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Abstract  Heavy metal pollution in urban freshwa-
ter, driven by anthropogenic activities, poses signifi-
cant risks to aquatic ecosystems and human health 
due to its toxicity and persistence. Recently, urease-
producing bacteria have gained attention for their 
ability to remove heavy metals through microbial-
induced carbonate precipitation (MICP). In this study, 
eight urease-producing bacteria were exposed to indi-
vidual solutions of zinc (Zn2+), cadmium (Cd2+), 

and nickel (Ni2+) at concentrations ranging from 0 to 
6 mM to assess their resistance. Three strains—Bacil-
lus subtilis HMZC1 (B2), Bacillus sp. HMZCSW 
(B6), and Comamonas sp. HMZC (B11)—survived 
at 4 mM and 6 mM, while most others could not tol-
erate 4 mM. Their urea-degrading ability was tested 
at different pH levels, identifying an optimal pH of 
7 for MICP. Heavy metal carbonate precipitation 
experiments at 4  mM and 6  mM revealed that all 
three strains achieved > 93% removal of Zn2+, Ni2+, 
and Cd2+ within 72 h. Comamonas sp. HMZC exhib-
ited the highest efficiency, achieving > 95% removal 
of certain heavy metals at 6 mM. Statistical analysis 
using one-way ANOVA revealed significant differ-
ences (p < 0.05) in heavy metal removal efficiencies 
among the strains for certain treatment conditions 
(Cd2+ and Zn2+ at 4 mM), although not all compari-
sons reached statistical significance. Scanning Elec-
tron Microscopy and X-ray Diffraction confirmed 
the morphology and composition of the precipitated 
heavy metal carbonates. Our findings demonstrate 
that urease-producing bacteria can effectively immo-
bilize multiple heavy metals, highlighting the MICP 
process as a practical and sustainable biological 
approach for ecological restoration and wastewater 
treatment.
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Introduction

The rise in industrial standards and large-scale 
resource use has driven socio-economic develop-
ment and disrupted ecosystems on an unprecedented 
scale. Potentially toxic elements (PTEs) like cadmium 
(Cd), zinc (Zn), and nickel (Ni) are now prevalent in 
freshwater ecosystems worldwide (Halawani et  al. 
2022; Qin and Tao 2022). These heavy metals pose 
significant risks as they accumulate in plants and ani-
mals through bioaccumulation and biomagnification, 
leading to acute or chronic health issues in humans, 
including cancer, neurological diseases, and meta-
bolic damage (Vareda et  al. 2019). Assessing PTE 
risks is challenging due to complex exposure routes, 
interactions, and poorly understood biogeochemi-
cal processes that govern their mobility across water, 
soil, air, and biological systems (Lestiani et al. 2023). 
Reducing heavy metal mobility and bioavailability is 
a key goal of environmental remediation (Elnabi et al. 
2023). Microbial remediation, which leverages micro-
organisms’ metabolic processes to adsorb, mineralize, 
or transform heavy metals, offers a cost-effective and 
eco-friendly solution (Kumar et  al. 2021). Among 
these methods, microbially induced carbonate pre-
cipitation (MICP) stands out as a sustainable alterna-
tive to conventional techniques, minimizing chemi-
cal waste and energy consumption (Rajasekar et  al. 
2025). By capturing heavy metals in stable carbonate 
forms, MICP mitigates contamination and supports 
ecosystem restoration, making it a promising tool for 
addressing the growing threat of PTE pollution.

Microbially induced calcium/carbonate 
precipitation (MICP) is a natural biomineralization 
process driven by microbial metabolic activities. 
Depending on the metabolic pathways, MICP can 
occur through photosynthesis, methane oxidation, 
sulfate reduction, amino acid ammonification, urea 
degradation, or nitrate reduction. Among these, 
carbonate precipitation by ureolytic bacteria has 
gained significant attention (Mondal and Ghosh 
2019; Seifan and Berenjian 2019). Ureolytic bacteria 
produce urease, an enzyme that catalyzes the 
breakdown of urea into ammonia and carbonic acid. 
This reaction increases the pH and shifts the carbonate 
equilibrium, forming carbonate ions (Anbu et  al. 
2016; Krajewska, 2018). Negatively charged bacterial 
cell membranes or extracellular polymeric substances 
(EPS) trap calcium or heavy metal ions, providing 

nucleation sites for carbonate mineral precipitation. 
The morphology of the resulting crystals depends 
on factors like bacterial concentration, temperature, 
and pH (AJ et  al. 2013; Castro-Alonso et  al. 2019). 
Heavy metal ions with atomic structures similar to 
calcium can substitute into the calcite lattice, forming 
co-precipitates (Zhang et  al. 2023a). Alternatively, 
carbonate ions may directly bind with heavy metals to 
form insoluble minerals (Torres-Aravena et al. 2018; 
Kumar et  al. 2023). This process also sequesters 
CO₂, making MICP an eco-friendly technique for 
soil and water remediation, metal recovery, and 
wastewater treatment (Omoregie et  al. 2021; Song 
et  al. 2022a). Dong et  al. (2023) demonstrated the 
role of Ca2⁺ concentration in enhancing heavy metal 
removal via co-precipitation using Sporosarcina 
pasteurii. Overall, MICP offers a sustainable solution 
for environmental remediation by immobilizing 
contaminants and reducing their bioavailability.

