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Abstract 

This thesis explores landslide hazards within the framework of Disaster Risk Reduction (DRR) and the 

United Nations' initiatives, "Warnings for All" and "Information for All," aligned with the Sustainable 

Development Goals (SDGs).  

Research Chapter I investigates the integration of global-scale landslide inventories (LSIs) to address 

data gaps and limitations in the Global South. LSIs are critical for hazard analysis, yet their availability 

and accessibility are limited. Using geospatial techniques and data integration methods, this chapter 

combines global LSIs to improve spatial and temporal coverage. The results demonstrate an increase 

in the number of recorded landslide events and provide a foundation for analysing global landslide 

trends and identifying vulnerable regions. However, the findings reveal significant limitations in 

applying global LSIs at the local scale. In the Darjeeling district of the Northeastern Indian Himalayas, 

gaps in spatial and temporal coverage highlight the inadequacy of current freely available datasets 

for localised hazard assessment. Recommendations emphasise collaborative and equiTable 

approaches to recording, maintaining, and sharing global landslide inventories to support DRR 

strategies. 

Research Chapter II focuses on identifying historical landslides in the data-scarce Darjeeling district 

using ECMWF Re-Analysis 5th Generation (ERA5) total precipitation data and predefined intensity-

duration (ID) thresholds. Combining findings from Chapter I with ERA5 data, this explores the 

potential of integrating meteorological datasets for landslide early warning systems. The analysis 

identifies "wet day" events and evaluates conditions preceding historical landslides recorded in the 

combined LSI. However, the approach is hindered by the lack of comprehensive landslide records, 

which limits the skill of the ID threshold method. The study underscores the need for improved 

landslide monitoring to enhance predictive capabilities. 

In conclusion, this thesis highlights the importance of integrating datasets to advance global and 

local landslide understanding. By aligning with the UN’s agenda, this research advocates for more 

inclusive and equiTable DRR practices. 
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Chapter 1: Introduction 

1.1 Background and Motivation 

Disaster risk reduction is a discipline that aims at preventing ongoing, new and existing disaster risk. 

It also manages residual risk. This contributes to strengthening international and national resilience. 

These events are usually natural hazard events like flooding, heatwaves and landslides but can also 

be anthropogenic events like famine and war (UNDRR, 2017).     

Research into the Disaster Risk Reduction (DRR) discipline and in particular landslide studies are 

critical for a number of reasons. Landslides pose significant risks for impact to human life, either 

through indirect impact damaging infrastructure or direct impact with fatalities. Understanding 

landslides in terms of their mechanisms and triggers helps in developing landslide early warning 

systems (LEWS) which can reduce loss of life and economic losses (Glade et al., 2000). The impact to 

the environment is also apparent, as landslides contribute to soil movement through direct 

movement, soil erosion and sediment transport which has impacts on water quality and flora and 

fauna habitats (Guzzetti et al., 2007).   

1.2 Scope and aim of this study 

The main aim of this study is to evaluate the current practice in the DRR discipline regarding 

accessibility in regard to the UN’s Initiative on ‘Warnings for All’ and the Sustainable Development 

Goals (SDG) on ‘Information for All’, by using landslides as a focal point for this investigation. The 

thesis aims to do this by looking at two distinct sides: (i) current practice around ‘data’, and (ii) to 

create a freely available and useful tool for historical landslide identification in the Darjeeling district, 

India. By evaluating the datasets freely available and the people who work within the DRR discipline 

the thesis aims to show that the current practice at this moment in time is inaccessible and so goes 

against the UN’s Warnings For All initiative (WMO, 2022) and against the ‘information for all’ SDG 

(UN, 2025) See Thesis Section 2.2 Disaster Risk Reduction (DRR), which leads to poorer scientific 

enquiry and research. The thesis recommends that by striving to be more accessible, current practice 

moves closer towards best practice, and this leads to more accurate and skilful scientific research in 

the DRR discipline.   
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Objectives: 

1. Combine freely available global LSIs and disaster databases to evaluate local representability. 

This process will investigate if current practice allows researchers who have little 

technological or monetary resource to obtain useful data in their locality.   

2. The second objective aims to use the current practices as they are to create an easy-to-use 

historical landslide identification tool and evaluate the potential skill and useability of this 

new tool in the Darjeeling district, India. This simple method of using what’s available 

without spending money and using a single laptop, allows for a potential addition to LEWS 

globally, no matter what the research conditions are in terms of funding and capacity.  

1.3 Thesis layout and structure 

To achieve these objectives, there are two major research chapters, 5.0 and 6.0 that constitute the 

main body of this thesis. Figure 1.1 shows the overall thesis structure.  

I have considered the prose of the thesis and have decided to keep the style of writing quite 

personal as I find that not only will this encourage the readers to express themselves as human 

individuals who are also working within this DRR discipline and to keep the sense of personal identity 

of the researcher at the forefront of the work being presented.   
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Figure 1.1: The complete thesis structure and simple descriptions of each chapter and section. 

Chapter 1

• Introduction
•Scope, objectives,and structure

Chapter 2

•Literature reivew
• Introducing themes and gaps in literature

Chapter 3

•Site information
• Introducing the physical site information, and DRR context

Chapter 4

•Data and Methods
• Introducing key methods used in all of the pertinent thesis chapters and any datasets that are 

being used

Chapter 5

•Research Chapter I - 'Data'
•Combining global LSIs and evaluating local usage

Chapter 6

•Ressaerch Chapter II - 'Application'
•USing the combined global LSI from chapter 6 and a ERA5 total precipitation with established ID 

thresholds to provide and evaluate a tool for landslide prediction

Chapter 7

•Discussion and Future Considerations
•Combining all of the chapter discussions and discussing the overall aim of the thesis. This also 

outlines some reccommendations for 'best practice' from the evaluated current practice

Chapter 8
•Conclusion

Appendixes

•Apendix 1 - A paper I contributed to
•Appendix 2 - A summer exhibition I participated in
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Chapter 2: Literature Review 

2.0 Introduction  

This literature review begins with a clear introduction to landslide hazards, disaster risk reduction 

(DRR), precipitation modelling and how precipitation and landslides can be combined to make 

landslide prediction models, including Intensity Duration Thresholds which will be used within this 

thesis. There will be a section at the end specifically aimed at the research questions that have been 

highlighted from this review, and that will be challenged within the thesis research chapters, data 

and application.   

2.1 Landslide Hazard  

Landslides are part of a group of natural hazards (other examples include earthquakes, floods and 

forest fires) that can change the organisation of ecosystems and cause devastation to society. The 

quantification of landslide deaths, injuries and damage is vastly underestimated, and the data is 

often incomplete (Haque et al., 2016). This could be due to the remote nature of landslides and the 

lack of correct classification of landslides. Additionally, when a landslide occurs bodies can be buried 

within the disturbed sediment which are unrecoverable because of the often large volume and the 

compact consolidation of their sediments.  The World Bank Report (2005) stated that 3.7x106 km2 

of the land surface is prone to landslides worldwide. This is an area bigger than the land surface area 

of India, Nepal and Bangladesh combined.  This places nearly 300 million people in areas of potential 

landslide risk (Dilley et al., 2005). Landslides are very different in terms of size, types, distributions, 

patterns and triggering mechanisms (Malamud, 2003).  Landslide susceptibility was usually thought 

to be time-independent (Roberts et al., 2021; Sania et al., 2017; Varnes, 1978), however recent 2015 

papers by Marc et al. and Parker et al have challenged this assumption, stating that time-dependant 

controls, for example large magnitude earthquakes (Mw >6.0) have controls on landsliding. This 

means that the 7.8Mw April 2015 Gorkha earthquake which happened in Nepal killing 6,962 people 

and injuring 21,952 could have far reaching repercussions for controlling landsliding in and around 

the area (Roberts et al., 2021). Kargel et al., (2016) investigated the impact of this earthquake on the 

geological controls of the area effected and produced a catalog of triggered debris flows. A later 

study by Roback et al. (2028) found that there were over 25,000 landslides triggered by that 

earthquake event alone.  The study area is within an area prone to earthquakes and would have felt 

some of the effects of this 2015 Gorkha Earthquake, and so any data in 2015 should be looked at 

critically, in case of an increase in landslide size or occurrence. This is because the Gorkha 2015 



5 
 

earthquake was responsible for shifting monsoon triggered landslide patterns in 2015 – making the 

landslides appear in higher slopes and reliefs (Jones et al., 2021).  

A 2021 paper from Roberts et al. studies the idea that ‘path-dependency’ can happen not only in 

Italy, but in other geomorphic situations globally, and looks to prove this in the Himalayas. Path-

dependency is the idea that landslides occur again (reactivates) on paths of failure from previous 

landslides or previous landslide events. So, for example, this effect means that it is a legacy effect, 

new landslides will spatially overlap pre-existing landslides more than those that do not overlap pre-

existing landslides.  This paper did observe both overlapping and non-overlapping landslides but 

noted that the landslides were geometrically different in this case (Roberts et al., 2021).     

Precipitation is one the most common triggers for landslide events (USGS, 2025). The landslide 

occurrence over a temporal scale is largely controlled by rainfall patters with different types of 

resolution and can be analysed using statistical techniques (Asch & Van Beek, 1999). When there is 

good historical data on precipitation and landslide events then thresholds for critical daily rainfall 

and antecedent rainfall can be assessed. The skill of this threshold can obtain good results if the area 

in which the data is given is over a relatively homogeneous area, with one type of landslide with one 

size (Asch & Van Beek, 1999). A paper by Finlay et al. (1997) studied the probability of landslide 

occurrence and rainfall, and their results indicated that a rainfall duration of 1-12h is important in 

predicting the number of landslides and the antecedent rainfall also has some influence.    

This is because waterlogged soils increase in weight, and this effects slope stability (Crozier, 2010) 

(Walker et al., 2013) (Blonska et al., 2016). This can increase the likelihood of shallow landslides, 

which can happen in all climates. Due to the water balance on shallow soils which is controlled by 

infiltration of rainwater, unsaturated percolation and a response to the rise of groundwater during 

storm events (Asch & Van Beek, 1999). This means that in extreme weather prone areas, for 

example South Asia where the monsoon seasons have intense rainfall, or tropical cyclones can occur 

(storms) there is a greater likelihood of landslides to happen. Variations in the strength of the 

monsoon control the impact and likelihood of landslides in the Himalayan chain in Nepal (Peatley et 

al., 2007).      

As rainfall is the most common triggering factor of landslide occurrence, many government civil 

protection agencies use warning systems for landslides that are based on this interaction between 

landslides and rainfall (Martelloni et al., 2012). Rainfall and climate variations are used in literature 

for the definition of rainfall thresholds for the instigation of landslides (Segoni et al 2018). However, 

this paper argues that these empirical-statistical approaches ignore the physical relationships 
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between rainfall and the mechanisms of landslides, they neglect the local antecedent conditions and 

the role of the hydrological processes happening in the slopes at the time of hazard occurrence 

(Canli et al., 2018).   

Data-driven methods of landslide early warning systems evaluate the statistical relationships 

between the locations of landslides occurred in the past and landslide inducing factors – and then 

quantitative predictions are made for landslide free areas with similar conditions (Chae et al., 2017). 

Rainfall is the most important threshold in landslide early warning but has its difficulty in being used. 

This is due to the difficulty in assessing the effect of rainfall in the location as the failure depends on 

several factors, including the major one - heterogeneity of the soils. When thinking about using 

these thresholds it is necessary to analyse the relationships between soil properties and landslide 

triggering based on the physical and mechanical thresholds of each case (Chae et al., 2017).   

Within this review, there is a logical framework for the ‘SANF Early Warning System’ for rainfall 

induced landslides in Italy (Chae et al., 2017) (Rossi et al., 2012). This is a system that is based of 

rainfall thresholds, for forecasting possible rainfall induced landslides in Italy. More on this system in 

another section around landslide prediction systems. The rainfall threshold method of landslide 

early warning is well described in this paper and it does look ahead into the applications of 

thresholds in the future of prediction systems.   

Landslide Inventories  

Landslide inventories have been collected nationally and internationally for several years. Landslide 

inventories are systematically collected records that provide a comprehensive record of landslide 

events – and can be collected at the meso (global) or micro (local) scale for different timeframes. 

Landslide inventories are constructed to provide basic information about landslide incidences to be 

used in tools for modelling landslide susceptibility, hazard, and risk of an area (van Western et al., 

2006; Ghosh et al., 2020). Landslide inventories usually contain these basic things;  

1. Location and Extent – crucial for understanding spatial distribution (Malamud et al., 2004)  

2. Type and Size – These characteristics are useful when analysing landslide dynamics (Galli et 

al., 2008)  

3. Temporal Information – helps with understanding triggering factors (Harp et al., 2011)  
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4. Triggering Factors – Aids with the correlation of landslides to triggering events or cascading 

hazards (Kreuzer & Damm, 2020)  

5. Consequences and Impacts – property damage and lives lost are important to consider with 

vulnerability and DRR management (Guzzetti et al., 2012)  

It is important to collect this information within landslide inventories as it helps with many 

applications and models within landslide research and management. These include;  

1. Risk assessment and management – Identifying areas prone to landslide events (Tanyas et 

al., 2020)  

2. Land use planning and decision making – planning and policy decisions to mitigate risks in 

landslide prone areas (Trigila et al., 2010)  

3. Scientific research and knowledge building – understanding of landslide processes leads to 

the advancement of science in geosciences (Kirchbaum et al., 2015)  

4. Emergency response and recovery – providing detailed information about the area in the 

aftermath of events(Marc & Hovius, 2014)  

5. Public awareness and education – raising public awareness about the landslide hazards.   

  

Landslide Inventories are very hard to create, and Petley et al (2005; 2006) investigated this through 

investigations in Nepal. By beginning to investigate global risk of landslides by creating a global LSI, 

the researchers found that LSIs were increasing poor, underfunded and undermanaged (Petley et al., 

2005) (Petley et al., 2006).   

The largest international landslide inventory is the Cooperative Open Online Landslide Repository 

(COOLR) landslide inventory created by the National Aeronautics and Space Agency (NASA) in the 

United States (Kirchbaum et al., 2012). This was previously known as Landslide Reporter and the 

Global Landslide Catalogue (GLC). Other global inventories include large disaster databases like 

DesInventar, EM-DAT and other collected global events, such as the Global Fatal Landslide Catalogue 

(GFLC) from the University of Durham (Froude & Petley, 2018). National landslide inventories are 

available in almost all countries that experience landslide events, with a few of the poorer Global 
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South countries either having them, but not available for public download, or created and managed 

in the Global North.    

