
Compactness and related properties of 
weighted composition operators on 
weighted BMOA spaces 
Article 

Published Version 

Creative Commons: Attribution 4.0 (CC-BY) 

Open Access 

Norrbo, D. ORCID: https://orcid.org/0000-0003-3198-6290 
(2025) Compactness and related properties of weighted 
composition operators on weighted BMOA spaces. Bulletin des
Sciences Mathématiques, 203. 103642. ISSN 00074497 doi: 
10.1016/j.bulsci.2025.103642 Available at 
https://centaur.reading.ac.uk/122521/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.1016/j.bulsci.2025.103642 

Publisher: Elsevier 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online



Bull. Sci. math. 203 (2025) 103642

Contents lists available at ScienceDirect

Bulletin des Sciences Mathématiques

journal homepage: www.elsevier.com/locate/bulsci

Compactness and related properties of weighted 

composition operators on weighted BMOA spaces

David Norrbo
Department of Mathematics and Statistics, School of Mathematical and Physical 
Sciences, University of Reading, Whiteknights, PO Box 220, Reading RG6 6AX, 
UK

a r t i c l e i n f o a b s t r a c t 

Article history:
Received 4 November 2024
Available online 17 April 2025

MSC:
30H35
47B33
47B38

Keywords:
Compactness
Complete continuity
Strict singularity
Weak compactness
Weighted BMOA
Weighted composition operator

It is shown that a large class of properties coincide for 
weighted composition operators on a large class of weighted 
VMOA spaces, including the ones with logarithmic weights 
and the ones with standard weights (1 − |z|)−c, 0 ≤
c < 1

2 . Some of these properties are compactness, weak 
compactness, complete continuity and strict singularity. A 
function-theoretic characterization for these properties is also 
given. Similar results are also proved for many weighted 
composition operators on similarly weighted BMOA spaces. 
The main results extend the theorems given in Laitila et al. 
(2023) [16], and new test functions that are suitable for the 
weighted setting are developed.

© 2025 The Author(s). Published by Elsevier Masson SAS. 
This is an open access article under the CC BY license 

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Let D be the open unit disk in the complex plane C and let H(D) be the space 
of all analytic functions D → C. The linear space H(D) is a Fréchet space when 
equipped with the metrizable topology τ0, induced by convergence on compact sub-
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sets. If φ, ψ ∈ H(D) with φ : D → D, then a weighted composition operator is defined 
as ψCφ : H(D) → H(D) : f �→ ψf ◦ φ, which is the product of a multiplication operator 
f �→ ψf and a composition operator Cφ : f �→ f ◦ φ. The main aim of the paper is to 
obtain a complete characterization of compactness of ψCφ acting on the space VMOAv

in terms of conditions on ψ and φ, and to prove that compactness is equivalent to many 
other operator-theoretic properties for ψCφ on VMOAv. Concerning the operator ψCφ

on BMOAv, a similar result is obtained under some extra assumptions. One sufficient ad-
ditional condition for the results involving compactness to hold, is that the composition 
operator f �→ f ◦ φ is bounded on BMOAv and BMOAv �⊂ H∞.

In the literature there are many results on the equivalence of weak compactness and 
compactness for (weighted) composition operators. For example in [7] Eklund, Galindo, 
Lindström and Nieminen proved that weakly compact weighted composition operators 
from Bloch type spaces into a wide class of Banach spaces of analytic functions on the 
open unit disk are always compact. The harder well-known problem of whether every 
weakly compact composition operator on the space BMOA (and VMOA) is compact was 
solved by Laitila, Nieminen, Saksman and Tylli [14]. Very recently, Laitila, Lindström 
and Norrbo [16] extended the result to weighted composition operators on BMOA and 
simplified the function-theoretic characterization of compactness given in [13]. This is 
now generalized to a large class of weighted BMOA and VMOA spaces, contained in 
BMOA. In addition to the immediate changes the weight v presents, the known proof of 
the invariance of p in BMOAv,p demands some constraints on v. As a consequence, some 
new estimates are developed (see Proposition 2.3) and the previous function-theoretic 
characterization is changed in a nontrivial way.

For the standard weights (1 − |z|)−c, 0 ≤ c < 1
2 , boundedness and compactness of 

composition operators was characterized in [29] by Xiao and Xu. The logarithmic BMOA-
space appears naturally in the study of Toeplitz and Hankel operators on BMOA and 
H1 (see for example [20] and the references therein), and hence, some of the obtained 
results on the space BMOAv may prove useful outside the study of weighted composition 
operators.

Next, some relevant vector spaces are introduced. Let T ⊂ C be the unit circle and 
dm(eit) = dt 

2π , t ∈ [0, 2π[ be the normalized rotationally invariant Haar measure on T . 
For 0 < p < ∞, the Hardy space, Hp, is the linear space of functions f ∈ H(D) that 
satisfy

‖f‖pHp := sup 
r∈[0,1[

∫
T

|f(rw)|p dm(w) < ∞

and

H∞ :=
{
f ∈ H(D) : ‖f‖∞ := sup 

z∈D
|f(z)| < ∞

}
.
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For any function f ∈ H1, the nontangential limit limz→w f(z) exists for almost every 
w ∈ T (see e.g. [5, Section 2 until Theorem 2.2]). A useful composition operator which 
will be used several times is Tc : f �→ [z �→ f(cz)], c ∈ D, which is a rotational shift of 
argument when c ∈ T and a dilation when c ∈ [0, 1]. The symbol φ̂ will always represent 
an analytic automorphism of D, that is, a function of the form z �→ b(a − z)/(1 − az), 
where b ∈ T and a ∈ D. The set of these functions is denoted by Aut. Given 0 < p < ∞
and a weight v, that is, an integrable function D →]0,∞[, the space BMOAv,p consists 
of all functions f ∈ Hp such that

‖f‖∗,v,p := sup 
φ̂∈Aut

v(φ̂(0))
∥∥∥f ◦ φ̂− f(φ̂(0))

∥∥∥
Hp

< ∞.

The subscript ∗ stands for semi-norm and as a superscript ∗ means the dual space. As 
in the classical case, the subspace VMOAv,p ⊂ BMOAv,p is defined as

VMOAv,p :=
{
f ∈ BMOAv,p : lim ∣∣∣φ̂(0)

∣∣∣→1

φ̂∈Aut

v(φ̂(0))
∥∥∥f ◦ φ̂− f(φ̂(0))

∥∥∥
Hp

= 0
}
.

For a, z ∈ D, let σa(z) := (a− z)/(1 − az), and note that σa(σa(z)) = z. Since

b
a− z 
1 − az

= ba− bz 

1 − babz
, b ∈ T

and ‖Tcf‖Hp = ‖f‖Hp , c ∈ T , it follows that

‖f‖∗,v,p = sup 
a∈D

v(a) ‖f ◦ σa − f(a)‖Hp = sup 
a∈D

v(a)

⎛
⎝∫

T

|f(w) − f(a)|p Pa(w) dm(w)

⎞
⎠

1 
p

,

where Pa(z) := (1 − |a|2)/ |1 − az|2 is the Poisson kernel. The following well-known 
identities will be used throughout the paper without any explicit mentioning:

1 − |σa(z)|2 = (1 − |z|2)(1 − |a|2)
|1 − az|2

= (1 − |z|2) |σ′
a(z)| = (1 − |z|2)Pa(z), a, z ∈ D.

Before we proceed, we introduce some elementary notations. The space bounded linear 
operators on a Banach space X is denoted by L(X). The evaluation maps, H(D) � f �→
f(z), are denoted by δz, z ∈ D. For two quantities A,B ≥ 0 the notation A ≲ B or 
B ≳ A means that there exists a constant C > 0 such that A ≤ CB. The constant 
will quite often depend on an exponent 1 ≤ p, q < ∞ (John-Nirenberg related) or the 
weight v (or the related function g). Dependencies will be mentioned by a subscript. 
Moreover, A � B means that both A ≲ B and A ≳ B hold, and in this case we say 
that A is equivalent to B. The function χA will appear inside integrals and is a function 
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of all relevant integration variables. The subscript A can be a set, in which case the 
function takes the value 1 if the integration variables are inside the set and 0 else. The 
subscript A can also be a logic expression, which works as an abbreviation for the set 
of points satisfying the expression. Henceforth, BMOAv := BMOAv,2 and for v = 1, 
BMOA := BMOA1. For convenience, we also define

γ(f, a, p) := ‖f ◦ σa − f(a)‖Hp , a ∈ D, 1 ≤ p < ∞.

A real-valued, nonnegative function f is said to be almost increasing if there is a constant 
C ≥ 1 such that f(y) ≤ Cf(x) whenever y ≤ x. If C = 1, then the word increasing is 
used. For a set M ⊂ C and a number c ∈ C, the notation cM := Mc := {cx ∈ C : x ∈ M}
is used. When a function f defined on M is considered on a subdomain M ′ ⊂ M , the 
restriction of f to M ′ is denoted by f |M ′ . The notation C�≥c := {z ∈ C : �z ≥ c}, 
c ∈ R, denotes a right half plane and H(M) is the linear space of functions analytic on 
some domain containing M .

In this paragraph we assume that the weight v : D →]0,∞[ is radial (rotationally 
invariant), that is, v(z) = v(|z|), z ∈ D. In the classical case, where v ≡ 1, the fact 
that Aut is a group with respect to composition yields ‖f ◦ φ̂‖∗,v,p = ‖f‖∗,v,p. For more 

general weights, it holds that ‖f ◦ φ̂‖∗,v,p = ‖f‖∗,v,p for every φ̂ ∈ Aut, if and only if v
is constant. In general, for every φ̂ ∈ Aut it holds that

∥∥∥f ◦ φ̂
∥∥∥
∗,v,p

= ‖f‖∗,v◦φ̂−1,p .

If the weight v is almost increasing, equivalent to a radial weight and satisfies v(b) ≲
v( b−a 

1−a )v(a), 0 ≤ a ≤ b < 1, it still holds that

f ∈ BMOAv,p =⇒ f ◦ φ̂ ∈ BMOAv,p

(see Lemma 3.6). In general, it is not evident that this is true (see Conjecture 2 in 
Section 7).

A useful tool is the Hardy-Stein estimates (see for example [30, Theorem 4.22]), from 
which it follows that for 0 < p < ∞

‖f ◦ σa − f(a)‖pHp �
∫
D

|f ′(z)|2 |f(z) − f(a)|p−2 (1 − |z|2)(1 − |a|2)
|1 − az|2

dA(z) f ∈ Hp.

(1.1)
The case p = 2 is also a consequence of the well-known Littlewood-Paley identity.

If the weight satisfies

sup 
a∈D

v(a)(1 − |a|) 1 
p−ε < ∞
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for some ε > 0 and p ≥ 2, we have by (1.1) and [30, Theorem 1.12] that all bounded 
functions f ∈ H(D) with |f ′(z)|2 ≲ (1 − |z|)−(1+pε) belong to BMOAv,p. By inclusion, 
the same functions f ∈ BMOAv,q, 1 ≤ q < 2.

The main function-theoretic characterization of compactness concerns the following 
two functions, α and β. For ψ, φ ∈ H1 and φ : D → D, a ∈ D, we define

α(ψ, φ, a) := v(a) 
v(φ(a)) |ψ(a)| ‖φa‖H2 ,

where φa := σφ(a) ◦φ◦σa. The function α is sufficient for a characterization of bounded-
ness and compactness for composition operators, but for weighted composition operators, 
a complementary function

β(ψ, φ, a) :=
∥∥δφ(a)

∥∥
(BMOAv)∗ v(a)γ(ψ, a, 1)

is also needed. It follows that for supa∈D β(ψ, φ, a) < ∞ to hold, it is necessary that 
ψ ∈ BMOAv,1.

1.1. Main results

Let g ∈ H(C�≥ 1
2
) be such that g|[ 12 ,∞[ is (strictly) positive and almost increasing. 

Assume also that

(G1) There exists ε0 > 0 such that sup0<x<1 x g( 1 
x )2+ε0 < ∞, 

(G2) g(1/b) ≲ g(a/b)g(1/a) for 0 < b ≤ a < 2, 
(G3) |g(z)| ≳ g(|z|), z ∈ C�≥ 1

2
, 

and let v(z) � g( 1 
1−|z| ).

If v is such a weight, also called admissible weight, we have the following two theorems.

Theorem 1.1. 

ψCφ ∈ L(BMOAv) ⇐⇒ sup 
a∈D

(α(ψ, φ, a) + β(ψ, φ, b)) < ∞

and

ψCφ ∈ L(VMOAv) ⇐⇒ sup 
a∈D

(α(ψ, φ, a) + β(ψ, φ, a)) < ∞ and ψ,ψφ ∈ VMOAv

⇐⇒ sup 
a∈D

(α(ψ, φ, a) + β(ψ, φ, a)) < ∞, ψ ∈ VMOAv and 

lim 
|a|→1

v(a)ψ(a)γ(φ, a, 2) = 0.

More specifically, for X = BMOAv or X = VMOAv and ψCφ : X → X, it holds that
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‖ψCφ‖L(X) �v,g |ψ(0)|
∥∥δ|φ(0)|

∥∥
X∗ + sup 

a∈D
α(ψ, φ, a) + sup 

a∈D
β(ψ, φ, a),

where the evaluation map satisfies

‖δz‖X∗ �v,g 1 +
|z|∫
0 

dt 
(1 − t)v(t) .

Theorem 1.2. Let X = BMOAv or X = VMOAv. For ψCφ ∈ L(X) with at least one of 
the following properties:

• Cφ ∈ L(BMOAv), and BMOAv �⊂ H∞ or ψ ∈ VMOAv,
• ψCφ|VMOAv

∈ L(VMOAv),

the following are equivalent:

(1) ψCφ is compact, 
(2) ψCφ is weakly compact, 
(3) ψCφ is completely continuous, 
(4) ψCφ does not fix a copy of c0 (c0-singular), 
(5) ψCφ is unconditionally converging, 
(6) ψCφ is strictly singular, 
(7) ψCφ is finitely strictly singular, 
(8) lim sup|φ(a)|→1(α(ψ, φ, a) + β(ψ, φ, a)) = 0,
(9) lim sup|φ(a)|→1

(∥∥∥ψCφf
(α)
a

∥∥∥
BMOAv

+ β(ψ, φ, a)
)

= 0,

where

f (α)
a : z �→

σφ(a)(z) − φ(a)
v(φ(a)) .

In the case ψCφ|VMOAv
∈ L(VMOAv), the following are equivalent:

(2) ψCφ is weakly compact,
(10) ψCφ(BMOAv) ⊂ VMOAv (here ψCφ is interpreted as an operator on H(D)),
(11) ∀ε > 0 ∃N > 0 : ‖ψCφf‖BMOAv

≤ N ‖f‖H2 + ε ‖f‖BMOAv
, f ∈ VMOAv.

This yields a complete characterization of the properties listed for ψCφ on the space 
VMOAv, but not on BMOAv. Note that for v ≡ 1 the function β in this work is smaller 
than the one used in [13]. Since 

∥∥δφ(a)
∥∥
X∗ , where X = BMOAv or X = VMOAv, is not 

necessarily equivalent to a radial function, it is unclear if the reverse relation holds, see 
Conjecture 5.
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Concerning the multiplication operator, S. Ye characterized, in [25], boundedness 
and compactness of the multiplication operators on BMOAv and VMOAv with v(z) =
ln(2/(1 − |z|2)). For more general weights, S. Janson described the multipliers in [12, 
Theorem 2] using a different proof. The following result can essentially be compared to 
Theorem 2 by Janson:

Corollary 1.3. Let X = BMOA or X = VMOA. The multiplication operator Mψ : f �→
ψf is bounded on Xv if and only if

ψ ∈ H∞ ∩ BMOAw,

where

w(a) = v(a)
(

1 +
|a|∫
0 

dt 
(1 − t)v(t)

)
� v(a) ‖δa‖(Xv)∗ , a ∈ D.

Especially, if supa∈D
∫ |a|
0

dt 
(1−t)v(t) < ∞, or equivalently Xv ⊂ H∞, then Xv = Xw is an 

algebra.
Moreover, the operator Mψ is compact (or satisfies any of the other equivalent prop-

erties (2)–(7)) on Xv if and only if ψ ≡ 0.

Although the statement about compactness does not follow immediately from Theo-
rem 1.2, it holds that Cφ ∈ L(BMOAv) and lim sup|φ(a)|→1(α(ψ, φ, a) > 0 unless ψ ≡ 0, 
so the same proof as for the theorem applies in this case.

Concerning the composition operator, we have the following generalization of the part 
of the work [29] by J. Xiao and W. Xu that concerns boundedness and compactness of Cφ

on the Analytic Lipschitz spaces, BMOAv, where v(a) = (1−|a|2)−c, c ∈]0, 1/2[, a ∈ D.

Corollary 1.4. Let X = BMOA or X = VMOA and let v be an admissible weight. The 
composition operator Cφ is bounded on Xv if and only if

sup 
a∈D

v(a) 
v(φ(a)) ‖φa‖H2 < ∞,

and Cφ ∈ L(Xv) is a compact operator if and only if

lim sup 
|φ(a)|→1

v(a) 
v(φ(a)) ‖φa‖H2 = 0.

Furthermore, it is necessary that φ ∈ Xv for Cφ to be bounded.

Some examples of admissible weights are v(z) = (1 − |z|)−c, that is, g(z) = zc, 0 ≤
c < 1/2 and
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v(z) = (ln( e 
1 − |z| ))

c, that is, g(z) = (ln(ez))c, c > 0,

where the branch cuts are chosen appropriately (e.g. along the negative real axis). To 
see that condition (G2) holds for g(z) = (ln(ez))c, c > 0, we substitute a = e−A and 
b = e−B , and use the fact that

1 + B 
(1 + A)(B −A + 1) ≤ 1 

(1 + A) + 1 
(B −A + 1) ≤ 1 + 1 

ln e 
2

(
ln 1

2 < A ≤ B < ∞
)
.

In view of Theorem 1.1 and the evaluation map, the logarithmic weights mentioned 
above yield a space BMOAv ⊂ H∞ if and only if c > 1. Concerning the standard weights, 
BMOAv ⊂ H∞ for all c > 0. Moreover, if v is an admissible weight and u : D → [a, b]
for some 0 < a < b < ∞, then vu is an admissible weight. This is clear from the fact 
that the norms ‖·‖BMOAv

and ‖·‖BMOAvu
are equivalent. An example of a non-radial 

admissible weight is z �→ |2 + z| (1 − |z|)−1/4. Another useful property of the set of 
admissible weights is given in the paragraph where (6.1) appears, that is, the product of 
two admissible weights is admissible if it satisfies the growth restriction (G1).

