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A SHORT NOTE ON SCHIFFER’S CONJECTURE FOR A
CLASS OF CENTRALLY SYMMETRIC CONVEX DOMAINS

IN R
2

By

SUGATA MONDAL

Abstract. Let � be a bounded centrally symmetric domain inR2 with analytic
boundary ∂� and center c. Let τ = τ(�) be the number of points p on ∂� such that
the normal line to ∂� at p passes through c. We show that if τ < 8 then � satisfies
Schiffer’s conjecture.

1 Introduction

Let� be a simply-connected boundeddomain in the planewith Lipschitz boundary.
Assume that there exists a C2 function u : � → R that satisfies

(1) �u = μ · u, ∂νu
∣∣
∂�

≡ 0 and u
∣∣
∂�

≡ 1

for some μ �= 0, where ∂ν denotes the unit outward normal vector field along ∂�.
Schiffer’s conjecture says that � is a disc [Y]. Observe that, because Euclidean
discs have infinitely many radial Neumann eigenfunctions, there are infinitely
many solutions to (1) when � is a Euclidean disc. Interest in this conjecture, for
bounded connected domains in the plane with analytic boundary, partially, comes
from its connection to a well-studied problem in integral geometry known as the
Pompieu problem. A plane domain � is said to have the Pompieu property if for
any non-zero continuous function f : R2 → R there exists a rigid motion σ of R2

such that ∫
σ(�)

f �= 0.

It is well known that the unit disc does not have the Pompieu property (see the
discussion below). The Pompieu problem is to determine all simply connected
domains with the Pompieu property.
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2 S. MONDAL

In [Will76], it was proved that a bounded domain � in the plane does not have
the Pompieu property if and only if there exists a solution to (1) on �. In [Will81],
Williams proved a free boundary result concerning (1). As a consequence of
it, in R

2 one obtains that a bounded, simply-connected open set � ⊂ R
2 with

Lipschitz boundary ∂� has the Pompeiu property unless ∂� is analytic. Hence,
to prove that discs are the only bounded simply-connected plane domains with
Lipschitz boundary that does not have the Pompieu property, it suffices to prove
Schiffer’s conjecture for domains in the plane with analytic boundary.

Perhaps not entirely unexpectedly, Schiffer’s conjecture, in some form, shows
up in the asymptotic properties of nodal sets of eigenfunctions [TZ09]. For the
rest of the paper we will be concerned with simply-connected domains in the plane
with analytic boundary, unless otherwise stated.

Although the literature on the Pompieu problem is fairly rich (see [GF91],
[GF91’], [GF93], [GF94], [E93], [E93’], [E94], [D]), Schiffer’s conjecture has
not been studied that extensively on its own. In [Ber80] Bernstein showed that
if there are infinitely many solutions to (1), then � must be a disc. In [BY82] it
was proved that if the μ in (1) is equal to μ2(�)—the second Neumann eigenvalue
of �—then � is a disc. In [Av86] it was shown that if � is convex and if μ

in (1) is at most μ7(�)—the seventh Neumann eigenvalue of �—then � is a disc.
Recently, Deng [De12] has obtained results similar to the last one where, among
other things, he was able to drop the convexity assumption and replace the seventh
Neumann eigenvalue of � by some larger eigenvalue.

Other recent developments aroundSchiffer’s conjecture include [L07], [NSY20]
and [KM20]. In this short note we extend an observation of Deng [De12] to prove
Schiffer’s conjecture for a class of centrally symmetric domains. The main result
of this paper is the following theorem.

Theorem 1. Let � be a centrally symmetric domain with analytic bound-
ary ∂� and center c. Let τ = τ(�) be the number of points p on ∂� such that the

normal line to ∂� at p passes through c. We show that if τ < 8 then � satisfies
Schiffer’s conjecture.

Remark 2. A few remarks are in order.

(1) Schiffer’s conjecture for ellipses follows from [BST73, Theorem 5.1] via its
connection with the Pompieu property for ellipses.

(2) It can be easily checked that for � an ellipse, the number τ = 4. Hence,
Theorem 1 gives an alternate proof that any ellipse satisfies Schiffer’s con-
jecture. Because the condition in Theorem 1 is geometric and ‘open’, it
follows that any controlled deformation of any given ellipse (that satisfies
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the assumptions in Theorem 1) also satisfies Schiffer’s conjecture. This is
particularly interesting because, for most of the results on Schiffer’s conjec-
ture and the Pompeiu problem (see [GF91], [GF91’], [GF93], [GF94], [E93],
[E93’], [E94]) the conditions required are algebraic and ‘closed’ in nature.
Of course, a geometric condition that ensures τ < 8 would be interesting.