Many previous studies have focused on isolating 
efficient ureolytic microorganisms for heavy metal 
removal. For instance, Tang et  al. (2023) isolated 
Penicillium chrysogenum CS1, a detoxifying fungal 
strain capable of removing Pb2⁺ and Cr2⁺ from both 
solution and soil matrices. While ureolytic fungi have 
been explored, most research centers on bacteria, with 
Sporosarcina pasteurii being one of the most studied 
ureolytic species (Table  S1). Investigations into 
ureolytic bacteria typically examine their resistance 
to heavy metal toxicity, changes in urease activity, 
and pH dynamics during microbial-induced carbonate 
precipitation (MICP). Additionally, researchers have 
explored how initial heavy metal concentrations and 
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exposure durations influence removal rates (Zeng 
et al. 2022; Yina et al. 2021).

Temperature and starting pH are critical fac-
tors influencing bacterial growth and urease activ-
ity. Previous studies suggest an optimal temperature 
range of 20–37 °C and a starting pH of 7–8 for MICP 
(Anbu et  al. 2016; Rajasekar et  al. 2021). However, 
preferences vary among species, with most favoring 
slightly acidic to neutral conditions (pH = 7). Despite 
these insights, as shown in Table  S2, most studies 
report heavy metal removal efficiencies of 75–100% 
under controlled conditions, but these results are 
typically achieved at low concentrations (< 2  mM). 
This highlights a significant gap in addressing high-
concentration environments. Recent efforts have 
begun focusing on isolating ureolytic bacteria capa-
ble of tolerating high heavy metal concentrations. 
For example, Li et  al. (2021) identified Lysinibacil-
lus sp. strains tolerant to 100 ppm Cu and 1,000 ppm 
Pb from an e-waste site. Similarly, Qiao et al. (2021) 
isolated four urease-producing strains from a mine 
in Sichuan, China, evaluating their tolerance and 
removal efficiency for Cu, Zn, Ni, and Cd. However, 
most MICP studies focus on single-metal systems, 
leaving multi-metal scenarios underexplored. To 
advance MICP applications, isolating bacterial strains 
with high tolerance to heavy metal toxicity and the 
ability to remove multiple metals simultaneously is 
crucial. Such efforts will enhance MICP as a sustain-
able solution for remediating environments contami-
nated with high levels of heavy metals.

The objectives of this study are 1) to isolate effi-
cient ureolytic bacteria with strong metal toxicity 
tolerance in Qunying River, Nanjing University of 
Information Science and Technology, China, 2) to 
analyze the urea decomposition changes during the 
96-h growth of different selected bacteria and deter-
mine the best initial pH for MICP, 3) to assess the 
heavy metal removal ability of selected strains under 
high concentrations of the three focused heavy met-
als (Cd, Zn, and Ni). Bacteria with high viability and 
remediation potential are crucial for remediating con-
taminated environments. The experimental approach 
taken in this study is depicted in Fig.  1, which pro-
vides a detailed flowchart outlining the sequence of 
experiments and the methodology used to achieve 
the research objectives. This study aims to investi-
gate the two-way interaction between environments 
contaminated with high PTEs and ureolytic bacteria 

with potent heavy metal toxicity tolerance ability and 
to provide a feasible solution for the future applica-
tion of MICP technology on remediation projects in 
severe heavy metal contaminated environments.

Materials and methods

Screening and identification of urease‑producing 
bacterial strains

A total of 28 indigenous bacteria were isolated from 
a polluted catchment (Qunying River) near Pukou, 
Nanjing, China. The samples of surface water 
(0–5  cm) were collected in High-density polyethyl-
ene bottles. The samples were transported to the lab 
at 4  °C for bacterial isolation. These bacteria were 
initially isolated using the serial dilution and pour 
plate method. The pour plate method was performed 
using Nutrient agar (NA) (10 g/L peptone, 3 g/L beef 
extract, 5  g/L NaCl, and 15  g/L agar) (hopebio™, 
China). Upon their isolation, pure bacteria cultures 
were inoculated in Christensen- Urea agar (Oualha 
et  al. 2020; Leeprasert et  al. 2022). The agar was 
autoclaved at 121  °C for 15  min. The urea solution 
was added to the agar when the temperature was close 
to 45 ± 3 °C. The bacteria from the group were cho-
sen based on their ability to change the color of agar 
from yellow-orange to pink-red, as this indicates their 
ability to break down urea effectively. The incubation 
was performed at 30 °C for 96 h. The control had no 
bacteria in it.

