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Abstract
In this work, we present a fundamental mathematical model for proton transport, tai-
lored to capture the key physical processes underpinning Proton BeamTherapy (PBT).
The model provides a robust and computationally efficient framework for exploring
various aspects of PBT, including dose delivery, linear energy transfer, treatment plan-
ning and the evaluation of relative biological effectiveness. Our findings highlight the
potential of this model as a complementary tool to more complex and computationally
intensive simulation techniques currently used in clinical practice.

Keywords Proton transport · Bragg peak · Linear energy transfer · Relative
biological effectiveness · Treatment planning · Radiotherapy modelling

Mathematics Subject Classification 35L65 · 35Q92 · 92C50 · 49M20 · 65C05 · 62P10

1 Introduction

Proton Beam Therapy (PBT) has emerged as an important modality in the treatment of
specific challenging cancers, particularly where conventional photon-based radiother-
apy struggles to minimise irradiation to surrounding critical tissues. Pediatric cancers,
skull base tumours, and complex head and neckmalignancies are example cases where
PBToffers a distinct advantage due to its ability to deposit energywith precision, peak-
ing at the Bragg peak, see Fig. 1.

The Bragg peak enables precise targeting of tumours while sparing adjacent healthy
tissue, making PBT an attractive option for complex clinical scenarios. However,
despite its potential for superior dose profiles, there are fundamental challenges in
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Fig. 1 Simulated dose profile of a proton beam illustrating the Bragg peak. The simulation was performed
using MCsquare with 1.21× 107 particles, a beam width of 2mm, without nuclear interactions. The initial
proton energy is 150MeV with a 1% energy spread, and the dose is integrated along the plane orthogonal
to the beam axis

treatment planning, verification, and uncertainty quantification. A key issue is the
variability in patient anatomy during the treatment course, such as changes in water
retentionor tumourmotion,which can lead to suboptimal tumour coverageor increased
irradiation of healthy tissues. These challenges limit the potential of PBT to achieve
superior therapeutic outcomes consistently.

Moreover, the intricacies of Relative Biological Effectiveness (RBE), which varies
with proton energy and penetration depth, add a layer of complexity to treatment
optimisation. The RBE, a measure of the relative damage caused by protons compared
to photons, depends heavily on Linear Energy Transfer (LET), the rate at which energy
is deposited along the proton track. Regions with higher LET are known to cause more
complex and clustered DNA damage, which is harder for cells to repair, leading to
increased biological effectiveness. This correlationmakes LET a keymetric for linking
physical dose distributions to biological outcomes. As highlighted by Nystrom et al.
(2020):

“We believe that the endless discussions of which is the most appropriate RBE-
model and the exact values of the RBE for different tissue and in different parts
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of the dose distribution should be put on hold. Rather, efforts should be put in
the development of clinically useful tools to visualise LET distributions and the
possibility to include LET in the optimisation of proton treatment plans.”

This sentiment underscores the urgent need for practical, clinically-relevant
methodologies to optimise PBT treatment plans while navigating biological complex-
ities. In this work, we adopt a fundamental mathematical perspective to address some
of these challenges in PBT treatment planning. Specifically, we focus on developing a
robust and accessible framework for optimising dose distribution, incorporating con-
siderations of RBE and its impact on tumour cell survival. A particular emphasis is
placed on LET, enabling the integration of biological metrics into the optimisation
process.

Our approach introduces:

• A simplified, yet precise, model that facilitates rapid exploration of treatment plan
precision and its implications for therapeutic outcomes.

• A rigorous, accessible, mathematical formulation for optimising the biological
effective dose, explicitly accounting for LET distributions and RBE variability.

• A biologically informed framework for interpreting treatment plans, incorporating
cell survival fraction and RBE as key metrics.

• A detailed sensitivity analysis of the proposed framework, identifying the main
parameters that influence treatment outcomes.

The goal is to provide tools that are not only theoretically sound but also practical for
clinical implementation, bridging the gap between mathematical modelling and real-
world PBToptimisation. This framework supports investigations towards personalised
and adaptive therapy strategies,with the end goal of enhancing precision in challenging
clinical scenarios by enabling the integration of spatially resolved biological metrics,
such as LET, into treatment planning.

Modelling proton transport and dose distribution in PBT has traditionally relied on
Monte Carlo simulations (Salvat 2013; Jabbari et al. 2014), which provide detailed
physical insights but come with significant computational costs (Unkelbach et al.
2016). These methods remain the gold standard for accuracy but are impractical for
real-time treatment planning. Recent advancements in neural network-based method-
ologies show promise for accelerating dose prediction by leveraging large datasets
(Frizzelle et al. 2022; Fanou et al. 2023). However, these approaches are still nascent
in clinical contexts and require extensive validation.

From a biological perspective, the role of RBE in treatment optimisation has been an
important point of research. Unlike photon radiotherapy, where energy independence
simplifies the calculation of biologically effective dose (BED) (Bellamy et al. 2015),
proton radiotherapy demands careful calibration to account for RBE variability with
depth and energy (Chaudhary et al. 2014). While multiple RBE models exist, the
lack of consensus on their clinical applicability continues to pose challenges, and in
practice virtually all treatment centres use a constant RBE of 1.1 (Gerweck et al. 1999;
Underwood et al. 2016; Giantsoudi et al. 2013; Paganetti et al. 2019), despite the fact
that there is broad consensus that RBE varies along the particle track, increasing near
the Bragg peak (Hojo et al. 2017) to values significantly larger than 1.1. Indeed, RBE
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typically reaches values of approximately 1.6 in the falloff region of the Bragg peak
(Paganetti 2014).

Finally, efforts to incorporate LET distributions into treatment planning are gain-
ing traction (see (Unkelbach et al. 2016) for an example). These efforts align with
the broader push toward integrating data-driven methodologies, such as neural net-
works, which have shown promise in accelerating dose prediction and enhancing
planning workflows. Our framework complements such approaches by offering a rig-
orous and interpretable model for evaluating and validating biologically informed
treatment plans, as well as providing tools to visualise the effect that varying optimi-
sation routines to include additional quantities such as LET has upon the final plan.

It is worth noting that treatment planning is only one aspect of the broader radio-
therapy workflow, which encompasses tumour growth modelling, temporal variations
and interactions with other treatment modalities such as chemotherapy. While these
dynamic aspects can be addressed using optimal control formulations (Schättler et al.
2015), this work focuses on stationary problems, providing a foundational framework
that enables the capture of key physical and biological processes. In clinical practice,
temporal changes such as tumour shrinkage or movement are addressed through adap-
tive radiotherapy, which relies on re-imaging, re-planning, or pre-optimised scenarios
to ensure treatment quality across long, fractionated courses of therapy (Sonke et al.
2019).

In this context, the computational efficiency of our framework offers a significant
advantage, particularly in adaptive workflows where rapid dose calculations and fast
treatment plan optimisations are important. In this work we aim to bridge the gap
between theoretical modelling and clinical applicability, laying the groundwork for
examining biological metrics in current planning workflows.