(3) According to [D-L15], for any centrally symmetric convex (c-s-c) domain �

in the plane with smooth boundary, and for any p ∈ �, the average number
of points on ∂� where the normal line to ∂� passes through p is at most 8. It
would be interesting to see if one can work with a general point in � rather
than the center and conclude the conjecture for all c-s-c domains from the
result of [D-L15].

(4) It is not very difficult to show the existence of c-s-c domains in the plane with
τ>8. To see this, first observe that for the disc D={(x, y)∈ R

2 : x2 + y2 ≤1},
we have τ(D) = +∞. Hence, for any n ≥ 2, one can carefully modify D to
produce c-s-c domains � with τ(�) = 2n.
For example, a smoothened regular 2n-gon P has τ(P) = 4n. It is perhaps
helpful to note that for any point q ∈ ∂� if the normal line to ∂� passes
through c then q is a local extremum of the function f : ∂� → R given by

f (p) = d(c, p),

where d(x, y) denotes the Euclidean distance between the points x, y ∈ R
2.

Sketch of the proof of Theorem 1. Let � be a simply-connected domain
in the plane with analytic boundary and let u be a solution of (1). In §2.3 we
obtain certain integral inequalities that u satisfies. When � is centrally symmetric,
using these identities, we deduce that the normal derivative along ∂�, of a particular
rotational (see §2.1) derivative of u, must vanish at at least eight points (Theorem4).

In §3 we study the local behavior of u on ∂�. We first obtain a local expression
of u at a point on ∂� (Proposition 6). Then, we use this expression to give
a geometric description of the points where the normal derivative of a rotational
derivative of u may vanish. The proof of Theorem 1 is deduced from this geometric
description.

Acknowledgment. The author would like to thank Michael Levitin for all
the discussions on Schiffer’s conjecture, and for pointing out the very interest-
ing literature around the average number of normals for planar convex domains
including [D-L15].
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2 Counting nodal critical points of derivatives of u after
Jian Deng

2.1 Killingfields. AKilling field onR2 is a vectorfield whose infinitesimal
generators are isometries of R2. It is well known that any Killing field on R

2 is
either a constant vector field or a rotational vector field. A constant vector field L

is a vector field on R
2 such that there exists a, b ∈ R with either a �= 0 or b �= 0

such that
L = a · ∂x + b · ∂y.

Here x, y denote the cartesian coordinates of R2. A rotational vector field Rp with
center p, on the other hand, is a vector field such that

Rp = ∂θ

where (r, θ) are the polar coordinates onR
2 with center p. One property of a Killing

field X, that we will be using in this paper, is that it commutes with the Laplacian

� · X = X · �.

This property implies that if v : R2 → R is a C3 function such that �v = λ · v on a
domain �, then �Xv = λ · Xv on �.

2.2 Boundary behavior of solutions of (1). Let � be a simply con-
nected domain with analytic boundary ∂�. We denote the anti-clockwise oriented
unit tangent and the unit outward normal vector fields along ∂� by ∂τ and ∂ν

respectively.
Let v be a Neumann eigenfunction on �. This means that there exists a λ > 0

such that �v = λ · v and v satisfies the Neumann boundary condition ∂νv = 0
along ∂�. It is well known that v can be extended analytically to a neighborhood
N(�) of � [TZ09]. From here onwards we shall always think of v as a function
on N(�). By the analyticity, the equality �v = λ · v still holds on all of N(�).

For a function f : � → R, the set f−1(0) of zeros of f is called the nodal set
of f and we denote it by Z(f ). If f is C1, we call a point p ∈ � a critical point
of f if the gradient of f vanishes at p. Equivalently, p is a critical point of f if all
partial derivatives of f at p vanish.

Lemma 3. Let u be a solution of (1) on �. Then each point on ∂� is a critical

point of u. In particular, Xu|∂� ≡ 0 for any vector field X.

Proof. Because ∂τ(p) and ∂ν(p) are linearly independent and because
∂νu|∂� ≡ 0, it suffices to show that ∂τu(p) = 0 for each p ∈ ∂�. This follows
from the fact that u ≡ 1 on ∂�. �



SCHIFFER’S CONJECTURE 5

Let s denote the arc length parametrization of ∂�. Let the parametric equation
of ∂� be given by z(s) = (x(s), y(s)). In the complex notation z(s) = x(s) + i · y(s)
the derivative

dz
ds

= ei·θ(s),

where θ(s) is the angle that the tangent to ∂� at the point z(s) makes with the x
axis.