Secondary screening of ureolytic bacteria based on 
urea degradation

Eight isolated bacteria were tested for their ability 
to degrade urea by inoculating them into a medium 
(100 mL) containing 20 g/L urea (SCPTM, China) 
and nutrient broth. The nutrient broth (NB) was 
autoclaved at 121  °C for 15  min. Urea was added 
to the NB using a 50  mL syringe connected to a 
0.22  µm filter to avoid contamination. Nutrient 
Broth-Urea (NBU) solution is a combination of NB 
and urea. The OD600 of the bacteria suspension was 
1.0. OD600 refers to optical density at 600  nm, a 
measure of bacterial growth. This experiment was 
conducted at various pH levels, namely 6, 7, and 8, 
to test their ability for growth and urea degradation 
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and also for future field applications. Different pH 
levels were tested to determine the optimal condi-
tions for urea degradation and bacterial growth, 
which are crucial for MICP. The experiment was 
conducted at 140  rpm at 30 °C. The urea degrada-
tion was determined using the para-dimethyl amino 
benzaldehyde (PDAB) (98% purity) method (Knorst 
et  al. 1997). As mentioned by the protocol, 1  mL 
of PDAB was added to 4  mL of diluted urea-con-
taining solution. A standard curve was constructed 
using multiple concentrations of urea. The absorb-
ance of the solution was measured at 422 nm using 
a UV–Vis spectrophotometer (Thermo Scientific 
Genesys 10S, Waltham, MA, USA). The sam-
ples were taken every 24 h until urea could not be 

detected in one of the pH levels. All experiments 
were conducted in triplicate.

Metal toxicity test

Eight bacteria were subjected to multiple Zinc chlo-
ride (ZnCl2) (99.9% trace metals basis, Rhawn™, 
China), Cadmium chloride (CdCl2) (99.99% trace 
metals basis, Aladdin™, China), and Nickel chloride 
hexahydrate (NiCl2.6H2O) (99.9% trace metals basis, 
Aladdin™, China) concentrations. The concentra-
tions used were 1, 2, 4, and 6  mM. A heavy metal 
solution was incorporated into the nutrient agar in a 
Petri plate. After the agar solidified, 10 µL of a bacte-
rial suspension (OD600 = 1.0) was added to the plate, 

Fig. 1   Flowchart of the 
experimental approach
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which was then incubated at 30 °C for seven days to 
monitor bacterial growth (Kumari et  al. 2016; Bai 
et al. 2021b; Disi et al. 2022). The control had no bac-
teria in it. The ureolytic strains were selected based 
on their demonstrated resistance to high concentra-
tions of heavy metals, as indicated by their minimum 
inhibitory concentration (MIC), which refers to the 
lowest concentration of a heavy metal that completely 
inhibits bacterial growth. This resistance is critical for 
their application in bioremediation.

Genomic identification of the heavy metal‑resistant 
bacteria

The dominant strain with heavy metal resist-
ance was selected for genomic identification. The 
genomic DNA of the strains was isolated from the 
pure cultures using a DNA extraction kit. The gene 
was amplified using the primers 27F (5′-AGA​GTT​
TGATCMTGG​CTC​AG-3′) and 1492R(5′-GGT​TAC​
CTT​GTT​ACG​ACT​T-3′) (Muyzer et  al. 1993; Frank 
et  al. 2008). Polymerase Chain reaction (PCR) was 
performed on the template DNA by following the 
protocol mentioned by (Rajasekar et  al. 2018). The 
PCR product was assessed in 0.8% agarose gel elec-
trophoresis. The PCR products were recovered using 
the Springen Agarose Gel Magnetic Bead Method 
DNA Recovery Kit (MD003-100). Purified products 
were sequenced in both directions by an ABI3730-
XL sequencer (Thermo Fisher Scientific, Waltham, 
MA, USA). Nucleotide sequences were edited using 
DNAstar Lasergene (version 7.1) software. Basic 
Local Search Alignment Tool (BLAST) analysis 
was performed to compare the sequences with avail-
able DNA sequences from the National Center for 
Biotechnology Information (NCBI) database (Alts-
chul et  al. 1990). The accession numbers for the 
three bacterial strains are B2 (OQ826692) (Bacil-
lus subtilis HMZC1, 86.48%, 1229 basepairs), B6 
(OQ826707) (Bacillus sp. HMZCSW, 98.32%, 1198 
basepairs), and B11 (OQ826684) (Comamonas sp. 
HMZC, 99.93%, 1417 basepairs). A phylogenetic tree 
was constructed using the neighbor-joining method 
(Figure S1).

Heavy metal carbonate studies

Three efficient heavy metal-resistant bacteria were 
chosen for heavy metal carbonate studies based on the 