The article is structured as follows: Section 2 contains some more definitions and 
some preliminary results. The most important new result in this section is Proposi-
tion 2.3, which in addition to [6, Proposition 2.6] (BMOAv,p = BMOAv,1 for suitable 
v, 1 < p < ∞), contains some more precise estimates, which are, for example, used to 
prove that the given function-theoretic condition is sufficient for ψCφ ∈ L(VMOAv) to 
be compact (Theorem 5.12). Another important tool is the denseness of polynomials in 
VMOAv, which is given in Proposition 2.7. In Theorem 2.15 it is shown that VMOA∗∗

v is 
isometrically isomorphic to BMOAv. The section ends with a brief discussion regarding 
the demands for the weight v to be admissible. The two following sections contain some 
preparatory results, of which a few might be of interest on their own. Section 3 contains 
three important results: Lemmas 3.1 and 3.4 concern the main function-theoretic charac-
terization for boundedness and compactness, and they are related to the functions α and 
β respectively. The third important result is Corollary 3.5, which is an estimate for the 
evaluation map. In Section 4, the test functions are developed and proofs of important 
properties for these functions are given.

Section 5 contains, in contrast to Section 2, the main parts of the main theorems, 
whose proofs make heavy use of the fact that the operator is a weighted composition op-
erator and it acts on VMOAv (or BMOAv), where v is admissible. The function-theoretic 
characterization for boundedness is proved followed by the remaining implications (the 
ones that are not of a more general type) to conclude that Theorem 1.2 holds. Section 6
contains some examples of symbols ψ and φ making ψCφ bounded or even compact. 
Using the obtained results, the proofs for the three main results are completed and 
summarized in Section 7. Section 7 also contains some conjectures.
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2. Preliminaries

This section contains some more definitions and preliminary results. We begin the 
section by showing that the polynomials in H(D) are often dense in a proper subspace 
of BMOAv,p. The section ends with a brief discussion concerning the conditions (G1)
and (G2).

Proposition 2.1. Let 1 < p < ∞. If supa∈D v(a)(1 − |a|) 1 
p < ∞, then the polynomials 

belong to BMOAv,p. If lima→1 v(a)(1 − |a|) 1 
p = 0, then VMOAv,p ⊂ BMOAv,p is a 

closed subspace containing the analytic polynomials. If p = 1 the same statements are 
valid when v(a)(1 − |a|) 1 

p is replaced by v(a)(1 − |a|) ln e 
1−|a| .

Proof. Let Q(z) =
∑n

k=0 ckz
k be a polynomial on the disk. Now

Q(z) −Q(a) =
n ∑

k=0

ckz
k −

n ∑
k=0

cka
k =

n ∑
k=1

ck(zk − ak) = (z − a)
n ∑

k=1

ck

k−1∑
j=0 

zjak−1−j .

There exists a constant C(Q, p) only dependent of the polynomial Q and 1 ≤ p < ∞
such that for 1 < p < ∞,

γ(Q, a, p)p =
∫
T

|(z − a)|p
∣∣∣∣∣∣

n ∑
k=1

ck

k−1∑
j=0 

zjak−1−j

∣∣∣∣∣∣
p

Pa(z) dm(z) ≤ C(Q, p)(1 − |a|2).

Assuming lima→1 v(a)(1 − |a|) 1 
p = 0, this yields

v(a)γ(Q, a, p) ≤ C ′(Q, p)v(a)(1 − |a|) 1 
p

|a|→1−→ 0,

that is, Q ∈ VMOAv,p. If (fn) ⊂ VMOAv,p is a sequence, converging with respect to 
‖·‖BMOAv,p

to an analytic function f , and ε > 0, then for n large enough

v(a)γ(f, a, p) ≤ v(a)γ(fn, a, p) + v(a)γ(fn − f, a, p) ≤ v(a)γ(fn, a, p) + ε.

Letting first |a| → 1, then ε → 0, we obtain

lim 
|a|→1

v(a)γ(f, a, p) = 0.

Hence, VMOAv,p is a closed subspace of BMOAv,p, containing the polynomials.
Finally, if p = 1,

γ(Q, a, p) = (1 − |a|2)
2π ∫
0 

J(eit)
∣∣1 − ae−it

∣∣p−1 dt 
2π ≲ C(Q, p)(1 − |a|2) ln e 

1 − |a| ,
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and the statement follows similarly to the proof above. �
The first part of Lemma 2.12 yields that BMOAv is a Banach space and since VMOAv

is closed, it is also a Banach space.
Proposition 2.1 shows some similarities between the weighted spaces BMOAv and 

VMOAv, and their unweighted variants. The following Proposition shows some contrast 
between the spaces, which renders some classical approaches ineffective. The function 
z �→ zn is one common tool in characterizing compactness in the unweighted setting, 
and can be found in, for example, [15,26,28] (and in some form also in [13, (3.13)]).

Proposition 2.2. Let 1 < p < ∞ and assume lim|a|→1 v(a)(1 − |a|) 1 
p = 0. The family F

consisting of fn : z �→ zn, n ∈ N belongs to VMOAv,p, and supn ‖fn‖∗,v,p < ∞ if and 
only if v is bounded.

Proof. The fact that F ⊂ VMOAv,p follows from Proposition 2.1 and the trivial estimate 
‖fn‖BMOA1,p

≤ 3 ‖fn‖∞ = 3 proves one of the implications in the remaining statement. 
Now, let tn = 1 − n− 1

2 , n ∈ N. By (1.1) and the fact that 
∫
T Pb dm = 1 for every b ∈ D, 

we have

‖fn ◦ σa − fn(a)‖2
H2 �
∫
D

n2 |z|2(n−1) (1 − |σa(z)|2) dA(z)

≥
1 ∫

tn

n2xn−1 (1 − x)(1 − |a|2)
1 − |a|2 tn

dx.

Moreover, by the well-known asymptotics for the classical beta function, we have

n−2 n→∞∼ 

1 ∫
tn

xn−1(1 − x) dx + O
(
2−

√
n
)
.

This yields that

lim sup
n→∞ 

‖fn ◦ σa − fn(a)‖2
H2 ≳ 1.

Finally,

sup
n 

‖fn‖∗,v,p ≥ sup 
a∈D

lim sup
n→∞ 

v(a) ‖fn ◦ σa − fn(a)‖H2 ≳ sup 
a∈D

v(a). �

2.1. Consequences of John-Nirenberg’s result

We begin by introducing the spaces BMOv,p and VMOv,p. (Note that the following 
representations are not standard and these spaces will only be used in this section.) We 
define
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‖f‖∗,BMOv,p
:= sup 

I⊂T
I arc

v(1 −m(I))η(f, I, p),

where

η(f, I, p) :=

⎛
⎝∫

I

|f(z) −mI(f)|p dm(z)
m(I) 

⎞
⎠

1 
p

,

and mI(f) :=
∫
I
f(w)dm(w)

m(I) is the mean of the function on the arc I ⊂ T . Now

BMOv,p :=
{
f ∈ Hp : ‖f‖∗,BMOv,p

< ∞
}

and

VMOv,p :=
{
f ∈ BMOv,p : lim 

m(I)→0
I arc

v(1 −m(I))η(f, I, p) = 0
}
.

The following well-known results can be found in, for example, [1] (see also [8,10]). 
If v � 1, then BMOAv,p = BMOAv, 0 < p < ∞ and for 1 ≤ p < ∞, any of the semi-
norms ‖f‖∗,v,p is comparable with any of ‖f‖∗,BMOv,q

, 1 ≤ q < ∞. The independency of 
the parameter p is, in the work of Baernstein ([1]), proved in the conformally invariant 
setting, BMOA, making use of the group structure of Aut. This yields a better result 
than the classical approach carried out in [8] and [10], which proves independency in the 
classical BMO setting and then apply the result that for a fixed p, ‖f‖∗,BMOv,p

� ‖f‖∗,v,p
when v � 1. It is, however, no surprise that stronger results can exist in the analytic 
setting compared to the measurable setting due to additional structure. When v is almost 
increasing, we have the following results, pointed out in [6] by Dyakonov. (The weights 
ϕ(t) in [6] and [27] are comparable to v(1− t)−1 for t ∈]0, 1[.) The following proposition 
contains [6, Proposition 2.6], but also some new crucial estimates for the proofs of the 
main results.

Proposition 2.3. Let 1 ≤ q ≤ p < ∞ and v : D →]0,∞[ be radial. Assume v|[0,1[ is almost 
increasing and there is an ε0 > 0 such that x �→ v|[0,1[(1− x)x

1 
p−ε0 is almost increasing. 

Then

BMOAv,p = BMOv,q and ‖f‖∗,BMOv,q
�v,p,q,ε0 ‖f‖∗,v,p .

Moreover, for R ∈]0, 1[

sup 
m(I)≤R

v(1 −m(I))η(f, I, p) �v,p,q sup 
m(I)≤R

v(1 −m(I))η(f, I, q) ≲ sup 
|a|≥1−R

v(a)γ(f, a, q)

(2.1)
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and for any RBMO ∈]0, 1[ and RA ∈]0, RBMO/2], we have

sup 
|a|≥1−RA

v(a)γ(f, a, q) ≲v,q,ε0 sup 
m(I)≤RBMO

v(1−m(I))η(f, I, q)+‖f‖∗,BMOv,q

(
2RA

RBMO

)ε0
.

(2.2)
Hence,

VMOAv,p = VMOv,q and lim sup
|a|→1 

v(a)γ(f, a, p) �v,p,q,ε0 lim sup
m(I)→0 

v(1−m(I))η(f, I, q).

(2.3)

Note that if x �→ v|[0,1[(1 − x)x
1 
p−ε0 almost increasing for some p = p0, it is almost 

increasing for any 0 < p ≤ p0.
The proof is split into a few results and most of them can be found, in some form, 

in [1,8] and [10]. The following proposition follows immediately from the proof in the 
classical unweighted BMO setting (see e.g. [10, p. 73]).

Proposition 2.4. For 1 ≤ p < ∞ and infx∈]0,1[ v(x) > 0 and all R > 0, it holds that

sup 
m(I)≤R
I arc

v(1 −m(I))η(f, I, p) ≤ 2 sup 
|a|≥1−R

v(a)γ(f, a, p).

Furthermore,

‖f‖∗,v,p ≳ ‖f‖∗,BMOv,p
.

For the proof of [10, Theorem 3.1], a dyadic decomposition of T is used. To be able 
to summarize the approximations made from the dyadic decomposition in the classical 
fashion, the weight needs to satisfy an extra condition stated in [6, Proposition 2.6], the 
fact that (v(1−t))−1 need to be of upper type less than 1/p. In this work, the comparable 
property found in [27] of almost increasing/decreasing is used. Inspired by [10, Proof of 
Theorem 3.1], we have the following proposition, which includes a new, suitable estimate 
for this work.

Proposition 2.5. Let 1 ≤ p < ∞ and v : D →]0,∞[ be radial. Assume there is an ε0 > 0
such that x �→ v|[0,1[(1 − x)x

1 
p−ε0 is almost increasing. Then

‖f‖∗,v,p ≲v,p,ε0 ‖f‖∗,BMOv,p

and for any RBMO ∈]0, 1[ and a ∈ D with |a| ≥ 1 −RBMO/2, we have

v(a)γ(f, a, p) ≲v,p,ε0 sup 
m(I)≤RBMO

v(1 −m(I))η(f, I, p) + ‖f‖∗,BMOv,p

(
2(1 − |a|)
RBMO

)ε0
.

(2.4)
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Proof. Let a ∈ D and define Jk, k = 0, 1, . . . , N to be the arc with center a/ |a| and 
m(Jk) = 2k(1 − |a|), where N is the number such that m(JN ) < 1 ≤ 2m(JN ). We also 
put JN+1 := T . The relation between a and N is given by

N = N(a) = max
{
n ∈ Z : n < ln 1 

1 − |a|
1 

ln 2

}
.

We have T \ J0 =
⋃N+1

k=1 (Jk \ Jk−1) and hence, with the aid of Minkowski’s inequality 
and a variant of [10, Lemma 3.2], we have

(∫
T

|f(z) − f(a)|p Pa(z) dm(z)
) 1 

p

≲
(

1 
m(J0)

∫
J0

|f(z) −mJ0(f)|p dm(z)
) 1 

p

+
N+1∑
k=1 

⎛
⎜⎝ ∫
Jk\Jk−1

|f(z) −mJ0(f)|p inf 
w∈Jk−1

Pa(w) dm(z)

⎞
⎟⎠

1 
p

.

For the integrals in the second term, we apply Minkowski’s inequality and [10, Lemma 
3.4] to obtain

( ∫
Jk\Jk−1

|f(z) −mJ0(f)|p inf 
w∈Jk−1

Pa(w) dm(z)
) 1 

p

≲p
1 

2
k
p 
η(f, Jk, p) + 1 

2
k
p 
|mJk

(f) −mJ0(f)| .

Furthermore, a variant of [10, Lemma 3.3] gives

|mJk
(f) −mJ0(f)| ≲

k∑
j=1 

η(f, Jj , 1)

yielding

N+1∑
k=1 

⎛
⎜⎝ ∫
Jk\Jk−1

|f(z) −mJ0(f)| inf 
w∈Jk−1

Pa(w) dm(z)

⎞
⎟⎠

1 
p

≲p

N+1∑
k=1 

1 

2
k
p 

k∑
j=1 

η(f, Jj , 1)

≲p

N+1∑
j=1 

1 

2
j
p

η(f, Jj , p).
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Since m(Jj) = 2j(1 − |a|) and

v(a)m(J0)
1 
p−ε0 = v(1 −m(J0))m(J0)

1 
p−ε0 ≲v v(1 −m(Jj))m(Jj)

1 
p−ε0 (2.5)

for every j = 1, . . . , N + 1 by assumption, we have now obtained

v(a)

⎛
⎝∫

T

|f(z) − f(a)|p Pa(z) dm(z)

⎞
⎠

1 
p

≲v,p

N+1∑
j=0 

1 
2ε0j v(1 −m(Jj))η(f, Jj , p).

Using v(1 − m(Jj))η(f, Jj , p) ≤ ‖f‖∗,BMOv,p
, the first statement, ‖f‖∗,v,p ≲v,p,ε0

‖f‖∗,BMOv,p
, follows. For the second, fix RBMO ∈]0, 1[. For a ∈ D with |a| ≥ 1−RBMO/2, 

let NI = NI(a) ∈ [1, N ] be the integer such that m(JNI(a)) ∈]RBMO/2, RBMO]. Further-
more, using (2.5), we have

v(a)
N+1 ∑
j=NI

1 

2
j
p

η(f, Jj , p) ≲v

N+1 ∑
j=NI

1 
2ε0j v(1 −m(Jj))η(f, Jj , p) ≲ε0 ‖f‖∗,BMOv,p

2−ε0NI .

For |a| ≥ 1 −RBMO/2, we have now obtained

v(a)γ(f, a, p) = v(a)

⎛
⎝∫

T

|f(z) − f(a)|p Pa(z) dm(z)

⎞
⎠

1 
p

≲v,p

NI∑
j=0 

1 
2ε0j v(1 −m(Jj))η(f, Jj , p) +

N+1 ∑
j=NI

1 
2ε0j v(1 −m(Jj))η(f, Jj , p)

≲ε0 sup 
m(I)≤RBMO

v(1 −m(I))η(f, I, p) + ‖f‖∗,BMOv,p
2−ε0NI .

Using 2NI (1−|a|) = m(JNI(a)) ≥ RBMO
2 , we can conclude that for any RBMO ∈]0, 1[ and 

a ∈ D with |a| ≥ 1 −RBMO/2, we have

v(a)γ(f, a, p) ≲v,p,ε0 sup 
m(I)≤RBMO

v(1 −m(I))η(f, I, p)

+ ‖f‖∗,BMOv,p

(
RBMO

2(1 − |a|)

)−ε0

. �
Finally, the crucial ingredient for independency of p is a John-Nirenberg type result. 

We have the following, inspired by [27]:

Lemma 2.6 (John-Nirenberg). Let 0 < R < 1 < M and f ∈ L1(T ) with 0 <

‖f‖∗,BMO1,1
< ∞. For any arc I ⊂ T with m(I) ≤ R and λ > 0, we have

m({w ∈ I : |f(w) −mI(f)| > λ}) ≤ m(I)
√
Me

− λ 
supm(I)≤R η(f,I,1)

ln M
2M .
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The proof of Lemma 2.6 is the same as in [10, Theorem 4.1] (see also [8, Theorem 
2.1]). Instead of considering the function f/ ‖f‖∗,BMO1,1

as done in the references, one 
should fix 0 < R < 1 and change the supremum in the denominator to only include arcs 
I ⊂ T with m(I) ≤ R.

We are now ready to prove Proposition 2.3:

Proof of Proposition 2.3. We begin by proving

‖f‖∗,BMOv,p
≲v,p ‖f‖∗,BMOv,1

, (2.6)

which together with Proposition 2.5 and Proposition 2.4 implies the equivalence of norms 
and that BMOAv,p = BMOAv,1 given the assumptions hold. Let f ∈ L1(T ) with 0 <

‖f‖∗,BMOv,1
< ∞. Fix I ⊂ T and put R = m(I). Using Lemma 2.6 for the first inequality 

and the fact that v is almost increasing, we get

v(1 −R)pη(f, I, p)p = v(1 −R)p

m(I) 

∞ ∫
0 

m({w ∈ I : |f(w) −mI(f)| > λ}) dλp

≲p v(1 −R)p
∞ ∫
0 

e
− λ 

supm(I)≤R η(f,I,1) dλp

≲p v(1 −R)p
(

sup 
m(I)≤R

η(f, I, 1)
)p

≲v sup 
m(I)≤R

v(1 −m(I))pη(f, I, 1)p ≤
(
‖f‖∗,BMOv,1

)p
,

and hence,

‖f‖∗,BMOv,p
≲v,p ‖f‖∗,BMOv,1

.

Moving on, given RBMO ∈]0, 1[, we do the same calculations for any arc with m(I) ≤
RBMO to obtain

v(1 −R)η(f, I, p) ≲v,p sup 
m(I)≤R

v(1 −m(I))η(f, I, 1) ≤ sup 
m(I)≤RBMO

v(1 −m(I))η(f, I, 1),

yielding

sup 
m(I)≤RBMO

v(1 −m(I))η(f, I, p) �v,p sup 
m(I)≤RBMO

v(1 −m(I))η(f, I, 1).

