relevant to intense mesoscale storms and better represent 
soil-atmosphere interaction compared with coarse-resolution 
global climate models, and hence reproduce observations 
more closely (Marsham et al. 2013; Prein et al. 2015; Kendon 
et  al.  2017; Stevens et  al.  2019). Nevertheless, both coarse 
GCM-resolution and high-resolution climate modeling studies 
point robustly towards more intense storm hour-mean precip-
itation (Wasko et al. 2016; Kendon et al. 2017), and associated 
increases in the severity of low P extremes through increases 
in the number of multi-day no P events (Kendon et al. 2019). 
Changes in the spatial size and duration of storms are uncer-
tain, with both increases and decreases found in observations 
(Fowler et al. 2021). Despite the difficulty of modeling extreme 
high P events, we note that the robust relationship between 
extreme high P and near surface air or dewpoint temperature 
means that simple theory of the kind we have presented for 
large-scale time-mean precipitation above has the potential to 
be relevant to extreme high P too. This is because the theory 
links large-scale time-mean P or P − E to near surface tem-
perature and moisture also.

Turning to effects on the surface, GHMs predict both increases 
and decreases in seven-day-mean maximum streamflow asso-
ciated with floods when driven by 21st century climate model 
projections (although we note again that the ability of GHMs to 
produce 20th century observations is limited) (Do et al. 2020). 
When a higher proportion of precipitation falls as extremes, run-
off is favored over evapotranspiration in GHMs, meaning that 
multi-decadal mean runoff can increase in regions of decreases 
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in multi-decadal mean precipitation (Eekhout et al. 2018). These 
effects would be expected to be enhanced by plant stomatal 
closure under climate change (Fowler et  al.  2019; Kooperman 
et  al.  2018) although stomatal responses are very uncer-
tain (Mankin et  al.  2018; van der Sleen et  al.  2015; Guerrieri 
et al. 2019; Singh et al. 2020).

The picture for droughts, which are dry extremes whose charac-
terization depends on the precise definition, is less clear than for 
high P extremes. We will chiefly consider hydrological drought, 
which is associated with low streamflow, Q, and low soil mois-
ture. Unlike high P extremes, which tend to occur on hourly to 
multi-day timescales, hydrological droughts occur on times-
cales of days or longer. We will focus on multi-day to seasonal 
timescales, but it is recognized that droughts, such as those as-
sociated with long-term sea surface temperature anomalies, can 
persist for multiple decades (Mishra and Singh  2010). ISIMIP 
GHMs predict large decreases in time-mean land water storage 
and associated large increases in hydrological drought days and 
severity under 21st century climate change in many regions 
(Pokhrel et al. 2021). But GHMs do not estimate the effects of 
changes in plant functioning. CMIP5 and CMIP6 climate mod-
els that do consider changes in plant functioning also suggest 
that time-mean near-surface soil moisture is likely to decrease, 
but that full-column soil moisture including deep soil moisture 
important to plants will be less impacted due to efficient infiltra-
tion of winter rainfall and inefficient summer drying of deeper 
soils (Berg et al. 2017; Cook et al. 2020). Hence, the severity of 
hydrological droughts could be reduced by increases in surface 
resistance to evapotranspiration due to plant stomatal closure 
that reduce Ep (Swann et  al.  2016; Mankin et  al.  2018; Yang 
et al. 2019). However, the effects of increased surface resistance 
may be counteracted by increased vegetation growth with CO2 
driven climate change that increases the area over which tran-
spiration can occur at the expense of runoff (Mankin et al. 2018; 
Singh et  al.  2020; Vicente-Serrano, Dominguez-Castro, 
et  al.  2021; Vicente-Serrano, Garcia-Herrera, et  al.  2021). The 
net effect of vegetation changes is highly uncertain as increases 
in evaporation due to increases in vegetation cover are opposed 
by improved plant tolerance to aridity due to physiological re-
sponses to higher atmospheric CO2. Neither response is well-
constrained by observations. On top of plant effects, inadequate 
representation of soil processes and structure also contribute 
to model errors in representing present day drought. Notably, 
evapotranspiration inferred from both streamflow and satel-
lite mass balance observations is frequently found to increase 
during drought, but this occurs much less in land surface mod-
els due to deficiencies in both plant and soil modeling (Ukkola, 
De Kauwe, et al. 2016; Zhao et al. 2022).