urea degradation result. The bacterial suspension was 
added to a 100 ml solution containing 4 mM ZnCl2, 
autoclaved nutrient broth, and filter-sterilized urea 
(20 g/L). The same procedure was repeated to 4 mM 
CdCl2, NiCl2.6H2O, and 6  mM ZnCl2, CdCl2, and 
NiCl2.6H2O. The OD of the bacteria suspension was 
1.0. The experimental conditions include pH 7, tem-
perature 30 °C, and mixing at 180 rpm. The experi-
ment was conducted for a total of 96  h. The 96-h 
timeframe was chosen as it corresponds to the stand-
ard duration used in our urea degradation test. While 
urease activity or urea degradation was not directly 
measured during the heavy metal tolerance tests, this 
timeframe was selected to ensure sufficient bacterial 
growth, urea degradation, and potential carbonate 
precipitation under experimental conditions. The con-
trol had no bacteria in it. All experiments were con-
ducted in triplicate. After the experiment, the solution 
was filtered through a 0.45  µm filter to collect the 
precipitates and dried at 48 °C for 48 h for quantifi-
cation and qualification analysis. Atomic Absorp-
tion Spectroscopy was used to quantify the leftover 
heavy metal in the solution using a Flame Atomic 
Absorption Spectrometer (ZEEnit 700P, Analytik 
Jena GmbH + Co. KG, Jena, Germany). Before the 
quantification, the solution was appropriately digested 
with 2% nitric acid to stabilize heavy metals and pre-
vent adsorption or precipitation (Cheng et al. 2024). 
A series of calibration standards were prepared from 
stock solutions. The heavy metal removal rates of the 
selected strains were calculated from the difference 
between the initial and final elemental concentrations 
in the solution (Eq. (7)).

C0 and C96 represent the initial and final (96  h) 
concentrations of heavy metals (mM), respectively.

Characterization analysis

Scanning Electron Microscope (SEM) (thermo-field 
emission FEI Quanta 400FEG (Thermo Fisher Sci-
entific, Waltham, MA, USA)) was used to visualize 
the morphology of the heavy metal carbonates pre-
cipitated during the experiment. X-ray Diffractom-
eter (XRD) (SmartLab (9) diffractometer (Rigaku, 
Japan) with an ultra-high speed detector (40 kV and 
150 mA) scanning from 5° to 90° at a step rate of 8°/

(7)Removal capacity (%) =
(

C0 − C96

)

∕C0 × 100
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min was performed to characterize the heavy metal 
carbonates. The XRD peaks were compared with ref-
erence data from the International Centre for Diffrac-
tion Data (ICDD) database to identify the crystalline 
phases of the precipitates (Kabekkodu et al. 2024).

Statistical analysis

The results are shown as means ± standard deviation. 
All data were analyzed using one-way ANOVA fol-
lowed by Tukey’s posthoc test to compare the effects 
of different bacterial strains on removal efficiency and 
urea degradation using Origin 2024b. We confirmed 
that the data met the assumptions of normality (Sha-
piro–Wilk test) and homoscedasticity (Levene’s test) 
before performing ANOVA. The confidence interval 
was 95%, and the error bars in the figures represent 
the standard deviations from the mean performed 
using Microsoft Excel 2019.

Results and discussion

Heavy metal toxicity tolerance

The problem of anthropogenic heavy metal pollu-
tion of urban rivers and lakes is becoming increas-
ingly serious, and heavy metals in water bodies affect 
the population structure of microorganisms to some 
extent. Although the urease-induced MICP process 
can reduce the concentration of heavy metals in the 
environment by producing heavy metal precipitates, 
no studies have been conducted to confirm whether 
urea hydrolysis is one of the mechanisms of toler-
ance of PTEs. We do not believe that the MICP pro-
cess is the primary mechanism by which microorgan-
isms resist heavy metals, as the urease in the MICP 
process may be an extracellular enzyme, or it could 
be potentially released during the rupture of the cell 
membrane after the microorganism has died. Since 
the heavy metals are adsorbed to the surface of the 
bacterial cell wall, they also serve as a nucleation site 
for carbonate binding, which results in the dormancy 
or death of the microorganism (Sheng et  al. 2022). 
It is not ideal for determining the MICP ability of a 
strain by its heavy metal tolerance alone. However, 
it is undeniable that the heavy metal resistance of a 
strain determines its potential to survive in different 

PTEs contaminated environments and the scope of its 
application in environmental remediation (Henao and 
Ghneim-Herrera 2021).

Previous studies have confirmed that Cd is the 
most biotoxic among Cd, Zn, and Ni, followed by Zn 
and Ni (Carpio et al. 2018; Qiao et al. 2021). There-
fore, the MIC of the selected strains was used to 
determine the heavy metal resistance of the selected 
strains. The MIC results for Cd, Ni, and Zn showed 
(Table 1) that most strains were not observed to grow 
at 6 mM (MIC = 6 mM). There are two main ways to 
test the microorganism’s tolerance to heavy metals: 
one is to quantify the effect of heavy metals on bac-
terial growth by measuring the OD600 of NB media 
containing heavy metals, and the other is to measure 
the inhibition of colony diameter or growth by heavy 
metals through NA media (Bai et al. 2021b; He et al. 
2019). Taking the concentration of heavy metals that 
completely inhibits bacterial growth as the MIC, the 
results vary using different methods or different times 
of incubation. Several studies have tested heavy metal 
resistance in NA media and obtained high MIC val-
ues. Most bacteria studied for heavy metal carbon-
ate precipitation could not grow above 2  mM for 
Cd, Ni, and Zn (Bai et al. 2021b; Kumar et al. 2023; 
Qiao et  al. 2021). However, Jalilvand et  al. (2019) 
reported ureolytic strains isolated from Iranian min-
ing soils that were tolerant to Cd concentrations of 
up to 11 mM. In our results, the three most tolerant 
strains, B2, B6, and B11, were tolerant up to 6 mM 
(Table  1). A review conducted by Tamayo-Figueroa 
et  al. (2019) indicated that Cd, Ni, and Zn are the 
most potent heavy metals to inhibit bacterial growth, 
even as low as 1 mM. The B2, B6, and B11 strains 
have shown much more resistance toward higher 
heavy metal concentrations. These bacteria will be 
further studied for urea degradation and heavy metal 
carbonate precipitation.