Combining this with Proposition 2.4 proves (2.1). Concerning (2.2), given any RBMO ∈
]0, 1[, pick RA ∈]0, RBMO/2] and apply sup|a|≥1−RA

to both sides of (2.4) in Proposi-
tion 2.5 and we are done. Finally, (2.3) follows immediately from (2.1) and (2.2). �
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The following proposition is a generalization of [10, Theorem 2.1].

Proposition 2.7. Let 1 ≤ p < ∞, v : D →]0,∞[ be radial and put q = max{2, p}. Assume 
v|[0,1[ is almost increasing and there is an ε0 > 0 such that x �→ v|[0,1[(1 − x)x

1 
q−ε0 is 

almost increasing. Then, for a given f ∈ H(D), the following are equivalent:

• f ∈ VMOAv,p

• limc→1 ‖Tcf − f‖BMOv,p
= 0,

• f belongs to the BMOAv,p-closure of analytic polynomials,

where the limit is taken arbitrary inside D.

Proof. First, for all c ∈ D and f ∈ BMOAv,p, the functions Tcf ∈ BMOAv,p (see the 
remark right after (1.1)). Furthermore, (Tcf − f)(0) = 0. Let 1 ≤ p < ∞, q = max{2, p}
and assume v satisfies the assumptions and ε0 > 0 is the ε0 given in the statement. 
Then x �→ v|[0,1[(1 − x)x

1 
q−ε0 is almost increasing and bounded. By Proposition 2.3, we 

have VMOAv,p = VMOAv = VMOv,p = VMOv,2 with equivalent norms. It is, therefore, 
sufficient to prove that the three properties are equivalent for p = 2. To this end, assume 
f ∈ VMOAv. If c ∈ T , it follows from the proof of [10, Theorem 2.1] that we can fix 
0 < R small such that

sup 
m(I)≤R

v(1 −m(I))η(f − Tcf, I, 2) ≤ sup 
m(I)≤R

v(1 −m(I))η(f, I, 2)

+ sup 
m(I)≤R

v(1 −m(I))η(Tcf, I, 2)

= 2 sup 
m(I)≤R

v(1 −m(I))η(f, I, 2) < ε,

because f ∈ VMOv,2. For any I such that m(I) ≥ R, we can choose c, independent of 
I, close enough to 1 so that ‖Tcf − f‖H2 < R

1
2 ε 

v(1−R) . It follows that

sup 
m(I)≥R

v(1 −m(I))η(Tcf − f, I, 2) ≲v
v(1 −R)

R
1
2

‖Tcf − f‖H2 < ε,

and hence,

‖Tcf − f‖BMOv,2 ≲v ε

when c ∈ T is close to 1. Now, if c = rw0 ∈ D, 0 < r < 1, w0 ∈ T , we first note that 
since f ∈ H1

∫
T

Pczf dm = f(cz) = (Tcf)(z), c ∈ D, z ∈ D.
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The reasoning used in [10, Theorem 2.1] combined with Minkowski’s inequality gives us 
that for every δ > 0

v(1 −m(I))η(Tcf − f, I, 2) ≲ sup 
|argw|<δ

‖Tw0wf − f‖∗,BMOv,2

+
∫

|argw|≥δ

Pr(w) ‖f‖∗,BMOv,2
dm(w).

Choosing δ > 0 small enough and w0 close to 1, the first term is less than ε. By choosing r
close to 1, the second term is less than ε and we have proved that f ∈ VMOAv,p implies 
limc→1 ‖Tcf − f‖BMOv,2

= 0, where the limit is taken arbitrary inside D. Assuming 
limc→1 ‖Tcf − f‖BMOv,2

= 0 an application of Proposition 2.3 yields

lim 
c→1

‖Tcf − f‖BMOAv
= 0.

By choosing c ∈ [0, 1[ close enough to 1, we have ‖Tcf − f‖BMOAv
< ε. Since Tcf ∈ H(D), 

the function (Tcf)′ ∈ H(D) can be approximated uniformly in D by analytic polynomials, 
and hence, the derivative of an analytic polynomial, say supz∈D |p′0(z) − (Tcf)′(z)| < ε. 
Now, using formula (1.1), we have

‖p0 − (Tcf)‖2
BMOAv

≤ ε2(1 + sup 
a∈D

v(a)(1 − |a|2))

and we can conclude that f belongs to the BMOAv-closure of analytic polynomials. 
Finally, any function in the BMOAv-closure of the polynomials belongs to VMOAv

according to Proposition 2.1. �
For the rest of the paper, it will be assumed v|[0,1[ is almost increasing and (strictly) 

positive. Using Proposition 2.4, another interesting fact about BMOAv,1 is the following 
result by Spanne, [27, p. 594].

Proposition 2.8. If v|[0,1[ is increasing and 
∫ 1
0

dt 
t v(1−t) is finite, then for every f ∈

BMOAv,1, there exists a constant Cf (depending on f) and θf > 0 such that for r < θf , 
it holds that

ess sup 
|t1−t2|<r

∣∣f(eit1) − f(eit2)
∣∣ ≤ Cf

r∫
0 

dt 
t v(1 − t) .

For analytic functions, the statement above is not evidently as close to an if and only 
if statement (compare with [27, p. 594]). However, under some additional constraints 
on v, which will be present for the main results in this paper, the function defined in 
Lemma 3.4 could be used to prove a counterpart to Proposition 2.8 (see Corollary 3.5). 
Recall that BMOAv,1 only consists of constants if v(a) ≳ (1 − |a|)−c for any c > 1 (see 
e.g. [9, Theorem 1.2]).
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2.2. Some general Banach space theory

Let X be a Banach space and T ∈ L(X).

• A series 
∑

n xn ⊂ X is weakly unconditionally Cauchy (wuC) if 
∑

n l(xn) is uncon-
ditionally convergent, equivalently absolutely convergent, for all l ∈ X∗.

• If for every infinite dimensional subspace M ⊂ X the operator T |M : M → T (M) is 
not an isomorphism, then the operator is said to be strictly singular (also called Kato 
operator, [23, 1.9.2]).

• If for ε > 0, there exists Nε ≥ 1 such that for every subspace M ⊂ X with dimension 
greater than Nε, there is x ∈ ∂BM such that ‖Tx‖X ≤ ε, then the operator is said to 
be finitely strictly singular (this notion is used e.g. in [17]).

• Let M be a Banach space. The operator T fixes a copy of M if there exists a closed 
subspace Y ⊂ X such that Y � M (isomorphic) and T |Y is an isomorphism onto its 
image T (Y ) ⊂ X.

• Let M ⊂ X be a subspace. The operator T is M -singular if it does not fix a copy of 
M .

• The operator T is unconditionally converging if it maps wuC- series to unconditionally 
convergent series.

• The operator T is said to be completely continuous if it maps weakly convergent 
sequences to norm convergent sequences.

For a normed space X, the closed unit ball is given by BX := {f ∈ X : ‖f‖X ≤ 1}.
The following lemma is found in [24, C. II. Theorem 8.4’].

Lemma 2.9. Let X be a Banach space. If T ∈ L(X) is not unconditionally converging, 
then it fixes a copy of c0.

The first statement in the lemma below is found e.g. in [23, 1.11] and the other follows 
more or less from the definitions.

Lemma 2.10. Let X be a Banach space. If T ∈ L(X) is weakly compact or completely 
continuous, then it does not fix a copy of c0. Moreover, if T is compact, it is both weakly 
compact and completely continuous.

By the bounded inverse theorem, we have the following:

Proposition 2.11. Let X be a Banach space and T ∈ L(X). Then the following are 
equivalent:

• T is strictly singular.
• For every ε > 0 and every infinite dimensional subspace M ⊂ X, there is x ∈ ∂BM

such that ‖Tx‖X ≤ ε.
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For more information see, for example, [4] and [19]. Inspired by [18] and [14, Propo-
sition 6], we have

Lemma 2.12. Let Y be a Banach space on which, for every a ∈ D, U(·, a) : Y → [0,∞[
is a complete norm yielding the evaluation maps bounded. Then the norm ‖f‖ :=
supa∈D U(f, a) renders X ⊂ Y a Banach space for some subspace X ⊂ Y .

Moreover, if (fn) ⊂ X is a sequence with ‖fn‖ � 1, lim|a|→1 U(fn, a) = 0 for all n, 
and for all 0 < R < 1, it holds that limn→∞ sup|a|≤R U(fn, a) = 0. Then, there is a 
subsequence (fnk

) equivalent to the standard basis for c0, and hence, the identity X → X

fixes a copy of c0.

Proof. Let

X := {f ∈ Y : ‖f‖ < ∞}.

Clearly ‖·‖X := ‖·‖ is a norm on X. Let fn be a Cauchy sequence in X with respect to 
‖·‖X . Since ‖f‖X ≥ U(f, a) for all f ∈ X and (Y,U(·, a)) is complete, there is a limit g
in Y . Since the evaluation maps are bounded, the limit, g, is independent of a ∈ D. For 
all a ∈ D, we have

U(g − fn, a) = lim 
m→∞

U(fm − fn, a) ≤ lim 
m→∞

‖fm − fn‖X ,

and since the right-hand side is independent of a ∈ D, we have proved that 
limn→∞ ‖fn − g‖X = 0 and ‖g‖X ≤ limn→∞ ‖fn‖X < ∞ since (fn) is Cauchy in X.

For the second statement, applying the standard sliding hump technique to the as-
sumptions (see for example [14, Proof of Proposition 6]) yields that there exists an 
increasing sequence (rk) ⊂ [0, 1[ and a subsequence (fnk

) ⊂ (fn) such that

sup 
|a|≤rk

U(fnk
, a) ≤ 2−k, for all k, (2.7)

sup 
|a|>rk+1

U(fnk
, a) ≤ 2−k, for all k. (2.8)

The sequences (rk) and (fnk
) are obtained, by first choosing e.g. r1 = 1

2 and then an el-
ement fn1 such that (2.7) is satisfied, which is possible due to limn→∞ sup|a|≤R U(fn, a) =
0. After that, we apply the fact that lim|a|→1 U(fn1 , a) = 0 to obtain r2 via (2.8) and so 
on.

Now, let (tk) ∈ �∞. For every a ∈ D, there exists exactly one ka ∈ {0, 1, 2, . . .} such 
that

a ∈ A(ka) =
{

]rka
, rka+1], ka > 0 and 

[0, 1
2 ], ka = 0.
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On the one hand, condition (2.7) tells us that for a fixed a ∈ D, it holds that U(fnk
, a) ≤

2−k, whenever, k > ka. On the other hand, condition (2.8) tells us that for a fixed a ∈ D, 
it holds that U(fnk

, a) ≤ 2−k, whenever, k < ka. We can now conclude that for every K

∥∥∥∥∥
K∑

k=1

tkfnk

∥∥∥∥∥
X

≤ ‖(tk)‖∞
K∑

k=1

‖fnk
‖X = ‖(tk)‖∞ sup 

a∈D

(∑
k>ka

+
∑
k<ka

+
∑
k=ka

)
U(fnk

, a)

≤ ‖(tk)‖∞ (
∑
k

2−k +
∥∥fnka

∥∥
X

) = ‖(tk)‖∞ (1 + sup
n 

‖fn‖X).

This is a characterization of (
∑

k fnk
) being a weakly unconditionally Cauchy series, 

which is equivalent to 
∑

k tkfnk
converging for every (tk) ∈ c0. The sequence fnk

is there-
fore, a basis, but not necessary Schauder. By the Bessaga-Pełczyński selection principle, 
we can extract a subsequence (gk) ⊂ (fnk

), which is basic, and since wuC-property and 
‖fnk

‖X ≳ 1 are inherited to (series of) subsequences, we have finally obtained a sequence 
(gk) ⊂ (fn), which is equivalent to the standard basis of c0. �

The following lemma is well known.

Lemma 2.13. Let X be a Banach space and T ∈ L(X). Then T ∗∗ : X∗∗ → X∗∗ is weak∗-
weak∗ continuous and ι−1T ∗∗ι = T on X, where ι : X → X∗∗ is the canonical embedding.

Lemma 2.14. Let 1 ≤ p < ∞ and v : D →]0,∞[ be a radial function. Then

sup 
c∈D

‖Tcf‖BMOAv,p
≤ ‖f‖BMOAv,p

.

Proof. Let c = rw0, w0 ∈ T , r ∈ [0, 1[. Using the fact that f(cz) = ∫
T (Tw0zf)(w)Pr(w) dm(w), an application of Minkowski’s inequality gives us

‖Tcf‖∗,v,p = sup 
a∈D

v(a)

⎛
⎝∫

T

|f(cz) − f(ca)|p Pa(z) dm(z)

⎞
⎠

1 
p

≤ sup 
a∈D

v(a)
∫
T

⎛
⎝∫

T

|(Tw0zf)(w) − (Tw0af)(w)|p Pa(z) dm(z)

⎞
⎠

1 
p

Pr(w) dm(w)

≤ sup 
a,w∈D

v(aw0w)

⎛
⎝∫

T

|f(z) − f(aw0w)|p Paw0w(z) dm(z)

⎞
⎠

1 
p

= ‖f‖∗,v,p .
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For the last inequality, we have approximated the integrand of the outer intergral by 
its supremum, followed by a variable substitution z �→ zw0w, and the fact that v(a) =
v(aw), w ∈ T . �

We are now ready to prove the following result, which does mainly rely on fundamental 
properties of weighted composition operators on Banach spaces of analytic functions and 
a certain duality relation.

Theorem 2.15. Let v be an admissible weight. The spaces VMOA∗∗
v and BMOAv are 

isomorphic. Moreover, if φ and ψ are such that ψCφ ∈ L(VMOAv), then the domain of 
ψCφ can be extended to BMOAv and the extension ψCφ : BMOAv → BMOAv is weakly 
compact if and only if ψCφ|VMOAv

is weakly compact if and only if ψCφ(BMOAv) ⊂
VMOAv.

Proof. By Lemma 2.14, we obtain

sup 
c∈D

‖Tcf‖BMOAv
≤ ‖f‖BMOAv

, f ∈ BMOAv.

Since limr→1− ‖Trf − f‖H2 = 0 [5, Theorem 2.6] and Trf ∈ VMOAv for every 0 < r < 1
according to the remark right after (1.1), we can use [21, Theorem 2.2] with X = Y =
H2/C and

L = {Lφ̂ : f �→ v(a)(f ◦ σa − f(a)) : φ̂ ∈ Aut}.

The result is that (VMOA′
v)∗∗ and BMOA′

v are isometrically isomorphic, where

VMOA′
v = {f ∈ VMOAv : f(0) = 0} and BMOA′

v = {f ∈ BMOAv : f(0) = 0}.

Now it follows that

VMOA∗∗
v = (VMOA′

v ⊕1 C)∗∗ ∼ = (VMOA′
v)∗∗ ⊕1 C ∼ = BMOA′

v ⊕1 C = BMOAv,

where ∼ = stays for isometrically isomorphic and X⊕1Y means the direct sum is equipped 
with the norm f �→ ‖(‖f‖X , ‖f‖Y )‖

�1
.

Theorem 2.2 in [21] also yields that the corresponding isometric isomorphism is an 
extension of the canonical mapping ι : VMOAv → (VMOAv)∗∗. Hereafter, let ι be the 
extension. By the Banach-Alaoglu theorem (BVMOA∗∗

v
, w∗) is compact, and since δz ∈

VMOA∗
v, we have that ι : (BBMOAv

, τ0) → (BVMOA∗∗
v
, w∗) is a homeomorphism. Applying 

Lemma 2.13 to the weighted composition operator ψCφ ∈ L(VMOAv), we get that 
ι−1ψC∗∗

φ ι|VMOAv
= ψCφ and that ι−1T ∗∗ι|BBMOAv

is τ0 − τ0 continuous. Since VMOAv

is τ0 dense in BMOAv and ι−1ψC∗∗
φ ι|VMOAv

= ψCφ, we obtain ι−1T ∗∗ι = ψCφ ∈
L(BMOAv).

Finally, Gantmacher’s theorem yields the equivalences. �
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Another equivalent statement of ψCφ ∈ L(VMOAv) being weakly compact is the 
following [22, Theorem 3.2]: for every ε > 0 there exists N > 0 such that

‖ψCφf‖BMOAv
≤ N ‖f‖H2 + ε ‖f‖BMOAv

, f ∈ VMOAv.

See [22, Corollary 3.3] for a similar result concerning the operators induced by the same 
symbols acting on BMOAv.

A final remark is that, assuming Theorem 1.2 holds for (ψCφ ∈ L(VMOAv), The-
orem 2.15 allows us to immediately extend it to operators (ψCφ ∈ L(BMOAv) sat-
isfying the extra assumption ψCφ|VMOAv

∈ L(VMOAv). In this case, we can add 
ψCφ(BMOAv) ⊂ VMOAv to the list of characterizations of compactness given in 
Theorem 1.2. It is worth noticing that there are weighted composition operators in 
L(BMOAv) that are not an extension of operators ψCφ ∈ L(VMOAv), in other words, 
there exists ψCφ ∈ L(BMOA) such that ψCφ|VMOAv

/ ∈ L(VMOA). An example of 
an operator ψCφ ∈ L(BMOA), which is compact due to Theorem 1.2, but for which 
ψCφ|VMOAv

/ ∈ L(VMOA) is obtained using ψ = h ∈ BMOAv (see Lemma 3.4 and its 
proof) and φ : z �→ z/2.

2.3. Some comments about the conditions concerning admissible weights

The functions g(z) = zc, c ≥ 1/2 satisfy all assumptions except the global growth 
restriction (G1). The functions

z �→ (e + z)ce
cos(ln(ln(e+z)))

,

where 0 < c < 1 
2e belong to H(C�≥ 1

2
) and satisfy (G1) (it’s easy to see that its growth 

along the positive real line is bounded by z �→ zce), but not the curvature restriction 
(G2). The intuition for this function follows from the fact that it can be written as an 
analytic staircase function F (z) = z+cos z composed with an analytic magnifier exp exp
from the left and its inverse ln ln from the right to create the effect of a rapidly growing 
size of the steps as z tends toward infinity along the positive real axis. Finally, the input 
is translated for the function to have the right domain, and compressed from its linear 
asymptotic mean growth to be dominated by a suitable root-type growth for condition 
(G1) to hold. We have,

(e + z)ce
cos(ln(ln(e+z)))

= (exp (exp(F (ln(ln(e + z)))))c .

To see that the function does not satisfy (G2), consider 0 < b = a2 ≤ a ≤ 1 in condition 
(G2). For condition (G2) to hold, it is necessary that (substituting a �→ 1 

a )

sup 
a∈]1,∞[

(e + a2)cecos(ln(ln(e+a2)))(
((e + a)2)ce

cos(ln(ln(e+a)))
)2 < ∞.
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Moreover,

(e + a2)cecos(ln(ln(e+a2)))(
((e + a)2)ce

cos(ln(ln(e+a)))
)2 ≈
(
(e + a)2c

)ecos(ln(ln(e+a2)))−ecos(ln(ln(e+a)))

.