New approaches are looking to improve the modeling of drought 
through the optimization of plant hydraulics and photosynthe-
sis and their relationship to stomatal conductance (Anderegg 
and Venturas  2020), but substantial differences in model re-
sponse at leaf level remain (Sabot et  al.  2022). To our knowl-
edge, three CMIP6 GCMs employ hydraulically-optimized 
stomatal schemes: NCAR CESM2, NorESM2 (both of which 
use the CLM5 land surface model) and GFDL-ESM4. CESM2 is 
found to simulate increased evapotranspiration during drought 
more realistically than GCMs that lack representation of plant 
hydraulics (Zhao et al. 2022). A future model intercomparison 

project that explores coupled climate responses when optimized 
schemes are used would be very useful for determining the re-
maining uncertainty due to plant effects. Finally on the subject 
of drought, we note that, although P − E and Q can provide an 
assessment of long-term blue water changes, below seasonal 
timescales P − E can show limitations in representing hydro-
logical drought in some catchments due to the influence of sur-
face temperature, and soil and vegetation characteristics among 
other factors (Peña-Gallardo et al. 2019).

In addition to short term extremes, observations and climate 
model experiments have been analyzed for better observed, more 
tractable to model, seasonal to interannual variability. Both 
observations and models suggest increases in seasonality and 
amplification of high P and low P events with climate change 
(Chou et al. 2013; Stephens et al. 2018). CMIP5 models predict 
that precipitation variability will increase with global-mean 
temperature (Pendergrass et al. 2017) and global-mean precip-
itation change (Thackeray et al. 2018). Figure 3 shows changes 
in P − E variability and extremes in the high-end CMIP6 SSP585 
scenario. Shorter temporal means indicate larger changes in fu-
ture P − E variability on timescales of a few days but also more 
inter-model disagreement, especially in the tropics (Figure  3, 
top row). Despite large uncertainty, the bigger changes seen on 
shorter timescales in climate models are consistent with the ex-
pectation that climate change impacts on short timescale events 
will emerge first (Kendon et al. 2018; Tebaldi et al. 2006).

Another important feature are abrupt transitions between very 
dry and very wet conditions that show increases in frequency 
and magnitude in many regions in past and projected future 
climate change and that affect both subseasonal extremes and 
longer-term variability. This has been shown both for surplus 
P over Ep (Chen and Wang 2022; Swain et al. 2025) using the 
Standardized Precipitation Evapotranspiration Index (SPEI) 
defined by Vicente-Serrano et al.  (2010), for surplus P over Ep 
where plant effects on evaporation are considered but the ef-
fects of unknown land surface moisture storage changes are 
neglected (Ficklin et al. 2022) and where soil moisture is taken 
into account (Qing et al. 2023). Analysis of SPEI in reanalysis 
data suggests that abrupt transitions have increased globally in 
recent decades (Swain et al. 2025) with more frequent, higher 
intensity, more rapid transitions occurring in parts of North 
America, South Brazil, Central Africa, Europe, East Asia and 
West Australia (Chen and Wang  2022). These studies predict 
further increases in abrupt transitions in future. Larger swings 
between flood and drought conditions in a warmer climate are 
predicted over both land and ocean partly because percentage in-
creases in large P extremes are expected to follow or even exceed 
percentage increases in atmospheric moisture content while in-
creases in time-mean P increase less strongly constrained by 
energetic constraints, as discussed above (Swain et  al.  2025). 
However, it is suggested that over land the surface is also able to 
drive increases in drought-to-flood conditions through surface 
warming and evaporation that produce convective rainfall in 
wet energy-limited regions and that drive increased atmospheric 
convergence in moisture-limited regions (Qing et al. 2023).