Urea degradation capacity of different selected 
bacteria

The degradation of urea by the three selected ure-
olytic strains at the corresponding time points of 
the NBU culture urea concentration under differ-
ent initial pH is shown in Figs. 2, 3 and 4, and the 
mean ± standard deviation of the urea concentra-
tion in each group represents the error bars. All 
three selected strains demonstrated strong urea 
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degradation ability over 96  h, regarding net urea 
degradation, pH 7 > 8 > 6. When the initial pH was 
7, the overall urea decomposition trend was consist-
ent for B2 and B11, with urea degrading steadily 
over 96  h (Fig.  2). However, for B6, the degrada-
tion rate slowed down from 48 to 72 h, but from 72 
to 96  h, the urea degradation showed a degree of 
increase. 

Most previous studies carried out pH, OD600 
(bacterial growth), and urease activity tests in 
conjunction with heavy metal precipitation tests 
to understand the MICP process. Generally, urea 
degradation capacity is closely linked to bacterial 
growth and urease activity (Anbu et al. 2016; Song 
et  al. 2022b). The enzyme activity, i.e., the cata-
lytic rate of the substrate, depends on the enzyme 
concentration, the substrate concentration, and the 
enzyme’s affinity to the substrate, which the ambi-
ent temperature and pH may influence (Castro-
Alonso et al. 2019; Omoregie et al. 2021). In the lag 
phase of bacterial growth, bacteria maintain a lower 
level of proliferation and a lower concentration of 
urease enzyme. Therefore, some previous studies 
have found that enzyme activity, pH, and OD600 are 
maintained at low levels during the initial stages of 
the MICP process (Jiang et  al. 2019; Zhang et  al. 
2023b). Interestingly, the urea concentration in our 
study decreased considerably at 24  h at the pH of 
7, implying that the selected strains responded and 
adapted to the temperature and their physicochemi-
cal environment efficiently. For pH 6 and 8, we 
found that bacteria required an "adaptation phase" 
before exponentially removing urea from the solu-
tion (Fig. 3).

Previous studies have also investigated the growth 
of ureolytic strains with urea degradation and found 
that the degradation of urea by ureolytic bacteria in a 
20 g/L urea-contained NBU medium at an initial pH 
of 7 only began 24 h after inoculation (Zhang et  al. 
2023b). This is consistent with the results obtained 
at initial pH values of 6 and 8 in the present study. 
A review conducted by (Krajewska 2018) indicated 
that urea is decomposed into releasing ammonium 
ions, which can be measured by quantifying the pH 
changes, as ammonium ions help increase the solu-
tion’s pH. Among the three selected strains, the B2 
culture has the lowest urea concentration within 0 
to 72 h (50.3 mg/L) at the initial pH of 7, followed 
by B11 (53.7  mg/L) and B6 (55.4  mg/L). Also, it Ta
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appears that B2 can adapt faster and start degrading 
urea in the other two initial pHs, which implies that 
the capacity of the selected strains for degrading urea 
during growth ranks in B2 > B11 > B6.

Removal of heavy metals at different concentrations

The removal rates of heavy metals by B2 (Bacillus 
subtilis HMZC1), B6 (Bacillus sp. HMZCSW), and 
B11 (Comamonas sp. HMZC), and their removal 
capacity are shown in Figs.  4, 5, Table  S3, and 
Table  S4. The error bars indicate the mean ± stand-
ard deviation of the removal rates of each group 
of heavy metals (Fig.  4). All three strains showed 
excellent removal of high concentrations of Cd2+, 
Zn2+, and Ni2+ in the 96-h heavy metal precipita-
tion experiments. Contrary to the urea degradation 
experiment, we found that B11 was the most effi-
cient bacteria in removing heavy metals. The highest 
removal rate occurs in the 6 mM cadmium solution, 
where B11 removes 98.8% of the cadmium, and B6 
removes up to 97.96% of the cadmium in the 4 mM 
solution. However, for Ni2+ and Zn2+, higher concen-
trations of heavy metal solutions are accompanied 
by higher removal rates, with B11 reaching 96.92% 
for 6  mM Zn2+ and 99.32% removal in 6  mM Ni2+ 
solutions, respectively. Zhang et  al. (2023b) discov-
ered that although higher concentrations of heavy 