For the above to explode as a → ∞ along some sequence, it is sufficient to prove that

lim sup
a→0 

cos(ln(ln(e + a2))) − cos(ln(ln(e + a))) > 0.

This can be seen from

cos(ln(ln(e + a2))) = cos(ln(ln(e + a)) + ln ln(e + a2)
ln(e + a) )

a→∞∼ cos(ln 2 + ln(ln(e + a))).

3. Some important lemmas

Lemma 3.1. Let g : [1,∞[→]0,∞[ be an almost increasing function. We have

sup 
x,y∈]0,1[

(
g 1 

1−y

)
(
g 1 

1−x

) ( (1 − y2)(1 − x2)
(1 − xy)2

)
� sup 

t,x∈]0,1]

t g
( 1 
tx

)
g
( 1 
x

) .

One sufficient condition for the quantity above to be finite is that x �→ x g( 1 
x ) is almost 

increasing.

Proof. Some elementary calculations yield

sup 
x,y∈]0,1[

(
g 1 

1−y

)
(
g 1 

1−x

) ( (1 − y2)(1 − x2)
(1 − xy)2

)
� sup 

x,y∈]0,1[

g
(

1 
y

)
g
( 1 
x

) xy 
(x + y)2 .

Put y = tx to obtain

sup 
x,y∈]0,1[

g
(

1 
y

)
g
( 1 
x

) ( xy 
(x + y)2

)
= sup 

x,t∈]0,∞[
χ0<x<1χ0<t< 1 

x

g
( 1 
tx

)
g
( 1 
x

) ( x2t 
x2(1 + t)2

)

= sup 
x,t∈]0,∞[

χ0<x<min{1, 1t }
g
( 1 
tx

)
g
( 1 
x

) ( t 
(1 + t)2

)

= max
{

sup 
t∈]0,1]

sup 
x∈]0,1[

g
( 1 
tx

)
g
( 1 
x

) ( t 
(1 + t)2

)
, sup 
t∈]1,∞[

sup 
x∈]0,∞[

χ0<x< 1
t 
g
( 1 
tx

)
g
( 1 
x

) ( t 
(1 + t)2

)}
.

Since g is almost increasing, we have
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sup 
t∈]1,∞[

sup 
x∈]0,∞[

χ0<x< 1
t 
g
( 1 
tx

)
g
( 1 
x

) ( t 
(1 + t)2

)
�g 1.

Moreover,

sup 
t∈]0,1]

sup 
x∈]0,1[

g
( 1 
tx

)
g
( 1 
x

) ( t 
(1 + t)2

)
� sup 

t,x∈]0,1]

t g
( 1 
tx

)
g
( 1 
x

) . �

The weighted Bloch space will only appear in this section and it is here defined as 
follows:

Bv = {f ∈ H(D) : ‖f‖Bv
:= |f(0)| + sup 

z∈D
(1 − |z|2)v(z) |f ′(z)| < ∞}.

The following lemma is a trivial generalization of [10, Corollary 5.2] (see also [10, 
Lemma 5.1]).

Lemma 3.2. It holds that

BMOAv,1 ⊂ Bv

and

‖f‖Bv
≤ ‖f‖BMOAv,1

, f ∈ H1(D).

Proof. For f ∈ H1 we have

|f ′(0)| ≤ ‖f‖H1 .

Applying the above to f ◦ σa − f(a) yields

|f ′(a)| (1 − |a|2) ≤ γ(f, a, 1).

Multiply both sides by v(a) and take the supremum over a ∈ D to obtain the result 
(after adding |f(0)| to both sides). �

The following Lemma provides a relation between the main condition (G1) and the 
weaker condition (G1’) used in Lemma 3.4.

Lemma 3.3. For an almost increasing function g : [1,∞[→]0,∞[ and p > q > 0, we have

sup 
0<x<1

x g( 1 
x

)p < ∞ ⇒ g ∈ Lq(]1,∞[, d arctan) ⇒ sup 
0<x<1

x g( 1 
x

)q < ∞.
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Proof. The first implication follows from

∞ ∫
1 

g(x)q dx
1 + x2 =

1 ∫
0 

g( 1 
x

)q dx 
1 + x2 =

1 ∫
0 

x− q
p

(
xg( 1 

x
)p
) q

p dx 
1 + x2 .

To prove the second implication, it is proved that for any almost increasing function f
with supt∈]1,∞[ t

−1f(t) = ∞, we have f / ∈ L1(]1,∞[, d arctan). Since lim supt→∞ t−1f(t) 
= ∞, there is an increasing sequence (tn) tending to infinity such that ntn ≤ f(tn) for 
all n ≥ 2. Furthermore, let N : N → N be an increasing function such that N(k) ≤ k for 
all k, limk N(k) = ∞ and limk

tN(k)
tk+1

= 0. Now, for large k (we can assume t1 ≥ 1),

∞ ∫
1 

f(t) 
1 + t2

dt ≥
∑
n 

tn+1∫
tn

f(t) 
1 + t2

dt ≳f

∑
n 

tn+1∫
tn

f(tn)
t2

dt ≥
k∑

n=N(k)

ntn

(
1 
tn

− 1 
tn+1

)

≥
k∑

n=N(k)

n 
tn+1

(tn+1 − tn) ≥ N(k)
tk+1

k∑
n=N(k)

(tn+1 − tn) = N(k)
(

1 −
tN(k)

tk+1

)

and the statement follows from letting k → ∞. �
The function h in the following Lemma is the starting point for constructing the 

test-function associated with β(ψ, φ, a) (see Subsection 4.2).

Lemma 3.4. Let g ∈ H(C�≥ 1
2
) such that g|[ 12 ,∞[ is (strictly) positive and almost increas-

ing. Then, for v(z) � g( 1 
1−|z| ), all functions f ∈ BMOAv,1 satisfy

|f(z) − f(0)| ≲v,g ‖f‖1,∗ h(|z|), (3.1)

where

h : z �→
z∫

0 

dt 
(1 − t)g( 1 

1−t )
.

The constant is 1 if v(z) ≥ g( 1 
1−|z| ). Assume also that

(G1’) g ∈ L2(]1,∞[, d arctan), 
(G2) g(1/b) ≲ g(a/b)g(1/a) for 0 < b ≤ a < 2 and 
(G3) |g(z)| ≳ g(|z|), z ∈ C�≥ 1

2
. 

Then hc ∈ BMOAv, c ∈ D with a uniform bound for the norm with respect to c, where 
hc(z) := h(cz). Moreover, for a fixed c ∈ D it holds that γ(hc, a, 2)2 ≲c,g 1− |a| , a ∈ D, 
implying hc ∈ VMOAv.
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Proof. First, let f ∈ BMOAv,1 and z ∈ D. By definition we have

|f(z) − f(0)| =

∣∣∣∣∣∣
z∫

0 

f ′(t) dt

∣∣∣∣∣∣ =
∣∣∣∣∣∣z

1 ∫
0 

f ′(tz) dt

∣∣∣∣∣∣ ≤ |z|
1 ∫

0 

v(zt)(1 − t2 |z|2) |f ′(tz)|
v(zt)(1 − t2 |z|2) 

dt

≤ |z|
1 ∫

0 

‖f‖1,∗

v(zt)(1 − t2 |z|2)
dt ≲v,g ‖f‖1,∗ h(|z|),

where Lemma 3.2 gives the second last inequality.
Next, we prove that ‖hc‖BMOAv

≲ ‖h‖BMOAv
< ∞, where c ∈ D. First, put

C := sup 
0<x<1

x g( 1 
x

)2 and M := sup 
0<b≤a<2

g(1/b) 
g(a/b)g(1/a) .

The constant C is finite due to (G1’) and Lemma 3.3, and (G2) yields that M is finite. 
For 0 < y ≤ x < 2 we have

x g( 1 
x )2

y g( 1 
y )2

(G2)
≥ 

1 
M y

x g(xy )2 ≥ 1 
MC

> 0. (3.2)

It follows that for all z, c ∈ D, we have

|1 − cz| g( 1 
|1 − cz| )

2 ≥ 1 
MC

(1 − |z|)g( 1 
1 − |z| )

2

so that

|h′(cz)|2 =
(
|1 − cz|2

∣∣∣∣g( 1 
1 − cz

)
∣∣∣∣
2
)−1

(G3)
≲g

MC
(
(1 − |z|)g( 1 

1−|z| )
2
)−1

|1 − cz| . (3.3)

Moreover, for c, z ∈ D \ {0},

|1 − (c/ |c|)z|
|1 − cz| ≤ |1 − cz|

|1 − cz| +

∣∣∣cz(1 − 1 
|c| )
∣∣∣

|1 − cz| ≤ 1 + |z(|c| − 1)|
|1 − cz| ≤ 2.

For a ∈ D and c ∈ D \ {0}, (1.1) together with the above estimates yield

γ(hc, a, 2)2 � |c|2
∫
D

|h′(cz)|2 (1 − |σa(z)|2) dA(z)

(3.3)
≲g

∫
D

g

(
1 

1 − |z|

)−2 (1 − |a|) 
|1 − (c/ |c|)z| |1 − az|2

dA(z)
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≤
1 ∫

0 

2π ∫
0 

g

(
1 

1 − r

)−2 (1 − |a|) 
|1 − reit| |1 − |a| reit|2

dt dr,

where the last inequality is due to Hardy-Littlewood’s inequality on rearrangements (see 
e.g. [11, Theorem 378, p. 278]). If |a| ≤ 1

2 ,

v(a)2γ(hc, a, 2)2 ≲v,g g(1)−2 < ∞.

Henceforth, we assume |a| > 1
2 . It is evident that

sup 
a∈D

v(a)2
1
2∫

0 

2π ∫
0 

g

(
1 

1 − r

)−2 (1 − |a|) 
|1 − reit| |1 − |a| reit|2

dt dr ≲g sup 
a∈D

v(a)2(1 − |a|)

and

sup 
a∈D

v(a)2
1 ∫

0 

2π− 1
2∫

1
2

g

(
1 

1 − r

)−2 (1 − |a|) 
|1 − reit| |1 − |a| reit|2

dt dr ≲ sup 
|a|∈D

v(a)2(1 − |a|).

By (G1’) together with Lemma 3.3 supa∈D v(a)2(1 − |a|) < ∞. The symmetry of the 
integrand with respect to t yields, it is sufficient to prove that

sup 
1
2<|a|<1

v(a)2
1 ∫

1
2

1
2∫

0 

g

(
1 

1 − r

)−2 (1 − |a|) 
|1 − reit| |1 − |a| reit|2

dt dr < ∞

in order to establish hc ∈ BMOAv with uniformly bounded norm with respect to c ∈ D. 
To this end, since 1

2 < r < 1, using the estimate cos t ≤ 1 − t2/3 when 0 < t < 1/2, we 
have

1
2∫

0 

dt 

|1 − reit| |1 − |a| reit|2
=

1
2∫

0 

dt 

(1 + r2 − 2r cos t) 1
2 (1 + |a|2 r2 − 2 |a| r cos t)

≲

1
2∫

0 

dt 

((1 − r)2 + t2)
1
2
(
(1 − |a| + |a| (1 − r))2 + (

√
|a|t)2
) ,

and we can therefore conclude that

1 ∫
1
2

1
2∫

0 

g

(
1 

1 − r

)−2 1 

|1 − reit| |1 − |a| reit|2
dt dr
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≲

1
2∫

0 

g

(
1
r

)−2
1
2∫

0 

dt 

(r2 + t2)
1
2
(
(1 − |a| + |a| r)2 + (

√
|a|t)2
) dr

≤

1
2∫

0 

1
2∫

0 

g

(
1
r

)−2 1 

(r2 + t2)
1
2
(
(1 − |a|)2 + |a|2 (r2 + t2)

) dt dr.

Now consider the two integrals as a representation of an area integral over a square in R2. 
We can get a larger integration area by considering a quarter circle in the first quadrant 
with radius 1. Putting r2 + t2 = R2 and r = R cos θ, we obtain

1
2∫

0 

1
2∫

0 

g

(
1
r

)−2
dt dr 

(r2 + t2)
1
2
(
(1 − |a|)2 + |a|2 (r2 + t2)

)

= 1 
π

1 ∫
0 

π
2 ∫

0 

g

(
1 

R cos θ

)−2
dθR dR 

R
(
(1 − |a|)2 + |a|2 R2

) ≲g

1 ∫
0 

g

(
1 
R

)−2
dR 

(1 − |a|)2 + R2 ,

where it has been used that g is almost increasing, cos θ ≤ 1 and |a| ≥ 1/2.
It remains to prove that

sup 
1
2<|a|<1

g

(
1 

1 − |a|

)2 1 ∫
0 

g

(
1 
R

)−2 (1 − |a|) dR 
(1 − |a|)2 + R2 = sup 

0<b< 1
2

1 ∫
0 

g
( 1
b 
)2

g
( 1 
R

)2 b dR 
b2 + R2 (3.4)

is finite. Now since g is almost increasing on [2,∞[, we have

b ≥ R ⇒ g
(

1
b 

)2

≲g g

(
1 
R

)2

which yields

b ∫
0 

g
( 1
b 
)2

g
( 1 
R

)2 b dR 
b2 + R2 ≤

b ∫
0 

b dR 
b2 + R2 ≤

1 ∫
0 

dR 
1 + R2 = π

4 
.

Finally, since

R > b ⇒ g
(

1
b 

)
≲g g

(
R

b 

)
g

(
1 
R

)
,

we have
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1 ∫
b 

g
( 1
b 
)2

g
( 1 
R

)2 b dR 
b2 + R2 ≲

1 ∫
b 

g

(
R

b 

)2
b dR 

b2 + R2 ≤

1
b ∫

1 

g(R)2 dR
1 + R2 ≤ ‖g‖2

L2(]1,∞[,d arctan) < ∞.

The remaining statement, that hc ∈ VMOAv, c ∈ D, follows from

γ(hc, a, 2)2 � |c|2
∫
D

|h′(cz)|2 (1 − |σa(z)|2) dA(z)

≲ (1 − |a|)(sup 
z∈D

|h′(cz)|2)
∫
D

(1 − |z|2)
|1 − az|2

dA(z)

= (1 − |a|)(sup 
z∈D

|h′(cz)|2)
1 ∫

0 

(1 − r2) 
1 − |ar|2

dr2 ≤ (1 − |a|)(sup 
z∈D

|h′(cz)|2),

where the last equality is true, because 
∫
T Pb dm = 1 for every b ∈ D. We already 

concluded supa∈D v(a)2(1 − |a|) < ∞ so we are done. �
In combination with Lemma 3.2, we have the following corollary, telling us that the 

growth restriction of functions as approaching T is the same for functions in Bv and 
BMOAv.

Corollary 3.5. Under the assumptions of Lemma 3.4 we have, for X = BMOAv, X =
VMOAv or X = Bv,

‖δz‖X∗ �v,g (1 + h(|z|)) = 1 +
|z|∫
0 

dt 
(1 − t)g( 1 

1−t )
� 1 +

|z|∫
0 

dt 
(1 − t)v(t) ≲ ln e 

1 − |z| .

Assuming (G2) in Lemma 3.4, we have the following result

Lemma 3.6. Let g : [1,∞[→]0,∞[ be almost increasing and assume g(1/b) ≲ g(a/b)g(1/a)
for 0 < b ≤ a ≤ 1. Then, for a ∈ D,

g

(
1 

1 − |σa(z)|

)
≲g g

(
1 + |a|
1 − |a|

)
g

(
1 

1 − |z|

)
.

Proof. It holds that

g

(
1 

1 − |σa(z)|

)
≲g g

(
1 − |z|

1 − |σa(z)|

)
g

(
1 

1 − |z|

)
.

To finish the proof, we apply a result for automorphisms of the disk (see e.g. [3, p. 48]) 
and the fact that g is almost increasing. �
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The next result is an estimate for comparison of evaluation maps at z and φ(z) for 
an analytic self-map φ.

Corollary 3.7. Let g : [1,∞[→]0,∞[ be almost increasing and assume g(1/b) ≲
g(a/b)g(1/a) for 0 < b ≤ a ≤ 1. If v(z) � g( 1 

1−|z| ) and φ : D → D is an analytic 
self-map, we have

∥∥δφ(z)
∥∥

BMOA∗
v,p

≲v,g

(
max
{
v

(
2 |φ(0)|

1 + |φ(0)|

)
, 1
}

+ h(|φ(0)|)
)
‖δz‖BMOA∗

v,p
.

Proof. Let z, a ∈ D. We have for 1 ≤ p < ∞,

‖f ◦ σa‖∗,p = sup 
φ̂∈Aut

v((σa ◦ σa ◦ φ̂)(0))
∥∥∥f ◦ σa ◦ φ̂− (f ◦ σa ◦ φ̂)(0)

∥∥∥
Hp

= sup 
φ̂∈Aut

v((σa ◦ φ̂)(0))
∥∥∥f ◦ φ̂− (f ◦ φ̂)(0)

∥∥∥
Hp

≤
(

sup 
φ̂∈Aut

v(σa(φ̂(0)))
v(φ̂(0)) 

)
‖f‖∗,p .

Applying Lemma 3.6 and the fact that 1+|a|
1−|a| = 1 

1− 2|a|
1+|a|

, it follows that

‖f ◦ σa‖∗,p ≲v,g v

(
2 |a|

1 + |a|

)
‖f‖∗,p , a ∈ D, p ∈ [1,∞[.

Estimate (3.1) in Lemma 3.4 yields the last inequality below:

|(f ◦ σa)(z)| ≤ (‖f ◦ σa‖∗,p + |f(a)|) ‖δz‖BMOA∗
v,p

≲v,g

(
‖f‖∗,p v

(
2 |a|

1 + |a|

)
+ |f(0)| + |f(a) − f(0)|

)
‖δz‖BMOA∗

v,p

≲v,g

(
‖f‖BMOAv,p

max{v
(

2 |a|
1 + |a|

)
, 1} + ‖f‖BMOAv,p

h(|a|)
)
‖δz‖BMOA∗

v,p
.