2.2.1 Boundary values of derivatives of u. Most of the results in this
subsection are reformulations of some results from §2 of [De12]. We give the
details here for the sake of completeness.

The main goal here is to find expressions for uxx, uxy and uyy along ∂�, in terms
of the angle function θ(s) defined above. For this, we first recall that the unit
tangent vector to ∂� at z(s) is given by

∂τ = cos θ(s) · ∂

∂x
+ sin θ(s) · ∂

∂y
.

Also, after possibly reflecting � along the x-axis, the unit outward normal vector
to ∂� at z(s) is given by

∂ν = sin θ(s) · ∂

∂x
− cos θ(s) · ∂

∂y
.

Using Lemma 3, we get

(2) 0 = ∂τux = cos θ(s) · ∂2u
∂x2

+ sin θ(s) · ∂2u
∂x∂y

and

(3) 0 = ∂τuy = cos θ(s) · ∂2u
∂x∂y

+ sin θ(s) · ∂2u
∂y2

.

Since
∂2u
∂x2

+
∂2u
∂y2

= −μ · u,

a straightforward computation shows that

(4) uxx|∂� =
1
2

· (1 − cos(2θ(s))) · μ · u|∂�.

Similarly, we obtain other identities:

uxy|∂� = −1
2

· sin(2θ(s)) · μ · u|∂� and uyy|∂� =
1
2

· (1 + cos(2θ(s))) · μ · u|∂�.
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2.3 Counting the nodal critical point on the boundary. Let X be a
Killing field on R

2. Hence, from §2.1, either X = c1 · ∂x + c2 · ∂y for some constants
c1, c2 (with either c1 �= 0 or c2 �= 0), or X = Rp for some p ∈ R

2. By Lemma 3,
∂� ⊂ Z(Xu). Because X is a Killing field, it follows that �Xu = μ ·Xu. Hence, by
Green’s formula [Cha]

(5) 0 =
∫

∂�
Xu · ∂uxx

∂n
ds =

∫
∂�

∂Xu
∂n

· uxxds.

Now, by (4), we get our first equality
∫

∂�

∂Xu
∂n

· 1
2

· (1 − cos(2θ(s))) · μ · u|∂�ds = 0.

Since u|∂� is a constant, we get

(6)
∫

∂�

∂Xu
∂n

· 1
2

· (1 − cos(2θ(s)))ds = 0.

Similarly, working with uxy and uyy we get the identities

(7)
∫

∂�

∂Xu
∂n

· sin(2θ(s))ds = 0 =
∫

∂�

∂Xu
∂n

· (1 + cos(2θ(s)))ds.

Combining these equations we get the identities

(8)

∫
∂�

∂Xu
∂n

ds = 0,

∫
∂�

∂Xu
∂n

· sin(2θ(s))ds = 0 and
∫

∂�

∂Xu
∂n

· cos(2θ(s))ds = 0.

Now we use these identities to obtain a lower bound on the number of nodal
critical points of Rcu on ∂�. Observe that, because Rcu ≡ 0 on ∂�, the tan-
gential derivative ∂τRcu(p) = 0 for every p ∈ ∂�. Hence, every point p ∈ ∂�,
where ∂νRcu(p) = 0, is a nodal critical point of Rc. Because Rcu satisfies �u = μ ·u
in N(�), the nodal critical points of Rc are isolated by [Chn76]. In particular, there
are only finitely many points on ∂� where ∂νRc vanishes.

3 Centrally symmetric convex domains

Let � be a centrally symmetric convex domain.

Theorem 4 (Deng). Let � be a centrally symmetric domain with center c.

Let u be a solution of (1). Then there are at least eight points on ∂� where ∂νRc

vanishes.
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Proof. We first claim that u is centrally symmetric with respect to the central
symmetry ι of �. To see this, we consider the function v = (u + ι(u))/2. Clearly v

satisfies (1). If v is not a multiple of u then we may consider a linear combinationw,
of u and v, such that w satisfies (1) and w|∂� ≡ 0. In particular, each point of ∂�

is a nodal critical point of w. By [Chn76], w must be identically zero.
Hence we may assume that v is a constant multiple of u. This implies that ι(u) is

a constant multiple of u. Because ι is an isometry we may conclude that ι(u) = ±u.
If ι(u) = −u then u would vanish at some point on ∂�. Since u|∂� ≡ 1, we conclude
that ι(u) = u.