The rest of this paper is structured as follows: in Sect. 2, we introduce the funda-
mental mathematical model, describing the principles of charged particle transport,
stopping power, and LET and validate the model against existing Monte Carlo codes.
In Sect. 3, we shift focus to biological metrics, exploring how the model can incorpo-
rate key measures such as the cell survival fraction and RBE to evaluate the biological
effectiveness of proton beams. Section4 addresses model uncertainties, providing a
sensitivity analysis to quantify how variations in key parameters affect dose and LET
predictions. Finally, Sect. 5 explores applications to treatment planning, demonstrat-
ing how the framework can optimise dose delivery and integrate biological metrics to
enhance therapeutic outcomes.

2 Modelling of charged particle transport

In this section we introduce fundamental modelling concepts in proton transport and
discuss a fundamental model to aid in the exploration of the ideas discussed here.

2.1 Amodel for proton transport

In this section, we introduce a simplified model for proton transport that builds upon
the principles shown in Fig. 2. To that end, consider a bounded domain X ⊂ R

3. For

123



Efficient proton transport modelling for… Page 5 of 33    47 

Fig. 2 The three main interactions of a proton with matter. A nonelastic proton-nucleus collision, an
inelastic Coulomb interaction with atomic electrons and elastic Coulomb scattering with the nucleus

0 < Emin < Emax, we define the interval I = [Emin, Emax] as the set of admissible
particle energies and let S2 represent the unit sphere, which describes possible particle
trajectories.

At any given position x ∈ X , with energy E ∈ I and a trajectory direction ω ∈ S
2,

we are interested in modelling the particle fluence. The fluence, denoted ψ(x, E,ω),
describes the differential number of particles passing through a small surface area
within an infinitesimal energy range. We letS denote the stopping power, defined in
Sect. 2.3, as a function of the particle energy in a homogeneous domain.

To simplify the analysis, we make several assumptions regarding proton transport.
First, we assume that nonelastic collisions, which involve nuclear interactions leading
to secondary particle production, are rare relative to ionisation losses at therapeutic
energies (50–250MeV) and therefore do not significantly impact the fluence. Second,
we assume that angular scattering is minimal. While multiple Coulomb scattering
contributes to lateral beam broadening, small-angle deflections do not substantially
alter the energy deposition profile along the primary trajectory, allowing us to model
transport using straight-line motion. Lastly, we consider a homogeneous medium,
which provides a first-order approximation to soft tissues. These assumptions lead to
a transport model where the fluence satisfies

ω · ∇xψ(x, E,ω) + ∂

∂E
(S (x, E)ψ(x, E,ω)) = 0. (1)

This equation captures the balance between the particle’s motion through the medium
and the energy loss through ionisation described by the stopping power.

Boundary conditions are required to close themodel. The inflow condition specifies
the fluence at the boundary of the domain

∂X− := {x ∈ ∂X : n(x) · ω < 0} (2)

where particles enter, while the energy cutoff condition ensures that no particles exist
above the maximum energy, these read
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Fig. 3 An illustration of the
domain and the relevant inflow
boundary

ψ(x, E,ω) = G (x, E,ω) ∀ x ∈ ∂X−, E ∈ I

ψ(x, Emax,ω) = 0 ∀ x ∈ X ,ω ∈ S
2.

(3)

This formulation provides the foundation we use to explore proton transport.

2.2 Model simplification

Given the assumptions made, it is useful to consider the variable

z := (x − x0) · ω, (4)

where x0 ∈ ∂X− is a given entrance point and ω ∈ S
2 is a given trajectory. We define

zmax := inf {s > 0 : x0 + sω ∈ ∂X , n(x0 + sω) · ω > 0} , (5)

which, for a given entrance point, represents the minimal path length to an outflow
boundary. Then, for fixed x0 and ω, we define the one-dimensional stopping power
and fluence in terms of the energy E and the one-dimensional track length z by the
following change of variables,

S(z, E) := S (x0 + zω, E)

u(z, E) := ψ(x0 + zω, E,ω)

g(E) := G (x0, E,ω).

(6)

We obtain the following problem for u:

∂

∂z
u(z, E) + ∂

∂E
(S(z, E)u(z, E)) = 0, ∀z, E ∈ (0, zmax) × I , (7)

subject to the boundary conditions

u(0, E) = g(E), ∀E ∈ I ,

u(z, Emax) = 0, ∀z ∈ (0, zmax).
(8)

Figure3 gives a visualisation of the domain and inflow boundaries.
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Table 1 Range–energy
relationship parameters for
different media

Medium p α

Water 1.75 ± 0.02 0.00246 ± 0.00025

Muscle 1.75 0.0021

Bone 1.77 0.0011

Lung 1.74 0.0033

Notice the parameter p remains relatively constant across different
biologicalmedia. In contrast, the parameterα variesmore significantly,
as it is strongly dependent on the density and composition of each
medium. The uncertainty in the water phantom is based on comparing
three parameterisations of the Bragg Kleeman rule from (Pettersen
2018; Boon 1998; Bortfeld 1997)

2.3 Energy, range and stopping power

Suppose that a proton beam consisting of particles of a single energy E0 enter a
medium. There is a fundamental relationship between E0 (in MeV) and the range R0
the protons penetrate into the medium. For a homogeneous medium, this relationship
is often modelled as a power law

R0 = αE p
0 , (9)

where p ∈ [1, 2] and α > 0 are constants related to the mass density of the medium.
Some indicative empirical values are given in Table 1.

From this relationship, one can derive a formula for the remaining energy E(z) at
a given depth, z ≥ 0 by observing that at depth z, the range of the beam is R0 − z.
Applying the range-energy relationship (9) at this depth yields

R0 − z = αE(z)p, (10)

Solving for E we see

E(z) = α
− 1

p (R0 − z)
1
p . (11)

This expression describes the energy of the proton beam as a function of depth. The
linear stopping power, defined as the energy loss per unit distance travelled, can then
be computed by

S(z) := − dE(z)

dz
= α

− 1
p

p
(R0 − z)

1
p −1

. (12)

Finally, since the relationship (11) is invertible for 0 ≤ z ≤ R0, the stopping power
can be expressed in terms of energy:

S(E) = 1

α p
E1−p. (13)
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Fig. 4 Stopping power as a function of energy for the Bragg–Kleeman and Bethe–Bloch models. The two
models show good agreement in the intermediate energy range relevant to proton therapy however differ
dramatically in the low energy range

This representation, called theBragg–Kleeman rule, illustrates how the stopping power
decreases as a function of energy which is the property that yields the forward facing
peaked nature of the Bragg peak.

Remark 2.4 (Relativistic effects) Proton therapy typically uses proton energies in the
range of 50 to 250MeV.While these energies are high enough to require accuratemod-
eling of stopping power, they are not so high that relativistic effects dominate. In this
intermediate energy range, the Bragg–Kleeman model provides a sufficiently accu-
rate approximation of stopping power while maintaining simplicity and computational
efficiency (Ulmer 2007).

The Bethe–Bloch formula, illustrated in Fig. 4, is more precise at relativistic speeds
as it incorporates corrections and additional parameters necessary at very high energies
(Navas 2024). However, it also introduces complexity to calculations and exhibits
unphysical behaviour at low energy levels, making it less suitable for the energy
ranges used in proton therapy.