(3.5)

Let φ be an analytic self-map of D. Then σφ(0) ◦φ is an analytic self-map of D with zero 
as a fixed point. It follows from the Schwarz Lemma that 

∣∣σφ(0) ◦ φ(z)
∣∣ ≤ |z| and by the 

maximum modulus principle, it follows that ‖δ(σφ(0)◦φ)(z)‖BMOA∗
v,p

≲v,g ‖δz‖BMOA∗
v,p

. 
From (3.5) we now obtain
∣∣δφ(z)f

∣∣ = |(f ◦ φ)(z)| =
∣∣(f ◦ σφ(0))(σφ(0)(φ(z)))

∣∣
≲v,g ‖f‖BMOAv,p

(
max{v

(
2 |φ(0)|

1 + |φ(0)|

)
, 1} + h(|φ(0)|)

)∥∥∥δ(σφ(0)◦φ)(z)

∥∥∥
BMOA∗

v,p

≲v,g ‖f‖BMOAv,p

(
max{v

(
2 |φ(0)|

1 + |φ(0)|

)
, 1} + h(|φ(0)|)

)
‖δz‖BMOA∗

v,p

and the result is proved. �
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4. The functions α and β

It is time to introduce the test functions of unit norm g(α)
a and g(β)

a , for a ∈ D, 
which are a key ingredient in the proof of the two main results: Theorems 1.1 and 1.2. 
The conclusions in this section are made under suitable assumptions (see beginning of 
Section 5).

4.1. The function α

For φ : D → D, a ∈ D and ψ ∈ BMOAv recall that

α(ψ, φ, a) = v(a) 
v(φ(a)) |ψ(a)| ‖φa‖H2 ,

where φa = σφ(a) ◦ φ ◦ σa.
For a ∈ D define

f (α)
a : z �→

σφ(a)(z) − φ(a)
v(φ(a)) , z ∈ D

and

g(α)
a : z �→ f

(α)
a (z) ∥∥∥f (α)

a

∥∥∥
BMOAv

, z ∈ D.

The important properties for these functions are that g(α)
a ∈ VMOAv, lim|φ(a)|→1 ‖g(α)

a ‖H2

= 0 and their relation with the function α,

α(ψ, φ, a) ≲ v(a)
∥∥∥ψ(a)(g(α)

a ◦ φ ◦ σa − g(α)
a (φ(a)))

∥∥∥
H2

, a ∈ D,

which will be used to prove that boundedness of ψCφ implies boundedness of 
α and β. Their relation with the function α is also crucial when proving that 
lim sup|a|→1 α(ψ, φ, a) > 0 ensures ψCφ is not c0-singular.

Using f (2)
a (z) = σφ(a)(z) − φ(a), we have

∣∣∣f (2)
a ◦ σb(z) − f (2)

a (b)
∣∣∣2 =
∣∣σφ(a) ◦ σb(z) − σφ(a)(b)

∣∣2

=

∣∣∣∣∣φ(a)b− 1
1 − φ(a)b

σ b−φ(a) 
1−φ(a)b

(z) − φ(a)b− 1
1 − φ(a)b

b− φ(a) 
1 − φ(a)b

∣∣∣∣∣
2

=
∣∣∣∣σ b−φ(a) 

1−φ(a)b
(z) − b− φ(a) 

1 − φ(a)b

∣∣∣∣
2

=

∣∣∣∣∣∣∣∣
z

(∣∣∣ b−φ(a) 
1−φ(a)b

∣∣∣2 − 1
)

1 − z b−φ(a) 
1−φ(a)b

∣∣∣∣∣∣∣∣

2

.
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Since 
∫
T Pc dm = 1 for every c ∈ D, we have

v(b)2γ(f (α)
a , b, 2)2 = v(b)2

v(φ(a))2

(
1 −
∣∣∣∣ b− φ(a) 
1 − φ(a)b

∣∣∣∣
2
)

≤ v(b)2

v(φ(a))2

(
(1 − |b|2)(1 − |φ(a)|2)

|1 − |φ(a)| |b||2

)
,

(4.1)

and hence, by Lemma 3.1

sup 
b∈D

γ(f (α)
a , b, 2)2v(b)2 ≤ sup 

x,y∈[0,1[

v(x)2

v(y)2

(
(1 − y2)(1 − x2)

(1 − xy)2

)
< ∞ (4.2)

proving f (α)
a ∈ BMOAv for all a ∈ D and supa∈D ‖f (α)

a ‖BMOAv
< ∞. From (4.1) it 

also follows that f (α)
a ∈ VMOAv, and therefore also g(α)

a ∈ VMOAv. Finally, from the 
equality in (4.1) it follows that 1 ≤ ‖f (α)

a ‖BMOAv
and using b = 0 in (4.1) now leads to 

lim|φ(a)|→1 ‖g(α)
a ‖H2 = 0.

Next, we proceed to the function β, which should not be confused with what is usually 
referred to as the β-function.

4.2. The function β

For φ : D → D, a ∈ D and ψ ∈ BMOAv, recall that

β(ψ, φ, a) =
∥∥δφ(a)

∥∥
(BMOAv)∗ v(a)γ(ψ, a, 1).

Corollary 3.5 yields that

β(ψ, φ, a) �v,g

(
1 +

1 ∫
0 

|φ(a)| dt 
(1 − t |φ(a)|)g( 1 

1−t|φ(a)| )

)
v(a)γ(ψ, a, 1).

For a ∈ D define

f (β)
a : z �→

zφ(a)∫
0 

dt 
(1 − t)g( 1 

1−t )
=

z∫
0 

φ(a) dt 
(1 − tφ(a))g( 1 

1−tφ(a) )
, z ∈ D

and

g(β)
a : z �→ (1 + f

(β)
a )2∥∥∥(1 + f

(β)
a )2
∥∥∥

BMOAv

, z ∈ D.
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The important properties for the functions g(β)
a are that g(β)

a ∈ VMOAv and their 
relation with the function β,

β(ψ, φ, a) ≲v,g v(a)
∣∣∣g(β)

a (φ(a))
∣∣∣ γ(ψ, a, 1), a ∈ D, (4.3)

which will be used in a similar fashion to the α-case. Moreover, if BMOAv �⊂ H∞, we 
will need lim|φ(a)|→1 ‖g(β)

a ‖H1 = 0 to hold.
Hereafter, X = VMOAv or X = BMOAv. From the remark right after (1.1), it is clear 

that g(β)
a ∈ VMOAv, because (f (β)

a )2 = Sφ(a)h
2 (dilation of analytic function), where 

|φ(a)| < 1. Moreover, since g is almost increasing

(1 − t |φ(a)|)g( 1 
1 − t |φ(a)| ) ≳g (1 − t |φ(a)|2)g( 1 

1 − t |φ(a)|2
),

and hence,

1 +
1 ∫

0 

|φ(a)| dt 
(1 − t |φ(a)|)g( 1 

1−t|φ(a)| )
≲g 1 +

1 ∫
0 

|φ(a)| dt 
(1 − t |φ(a)|2)g( 1 

1−t|φ(a)|2 )

≲ 1 +
1 ∫

0 

|φ(a)|2 dt 

(1 − t |φ(a)|2)g( 1 
1−t|φ(a)|2 )

,

(4.4)

from which an application of Corollary 3.5 gives us

∥∥∥(1 + f (β)
a )2
∥∥∥
X

≳v,g
(1 + f

(β)
a (φ(a)))2∥∥δφ(a)
∥∥
X∗

≳v,g

∥∥δφ(a)
∥∥
X∗ . (4.5)

The inequality in equation (3.3) in Lemma 3.4 followed by (4.4), yields

1 + sup 
z∈D

∣∣∣f (β)
a (z)

∣∣∣ ≲g 1 +
1 ∫

0 

|φ(a)| dt 
(1 − t |φ(a)|)g( 1 

1−t|φ(a)| )
≲v,g

∥∥∥δ|φ(a)|2
∥∥∥ .

Similarly to the proof of Lemma 3.4, for every a, b ∈ D we have

v(a)2γ((1 + f (β)
a )2, b, 2)2 � v(a)2 |φ(a)|2

∫
D

∣∣∣1 + f (β)
a (z)

∣∣∣2 ∣∣∣h′(φ(a)z)
∣∣∣2 (1 − |σb(z)|2) dA(z)

≲v,g

∥∥∥δ|φ(a)|2
∥∥∥2
X∗

v(a)2
∫
D

g

(
1 

1 − |z|

)−2 (1 − |b|) 
|1 − z|

∣∣1 − bz
∣∣2 dA(z)

≲v,g

∥∥∥δ|φ(a)|2
∥∥∥2
X∗

≤
∥∥δ|φ(a)|

∥∥2
X∗ .
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Combining with (4.5), we can conclude that
∥∥∥(1 + f (β)

a )2
∥∥∥
X

�v,g

∥∥δφ(a)
∥∥
X∗ �v,g

∥∥δφ(a)2
∥∥
X∗ . (4.6)

As a consequence, (4.3) holds. Finally, concerning lim|φ(a)|→1 ‖g(β)
a ‖H1 = 0, we can as-

sume limφ(a)→1
∥∥δφ(a)

∥∥
X∗ = ∞, so it is sufficient to prove that supa∈D

∥∥∥f (β)
a

∥∥∥
H2

< ∞. 
By the Littlewood-Paley identity followed by the inequality in equation (3.3), we have 
for a ∈ D,

∥∥∥f (β)
a

∥∥∥2
H2

� |φ(a)|2
∫
D

∣∣∣∣∣(1 − zφ(a))g( 1 

1 − zφ(a)
)

∣∣∣∣∣
−2

(1 − |z|2) dA(z)

≲g

∫
D

g( 1 
1−
∣∣∣zφ(a)

∣∣∣ )−2

∣∣∣1 − zφ(a)
∣∣∣ dA(z) ≲g sup 

a∈D

∫
D

g(1)−2∣∣∣1 − zφ(a)
∣∣∣ dA(z) < ∞

and we are done.
The reason for using the parameter 1 in the factor γ(ψ, a, 1) of the function β (com-

pared to 2, which is used in e.g. [13]) is due to the restrictive connection between the 
parameters p, q and v for the statements in Proposition 2.3 to hold, which is present 
via (G1). On the one hand, if γ(ψ, a, 2) is used in the definition of β, the application of 
Hölder’s inequality in e.g. (5.1) (see also proof of Lemma 5.4) would create quantities 
involving the H4-norm. In this case, to be able to apply Proposition 2.3, we need a more 
restrictive condition instead of (G1). On the other hand, it is essential to be able to 
connect the γ(ψ, a, 1) factor in β with γ(ψ, a, 2), for example, to obtain (5.15). This is 
solved by the extensive Proposition 2.3.

5. Weighted composition operators on BMOAv and VMOAv

Recall that an admissible weight v, is a function satisfying:
There is a g ∈ H(C�≥ 1

2
) such that g|[ 12 ,∞[ is (strictly) positive and almost increasing. 

Assume also that

(G1) There exists ε0 > 0 such that sup0<x<1 x g( 1 
x )2+ε0 < ∞, 

(G2) g(1/b) ≲ g(a/b)g(1/a) for 0 < b ≤ a < 2, 
(G3) |g(z)| ≳ g(|z|), z ∈ C�≥ 1

2
, 

such that v(z) � g( 1 
1−|z| ).

With these assumptions, v|[0,1[ is almost increasing, and a version of equation (3.2)
in Lemma 3.4 shows that

x �→ v|[0,1[(1 − x)x
1 
p−ε
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is almost increasing for some ε > 0. Moreover, since v is equivalent to a radial function 
Proposition 2.3 yields that BMOAv = BMOAv,1 with equivalent norms. Moreover, due 
to Lemma 3.3, the assumptions of Lemmas 3.1 and 3.4 are satisfied and the useful 
properties obtained in Sections 3 and 4 hold. The results below, up to Corollary 5.6, are 
inspired by [13, Section 2 and Proposition 4.1].

Boundedness of ψCφ on BMOAv and VMOAv is characterized in Theorem 5.5 and 
Corollary 5.6 respectively. Another standard but important type of result is Theorem 5.7.

Concerning the VMOAv-case, some Carleson measure theory (Proposition 5.11) is 
sufficient, due to the nature of VMOAv, to prove that the function-theoretic condition 
implies that ψCφ is the uniform limit of a sequence of compact operators (ψCφ composed 
with dilation operators), see Theorem 5.12. A candidate for a sufficient condition for 
ψCφ ∈ L(BMOAv) to be compact is presented in Theorem 5.10. Although the structure 
of the space makes the Carleson measure approach less fruitful, the unit ball BBMOAv

is compact with respect τ0. This allows another, classical, approach to be carried out, 
namely, to prove that ψCφ maps τ0-null sequences to norm-null sequences. Due to some 
complications involving the weight v, no characterization is achieved in the general case 
(see also Conjecture 3).

In all of the proofs to these results, Proposition 2.3 has a crucial part.

Lemma 5.1 ([13, Proposition 2.1]). There is a constant C ≥ 1 such that

‖f ◦ u‖H2 ≤ C ‖f‖H2 ‖u‖H2

for all f ∈ H2 and analytic self-maps u of D such that f(0) = u(0) = 0.

Lemma 5.2. For f ∈ BMOAv and a ∈ D, we have

v(a)γ(ψCφf, a, 1) ≤ ‖f‖BMOAv

(
α(ψ, φ, a) + v(a) ‖ψ ◦ σa − ψ(a)‖H2

‖φa‖2
v(φ(a))

+ β(ψ, φ, a)
)
.

Proof. For a fixed a ∈ D and f ∈ BMOAv we have

γ(ψCφf, a, 1) = ‖ψ ◦ σaf ◦ φ ◦ σa − ψ ◦ σa(0)f ◦ φ ◦ σa(0)‖H1

≤ |ψ(a)| ‖f ◦ φ ◦ σa − f(φ(a))‖H1

+ ‖(ψ ◦ σa − ψ(a))(f ◦ φ ◦ σa − f(φ(a)))‖H1

+ |f(φ(a))| ‖ψ ◦ σa − ψ(a)‖H1 .

For the first term, we have
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‖f ◦ φ ◦ σa − f(φ(a))‖H1 ≤ ‖f ◦ φ ◦ σa − f(φ(a))‖H2 =
∥∥f ◦ σφ(a) ◦ φa − f(φ(a))

∥∥
H2

Lemma 5.1
≤ γ(f, φ(a), 2) ‖φa‖H2 ≤ ‖f‖∗ ‖φa‖H2

v(φ(a)) .

For the middle term, we apply Hölder’s inequality and Lemma 5.1 to obtain

‖(ψ ◦ σa − ψ(a))(f ◦ φ ◦ σa − f(φ(a)))‖H1

≤ ‖ψ ◦ σa − ψ(a)‖H2 ‖f ◦ φ ◦ σa − f(φ(a))‖H2

≤ ‖ψ ◦ σa − ψ(a)‖H2
‖f‖∗ ‖φa‖H2

v(φ(a)) 

(5.1)

For the last term, we have

|f(φ(a))| ‖ψ ◦ σa − ψ(a)‖1 ≤
∥∥δφ(a)

∥∥
(BMOAv)∗ ‖f‖BMOAv

‖ψ ◦ σa − ψ(a)‖H1

and the statement follows. �
Lemma 5.3. Let g : [1,∞[→]0,∞[ be almost increasing, x �→ x g( 1 

x ) be almost increasing 
on ]0, 1] and v(z) � g( 1 

1−|z| ). Let X = BMOAv or X = VMOAv. If ψCφ ∈ L(X), then

α(ψ, φ, a) ≲v,g

∥∥∥ψCφg
(α)
a

∥∥∥
BMOAv

+
v(a) ‖(ψ ◦ σa − ψ(a))‖H2

v(φ(a)) ≲v ‖ψCφ‖L(X) .

Proof. Invoking theory from Section 4 and using

v(φ(a))(f (α)
a ◦ φ ◦ σa − f (α)

a (φ(a))) = σφ(a) ◦ φ ◦ σa = φa,

we can conclude that

α(ψ, φ, a) = v(a) 
v(φ(a)) |ψ(a)| ‖φa‖H2 = v(a)

∥∥∥ψ(a)(f (α)
a ◦ φ ◦ σa − f (α)

a (φ(a)))
∥∥∥
H2

≤ v(a)
∥∥∥ψ ◦ σaf

(α)
a ◦ φ ◦ σa − ψ(a)f (α)

a (φ(a))
∥∥∥
H2

+ v(a)
∥∥∥(ψ ◦ σa − ψ(a))f (α)

a ◦ φ ◦ σa

∥∥∥
H2

.

(5.2)

For the first term, Lemma 3.1 yields:

v(a)
∥∥∥ψ ◦ σaf

(α)
a ◦ φ ◦ σa − ψ(a)f (α)

a (φ(a))
∥∥∥
H2

≤
∥∥∥ψCφf

(α)
a

∥∥∥
BMOAv

≤ ‖ψCφ‖L(X)

∥∥∥f (α)
a

∥∥∥
BMOAv

≲v,g ‖ψCφ‖L(X) .
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For the second term, we have

v(a)
∥∥∥(ψ ◦ σa − ψ(a))f (α)

a ◦ φ ◦ σa

∥∥∥
H2

≤
∥∥∥f (α)

a ◦ φ ◦ σa

∥∥∥
∞

v(a) ‖(ψ ◦ σa − ψ(a))‖H2

≤ 2
v(a) ‖(ψ ◦ σa − ψ(a))‖H2

v(φ(a)) ≤ 2
‖ψ‖∗

v(φ(a)) ≲v ‖ψCφ1‖∗ ≤ ‖ψCφ‖L(X) . �
Lemma 5.4. Let v be admissible and assume ψCφ ∈ L(X), where X = BMOAv or 
X = VMOAv. Then

β(ψ, φ, a) ≲v,g

∥∥∥ψCφg
(β)
a

∥∥∥
∗,1

+ α(ψ, φ, a) +
v(a) ‖ψ ◦ σa − ψ(a)‖H2 ‖φa‖H2

v(φ(a)) 

≲v,g ‖ψCφ‖L(X) .

Proof. Theory from Section 4, Hölder’s inequality and Lemma 5.1 yield

β(ψ, φ, a) ≲v,g v(a)
∥∥∥g(β)

a (φ(a))(ψ ◦ σa − ψ(a))
∥∥∥
H1

= v(a)
∥∥∥(ψ ◦ σa)g(β)

a ◦ φ ◦ σa − ψ(a)g(β)
a (φ(a))

∥∥∥
H1

+ v(a)
∥∥∥(ψ ◦ σa − ψ(a))(g(β)

a (φ(a)) − g(β)
a ◦ φ ◦ σa)

∥∥∥
H1

+ v(a)
∥∥∥ψ(a)(g(β)

a (φ(a)) − g(β)
a ◦ φ ◦ σa)

∥∥∥
H1

≤
∥∥∥ψCφg

(β)
a

∥∥∥
∗,1

+
(
v(a) ‖ψ ◦ σa − ψ(a)‖H2 ‖φa‖H2

v(φ(a)) + α(ψ, φ, a)
)∥∥∥g(β)

a

∥∥∥
BMOAv

≲v,g ‖ψCφ‖L(X) +
‖ψCφ1‖BMOAv

v(0) + α(ψ, φ, a).