Also of interest are the spatial scales over which changes 
in climate are largest compared with unforced variations. 
Figure  3, bottom row shows the ratio of SSP585 2080–2099 
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minus 1995–2014 P − E mean changes to the standard devi-
ation of 20 identically calculated mean changes taken from 
the control runs for various spatial means in CMIP6 (see the 
figure caption for details of the method). It turns out that there 
are few robust responses to the resolution of spatial averaging 
across models. However, on all spatial scales, oceanic P − E 
shows decreases in the sub-tropics and increases in the mid-
latitudes. This pattern of increases and decreases is consistent 
with recent historical changes in oceanic multi-decadal mean 
zonal-mean salinity (Durack et  al.  2012; Grist et  al.  2016; 
Douville and Cheng 2024).

Interannual variability and shorter-timescale extremes also in-
teract. The frequency of regional extreme events is strongly influ-
enced by atmospheric circulation patterns related to longer-term 
unforced climate variability in the current climate, such as the 
El Niño Southern Oscillation (ENSO) (Allan and Soden 2008; Li 
et al. 2020) and the North Atlantic Oscillation (NAO) (Fereday 
et  al.  2018). This dominance is expected to continue into the 
early decades of the 21st century, with interannual variability-
driven variations in extremes masking the emergence of the cli-
mate change signal (Deser et  al.  2017), although these results 
depend on the magnitude of both model-simulated variability 
and climate change for the NAO at least (Fereday et al. 2018). 
The effects of time-mean climate change and variability are also 

not separate and are expected to interact to produce more in-
tense extremes in the future (Allan and Soden  2008). For ex-
ample, because changes in the tropical time-mean state lead to 
a background more favorable to large ENSO events, extreme 
ENSO events in CMIP5 climate model simulations under high 
emissions scenarios occur twice as frequently (Cai et al. 2014).

In summary, possible future changes in high and low P − E sub-
seasonal extremes associated with floods and droughts are very 
uncertain. Compared with changes in long-term mean P − E, 
there is less guidance available from theory and predictions must 
rely more on model parametrizations of processes that occur 
below the resolved gridscale. Nevertheless, current models ro-
bustly predict that changes in climate will emerge on shorter 
timescales first. Hence, more work with high-resolution models 
or models that better represent small-scale processes through 
new techniques such as those from machine learning is needed 
(Rasp et al. 2018; Beucler et al. 2024; Kochkov et al. 2024).

5   |   Non-climatic Effects and the Link Between 
Supply and Demand

As we have seen in previous sections, climate models predict 
both increases and decreases in future regional multi-decadal 