Remark 2.5 (Heterogeneous tissue) In this work, we focus on a homogeneous medium
specifically a water phantom, in which case α and p can be treated as constant. How-
ever, in heterogeneous tissues, density and composition vary with depth, leading to
discontinuities in the stopping power. This affects the range-energy relationship, as
the parameters are no longer constant but instead piecewise defined according to the
material properties of each region. In such cases, the stopping power can be modelled
as a piecewise function to account for different tissue types (Cox et al. 2024).
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2.6 Closed form solution

Due to the form of the stopping power, the equation is hyperbolic in nature, we can
therefore use the method of characteristics to construct a closed form solution. To that
end, the characteristic curves satisfy

E p = E p
max − z

α
. (14)

This curve represents the energy trajectory of amonoenergetic proton beamwith initial
energy Emax in the (z, E)-plane. Integrating (7) along these characteristic curves, the
solution for fluence u(z, E) is

u(z, E) =
(
E p + z

α

) 1−p
p

g

((
E p + z

α

) 1
p
)
E p−1. (15)

2.7 Computation of absorbed dose

The absorbed dose, D(z), represents the energy deposited per unit mass at a given
depth and can be calculated by integrating the stopping power weighted by the particle
fluence over the energy range

D(z) =
∫ Emax

Emin

S(E)

ρ(z)
u(z, E) dE

= 1

α p

1

ρ(z)

∫ Emax

Emin

(
E p + z

α

) 1−p
p

g

((
E p + z

α

) 1
p
)

dE .

(16)

This formulation captures the full spectrum of proton energies within I , accounting
for their interactions with the medium and the resulting energy deposition.

To provide an intuitive understanding of this setup, Fig. 5 presents a visualisation
of the fluence and resulting dose for a 62MeV proton beam with a 1% energy spread.
The figure consists of a grid of panels illustrating three components:

• The initial energy distribution g(E) of the proton beam is shown on the left,
highlighting the Gaussian profile centred at 62MeV.

• The middle panel depicts the fluence in depth-energy space, demonstrating how
the protons’ energy evolves along their trajectories as they penetrate the medium.

• The bottom panel shows the resulting dose D(z), plotted as a function of depth,
capturing the energy deposited within the target region.

This visualisation effectively connects the initial beam properties to the resulting dose
distribution within the context of (16).

2.8 Linear energy transfer

A related concept to stopping power is the Linear Energy Transfer (LET), which
describes the energy locally absorbed by the medium per unit distance. The physical
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Fig. 5 A visualisation of dose calculation. Left: the initial Gaussian energy profile of a 62MeV proton beam
with a 1% energy spread. Middle: the fluence in depth-energy space, illustrating how the beam evolves as
it travels through the medium. Bottom: the resultant dose as a function of depth

definition from the ICRU(Thomas 2012) definesLET, or the restricted linear electronic
stopping power as

L� = dE�

dz
, (17)

which represents the energy lost dE� by the primary charged particle in interactions
with electrons, along a distance dx minus energy carried away by energetic secondary
electrons having initial kinetic energies greater than �. In the limit � → ∞, LET is
equivalent to the stopping power, this is referred to as the unrestricted LET. Essen-
tially, stopping power accounts for the total energy loss, while LET focuses on the
energy absorbed locally in the medium, which will be important in understanding the
biological impact of radiation later in this work.

If we assume that all of the energy lost is absorbed locally by the material, then
we have two notions of calculating the average LET from the particle fluence: track-
averaged and dose-averaged (Kalholm 2021).
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Track-averaged LET

LT (z) =
∫
E u(z, E)S(E) dE∫

E u(z, E) dE
. (18)

Dose-averaged LET

LD(z) =
∫
E u(z, E)S2(E) dE∫
E u(z, E)S(E) dE

. (19)

Remark 2.9 (Monoenergetic simplification) The track-averaged LET is sometimes
referred to as fluence-averaged or particle-averaged LET. Track- and dose-averaged
LET are defined for a polyenergetic beam, where g(E) is an arbitrary distribution of
energies. However, in the case of a truly monoenergetic beam, where

g(E) = cδ(E − E0) (20)

for some constant c and initial energy E0 ∈ R, the expressions for track-averaged and
dose-averaged LET simplify to

LT (z) = LD(z) = S

((
E p
0 − z

α

) 1
p
)

. (21)

2.10 Comparison with Monte Carlo codes

This section compares the analytical model described above with established simula-
tion tools to validate its performance against key benchmarks. Specifically, we evaluate
whether the simplified model, given by Eq.7, can accurately reproduce both qualita-
tively correct and quantitatively reasonable behaviour. The comparison is conducted
against theMonteCarlo simulation toolMCsquare (Souris 2016) and theGeant4-based
TOPAS framework (Faddegon 2020).

To assess the accuracy of the one-dimensional analytical model, we consider a pris-
tine Bragg peak simulation as a computational benchmark. A mono-energetic proton
beam with an initial energy of E0 = 62MeV and a fluence of 1.21 gigaprotons/cm2

is used as the input beam. The analytical model employs standard Bragg–Kleeman
parameter values for water (α = 2.2×10−3, p = 1.77) as reported in Bortfeld (1997),
while theMonte Carlo codes use their respective default material parameters for water.
To account for the energy spread in theMonteCarlo simulations, the standard deviation
of the proton energy spectrum is set to εE0, with ε = 0.01.
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Fig. 6 Comparison of depth-dose curves for a 62MeV mono-energetic proton beam in water obtained
from the one-dimensional analytical model (black), MCsquare (green) and TOPAS (pink). Left: nuclear
interactions are excluded in the Monte Carlo simulations. Right: nuclear interactions are included. All
simulations are scaled such that the total number of incoming protons is 1.21 gigaprotons, ensuring a
consistent comparison of absorbed dose

The boundary condition for the analytical model is defined as:

u(0, E) = 1.21 × 109 × C exp

(
− (E − E0)

2

2ε2E2
0

)
, (22)

whereC is a normalisation constant ensuring that the integral of the spectrummatches
the total fluence of 1.21 gigaprotons/cm2.

For theMonte Carlo codes, a three-dimensional water phantom is simulated and the
depth-dose curve is obtained by integrating the dose over the plane perpendicular to
the beam axis. Depth-dose curves for the analytical model are computed using Eq.16.

The comparison results are shown in Fig. 6, where close agreement between the
models can be observed. The left panel shows results excluding nuclear interactions in
the Monte Carlo simulations, while the right panel includes these effects. Both cases
demonstrate that the analytical model captures the depth-dose behaviour with high
fidelity, providing a computationally efficient alternative to Monte Carlo simulations.

It is important to note that the analytic model represents a substantial simplification
compared to Monte Carlo methods, relying on the Bragg–Kleeman formulation and
neglecting relativistic effects. While some variation in agreement is observed in Fig. 6,
the difference is minimal—one case leads to a slight overestimation of dose, while the
other results in a slight underestimation.More significantly, the twoMonteCarlo codes
themselves exhibit discrepancies, illustrating that their deviation from one another is
comparable to their deviation from the analytic model. This highlights the variability
in dose prediction, even among detailed transport methods.