Lemma 5.3 gives the statement. �
Theorem 5.5 (Boundedness). For an admissible weight v, we have

ψCφ ∈ L(BMOAv) ⇐⇒ sup 
a∈D

(α(ψ, φ, a) + β(ψ, φ, a)) < ∞.

More specifically,

‖ψCφ‖L(BMOAv) �v,g |ψ(0)| (1 + h(|φ(0)|)) + sup 
a∈D

α(ψ, φ, a) + sup 
a∈D

β(ψ, φ, a),

where

h : z �→
z∫

0 

dt 
(1 − t)g( 1 

1−t )
.
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Proof. Since ‖ψ‖∗ ≲v,g ‖ψ‖∗,1 ≤ supa∈D β(ψ, φ, a), Proposition 2.3 and Lemma 5.2 yield

sup 
‖f‖BMOAv

≤1
sup 
a∈D

v(a)γ(ψCφf, a, 2) ≲v,g sup 
a∈D

(
α(ψ, φ, a) + ‖ψ‖∗

‖φa‖2
v(φ(a)) + β(ψ, φ, a)

)

≲v,g sup 
a∈D

α(ψ, φ, a) + sup 
a∈D

β(ψ, φ, a).

Moreover,

sup 
‖f‖BMOAv

≤1
|(ψCφf)(0)| ≤ |ψ(0)|

∥∥δφ(0)
∥∥

BMOA∗
v
≲v,g |ψ(0)| (1 + h(|φ(0)|))

and we can conclude that

‖ψCφ‖L(BMOAv) ≲v,g |ψ(0)| (1 + h(|φ(0)|)) + sup 
a∈D

α(ψ, φ, a) + sup 
a∈D

β(ψ, φ, a).

For the lower estimate, we have

|ψ(0)| (1 + h(|φ(0)|)) ≲v,g |ψ(0)| + |ψ(0)| g(β)
0 (φ(0)) ≤ ‖ψCφ1‖BMOAv

+ (ψCφg
(β)
0 )(0)

≲v,g ‖ψCφ‖L(BMOAv) ,

after which Lemmas 5.3 and 5.4 yield the lower bound for ‖ψCφ‖L(BMOAv). �
Notice that the condition given in Proposition 2.3 is sufficient to prove that

ψCφ ∈ L(BMOAv) ⇐= sup 
a∈D

(α(ψ, φ, a) + sup 
a∈D

β(ψ, φ, a)) < ∞.

The following corollary can be compared to [13, Proposition 4.1] with a slightly dif-
ferent proof.

Corollary 5.6. For an admissible weight v, the following statements are equivalent:

• ψCφ ∈ L(VMOAv)
• supa∈D(α(ψ, φ, a) + β(ψ, φ, a)) < ∞ and ψ,ψφ ∈ VMOAv

• supa∈D(α(ψ, φ, a) + β(ψ, φ, a)) < ∞, ψ ∈ VMOAv and lim|a|→1 v(a)ψ(a)γ(φ, a, 2) =
0.

More specifically, if ψCφ : VMOAv → VMOAv, then

‖ψCφ‖L(VMOAv) �v,g |ψ(0)| (1 + h(|φ(0)|)) + sup 
a∈D

α(ψ, φ, a) + sup 
a∈D

β(ψ, φ, a).
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Proof. Assume first ψCφ ∈ L(VMOAv). According to Proposition 2.1 the maps z �→ 1
and z �→ z belong to VMOAv and by assumption, we can conclude ψ,ψφ ∈ VMOAv. By 
Lemmas 5.3 and 5.4, we have supa∈D(α(ψ, φ, a) + β(ψ, φ, a)) < ∞. On the other hand, 
assume ψ,ψφ ∈ VMOAv and supa∈D(α(ψ, φ, a) + β(ψ, φ, a)) < ∞. Theorem 5.5 yields 
ψCφ : VMOAv → BMOAv is bounded. All that is left to prove is that the codomain is 
VMOAv. Proposition 2.7 yields it is sufficient to prove that any analytic polynomial is 
mapped into VMOAv. To this end, let f be an analytic polynomial. We have,

γ(ψCφf, a, 2) ≤ ‖(ψ ◦ σa − ψ(a))f ◦ φ ◦ σa‖H2 + ‖ψ(a)(f ◦ φ ◦ σa − f(φ(a)))‖H2 .

Since f is bounded, for the first term we have

‖(ψ ◦ σa − ψ(a))f ◦ φ ◦ σa‖H2 ≤ ‖f‖∞ γ(ψ, a, 2),

and since ψ ∈ VMOAv

lim 
|a|→1

v(a) ‖(ψ ◦ σa − ψ(a))f ◦ φ ◦ σa‖H2 = 0.

For the second term, using Lemma 5.1,

v(a) ‖ψ(a)(f ◦ φ ◦ σa − f(φ(a)))‖H2 ≤ α(ψ, φ, a)v(φ(a))γ(f, φ(a), 2).

It is now sufficient to prove that for every sequence (an) ⊂ D with limn |an| = 1 there is 
a subsequence (ank

) such that

lim
k

α(ψ, φ, ank
)v(φ(ank

))
∥∥∥f ◦ σφ(ank

) − f(φ(ank
)))
∥∥∥
H2

= 0. (5.3)

Since φ(an) is bounded, there is always a subsequence, either entirely in a compact subset 
of D or that converges to a point on T . If |φ(ank

)| → 1 as k → ∞, (5.3) follows from 
supa∈D α(ψ, φ, a) < ∞ and f ∈ VMOAv. If (φ(ank

)) is contained in a compact subset of 
D, we note that

‖φa‖H2 � ‖φ ◦ σa − φ(a)‖H2 .

To conclude the proof, it is sufficient to prove that

lim 
|a|→1

v(a)ψ(a) ‖φ ◦ σa − φ(a)‖H2 = 0.

This follows from the fact that

ψ(a) ‖φ ◦ σa − φ(a)‖H2 ≤ ‖ψ ◦ σaφ ◦ σa − ψ(a)φ(a)‖H2 + ‖(ψ ◦ σa − ψ(a))φ ◦ σa‖H2

≤ γ(ψφ, a, 2) + γ(ψ, a, 2)

and ψ,ψφ ∈ VMOAv. �
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Concerning the proof above, the case where the denseness of polynomials is used is 
when VMOAv �⊂ H∞, that is, when 

∫ 1
0

dt 
t v(1−t) is infinite (see Proposition 2.8).

5.1. Compactness and related properties for ψCφ on BMOAv and VMOAv

The test functions that are used in the following theorem can be found in Section 4.

Theorem 5.7. Let ψCφ ∈ L(VMOAv) and v be an admissible weight (see beginning of 
Section 5). If lim sup|φ(a)|→1(α(ψ, φ, a) + β(ψ, φ, a)) > 0, then ψCφ fixes a copy of c0. 
Moreover, in this case ψCφ is not unconditionally converging. Furthermore, the same 
statements hold for ψCφ ∈ L(BMOAv) if at least one of the following holds:

• BMOAv �⊂ H∞,
• ψ ∈ VMOAv.

Proof. Let (an) ⊂ D be a sequence such that limn |φ(an)| → 1 and at least one of the 
following holds: limn α(ψ, φ, an) > 0 or limn β(ψ, φ, an) > 0. If limn α(ψ, φ, an) > 0, then 
Lemma 5.3 yields

lim
n 

∥∥∥ψCφg
(α)
an

∥∥∥
BMOAv

> 0.

We can, therefore, by going to a subsequence if necessary, assume

inf
n 

∥∥∥ψCφg
(α)
an

∥∥∥
BMOAv

> 0.

Now, one can apply Lemma 2.12, first for (g(α)
an ) (recall ‖g(α)

an ‖BMOAv
= 1 for all n) and 

then for (ψCφg
(α)
ank

) to obtain the statement of fixing a copy of c0, where (nk) is the 
sequence of indices obtained after the first application of Lemma 2.12.

Since (
∑

k g
(α)
an′(k)) is wuC, where (n′(k)) is the sequence of indices obtained after 

the two applications of the Lemma, it is sufficient to prove that (
∑

k ψCφg
(α)
an′(k)) is not 

unconditionally convergent, but since the terms are bounded from below in norm it can’t 
converge in norm and we are done.

Similarly, if limn α(ψ, φ, an) = 0 and limn β(ψ, φ, an) > 0, Lemma 5.4 yields

inf
n 

∥∥∥ψCφg
(β)
an

∥∥∥
BMOAv

> 0.

If BMOAv �⊂ H∞, we can apply Lemma 2.12 and the statement follows in the same 
manner as above. Else supz∈D ‖δz‖X∗ < ∞, where X = VMOAv or X = BMOAv. If 
ψCφ|VMOAv

∈ L(VMOAv), it follows from Corollary 5.6 that ψ ∈ VMOAv, in which 
case limn β(ψ, φ, an) > 0 is impossible and we are done. �

The following proof is a standard procedure.
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Lemma 5.8. For any weight v yielding the evaluation maps f �→ f(z), f ∈ BMOAv, z ∈ D

bounded, the norm-closed unit ball BBMOAv
is τ0-compact.

Proof. Since the evaluation maps are bounded, the unit ball is bounded with respect to 
τ0 by the Banach-Steinhaus theorem. By Fatou’s lemma, we have for any τ0-convergent 
sequence (fn) ⊂ BBMOAv

with an analytic function f as limit (defined on D),

‖f‖BMOAv
≤ lim inf

n 
‖fn‖BMOAv

≤ 1.

This shows that BBMOAv
is τ0-closed in H(D), because (H(D), τ0) is a Fréchet space. By 

Montel’s theorem BBMOAv
is τ0-compact. �

Lemma 5.9. Given that v is admissible, for any analytic self-map φ : D → D, we have

inf 
z∈D

v(z) 
v(φ(z)) ≳v,g v

(
2 |φ(0)|

1 + |φ(0)|

)−1

> 0.

Moreover, if ψ ∈ BMOAv, then

ψCφ ∈ L(BMOAv) =⇒ ψCφ ∈ L(BMOA),

α(ψ, φ, a) ≳v,g,φ α(ψ, φ, a)BMOA and β(ψ, φ, a) ≳v,g,φ β(ψ, φ, a)BMOA,

where the BMOA subscript stands for that v ≡ 1 is used.

Notice that β(ψ, φ, a)BMOA is not the same as in [13] and [16].

Proof. Applying [3, Corollary 2.40], we have

1 − |φ(z)| ≥ (1 − |z|)1 − |φ(0)|
1 + |φ(0)| ,

which gives (using (G2) with b = (1 − |z|)1−|φ(0)|
1+|φ(0)| , a = 1 − |z|)

g

(
1 

1 − |φ(z)|

)
≤ g

(
1 

1 − |z|
1 + |φ(0)|
1 − |φ(0)|

)
≲g g

(
1 

1 − |z|

)
g

(
1 + |φ(0)|
1 − |φ(0)|

)
.

Since v(z) � g
(

1 
1−|z|

)
the first statement follows. Now, we obtain

α(ψ, φ, a) = v(a) 
v(φ(a)) |ψ(a)| ‖φa‖H2 ≳v,g,φ |ψ(a)| ‖φa‖H2 = α(ψ, φ, a)BMOA ∀a ∈ D.

For the function β, we apply Corollary 3.5 to obtain
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∥∥δφ(a)
∥∥

(BMOAv)∗ ≳v,g 1 +
|φ(a)|∫
0 

dt 
(1 − t)

1 
g( 1 

1−|φ(a)| )
≳v,g

ln e 
1−|φ(a)|

v(|φ(a)|) ≳v,g

∥∥δφ(a)
∥∥

BMOA∗

v(a)v
(

2|φ(0)|
1+|φ(0)|

) ,

and hence,

∥∥δφ(a)
∥∥

BMOA∗
v
v(a)γ(ψ, a, 1) ≳v,g,φ

∥∥δφ(a)
∥∥

BMOA∗ γ(ψ, a, 1).

Finally, apply Theorem 5.5 twice, first for the weighted case, then for the unweighted 
case to obtain ψCφ ∈ L(BMOAv) =⇒ ψCφ ∈ L(BMOA). �
Theorem 5.10 (Sufficiency for compactness). Assume v is admissible (see beginning of 
Section 5) and that ψCφ ∈ L(BMOAv). If in addition, at least one of the following holds:

(1) Cφ ∈ L(BMOAv) or 
(2) ψCφ|VMOAv

∈ L(VMOAv),

then lim|φ(a)|→1(α(ψ, φ, a) + β(ψ, φ, a)) = 0 is sufficient to ensure ψCφ is compact on 
BMOAv.

Proof. If v is bounded, the result follows from [13] and [16] (notice that (1) is triv-
ially true), so we can assume v is unbounded. The major part of the proof is similar 
to the second part of [13, Proof of Theorem 3.1]. Let (fn) be a bounded sequence in 
BMOAv, which converges to 0 with respect to τ0 (converges uniformly on compact sub-
sets of D). By Corollary 3.5 and Lemma 5.8, it follows that the unit ball BBMOAv

is 
τ0-compact. Since (fn) is contained in a τ0-compact set, it is sufficient to prove that 
limn ‖ψCφfn‖BMOAv

= 0 to obtain ψCφ is compact.
Similarly to [13, (3.17)], we have for any r ∈]0, 1[

‖ψCφfn‖BMOAv
≲ |ψ(0)fn(φ(0))| + sup 

|φ(a)|>r

v(a)γ(ψCφfn, a, 1)

+ sup 
|φ(a)|≤r

v(a)γ(ψCφfn, a, 1). (5.4)

The first term converges to zero, because fn → 0 as n → ∞ w.r.t. τ0. For the second 
term, Lemma 5.2 gives us

sup 
|φ(a)|>r

v(a)γ(ψCφfn, a, 1)

≤ ‖fn‖BMOAv
sup 

|φ(a)|>r

(
α(ψ, φ, a) + ‖ψ‖∗

‖φa‖H2

v(φ(a)) + β(ψ, φ, a)
)
,

which yields
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lim 
r→1

sup 
|φ(a)|>r

v(a)γ(ψCφfn, a, 1) = 0

by assumption.
Therefore, for a given ε > 0, we can choose r ∈]0, 1[ large enough to ensure that

sup
n 

sup 
|φ(a)|>r

v(a)γ(ψCφfn, a, 1) < ε.

It remains to prove that for r ∈]0, 1[ arbitrarily close to 1,

lim 
n→∞

sup 
|φ(a)|≤r

v(a)γ(ψCφfn, a, 1) ≲ ε.

To this end, for the third term in (5.4), we have

sup 
|φ(a)|≤r

v(a)γ(ψCφfn, a, 1) ≤ sup 
|φ(a)|≤r

v(a) ‖ψ ◦ σa(fn ◦ φ ◦ σa − fn(φ(a)))‖H1

+ sup 
|φ(a)|≤r

v(a) |fn(φ(a))| ‖ψ ◦ σa − ψ(a)‖H1 .
(5.5)

For the second term above (in (5.5)), we have

sup 
|φ(a)|≤r

v(a) |fn(φ(a))| ‖ψ ◦ σa − ψ(a)‖H1 ≤ sup 
z∈rD

|fn(z)| ‖ψ‖BMOAv

n→∞−→ 0,

since limn fn = 0 w.r.t. τ0. Now, for a ∈ D and t ∈ [0, 1[ we define

Fn,a := fn ◦ φ ◦ σa − fn(φ(a)) = fn ◦ σφ(a) ◦ φa − fn(φ(a))

and

E = E(φ, a, t) := {w ∈ T : |φa(w)| > t}.

Following Laitila, let 1
2 < t < 1 and note that by [13, (3.19)]

Fn,a(z) ≤ 2 |φa(z)| sup 
|w|≤t

∣∣fn ◦ σφ(a)(w) − fn(φ(a))
∣∣ , z ∈ D with φa(z) ∈ tD.

It follows that for a ∈ D

∥∥χT\Eψ ◦ σaFn,a

∥∥
H1 ≲ ‖ψ‖∗ + v(φ(a))α(ψ, φ, a)

v(a) sup 
|w|≤t

∣∣fn ◦ σφ(a)(w) − fn(φ(a))
∣∣ ,

and because ψCφ ∈ L(BMOAv) and

∣∣σφ(a)(w)
∣∣2 = 1 − (1 − |φ(a)|2)(1 − |w|2)∣∣∣1 − φ(a)w

∣∣∣2 ≤ 1 − (1 − r2)(1 − t2)
4 

< 1,
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for |w| ≤ t and |φ(a)| ≤ r, an application of Theorem 5.5 yields

lim
n 

sup 
|φ(a)|≤r

v(a)
∥∥χT\Eψ ◦ σaFn,a

∥∥
H1 = 0,

using limn fn = 0 w.r.t. τ0.
In view of (5.5), all that remains to show is that we can, for 0 < r < 1 arbitrarily 

close to 1, choose 0 < t < 1 near 1 to ensure that

lim
n 

sup 
|φ(a)|≤r

v(a) ‖χEψ ◦ σa(fn ◦ φ ◦ σa − fn(φ(a)))‖H1 < ε.

Applying Hölders inequality twice, we have

‖χEψ ◦ σa(fn ◦ φ ◦ σa − fn(φ(a)))‖H1 ≤ (‖χEψ ◦ σa‖H1)
1
2
(∥∥χEψ ◦ σaF

2
n,a

∥∥
H1

) 1
2

≤ (‖χEψ ◦ σa‖H1)
1
2
(
‖Fn,a‖H2

) 1
2
(
‖ψ ◦ σaFn,a‖H2

) 1
2 .

For the last factor, we have (note that ‖ψ‖∗ = ‖ψCφ1‖∗ ≤ ‖ψCφ‖L(BMOAv))

‖ψ ◦ σaFn,a‖H2 ≤ ‖ψ ◦ σafn ◦ φ ◦ σa − ψ(a)fn(φ(a))‖H2 + |fn(φ(a))| ‖ψ ◦ σa − ψ(a)‖H2

≤ 2
‖ψCφ‖L(BMOAv)

v(a) sup
n 

‖fn‖BMOAv

∥∥δφ(a)
∥∥

(BMOAv)∗ .

