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Abstract 

Ticks are obligate haematophagous (‘blood-sucking’) ectoparasites that are capable 

of retaining host dietary traces post-moult, providing an opportunity to investigate 

parasite–host interactions and explore their potential as non-invasive subsampling 

techniques. However, research on the preservation of biochemical host signatures 

within whole engorged parasites remains limited. Here, we examine stable isotope 

ratios of nitrogen (δ15N) and carbon (δ13C) across different tick tissues (exoskele-

ton vs. blood meal) and between whole ticks and one of their hosts, the European 

polecat Mustela putorius. Additionally, carbon and nitrogen weight percentages (wt%) 

are assessed to explore potential biochemical changes linked to blood meal diges-

tion. Our findings showed that the isotopic composition of tick exoskeleton and blood 

meal differed significantly, with exoskeletons potentially reflecting a previous host. 

Whole engorged ticks showed a close δ15N relationship to their host, consistent with 

that of trophic enrichment, while the observed δ13C values were more variable. These 

findings enhance our understanding of how haematophagous parasites preserve host 

dietary signatures and, with further research, could support their use as a valuable 

alternative to invasive sampling methods, particularly when destructive sampling is 

not feasible.

Introduction

Several biochemical methods, such as molecular and stable isotope analysis (SIA), 
have been utilised to establish parasite host species preference, as this forms an 
important element in the transmission cycles of vector-borne diseases [1–4]. Stable 
isotope analysis can assist in untangling complicated ecological dynamics, such as 
those found in parasite–host relationships, by tracking the flow of nutrients through 
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ecosystems as they move from food source to consumer [5–11]. Yet, studies on the 
isotopic interactions between parasites and hosts, particularly those involving obliga-
tory blood-sucking external parasites (‘ectoparasites’) such as ticks, remain relatively 
scarce. Ectoparasites have the potential to be useful biomonitoring tools and non- 
invasive host subsamples, as their exoskeleton incorporates the isotopic signature 
of (previous) hosts during moulting, and the blood meal allows direct analysis of the 
current host [12,13]. However, the understanding of how isotopic traces of host diet 
are reflected across parasite tissues remains limited.

As organic tissues grow (or ‘turn over’) at different rates, they incorporate isotopes 
over varying timespans [14,15]. Hair, whiskers, and muscle tissue turnover rates 
have been reported to reflect a dietary average ranging from one to three months 
across various mammals [16–19]. In contrast, blood is continuously synthesised and 
regenerates at a faster rate, allowing for a high-resolution reflection of diet up to the 
last 24 hours (plasma) or a couple of weeks (red blood cells) [14]. Arthropod exo-
skeletons are composed of proteins and chitin secreted by the epidermis [20]. Once 
newly formed exoskeleton hardens, it remains inert and does not grow until the next 
moult.

Many tick species within the genus Ixodes (Acari: Ixodidae), including Ixodes 
hexagonus, follow a three-host cycle, feeding once each as a larva, nymph, and 
adult (Fig 1) [21,22]. Feeding durations vary, with nymphs and larvae feeding for 
up to five days, unmated females for up to 12 days, and mated females for up to 
15 days before undergoing a final rapid engorgement stage (‘big sip’), increasing 
their weight by up to 35 times [20,23–27]. Digestion occurs continuously during the 
initial ‘slow feeding’ phase and resumes once the tick has detached, with larvae and 
nymphs sometimes taking months to fully process a single meal. The nutrients are 
then used to grow a new cuticle and moult, or in mated adult females, for egg pro-
duction [20,28]. Ixodes hexagonus (Leach, 1815), commonly known as the hedgehog 
tick, is a nest-dwelling species primarily found on the European hedgehog Erinaceus 
europaeus [21,26,29,30]. Yet, it has been widely reported to feed on a small range of 
other medium-sized mammals, with European polecats Mustela putorius being par-
ticularly common hosts [28,31–35]. While polecats are generalist carnivorans, British 
polecats mainly feed on lagomorphs, such as the European rabbit Oryctolagus cunic-
ulus, whereas in other parts of Europe, their diet varies more widely and is influenced 
by local prey availability [36–40].