A straightforward computation now shows that Rcu is also symmetric with
respect to ι. Because sin(mθ), cos(mθ) are antisymmetric with respect to ι for m

odd, we get

(9)
∫

∂�
∂νRc · sin(m · θ)ds = 0 =

∫
∂�

∂νRc · cos(m · θ)ds,

for any odd integer m, Combining with (8) we obtain that (9) holds for
m = 0, 1, 2, 3. Hence ∂νRc|∂� is orthogonal to 1, cos(θ), sin(θ), cos (2θ), sin(2θ),
cos(3θ), sin(3θ). It follows from Strum–Liouville theory [Ar04] that ∂νRc|∂� has
at least eight zeros. �

4 Nodal sets of rotational derivatives

Let � be a simply-connected domain in the plane with analytic boundary ∂�. Let v
be a non-constant Neumann eigenfunction of � with eigenvalue μ. We recall that
this means that

�v = μ · v, and ∂νv ≡ 0 along ∂�.

Here, as before, ∂ν denotes the unit outward normal vector field along ∂�. Recall
that, because ∂� is analytic, we have a neighborhood N(�) where v extends
analytically and satisfies �v = μ · v on N(�) [TZ09].

Now we consider rotational derivatives Rqv of v. In particular, we would like
to understand the nodal set Z(Rqv) for different choices of q as a graph on N(�).
Because Rq is a Killing field, we have �Rqv = μ · Rqv on all of N(�). Hence,
by [Chn76], Z(Rqv) is a locally finite graph. Therefore, by considering a smaller
neighborhood N′(�), if necessary, we assume that Z(Rqv)∩N′(�) is a finite graph.
From now onwards, by Z(Rqv) we would mean Z(Rqv) ∩ N′(�).

For c ∈ ∂� we consider a coordinate system on the plane such that c is the
center of this coordinate system, the x-axis is tangent to ∂� at c and near c, � lies
in the upper half-plane. We refer to such a coordinate as adapted to c and �.
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Lemma 5. Fix a coordinate adapted to c and �. Assume that, in a neighbor-

hood of c, v has the expression

v(x, y) = v0,0 + v0,2 · y2 + p(x, y)

where v0,0 and v0,2 are constants and p is an analytic function of vanishing order

at least three.1 If v0,2 �= 0 and q does not lie on the normal to ∂� at c, then Z(Rqv)
consists of a smooth arc containing c in a neighborhood of c.

Proof. Let q = (xq, yq) in the adapted coordinates such that q does not lie on
the normal to ∂� at c. Hence, xq �= 0. Now,

Rq(x, y) = (x − xq) · vy(x, y) − (y − yq) · vx(x, y).

Using the expression for v we have

Rqv(x, y) = −2v0,2 · xq · y + f (x, y),

where f is an analytic function of vanishing order at least two. Because∇Rqv does
not vanish at c, the claim follows. �

Our next result is a bit more general. Let w satisfy �w = λ · w on a domain U

for some λ �= 0. Let crit(w) denote the set of critical points of w. For a C1 curve γ

and a ∈ γ, let Nγ(a) denote the normal line to γ at a. Finally, for a C2 curve γ we
denote the curvature and the centre of curvature of γ at a point a ∈ γ by κγ(a) and
ξγ(a) respectively.

Proposition 6. Let C ⊂ U be an analytic arc that is neither a subset of a

circle nor a subset of a straight line. Assume that C ⊂ crit(w). Then the following

holds:

(1) if q /∈ NC(p), p is a vertex of Z(Rqw) of degree two, i.e., then Z(Rqw) consists

of a smooth arc containing p in a neighborhood of p,
(2) if q ∈ NC(p) and q �= ξC(p), then p is a vertex of Z(Rqw) of degree four,

(3) if q = ξC(p), then p is a vertex of Z(Rqw) of degree at least six.

Proof. Because w satisfies �w = λ · w it follows that w is real analytic. We
now consider an expression for w in a neighborhood of q ∈ C as follows:

w(x, y) = w0,0 + w1,0 · x + w0,1 · y + w2,0 · x2 + w1,1 · xy + w0,2 · y2 + O(3)

Here the coordinate system is adapted to C and p and wi,j are constants.

1This means that Lp(0, 0) = 0 for any second order differential operator L.
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Since C ⊂ crit(w), it follows that w(t) = w0,0 for each t ∈ C. Since C is not
a single point, by [Chn76], it follows that w0,0 �= 0. Because p is a critical point
of w, we have w1,0 = 0 = w0,1. Moreover, as C ⊂ crit(w) we have C ⊂ Z(∂xw). In
particular, w2,0 = 0. Using ∂y instead of ∂x in the above argument, we may further
conclude that w1,1 = 0. Finally, since �w = λ · w, and the linear term in the above
expression of w vanishes identically, it follows that the degree three polynomial in
the expression for w is harmonic. In sum

w(x, y) = w0,0 + w0,2 · y2 + w3,0 · (x3 − 3xy2) + w0,3 · (y3 − 3x2y) + O(4).