Next, we prove that there is a positive number M = M(v, ψ, φ, (fn), r, ε) such that

sup 
|φ(a)|≤r

v(a) ‖χEψ ◦ σa‖H1 ‖Fn,a‖H2 ≲v,ψ,φ,(fn) ε + M sup 
|φ(a)|≤r

‖χEψ ◦ σa‖H1 . (5.6)

Assuming Cφ ∈ L(BMOAv), Lemma 5.1 and Theorem 5.5 implies

‖Fn,a‖H2 ≤
∥∥fn ◦ σφ(a) − fn(φ(a))

∥∥
H2 ‖φa‖H2 ≤ ‖φa‖H2

v(φ(a)) sup
n 

‖fn‖BMOAv
≲v,φ,(fn)

1 
v(a)
(5.7)

and (5.6) follows.
Assuming ψCφ|VMOAv

∈ L(VMOAv), the fact that 1
2 < t < 1 gives us

v(a) ‖χEψ ◦ σa‖H1 ≲ v(a) ‖ψ ◦ σaφa‖H1

≤ v(a) ‖(ψ ◦ σa − ψ(a))‖H2 + v(a)ψ(a) ‖φa‖H2

and by Corollary 5.6, using

sup 
|φ(a)|≤r

‖φa‖H2 ≲r sup 
|φ(a)|≤r

‖φ ◦ σa − φ(a)‖H2 ,
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we have

sup 
|a|≥s

v(a) ‖χEψ ◦ σa‖H1 < ε

for some s = s(v, ψ, φ, r, ε) ∈]0, 1[. Using the first two inequalities in (5.7), we can 
conclude that supa∈D supn ‖Fn,a‖H2 < ∞, and hence,

sup 
|φ(a)|≤r

v(a) ‖χEψ ◦ σa‖H1 ‖Fn,a‖H2 ≲v,ψ,φ,(fn) ε + sup 
|a|≤s

|φ(a)|≤r

v(a) ‖χEψ ◦ σa‖H1

≲v ε + v(s) sup 
|φ(a)|≤r

‖χEψ ◦ σa‖H1 .

Summing up, we have proved that

‖χEψ ◦ σa(fn ◦ φ ◦ σa − fn(φ(a)))‖H1 ≲∗ ε + M sup 
|φ(a)|≤r

‖χEψ ◦ σa‖H1 ,

where ≲∗ depend on v, ψ, φ and (fn), and M = M(v, ψ, φ, (fn), r, ε).
The final part of the proof is to obtain

lim 
t→1

sup 
|φ(a)|≤r

‖χEψ ◦ σa‖H2 = 0.

Following the proof of [16, Proof of Theorem 2.1], we have that if ψCφ ∈ L(BMOA)
and

lim 
|φ(a)|→1

‖(ψ ◦ σa)φa‖H2 = 0,

then

lim 
t→1

sup 
|φ(a)|≤r

‖χEψ ◦ σa‖H2 = 0 ∀r ∈]0, 1[.

By assumption ψCφ ∈ L(BMOAv), and by Lemma 5.9 and Theorem 5.5 (see also [13, 
Theorem 2.1], where a slightly different definition is used for β) the functions ψ and 
φ in ψCφ give rise to a bounded operator ψCφ ∈ L(BMOA) via the function-theoretic 
characterization. Furthermore,

α(ψ, φ, a) ≥ v(a) ‖(ψ ◦ σa)φa‖H2

v(φ(a)) −
‖ψ‖BMOAv

v(φ(a)) , a ∈ D

and with the aid of Lemma 5.9,

α(ψ, φ, a) +
‖ψ‖BMOAv

v(φ(a)) ≳v,g,φ ‖(ψ ◦ σa)φa‖H2 .
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Using the fact that v is unbounded, we conclude

lim 
|φ(a)|→1

‖(ψ ◦ σa)φa‖H2 = 0. �
By turning via Carleson measure theory, it is proved that ψCφ ∈ L(VMOAv) is 

compact given

lim 
|a|→1

(α(ψ, φ, a) + β(ψ, φ, a)) = 0.

We will use the following variant of Carleson sets with center z, where 1
2 < |z| < 1:

S(z) := {w ∈ D : 0 < 1 − |w| < 2(1 − |z|) and |argw − arg z| < 2π(1 − |z|)}. (5.8)

This is not the standard definition, but these scaled, open sets serves the same purpose 
as the classical ones when working with the measure μf in Proposition 5.11. It is clear 
that the longest euclidean distance from the center of the Carleson set is the distance 
to one of the corners away from the origin. Based on this, some elementary calculations 
yield

inf 
w∈S(z)

|σ′
z(w)| ≳ 1 

1 − |z| , 
1
2 < |z| < 1. (5.9)

The following proposition is a straightforward generalization of [13, Lemma 4.6] and 
[8, Lemma 3.3].

Proposition 5.11. Let v be admissible and

dμf (z) := |f ′(z)|2 (1 − |z|2) dA(z).

We have

‖f‖2
∗,v � sup 

|z|∈] 12 ,1[

v(z)2

1 − |z|μf (S(z)).

Moreover,

‖f‖BMOAv
≲v

1 + supz∈]0,r[ v(z)
(1 − r) 5

2
sup 
|z|≤r

|f(z)| + sup 
|a|≥r

v(a)γ(f, a, 2). (5.10)

Proof. Let z ∈ D with |z| > 1
2 . On the one hand, we have by (5.9) and (1.1)

v(z)2

1 − |z|μf (S(z)) ≲ v(z)2
∫

S(z)

|σ′
z(w)| |f ′(w)|2 (1 − |w|2) dA(w)

≲ v(z)2γ(f, z, 2)2.

(5.11)
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On the other hand, if we put

En := En(z) :=
{
w ∈ D :

∣∣∣∣w − z

|z|

∣∣∣∣ < 2n(1 − |z|)
}
,

and

Nz := max{n ∈ N : 2n(1 − |z|) < 1}

we obtain for n = 1, 2, . . . , Nz

Sn := S
( z

|z|
(
1 − 2n−1(1 − |z|)

))
⊃ En, (5.12)

and therefore,

v
(
1 − 2n−1(1 − |z|)

)2
μf (En) ≤

(
sup 

|ζ|∈] 12 ,1[

v(ζ)2

1 − |ζ|μf (S(ζ))
)

2n−1(1 − |z|).

We have supw∈D |σ′
z(w)| ≲ (1 − |z|)−1 and for n ≥ 2 and |z| ∈]12 , 1[, we have

sup 
w∈En\En−1

|σ′
z(w)| ≲ 2−2n

1 − |z| and sup 
w∈D\ENz

|σ′
z(w)| ≲ 1 − |z| .

Combining the above estimate with (1.1) after which the path of integration, D, is 
partitioned into E1, En \ En−1, n = 2, . . . , Nz and D \ ENz

yield

v(z)2γ(f, z, 2)2 ≲ v(z)2

1 − |z|μf (E1) +
Nz∑
n=2

v(z)2 2−2n

1 − |z|μf (En \ En−1)

+ v(z)2(1 − |z|)μf (D \ ENz
)

(5.12)
≲ 
(

sup 
|ζ|∈] 12 ,1[

v(ζ)2

1 − |ζ|μf (S(ζ))
)(

1 +
Nz∑
n=2

v(z)22−n

v
(
1 − 2n−1(1 − |z|)

)2
)

+ v(z)2(1 − |z|)μf (D).

Clearly, for z ∈ D with |z| > 1/2,

v(z)2(1 − |z|)μf (D) ≲
(

sup 
|ζ|∈] 12 ,1[

v(ζ)2

1 − |ζ|μf (S(ζ))
)

and using (G2), we have

v(z)22−n

v
(
1 − 2n−1(1 − |z|)

)2 ≲v,g g
(
2n
)22−n, n ≥ 2.
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To finish the proof of

‖f‖2
∗,v �v,g sup 

|z|∈] 12 ,1[

v(z)2

1 − |z|μf (S(z)),

we note that

∞ ∑
n=3

g
(
2n
)22−n ≲g

∞ ∫
1 

g(ex)2

ex
dx �

∞ ∫
e 

g(x)2 d arctan(x),

where the substitution x �→ ln x and dx
x2 � d arctan(x) have been applied. Lemma 3.3

and (G1) yield that 
∫∞
e

g2 d arctan is finite.
To prove the last statement, let r ∈]12 , 1[ and consider

‖f‖BMOAv
≲ |f(0)| +

√
sup 

|z|∈]r,1[

v(z)2
1 − |z|μf (S(z)) +

√
sup 

|z|∈] 12 ,r]

v(z)2
1 − |z|μf (S(z)).

Equation (5.11) proves that

sup 
|z|∈]r,1[

v(z)2

1 − |z|μf (S(z)) ≲ sup 
|z|∈]r,1[

v(z)2γ(f, z, 2)2.

For a given z ∈]12 , r[, S(z) \ rD can be covered by a N = N(r, z) = inf{n ∈ N : 1−|z|
1−r ≤

n} + 1 number of Carleson sets, (S(zj))Nj=1, where |zj | = r for all j. It follows that for 
some j0 ∈ [1, N ],

v(z)2

1 − |z|μf (S(z)) ≤ v(z)2

1 − |z|

N∑
j=1 

μf (S(zj)) + v(z)2

1 − |z|μf (rD)

≤ v(z)2

1 − |z|Nμf (S(zj0)) +
supz∈]0,r[ v(z)2

1 − r 

∫
rD

|f ′(w)|2 (1 − |w|2) dA(w)

≤ v(z)2(1 − r)
v(r)21 − |z|N

v(r)2

1 − r 
μf (S(zj0)) + sup 

|z|≤r

|f ′(z)|2
supz∈]0,r[ v(z)2

1 − r 

≲v sup 
|z|∈]r,1[

v(z)2

1 − |z|μf (S(z)) + sup 
|z|≤r

|f(z)|2

(1 − r)4
supz∈]0,r[ v(z)2

1 − r 
,

where the Cauchy formula yields the comparison estimate between f ′ and f . �
Theorem 5.12 (Sufficiency for compactness on VMOAv). Assuming v is admissible (see 
beginning of Section 5), if ψCφ ∈ L(VMOAv) and lim|φ(a)|→1(α(ψ, φ, a)+β(ψ, φ, a)) = 0, 
then ψCφ is compact.
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Proof. If v is bounded, the result is proved in [13, Theorem 4.3], hence, we assume v is 
unbounded. First, we prove that if ψCφ ∈ L(VMOAv), then

lim 
|φ(a)|→1

(α(ψ, φ, a) + β(ψ, φ, a)) = 0 =⇒ lim 
|a|→1

(α(ψ, φ, a) + β(ψ, φ, a)) = 0. (5.13)

Indeed, if (an) is a sequence with limn |an| → 1, we extract an arbitrary subsequence, 
also called (an). If there is a subsequence (ank

) ⊂ (an) with limk |φ(ank
)| = 1, we can 

conclude that

lim
k

(α(ψ, φ, ank
) + β(ψ, φ, ank

)) = 0

for such a subsequence. If this is not the case, |φ(an)| ∈ RD for some R < 1, and hence, 
by Corollary 5.6

lim
n 

α(ψ, φ, an) ≲v,φ,(an) lim
n 

v(an)ψ(an) ‖φ(an) − φ ◦ σan
‖H2 = 0

and

lim
n 

β(ψ, φ, an) ≲v,φ,(an) lim
n 

v(an) ‖ψ ◦ σan
− ψ(an)‖H2 = 0.

This proves that for an arbitrary sequence (an) with limn |an| = 1, every subsequence of 
(α(ψ, φ, an) + β(ψ, φ, an))n has a convergent subsequence, with limit zero, which means 
it converges to zero as n → ∞.

We are now ready to prove that ψCφ is the uniform limit (in operator norm) of the 
compact operators ψCφKn, n ∈ N, where Kn := T n 

n+1
, f �→ [z �→ f( n 

n+1z)], f ∈ VMOAv. 
The fact that Kn ∈ L(VMOAv) is compact follows from the following: Let (fk) be a 
bounded sequence in VMOAv and f0 be the limit w.r.t. τ0 (convergence on compact 
subsets) of some subsequence (fk′). Applying (1.1), followed by and the Cauchy formula 
to estimate the f ′ by f yield

‖Knfk′ −Knf0‖BMOAv
≲v,n ‖Kn+1(fk′ − f0)‖∞

k′→∞−→ 0.

Although f0 might not be in VMOAv, the function Knf0 ∈ VMOAv by the remark after 
(1.1).

Continuing, for n ∈ N, we have by Proposition 5.11, for every r ∈]12 , 1[,

sup 
f∈BVMOAv

‖(ψCφ − ψCφKn)f‖BMOAv

≲v sup 
f∈BVMOAv

1 + supz∈]0,r[ v(z)
(1 − r) 5

2
sup 
|z|≤r

|(ψCφ − ψCφKn)f(z)|

+ sup 
f∈BVMOAv

sup 
|a|≥r

v(a)γ((ψCφ − ψCφKn)f, a, 2).

(5.14)
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Furthermore, as in the proof of [13, (4.13)] for r ∈]12 , 1[ an application of Cauchy’s 
integral formula yields

lim
n 

sup 
f∈BVMOAv

sup 
|z|≤r

|(ψCφ − ψCφKn)f(z)| = 0.

An application of Proposition 2.3 yields that for any RBMO ∈]0, 1[, RA ∈]0, RBMO/2[
and f ∈ VMOAv, we have

sup 
|a|≥1−RA

v(a)γ((ψCφ − ψCφKn)f, a, 2) ≲v,ε0 sup 
|a|≥1−RBMO

v(a)γ((ψCφ − ψCφKn)f, a, 1)

+ ‖(ψCφ − ψCφKn)f‖∗,v,2
(

2RA

RBMO

)ε0
.

Combining this estimate with Lemma 5.2 and the fact that supn ‖Kn‖L(VMOAv) < ∞
yield

sup 
f∈BVMOAv

sup 
|a|≥1−RA

v(a)γ(ψCφ(I −Kn)f, a, 2)

≲v,ε0 sup 
|a|≥1−RBMO

(
α(ψ, φ, a) + v(a) ‖ψ ◦ σa − ψ(a)‖H2

‖φa‖2
v(φ(a)) + β(ψ, φ, a)

)

+ ‖ψCφ‖L(VMOAv)

(
2RA

RBMO

)ε0
.

Using r = 1 −RA in (5.14) gives us

lim sup
n 

sup 
f∈BVMOAv

‖(ψCφ − ψCφKn)f‖BMOAv

≲v,ε0 sup 
|a|≥1−RBMO

(
α(ψ, φ, a) + v(a) ‖ψ ◦ σa − ψ(a)‖H2 + β(ψ, φ, a)

)

+ ‖ψCφ‖L(VMOAv)

(
2RA

RBMO

)ε0
.

Since ψ ∈ VMOAv by Corollary 5.6, letting RA → 0 followed by RBMO → 0 yield

lim sup
n 

‖ψCφ − ψCφKn‖L(VMOAv) ≲v,ε0 lim sup
|a|→1 

(α(ψ, φ, a) + β(ψ, φ, a)), (5.15)

where the right-hand side, considering (5.13), is zero by assumption. �
Similarly to [13, Theorem 4.3], using Lemmas 5.3 and 5.4, we have the following 

Corollary:
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Corollary 5.13. Assuming v is admissible, if ψCφ ∈ L(VMOAv), then the essential norm, 
is given by

‖ψCφ‖e,L(VMOAv) := inf 
K∈L(VMOAv)

K compact

‖ψCφ −K‖L(VMOAv)

� lim sup
|a|→1 

(α(ψ, φ, a) + β(ψ, φ, a))

� lim sup 
|φ(a)|→1

(α(ψ, φ, a) + β(ψ, φ, a)).

We end this section with showing that for many admissible weights, the function h
defined in Lemma 3.4 is not in VMOAv. Therefore, VMOAv is a proper subspace of 
BMOAv.

Proposition 5.14. If v is admissible and g satisfies the reverse inequality (G3), that is, 
|g(z)| ≲ g(|z|), z ∈ C�≥ 1

2
, then h ∈ BMOAv \ VMOAv, where

h : z �→
z∫

0 

dt 
(1 − t)g( 1 

1−t )
.

Proof. We begin by proving that h �∈ VMOAv. Let a ∈]12 , 1[ and S(a) be the Carleson 
set defined in (5.8) and put Sa = S(a) ∩ aD. For z ∈ Sa, it holds that 1 − |z| ≥ 1 − a, 
|1 − z| ≲ 1 − a, and from (5.9), it follows that |1 − az|2 ≲ (1 − a)2. By the Littlewood-
Paley identity, (1.1) with p = 2 and the assumption |g(z)| ≲ g(|z|), z ∈ C�≥ 1

2
, we 

have

γ(h, a, 2) ≳
∫
Sa

(1 − |z|2)(1 − |a|2) 

|1 − z|2
∣∣∣g( 1 

1−z )
∣∣∣2 |1 − az|2

dA(z) ≳g

∫
Sa

dA(z) 
(1 − a)2g( 1 

1−a )2
� g( 1 

1 − a
)−2.

We can conclude that

lim 
a→1

v(a)2γ(h, a, 2) ≳g 1,

proving h �∈ VMOAv. By Lemma 3.4 h ∈ BMOAv. �
The condition |g(z)| ≲ g(|z|), z ∈ C�≥ 1

2
is trivially fulfilled for the standard weights, 

g(z) = zc, 0 ≤ c < 1/2. The condition is also fulfilled for g(z) = (ln(ez))c, c > 0. Indeed, 
for z ∈ C�≥ 1

2
we have (ln(e |z|)) ≥ ln(e/2), and hence,

(ln(e |z|))2 ≤ |ln(ez)|2 ≤ (ln(e |z|))2 + (π/2)2 ≲ (ln(e |z|))2.
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6. Examples

This section contains some practical examples of symbols ψ and φ making ψCφ

bounded and compact on BMOAv and VMOAv, where v is an admissible weight (see 
beginning of Section 5). Before we proceed, we have the following useful lemma.

Lemma 6.1. Let v, be admissible. The weight

w(a) = v(a)
(

1 +
|a|∫
0 

dt 
(1 − t)v(t)

)
, a ∈ D

satisfies sup0<x<1 x w(1 − x)2+ε0 < ∞, where ε0 > 0 is given in (G1).