metal solutions in the MICP process result in higher 
amounts of precipitates, this results in lower removal 
rates, which is inconsistent with our experiment 
results. We suggest that the influences of heavy metal 
concentrations on removal rates depend on the toler-
ance of the strain. Urease-producing bacteria break 
down urea into ammonia and carbon dioxide, increas-
ing the environment’s pH. This rise in pH promotes 
the formation of carbonate minerals, effectively trap-
ping heavy metals like cadmium, zinc, and nickel 
within the solid precipitates (Ji et  al. 2024). Addi-
tionally, the ammonia produced further enhances the 
alkaline conditions, making it easier for metals to 
bind to bacterial surfaces. As seen in Fig.  4, within 
24  h, 65% of most heavy metals, on average, were 
removed by all three bacteria. We found that B6 could 
only remove around 56% of Zn2+- 6 mM and Cd2+- 
6 mM within 24 h, suggesting an adaptation phase to 
grow at high concentrations. By 72 h, all the bacteria 
removed an average of > 93% of all heavy metals, irre-
spective of their concentrations. To further validate 
these observations, one-way ANOVA was conducted 
to compare the performance of the bacterial strains at 
different time points and heavy metal concentrations. 
For cadmium, significant differences were observed 
among the strains at later time points (p < 0.05 for 
48 h, 72 h, and 96 h) (Table S3). Similarly, significant 
differences emerged at 24  h for zinc and nickel and 

Fig. 2   Changes of urea concentrations in the NBU medium of 
the three selected strains and the control group with time under 
initial pH 7. The within-group variations for each group (trip-

licate) of data measured at all periods were significant at the 
statistical level of p < 0.05 at a 95% confidence interval, except 
for the control group. Error bars represent standard deviation
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persisted until 96 h (p < 0.05). These results confirm 
that the strains exhibit distinct patterns of heavy metal 
removal over time, with B11 showing superior per-
formance at higher concentrations.

A possible explanation lies in B11’s metabolic 
flexibility. Unlike B2 and B6, which may rely more 
heavily on urease activity for heavy metal removal, 

B11 might employ alternative pathways and urease 
enzymes that enable it to tolerate and remove heavy 
metals even under highly toxic conditions (Hussein 
et  al. 2024). These mechanisms likely contribute 
to B11’s superior performance in our heavy metal 
removal experiments compared to urea degradation 
experiments. This suggests that heavy metal removal 

Fig. 3   Changes of urea concentrations in the NBU medium 
of the three selected strains and the control group with time 
under initial pH of 6 and 8. The within-group variations for 
each group (triplicate) of data measured at all periods were sig-

nificant at the statistical level of p < 0.05 at a 95% confidence 
interval, except for the control group. Error bars represent 
standard deviation
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depends more on strain-specific detoxification strate-
gies than urease-mediated pH increases alone.

This suggests that urease-producing bacteria 
not only adapt to the presence of high metal con-
centrations but also continuously alter the local 

environment through sustained urease activity. Urease 
activity breaks down urea, the resulting increase in 
carbonate ions provides more opportunities for heavy 
metals to form stable carbonate minerals. Over time, 
this process leads to near-complete removal of metals 

Fig. 4   Removal rates 
of heavy metals by the 
three selected strains (B2, 
B6, and B11) at different 
concentrations (4 mM and 
6 mM) of Cd2+, Zn2+, and 
Ni2+ every 24 h. Error bars 
indicate standard deviation
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from the solution. Furthermore, the EPS produced by 
these bacteria likely works with urease activity, act-
ing as a scaffold for mineral nucleation and growth 
while trapping dissolved metals in their sticky matrix 
(Zeng et al. 2022). These findings are consistent with 
previous studies, which observed a similar reduction 
in heavy metals over 72  h (Sheng et  al. 2022; Yina 
et al. 2021; Khadim et al. 2019; Dong et al. 2019).

Statistical analysis using one-way ANOVA 
revealed significant differences (p < 0.05) in removal 
efficiencies among the strains under specific treatment 
conditions (Table S4). For instance, B11 achieved the 
highest average removal rate (97.8%), followed by B6 
(97.2%) and B2 (96.9%) (Fig. 5).

These differences, though small, highlight the 
importance of selecting optimal bacterial strains for 
maximizing heavy metal removal, even when overall 
performance is consistently high. For example, sig-
nificant differences were observed for Cd2+-4  mM 
(p = 0.021) and Zn2+-4  mM (p = 0.001), where B6 
and B11 outperformed B2, respectively. Conversely, 
no significant differences were found for Ni2+-4 mM 
and Ni2+-6  mM (p = 0.654 and p = 0.89), indicating 
comparable performance across strains for nickel 

removal. The consistent performance for nickel 
removal might be linked to its smaller atomic size, 
allowing it to bind more easily to bacterial surfaces 
or EPS than larger metals like cadmium. Addition-
ally, urease activity may play a significant role in 
nickel removal, as the alkaline conditions created by 
urea hydrolysis enhance nickel’s affinity for carbon-
ate ions, promoting rapid precipitation (Jalilvand 
et al., 2019). These findings align with prior research 
emphasizing the role of strain-specific characteristics, 
such as EPS production and heavy metal affinity, in 
determining removal efficiencies (Qiao et  al. 2021; 
Bai et al. 2021a).