Landslide inventories are usually created or downloaded before the start of a research piece so that 

they can be used in conjunction with another dataset to infer a conclusion or create a tool. This 

research is looking at the available global inventories and what information is needed for them to be 

useful in the prediction of landslides. The current literature on global landslide inventories does not 

contain a standardisation of best practices on which information to record, how to record it and how 

to disseminate it. This has led to many different global landslide databases being produced, with 

gaps, missing information, and different coverages.   

When considering the future of landslide inventories, it is important to look at the current literature. 

The current literature when comparing the global inventories show a difference in coverage and 

information gathering (Dandridge, 2023). A paper by Gomez, Garcia & Aristizabal (2023) combined 

all four of the largest global landslide inventories to create the Unified Global Landslide Database 

(UGLD), which increased the global coverage, the landslide points, the data collected and other key 

factors. The four databases differed in many different aspects, however together they created a 

complementary harmony when combined (Gomez, Garcia & Aristizabal, 2023). This paper concluded 

that there was a need for continued work by many different institutions to provide a global landslide 

database, but due to a limitation around the culture of landslide data collection and other factors 

this was not currently a plan for the future (Gomez, Garcia & Aristizabal, 2023).   

Indian Landslide Hazards  

The Himalayan Mountain chain has had an increase in landslide events in recent decades. Some 

studies have suggested that there has been an increase in rainfall due to a warming climate, while 

others have suggested a more anthropogenic cause such as an increase in infrastructure like roads. A 

paper by Muñoz-Torrero Manchado et al., (2021) used remote sensing techniques to try to answer 

the question, due to the lack of sufficiently high-resolution regional landslide inventories. By creating 

a local landslide inventory using remote sensing, the team made an inventory of 26, 350 landslides 

between 1992-2018, and statistically analysed the results. The results showed that there was a 

strong correlation between the annual number of shallow landslides and the accumulated monsoon 

precipitation (Muñoz-Torrero Manchado et al., 2021).    

India has the most fatal landslides in the world (Froude and Petley, 2018) (Martha et al., 2021). 

India’s large size and high population density makes the location highly vulnerable to landslides that 
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have the most effect on the population. The monsoon driven seasonal system makes the possibility 

of rainfall triggered landslides more probable (Martha et al., 2021) and makes it hard to mitigate and 

manage the risks of landslides. The northeast Himalayas has the second most landslide occurrences 

in the entire Indian peninsula (Martha et al., 2021). South Asia is a global hotspot for landslide 

fatalities. There must be a focus on developing more reliable and comprehensive landslide 

inventories (Findan et al., 2024).  Global landslide inventories show potential for use with historical 

databases to forecast precipitation-based Landsliding in Darjeeling District, India. The effectiveness 

of these systems depends on regional calibration, local geographical and meteorological 

considerations, and integration of high-resolution data. This has been seen through various studies 

on this topic. Khan et al. (2022) built a system for landslide hazard assessment, which used satellite-

based systems for estimating landslide hazard, Teja et al. (2019) used an algorithm-based model for 

identifying precipitation conditions for landslides, and Segoni et al. (2021) used regional-scale 

landslide forecasting models which was calibrated by historical landslide data.   

Kirchbaum et al. (2009) evaluated global landslide inventories, and this research highlighted the 

limitations of global inventories when used in application for predicting landslides.  The paper stated 

that the global inventory was good for general information and location metrics but lacked adequate 

performance and sensitivity when observing the triggers around paring this with satellite 

precipitation products (Kirchbaum et al., 2009).  

The 2024 paper by Chen et al. is investigating the recurrent and persistent landslides in the Himalaya 

Mountain chain for the past 30 years. The findings show that large-scale understanding of landslide 

dynamics is lacking for risk mitigation, 86% of landslides are persistent and recurrent and 22% of 

landslide areas had at least 3 or more instances of landsliding over this 30-year period (Chen et al., 

2024). There were several factors for these landslide occurrences, including anthropogenic, climate 

and seismic. Chen et al. (2024) used a remote sensing-based methodology, using satellite images, 

daytime/nighttime imaging, topography and some reference data to train a machine learning model 

to map landslides in the mountains. It was then tested for accuracy using reported and manually 

mapped landslide datasets (Chen et al., 2024).  The researchers then looked at different time series 

analysis of the dataset, looking at how long vegetation took to grow back (persistence) and how 

many times the landslide moved (recurrence). The results concluded that there was a significant 

correlation between temporal variation of the South Asian Monsoon Index and new landslide areas 

in July and August. 55-86% of the landslide areas mapped were classed as persistent and 3-24% as 

reactivated (Chen et al., 2024). The model managed to identify not only areas that have increased 

landslide persistence and reactivation, but also decreases due to changes in policy, afforestation 
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efforts and law changes (Chen et al., 2024). The East Indian Himalayas has just over 50% of the first 

occurrence of landslides recorded before 1999, with the rest after that period. In this area 

persistence on average was below 5 years, and recurrence on average at 1 (Chen et al., 2024).   

Overall, this technique in using machine learning to map and analyse persistence and reactivation is 

a new and novel technique which has been made due to the need for a landslide inventory in this 

scale. The technique has identified 265,000 landslides across the mountain range and over the 30-

year period, something which has never been available (Chen et al., 2024).   

2.2 DRR and Landslide Early Warning  

2.2.1 DRR  

Disaster risk reduction is a discipline that looks at the disaster cycle usually surrounding an event 

that has created a risk to infrastructure, livelihoods or populations. These events are usually natural 

hazard events like flooding, heatwaves and landslides but can also be anthropogenic events like 

famine and war (UNDRR, 2017).     

DRR Cycle  

Disaster risk reduction requires ways to look at risks and hazards in a holistic way (UN, 2015). It is 

important to consider a multi-hazard approach to disaster risk reduction as events of multiple 

hazards triggering other types of hazards happen in a clustering way, and this can be within 

proximity, spatially and temporally which decreases a community’s response and recovery phase 

(Liu et al., 2016). Disaster risk reduction has a management cycle schematic which shows the entire 

process from the mitigation phase to the recovery stage after the event occurs (Figure 2.1).    
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Figure 2.1: The Disaster Management Cycle showing the phases (coloured quarters) and the events (within the arrow) that 

can be used to break down the ‘disasters’ process so that the different stages can be managed effectively (UNISDR, 2015).   

Early warning systems (EWS) can be one of the ways in which this information can be collated and 

used in management strategies for the mitigation and resilience of communities at risk. From Figure 

2.1, the EWS can be included in the mitigation and preparation stages of the DRR Management 

Cycle. For an EWS to work efficiently however, the science behind the forecasts and predictions 

needs to be skilful and understood by policy makers and politicians in charge to make the decisions 

once a warning has been issued or not.     

When conducting research into the usability of early warning systems there can be different skills 

tested using historical datasets. This type of testing is conducted within all early warning systems, 

predictions, and disaster risk management strategies where warnings based on predictions are 

issued. Contingency Tables can be used where there is a simple 2x2 matrix that can help visualise the 

performance of a system. An example of a contingency Table can be seen in Table 2.1.  
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Table 2.1: An example contingency Table  

  Forecasts  

Observations  Warning  No Warning  

Event  Hit  Miss  

Non-Event  False Alarm  Correct Rejections  

  

The contingency table can be used to count instances of hits (true positives), misses (false 

negatives), false alarms (false positives) and false negatives (correct rejections).  Within the context 

of landslide prediction using the I-D thresholds (See Thesis Section 4.5.2 Methods) and the ERA5 

precipitation hydrometeorological modelling (See Thesis Section 2.3 Precipitation Modelling) for 

prediction verification using historical landslide events the assumptions would be;  

• Hits (True Positives): Instances where the system correctly predicts a landslide (the ERA5 I-D 

pushes the rainfall event above the I-D threshold and a historical landslide occurred).  

• Misses (False Negatives): Instances where the system fails to predict an actual landslide (the 

ERA5 I-D rainfall event was not above the threshold but a historical landslide occurred).  

• False Alarms (False Positives): Occurrences where the system predicts a landslide, but none 

occurs (where the ERA5 I-D rainfall even is above the threshold but a historical landslide was 

not reported).  

• Correct Rejections (True Negatives): Occurrences where the system correctly predicts the 

non-occurrence of a landslide (the ERA5 I-D rainfall event was not above the threshold and 

there was not a historical landslide reported).   

Hits and misses are critical metrics when assessing an EWS and predictions, they can be seen as the 

successful elements of an EWS. The false alarms and correct rejections represent the error aspects 

of predictions, where they can represent the ‘trust’ that the practitioners and community have on 

the system. An accurate prediction is needed for mitigation of risk in any successful DRR 

management system. There is a balance which is achieved between the number of false alarms and 

the misses that needs to happen. This leads to established ‘accepTable’ rates of each of these in 

disaster risk reduction as the EWS needs to be both reliable and credible.   
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DRR Governance  

The DRR discipline is governed internationally and nationally. There are many different organisations 

related to DRR, including large international organisations like the United Nations Office for Disaster 

Risk Reduction (UNDRR) which chaired and created the Sendai Framework for Disaster Risk 

Reduction 2015-2030. This framework looked at 4 priorities in these 15 years;  

1. Understanding disaster risk  

2. Strengthening disaster risk governance to manage disaster risk  

3. Investing in disaster risk reduction for resilience   

4. Enhancing disaster preparedness for effective response and to “build back better” in 

recovery, rehabilitation and reconstruction.0  

The United Nations also investigates global sustainable development and in 2015 released a 

blueprint for peace and prosperity for all people and the planet. This blueprint has 17 goals at the 

heart of its structure, and these are called the Sustainable Development Goals (SDG). These goals 

are;  

1. No poverty  

2. Zero hunger  

3. Good health and well-being  

4. Quality education  

5. Gender equality  

6. Clean water and sanitation  

7. Affordable and clean energy  

8. Decent work and economic growth  

9. Industry, innovation and infrastructure  
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10. Reduced Inequalities  

11. Sustainable cities and communities  

12. Responsible consumption and production  

13. Climate action  

14. Life below water  

15. Life on land  

16. Peace, justice and strong institutions  

17. Partnerships for the goals  

These SDGs and the DRR discipline are highly interconnected. The Goal targets of 1, 2, 11 and 13 are 

in direct link to the discipline, with contributions from the discipline contributing to resilient 

infrastructure, fostering more effective institutions and more. There is a systemic risk to 

communities and the sustainability of these communities, and so DRR must be integrated into 

policies and programs to reduce risk to other systems. SDG Target 11.5 clearly states that by 2030 

there will be a significant reduction in the number of deaths caused by disasters (UNDRR, 2015).   

This Sendai Agreement along with the UN’s Sustainable Development Goals frame the national 

governance frameworks for many countries.   

  

CRED – Centre for Research on the Epidemiology of Disasters.  

CRED is an organisation from the Universite Catholique de Louvain that looks at Natural Hazards and 

the consequential Disasters which happen after the hazard. It is an organisation that is a reference 

organisation in the field of disaster and emergency. CRED manages the EM-DAT database, which is 

used to quantify the many different natural hazards and technological disasters. The two main 

publications from CRED which have applicability to this research is the 2015 ‘Human cost of 

weather-related disasters 1995-2015’, and ‘The human cost of disaster: and overview of the last 20 

years (2000-2019)’ published in 2020. These two reports discuss the trends of disasters over a long 

period of time (10 years or 20 years) and make recommendations about how the future of DRR 
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management could be to combat the impact of these disasters by the community (UNDRR, 2015; 

UNDRR, 2020). The findings from these reports discussed that over 90% of the disasters have been 

weather related (floods, storms, heatwaves) worldwide, with an increasing exposure of people and 

economic assets leading to higher economic losses (UNDRR, 2015). The reports agree that better 

management and use of EWS could save lives and economic loss, leading to fewer disasters being 

registered on the EM-DAT database.   

The CRED reports show that India is one of the ‘hotspot’ countries for climato-meterological 

disasters, with only China and the USA being within the same category.  The hazards themselves are 

divided into categories with (wet) landslides grouped in with hydrological hazards. Landslides overall 

come in as the 5th most occurring natural disaster (UNDRR, 2015).  Landslides were attributed to 

killing some of 20,000 people over the period of 1995-2015, with 8 million people affected over this 

period too (UNDRR, 2015). In India 62,325 deaths (3 per million inhabitants) were recorded over the 

20-year period too, making it the second highest death toll recorded on EM-DAT.    

How does this relate to my work?   

Weather related disasters are the majority of disasters as shown by the reports by CRED. These 

disasters are set to increase due to climate change and the increase in extreme weather. This means 

examining rainfall triggered landslides for landslide prediction is in the best interest for mitigating 

landslide triggered disasters, loss of life and costs. However, using CRED data and reports to discuss 

landslide events is problematic, due to the criteria for CRED (UNDRR, 2020) and thus EM-DAT to 

record them is;  

• 10 or more people killed  

• 100 or more people affected   

• Declaration of a state of emergency  

• Or a call for international assistance.  

Despite this, EM-DAT and CRED reports are a valuable resource for understanding the overall trends 

of natural hazards and disasters, and we can infer that if extreme weather and weather related 

disasters are increasing, then weather triggered natural hazard events are increasing too, including 

rainfall-triggered landslides. India has been highlighted as one of the top 3 countries for disasters, 
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and second highest death toll, and so working within this site makes sense to try and reduce the 

number of disasters overall.   

National Governance  

Looking at the way national startergies are used within these remits under DRR management 

strategies is a useful way of understanding how these are utilised in a practical way. 

 

UK Foresight Review  

The UK Foresight Review is part of the UK Government’s Office for Science and has an objective of 

advising the government on policies surrounding the uncertainty of future decisions. It is led by the 

Government Chief Scientific Adviser who reports directly to the Prime Minister and the Cabinet 

Secretary (Foresight, 2012). The UK Foresight Review is a summary of Foresight’s programme of 

work for 12/13 and includes completed and current projects for the timeline, the Horizon scanning 

programme and the future of food and farming. There is also a section of the report designed to 

evaluate the impact of past projects and their impact on coastal and flash flooding. This report is a 

direct output of an objective to provide understanding of the development of effective strategies, 

policies and priorities at a national and international level (Foresight, 2012). The other objectives of 

the project is to build a comprehensive evidence base for major issues looking 10-80 years into the 

future, provide shorter projects to fill gaps in current policy and the Horizon Scanning Centre which 

provides training, toolkits and networks to strengthen capacity and best practice (Foresight, 2012).  