FIGURE 3    |    Top row: Change in 2080–2099 P − E standard deviation with respect to 1995–2014 control for 11 CMIP6 models under the SSP585 
scenario following the Methods section of Pendergrass et al. (2017). Points are median daily, monthly and yearly temporal mean changes for tropical 
(20°N—20°S, left), sub-tropical (20°–40° in both hemispheres, middle) and mid-latitude (40°–60° in both hemispheres, right) spatial means. Thick 
lines are inter-model interquartile ranges, thin lines are interdecile ranges. Bottom row: Future multi-decadal mean P − E changes scaled by un-
forced P − E unforced variability. Differences between 2080–2099 and 1995–2014 time-mean P − E at each spatial point for each spatial resolution 
(1°, 5°, 15° and whole latitude band) are taken for 23 CMIP6 models. Twenty identically-calculated unforced differences are prepared by taking the 
difference between twenty twenty-year time-mean control sections and twenty different twenty-year time-mean control sections. The standard de-
viation of the twenty differences is then taken at each spatial point. The forced differences at each spatial point are divided by the unforced standard 
deviations to give ratios whose means are the points on each panel. Thick lines are inter-model interquartile ranges, thin lines are interdecile ranges. 
Note the different vertical scale for regional means shown on the right-hand side of each panel. CMIP6 data are described by (Eyring et al. 2016).
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mean P − E. These are very uncertain due to deficiencies in 
model representation of both atmospheric and surface pro-
cesses (Douville et  al.  2021). Also important for future P − E 
and blue water availability are human non-climatic influences 
on the land surface and vegetation and the natural succession 
of vegetation. At present, vegetation is estimated to be respon-
sible for 35%–90% of land evaporation (Miralles et al. 2016; Wei 
et al. 2017). Hence, although very uncertain, changes in future 
vegetation that result both from changes in vegetation function-
ing (Swann et  al.  2016; Mankin et  al.  2019) and natural suc-
cession and human management (Chen et  al.  2019), have the 
potential to alter blue water availability through changes in run-
off. Meanwhile, human water management and demand, which 
now appropriates around 50% of total river discharge (Abbott 
et  al.  2019)—far more than is considered sustainable (Greve 
et  al.  2018)—can itself change the availability of fresh water 
through mechanisms independent of climate change. Without 
proper management, non-climatic human activities have the po-
tential to increase hydrological drought severity and even cause 
hydrological drought (Van Loon et al. 2016). A GHM study pre-
dicted that changes in human demand alone may cause large 
increases in the length and severity of multi-day droughts in 
parts of Asia, the Middle East and the Mediterranean in the 21st 
century (Wanders and Wada 2015).

Mounting water scarcity is often addressed through extraction of 
environmental flows and groundwater, leading to degradation of 
aquatic ecosystems and biodiversity loss (Pastor et al. 2014), and 
depletion of groundwater resources leading to land subsidence 
and saltwater intrusion (Bierkens and Wada  2019). Costantini 
et  al. considered the impact of future increases in human ex-
traction on their predictions of climatically driven changes in 
water table depth (see Section 3.2). Over most of the land surface, 
human extraction was not predicted to have a substantial im-
pact on water table depth. However, in Central Africa and areas 
of South and East Asia, large increases in human populations 
will drive water extraction that could reverse climate-driven 
increases in groundwater. In the Mediterranean, Southwestern 
USA, and Southern Africa, where climate change is expected 
to reduce groundwater availability, continued water extraction 
could become very difficult (Costantini et al. 2023).

Changes in land use, such as the conversion of forests and wet-
lands into crop and grazing lands are estimated to have resulted 
in a net reduction in time-mean land-mean evaporation of 3500 
km3yr−1 over the 20th century (Sterling et al. 2013). Although 
most land use change leads to reductions in evaporation, in-
creases in irrigated cropland increase evaporation at the expense 
of runoff. Between 1900 and 2005, irrigated land area increased 
from 0.63 to 3.1 million km2. Results from both CMIP6 simu-
lations and observation-reanalysis products such as GLEAM 
suggest that although remote effects outside irrigated regions 
are small, land evaporation in heavily irrigated areas has in-
creased in recent decades due irrigation (Al-Yaari et al. 2022). 
In Southern Europe, for example, where 80% of all human water 
use is directed into irrigation, changes in irrigation practices 
and agricultural intensification along with natural re-vegetation 
of marginal land dominate observed reductions in long-term 
mean streamflow (Vicente-Serrano et al. 2019). The same is true 
of dam water impoundment, estimated as around 10,000 km3 of 
water (Wada et al. 2017), which has increased permanent land 

surface water area by tens of thousands of km2. Impoundment 
tends to increase E at the expense of Q: a substantial portion 
of estimated time-mean evaporation increases of ~30 km3 yr−1 
caused by an increase in global water surface area for 1984–2015 
come from losses from artificial reservoirs (Zhan et al. 2019).