The effect of heavy metal concentrations used in 
our study on urease activity and bacterial growth 
may not be quite as strong; conversely, higher 
concentrations of heavy metals may be favora-
ble for bacterial surface or EPS capture of heavy 
metals, i.e., higher opportunities to compete with 
binding sites (Zhao et al. 2017; Zeng et al. 2022). 
The average removal of all heavy metals by the 
different strains in descending order was B11 
(98.22%) > B6 (97.83%) > B2 (97.15%), and the 
average removal rates of the different heavy metals 

Fig. 5   Removal rates 
of heavy metals by the 
three selected strains (B2, 
B6, and B11) at different 
concentrations (4 mM and 
6 mM) of Cd2+ (a), Zn2+ 
(b), and Ni2+ (C). Error 
bars indicate standard 
deviation
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ranked from highest to lowest in the order of Ni2+ 
(98.68%) > Cd2+ (98.14%) > Zn2+ (96.37%). All 
three strains demonstrated exceptionally high 
removal rates, exceeding 93% for all tested heavy 
metals. For instance, B11 achieved the highest 
average removal rate of 98.22%, followed by B6 
(97.83%) and B2 (97.15%). These findings high-
light the importance of selecting optimal bacterial 
strains for maximizing heavy metal removal, even 
when overall performance is consistently high. 
Previously, Jalilvand et  al. (2019) investigated the 
MICP process for Pb2+, Cd2+, and Zn2+ removal 
and found that the average removal rates for Zn2+ 
(77.51%) and Cd2+ (80.63%) demonstrated higher 
efficiency for Cd2+ despite its more significant tox-
icity compared to Zn2+. This could be attributed to 
the difference between the atomic structures. Disi 
et  al. (2022) considered that the larger the atomic 
radius of the heavy metal, the stronger the abil-
ity of the heavy metal to compete with the bind-
ing site. These results underscore the potential 
of urease-producing bacteria, particularly B11, 
for bioremediation of heavy metal-contaminated 

environments. Scaling up this process could offer 
a sustainable wastewater treatment and ecological 
restoration solution.

Characterization analysis

The SEM analysis of the bacterial precipitation 
of cadmium, zinc, and nickel carbonate revealed 
intriguing morphological changes and elemen-
tal composition shifts within the biomineralized 
material. Figures 6, 7 and 8 show the formation of 
porous and irregular aggregates of heavy metal car-
bonate. This porous structure indicates microbial 
involvement in carbonate precipitation, which can 
be a nucleation site for forming carbonate miner-
als. These porous structures are formed because 
bacteria create local environments that favor min-
eral growth by secreting the urease enzyme that 
precipitates carbonate and binds with metal ions 
(Cd2+, Ni2+, and Zn2+). This process not only traps 
metals but also makes the precipitates more stable. 
The trapped metals are less likely to dissolve into 
the environment, reducing their potential toxicity 

Fig. 6   SEM images (Top panel) of the minerals formed by B2, B6, and B11 in the presence of Cd. EDS (bottom panel) illustrates 
the elemental composition of the formed minerals. The tables indicate the wt% and atom % of each element
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Fig. 7   SEM images (Top panel) of the minerals formed by B2, B6, and B11 in the presence of Ni. EDS (bottom panel) illustrates the 
elemental composition of the formed minerals. The tables indicate the wt% and atom % of each element

Fig. 8   SEM images (Top panel) of the minerals formed by B2, B6, and B11 in the presence of Zn. EDS (bottom panel) illustrates 
the elemental composition of the formed minerals. The tables indicate the wt% and atom % of each element
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(Taharia et al. 2024). Additionally, the irregular and 
porous nature of the aggregates suggests that the 
bacteria may continue to influence mineral growth 
over time, leading to ongoing changes in structure 
and composition. Several researchers also observed 
these heavy metal carbonates (Sheng et  al. 2022; 
Khadim et al. 2019; Dong et al. 2019; Ji et al. 2024). 
EDS analysis (Figs. 6, 7 and 8) showed a substantial 
increase in Cd and Zn concentration in the biomin-
eralized material, confirming the incorporation of 
cadmium and zinc ions into the precipitate (Zhang 
et al. 2023c; Disi et al. 2022; Qiao et al. 2021). This 
suggests that the bacteria effectively captured these 
metals, potentially by adsorbing them to their sur-
faces and trapping them. We found that Ni2+ had 
a lower percentage than the other heavy metals. 
Researchers also previously observed this for Nickel 
carbonate (Khadim et  al. 2019). Despite its effi-
cient removal, the lower percentage of Ni2+ in the 
biomineralized material highlights the dominance 

of surface interactions over carbonate precipitation 
kinetics in the MICP process (Liu et al. 2021). The 
carbon (C) signal suggests that bacterial cells were 
actively involved in precipitation, potentially act-
ing as nucleation sites for carbonate mineral growth 
(Bai et al. 2021a).  