Within this Foresight review and programme, there is an entire section on reducing risks of future 

disasters. This is due to the uncertainty surrounding the changing climate, growing natural hazards 

and man-made disasters. The report states that the impact of these disasters, even if felt 

predominantly in the Global South, will have repercussions for global trade, commodity prices and 

security (Foresight, 2012). The project concluded that disaster and death should not be the 

ineviTable consequences of natural hazards and instead it is possible to stabilise disaster impacts if 

science can be used more effectively. The report states that it will require a new approach and 

culture to reduce these risks (Foresight, 2012). The new approach should include;  

• Improved forecasting of natural hazards  

• Improved information about vulnerability to hazards   

• And improved evidence on what actions are effective in reducing disaster risk.  
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As part of this report, there was also a section on migration and global environmental change. This 

area of the report highlighted changes in environmental conditions that contributed to rising natural 

hazard incidences. This led to another project looking at flood and coastal defence – something 

which is very important to the UK government as flooding is the primary natural hazard in this 

country.   

How does this relate to my work?   

The importance of this report on my work is that governments are already looking at how disaster 

risk reduction management can be implemented to reduce impact on the global population. This 

includes highlighting the importance of creating a next generation of complex infrastructure like 

satellites and supercomputers to run forecasting models. Large scale reports like this confirm that 

researching prediction and forecasting technologies is important for the future of DRR and reducing 

impact to global communities (UNDRR, 2007.).    

Early Warnings 4 All  

Established in 2022, the UN’s initiative called ‘Early Warnings for All’ (EW4ALL) has a goal to ensure 

that every citizen on the globe has access to early warning systems to be protected from hazardous 

weather, water or climate events (UN, 2023). This vision has been laid out in an ‘executive action 

plan’ which looks at the period of 2023-2027. This has been indicated as an issue of importance as 

the UN states that 1 in 3 of the global population (mostly from the Global South) has inadequate 

access to multi-hazard early warning systems. The UN Secretary General has endorsed EWS to save 

lives and provide preventative financial support to the globe. This initiative aligns with the Paris 

agreement, supports targets form the Sendai Framework for Disaster Risk Reduction and contributes 

to the 2030 Agenda for Sustainable Development. The initiative is built on four pillars:  

• Disaster risk knowledge and management  

• Detection, observation, monitoring, analysis and forecasting  

• Warning dissemination and communication  

• And Preparedness and response capabilities.   

These four pillars encompass things like the data and tools needed to generate EWS products, 

capacity building for impact-based warnings, ensuring that countries have national 

hydrometeorological plans, have access to innovative forecasting and prediction applications, the 
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creation of preparedness action plans and risk mapping, and the development of standard 

operational procedures that are people centred (UN, 2023). The pillars are managed by 

organisations such as the UNDRR, the WMO and the IFRC.   

Since the development of this initiative, the 2023 Global Status of Multi-hazard Early Warning 

Systems report revealed that 101 countries reported having an EWS, which means that this Figure 

has doubled since 2015.   

There have been some critical insights from literature on this initiative. The initiative requires that 

there are the tools, knowledge and capability for creating and distributing the warnings, however 

the focus if the aim is early warnings for all then the people who receive these warnings should be at 

the forefront of the research. Early warning systems call this step the ‘last mile’ of the process, but it 

has been criticised that this ‘last mile’ should be the ‘first mile’ (Kelman & Mercer, 2023) (Kelman & 

Fearnley, 2024). The warnings and tools that are being developed need to have inference from the 

people they are designed for, otherwise it is unknown what the need and use is for. For example, if 

the message is a warning for a lahar, but the word lahar is unknown by those receiving the message, 

how are the users going to prepare for this? Can the users stockpile supplies if they’re living in 

poverty? These questions are raised when the EWS are meant for ‘all’ of society. Inclusivity in EWS 

has been discussed by Fearnley (2023) who discussed this as 5 elements;  

• integration of inclusivity from the first mile  

• building capacity development and outreach   

• expanding inclusivity by raising awareness  

• building a local and national system  

• and practical action for the future  

These elements are designed to include and involve everyone in the design of warnings and draws 

elements from the ‘Designing Inclusive and Accessible Warning Systems: Good Practices and Entry 

Points’ report by the UCL Warning Research Centre (Yore et al., 2023).   

The current way of thinking about EWSs as an end-to-end linear process is flawed and instead should 

be thought of as a multi-point, multi-pathway feedback loop (Kelman & Fearnley, 2024). All aspects 

of the hazardous conditions should be considered when warning a population – and this should 
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affect the advice given, and the lead time of each advice given. Flash flooding, and tornadoes for 

example have different lead-times, different advice and different needs for the population, but if 

they happen simultaneously what advice should be followed, and can the population follow the 

advice if they’re disabled, poor, or a minority persecuted? (Kelman & Fearnley, 2024).   

Overall, the initiative is a fantastic idea and has a clear objective of what is ideal, however when 

catering for a vast variety of different people, with different needs and knowledge more careful 

thought and consideration needs to be made.   

How does this relate to my work?   

When considering landslide prediction systems, we must decide if they’re needed by society, and 

where they would fit in the overall DRR and EWS landscape. Currently there are no global landslide 

prediction systems, and no operational local landslide prediction systems available for this to 

available for EWS in areas at risk of landslides. Even if they were available, would they be used and 

needed by the people affected? I think that for there to be warnings for all, there has to be a 

comprehensive tool base for making warnings and impact-based decisions. Thinking about the ‘last 

mile’ first, I can see that having a system that is based on predictive events could increase lead time, 

which can then create opportunities for society to create action plans relevant for the society. 

Increasing the lead time on landslide events, especially those like fatal rainfall-triggered landslide 

events, is something that would have a direct link to saving lives.   

2.3 Precipitation Modelling  
 

Use of ECMWF global products in other hazard EWSs 

In Vitolo, et al. the authors are trying to contribute to the goal of creating a Multi-Hazard Early 

Warning System (MH-EWS) platform (2019). This 2019 paper proposes four information layers for 

this MH-EWS platform that will help responders and decision makers concisely and quickly highlight 

the possibility of upcoming concurrent natural hazards. These four information layers were created 

with the use of medium-range (3-15 days) forecasts from the European Centre of Medium-range 

Weather Forecasts (ECMWF). These layers considered hazard indices and datasets that included: 

weather forcing, wildfire danger and heat stress. There was also a three-step modelling workflow 

process that was: 1. calculating the daily climatology, 2. mapping of multi-hazard hotspots for past 

and future dates using reanalysis and medium-range forecasts and 3. mapping of the probability of 

occurrence of future simultaneous hazards using ensemble forecasts (Vitolo et al., 2019). The 
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creating of hotspot maps is from analysing different maps and the spatial overlay of the forecasted 

hazards indices and the relevant climatology on the given date of creation. This was done with a 

methodology that includes creating binary maps where cells generated a 0 or 1 value depending on 

if the forecasted value of the hazard was above a threshold (Vitolo et al., 2019). These binary maps 

are then summed up as pairs and the cells are given different values depending on if they have no 

hazards present (0), only fire hazard (1), only heat stress hazard (2) or both hazards are present (3).   

The 2016 paper by Coughlan de Perez et al. develops a system that defines a forecast probability 

that can be used by decision makers to trigger humanitarian action. It uses global tools such as 

ECMWF’s GloFAS river discharge data to trigger the warnings. Another interesting aspect of this 

journal is that the study area in Uganda only has one reporting point and so is considered data 

scarce. This is similar to this project’s study sites in India and Nepal. The triggering forecast used by 

Coughlan de Perez et al. is given a constraint of acting in vain for less than 50% of the time. This 

project will be using contingency Tables and hit/miss ratios and so this paper shows how that 

information can be used in a practical application for research.   

 

There are positives to take from these papers and their research. Their methods show that the 

spatial comparison and grouping of two hazards can be done for a multi-hazard warning system, and 

that medium-range forecasting can give the needed datasets for this work to be completed. These 

conclusions mean that the project on Flash Flooding and Landslides using global tools to evaluate 

and create a warning system tool for decision makers can be done and could be potentially used in 

disaster risk reduction management by decision makers, making it a valuable tool for operational 

levels. There are limits within these two papers that also relate to the project. These are the use of 

archived reports for the validation of past hazard events. Vitolo et al. uses news reports to validate 

the past hazard events with the hotspot and mapping products they create for the European 

Summer 2017 (2019). The 2016 paper by Coughlan de Perez et al. also uses media as part of their 

analysis, and the authors used a data mining technique that looked to sort the newspaper reports 

into current, past, mixed and unrelated flood hazards. 15% of these news articles were false 

positives. This meant that the news text was describing something which was not actually a flood 

(Coughlan de Perez et al., 2016). There are other limits to using media archives for creating a dataset 

used in scientific research that has been detailed in other journals. Some of these limits include: 

Language barriers, false negatives, cost of time for manual verification of events, loss of information 

through lack of public engagement with certain platforms that differ for each country and truth of 

sources (Velev & Zlateva, 2012) (Middleton et al., 2014) (Albuquerque et al., 2015). This project is 

also using archived data. This is primarily used for the landslide occurrence dates because there is a 

significant problem within landslide inventories where they do not hold this type of information. 
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Using this methodology to acquire this information will help to verify the use of global tools for 

future prediction of hazards in the study area.    

 

Precipitation Modelling in Landslide Science 

Precipitation modelling is being increasingly used within landslide science (Gariano & Guzzetti, 2016) 

(Segoni et al., 2018).  Landslide science extensively leverages precipitation modelling to predict and 

mitigate landslide risks (Segoni et al., 2018). Intense or prolonged rainfall is a primary trigger for 

landslides, as it increases soil moisture, reduces cohesion, and destabilizes slopes (See Thesis 

Section 2.1 Landslide Hazard). By integrating precipitation forecasts with geotechnical models, 

scientists can identify areas prone to landslides and issue early warnings (Borga et al., 2011). 

Precipitation models simulate rainfall patterns and intensity, crucial for estimating the saturation 

levels of soils in susceptible areas. Advanced tools like Weather Research and Forecasting (WRF) 

models and machine learning techniques enhance the spatial and temporal resolution of these 

predictions. These models are often integrated with Geographic Information Systems (GIS) to 

overlay rainfall data on topographical maps, highlighting critical risk zones (Reder & Rianna, 2021). 

Furthermore, coupling hydrological models with real-time precipitation data enables dynamic 

monitoring of landslide risks, especially in regions experiencing extreme weather events linked to 

climate changing. 

The use of reanalysis datasets such as ERA5 from the ECMWF, MERRA-2 from NASA, and the CFSR 

from the US National Centres for Environmental Prediction, for landslide prediction has shown 

promise but also significant limitations. Studies utilizing ERA5-Land data have demonstrated its 

ability to improve statistical correlations between rainfall and landslide events, yet its coarse spatial 

resolution often fails to capture localized precipitation extremes critical for triggering landslides 

(Botto et al., 2025). Similarly, MERRA-2 has been employed for hydrological estimations of 

landslides, but its daily rainfall estimates may not sufficiently capture short-duration, high-intensity 

rainfall events that are key to landslide initiation (Palazzolo, 2023). While ERA5 precipitation data 

has been useful in reconstructing rainfall histories, its applicability is constrained by the lack of 

comprehensive landslide inventories, limiting predictive accuracy (Reder & Rianna, 2021). The 

reliance on retrospective datasets means that real-time early warning applications remain 

challenging.  

 ERA5, the reanalysis dataset by the European Centre for Medium-Range Weather Forecasts 

(ECMWF), is widely used in landslide-related projects. It provides global, high-resolution data on 
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precipitation, temperature, and soil moisture, essential for understanding landslide triggers. Projects 

like the Copernicus Emergency Management Service and the Landslide Hazard Assessment for 

Situational Awareness (LHASA) model rely on ERA5 to analyse past events and improve hazard 

forecasts. Its historical data supports identifying trends and correlations between rainfall and 

landslides.  

ERA5 is the ECMWF’s reanalysis product released in 2020 for public use and includes the data from 

the dates of 1950 to the present. It provides hourly estimates of different climate, earth and ocean 

variables. The variables are created by combining historical observations into global estimates using 

data assimilation and advanced modelling techniques. Some of the observations come from satellite 

data (e.g. satellite radiances from infrared and microwave, or satellite altimeter data) and in-situ 

data provided by the WMO WIS (e.g. drifting buoys, ground-based radar and wind profilers) 

(Hersbach, 2020). More detailed information about the data assimilation and advanced modelling 

techniques can be found in the ERA5 documentation on ECMWFs Confluence system (ECMWF, 

2025).  

The resolution of the ERA5 reanalysis dataset creates limitations at simulating the frequency of daily 

precipitation intensities in mountain areas due to ERA5’s variations of the diurnal cycle. ERA5 is 

relatively good at simulating the intensity of the rainfall but does not show the exact location of 

this(Lavers et al., 2022; Paranunzio & Marra, 2024).   