Because w0,0 �= 0 and �w = λ · w, it follows that w0,2 �= 0. Now consider a point
q ∈ NC(p). In the adapted coordinates q = (0, yq). A straightforward computation
shows that

Rqw(x, y) = 2 · w0,2 · xy + yq · (3 · w3,0 · (x2 − y2) − 6 · w0,3 · xy) + O(3).

Since yq �= 0, if w3,0 �= 0 then Z(Rqw) would have two sub-arcs that pass through p

and both of these arcs would intersect the x axis transversally. This is impossible
because C ⊂ Z(Rqw). Hence, w3,0 = 0 and we have the following expression

(10) w(x, y) = w0,0 + w0,2 · y2 + w0,3 · (y3 − 3x2y) + O(4).

The first part of the proposition now follows from Lemma 5. For the rest of the
claims we begin with the following.

Lemma 7. w0,3 = 0 if and only if κC(p) = 0.

Proof. Let y = fp(x) be the equation ofC nearp, where fp is an analytic function
of x. Since the coordinate system is adapted to C and p we have fp(0) = 0 = f ′

p(0).
Now, using the Weierstrass preparation theorem we get

(11) w(x, y) = w(0, 0) + (y − fp(x))
2 · gp(x, y)

where gp(x, y) is an analytic function of x, y.

Now we compare the expressions (10) and (11) for w. Since fp(0) = 0, we
get gp(0, 0) = w0,2. Since w0,0 �= 0 and �w = λ · w, we have w0,2 �= 0. Hence,
gp(0, 0) �= 0. Since f ′

p(0) = 0, comparing the coefficient of x2y in (10) and (11) we
get

f ′′
p (0) · w0,2 = 3w0,3.

Since f ′′
p (0) = κC(p), the claim follows. �
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Remark 8. It follows from the proof that κC(p)= 3w0,3

w0,2
. Hence ξC(p)=(0,

w0,2

3w0,3
)

in the chosen coordinates.

First assume that ρC(p) �= 0, and hence, ξC(p) is finite. In particular, w has the
following expression near p:

w(x, y) = w0,0 + w0,2 · y2 + w0,3 · (y3 − 3x2y) + O(4),

where each of the three quantities w0,0, w0,2 and w0,3 is non-zero. Consider
q ∈ NC(p). As our coordinates are adapted to C and p, we have q = (0, yq).
Therefore,

Rqw(x, y) = (2w0,2 − 6yq · w0,3) · xy + O(3).

If q �= ξC(p) then, by Remark 8, yq �= 1/3 · (w0,2/w0,3). Hence there are exactly two
arcs in Z(Rqw) crossing each other at p. This proves that p is a degree four vertex
of Z(Rqw), giving the second claim.

Finally, if q = ξC(p) then yq = 1/3 · (w0,2/w0,3). Therefore, the order of
vanishing of Rqw at p is at least three. This means that there are at least three arcs
in Z(Rqw) crossing each other at p. Hence, the degree of p as a vertex of Z(Rqw)
is at least six. �

5 Proof of the main theorem

Let � be a centrally symmetric convex domain with analytic boundary ∂� and with
center c. Let u be a solution of (1). We consider Rcu—the rotational derivative
of u with respect to the center c of �. Our goal is to determine the points p
on the boundary ∂� such that the normal derivative ∂νRcu(p) = 0. Because Rcu

vanishes along ∂� we obtain that ∂τRcu|∂� = 0. Therefore, if ∂νRcu(p) = 0 for
some point p ∈ ∂�, then p must be a nodal critical point of Rcu.

Because Rcu is a Laplace eigenfunction and ∂� ⊂ Z(Rcu), it follows from
[Chn76] that as a graph, the degree of p as a vertex of Z(Rcu) is at least four.
By Proposition 6 this means that c lies on the normal to ∂� at p. In particular,
because τ(�), the number of points q on ∂� such that the normal line to ∂�

at q passes through c is < 8, we conclude that the number of points p ∈ ∂�,
where ∂νRcu(p) = 0, is at most 7. This contradicts Theorem 4.

Open Access This article is distributed under the terms of the Creative Com-
mons Attribution 4.0 International License, which permits unrestricted use, distri-
bution and reproduction in any medium, provided the appropriate credit is given to
the original authors and the source, and a link is provided to the Creative Commons
license, indicating if changes were made (https://creativecommons.org/
licenses/by/4.0/).
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