Large changes in land cover caused by deforestation have the 
potential to alter the global hydrological cycle substantially. 
The Land Use Model Intercomparison Project (LUMIP) defor-
estation scenario removed 20 million km2 of forest from the 
CMIP6 pre-industrial control scenario—similar to the ~33 mil-
lion km2 of primary forest estimated to be removed since 850 ce 
(Hurtt et al. 2020). Global ensemble-mean time-mean changes 
across participating GCMs (including ocean) in precipitation 
are around −0.8% (Luo et al. 2022), which is comparable to the 
decrease that might be expected from 0.5°C of global cooling 
(Fläschner et al. 2016). Regional changes are much larger, but 
very uncertain across models. Taking the mean across only the 
deforested area itself, the GCMs show changes in mean precip-
itation from −5.9% to +0.1% (Luo et  al.  2022). Impacts of this 
deforestation scenario on runoff are more neutral. Reductions 
in precipitation cause decreases in runoff, but these are coun-
teracted by increases in runoff that occur because the propor-
tion of rainfall that becomes runoff is increased when forest is 
replaced by grassland. Reductions in runoff due to decreases in 
rainfall appear to dominate over more than 60% of global land 
area, but land-mean changes are not significant if two standard 
deviations about the mean are considered (Ma et al. 2024). Two 
caveats should be stated. First, atmospheric CO2 concentrations 
were held at pre-industrial levels, therefore ignoring any plant 
effects on the carbon cycle or resulting CO2-driven climate 
change. Second, lost primary forest was converted into grass-
land, whereas in reality the ~33 million km2 primary forest lost 
was partly compensated for by an increase of ~15 million km2 
in secondary forest cover (Hurtt et al. 2020). It is likely that the 
conversion of primary forest to secondary forest has smaller im-
pacts on climate and the hydrological cycle than conversion to 
grassland.

The impacts of deforestation on the hydrological cycle have also 
been explored in more realistic CMIP6 scenarios. Luo et al. ex-
amined the effects of deforestation since 1850 through its direct 
local effects on the land surface and remote effects mediated 
by the atmosphere. They found that deforestation drives local 
reductions in evapotranspiration but has only small effects re-
motely compared with climate-driven effects (Luo et al. 2024). 
More generally, Zhang et  al. found that land use changes—
of which deforestation is a major part—cause increases in 
CMIP6 historical time-mean precipitation in regions of the 
Northern Hemisphere and decreases in regions of the Southern 
Hemisphere. Changes in extremes are uncertain in general, but 
clearest in regions of intense land use change, such as Southern 
Hemisphere regions where the number of wet days decreases 
and the number of consecutive dry days increases (Zhang 
et al. 2024).

Future climate change scenarios used in CMIP6 anticipate further 
reductions in total primary and secondary forest area. The high 
greenhouse gas SSP585 scenario removes 0.9 million km2 between 
2015 and 2100; the largest forest removal SSP370 scenario removes 
3.4 million km2 (Hurtt et al. 2020). These changes are smaller than 
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those explored under LUMIP, but still substantial. It is likely that 
forest loss plays a role in GCM-simulated impacts on climate and 
water in CMIP6 future scenarios, especially in the areas where for-
est is removed. One such region is the Amazon basin, for which 
4%–13% of mean precipitation decrease by 2100 is attributable to 
future deforestation across the range of CMIP6 SSP scenarios (Li 
et al. 2023). More than 40% of reductions in both precipitation and 
relative humidity were found to be due to the combined effects of 
plant physiology and deforestation.

Approximately two-thirds of humanity experience severe 
water scarcity at least 1 month a year under present conditions 
(Mekonnen and Hoekstra 2016). This is apparent from the water 
scarcity index (WSI), also know as the use-to-availability ratio, 
which is the ratio of water demand to supply, X ∕(Q + I) (Greve 
et al. 2018; Falkenmark 1997). Here, X is human water demand 
and I is stream and groundwater inflow into an area. Inflow is 
typically small and hence the water scarcity index is usually close 
to X ∕(P − E) away from major rivers. Nevertheless, even for the 
present day, WSI estimates are very uncertain due to uncertainties 
in GHM simulations (Haddeland et al. 2011). Figure 4 (a) and (b) 
show the 25th and 75th percentiles of near present-day time-mean 
WSI respectively for 3 joint economic-climate scenarios (SSP1-
RCP4.5, SSP2-RCP6.0 and SSP3-RCP6.0) taken from three GHMs 
driven by input from five climate models (Greve et  al.  2018). 
Uncertainty is clearly large, but even the 25th percentile shows 
substantial areas of North Africa and Southern and Eastern Asia 
with WSI > 0.4, which is a crude measure of high water scarcity 
(Greve et al. 2018), although the human impact of WSI depends 
greatly on the level of economic development (Falkenmark 1997) 
and the water supply to which the local population is already 
adapted (Schewe et al. 2014). These results are in broad agreement 
with the findings of (Costantini et al. 2023) for groundwater.