ERA5 total precipitation measurement has a known issue called ‘the drizzle effect’ in the modelling 

community. This effect is the tendency of climate models to model excessively frequent and weak 

precipitation events (Gutowski et al., 2003; Adinolfi, 2023). The adoption of a 1mm threshold is 

usually considered to be best practice when discriminating between dry and wet days when 

mitigating this issue (Adinolfi, 2023). This issue is especially noticeable in areas that suffer from high 

precipitation and is noticed among many different climate models, and not just ERA5 (Light et al., 

2022). This effect is eclipsed by the improvements seen in ERA5 from ERA-Interim and so the 

adoption of the 1mm threshold discussed before is seen as a small inconvenience for such large 

increases in skill (Hersbach, 2020). ERA5 performs well against other more recent modelling 

products like the Indian Monsoon Data Assimilation and Analysis (IMDAA) produced by the IMD and 

the UK Met Office in terms of capturing monsoon onset and withdrawal dates and correlation to 

monsoon rainfall in general, however in finer details and extreme events it can be outperformed 

(Rani et al., 2021; Singh et al., 2021).   
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ERA5 data has been applied in several landslide-related projects. For example, it was used in 

developing hydrometeorological thresholds for landslide prediction (Melillo et al., 2018). The ERA5-

Land dataset, with high-resolution soil moisture and rainfall data, aids in identifying critical rainfall-

triggering conditions by reconstructing precipitation events leading to slope failures. This supports 

tools like the CTRL-T (Calculation of Thresholds for Rainfall-Induced Landslides) model, which 

integrates soil moisture data at multiple depths to assess landslide risks dynamically (Melillo et al., 

2018)  

Using ERA5 as a way of historically mapping landslide triggers is useful for making a prediction 

system. Using ERA5 and seeing how it performs can identify regions with frequent landslide-

triggering rainfall, can establish a precipitation threshold for landslides. This can eventually be used 

for imputing historical triggers into prediction systems, or basically training the system, which can 

then use real-time or forecasted weather data to issue landslide warnings. Over a long historical 

period, using datasets like ERA5 could also look at the landslide trends in a climate change context, 

perhaps being able to create scenario-based modelling to evaluate future risks based on historical 

triggers. The use of ERA5 for calibrating and validating models that predict landslide occurrences 

based on the rainfall thresholds from the historical analysis. This type of analysis has been done for 

different projects. For example, the GloFAS system combines ERA5 data with hydrological modelling 

to monitor and predict global flooding (Copernicus.eu, 2024) and has been used to study the 

intensity and frequency of heatwave (Brimicombe, 2023), helping to identify trends and assess risks 

under changing climate conditions. However, ERA5 is not perfect. ERA5 suffers from a precipitation 

bias, especially in areas with complex topography.  For example, in Poyang, China ERA5 had a 

significant overestimation of precipitation (Yan et al., 2024). ERA5 is also spatially coarse, which 

means in areas that have variability within these grid squares (like the study area) it can be quite 

insufficient (Harrigan et al., 2020). ERA5 has a dependence on atmospheric data assimilation too, 

which can create challenges with surface level variables accuracy (Tarek et al., 2020).   

2.4 Intensity Duration Thresholds  

Landslide intensity-duration (I-D) thresholds are crucial for understanding and predicting landslide 

events. Specifically shallow precipitation triggered landslides like those described in Thesis Section 

2.1 Landslide Hazards. This is also specifically important for this research, as the research site is 

predominantly shallow monsoon (precipitation) based landslide hazards (See Thesis Section 3.0 Site 

3.4 Landslide hazards and landslide triggers). I-D thresholds define the minimum rainfall intensity 

and duration necessary to initiate landslides. Rainfall intensity refers to the rate at which rain falls 
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during a period of precipitation and is typically measured in millimetres per hour (mm/h). Duration is 

the period over which the rainfall occurs and is usually measured in hours or days (Iverson, 2000; 

Guzzetti et al., 2008). I-D thresholds are therefore a combination of these two factors, forming a 

critical boundary: below the boundary, the probability of landslide event is low, and above the 

boundary the likelihood of landslide even significantly increases. Empirical methods have been used 

to establish these thresholds. These involve analysing historical data of landslide and precipitation 

records to identify the minimum intensity and duration values associated with the landslide events. 

These I-D thresholds vary across different geographical locations due to the other factors that 

influence landslide susceptibility like geology, land use, topography, soil properties and local climate. 

There have been many different studies on I-D thresholds conducted globally (Guzzetti, Peruccacci, 

Rossi, & Stark, 2008) and locally, including locations like Nepal (Dahal & Hasegawa, 2008), Belgium 

(Van de Vyver, 2015), Italy (Guzzetti et al, 2007), South Korea (Kim, Chun, Kim, Catani, Choi, & Seo, 

2020), India (Dikshit et al., 2019), Taiwan and Colombia (Marín, 2021). I-D thresholds in India have 

also started to be researched as numerical-model derived I-D thresholds, with a case study 

conducted in a Northwestern Himalayan catchment area by Dixit et al., (2023) Understanding I-D 

thresholds can help researchers predict, manage, and mitigate landslide risks within a management 

plan and early warning system.   

Indian I-D thresholds have been calculated by researchers, and span the geologic conditions of the 

country that experience many landslides, like the lower mountainous Kerela region (Naidu et al., 

2018), the Northwestern Himalayas in Uttarakhand (Saha & Bera, 2024), and in the study area of this 

thesis, the North Eastern Himalayas regions of Darjeeling, Kalimpong and Sikkim (Dikshit et al., 

2020).    

Combining I-D thresholds with modelled precipitation databases like ECMWF’s ERA5 have only 

limited conducted experimentation. A paper by Bezak et al., (2019) presented a methodology for 

predicting precipitation triggered landslides based on a conceptual hydrological model, which 

demonstrated an approach that could be potentially adapted for use with ERA5. The paper looks at 

landslide incidences in Slovenia, where they use 20 landslides to calibrate and evaluate the 

methodology they propose. They use three different I-D thresholds in their verification; local, 

regional and global I-D thresholds.   

The idea of combining hydrological models to I-D thresholds has been considered within some 

papers, however. Bogaard & Greco (2017) discuss the importance of hydrological information in 

addition to precipitation characteristics in landslide early warning systems.  Wu et al., (2015) made a 
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simplistic physical model which uses the Mohr-Coulomb law and Darcy’s Law, which could be 

applied with integration of models like ERA5. Guzzeti et al., (2008) in their global database of I-D 

thresholds and relationships discuss that the database they have complied could be useful when 

used in conjunction with hydrological models.   

 Bogaard & Greco (2017) and Guzzeti et al., (2008) do point out some systematic errors that could 

occur when using hydrological models, such as lack of constraints on rainfall event durations. This is 

discussed in the next section based on ERA5 and its applicability in conjunction with I-D thresholds.   

I-D thresholds have been calculated in Kalimpong (Dikshit & Satyam, 2018; Teja, Dikshit & Satyam, 

2019) and Sikkim (Sengupta, Gupta & Anbarasu, 2009; Harilal et al., 2019). These I-D thresholds are; 

I=3.52D-0.41 in Kalimpong (Dikshit & Satyam, 2018) or E = (4.2 +/- 1.3) D(0.56 +/- 0.05) (Teja, Dikshit & 

Satyam, 2019) and I= 100 D-0.92 or I=43.26 D-0.78  for Sikkim.   

The difference between the I-D thresholds in Kalimpong and Sikkim are very different. Darjeeling is 

closer to Kalimpong than Sikkim, and so the Kalimpong threshold will be used in this study. The 

global I-D threshold is much higher and flatter than both Sikkim and Kalimpong I-D thresholds. The 

different thresholds including this global threshold can be seen in the Figure 2.10 below.  

 

Figure 2.2: Comparison of different ID thresholds in the Himalayas with the Global ID threshold from Caine, 1980 
(Dikshit et al., 2020). 
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2.5 Landslide Prediction Systems  

The current literature surrounding the prediction of precipitation triggered landslides in Darjeeling 

District India is sparse, and prediction of these types of landslides with intensity-duration thresholds 

in conjunction with ERA5 in this district non-existent in this area and has only recently started to be 

attempted in Italy as a first for the globe (Palazzolo et al., 2023). There have been some studies using 

ERA5 within some forms of landslide prediction, for example in the US for identifying initiation 

thresholds (Mirus, et al., 2018), or in Italy using the ERA5 Soil Moisture data to improve the 

established shallow landslide forecasting (Marino et al., 2020).   

Landslide prediction and the rates for performance evaluation has been discussed in some papers. 

Intrieri & Gigli (2016) discussed landslide forecasting and the factors that influence predictability. In 

this paper they presented a methodology for increasing the confidence of landslide prediction and 

addressed the challenges in balancing accurate predictions with the consequences of false/missed 

alarms. They proposed a ‘predictability index’ where they evaluated the methods they proposed, 

where points were awarded for the variance of prediction points around the time of failure (Intrieri 

& Gigli, 2016).  There are other papers that look at the contingency Table and subsequent rates for 

evaluation. For example, a paper by Ho & Lee (2017) did a performance evaluation of a physically 

based model for shallow landslide prediction where they achieved a probability of detection rate of 

1.00 and a false alarm rate lower then 0.25, which made it a promising application for shallow 

landslide early warning.   

  

Landslide Prediction Systems (Using Rainfall Thresholds)  

Italian SFER  

The Italian SFER (Stochastic Finite-Element Response) system is an advanced computational tool for 

landslide prediction, combining geotechnical engineering and probabilistic analysis. SFER models the 

response of slopes under various stress conditions, accounting for complex interactions between soil 

and water. It uses stochastic simulations to incorporate uncertainties in material properties and 

environmental factors, enhancing its predictive accuracy. Applied in real-world cases such as the 

Vajont Valley disaster of 1963 (Petley, 2013) and the Campania landslides (Catani et al., 2005), SFER 

has been instrumental in early warnings, reducing loss of life and property. By integrating monitoring 

data with simulations, it supports decision-makers in risk assessment and disaster mitigation 

planning.  
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In the Indian Himalayas, prone to frequent landslides due to monsoons, earthquakes, and 

deforestation (Kumar et al., 2020), a system like the SFER system could be adopted revolutionize risk 

management. By adapting its models to local geotechnical conditions, it could provide early 

warnings for vulnerable areas. Integration with community-based monitoring and local 

infrastructure projects would ensure tailored, actionable insights, potentially saving lives and 

reducing economic losses.  

Slovenian MASPREM  

Slovenia is susceptible to shallow rainfall triggered landslides and since 2011 have been trying to 

create a landslide early warning system that is predictive in nature. This system is based on 

susceptibility maps, landslide triggering rainfall thresholds and a precipitation forecasting model. 

These are at a national scale (1:250,000) and a regional scale (1:25,000). The landslides in this model 

are overpredicted and do not correspond to the landslide inventory, however the system captures 

crucial factors when determining landslide location (Jemec Auflič et al., 2016). A conceptual model of 

this system can be seen in Figure 2.3.   

 

Figure 2.3: Conceptual Model for modelling the Slovenian landslide hazard forecasting system (Jemec Auflič et al., 
2016). 

The forecasting system uses rain thresholds that are based on the lithostratigraphic unit within 

Slovenia and gets its rainfall forecasts from ALADIN/SI over a 72hr period. The uncertainty with using 
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this model comes from the landslide susceptibility model (lowest uncertainty), the rainfall triggering 

values (medium uncertainty) and the precipitation forecast data (highest uncertainty) (Komac, 

Šinigoj & Jemec Auflič, 2014).   

How does this relate to my work?  

This relates to my work as I am looking at using historical landslide data and reanalysis datasets to 

investigate if ECMWF products could potentially be skilful for future rainfall prediction systems to 

predict landslides in India. I’m starting out by using reanalysis and not the EPS but it will show if 

ECMWFs global system can identify historical rainfall triggered landslide events.   

2.6 Future of Landslide Science  

There is no doubt that international cooperation and efforts within the DRR discipline creates more 

opportunity for impactful work and positive effects. Landslide science has lots of promising scientific 

communities coming together to try and answer some of the big landslide questions moving 

forward, including around landslide prediction. One of these collaborative efforts is LandAware.  This 

association is an initiative to collaborate and share experiences, needs and innovations in landslide 

early warning through 8 different working groups.   

• Glossary & Catalog of LEWS (WG01)  

• Communication-Networking (WG02)  

• Communication with stakeholders (WG03)  

• eLearning (WG04)  

• Innovations (WG05)  

• LEWS Data (WG06)  

• Operational LEWS (WG07)  

• And IoT-based methods and analyses (WG08)  

LandAware have started this endeavour with a glossary and catalogue of LEWS, with the hope that 

by creating the glossary LEWS practitioners can all begin to use the same terminology when 

describing their technologies, their innovations and their experiences with each other. This glossary 
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includes terms like ‘advisory’ ‘alert’ and ‘disaster’. An example of the glossary can be seen in Table 

2.2.   

Table 2.2: Snapshot of the LandAWARE glossary (LandAWARE, 2024) 

  

  

2.7 Research Questions  

The research questions that this thesis will be investigating are:  

1. What freely available global and national landslide inventories are available for researchers 

when researching Darjeeling, India?  

a. Are the landslide inventories identified fit for use when validating historical reforecasting of 

precipitation triggered landslides in Darjeeling, India?  

2. Can historical precipitation triggered landslides in Darjeeling, India be identified with the 

global scale reanalysis precipitation dataset ERA5, and established Intensity Duration 

Thresholds?  

a. Is there statistical significance in the skill of identifying historical landslides in Darjeeling, 

India using ERA5?  

b. Will this mean that global models can be used in areas that are data poor?  

c. What are the future considerations when using models in this way in the future?  
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These research questions have been identified from gaps in the literature. Research question 1 is 

tackled in Thesis Section Research Chapter I: ‘Data’ and research question 2 is tackled in Thesis 

Section Research Chapter II: ‘Application’.   

 

 

 

 

 

 

 

Chapter 3: The Study Area 

This section introduces the physical characteristics of the selected study area and provides 

background context of the history of the region and the geopolitical significance of the region to 

current geopolitical affairs. The site information has been introduced this way because I think that it 

is important to include not only a technical site evaluation and investigation but also include the 

historical and geopolitical significance of the country and area that is of particular interest. This is 

due to the relationships, partnerships and project partnerships that are formed within international 

projects, and the interaction that researchers can have with stakeholders when interacting with them 

either home or away. Having a broad understanding of this especially in post-colonial countries is an 

important aspect of the research for any researcher crossing the Global North-Global South divide 

and has far reaching consequences around the project. My overall hope is that with a background 

relating to both disciplines it will become apparent that when researchers consider both sides of the 

coin, then they can work with consideration, care and equipped with knowledge needed to work 

within post-colonial organisations.  

 For more information on this outlook see Thesis Section 1.2 Introduction: Scope and Aim of this 

Study.  
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3.1 South Asia  

 Introduction to South Asia  
South Asia is a diverse geopolitical, geological and geographic area of the world, and the uniqueness 

of the study area makes researching DRR and landslides a very interesting prospect. To introduce the 

area for any readers that are unfamiliar with the area, a brief introduction to the location, geology, 

climate conditions and the study area in general will be presented before showing the importance of 

the study area to rainfall triggered landslides.  

South Asia’s global positioning is due to tectonic movements that occurred after the breakup of 

Pangea the supercontinent over 200 million years ago. Around 50 million years ago two tectonic 

landmasses, the Eurasian plate and the Indian Plate collided. Both plates have a similar plate density 

and so subduction could not occur. The pressure of the plates led to mountain building processes, 

creating the large mountain range called the Himalayan Mountains. Movement in the Himalayas still 

occurs today, with the mountain range increasing in height 1cm every year (BGS, 2025).  