Several studies have shown that freshly moulted ticks retain the isotopic com-
position of their larval host, enabling identification of the host they fed on during a 
previous life stage [5,41–45]. This also applies to mated female ticks, who transmit 
residual host biomarkers into their eggs and larvae [46]. Yet, the distribution of iso-
topes within engorged ticks and their potential as host diet proxies remains underex-
plored. The sampling of ectoparasites has potential applications in biomonitoring and 
host species identification, offering a minimally invasive method for blood sampling 
[47–52]. This is particularly valuable for studying endangered animals or in unique 
historical museum specimens, where destructive sampling of host tissues may not 
be an option. This study used isotopes commonly associated with dietary analysis, 
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namely nitrogen (δ15N) and carbon (δ13C), to analyse the relationships between ticks and one of their hosts, the European 
polecat. Specifically, stable isotope ratios and biochemical composition were examined to assess differences between tick 
exoskeletons and blood meals, as well as between engorged ticks and their host.

Materials and methods

Study materials

From 2012–2016 the Vincent Wildlife Trust conducted a national polecat survey across Great Britain, collecting polecat 
carcasses primarily found as roadkill. Further examination was conducted at National Museums Scotland (S1 Table). 
During this analysis, ticks were removed from the polecats and identified to species using Arthur’s (1963) taxonomic key 
[53] before being transferred to 70% ethanol, which has been shown to have no significant effect on stable isotope preser-
vation [54]. Ten European polecat hosts were sampled for both whisker (n = 10) and muscle tissue (n = 6) where available, 
with three I. hexagonus ticks from each host (n = 30) undergoing isotopic analysis. All ticks used in this study were adult 
females that were visibly engorged. An additional set of ticks (n = 6) belonging to four of the polecat hosts was selected to 
undergo dissection. The coagulated blood and internal organs (‘blood meal’) were separated from exoskeletons through 
an incision in the ventral abdomen, using fine forceps and a scalpel under a stereomicroscope.

Fig 1. Typical life cycle of a three-host ixodid tick. Larvae hatch from eggs before finding a host and taking a blood meal, after which they drop off 
the host to moult into nymphs. Nymphs repeat this process, moulting into adults after feeding. On the host, males seek out females to mate with while 
taking small meals themselves and repeating this process several times before dying. Mated females will engorge themselves on blood to fuel their final 
act; dropping off their host and laying thousands of eggs [21].

https://doi.org/10.1371/journal.pone.0327245.g001

https://doi.org/10.1371/journal.pone.0327245.g001
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Ethics statement

No live animals were used in this study. All polecat specimens were collected post-mortem by the Vincent Wildlife Trust 
as part of a national roadkill survey (2012–2016) and provided for scientific use. Ticks were removed during processing 
at National Museums Scotland. No fieldwork was conducted by the authors, and no permits or ethical approval were 
required for the use of these pre-collected materials. This research complies with all relevant institutional and national 
guidelines for the ethical use of animal specimens.