3 Biological metrics

Treatment planning can be thought of as translating a physician’s prescription into
a set of parameters that define the radiotherapy delivered to a patient (Kooy 2015).
The treatment plan should be ‘optimal’ in some sense, as defined in Sect. 5. Typically,
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the goal is to deliver a dose that closely matches a prescribed target dose profile
using a suitable metric. Absorbed dose is widely used for this purpose because it is
measurable and can be computed accurately in numerical simulations. In addition,
prescriptions from clinicians are given as a dose due to the long history of use and
gathered expertise in photon based radiotherapy. However, dose is only a proxy for
biological effect and there is no simple one-to-one relationship between absorbed dose
and biological outcomes (Nystrom et al. 2020). For example, LET and cell type must
also be considered, and for this reason, metrics beyond dose have been incorporated
into carbon ion beam treatment planning (where LET plays a larger role than for
protons) for over two decades (Kanai et al. 1999; Inaniwa 2015; Karger et al. 2017).
In this section, we focus on cell survival rates as a biological metric to assess treatment
plan quality and introduce the concept of the relative biological effectiveness (RBE)
for proton beams, as well as the biological dose (BD).

To formalise these ideas, specific examples of biological effect must be considered.
The choice ofmetric should alignwith the desired clinical endpoints and bemeasurable
or detectable (Karger et al. 2017). Examples of such endpoints include tumour control
probability (TCP) and normal tissue complication probability (NTCP), which are
often estimated from in vivo experiments. For simplicity, we focus on the cell survival
fraction, a quantity measurable in vitro via clonogenic assay (Serrano-Mendioroz
et al. 2023). A cell is considered ‘killed’ or inactive if it is unable to proliferate.
This metric provides an objective measure of treatment efficacy while avoiding the
complexities of more comprehensive metrics like TCP. However, while the survival
fraction is relevant for tumour control, it may not be an ideal measure for toxicity in
healthy tissues (Nystrom et al. 2020), which is an important consideration in treatment
planning.

For X-rays, the survival fraction SFX-ray is accurately modelled in vitro as a func-
tion of absorbed dose DX-ray(x) using the linear-quadratic model (Kellerer 1978):

SFX-ray(z; DX-ray) = exp
(
−cX-ray(z)DX-ray(z) − βX-ray(z)DX-ray(z)

2
)

, (23)

where cX-ray(z)1 and βX-ray(z) are model parameters typically estimated through
regression, with their dependence on cell species captured via their spatial variation.
We note that the linear quadratic model becomes less accurate in some regimes (Hanin
2010), but is effective in many practical dose ranges.

Remark 3.1 (Interpretation of the parameters in the linear-quadratic model) As
described in Chadwick et al. (1973), the parameters in the linear-quadratic model
have physical interpretations. Cell death following irradiation is primarily caused by
DNAdouble-strand breaks, either from a single particle interaction or from two single-
strand breaks created by separate interactions. The parameters cX-ray(z) and βX-ray(z)
correspond to the expected number of single and double-strand breaks per unit dose,
respectively. While a general derivation of the model is given in Kellerer (1978), the
parameters are often determined empirically by fitting the model to experimental data.

1 Often denoted as α in the literature, but here denoted c to avoid confusion with parameters in the Bragg–
Kleeman model.
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Table 2 Parameters for the LET-dependent LQ model (25), measured for two cell types (Chaudhary et al.
2014)

Cell type cX-ray (Gy−1) λ (μmkeV−1 Gy−1) β (Gy−2)

AG01522 (skin) 0.54 ± 0.06 0.0451 0.051 ± 0.038

U87 (brain tumour) 0.11 ± 0.028 0.0127 0.059 ± 0.024

3.2 Linear-quadratic model for protons

Equation (23) implies a one-to-one relationship between absorbeddose and cell killing.
Predicting cell survival following irradiation with proton beams is more complex than
for X-rays due to the additional dependence on LET. This dependence can be incor-
porated into the linear-quadratic (LQ) framework and many studies have investigated
how LET affects the parameters of the LQ model (Hawkins 1998; Goodhead et al.
1992; Belli et al. 1993). LET-dependent models remain widely used and well-studied
(Wilkens et al. 2004; Chaudhary et al. 2014).

Experimental evidence suggests that, within clinically relevant LET ranges, the
coefficient c depends approximately linearly on LET:

c(z; LD) = c0(z) + λ(z)LD(z), (24)

where c0(z) corresponds to the value of c for X-rays and λ(z) represents the tissue-
dependent LET sensitivity. A more detailed model in Tilly (2002) (see also (Carabe et
al. 2012)) proposes modifying this dependence based on the ratio of cX-ray to βX-ray,
introducing exponential dependence when this ratio is large. However, for simplicity,
we assume λ(z) is constant for a given tissue type.

The relationship between β and LET is less clear and constant β is commonly
assumed (Chaudhary et al. 2014). Nevertheless, some studies, such as (Carabe-
Fernandez et al. 2007), have examined potential LET-dependent variations in β.

Following Chaudhary et al. (2014), we set c0 = cX-ray in Eq.24. The spatial varia-
tion of cX-ray,β andλ reflects tissue-specific responses to radiation. Table 2 summarises
these parameters for two cell types: AG01522 (skin cells) and U87 (malignant brain
tumour cells) (Chaudhary et al. 2014).

The survival fraction of cells irradiated by a proton dose D and LET LD is then
given by:

SF(z; D, LD) = exp
(
−c(z; LD) · D(z) − β(z)D(z)2

)
. (25)

For a given dose profile, D(z), the surviving fraction of cells at each depth z may
be predicted by the model (25). An example for a Bragg peak is shown in Fig. 7. It
is worth noting that this model may require further modification for heavier charged
particles such as carbon ions (Wilkens et al. 2004).
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Fig. 7 Left: depth-dose profiles for 62MeV proton beams of two different intensities, Right: corresponding
survival fractions of cells against depth assuming a homogeneous medium of cells, computed using the
model (25)

3.3 Relative biological effectiveness

Relative Biological Effectiveness (RBE) is an important metric in radiobiology,
defined as the ratio of doses required from two radiation sources to achieve the same
biological effect. It captures differences in energy deposition and clinical outcomes
between radiation modalities (Paganetti et al. 2019). Here, we consider RBE in terms
of cell survival fraction.

Proton beams differ from X-rays in their energy deposition characteristics. In par-
ticular, low-energy protons near the distal end of their range inflict greater biological
damage on tissue. In Hojo et al. (2017), an increase in molecular markers of double-
strand DNA breaks (γH2AX foci) is observed at the distal end of the Bragg peak,
consistent with Remark 3.1. It is well known that the RBE of protons exceeds 1.0 and
a constant value of 1.1 has been widely adopted in clinical practice (Gerweck et al.
1999; Underwood et al. 2016; Giantsoudi et al. 2013; Paganetti et al. 2019). While
some studies support this approximation, others suggest it is insufficient (Tilly 2002).

Quantifying RBE is important to fully exploit the advantages of proton therapy.
However, this task is challenging due to complex dependencies on biological factors,
including cell type, cell cycle phase (Underwood et al. 2016) and clinical endpoint
(Paganetti et al. 2019), as well as limited data for many tissues (Grassberger et al.
2011). Results from in vitro experiments on specific cell lines often do not generalise
to others due to significant biological variation. Additionally, RBE depends on dose
and radiation quality, typically characterised by LET (Wilkens et al. 2004).