Future WSI estimates are further affected by the choice of eco-
nomic scenario. Panels (c) and (d) show the 25th and 75th per-
centiles of time-mean WSI changes for the 2050s. Uncertainty 
is again large, admitting the possibility of both increases and 
decreases in future WSI. Nevertheless, the majority of ISIMIP 
ensemble members show increases in future WSI in regions 
currently under high water stress. In a similar analysis using 
ISIMIP data at the country scale, Schewe et al. estimated that 
the percentage of world population under absolute water scar-
city (< 500 m−3 capita−1) would increase to roughly 9% under a 
2°C increase in global mean temperature, and the percentage 
under chronic water scarcity (< 1000 m−3 capita−1) would in-
crease to 21%. As above, these numbers are uncertain even in 
the present day, with 0%–4% of the population estimated to be 
under absolute water scarcity and 1%–8% under chronic water 
scarcity, and predictions of the future show areas of both in-
creased and decreased water scarcity (Schewe et al. 2014). Still, 
our results and those of Schewe et al. concur with the overall 
balance of evidence that increases in time-mean human water 
demand predicted in many regions will not be met by increases 
in time-mean blue water supply (Wada and Bierkens 2014; Greve 
et  al.  2018), implying that extraction will rely increasingly on 
unsustainable use of stored land surface water. In the absence 
of appropriate management practices and water infrastructure, 
this can increase the occurrence and impact of drought (Van 
Loon et al. 2016).

Human activities not related to climate change or water ex-
traction can also affect water stored in the land surface. In the 
continental United States, contamination of groundwater by the 
oil and gas industry is driving the construction of deeper wells 
for water extraction. This is particularly important as observa-
tions show that the transition from fresh to more saline waters 

FIGURE 4    |    (a) 25th percentile of the water scarcity index (WSI) for 2006–2015 from ISIMIP. (b) 75th percentile. (c) 25th percentile of changes in 
WSI for 2046–2055 with respect to 2006–2015 predicted by ISIMIP across SSP1-RCP4.5, SSP2-RCP6.0, and SSP3-RCP6.0. (d) 75th percentile. ISIMIP 
data are described by (Warszawski et al. 2014). WSI values were estimated by (Greve et al. 2018) on a 0.5° longitude-latitude grid. Here we average 
their data onto a 2.5° grid.
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occurs at a shallower depth in the United States than previously 
expected (Ferguson et al. 2018). If the same is true worldwide, 
then the store of young (< 50 years old) groundwater may be sub-
stantially less than the 0.1–5 million km3 estimated previously 
(Gleeson et al. 2016) – equivalent to a layer of water ∼ 0.7 − 34m 
deep overlying global land.

Evidently, in many highly populated regions, the effects of fu-
ture increases in time-mean water demand and non-climatic 
human impacts may be much greater than time-mean cli-
mate change effects on water supply. Climate change-driven 
changes in shorter time-scale extremes are expected to be 
large, however, and impact not only blue water supply but also 
directly disrupt agriculture and communities through flood-
ing (Fowler et al. 2021) and soil erosion (Eekhout et al. 2018). 
The impacts of increasingly frequent and intense abrupt tran-
sitions between drought and flood conditions will also impact 
blue water availability beyond the isolated effects of individ-
ual droughts and floods (Swain et al. 2025). Future projections 
of changes in abrupt transitions from CMIP6 GCMs for river 
catchments with large reservoir capacity predict increases 
in reservoir overspill during precipitation surplus and ex-
tended periods of low reservoir levels during drought (Ficklin 
et al. 2022).