Stable isotope analysis

Polecat muscle tissue was subsampled after being stored at −40°C since necropsy examination was completed in 2016. 
Lipids were extracted from polecat muscle and whiskers using a 2:1 v:v chloroform:methanol solution whilst sonicating 
for 10 minutes and rinsing with ultra-high-quality water (UHQ, 17 MΩ) in between, until the waste solution ran clear. The 
samples were dried at 40°C for 48 hours, after which muscle tissue underwent a 48-hour freeze-drying process. The 
freeze-dried muscle tissue was homogenised using mortar and pestle. Polecat whiskers were sampled in small sequen-
tial sections to account for temporal variations in isotopic composition. Whole ticks, tick blood meals, and tick exoskel-
etons were rinsed thoroughly using UHQ water before undergoing freeze-drying for 48 hours under vacuum, to remove 
moisture and preserve them in a dry state suitable for isotope analysis. Tick exoskeletons were subsampled from the 
abdomen using a scalpel, whereas blood meals and whole ticks were crushed using mortar and pestle. Samples were 
weighed in triplicate (0.15–0.25 mg), using a Sartorius Cubis MSA6.6S-000-DM microbalance and enclosed within a 6 
x 4 mm tin capsule. The stable isotope ratios of carbon and nitrogen were measured using a continuous flow-isotope 
ratio mass spectrometer coupled with a ThermoFisher™ DeltaV Advantage fitted with an Isolink CNSOH Temperature 
Conversion Elemental Analyzer (TC/EA) and smart function at the Chemical Analysis Facility at the University of Read-
ing. The findings are presented as δ values per mil (‰) relative to the global benchmarks of Vienna PeeDee Belemnite 
(VPDB) for carbon, and atmospheric N

2
 for nitrogen. The resulting data was adjusted for linearity and instrument drift 

per 5 samples, as well as stretch corrected using in-house (x3) and international standards (x5, IAEA CH-7, USGS 56, 
62, and 63). Comparisons between measured values and expected values were conducted to determine analytical error, 
which was < 0.15 ‰ for δ13C and δ15N.

Statistical analyses

All statistical analyses were performed using Minitab 21.0.0. Tick and European polecat δ15N and δ13C values were tested 
for normality and homogeneity of variances using Anderson-Darling and Levene’s tests. If data did not meet the assump-
tions, δ15N and δ13C values were transformed (log

10
 + 30 and log

10
, respectively). In order to establish the isotopic offset 

between tick exoskeleton and blood meal, discrimination factors (Δ15N or Δ13C) were calculated as the difference between 
the isotopic ratios (δ15N or δ13C) of tick tissues using the following equation: Δ15N or Δ13C = δX

exoskeleton
 – δX

bloodmeal
, where 

δX
exoskeleton

 and δX
bloodmeal

 represent the δ13C or δ15N values of the tick exoskeleton and blood meal belonging to the same 
tick. To investigate potential relationships between carbon wt% and nitrogen wt% in tick blood meals, a Pearson correla-
tion coefficient was used, and the nitrogen-to-carbon ratio (C:N = N wt%/ C wt%) standardised to atomic mass (14/12) was 
considered. To account for multiple ticks from the same host, a mixed-effects model was fitted with type (tick or host) and 
tissue (tick blood meal, tick exoskeleton, whole tick, host muscle, host whisker) as fixed factors, with δ15N and δ13C values 
as variables. Host ID was included as a random factor. To assess the preservation of the host’s chemical fingerprint within 
ticks, discrimination factors (δ15N and δ13C) were calculated between whole ticks and their host tissues (whisker and 
muscle). As whiskers represent incremental periods of isotopic incorporation, the isotopic values associated with the most 
recent growth period were used. A linear regression analysis was performed to model the relationship between host and 
parasite tissue types as predictors, with δ15N and δ13C values acting as response variables. Significance was assumed at 
α = 0.05 in all cases.
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Results

The stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) were measured in tick blood meal (n = 6) and exoskel-
eton (n = 6) from four polecat hosts. The δ13C values of tick blood meals were found to be significantly more negative 
 (13C-depleted) than those of exoskeletons (LMM: −1.45 ± 0.089, p < 0.001; Fig 2i, ii; S2 Table), whereas no significant 
difference was found for δ15N values (−0.001 ± 0.119, p = 0.993). Tick blood meals (−0.09 ± 0.117, p = 0.441 for δ15N; 
−0.108 ± 0.057, p = 0.071 for δ13C) and exoskeletons (−0.19 ± 0.117, p = 0.117 for δ15N; 0.039 ± 0.061, p = 0.525 for δ13C) 
showed a lower intra-triplicate variance in δ15N (but not δ13C for exoskeletons) when compared to whole ticks. However, 
these differences were not statistically significant. The C:N ratios of whole ticks (4.95 ± 0.67; Fig 2iii) were closer to those 
of blood meals (5.94 ± 0.89) than exoskeletons (3.92 ± 0.3). The relationship between nitrogen wt% and carbon wt% levels 
within blood meals revealed a weak negative correlation (Pearson: r = −0.066; Fig 2iv), potentially indicative of digestion 
effects. When statistical outliers belonging to a single tick were excluded, the negative correlation became much stronger 
(Pearson: r = −0.843).