 

 

Figure 3.1 : A geopolitical view of South Asia (Hosain et al., 2022) 
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Geopolitically, South Asia consists of 8 countries: Afghanistan, Pakistan, India, Nepal, Bangladesh, Sri 

Lanka, Bhutan, and the Maldives (Figure 3.1). The South Asian Association for Regional Cooperation 

(SAARC) was established in 1985 to help the countries stay united in economic cooperation. India 

has the largest population of these countries, with Pakistan second, and Bangladesh third (United 

Nations, 2022). 

   

The geology of South Asia is diverse and has a long geological history of their formation. Due to the 

uplift of the plates at the Himalayas, layers that would have been lost due to subduction or kept 

underground can be seen and studied.   

 

Figure 3.9 is a geological map of the study area and shows some of the diversity that is contained 

even within a small locality. The terrain within the Himalayas is prone to geological hazards as it is 

tectonically active and has variable topographic characteristics. Landslides dominate the natural 

hazards which occur in the Himalayas, which cause a vast variety of loss; economic loss, loss of life, 

livelihood loss, infrastructure loss and biodiversity loss (Mathew et al., 2013). South Asia has a 

history of strong and powerful earthquakes, leading to large loss of life. In 2004, there was a 9.1M 

earthquake, and in 2005 a M7.6 earthquake that resulted in the greatest number of casualties in 

South Asia relating to earthquake events (IDMC, 2012). Not only geological types of natural hazards 

happen in South Asia, but other natural hazards occur here too. These include; cyclones (Hossain & 

Mullick, 2020), floods (Azeem, 2023), drought (Kafle et al., 2023) and avalanches (Acharya et al., 

2022). 

 

 India 
The Indian subcontinent is dominated by a monsoonal climatology (Faluga & Wang, 2022). This 

monsoon period is usually defined as occurring between the months of June and September due to 

the consistent pattern of rainfall observed historically and is an important phase of the year for India 

as it has a critical impact on the region’s climate, agriculture and economy. This is because the region 

receives around 75-80% of its annual rainfall within these four months of the monsoon season (Saha, 

2023). The monsoon when it begins, is called the ‘onset’ and usually begins in early June, at the 

southern end of the Indian subcontinent beginning with the South state of Kerala and gradually 

progresses northwards.  
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Figure 3.2: The advance of the 2022 monsoon season (IMD, 2022).   

 

The 2022 monsoon onset calculated by the Indian Metrological Department (IMD) is shown in Figure 

3.2. The IMD have shown the normal dates of the monsoon, as taken from the historical dates from 

previous onsets, and the actual date of the 2022 onsets. Not only is this a good illustration of how 

the monsoon advances throughout the Indian subcontinent, but it also shows how the onset has 

changed overtime due to climate change (Sandeep et al., 2023). The changes show that the onset is 

starting slightly earlier than normal, and advances to the northern areas earlier than in previous 

years. These dates are very important for the Indian population as the predictions for these dates are 

relied on by farmers for the economy and for food security and is important for government for the 

DRR management strategies and water management strategies in India (Datta et al., 2022). It is 

through this predicTable change in the climate that industries that rely on rainfall, such as agriculture 

can plan for future events and harvests. This predicTable nature of the monsoon also helps people to 

plan for impacts of the monsoon such as floods, drought and landslides (Nanditha & Mishra, 2021).   
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Figure 3.3: A Schematic of the warm and cool air relationships between the land and ocean driving the monsoon rains 

in the Indian Subcontinent (Foo, 2013) 

The Indian monsoon is driven by a relationship between the atmosphere and the ocean, and the 

conditions during the year (Fryer, 2022). Some of these key factors include the differential 

heating of the land and sea, creating low pressure systems over the Indian subcontinent and a 

high-pressure system over the Indian Ocean. This pressure gradient pushes moisture in the air 

over the ocean into the land, resulting in heavy rainfall. The Tibetan Plateau in the North also 

plays a crucial role in heating the atmosphere, enhancing this monsoon circulation (Geen et al., 

2020). There is year to year variations in the monsoon due to internal dynamics like the ocean/land 

pressure systems and external drivers like the Intertropical Convergence Zone (ITCZ) and global 

teleconnection events like El Nino Southern Oscillation (ENSO) (Geen et al., 2020). 
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The ITCZ is a band of low pressure around the Earth which lies next to the equator and is where the 

trade winds of the northern and southern hemispheres converge. This leads to an area that is often 

unsettled, with thunderstorms and heavy precipitation events (Hess et al., 1993; Yan, 2005).       

 

ENSO has a long historically proven influence on the monsoon period (Athira et al., 2023). The 

change from normal conditions to El Nino is dependant on the ocean’s thermocline (the imagined 

line between the denser cold waters in the ocean and the less dense warmer waters in the ocean) 

being deeper than usual, changing the surface ocean temperatures and thus changing the                                                                                                                                                                                                                                                                                                                                       

rainfall patterns in the above atmosphere (Figure 3.5). Floods are more likely to occur in periods of La 

Nina and droughts are more likely to occur in periods of El Nino due to the changing of rainfall 

patterns driven by these ENSO processes (Athira et al., 2023).  

 Since the 1950’s the monsoon has become more erratic (of lows and extreme events) and has 

weakened. Despite this floods and landslides have become more common (Lal et al., 2001; Lal,2003; 

Roxy & Chaithra, 2018; Seth et al., 2019)  

Climate change is changing the monsoon climate in India through a number of different ways, 

including; increased intensity and extreme events (fryer et al., 2022), variability and erratic patterns 

(Sandeep et al., 2023), spatial redistribution of rainfall (Maharana et al., 2021), changes in low 

pressure systems (Fryer, 2022) and aerosol forcing and greenhouse gasses (Teschke, 2022). Those  

that affect precipitation triggered landslide events are the increased intensity, the variability of 

precipitation patterns and the redistribution of rainfall. With climate change, mean monsoon 

precipitation increases leading to more extreme precipitation events (Fryer et al., 2022,  Sandeep et 

al. (2023) states that the monsoon season will be more erratic and unpredicTable, which will make it 

harder to manage natural hazard events, and the spatial changes that are predicted by Maharana et 

Figure 3.4: The ITCZ and its different positions during the year. The change between January and July is when the 
onset of the monsoon occurs over the Indian subcontinent and settles in the July position (Mats Halldin, 2018). 
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al. (2021) are thought to decrease precipitation in the Northeastern Indian Himalayas, which 

potentially could decrease rainfall triggered landslides. Climate predictions on the monsoon 

precipitation from various climate models show this variability and uncertainty in the future (Figure 

3.6). 

 

 

Figure 3.5: El Nino conditions in a schematic to show the relationship between the ocean and the atmosphere 
and how these changing thermal temperature changes the moisture of the air and drives pressure systems 

(ESA, 2018). 
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 Figure 3.6: Historical and SRES A1B projection of South Asian Monsoon Rainfall: Taken from Turner & Annamalal, 

2012.   

3.2 Study Area  

The study site is between 27.4 N and 26.8 S latitude and 88.0E and 88.8W latitude. The site is in the 

Darjeeling District of the Indian Himalayas and comprises of the towns Darjeeling and Kalimpong. 

The northern boundary reaches the Southern Sikkim cities of Singtam and Namchi, while the 

southern boundary reaches the town of Kurseong, still within the district of Darjeeling. The highest 

elevation in the site area is Tiger Hill, a mountain South of Darjeeling which is an elevation of 2590m. 

The study area spans over an area ~1730km2. This area was chosen due to its mountainous terrain 

and large population sizes. Landslides are also common in these areas, with an impact to 

infrastructure, socioeconomics and livelihood. Figure 3.8a  shows that the area is a mainly forested 

area with areas of built up urban towns, bare ground and rangeland. As the topography gets flatter 

towards the plains there are more instances of cropland. Figures 3.8b, 3.8c and 3.8d show the 

aspect, roughness and topography of the study area. From these maps it is apparent that the study 

area has a large amount of steep mountainous slopes, of a largely rough nature. This is an important 

feature of the area, and it is due to the nature of these slopes in the Himalayas that makes this study 
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area good for testing landslide science, as landslide incidences are higher on rough, high angled 

slopes (Varnes, 1978 (Cellek, 2020). 

Landslides in Northeastern India (Darjeeling Area – Study Area) 

In this section, the nature of landsliding, the causes and triggers, recent earthquake events, landslide 

examples and landslide prediction are discussed for the study area.  

Landslides are a recurring hazard in the Darjeeling region of the Northeastern Indian Himalayas, 

characterized by its steep slopes, fragile geology, and high rainfall (Sarkar et al., 2020). These events 

pose significant threats to human life, infrastructure, and the environment, making them a critical 

focus for disaster risk management and scientific inquiry (Dahal & Hasegawa, 2008). 

The Darjeeling region’s susceptibility to landslides stems from a combination of natural and 

anthropogenic factors. The region’s geomorphology, dominated by young and tectonically active 

Himalayan ranges, comprises loosely consolidated rock formations and deeply weathered soils 

(Ghosh et al., 2020). These geological features are particularly vulnerable to destabilization, 

especially when combined with the intense rainfall characteristic of the Indian monsoon. The 

monsoon season, lasting from June to September, delivers torrential rains that saturate soils, reduce 

cohesion, and elevate pore water pressure, often triggering landslides (Sivakumar Babu & Srivastava, 

2010). Notably, the region has experienced catastrophic landslide events linked to monsoonal 

activity, such as the 1968 landslides that resulted in extensive destruction and loss of life (Basu & De, 

2003). 

Several noTable landslide events have shaped the region’s understanding of its vulnerability. The 

June 2015 landslides near Mirik were triggered by incessant monsoonal rains and caused significant 

damage to infrastructure, including road networks and tea plantations, which are vital to the local 

economy (SaveTheHills, 2015). Similarly, the Kalimpong landslide of 2007, driven by heavy rainfall, 

claimed numerous lives and highlighted the severe impact of poorly managed urban expansion on 

unsTable slopes (Chowdhury et al., 2010). These examples underscore the urgency of 

comprehensive mitigation strategies. 

Seismic activity further exacerbates the landslide hazard in the Darjeeling region. The 2011 Sikkim 

earthquake, with a magnitude of 6.9, and the 2015 Nepal earthquake (magnitude 7.8) both triggered 

numerous landslides across the region (Meunier et al., 2008). These seismic events disrupt the 

delicate balance of forces on slopes, causing ground shaking that dislodges soil and rock. The 

cumulative effect of seismic shaking and pre-existing vulnerabilities created by intense rainfall 
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heightens the risk of landslide initiation. Field investigations post these earthquake events revealed 

widespread slope failures, road blockages, and damage to settlements, underscoring the 

compounded risks posed by seismic activity in this geologically unsTable area (Gnyawali & Adhikari, 

2017). 

Anthropogenic activities, including unregulated construction, deforestation, and poorly planned 

road networks, have further destabilized slopes in the Darjeeling region. These human-induced 

factors exacerbate natural vulnerabilities by altering drainage patterns, reducing vegetation cover, 

and increasing surface runoff (Dahal et al., 2012). Urban expansion in landslide-prone areas without 

adequate engineering measures has magnified the scale and frequency of landslide occurrences 

(Basu & De, 2003). 

Landslide prediction and early warning systems are crucial for minimizing risks in the Darjeeling 

region. Current efforts include the deployment of geotechnical monitoring tools, such as 

piezometers and inclinometers, to detect shifts in slope stability (Kumar et al., 2017). Satellite-based 

remote sensing and GIS mapping have become integral in identifying high-risk zones and assessing 

the likelihood of future landslides (Ghosh et al., 2020). Machine learning algorithms are increasingly 

employed to analyze historical data, rainfall patterns, and seismic activity to forecast potential 

landslide events (Sivakumar Babu & Srivastava, 2010). Collaborative initiatives between 

governmental agencies and local communities have also promoted the dissemination of early  

warnings, significantly enhancing preparedness (Dahal & Hasegawa, 2008). 

Addressing the landslide hazard in the Darjeeling region requires a multifaceted approach. Improved 

land-use planning, afforestation programs, and community-based disaster preparedness can 

mitigate the impacts of landslides (Chowdhury et al., 2010). Advances in geotechnical monitoring, 

such as real-time landslide early warning systems, combined with seismic hazard assessment, are 

crucial for reducing vulnerability (Meunier et al., 2008). Moreover, integrating traditional knowledge 

with modern engineering practices offers sustainable solutions tailored to the region’s unique socio-

environmental context (Gnyawali & Adhikari, 2017). By adopting these measures, the Darjeeling 

region can enhance its resilience against the dual challenges of natural and anthropogenic triggers of 

landslides. 
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 Figure3.7: A OpenMap image of the study area, showing major towns, roads and water bodies, Darjeeling District, India. 
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Figure 3.8.: The Study Area – these maps show the variability of the study site and show the common landslide characteristics that are used in modelling and understanding 
landslides in a study area (Sentinel 2, 2021).  A) Land use map, B) Aspect map (STRM), C) Roughness map (STRM), and D) Hill Shade Map (STRM) 
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Geology of the Study Area 

The geological environment of the Darjeeling and Sikkim Himalayas affects landslide occurrence. 

Geological factors affecting landslides include the regional geology and rock type and the structure of 

bedrocks, for example, faults and rock foliations (Rawat et al., 2015).  

The geology of Darjeeling (featured in Figure 3.9) and the surrounding areas is very complex, due to 

its geological history of the broader tectonic formation of the Himalayas and subsequent evolution 

over millions of years. The region is however predominantly categorised by its metamorphic rock 

formations, created during the Himalayan orogeny. The Darjeeling Formation is one of the major 

geological features in this region, and it is compiled of high-grade gneissic rocks. Below this 

Darjeeling formation are the Darling groups, composed of phyllitic rocks which adds to the geological 

diversity of the region.  The interactions between these formations have been extensively analysed 

by Banerjee et al. (2018) who studied unique structural features including an orogen-parallel top-to-

E and top-to-W shear which is found particularly in the garnetiferous quartz mica gneiss of the 

Darjeeling Group . The diversity of the geological conditions here is also highlighted by different and 

abundant mineral deposits, which is significant for resource exploration and economic development 

of the region (Banerjee et al., 2018).   

 

The geological environment and subsequent landslide occurrence are also affected by the 

hydrological action of river basins, and the Tista Basin is one of the largest in the Darjeeling 

Himalayas, with approximately five sub-basins situated in the Kalimpong region alone (Dikshit & 

Satyam, 2017), and is highly vulnerable to landslides. Land use, agricultural use and expansion of 

highways and anthropogenic engineering also interacts with landslides in this area. 
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Figure 3.9: The geology of the study area 
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Figure 3.10: Landslide incidences from the GFLD and the GLC mapped onto the study area, with elevation apparent. 
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3.3 Indian Governance of DRR  

In India, disaster risk reduction (DRR) is governed by a multi-tiered framework led by the National 

Disaster Management Authority (NDMA), established under the Disaster Management Act of 2005. 