6   |   Conclusions and Recommendations for Future 
Work

In the past few decades there have been considerable advances 
in the understanding and modeling of future changes in the 
regional water cycle and its relationship to the availability of 
blue water for human extraction. Theoretical expectations are 
in broad agreement with time-mean changes in multi-decadal 
precipitation minus evaporation, P − E, that have been observed 
or predicted by complex numerical model simulations over both 
land and ocean on the largest scales, such as in the zonal mean. 
At continental scales and below, however, there is considerable 
uncertainty in understanding the past and predicting possible 
future changes. Changes in precipitation that seem to have 
dominated historical P − E change are controlled by uncertain 
changes in atmospheric circulation. Changes in evaporation are 
further affected by the poorly understood interactions between 
increasing atmospheric demand for evaporation with warming 
and plant responses to warming and increases in atmospheric 
CO2 that can both suppress and enhance evaporation. Model 
predictions of the future show opposing signs of predicted future 
changes in streamflow for large ocean reaching rivers.

A host of human-driven non-climatic effects also cause changes 
in P − E, such as land use change, irrigation, and water im-
poundment through the building of dams. The combined effect 
of climatic and non-climatic effects is likely to make a substan-
tial difference to the supply of blue water in the 21st century. 
However, potentially even more important in the multi-decadal 
mean are increases in demand for blue water. Despite great un-
certainty in future economic-water scenarios and modeling, 
it seems likely that some highly populated regions will see in-
creases in blue water demand that are not met by increases in 
supply.

This is not to say that changes in supply are not important. Even 
if it were the case that time-mean changes in demand dominate 
changes in supply (and this is by no means certain), changes in 
the timing of supply are expected to have impacts on flooding 
and drought that have the potential to cause large impacts on 
societies. Changes in high P − E extremes linked to storms and 
flooding in observations and models increase at the expense of 
lower percentile P − E events with warming. Although there are 
large uncertainties in model results, this finding broadly follows 
theory, and is consistent with the expectation that future water 
cycle changes will emerge at shorter timescales first. Future 
changes in low P − E extremes linked to subseasonal droughts 
are very uncertain, again linked to the competing effects of at-
mospheric demand and plants, but have the potential to cause 
serious impacts such as increasing the unsustainable extraction 
of groundwater.

All modeling of changes in Earth's regional climate relies on 
the parametrization of poorly understood processes that occur 
below the gridscale at which physical equations are solved. 
Some processes, such as those involved in cloud microphysics 
and plant function, seem destined to remain parameterized for 
the foreseeable future, apparently guaranteeing that predic-
tions of future states that have not been observed will remain 
uncertain. However, the advent of high-resolution models that 
physically represent currently parametrized processes and the 
promise of machine learning methods that make efficient use of 
available observations, along with recent developments in the-
ory, suggest that we may yet see substantial improvements in 
predictions of the future water cycle. There is therefore a need 
for new investment in observations and modeling to best plan 
for 21st century climate change and water demand. Based on 
our summary of the literature, we have a number of recommen-
dations for future work.

1.	 Maintenance and enhancement of observations: 
Maintenance of the existing observing network is re-
quired to monitor 21st century climate change, includ-
ing surface-based meteorological stations, profiling 
floats such as Argo that provide near-global salinity 
measurements, radiosonde observations, and satellites 
for precipitation, groundwater, soil moisture and sea 
surface salinity. Enhanced observations of ocean P − E