Fig 2. Nitrogen and carbon isotope ratios (‰) in tick blood meals and exoskeletons. Mean (i) δ13C (in white) and δ15N (in grey) in ‰, (ii) stable 
isotope ratios of nitrogen (δ15N) and carbon (δ13C), (iii) mean carbon to nitrogen ratio (C:N) values of tick blood meals (n = 6) and exoskeletons (n = 6). (iv) 
carbon wt% and nitrogen wt% of blood meals with regression lines, where each pair of data points represents an individual tick. Tukey grouping shows 
statistical significance, dotted lines signify samples belonging to the same tick, and outliers are indicated by *.

https://doi.org/10.1371/journal.pone.0327245.g002

https://doi.org/10.1371/journal.pone.0327245.g002


PLOS One | https://doi.org/10.1371/journal.pone.0327245 July 3, 2025 6 / 12

Furthermore, the stable isotope ratios in whole engorged ticks (n = 30) recovered from ten European polecat hosts 
(whiskers and muscle) revealed that ticks showed significantly higher δ15N values compared to those of their hosts (LMM: 
−1.389 ± 0.154, p < 0.001 and −0.44 ± 0.171, p = 0.011, for whisker and muscle respectively; S3 Table). The observed 
δ13C values showed more variability in both polecats and ticks. Whole tick values were significantly more negative when 
compared to those of host whiskers (1.214 ± 0.158, p < 0.001), but significantly less negative in comparison to those of 
host muscle tissue (−0.948 ± 0.175, p < 0.001). Tick isotope values were observed to mirror the patterns seen across host 
individuals. Linear regression analyses between whole ticks and polecat whiskers revealed a moderate positive linear 
relationship for δ¹⁵N (R² = 0.482; p = 0.026), but less so for δ¹³C (R² = 0.287; p = 0.110; Fig 3). Similarly, a significant posi-
tive linear relationship was found between muscle tissue and whole ticks for δ¹⁵N (R² = 0.856; p = 0.008), but not for δ¹³C 
(R² = 0.162; p = 0.429).

Discussion

Our study found a significant difference in δ13C between tick exoskeletons and the blood meals preserved within 
them. This supports the theory that exoskeletons retain isotopic traces from a prior host, whereas blood meals are 
indicative of the current host; though it is important to consider that the observed offset may be a result of an inherent 
isotopic difference between tissue types. In contrast, the reported δ15N values for tick exoskeletons and blood meals 
do not strongly separate host sources. This may reflect the lower individual-level variability in δ15N among polecats, 
as observed in the consistent nitrogen isotope values of both muscle and whisker tissues. Previous studies estab-
lished that ticks retain their hosts’ isotopic signature even after moulting, but these findings were based on ticks that 
had fully digested their last blood meal before moulting [5,43,44]. As the samples used in this study were collected 
from a natural environment, the isotopic composition of the ticks’ exoskeletons reflect previous feeds, and thus, an 
unidentified previous host. The period between nymphal and adult life stages in ticks can range from months to years 
in temperate regions, as some species rely on specific seasonal conditions to locate their preferred hosts [55]. In 
generalist ticks, this previous host is more likely to be a completely different species, whereas in the nest-dwelling I. 
hexagonus, repeated feeding on the same host species cannot be ruled out [23,31,33]. In contrast, the blood meal is 
almost certainly from the individual polecat the tick was recovered from during collection. Our findings indicate greater 
 intra- sample variation in whole ticks, likely due to their heterogeneous composition, where exoskeleton and blood 
meal components contribute distinct isotopic signals. The observed trend in nitrogen wt% and carbon wt% of tick blood 
meals from the same polecat host likely reflects different digestion stages, as nitrogen is lost more rapidly during diges-
tion while carbon is metabolised more gradually to conserve energy [44]. This could furthermore explain the observed 
negative values in the lipid-rich blood meals, as lipids tend to be more 13C-depleted. In ixodid ticks, digestion and waste 
elimination occur during the slow feeding phase and after detachment, with nitrogenous waste rapidly excreted as 
guanine, while carbon is released more gradually as carbon dioxide through respiration [22,27,56,57]. However, mated 
female adult ticks enter an additional ‘big sip’ stage after the slow feeding process, during which they halt digestion 
altogether [22]. Therefore, it is during this specific life stage that ticks are most likely to contain undigested host blood, 
which could serve as a biochemical proxy.