The NDMA develops policies, plans, and guidelines for disaster preparedness and response. At the 

state level, State Disaster Management Authorities (SDMAs) and district authorities implement 

localized strategies. These institutions emphasize a shift from reactive relief measures to proactive 

risk reduction through early warning systems, capacity building, and community engagement. 

Integration with development planning, such as climate-resilient infrastructure, is prioritized. 

Collaboration among government agencies, non-governmental organizations, and the private sector 

enhances the overall governance of DRR. International frameworks like the Sendai Framework for 

Disaster Risk Reduction guide India's strategic goals. 

 

Landslides represent a significant hazard within India’s DRR framework, especially in mountainous 

regions like the Himalayas and the Western Ghats. The NDMA has specific guidelines for landslide 

risk management, focusing on early warning systems, landslide zonation mapping, and slope 

stabilization techniques. Geospatial tools and datasets such as satellite imagery and ERA5 data from 

ECMWF aid in identifying rainfall thresholds that trigger landslides. Local authorities collaborate with 

geological agencies to monitor vulnerable zones and implement community training on evacuation 

protocols. Integrating landslide risk management into urban planning and infrastructure projects, 

particularly in hill towns, is a priority to reduce disaster impacts. 

 

In this specific study area within West Bengal, India the governance of DRR is a bit different. There 

seems to be a “hill-plains divide” within the Indian DRR policy. There is inadequate disaster 

management in the mountainous area of West Bengal, and the policies are aimed at plains regions 

neglecting mountain risks like landslides (McGowran, 2024). Landslides are often underrepresented 

in official DRR materials too, leading to many citizens looking at devolving DRR management to 

mountain regions, or creating a “ministry of mountains” (McGowran, 2024). Overall there is a need 

for making tailored DRR management strategies that consider regional vulnerabilities and the need 

for restructuring India’s centralised DRR policies to integrate with lived experiences of the 

population.  
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Chapter 4: Datasets and Methodology  

4.1 Research Design 

The two main research questions as tools to answer the overall research problem will be tackled in 2 

separate main research chapters (Chapters I & II, focusing on each of the research questions set out 

in Thesis Section 1.3 Introduction: Thesis Structure.  

 

4.3 Data and Methods for 5.0 Research Chapter I ‘Data’ 

This research chapter addresses a research gap highlighted in Thesis Section 2.0 Literature Review 

global landslide inventories are created by different agencies and do not have a single repository, or 

single best practice to make each of them within a standard format that can be used by landslide 

scientists around the globe. When landslide researchers use the inventories, they must be able to 

test the LSI for accuracy and usability within their study area. With some global inventories and 

disaster databases not covering certain areas, countries, or areas of the globe this opens a very 

important research question. 

 

This first main research chapter is tackling the first research question: 

 

- What global and national landslide inventories are available for researchers when 

researching Darjeeling, India? 

 

To answer this question the data and methodology in the following sections has been selected.  

4.3.1 Data 

The datasets that are used in Thesis Section 5.0 Research Chapter I are two of the largest global 

landslide databases available at time of writing. These databases are called the Global Fatal Landslide 

Database (GFLD) (Froude and Petley, 2018) and Global Landslide Catalogue (GLC) (Kirchbaum et al., 

2015).   

These global scale LSIs provide a free of charge, broad coverage source of data that can be accessed 

by anyone. The global LSIs are compiled from a multitude of different resources and can provide a 

comprehensive view of landslides globally. Using these global LSI’s have some limitations, however. 

There is a potential for data inconsistency and variability in data quality. The LSIs are not updated 
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regularly or at all in the case of the GFLD. Global inventories are often unable to be applied at the 

local level due to specificity of characteristics and triggers.  

An alternative to using global inventories would be to compile local landslide inventories for the 

study area, as this would be designed specifically for the study. It can also capture detailed 

information about the area, conditions, and practices in the locality. However, to gain the specificity 

and the accuracy of information, the disadvantage of compiling and using a more local dataset would 

be resource intensive – in both time and cost. To gain a detailed LSI for the study site, fieldwork, 

data-collection and validation of the data would need to be conducted. 

Due to the financial restrictions on a MPhil project, coupled with the aims of the MPhil I have chosen 

to utilise the global scale LSIs. The aim of this project is to use the best current practice elements and 

conclude if they’re able to create tools equitably by the researchers in the DRR field, and to do this I 

will be using the datasets that many researchers are using, and datasets that are continuing to be 

used in papers being published in this field (See Thesis Section 2.7 Literature Review: Research 

Questions – 5.0 Research Chapter I). .   

 

Global Landslide Catalogue (GLC) 

The Global Landslide Catalogue (GLC) is the largest openly available inventory that has rainfall-

induced landslides reported within it (NASA, 2024). The GLC is a report-based landslide inventory 

created and hosted by the National Aeronautics and Space Agency (NASA). It was created at the 

Goddard Space Flight Centre and contains around 11500 reports of landslides to date.  The catalogue 

covers 1970-2019 from its last update in 2019. It is an earlier iteration of the Cooperative Open 

Online Landslide Reporter (COOLR) product which also includes another style of reporting - a citizen 

science-based Landslide Reporter inventory.  

This study will be using the GLC as its style of collecting landslide events is very similar to the GFLD in 

that it uses a metadata search to identify landslide activity (Kirchbaum et al., 2010; Kirchbaum et al., 

2015, Kirchbaum et al., 2019). The GLC compiled a database that had all landslide events that were 

clearly triggered by rainfall conditions. The catalogue considers all types of landslide events, and 

some of the events have the information of which type it was if that information was available for 

the NASA team.  
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Figure 4.1: The NASA GLC downloadable products gallery where anyone can download the COOLR datasets in 

different formats (NASA, 2024). 

The data is downloaded through the NASA website, where there is a products list available for public 

consumption. This list includes different types of files that can be downloaded and used for different 

applications. A view of this product gallery is in Figure 4.1. The datafile that was downloaded for this 

research was the comma separated values (.csv) file, as this file can be used in many of the different 

applications and software that has been used throughout the project. 

 

Figure 4.2: The spreadsheet when it is first opened, comprising of many different columns with different information 

collected within each one (NASA, 2024). 

Figure 4.2 is the csv file once opened. There are 30 different headings within the document, 

including relevant information for this study, for example; event_date, latitude, longitude and 

landslide_trigger.  

Global Fatal Landslide Database (GFLD) 

The GFLD is formally known as the Durham Fatal Landslide Database due to the two researchers 

working at the University of Durham when compiling the database. The database was compiled using 

systematic metadata search tools which look to identify reports of landslide activity (based on the 
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definitions set out by Hungr et al., 2014) on a daily basis (Froude & Petley, 2018). The dataset was 

collected and managed between 2004 and 2016, after the methods were developed between 

September 2002 and December 2003 (Petley, 2012; Froude & Petley 2018). This method of collecting 

landslide incidences differs from the methods of collection in the GLC (Kirchbaum et al., 2010; 

Kirchbaum et al., 2012, Kirchbaum et al., 2015; Froude & Petley, 2018). This is due to the counted 

landslide incidents being only those with fatalities and all landslide triggers are collected in the 

database, for example those triggered by seismic activity or anthropogenic means (Froude & Petley, 

2018).  

Other data sources I will be using within this chapter include my own personal experience and 

literature on landslide inventories and global disaster databases. These are detailed below. 

My personal experience 

I will be using my own personal experience of utilising global landslide inventories within my work in 

academic research. This is an important addition to the chapter as my experiences will be mirrored 

by other researchers in the field and the choices that I have made in choosing my landslide 

inventories for the study site that I’m working within.  

  

Literature  

There is an integral paper to this chapter which is referenced extensively throughout. This paper is a 

paper by Gómez et al. (2023) where they combine four of the largest global landslide databases, the 

GFLD, the GLC, the international disaster inventory (DesInventar) and the international disaster 

database (EM-DAT) to create a ‘Unified Global Landslide Database’ (UGLD). The Gómez et al. work 

was key in developing and understanding the methods I would need to employ to gather data for the 

largest possible number of landslide events in my study area to conduct my research in Thesis 

Section 6.0 Research Chapter II of this thesis.  

4.3.2 Landslide Database Critical Reflections  
NASA’s Global Landslide Catalog (GLC) and the Global Fatal Landslide Database (GFLD) are valuable 

resources for landslide research, providing insights into the occurrence and impacts of these hazards. 

The GLC includes both fatal and non-fatal events, while the GFLD focuses exclusively on landslides 

that result in fatalities. These differing scopes offer a unique opportunity for complementary analysis, 

though they also present challenges due to biases, gaps, and methodological discrepancies. 

One of the most significant advantages of combining these datasets lies in their potential to create a 

more holistic understanding of landslide dynamics. For instance, the GLC's inclusion of non-fatal 
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events helps identify trends in landslide occurrence that are not always associated with human 

casualties. This broader dataset is critical for understanding environmental and anthropogenic 

triggers, such as extreme rainfall (Kirschbaum et al., 2015) and deforestation (Petley, 2012). 

Meanwhile, the GFLD provides a more focused lens on the societal impacts of landslides, including 

their disproportionate effects on vulnerable populations in regions like South Asia and Central 

America (Froude & Petley, 2018). 

However, biases in reporting pose a significant challenge. The GLC relies on media and satellite data, 

which tend to overrepresent well-documented regions while underreporting events in remote or 

resource-poor areas (Kirschbaum & Stanley, 2018). Similarly, the GFLD is prone to underestimating 

fatalities in regions with weak disaster reporting infrastructure, such as sub-Saharan Africa (Froude & 

Petley, 2018). This disparity can skew global risk assessments, making certain regions appear safer or 

more dangerous than they truly are. 

Another critical limitation stems from the databases' methodological differences. For example, the 

GFLD exclusively documents fatal events, omitting near-miss incidents that could provide vital 

information for future disaster mitigation (Dillon, 2020). In contrast, the GLC’s non-fatal data, while 

useful, might include small-scale or low-impact landslides, potentially diluting insights into high-risk 

areas (Stanley & Kirschbaum, 2017). Additionally, inconsistencies in spatial and temporal resolution 

complicate efforts to integrate the datasets for predictive modelling or climate change impact 

studies. 

Real-world applications illustrate these challenges. A study using the GLC to assess rainfall-induced 

landslide risks in Brazil (Martha et al., 2017) highlighted the importance of including non-fatal 

incidents in risk reduction strategies. Conversely, analysis of the GFLD in Nepal following the 2015 

earthquakes underscored the disproportionate mortality risk in marginalized communities (Petley, 

2012). These examples show the value of integrating the datasets to balance environmental triggers 

and human vulnerability in policy planning. 

Ethical considerations also arise when prioritizing fatalities over broader impacts. While GFLD data 

underscores the human cost of landslides, it may divert attention from non-fatal events that 

devastate livelihoods and infrastructure. Incorporating both datasets equally into risk assessments 

could better support comprehensive disaster mitigation, addressing both immediate mortality risks 

and long-term societal resilience. 

In conclusion, while NASA’s GLC and the GFLD are invaluable individually, their integration demands 

careful attention to biases, methodological consistency, and ethical implications. Harmonizing these 
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datasets would enhance their utility in understanding and mitigating landslide hazards globally, 

particularly in underrepresented regions. 

 

Advantages of Using the GLC and GFLD Together 

• Comprehensive Dataset: 

o The GLC includes non-fatal and fatal landslides, providing a broader perspective on 

landslide occurrence and environmental triggers (Kirschbaum et al., 2015). 

o The GFLD highlights the societal impacts of landslides by focusing on fatal incidents, 

emphasizing human vulnerability (Froude & Petley, 2018). 

• Complementary Insights: 

o GLC data helps identify trends in landslide triggers (e.g., rainfall thresholds), while 

GFLD provides insights into fatalities and risk factors in vulnerable populations 

(Stanley & Kirschbaum, 2017). 

o Combining these datasets enables analysis of both physical and human dimensions 

of landslide risks, aiding holistic risk assessments. 

• Real-world Applicability: 

o Studies using GLC data (e.g., rainfall-induced landslides in Brazil) and GFLD data (e.g., 

fatalities post-2015 Nepal earthquake) demonstrate the value of combining 

environmental and societal data for targeted mitigation strategies (Martha et al., 

2017; Petley, 2012). 

 

Weaknesses of Using the GLC and GFLD Together 

• Reporting Biases: 

o The GLC overrepresents well-documented regions (e.g., developed countries) due to 

reliance on media and satellite data, while the GFLD underrepresents fatal events in 

areas with weak reporting infrastructure (Kirschbaum & Stanley, 2018). 

o Underreporting in remote or resource-poor regions skews global risk assessments 

(Froude & Petley, 2018). 
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• Methodological Discrepancies: 

o The GLC includes minor and low-impact landslides, which may dilute focus on high-

risk areas. 

o The GFLD’s exclusion of non-fatal events omits critical near-miss data that could 

inform preventative measures (Stanley & Kirschbaum, 2017). 

• Inconsistent Spatial and Temporal Resolution: 

o Differences in data collection methods between the two databases complicate 

integration for predictive modelling or global hazard analysis (Kirschbaum & Stanley, 

2018). 

• Ethical Considerations: 

o GFLD's emphasis on fatalities risks sidelining non-fatal impacts (e.g., infrastructure 

damage or displacement), which are critical for comprehensive disaster mitigation 

strategies. 

 

4.3.3 Methods 

Thesis Section 5.0 Research Chapter I builds on the UGLD methods (Gómez et al., 2023), compared 

against alternative methods to evaluate different global landslide inventories. This evaluation 

includes spatial and temporal analysis of the landslide events using maps and graphs, globally and 

locally for the study area. I also create the study area’s own specific merged LSI by combining and 

cleaning the global datasets for my study area. The commentary for the chapter also looks at specific 

clustering of landslide events from the combined inventory and discusses why this might be. An 

overall discussion on the choice of LSI is also included in this chapter with a proposed ‘self-check’ for 

researchers to reflect on their dataset choices, not only from a physical consideration, but also from 

a social and ethical perspective.  