In this work, we consider a spatially variable notion of relative biological effec-
tiveness as follows. Given a depth dose curve D(z) and LET profile LD(z), at each
point z a surviving fraction of cells may be computed as described above. The equiv-
alent photon dose, i.e. the dose that yields the same cell survival fraction, is found by
inverting the functional relationship given in Eq. (23). Specifically, given D, we seek
DX-ray such that:

SF(z; D(z), LD(z)) = SFX-ray(z; DX-ray(z)) (26)
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Fig. 8 Left: RBE-weighted dose curves for a 62MeV mono-energetic proton beam in water phantom,
calculated using theTDRAmodel for cell survival andparameters fromChaudhary et al. (2014) forAG01522
and U87 cell lines. Right: Corresponding RBE. Dose curve illustrates RBE behaviour along the Bragg peak
and is not to scale

for all z. We may then define a spatially variable relative biological effectiveness as

RBE(z, D, LD) := DX-ray(z)

D(z)
. (27)

The RBE-weighted dose is then defined to be the product of dose and RBE, i.e.
precisely the equivalent X-ray dose DX-ray. This quantity can be used to compare the
biological effect with photon dose curves. RBE and RBE-weighted dose curves are
shown in Fig. 8 for two different cell types studied in Chaudhary et al. (2014). We
observe that the RBE is in line with the clinical value of 1.1 up until the Bragg peak,
but becomes significantly larger in the distal falloff region.

3.4 Biological dose (BD)

Unfortunately, optimising for dose delivery that results in a given survival fraction is
problematic for a number of reasons. Discussion of these issues is postponed until
Sect. 5. In this section an alternative is presented which is more amenable to optimi-
sation.

A natural alternative is to consider the logarithm of the survival fraction, as is
common in log-likelihoodmaximisation. This idea appears in Unkelbach et al. (2016);
McIntyre et al. (2023),where theLET-weighted dose, often referred to as the biological
dose (BD), is used as an optimisation metric. In [Unkelbach et al. (2016), Appendix
A], a discussion of a simpler linear exponential model for the survival fraction is used
is given. It can be viewed as a simplification of the linear quadratic model for which
fractionation effects are neglected. The model is given by:

SF lin(z; D(z), LD(z)) := exp (−c(z; LD)D(z)) . (28)
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The biological dose is then defined as

BD(z) := − log(SF lin(z; D(z), LD(z)))/cX-ray = D(z)

(
1 + λ

cX-ray
LD(z)

)
,

(29)

where D(z) is the absorbed dose, LD(z) is the dose-averaged LET, and λ/cX-ray
quantifies the contribution of LET to the biological effect (cf. Eqs. (24) & (25)). This
formulation balances physical dose delivery with biological considerations, making it
a promising metric for treatment planning.

4 Model uncertainties and sensitivity analysis

In this section, we investigate how uncertainty in the stopping power parameters α

and p influences the predicted dose distribution. Given that stopping power governs
the range-energy relationship, variations in these parameters can impact the Bragg
peak position and overall dose deposition. While in realistic biological tissues, α

would vary discontinuously with depth due to differences in tissue composition, we
focus here on an idealised homogeneous water medium to isolate and quantify the
effects of parametric uncertainty in a controlled setting. This provides a baseline for
assessing howuncertainty propagates through themodel, independent of the additional
complexities introduced by tissue heterogeneity. The empirical values for α and p
used in this study are derived from experimental measurements in water phantoms,
which are appropriate for this homogeneous case but may require modification for
heterogeneous media, as indicated in Remark Remark 2.5.

With this motivation in mind, this section aims to quantify the uncertainty in the
magnitude and position of D(z) (16) when the stopping power parameters α and p
from the Bragg–Kleeman rule in Eq.13 are uncertain. Specifically, we consider the
dose as parameterised by α and p, such that D(z) = D(z;α, p). Two methods, an
active subspace approach and a Monte Carlo simulation, are implemented to analyse
the impact of uncertainty in the model.

4.1 Active subspacemethod

We apply an active subspace method to evaluate the relative importance of the param-
eters α and p over specified ranges. This approach involves examining the dose across
the phase space of α and p at a fixed point in the domain. The direction perpendicular
to the contour lines in this space indicates the path along which the greatest change in
dose occurs, providing insight into the relative sensitivities of D(z;α, p) to α and p.
Furthermore, the orientation of these contour lines is orthogonal to the eigenvectors
of the covariance matrix at that point (see (Sullivan 2015, §10.5) for further details).
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Table 3 Standard deviations σα

and σp for the three case studies
Case σα σp

Absolute 0.0001 0.0001

Relative 0.0000246 0.0175

Empirical 0.000128 0.0102

The parameters α and p are modelled as independent normally distributed random
variables, with means (μα, μp) and variances (σα, σp):

α ∼ N (μα, σα)

p ∼ N (μp, σp).
(30)

For all simulations, we take μα = 0.00246 and μp = 1.75, as shown in Table 1.
We consider three cases for the standard deviations σα and σp: absolute values,

relative values, and empirical estimates based on data. For the absolute case, we
set σα = σp = 0.0001. For the relative case, σα and σp are taken to be 1% of their
respectivemean values. For the empirical case, we use the data fromTable 1, assuming
the 95% confidence intervals represent twice the standard deviation. Thus, σα and σp

are scaled by 1/1.96 to align the normal distribution with these intervals. Table 3
summarises these choices.

A sensitivity analysis is conducted at three points in the domain, labelled A, B,
and C , as shown in Fig. 9. Point A lies midway between the start of the beam and the
Bragg peak, point B is at the Bragg peak, and point C is at the location of the steepest
gradient.

Contour plots illustrating the sensitivities at points A, B, and C are shown in
Figs. 10, 11, and 12, respectively. The x- and y-axes of these figures represent the
ranges (μα − 2σα, μα + 2σα) and (μp − 2σp, μp + 2σp), ensuring that α and p span
their 95% confidence intervals.

Figure10 illustrates that, when absolute uncertainties are considered, the contour
lines are nearly vertical, indicating that D(x;α, p) is significantly more sensitive to
changes in α than to equivalent changes in p. In contrast, Fig. 11 shows that when
relative uncertainties are used, a 1% change in p has a greater impact on D(x;α, p)
than a 1% change inα. Finally, Fig. 12, which uses empirical standard deviations based
on Table 1, demonstrates that D(x;α, p) is equally sensitive to both parameters over
the examined phase plane.