The XRD pattern for the biomineralized Cad-
mium Carbonate (Fig.  9), Zinc Carbonate (Fig.  10), 
and Nickel carbonate (Fig.  11) precipitated by the 
bacteria was compared with IDCC 00–042-1342, 
00–001-1036, and 00–012-0771 (Kabekkodu et  al. 
2024). Similar diffraction peaks were identified at 2θ 
angles, representing the precipitation of these heavy 
metal carbonates. We compared our peaks with exist-
ing literature for further validation and found them to 
be similar (Zeng et al. 2022; Yina et al. 2021; Kha-
dim et  al. 2019; Baddar et  al. 2021, Jalilvand et  al., 
2019). Sharp and well-defined peaks consistent with 
the known crystalline structure for these heavy metal 
carbonates were obtained. Previous studies have also 

Fig. 9   XRD for cadmium 
carbonate precipitated by 
the bacteria

Fig. 10   XRD for zinc 
carbonate precipitated by 
the bacteria
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reported the precipitation of heavy metal carbonates, 
validating the findings that carbonate precipitated 
by bacteria can bind with divalent heavy metal ions 
to form heavy metal carbonate crystals. (Kim et  al. 
2021; Zhang et  al. 2022, 2024; Zeng et  al. 2022). 
The crystallinity index was not explicitly calculated 
in this study. However, the XRD peaks obtained 
from the precipitates were compared with interna-
tional standard peak data for heavy metal carbon-
ates; this approach has been commonly applied in 
MICP heavy metal studies (Ji et al. 2024; Zhang et al. 
2024). This comparison confirmed the presence of 
crystalline phases corresponding to heavy metal car-
bonates, such as zinc carbonate, cadmium carbonate, 
and nickel carbonate. While the crystallinity index 
was not determined, the clear identification of these 
phases supports the effectiveness of the MICP pro-
cess in forming stable carbonate precipitates. Future 
studies will include a detailed analysis of the crystal-
linity index to evaluate the structural properties of the 
precipitates further.

Conclusion

The increasing concentration of heavy metal pollu-
tion in ecosystems has provoked a search for inno-
vative, effective, and eco-friendly remediation strat-
egies. The present study illuminated the potential 
application of Microbial Induced Calcium Carbon-
ate Precipitation (MICP) in addressing this environ-
mental dilemma. By isolating and testing ureolytic 
bacterial strains B2 (Bacillus subtilis HMZC1), B6 

(Bacillus sp. HMZCSW), and B11 (Comamonas 
sp. HMZC) for their respective efficiencies in the 
biomineralization of calcium carbonate and simul-
taneous mitigation of heavy metal ions (Cd, Zn, and 
Ni) from polluted water, this research establishes a 
foundation for the potential application of MICP in 
bioremediation.

B2 was the most efficient ureolytic bacteria, fol-
lowed by B11 and B6 in urea degradation at pH 
6, 7, and 8. We found pH 7 to be the optimum pH 
for urea degradation. However, B11 emerged as a 
potent candidate among the bacterial strains stud-
ied, demonstrating a substantial removal efficiency 
reaching up to > 95% for cadmium ions under opti-
mal conditions. Our study demonstrates that urease-
producing bacteria B11, B6, and B2 achieve > 93% 
removal of Cd, Zn, and Ni within 72 h. B11 excels 
with 98.8% Cd removal at 6  mM and > 99% Ni 
removal. Statistical analysis (p < 0.05) confirms 
significant strain-specific differences, highlighting 
B11’s superiority for bioremediation applications. 
This establishes a distinct variance in the heavy 
metal mitigation capabilities across different bacte-
rial strains, suggesting preferential applicability for 
different strains in context-specific bioremediation 
scenarios.

SEM analyses revealed that B11 facilitated the 
formation of metal precipitates, thereby providing a 
morphological basis for understanding the immobi-
lization of heavy metals within the biomineralized 
structures. Furthermore, XRD and EDS analyses cor-
roborated that the incorporation of metals into the 
carbonate matrix was stable and reliable, implicating 
the precipitates’ long-term stability and suitability for 

Fig. 11   XRD for Nickel 
carbonate precipitated by 
the bacteria
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durable, sustainable heavy metal removal. This study 
highlights the potential of urease-producing bacteria, 
particularly Comamonas sp. HMZC, for bioremedia-
tion of heavy metal-contaminated environments.

Future directions

Future research should optimize the process for large-
scale applications, including field trials, to assess its 
feasibility under real-world conditions. Key areas of 
investigation will include:

Scaling Up: Conducting pilot-scale experiments to 
evaluate the scalability of MICP for industrial or envi-
ronmental applications.

Cost-Effectiveness: Analyzing the economic feasibil-
ity of implementing MICP compared to conventional 
remediation techniques.

Long-Term Stability: Assessing the durability of 
metal carbonates over extended periods to ensure sus-
tained immobilization of heavy metals.

Challenges: Addressing potential limitations, such 
as variability in bacterial activity, sensitivity to envi-
ronmental conditions, and the need for standardized 
protocols.

Although preliminary, this research promotes the 
potential of harnessing microbiological processes with 
biomineralization to develop environmentally efficient, 
sustainable strategies for addressing the pervasive issue 
of heavy metal pollution, thereby contributing to a 
cleaner, safer, and more sustainable future.
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