This study further aimed to assess whether whole engorged ticks are capable of reflecting the dietary traces of their 
host through their isotopic signatures. Our results indicate that ticks showed a significant δ15N offset relative to their host, 
which is consistent with trophic enrichment and similar to those found in predator-prey relationships (Δ15N of around 3 ‰).  
A wide range of δ13C values was observed in both whole engorged ticks and polecats, and more so in whisker than 
muscle tissue (Fig 4). This variation may be due to several factors, including the diverse diet of the host, physiological 
processes within the ticks (such as digestion and excretion), temporal differences between the tick and polecat tissues, 
and potential post-mortem effects, considering the specimens may have been left to deteriorate several hours after death 
and prior to collection. The reported parasite–host offsets must be interpreted with caution due to limited sample size 
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and host tissues analysed, as these did not contain the blood upon which the ticks directly fed. Several studies have 
found that mammalian blood isotopic values are overall similar in δ15N and more negative in δ13C compared to those 
of their fur and muscle tissue, aligning with our tick blood meal findings [58–60]. Using our polecat muscle data and the 

Fig 3. Regression lines of nitrogen and carbon isotope ratios (‰) between ticks and polecat host tissues. Relationships between δ15N (i-ii) and 
δ13C (iii-iv) in ‰ of (i, iii) polecat whisker and whole tick, and (ii, iv) polecat muscle and whole tick, including regression lines.

https://doi.org/10.1371/journal.pone.0327245.g003

https://doi.org/10.1371/journal.pone.0327245.g003
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discrimination factors reported for the red fox Vulpes vulpes (Δ15NMuscle-Blood: −0.12 ‰ ± 1.13; Δ13CMuscle-Blood: 
−0.45 ‰ ± 0.07), as no polecat data are available, we estimated whole blood values (calculated as 55% plasma and 
45% red blood cells), revealing that polecat blood δ15N and δ13C values were lower than those of tick blood meals (Fig 4) 
[59,61]. To better interpret the trophic position of ticks and assess their potential as host diet proxies, it is necessary to 
estimate the diet of their host. Currently, no tissue-to-diet offsets have been published for European polecats. Instead, the 
trophic discrimination factor for another generalist, the red fox, is commonly used in studies on medium-sized carnivorans 
(Δ15NMuscle-Diet = −3.5 ‰ and Δ13CMuscle-Diet = −1.1‰) [59,62].