It is important to note that while Fig. 10 highlights α’s greater influence under
absolute uncertainties and Fig. 11 shows p’s dominance under relative uncertainties,
Fig. 12 reflects a balance in sensitivity when using empirically motivated standard
deviations. Thismotivates the inclusionof uncertainty in bothα and p in the subsequent
Monte Carlo analysis.
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Fig. 9 Positions for the active subspace analysis. Point A is halfway between the start and the Bragg peak,
point B is at the peak, and point C is at the position with the steepest gradient. The initial beam has an
energy of 62MeV, with a spread of 5%

Fig. 10 Contour plot of dose at points A, B, and C when α and p are assumed to follow normal distributions
with absolute standard deviations σα = σp = 0.0001

Fig. 11 Contour plot of dose at points A, B, and C when α and p are assumed to follow normal distributions
with relative standard deviations σα = 0.01μα = 0.0175 and σp = 0.01μp = 0.0000246
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Fig. 12 Contour plot of dose at points A, B, and C when α and p are assumed to follow normal distributions
with empirical standard deviations σα = 0.000128 and σp = 0.0102

5.1 Monte Carlo simulation

In this section, we investigate how uncertainty in the stopping power parameters α and
p affects the shape and position of the dose curve D(z;α, p). UsingMonte Carlo sim-
ulations, we quantify the overall uncertainty in D(z;α, p) as well as the uncertainty
in the depth of the Bragg peak. As in Sect. 4.1, we model α and p as independent,
normally distributed random variables with means (μα, μp) and standard deviations
(σα, σp). Specifically, we take μα = 0.00246 and μp = 1.75, and use empirical stan-
dard deviations σα = 0.000128 and σp = 0.0102, corresponding to 95% confidence
intervals.

The nominal dose curve, computed with α = μα and p = μp, is denoted as
D∗(z;μα,μp) and serves as the “true” reference dose curve. This curve corresponds
to the assumed parameter values μα = 0.00246 and μp = 1.75, as presented in Table
1. In the figures that follow, D∗(z;μα,μp) is included to illustrate how uncertainties
in α and p influence the dose curve.

It is important to note that the nominal dose curve D∗(z;μα,μp) is not equiva-
lent to the mean dose curve, as D∗(z; E[α], E[p]) �= E[D(z, α, p)]. As a result, the
nominal dose curve does not necessarily lie within the calculated confidence intervals,
which reflect the distribution of D(z;α, p). This underscores the impact of parameter
uncertainty on the dose curve and highlights the importance of considering the full
range of variability in α and p.

In Fig. 13, we show how the dose curve changes when α and p deviate by one
or two standard deviations in either the positive or negative direction. The results
indicate that deviations in either α or p alone induce moderate changes in D(z;α, p).
However, simultaneous deviations in both parameters cause larger changes in both the
magnitude and the location of the Bragg peak.

Notably, the probability of both α and p being off by 2σ simultaneously is sig-
nificantly lower than the probability of a single parameter deviating by 2σ , assuming
independence. For instance, under the normal distribution assumption, the probability
of α being off by 2σα is 5%, while the probability of simultaneous 2σ deviations for
both parameters is 0.25%.
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Fig. 13 Sensitivity of D(z; α, p) to under- and overestimation of α and p by one or two standard deviations.
The nominal dose curve D∗(z; μα, μp) is shown for reference. On the left, only α has been under- or
overestimated; in the centre only p; and on the right both α and p

Fig. 14 Confidence intervals for the variation in dose D(z; α, p) when α and p are normally distributed
with means μα = 0.00246, μp = 1.75 and standard deviations σα = 0.000128, σp = 0.0102. The
nominal dose curve D(z; μα, μp), resulting from the assumed parameter values μα and μp , is plotted in
dark blue. The 68% and 95% confidence intervals are shown as shaded regions, estimated using 25,000
independent random samples of α and p. On the left, only uncertainty in α has been included; in the centre
only uncertainty in p, and on the right uncertainty in both α and p (color figure online)

Figure14 presents the estimated 68% and 95% confidence intervals for the dose
curve D(z;α, p). These intervals are derived using a Monte Carlo approach, with
25,000 independent random samples of α and p. Empirical quantiles are computed at
each depth z to generate the ensemble of dose curves.

The results show that introducing uncertainty in either α or p individually leads to
similar confidence intervals. However, when uncertainty is included for both parame-
ters simultaneously, the confidence intervals for the dose curve become significantly
larger. This demonstrates that the combined uncertainties inα and p amplify the overall
uncertainty in dose deposition, emphasising the importance of accurately characteris-
ing both parameters.

In Fig. 15, we show the estimated 68% and 95% confidence intervals for the peak
position zpeak of the dose curve. These intervals are also derived using a Monte Carlo
approach with 25,000 independent random samples of α and p.

The results indicate that the confidence intervals for zpeak are comparable in mag-
nitude when uncertainty is included for either α or p alone. However, when both
parameters are simultaneously uncertain, the confidence intervals for zpeak are con-
siderably larger, consistent with the shifts in zpeak observed in Fig. 13. Even relatively
small uncertainties in α and p result in a 95% confidence interval for zpeak of approxi-
mately±1 cm, a level of uncertainty significant for treatment planning. This highlights
the need for precise parameter estimation to ensure accurate dose delivery.
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Fig. 15 Confidence intervals for the variation in peak depth zpeak when α and p are normally distributed
with means μα = 0.00246, μp = 1.75 and standard deviations σα = 0.000128, σp = 0.0102. The
nominal dose curve D(z; μα, μp), resulting from the assumed parameter values μα and μp , is plotted in
dark blue. The corresponding nominal peak depth of the curve D(z; μα, μp) is plotted as a dashed red
line. The 68% and 95% confidence intervals for zpeak are shown as shaded regions, estimated using 25,000
independent random samples of α and p. On the left, only uncertainty in α has been included; in the centre
only uncertainty in p, and on the right uncertainty in both α and p (color figure online)

5 Treatment planning

To complete our study, we now examine how the model developed can be applied to
treatment planning in proton therapy.

The goal of treatment planning is to determine the optimal initial beam angles,
intensities, and energies such that the dose delivered to a cancerous region ismaximised
while minimising the biological damage to surrounding healthy tissues. This objective
can be framed as a control problem.

Efficient optimisation methods are crucial in Intensity-Modulated Proton Therapy
(IMPT), where practitioners often generate multiple treatment plans along an approx-
imate Pareto surface to balance competing objectives and select the most suitable
plan for the patient. Furthermore, the optimisation of proton therapy treatment plans
involves a significantly larger number of decision parameters compared to Intensity-
Modulated Radiation Therapy (IMRT) Chen (2010).

5.1 Dose optimisation as a constrained least squares problem

We consider the spatial domain divided into disjoint regions of healthy and tumourous
tissues, denoted H and T , respectively. For simplicity, we assume T =
[zprox, zdist]. Given a target dose profile T (x), the objective is to construct an input
beam g : [Emin, Emax] → R such that the resulting dose D(z) closely approximates
T (z).

To approach this problem, we require:

• A discrete representation of the input beam g;
• A forward model g → D to predict the dose profile;
• A metric to quantify the difference between D(z) and T (z).

To represent the input beam, we assume it is a superposition of a finite set of
Gaussian-shaped basis beams, ϕi , i = 1, . . . , Ny , each centred at a principal energy
Ei with variance σ 2

i . This formulation reduces the space of possible input functions
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g to a finite-dimensional vector space spanned by the basis beams:

g( y, E) =
Ny∑
i=1

yiϕi (E), (31)

where y = (y1, . . . , yNy ) represents the weights or intensities of each constituent
beam. Each ϕi approximates a mono-energetic beam, and the choice of Gaussian-
shaped beams ensures practical feasibility given equipment constraints, as discussed
in Markman (2002). Alternative representations, such as piecewise constant or linear
approximations, may lead to input beams that are difficult to realise in practice.