, atmospheric transport of water to the continents, esti-
mates of land evaporation and its components from eddy 
covariance towers and lysimeters, and land water stor-
age including soil moisture, groundwater change and 
snowpack are also needed (Rodell et  al.  2015). There 
is no direct measurement of oceanic evaporation away 
from buoys, nor land surface evapotranspiration away 
from sparse networks of eddy covariance towers and 
lysimeters. Technological improvements that reduce 
uncertainty in satellite-derived wind speed, surface 
temperatures, humidity and vegetation properties used 
for estimating evaporation are hence important, as are 
efforts that improve estimates of oceanic precipitation 
(Behrangi and Song 2020). In addition, the Surface Water 
and Ocean Topography (SWOT) mission will provide an 
unprecedented opportunity to monitor surface water 
and estimate river discharge (Fu et  al.  2024). There is 
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the potential to use data from the Gravity Recovery 
and Climate Experiment (GRACE) to provide an inde-
pendent estimate of recent changes in net P − E (Tapley 
et al. 2004). A substantial challenge is to ensure the long-
term stability of satellite observing systems that can pro-
vide accurate monitoring of changes in the water cycle 
over multiple decades and that are therefore also of use 
for building atmospheric reanalyzes, which are discussed 
below.

2.	 Data recovery and use of reanalysis: The number of re-
porting precipitation gauges has been dropping since 
the 1990s in many areas (Carvalho  2020) and efforts 
are needed to counteract this decline. However, data 
rescue attempts are ongoing that digitize old records, 
making them available to the community (Brönnimann 
et al. 2018). It is important to extend these. Atmospheric 
“reanalyzes” (e.g., ERA5 (Hersbach et al. 2020)), which 
are model simulations strongly constrained by available 
observations, are used to monitor poorly observed com-
ponents of the current hydrological cycle. Future effort 
is needed to ensure that reanalyzes are useful for un-
derstanding climate change, including benchmarking 
their output against changes in variables not used in re-
analysis derivation such as salinity and runoff, ensuring 
energy and moisture conservation, and quantifying the 
effect of changes in the observing systems that provide 
input data to reanalyzes.

3.	 New model experiments: Although important processes 
remain unresolved, high-resolution experiments that 
permit explicit simulation of atmospheric convection 
have shown their ability to reproduce observed extreme 
precipitation more faithfully than low-resolution ex-
periments (Kendon et  al.  2017). Inclusion of kilometer-
scale land surface properties has also been shown to 
be important for the reduction of model biases (Barlage 
et al. 2021). Running global experiments is challenging, 
however, and the production of regional experiments re-
mains important. Producing and analyzing both global 
and regional kilometer-scale experiments is key for val-
idating our understanding, making predictions, and for 
training new model parameterizations for low-resolution 
simulations.

4.	 Exploitation of new modeling techniques: Even high-
resolution simulations continue to parameterize key pro-
cesses in the atmosphere (e.g., cloud microphysics) and 
at the surface (e.g., river and groundwater flow). Hence, 
improvements in modeling may come through new tech-
niques such as those provided by machine learning (Rasp 
et  al.  2018; Beucler et  al.  2024; Kochkov et  al.  2024) or 
through targeting reproducing observed relationships for 
specific processes such as leaf hydraulics or photosynthesis 
(Sabot et al. 2022).

5.	 Demand: Continued monitoring, both from space and 
in  situ, of global vegetation, land use change includ-
ing deforestation, and human consumption of surface 
water and groundwater reservoirs is needed (Zhao and 
Ga  2019). Improvements in water demand modeling, 
aquifer representation, and vegetation modeling will 

improve understanding of the interaction between de-
mand and supply.

6.	 Theoretical work that links changes in short timescale var-
iability and extremes to robustly understood and better ob-
served climate variables is needed, as is an understanding 
of how atmospheric circulation responds to climate change 
on regional scales, which is key to regional precipitation 
amounts and hence P − E and blue water availability. This 
work is particularly important as numerical modeling of 
key processes depends on physically-motivated but neces-
sarily approximate sub-gridscale parametrizations. Also 
important is work that connects climate and non-climate 
impacts on the hydrological cycle to metrics useful to end 
users.
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