 

Unified Global Landslide Database Methods 

The UGLD method (Gómez et al, 2023) of combining different global inventories to create a larger 

more spatially covered inventory is used within this chapter. The UGLD merges datasets to provide a 

more realistic and complete spatial and temporal distribution of landslide occurrences globally in a 

four-step process: 
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1. The GFLD data was compared with the GLC data where 98 landslides were matched in 

both datasets. This merged the GFLD and the GLC. 

2. The merged GFLD + GLC database was compared to the EM-DAT database. 1 landslide 

matched to this. This results in a merged GFLD + GLC + EM-DAT dataset.  

3. The GFLD + GLC + EM-DAT dataset was compared with the DesInventar database, where 

any of the same landslide events were removed. This then led to the merged GFLD + GLC 

+ EM-DAT + DesInventar database. 

4. Finally, a visual inspection was conducted to eliminate records that matched in country, 

date and where co-ordinates were the same.  

Use of ArcGIS Pro for spatial analysis 

When I combined any of the global landslide datasets, I examined the spatial coverage of the 

landslide inventories. I did this using ArcGIS pro to plot the landslide locations within the landscape, 

creating maps that can be compared and contrasted to each other. Other mapping software 

applications are available, like the free to use QGIS, but I used this application as it is used as the 

leading industry standard software and was available at my university.  

 

Graphical Analysis of landslides globally and within Study Area 

Using Python 3.10 within the visual learning environment of PyCharm Community Edition 1.2 I 

generated some graphs of landslide incidences in terms of numbers, triggers, fatalities and more. I 

utilised packages within Python such as pandas and matplotlib. A sample of the code I used is below 

(Figure 4.3).  
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Figure 4.3: A example code for plotting landslide events over time from 2006-2017. 

Python has been used as the primary coding language over other languages like R due to is reliability 

and application by many different industries and research disciplines. R for example can be used but 

has only recently been embraced by the hydrological community (Slater et al., 2019) (of which some 

of my MPhil thesis sits within) and so will not be used.  

Statistical Analysis of Landslide Inventories 
This chapter also used Python 3.10 within the visual learning environment of PyCharm Community 

Edition 1.2 to statistically analyse the LSI’s in conjunction with the elevation and precipitation and 

also conduct statistical correlation plots of landslide numbers vs the South Asian Summer Monsson 

Index (SASMI) and Slope Angle (degrees). These statistical analysis additions have been established 

as standard statistical analysis for LSIs in Petley et al. (2007; 2018).  

Case Study Analysis of Indian National Inventory 
When conducting the research around the National Indian Landslide Inventory, I needed to do a case 

study analysis where I took three points of the National Indian Landslide Inventory where there was 

no additional data within the points and looked online at news and events pages to create in depth 

reports on the landslides. This is to promote the idea that a researcher can use news articles, NGO 
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pages and online event pages to enhance the National Inventory to make it useful for application in 

identifying historical landslides for Thesis Section Research Chapter II.  

Discussion of choices inferred by personal experience 

The ability to use my own personal experience within the sciences will be used in research chapter I.  

I am a user of these interfaces and datasets and a researcher in the field of landslide science and so 

can use this experience within this research. These insights are valuable to discuss and use within a 

reflexive narrative, as it is a useful tool for considering decisions, bias, and potential personal 

limitations. This personal reflection exercise is valuable not only to me, but for the wider science 

community as I am a representative of the community and thus the data collected from this exercise 

can infer other’s opinions and thoughts.   

4.5 Data and Methods for 6.0 Research Chapter II ‘Application’ 

This research chapter addresses a research gap highlighted in Thesis Section 2.0 Literature Review 

landslide predictive technologies are being developed in Italy, and in South America, yet is lacking in 

the Northeastern Indian Himalayas. There is also a gap in evaluating the potential of using global 

reforecasting datasets to forecast landslides using freely available global datasets in data poor areas. 

There could be a major application of this technology in many areas of the world.  

This second main research chapter is tackling the second research question: 

- Can precipitation triggered historical landslides in Darjeeling, India be identified with the 

global scale reanalysis precipitation dataset ERA5, and established Intensity Duration 

Thresholds? 

To answer this question the following data and methodology is used. 

4.5.1 Data 

ERA5 Total Precipitation Hourly Dataset 

The Darjeeling District in India is a very complex site in terms of its spatial heterogeneity, spatial 

coverage and differing topographic conditions. There are large differences in some of the regions 

within the Darjeeling District in terms of land use, slope aspects and geological significance (more 

site description can be seen in Thesis Section 3.2 Study Area). This makes it the ideal place for 

testing a coarse resolution global reanalysis product. This is good as it gives a variety of geographical 

features and landscapes to provide a comprehensive range of conditions. It also allows for 

identification of strengths and weaknesses and localised insights. It also allows for the testing of this 

product in real-world conditions, as most landscapes are diverse. The global reanalysis product that 
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is being tested within this study area is the single level ERA5 Total Precipitation hourly data (ECMWF, 

2025). This is a product created by the European Centre for Medium Range Forecasts (ECMWF) and is 

the 5th generation of their global atmospheric reanalysis product with a high temporal resolution 

(hourly). More information on ERA5 can be found in Thesis Section 2.3 Precipitation Modelling.    

The ERA5 dataset is also complemented by enhanced global datasets which focus on one of the 

areas of application (land, atmosphere, and ocean) with products such as ERA-Land, which takes a 

deep dive into the global land process and the evolution of water and energy cycles. This has major 

advantages, for example; a 9km resolution compared to the ERA5 31km resolution (Munoz-Sabater 

et al., 2021; Gomis-Cebolla et al., 2023).  

ERA5 has diverse research applications in climate research, monitoring of climate change, numerical 

weather prediction and commercial applications. It is valuable in understanding long-term climate 

trends and validating climate models. This makes ERA5 an important tool for policy-making in climate 

adaptations and mitigation strategies (Hersbach et al., 2020).    

This project is using ERA5 for its reanalysis dataset of Total Precipitation. This dataset is used for 

understanding past precipitation patterns, validating hydrological models and has applications in 

water management and agriculture. Precipitation reanalysis products are also used in precipitation 

estimates in ungauged or data-sparse areas (Becker et al., 2020; Jiang et al., 2021). ERA5 total 

precipitation dataset has also been seen to have some reliable performance reliably predicting 

extremes in precipitation which also helps when looking at climate change and increased hazard 

analysis in data sparse areas (Hu & Frankie, 2020). However, despite some reliability in predicting 

extremes, the predictions tend to underestimate the intensity and frequency of extreme events, like 

rainfall. This also includes precipitation biases in areas with complex geography, orographic effects, 

and strong seasonal variations. To combat these limitations, there will  be a critical evaluation of the 

data with the limitations in mind, which will add to mitigating the difficulties.  

ERA5 does have some limitations, for example the assimilation of satellite-derived precipitation 

estimates can introduce uncertainties, especially in regions with data scarcity (Hersbach et al., 2020).  

It’s coarse resolution also tends to smooth out local climatic and geographic variability. There are 

also some biases in the instrumentation in the observational datasets that are assimilated into ERA5.  

More information on ERA5 and global models from ECMWF is in Thesis Section 2.3 Precipitation 

Modelling. 
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Combined GLC + GFLD landslide database from 6.0 

Another data source I used in this chapter is the combined landslide inventory I created in the first 

research chapter seen in Thesis Section 6.0: Research Chapter I. I used this newly created and 

combined landslide inventory due to its ability to provide more landslide events within the study 

area, which allows for a more robust evaluation. It allowed more testing of the historical events 

against the global scale reforecasting models. Information on this can be seen in Thesis Section 2.1 

Landslide Science, Thesis Section 4.3 Data and Methods for 6.0 Research Chapter I.  

4.5.2 Methods 

Python 3.10 

The landslide inventories are downloaded as Microsoft Excel files, and the ERA5 Reanalysis product is 

downloaded as the format of NetCDF for use. In this work, the researcher is using Python 

programming language 3.10 within the PyCharm Community Edition 2023 1.2 integrated 

development environment (IDE) for the data processing, statistical analysis, and graphical analysis. A 

screenshot of an example of code can be seen below in Figure 4.6. 

 

Figure 4.6: An example piece of code for research chapter II. 

I will be using Python again instead of other coding languages as it will add cohesion to my work and 

increase my understanding of the coding language in terms of its approach to landslide science and 

hydrology. As stated before in Thesis Section 4.3.3 Methods hydrology has only just recently adopted 

other coding languages and created libraries within them (like R) (Slater et al., 2019) and so it seems 

prudent to use a programming language that will be utilised by others in the field.   
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ArcGIS Pro 

Landslide location maps, and geological maps are created in ArcGIS Pro for the Thesis Section 3.0 

Chapter 3: The Study Area and will be used to discuss the results in this chapter and in Thesis 

Section 7.0 Discussions and Future Considerations.  

Intensity Duration Thresholds 

Intensity Duration thresholds are a tool which are used exclusively for landslides that are triggered by 

rainfall. An ID threshold is a threshold that is created from the relationship between precipitation 

intensity (I) and its duration (D), providing a threshold of conditions that if breached are likely to 

initiate landslide events. A schematic showing ID thresholds and the ideas behind the threshold 

being the line at which landslides do and do not occur can be seen in Figure 4.7 This Figure also 

shows the type of landslides that ID thresholds are more suited for – a) channel runoff vs b) deep 

seated landslides (Berti et al., 2012). The Indian Himalayas experiences both types of landslide 

events, however the channel runoff landslides are the ones that are most common, and the ones 

that happen most quickly. This is due to the climatic conditions of the Indian Himalayas, the 

orographic environment of steep slopes and fragmented surface geology and shallow soil profiles 

(See Thesis Section 3.0 Chapter 3: The Study Area).   

 

Figure 4.7: Rainfall ID thresholds in two conceptual Figures showing a) channel runoff and b) deep seated landslides. 

In the case of deep-seated landslides, it is difficult to identify a definite threshold because rainfall events that result in 

landslides of this nature are not the only triggering factors (Nikolopoulos et al., 2014).  

 

ID thresholds are important as they try to establish a quantitative relationship between the intensity 

of rainfall (how much rain in a given period) and its duration (how long the rainfall event lasts) in 

terms of when a landslide is triggered. This relationship can not only identify the specific conditions 
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at which landslides are initiated but has applications in LEWS for predicting landslide events, risk 

management strategies around land use planning and disaster preparedness. 

The ID thresholds that are used in this research chapter will be pre-established thresholds as 

reviewed and assimilated in, Guzzetti et al. (2008) and Dikshit & Satyam (2017). Figure 4.8 is an ID 

graph from Guzzeti et al. (2008) who reviewed the worldwide ID thresholds to update Caine’s 1980’s 

Global ID threshold estimate. 

 

 
Figure 4.8: Comparison of the global ID thresholds. 1/Dark Green Caine (1980); 2/Pink Innes (1983); 3/Light Green Clarizia 

et al. (1996); 4/Light Blue Crosta and Frattini (2001); 5/Yellow Cannon and Gartner (2005); 6/Dark Blue (Guzzeti et al., 

2008); 7/Red (Guzetti et al., 2008) 

 

This work identified three ID global thresholds, line 6 which was the ID threshold for the entire set of 

ID rainfall data, and two lines (7) for different rainfall periods, D < 48hrs and D ≥ 48 h. This research 

chapter will be using line 6, the ID threshold for the entire ID rainfall period. Comparing this line to 

line 1, the initial ID threshold proposed by Caine (1980) there is a clear slope similarity, however, due 

to the information available to Caine, for example landslides – Caine’s 73 events vs Guzzetti’s 2626 

events – the large differences seen between them could be ascribed to that. Dikshit & Satyam (2017) 

produced a paper estimating the ID thresholds of Kalimpong, India. Kalimpong is in the Eastern side 

of the site being investigated in this research chapter, and the threshold is the only one calculated 

within this site area.  

In using established ID thresholds there are some associated advantages and disadvantages to 

this(Herchberg, 2021). The advantages are, consistency and comparability to other studies, proven 
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reliability, ease of use and that these ID thresholds have already been accepted as a tool (Hong et al., 

2017). There are limitations to using these ID thresholds, however. There is the regional variability to 

consider, especially when using the global ID threshold (Bogaaard & Greco, 2018). These thresholds 

are static, and they don’t account for changes in land use, or climate change. This is especially true 

for the global ID threshold I am using from a 2008 paper, and so 16 years old already, and the climate 

is changing at an increasingly rapid pace. Using these thresholds with the coarse ERA5 precipitation 

data may undermine the effectiveness of the thresholds too. To overcome the limitations, I have also 

used a local threshold to compare the data in the local area. I took into consideration these 

limitations and by understanding the limitations, and it lead to a more robust discussion of the data 

analysis.  

Contingency Tables and Model Metrics 

Contingency Tables are a tool within hazard modelling to assess the accuracy of predictive models. 

They present data on the observed and predicted occurrences of natural hazards, and in this case, 

landslide events within Tables, which then allows for the calculation of performance metrics like 

sensitivity, specificity and accuracy (Brenning, 2005; Begueria, 2006). The contingency Table metrics 

that are used within this study are; 

Contingency Table Metrics: 

1. Accuracy: 

• Measures the proportion of true results (both true positives and true negatives) 

among the total number of cases examined. 

Accuracy=TP+TNTP+TN+FP+FN  

2. Sensitivity (Recall): 

• Measures the proportion of actual positives that are correctly identified by the 

model. 

Sensitivity (Recall)=TPTP+FN  

3. Specificity: 

• Measures the proportion of actual negatives that are correctly identified by the 

model. 

Specificity=TNTN+FPS 

4. Precision: 
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• Measures the proportion of positive identifications that were actually correct. 

Precision=TPTP+FP 

5. F1 Score: 

• The harmonic mean of precision and recall, providing a balance between the two. 

F1 Score=2×Precision×RecallPrecision+Recall 

Alternatively: F1 Score=2×TP2×TP+FP+FN 

These equations help evaluate the performance of a binary classification model using the values 

from the contingency Table. 

This contingency Table has been created by doing stratified random sampling of the wet days from 

the ERA5 total precipitation dataset. Stratified random sampling is a statistical method to make sure 

that subgroups of a population of data are adequately represented by a sample. In this case the 

rainfall events were stratified based on the temporal characteristics, so that wet days and potential 

landslide days were randomly sampled from each month for each year in the study (Thompson, 

2012). The process is detailed here; 

Stratified Random Sampling 

• Process: 

1. Divide the dataset into strata based on a specific characteristic (e.g. month like in the 

study). 