The forward model is provided by the one-dimensional analytical model from
Sect. 2, which is linear with respect to the initial beam energy g. This allows the total
dose profile to be expressed as a linear combination of precomputed dose profiles
Di (z) corresponding to unit-intensity beams:

D( y, z) =
Ny∑
i=1

yi Di (z). (32)

By precomputing the dose profiles Di (z) for each basis beam ϕi , the optimisation
problem is reduced to finding the optimal coefficients y, which is computationally
efficient.

To measure how well D( y, z) approximates T (z), we define a cost function that
penalises deviations between the dose and the target. Let w(z) be a non-negative
weighting function, then the cost functional is

l( y) :=
∫

X
w(z) (D( y, z) − T (z))2 dx . (33)

For practical implementation, we evaluate the dose at a finite set of points z0, . . . , zNx

and approximate the integral using the composite trapezoidal rule. This leads to the
discrete cost functional

L( y) :=
Nx∑
j=1

1

2
w(z j )

(
D( y, z j ) − T (z j )

)2
(z j − z j−1). (34)

Definition 5.2 (Treatment planning optimisation problem) Given beams ϕ1, . . . , ϕNy ,
target and weighting functions T , w, and an admissible set Y , find y ∈ Y such that:

L( y) ≤ L( y′) ∀ y′ ∈ Y . (35)

Remark 5.3 (Weighting function w) The weighting function w provides flexibility
in defining the cost function, allowing different priorities in the treatment plan. We
illustrate this with the following examples:
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(1) In the simplest case, where the goal is to deliver a specified dose to a target region
T with no restrictions elsewhere, w can be set as the indicator function of T :

w = �T . (36)

(2) When additional considerations, such as sparing an organ at risk (OAR) within
O ⊆ H , are required, the weighting function can assign different priorities to
regions. For example:

w(z) =

⎧
⎪⎨
⎪⎩

wT for z ∈ T ,

wO for z ∈ O ,

wH otherwise.

(37)

Here, setting wO � wT reflects a higher priority for sparing the OAR over
achieving the target dose in the tumour.

Remark 5.4 (Admissible set Y ) The admissible set Y allows the inclusion of practical
constraints on beam intensities. For instance, beams must have non-negative intensity,
so Y must satisfy:

Y ⊆ { y ∈ R
Ny : yi ≥ 0 ∀i}. (38)

Additionally, upper bounds on intensity may be enforced due to equipment limitations
or safety constraints.

Selection of the inflow energy profiles

The success of the optimisation problem in 5.2 depends on appropriate choices for the
beam profiles ϕi and the admissible set Y . Physically, it is desirable for the spread-out
Bragg peak (SOBP) to cover the tumour region T . This requires the ranges of the
constituent beams ϕi to lie within T (Fig. 16).

The range of a proton beam, determined by the Bragg–Kleeman rule (see Eq. (9)),
can be inverted to compute the energy E of protons with a given range R:

E =
(
R

α

)1/p

. (39)

This relationship allows the selection of principal energies (the centres of the Gaussian
profiles for each beam) such that the ranges satisfy:

zprox ≤ αE p
i ≤ zdist. (40)

The choice of beam principal energies and widths significantly affects the appear-
ance of the resulting SOBP. As illustrated in Fig. 17, restricting all beam ranges to lie
strictly within the tumour region can lead to oscillations at the distal end of the SOBP.
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These oscillations persist even when the boundary condition is resolved with a greater
number of beams. Allowing some beams with energies Ei such that R(Ei ) > zdist
reduces these oscillations but increases the dose delivered to the surrounding healthy
tissues.

Example 1: uniform dose delivery

We let T = [3, 6] and H = X\T . The weighting function is chosen as described
in Eq.37, with wT = 1 and wH = 0. For this example, we set Ny = 30, with beam
energies Ei selected such that their ranges are equally spaced in [zprox, zdist + 1

4 ], and
set σ 2

i = 1 for all i . The admissible set Y is defined as:

Y = { y ∈ R
Ny : yi ≥ 0 ∀i}, (41)

to enforce non-negativity of beam intensities.
In practice, it is typical to deliver a homogeneous dose to the tumour region (Grass-

berger et al. 2011). As a first numerical experiment, we define the target dose profile
as:

T (z) =
{
1 for z ∈ T ,

0 otherwise,
(42)

and aim to find parameters y such that:

‖w(x)1/2 (D( y, z) − T (z)) ‖L2 → min . (43)

The optimisation problem is solved using the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) algorithm. Results are shown in Fig. 18. The solution achieves highly uniform
coverage of the target region. Specifically, if y∗ is the optimal set of parameters, the
relative error satisfies:

L( y∗)
L((0, 0, . . . , 0))

≈ 10−6, (44)

where:

L((0, 0, . . . , 0)) =
∫

X
w(z)T (z)2 dz. (45)

To provide a visual representation of the optimisation process and the resulting dose
distribution, Fig. 16 illustrates the input beam configuration, the fluence in depth-
energy space, and the final dose profile for Example 1. This figure parallels the
visualisation provided earlier for the pristine Bragg peak (see Fig. 5), extending to
the optimised spread-out Bragg peak (SOBP) used in this treatment plan. This visuali-
sation connects the optimised input beam parameters to the resulting dose distribution.
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Fig. 16 Visualisation of the input beam, fluence, and dose profile for Example 1. Left: the optimised input
beam intensities across different energies. Middle: the fluence in depth-energy space, showing how the
superposition of beams evolves through the medium. Right: the resulting dose profile as a function of
depth, achieving a uniform dose within the target region T

Fig. 17 Spread-out Bragg peaks (left) and dose-averaged LET curves (right) resulting from the optimisation
problem 5.2. Dashed lines: beam ranges are equally spaced between zprox and zdist. Solid lines: beam ranges
are equally spaced between zprox and zdist + 0.15. Allowing slight extension of ranges into healthy tissue
improves dose uniformity within the tumour
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Fig. 18 Left: dose profile resulting from the optimisation in Example 1. Right: corresponding dose-averaged
LET. A total of 30 energy levels are used, with energies chosen such that their ranges are equally spaced
and cover the target region. Uniform dose delivery to the tumour is achieved

Example 2: organ at risk (OAR)

In this example, we retain the tumour region T = [3, 6] but introduce an organ at
risk (OAR) in O = [6, 8]. The weighting function w is modified to penalise dose
delivered to the OAR, and is defined as:

w(z) =

⎧
⎪⎨
⎪⎩

wT = 1 for z ∈ T ,

wO = 10 for z ∈ O ,

wH = 0 otherwise.

(46)

As in Example 1, we set Ny = 30 and select beam energies such that their ranges are
equally spaced in [zprox, zdist + 1

4 ] (Fig. 18).
The results of this optimisation are shown in Fig. 19. The competing objectives of

delivering sufficient dose to the tumour while sparing the OAR result in less uniform
dose coverage within the tumour region. Compared to Fig. 18, there is a notable reduc-
tion in LET near the distal edge of the tumour, accompanied by a significant decrease
in dose delivered to the OAR. However, this optimisation introduces oscillations and
slight under-dosing in the tumour’s distal region, which may be clinically relevant
depending on the treatment context.