Proof. For a ∈ D, (G2) gives us

w(a) �v,g v(a)+
|a|∫
0 

v(|a|) dt 
(1 − t)v(t) ≲v,g v(a)+

|a|∫
0 

v

(
|a| − t

1 − t 

)
dt 

(1 − t) = v(|a|)+
|a|∫
0 

v(t) dt 
(1 − t) ,

where the substitution t �→ (|a|− t)/(1− t) was used to obtain the last equality. Further-
more, by (G1) we have

|a|∫
0 

v(t) dt 
(1 − t) ≲v,g,ε0

|a|∫
0 

(1 − t)−
(
1+ 1 

2+ε0

)
dt ≲ε0 (1 − |a|)−

1 
2+ε0

yielding

sup 
a∈D

(1 − |a|)w(a)2+ε0 ≲v,g,ε0 sup 
a∈D

(1 − |a|)v(a)2+ε0 + 1

and we are done. �
Via the function-theoretic characterization of boundedness and compactness of ψCφ, 

it is clear that if ψ and φ makes ψCφ act in a bounded (compact) manner on VMOAv, 
then ψCφ will act in a bounded (compact) manner on BMOAv too. By Proposition 2.1, 
VMOAv contains all analytic polynomials for any weight, v, satisfying lima→1 v(a)2(1−
|a|) = 0. Therefore, for polynomial symbols ψ and φ for which supa∈D α(ψ, φ, a) < ∞, 
ψCφ acts boundedly on VMOAv (and BMOAv). More is true, let ψ = q1 and φ = q2
be two fractions of polynomials, where the denominators have no zeros in D. By (1.1), 
it follows that ‖qj‖BMOAv

�qj ‖pj‖BMOAv
for some polynomials pj , j = 1, 2 for any 

admissible weight v. It also follows that q1, q2, q1q2 ∈ VMOAv, and by Corollaries 3.5, 
3.7 and Lemma 6.1, lim|a|→1 β(q1, q2, a) = 0. All that remains for boundedness and 



D. Norrbo / Bull. Sci. math. 203 (2025) 103642 53

compactness, is to prove that supa∈D α(q1, q2, a) < ∞ and lim|q2(a)|→1 α(q1, q2, a) = 0
respectively. Note that lim|q2(a)|→1 α(q1, q2, a) = 0 grants boundedness. This follows from 
q2 ∈ VMOAv, q1 ∈ H∞ and

sup 
|q2(a)|≤R

‖(q2)a‖H2 �R ‖q2(a) − q2 ◦ σa‖H2 , 0 < R < 1.

It is worth noting that if |q2(η)| = 1 for some η ∈ T , the continuity of q2 ensures there 
is a disk D := η(c + (1 − c)D), 0 < c < 1 such that lim∗

|q2(a)|→1 α(q1, q2, a) = 0, where 
the limit is taken outside the disk D.

Turning our attention to the multiplication operator Mψ : f �→ ψf , Corollary 1.3
yields it is bounded but not compact on X = BMOAv or X = VMOAv (v admissible), 
for any ψ ∈ H∞ ∩BMOAw \ {0}, where w(a) = v(a) ‖δa‖(X)∗ , a ∈ D. It is worth noting 
that the product of admissible weights is admissible if and only if (G1) is satisfied for 
the product. Moreover, by Corollary 3.5 the admissible weight

w1(a) := v(a) ln e 
1 − |a| , a ∈ D (6.1)

dominates w yielding BMOAw1 ⊂ BMOAw.
Another interesting fact is the following result concerning the composition operator 

Cφ. Let v be an admissible weight. Assume ψ ∈ X, where X = BMOAv or X = VMOAv

and φ is a self-map of D, continuous on D. If ψCφ : X → X is a bounded (compact) 
operator, then for every n ∈ N, ψCφn : X → X is bounded (compact). To this end, since 
v is almost increasing, (G2) yields

v(an) ≲v v(a) ≲v,g v

(
1 − 1 − |a|

1 − |a|n
)
v(an) ≲v v(1 − 1 

n
)v(an), a ∈ D, n ∈ N. (6.2)

Furthermore, put c0 := ε0/(2(1 + ε0)). By Lemma 6.1 and Corollary 3.5, we have

lim sup
|a|→1 

(1 − |a|)1−c0v(a)2 ‖δa‖2
X∗ = 0. (6.3)

We will establish

‖(φn)a‖2
H2 ≲n (1 − |a|)1−c0 + ‖φa‖2

H2 , (6.4)

and after multiplying both sides of (6.4) with v(a)2ψ(a)2/v(φ(a))2 (6.2) yields

α(ψ, φn, a)2 ≲n,v,g
(1 − |a|)1−c0v(a)2ψ(a)2

v(φ(a))2 + α(ψ, φ, a)2.

In view of Theorems 1.1 and 1.2, the statement concerning boundedness follows from 
taking the limit |a| → 1 together with (6.3), and compactness follows from considering 
|φ(a)| → 1.
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To prove (6.4), let n ∈ N and r ∈]0, 1
2 [ be small enough so that for a ∈ D with 

|a| ≥ 1 − r, |φ(z) − φ(a)| < 1 
2n2 for every

z ∈ J(a) :=
{
w ∈ T :

∣∣∣∣w − a 
|a|

∣∣∣∣ < 2(1 − |a|)c0/2
}
.

Furthermore, supz∈T\J(a) Pa(z) ≲ (1 − |a|)1−c0 . It follows that for |a| ≥ 1 − r and 
z ∈ J(a), we have
∣∣∣∣∣
n−1∑
k=0 

φ(a)
k
φ(z)k −

n−1∑
k=0 

φ(a)
k
φ(a)k
∣∣∣∣∣ ≤

n−1∑
k=0 

∣∣φk(z) − φ(a)k
∣∣ ≤ n2 |φ(z) − φ(a)| < 1

2 , (6.5)

and hence,

‖(φn)a‖2
H2 =
∫
T

∣∣∣∣∣ φ(a)n − φn

1 − φ(a)
n
φn

∣∣∣∣∣
2

Pa dm

≲ (1 − |a|)1−c0 +
∫

J(a)

∣∣∣∣∣
∑n−1

k=0 φ(a)kφn−k−1∑n−1
k=0 φ(a)

k
φk

∣∣∣∣∣
2 ∣∣∣∣∣ φ(a) − φ 

1 − φ(a)φ

∣∣∣∣∣
2

Pa dm

(6.5)
≤ (1 − |a|)1−c0 +

∫
J(a)

∣∣∣∣∣ n ∑n−1
k=0 |φ(a)|2k − 1

2

∣∣∣∣∣
2 ∣∣∣∣∣ φ(a) − φ 

1 − φ(a)φ

∣∣∣∣∣
2

Pa dm

≤ (1 − |a|)1−c0 + 4n2
∫
T

∣∣∣∣∣ φ(a) − φ 

1 − φ(a)φ

∣∣∣∣∣
2

Pa dm ≤ (1 − |a|)1−c0 + 4n2 ‖φa‖2
H2 .

(6.6)

The following partial complement to (6.4) can be proved using similar calculations to 
(6.6): If we only consider sequences (aj), with infj |φ(aj)| > 0, then

∥∥φaj

∥∥2
H2 ≲n,(φ(aj)) (1 − |aj |)1−c0 +

∥∥(φn)aj

∥∥2
H2 . (6.7)

If φ(D) ⊂ bD for some 0 < b < 1, then by Corollary 3.5

α(ψ, φ, a) �b,v |ψ(a)| v(a) ‖φ ◦ σa − φ(a)‖H2 ≲ψ,v ln e 
1 − |a|v(a) ‖φ ◦ σa − φ(a)‖H2

and

β(ψ, φ, a) �b v(a) ‖ψ ◦ σa − ψ(a)‖H1 .

It follows that if φ ∈ VMOAw1 ∩H∞, then φ can be scaled to grant that the operator 
ψCφ : X → X is bounded (compact) if ψ ∈ X, where X = BMOAv or X = VMOAv. 
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Since w1 is admissible (see (6.1)), the remark right after (1.1) yields many examples 
φ ∈ VMOAw1 ∩H∞, e.g. a dilation of an analytic function.

Recall that a Blaschke product is a function of the form

z �→ zm
∏
n 

|bn|
bn

bn − z 

1 − bnz
,

where m = 0, 1, . . . and (bn) ⊂ D ∪ {1} \ {0} is a sequence satisfying 
∑

n(1 − |bn|) < ∞
([5, p. 20]). An interesting fact is that an infinite Blaschke product (bn �= 1 for infinitely 
many n) as the symbol φ gives rise to a bounded composition operator if and only if 
v � 1. When v � 1, the statement follows from α(1, φ, a) � ‖φa‖H2 ≤ 1. When v is 
unbounded, let (an) ⊂ D be the zeros of φ. Since for every a ∈ D, the functions σφ(a)
and σa are automorphisms on T and φ has a modulus 1 a.e., it follows that ‖φa‖ = 1 for 
all a ∈ D. Moreover, v(an)/v(φ(an)) = v(an)/v(0) → ∞ as n → ∞, due to limn |an| = 1, 
resulting in supa∈D α(1, φ, a) = ∞.

Next, we consider the polynomial φ(z) = 1+z
2 , z ∈ D. To see that it is bounded, it is 

enough to prove that

lim sup 
|φ(a)|→1

α(1, φ, a) < ∞,

which is the same as

lim sup
a→1 

α(1, φ, a) < ∞.

In [13, Example 5.1], J. Laitila showed that

‖φa‖2
H2 = 1 − |a|2

2(1 −�a) .

Since |φ(a)| ≥ |a| for a ∈ 1/2 + (1/2)D, we have for these a ∈ D, v(a)/v(φ(a)) ≲ 1. 
It remains to examine the tangential limits a → 1, that lie outside this disk. These are 
a ∈ D near 1 for which �a ≤ |a|2. Using this and (G2), we have

1 − |φ(a)|2 = 1 − 1
4(1 + |a|2 + 2�a) ≤ 3

4(1 −�a)

and

v(a) 
v(φ(a)) �v,g

v(a2) 
v(φ(a)2) ≲v,g v

(
1 − 1 − |a|2

1 − |φ(a)|2
)

≲v v

(
1 − 3

4
1 − |a|2

1 − |φ(a)|2
)

≲v v

(
1 − 1 − |a|2

1 −�a 

)
.
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It now follows from (G1) that

sup 
a∈D

α(1, φ, a) = sup 
a∈D

v(a) 
v(φ(a)) ‖φa‖H2 < ∞ (6.8)

proving Cφ : VMOA → VMOA is bounded. Considering the limit a → 1 along the real 
line together with Lemma 5.9, it is clear that Cφ is not compact.

Let φ(z) = 1+z
2 , z ∈ D and ψ(z) = 1 − z, z ∈ D, which makes Mψ ∈ L(VMOAv)

in accordance with Proposition 2.1 and the discussion above. In [13, Example 5.1], J. 
Laitila proved that ψCφ acts as a compact operator VMOA → VMOA although neither 
Mψ nor Cφ is compact. This example works in the same manner on VMOAv. All that 
remains to prove for this statement is that ψCφ is compact on VMOAv. From the first 
paragraph after the proof to Lemma 6.1, it is sufficient to prove that

lim 
a→1

α(ψ, φ, a) = 0.

This is true due to (6.8) and

α(ψ, φ, a) = |1 − a|α(1, φ, a).

7. Proof of main results

Proof of Theorem 1.1. Theorem 5.5, Corollary 5.6 and Corollary 3.5 yield the state-
ments. �
Lemma 7.1. Let X = BMOAv or X = VMOAv, where v is an admissible weight (see 
beginning of Section 5). It holds for ψCφ ∈ L(X) that

ψCφ is compact =⇒ lim sup 
|φ(a)|→1

∥∥∥ψCφf
(α)
a

∥∥∥
BMOAv

= 0 =⇒ lim sup 
|φ(a)|→1

α(ψ, φ, a) = 0,

where

f (α)
a : z �→

σφ(a)(z) − φ(a)
v(φ(a) .

Proof. Note that C := supa∈D ‖f (α)
a ‖BMOAv

< ∞ by (4.2) and ψCφ|CBX
is always τ0−τ0

continuous. If X = BMOAv, Lemma 5.8 yields (CBX , τ0) is compact. Now, [2, Lemma 
3.3] proves the first implication, noting that for every 0 < R < 1

sup 
|z|≤R

∣∣∣f (α)
a (z)

∣∣∣ ≲ R(1 − |φ(a)|2)
1 − |φ(a)|R 

,

and hence, f (α)
a → 0 w.r.t. τ0 as |φ(a)| → 1. On closer inspection, the use of BX being 

compact w.r.t. τ0 is redundant for the implication used above. Indeed, if ψCφ is compact, 
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K := ψCφ(CBX)
‖·‖BMOAv is compact and by a standard argument, the norm topology 

induced by ‖·‖BMOAv
restricted to K is equivalent to the topology on K induced by τ0. 

Therefore, the first implication also holds for X = VMOAv.
Concerning the second implication, the boundedness of ψCφ ensures supa∈D β(ψ, φ, a) 

< ∞ and ψ ∈ BMOAv. If v is unbounded, Lemma 5.3 gives the second implication. If v
is bounded, Lemma 5.3 combined with [13, (3.10)] gives the implication. �
Proof of Theorem 1.2. In the following, Theorem (*) means either Theorem 5.10 or The-
orem 5.12 depending on if ψCφ is operating on BMOAv or VMOAv. The statements are 
proved as follows:

(8)
Theorem (*) 

=⇒ (1)
Lemma 2.10

=⇒
(2)
and 
(3)

=⇒ 
(2)
or 
(3)

Lemma 2.10
=⇒ (4)

Theorem 5.7
=⇒ (8),

and

(4)
Lemma 2.9

=⇒ (5)
Theorem 5.7

=⇒ (4)

followed by

(1)
[17, pp. 120-121] 

=⇒ (7)
Def. 
=⇒ (6)

Def. 
=⇒ (4).

Lemma 7.1 connects (9) with the rest of the equivalent statements in the first list.
Theorem 2.15 together with the rest of Subsection 2.2 proves the equivalence of (2), 

(10) and (11). �
The only implications in the proof that do not hold for an arbitrary bounded operator 

on a Banach space T ∈ L(X) are the ones involving (8), (9). The implication (5) ⇒ (4)
holds in general, which can be seen using the standard basis of c0 as a wuC series, which 
does not converge unconditionally.

To finish the section, some open problems and conjectures are gathered.

Conjecture 1. The condition x �→ v(1 − x)x
1 
p−ε is almost increasing for some ε > 0 can 

be replaced by the milder assumption infx∈]0,1[ v(x) > 0 in Proposition 2.3.

The problematic part is Proposition 2.5. An initial idea is to apply Baernstein’s 
approach. However, instead of Aut being a group with respect to composition, a straight-
forward approach would demand that

{φ̂ ∈ Aut :
∣∣∣φ̂(0)
∣∣∣ ≥ R}

is a group, which is not true (it is not closed under composition). The binary nature 
of integrating over an interval (integration over T with the binary function χI) allows 
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Lemma 2.6 and the very beginning of the proof of Proposition 2.3 regardless of a strictly 
positive weight v. In the conformal setting (integration over T with the Poisson kernel 
Pa as a weight) an unbounded weight v complicate matters.

Conjecture 2. There exists an increasing, radial (not admissible) weight v : D →]0,∞[, 
φ̂ ∈ Aut and f ∈ BMOAv such that f ◦ φ̂ / ∈ BMOAv.

A direct approach yields that this is the same as proving that there exists φ̂ ∈ Aut
and f ∈ BMOAv such that

sup 
a∈D

v(φ̂(a))
v(a) v(a)γ(f, a, 2) = ∞.

Examining the quotient v(φ̂(a))
v(a) , we have the following: Using v(z) = g( 1 

1−|z|2 ), for some 

increasing unbounded function g : [1,∞[→]0,∞[, the automorphisms φ̂c := σ−
√

1−c, 0 <

c < 1 yield

g

⎛
⎜⎝ 1 

1 −
∣∣∣φ̂c(a)

∣∣∣2
⎞
⎟⎠ = g

(∣∣1 +
√

1 − ca
∣∣2

c(1 − |a|2) 

)
≥ g

(
1
c 

1 

1 − |a|2

)
, a ∈]0, 1[. (7.1)

For any increasing unbounded function G : [1,∞[→ [1,∞[ of any growth rate, we can 
create a continuous g, dominated by G, as follows: Let x0 = 1 and g(x) = 1 for all 
x ∈ [x0, x1], where x1 > x0 is a point where G(x1) ≥ 1. On [x1, x1 + 1] we define g
to increase to the value G(x1 + 1). Define g to be constant for all x ∈ [x1 + 1, x2], 
where x2 > x1 + 1 is such that G(x2)/G(x1 + 1) ≥ 2. Continuing this process we obtain 
a sequence (xn), with the property that G(xn+1)/G(xn + 1) ≥ n + 1 for all n and 
([xn, xn + 1[)n ∪ ([xn + 1, xn+1[)n is a partition of [1,∞[, where g is increasing on the 
first family of intervals and constant on the latter. Moreover, as x ≥ 1, the function g is 
increasing, unbounded and satisfies

g(2xn)
g(xn) = g(2xn) 

g(xn−1 + 1) ≥ g(1 + xn) 
g(xn−1 + 1) ≥ G(xn) 

G(xn−1 + 1) ≥ n

for all n. In combination with (7.1), it follows that such a weight, a �→ v(φ̂1/2(a))
v(a) 

is unbounded on [0, 1[. The remaining part would be to find a function f such that 
lim sup|a|→1 v(a)γ(f, a, 2) > 0 if such exists. It would also be interesting if one could find 
an analytic function g satisfying the desired properties. Notice that if v increases too 
fast, then the space consists only of constant functions, in which case composition with 
an automorphism will not change the function at all. Recall that if v(a) ≳ (1−|a|)−(1+ε)

for any ε > 0, then BMOAv consists of constant functions.
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Conjecture 3. We can drop the assumption in Theorem 1.2 that at least one of the 
following is true:

(1) Cφ ∈ L(BMOAv), and BMOAv �⊂ H∞ or ψ ∈ VMOAv,
(2) ψCφ|VMOAv

∈ L(VMOAv).

This extra assumption is only needed in Theorem 5.10 and Theorem 5.7. Being able 
to remove it would yield a complete characterization of e.g. compactness of ψCφ ∈
L(BMOAv) for admissible weights.

Conjecture 4. Given an admissible weight v (see beginning of Section 5), all analytic 
polynomial symbols φ : D → D make Cφ bounded.

In section 6, a few examples of polynomial symbols rendering Cφ bounded are given.

Conjecture 5. Given an admissible weight v and X = BMOAv or X = VMOAv such 
that X is not contained in H∞, it holds that

sup 
a∈D

∥∥δφ(a)
∥∥
X∗ γ(ψ, a, 2) ≲v,g,ψ,φ sup 

a∈D

∥∥δφ(a)
∥∥
X∗ γ(ψ, a, 1) and 

and

lim sup 
|φ(a)|→1

∥∥δφ(a)
∥∥
X∗ γ(ψ, a, 2) ≲v,g,ψ,φ lim sup 

|φ(a)|→1

∥∥δφ(a)
∥∥
X∗ γ(ψ, a, 1).

If X ⊂ H∞ Proposition 2.3 yields the statements above.
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