Fig 4. Nitrogen and carbon isotope ratios (‰) of ticks and their host, the European polecat (whiskers and muscle), as well as rabbit muscle, 
and polecat diet. Mean δ15N and δ13C (±SD in ‰) of whole ticks (each data point represents the mean of 3 ticks per host; n = 30), and polecat whiskers 
(n = 10) and muscle (n = 6). Polecat whole blood (i) and diet (ii) were calculated using muscle and data from red foxes V. vulpes [59]. Isotopic data (iii) 
from Neilson et al. [63] on British rabbit muscle (n = 6) were included as potential polecat prey. Analytical uncertainty is shown in bottom left.

https://doi.org/10.1371/journal.pone.0327245.g004

https://doi.org/10.1371/journal.pone.0327245.g004
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When red fox discrimination factors were used to calculate diet from muscle, the isotopic values fell well below the 
carbon values reported for British rabbit muscle tissue, while their nitrogen values were higher [63]. This mismatch may 
reflect the dietary diversity of polecats. Although British polecats are known to mostly eat lagomorphs and other small 
mammals such as rodents, they are also known to feed on birds, amphibians, fishes, and reptiles [42]. Their lifestyle 
as a generalist carnivoran allows them to display great flexibility when it comes to prey selection based on availability, 
as seen in polecat populations across mainland Europe [36–39]. Assuming that polecat whiskers represent an aver-
age isotopic signature over roughly a month, while their muscle tissue reflects a period of several months or an entire 
season, the consistency in stable isotope values within these tissues indicates that the polecats maintained a consis-
tent diet across these timescales. However, this does not imply that their range of prey is uniform, but rather signifies 
that polecats are consuming a similar range of prey over time [64]. Regression analysis revealed a significant positive 
linear relationship between nitrogen isotope values of host tissues and whole ticks, suggesting that characterising 
the polecat’s dietary patterns through their ticks is a possibility. Although this has promising implications for host diet 
reconstructions using stable isotopes and ectoparasites, several limitations are important to consider. For example, 
distinguishing between hosts with similar diets can be challenging, as previous studies have found that stable isotopes 
alone often fail to differentiate species with overlapping isotopic niches [5,41,43,45]. Despite their widespread use in 
food web reconstructions, carbon isotope values are often not taken into consideration when analysing parasite–host 
relationships, due to their inherent variability, which can be affected by, among other things, physiological processes 
and environmental factors [6,45]. However, δ15N has been reported as more reliable than δ13C for distinguishing hosts, 
with a combination of C:N ratios and δ15N providing the best distinction between host feeding treatments through para-
site analysis [43,45].

In conclusion, the isotopic differences observed between tick exoskeletons and blood meals may reflect distinct 
hosts. This highlights the importance of separating these tissues when isotopically analysing engorged ticks, as 
mixing isotopic signals may reduce the reliability of interpretations. This could be addressed through blood meal 
dissection, or potentially through a compound-specific isotope approach. While the reported δ15N values suggested 
that ticks could act as isotopic proxies to hosts, the lack of a significant δ13C relationship indicated that additional 
data on carbon isotope fractionation in ectoparasites are needed. In addition, further research should investigate 
how tick digestion rates influence isotopic host signature, preferably in controlled feeding environments. The sta-
ble isotope analysis of ectoparasites remains an underutilised method for studying host-parasite interactions and 
could provide a useful alternative for reconstructing host diets, particularly in cases where direct tissue sampling is 
impractical.
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S1 Table.  Specimen metadata for European polecats (Mustela putorius) used in the study. This table lists acces-
sion numbers, species, collection years, and institutional details for museum specimens held at National Museums Scot-
land. These specimens were the source of Ixodes hexagonus ticks analysed in this study.
(XLSX)

S2 Table.  Summary of host and tick isotopic data. Includes δ15N and δ13C values (‰), elemental weight percentages, 
C:N ratios, and calculated discrimination factors between tick blood meal and exoskeleton tissues.
(XLSX)

S3 Table.  Stable isotope composition of polecat (Mustela putorius) whiskers, muscle, and associated whole ticks 
(Ixodes hexagonus). Includes δ15N and δ13C values (‰), nitrogen and carbon wt%, and atomic C:N ratios. Where appli-
cable, values represent monthly whisker segments and averages of replicate tick samples.
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