To further understand the implications of model uncertainty, we examine the effects
of parameter variability on the spread-out Bragg peak (SOBP) for a scenario that
includes an OAR. Figure20 shows theMonte Carlo-estimated confidence intervals for
both the SOBP and the corresponding dose-averaged LET. The methodology follows
that described in Sect. 4, where uncertainty in the stopping power parametersα and p is
introduced, and empirical confidence intervals are computed from 25,000 independent
samples.

The results highlight significant uncertainty in the maximum dose attained within
the SOBP, as well as in the falloff region beyond the tumour. Similarly, there is sub-
stantial uncertainty in LET, particularly near the depth where the LET curve becomes
sharply peaked. These uncertainties are clinically important to consider in treatment
planning, as they heavily affect the balance between tumour coverage and OAR spar-
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Fig. 19 Left: dose profile resulting from the optimisation in Example 2. Right: corresponding dose-averaged
LET. Penalising dose in the OAR (shaded green) reduces dose penetration into healthy tissue but introduces
slight under-dosing and oscillation in the tumour’s distal region (color figure online)

Fig. 20 Confidence intervals for a spread-out Bragg peak and the corresponding dose-averaged LET. The
confidence intervals are obtained as in Sect. 4, by introducing uncertainty in the stopping power parameters
α and p, and estimating the empirical confidence intervals from 25,000 independent samples using Monte
Carlo methods. The dark blue curves represent the nominal dose and LET profiles, calculated using the
assumed parameter values μα and μp

ing. When an OAR is located directly behind the tumour, such uncertainties can
compound the challenge of achieving an optimal treatment plan.

5.5 Optimisation based on biological metrics

An alternative approach to treatment planning involves prescribing the fraction of
surviving cells as a function of space, aligning the optimisation process more closely
with biological outcomes. For instance, one could aim to kill 90% of cells within the
tumour, resulting in an objective function of the form:

LSF ( y) :=
Nx∑
j=1

1

2

(
w(z)(SF( y, z) − TSF (z))2

)
(z j − z j−1), (47)

whereSF( y, x) denotes the survival fraction and TSF (x) represents the target survival
fraction.
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While this approach is biologically motivated, it presents practical challenges. Due
to the exponential relationship between dose and survival fraction, the optimisation
problem becomes more computationally expensive and can sometimes yield coun-
terintuitive results. For instance, regions receiving excessive dose may not incur a
significant penalty in the objective function, as the survival fraction in those regions
is already near zero.

To address these limitations, a biologically weighted dose metric is often pre-
ferred. By incorporating biological weighting factors into the dose, the optimisation
problembecomes linear in terms of the control parameters, significantly reducing com-
putational cost. Moreover, this approach avoids the spurious results associated with
excessive dose regions, providing a more robust framework for treatment planning
while retaining a biologically informed perspective.

Example 3: uniform LET-weighted dose

In this example, we optimise for a uniform biological dose within the target region
T , defined as:

TBD(z) :=
{
1 for z ∈ T ,

0 otherwise.
(48)

The input beams are chosen as in Examples 1 and 2, with the weight function w set
to�T . The results of this optimisation are shown in Fig. 21. Optimising for biological
dose introduces a trade-off: some dose conformity is sacrificed at the distal part of
the tumour to account for the higher LET values that occur there. Consequently, the
dose delivered is significantly lower than that obtained by considering absorbed dose
alone, reflecting the heightened biological impact of protons near the Bragg peak.

Interestingly, the largest biological effect, computed using the linear-quadratic
model, is observed outside the target region when LET is taken into account, as shown
in Fig. 22. This arises because the LET-weighted optimisation naturally prioritises
regions of higher biological effectiveness, even if they fall outside the prescribed dose
boundaries. A comparison of the survival fraction profiles resulting from absorbed
dose and biological dose optimisation demonstrates this effect. The tapering of the
dose profile towards the distal end of the target region ensures significantly less dose
is delivered to healthy tissue, whilemaintaining a near-uniformbiological effectwithin
the tumour.

It is instructive to compare these results with those in Fig. 4 of (Giovannini 2016),
where a similar shape is observed in RBE-weighted dose curves. The survival fraction
profiles in Fig. 22 exhibit a comparable trend, underscoring the alignment between
LET-weighted dose optimisation and RBE-based approaches in clinical practice.
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Fig. 21 Left: dose profile resulting from the optimisation in Example 3. Right: corresponding dose-averaged
LET. A total of 30 energy levels are used, with energies chosen such that their ranges are equally spaced
and cover the target region

Fig. 22 Comparison of relative dose (left) and survival fraction profiles (right) resulting from optimisation
for absorbed dose (dashed line) and biological dose (solid line). The survival fraction was computed using
the linear-quadratic model, with the α parameter accounting for LET, for AG01522 cells using parameters
from (Chaudhary et al. 2014). Optimising for biological dose results in a tapered dose profile at the distal
end of the target region, delivering significantly less dose to healthy tissue while maintaining an almost
constant biological effect within the target

6 Conclusion

In this work, we have developed a computationally efficient framework for evaluating
key metrics in PBT, including dose delivery, LET and biologically informed metrics
such as RBE and cell survival fraction. Leveraging a simple analytical model, we
achieve results that show good agreement with those from computationally intensive
Monte Carlo particle simulations, while significantly reducing computational cost.
This makes the framework particularly well-suited for rapid evaluations in treatment
planning.

The speed and simplicity of the approach enable the exploration of optimisation
strategies with respect to challenging objectives, such as LET-weighted dose or sur-
vival fraction. Such objectives, while important for improving treatment outcomes,
would require significant computational resources if approached using Monte Carlo
simulations. Our framework allows for the efficient evaluation of these biologically
informed metrics, providing a practical tool for exploring their potential integration
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into treatment planning workflows as well as for investigating the impact of model
uncertainty, particularly in scenarios involving OARs.

By presenting these ideas in a mathematically rigorous but approachable way, we
believe this work also serves as an accessible introduction for mathematicians inter-
ested in contributing to the field of PBT. The integration of physical, biological and
computational principles offers a clear pathway formathematical researchers to engage
with and address real-world challenges in cancer therapy.

This work demonstrates the value of computationally fast models in bridging the
gap between theoretical modelling and practical application in PBT. We believe it
provides a foundation for future investigations which account for other interaction
mechanisms, Coulomb and nuclear, into biologically informed treatment planning,
enabling the rapid assessment of new metrics and strategies that may otherwise be
computationally prohibitive, supporting the broader goal of delivering better patient
outcomes in personalised cancer therapies.

While the current framework is developed in aone-dimensional setting, real tumours
and organs exhibit complex, non-radially symmetric morphologies, requiring consid-
eration of spatial variations in tissue composition and beam orientation. In a clinical
setting, additional challenges such as organmotion and heterogeneous stopping power
must be addressed for optimal treatment planning. The approach presented here serves
as a computationally efficient baseline for understanding the role of stopping power
uncertainties and biologically informed metrics in dose optimisation. Future work
will focus on extending this framework to higher-dimensional settings, incorporating
patient-specific anatomical structures and more advanced robust optimisation tech-
niques.
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