2. Perform random sampling within each stratum. 

3. Combine the samples from all strata to form the final sample. 

• Purpose: To ensure that each subgroup is adequately represented in the sample, which 

increases the precision of the estimates. 

• Advantages: 

• Ensures representation of all subgroups in the population. 

• Reduces sampling error compared to simple random sampling. 

The advantages listed are especially important for this study. All of the months need to be 

represented so that landslides events or wet days that could lead to landslide events that may occur 
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outside of the monsoon can also be shown, and that the intense rainfall experienced in te monsoon 

period will not dominate the sampling. 

Relative Operating Curves  

The Area Under Relative Operating Curves (ROC) also known as Receiver Operating Characteristics is 

an evaluation tool that measures the performance of a forecast by plotting the true positive rate on 

the X axis and the false positive rate on the Y axis. A ROC graph is a diagram that shows the trade-offs 

between the benefits (true positives) and costs (false positives) (Tsagalidis & Evangelidis, 2011) and 

illustrates the diagnostic ability of a binary classifier system as its discrimination threshold is varied. It 

is created by plotting the True Positive Rate (TPR, or Sensitivity) against the False Positive Rate (FPR, 

or 1-Specificity) at various threshold settings.  

True Positive Rate (TPR) 

Also known as Sensitivity or Recall, TPR measures the proportion of actual positives that are correctly 

identified by the model. 

TPR=TPTP+FNTPR=TP+FNTP 

where: 

• TP: True Positives (correctly predicted positive cases) 

• FN: False Negatives (actual positive cases that were incorrectly predicted as negative) 

False Positive Rate (FPR) 

FPR measures the proportion of actual negatives that are incorrectly identified as positives by the 

model. 

FPR=FPFP+TNFPR=FP+TNFP 

where: 

• FP: False Positives (actual negative cases that were incorrectly predicted as positive) 

• TN: True Negatives (correctly predicted negative cases) 

For this study I used a ROC curve showing the performance of the ERA5 data use in conjunction with 

the landslide ID thresholds. I used this because the ROC curve is a standard method for evaluating 

the diagnostic ability of binary classifiers, in this case, the ability of the model to predict landslides. 

It's crucial for assessing the model's accuracy and reliability. A ROC curve is also not dependant on a 

specific decision threshold and contains just a single performance metric. This simplifies the model 
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comparison and selection. ROC curves can also have limitations in their use. They can lead to 

misleading interpretations, leading mostly to instances of model overestimation of performance. 

Having the single performance metric, although useful for simplifying the analysis, this could lead to 

oversimplification. This means that aspects of the model’s behaviour can be overlooked. When 

interpreting the ROC Curve, it is important to see examples of one. The closer a point is to the top 

left corner, the better it is (high sensitivity, low false-positive rate). An example of this can be seen in 

Figure 4.9 The central red dotted line shows the point at which the TPR and the FPR are equal, and so 

is the same as random guessing. Anything below the red dotted line would be considered ‘worse 

than random guessing’ and would be considered that if you switched the prediction the outcome 

would be more accurate.  

 

The Area Under the Curve (AUC) can also be calculated for each threshold. A larger AUC indicates a 

better overall performance of the threshold. An AUC score is used to measure the overall 

performance of a binary classification model, with the value ranging from 0 to 1. The scores generally 

mean these things; 

• AUC = 0: The model’s performance is perfectly incorrect 

• 0 < AUC < 0.5: The model's performance is oppositely predicting the hazard events. 

• AUC = 0.5: The model's performance is equivalent to random guessing. 

Figure 4.9: A ROC curve graph with annotations on what each shape might mean (Created by Author). 
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• 0.5 < AUC < 0.7: The model performs poorly to fairly. 

• 0.7 < AUC < 0.8: The model performs moderately well. 

• 0.8 < AUC < 0.9: The model performs very well. 

• AUC > 0.9: The model performs exceptionally well. 

• AUC = 1: The model is perfectly correct. 
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Chapter 5: Research Chapter I: ‘Data’ 

Analysing the Global Landslide Inventories available 

for Darjeeling District, India, statistically evaluating 

their use, and critiquing the choices made by 

landslide researchers.  

 

5.1 Introduction 

Landslides are a major natural hazard in mountainous areas around the world and pose a high risk to 

people, economies, and infrastructure. It is an important venture to understand landslides, where 

they’re likely to occur and their potential impacts (Emberson et al., 2022). Landslides are small, 

localised events compared to hazards with a larger footprint, such as cyclones or earthquakes. 

However, landslide triggering events like intense rainfall can be over a wide region and contain many 

landslide events which mirror the extent of the triggering region (Marc et al., 2017, 2018; Tanyaš and 

Lombardo, 2019; Emberson et al., 2022).    

Landslide information, such as morphology, geology, land cover, seismic and hydrological factors, can 

be used to construct landslide susceptibility models, and landslide inventories which hold this 

information also need to include the date and time of a landslide occurrence as this is used to 

calibrate and validate these susceptibility models (Guzzetti et al., 2012; Van Den Eeckhaut & Hervás, 

2012; Reichenbach et al., 2018; Emberson et al., 2022).  

A landslide inventory (LSI) is usually a database of landslide records that document landslide events. 

These can be categorised as event or historical LSIs. Event LSIs are associated with a triggering event, 

while historical LSIs are just a collection of landslides which is a count of landslides over a given area 

(Malamud et al., 2004). An LSI will normally contain information on the event, such as characteristics, 

location, size, type, triggers and timing (Guzzetti et al., 2012). The purpose of an LSI is to provide a 

detailed and systematic record of past and present landslide events to use in research to understand 

hazards, assess the risks and implement effective disaster management plans (Guzzetti et al., 2012; 

Emberson et al., 2022). 



 

66 
 

LSIs are compiled through a variety of methods, and there is no international standard or method for 

compiling databases and inventories. Different methods include field surveys, satellite imagery, aerial 

photography, historical reports and news reporting. Due to the advancement of technology and 

Geographical Information Systems (GIS), LSIs are becoming more accurate and efficient, enabling the 

analysis of large areas and integration of different data sources (Van Den Eeckhaut & Hervás, 2012). 

Combining different technological approaches has yielded good results when compiling landslide 

inventories, for example, combining social media information with artificial intelligence led to a  

precision of 76% of landslide event detections (Pennington et al., 2022).  

LSIs are important data resources due to their application in the landslide hazard assessment and 

prediction fields. Researchers can use these LSIs to analyse the patterns and triggers of past landslide 

events, to identify areas at risk of future landslides or to understand factors leading to slope 

instability, all of which can be useful in developing appropriate mitigation measures. LSIs can also be 

used in the validation and improvement of predictive models of landslide occurrence (Guzzetti et al., 

2012).  

LSIs can be created and catalogued in Global LSIs and there are examples of these inventories from 

organisations such as NASA (Kirchbaum et al., 2019) and the University of Durham (Froude & Petley, 

2018). All Global LSIs and disaster databases are created by institutions from the Global North or 

international bodies such as the United Nations (Gómez, García & Aristizábal, 2023). National LSIs are 

common in countries that have many landslide hazards, with many examples of this in the UK, India, 

France, Switzerland, China and Brazil (Pennington et al., 2015; Batar & Watanabe, 2021; Thiery et al., 

2024; Hervas & Van Den Eeckhaut, 2012; Lin et al., 2017; Dias, Holbling & Grohmann, 2021)     

Landslide research is predominantly (70%) produced by the Global North, with the top 10 countries 

being China, Italy, USA, Japan, UK, Germany, Switzerland, Canada, Taiwan and France (Wu et al., 

2015; Carrión-Mero et al., 2021). The research conducted in these Global North countries 

consistently uses LSIs that are either produced through satellite analysis and construction of LSIs 

from aerial images or taking the data from Global LSIs. An example of this is through a ‘World Centre 

of Excellence on Landslide Risk Reduction’ at the Charles University in Prague, Czech Republic. A 

2010 study by Vilímek et al. looked at three study areas that the centre had focused on – the 

Peruvian Andes, the Jemma River Basin, Ethiopia and selected regions of the Himalaya and 

Karakoram. In all these areas either a Global Disaster Database was used for the landslide event 

count, a Global North contractor and institution had created one from satellite imagery, or an 

inventory wasn’t used at all (Vilímek et al., 2010). This is despite a national inventory being available 
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in Peru (from the Instituto Nacional de Defensa Civil) and in the areas of the Himalayas and 

Karakoram the study looked at.  

 5.1.1 Research Questions 

The research question being answered in this research chapter has been created from the gaps in 

literature highlighted in Thesis Section 2.4 Literature Review: Research Question – 5.0 Research 

Chapter I. The research question is as follows;  

- What global and national landslide inventories are available for researchers when 

researching Darjeeling, India? 

This will be answered by looking at some specific points. 

- What Global LSIs are available in the study area? 

- Will using a unified database approach increase the coverage of landslide events in my study 

area? 

- Analysis of physical characteristics from my study site to highlight any correlations between 

the physical properties of the study area and the combined LSI. 

- Will there enough landslide events in the study area to do any validation/skill analysis? 

- Why did I personally not choose to look at India’s National Inventory? 

Each of the following sections will tackle each of these specific points to answer the research 

question.  

5.2 Analysis of Global Landslide Inventories – What's available in the 

study area? 

I started by conducting an analysis of the currently available global LSIs by collecting information 

from each LSI or database containing landslide event data and creating a Table to compare landslide 

numbers, coverage over the globe, and information recorded by each individual LSI (Table 5.1).  I 

have done this to quantify what landslide data is available from the global inventories in the study 

area, and what kind of information would be available for use when using the inventories. Indian 

landslides are counted in all the databases listed, with other databases such as the preventionweb 

(PreventionWeb, 2021), DesInventar (DesConsultar, n.d) or catastrophes-naturelles (Cat-Nat, n.d) not 

containing any landslides within India not being represented in Table 5.1. 
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Table 5.1: Overview of the current publicly available global inventories containing data on landslide occurrence in India, divided into "Global Landslide Inventories" which has 

exclusively landslide data and "Global Disaster Inventories" which has data comprising of landslides and other type of natural hazards that can lead to disasters. “#LS” is the number 

of global landslides, “#LS India” is the number of landslides in India and “# Study Area” is the number of landslide events recorded in the thesis Study Area in Darjeeling District, India 

– location in Thesis Section 3.0 Study Area. Table structure taken from: (Monsieurs et al., 2018) 

Name Institutio

n 

(Country/ 

Union) 

Included Processes Start End # LS # LS India # Study Area Website*  

Global Landslide Inventories  

GFLD – Global 

Fatal Landslide 

Database 

University 

of 

Durham 

(UK) 

Fatal non-seismic triggered 

soil/rock failures, including 

slides, flows and fails. Debris 

flows are included when the 

movement can be clearly 

differentiated from a flood. 

2004 2010 5536 992 71 [1] 

GLC – Global 

Landslide 

Catalog 

NASA – 

National 

Aeronauti

cs and 

Space 

Administr

All types of mass movements 

triggered by rainfall. 

1968 2024 11033 1265 111 [2] 
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ation 

(USA) 

Global Disaster Inventories  

EM-DAT – 

Emergency 

Disaster Data 

Base 

CRED – 

Centre for 

research 

on the 

Epidemiol

ogy of 

Disaster, 

at the 

Catholic 

University 

of Louvain 

(Belgium) 

Biological, climatological, 

geophysical, hydrological, 

meteorological, and technical 

disaster which have killed 10 or 

more people, affected 100 or 

more people, or resulted in a 

declaration of a state of 

emergency or call for 

international assistance 

2000 2024 460 29 0 [3] 

GLIDE – The 

Global Disaster 

Indentifier 

Number 

ADRC – 

Asian 

Disaster 

Reduction 

Center 

(Japan) 

Cold Wave, Complex 

emergency, Drought, 

Earthquake, Epidemic, 

Extratropical Cyclone, Extreme 

Temperature, Famine, Fire, 

Flashflood, Flood, Heat Wave, 

Insect Infestation, Land Slide, 

Approx

. 1900 

Presen

t 

152 3 0 [4] 
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Mud Slide, Other, Severe Local 

Storm, Slide, Snow avalanche, 

Storm Surge, Technological 

Disaster, Tornadoes, Tropical 

Cyclone, Tsunami, Violent 

Wind, Volcano, Wave/Surge, 

Wild fire 

NatCatSERVICE 

– Natural 

catastrophe loss 

database 

Münich 

Reinsuran

ce 

Company 

(Germany

) 

Natural disaster (excluding 

technological disasters): 

Avalanche, Drought, 

Earthquake, Eruption, Flooding, 

Landslide, Rock Fall, Storms, 

Subsidence, Volcanic Extreme 

temperatures, Wildfire 

79 Presen

t 

Approx. 

6149 

66 0 [5] 

Relief Web UN Office 

for the 

Coordinat

ion of 

Humanita

rian 

Affairs 

(OCHA) 

Cold Wave, Drought, 

Earthquake, Epidemic, 

Extratropical Cyclone, Fire, 

Flashflood, Flood, Heat Wave, 

Insect Infestation, Land Slide, 

Mud Slide, Other, Severe Local 

Storm, Snow Avalanche, Storm 

Surge, Technological Disaster, 

1980 Presen

t 

Approx. 

222 

15 0 [6] 
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Tropical Cyclone, Tsunami, 

Volcano, Wild Fire 

* https://shefuni.maps.arcgis.com/apps/webappviewer/index.html?id=8458951270904fc29527254492517063 [1], https://gpm.nasa.gov/landslides/data.html [2], 

https://www.emdat.be/ [3], https://www.glidenumber.net/glide/public/search/search.jsp [4], https://www.munichre.com/en/solutions/for-industry-clients/natcatservice.html [5], 

https://reliefweb.int/ [6]  
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From Table 5.1 it is apparent that from the global landslide databases and natural hazard databases 

landslides cover many events in India, however, fail to represent the landslides within the study area 

in many cases.  Within those that have been included in the Table above, the number of databases 

that contain landslides within the study area is the GFLD and the GLC. The global disaster inventories 

have no instances of landslides within the study area, and so cannot be used in the application of 

validation of models using historical landslide instances. Of the two remaining datasets, 

consideration into duplicate events needs to be taken, and if the events are different, perhaps the 

landslide events could be used in a combined, unified dataset to make a larger more complete LSI.  

 

5.2.1 Will using a unified database approach increase the coverage of 

landslide events in my study area?   

Gómez et al., (2023) combined four of the global landslide and disaster databases to create a Unified 

Global Landslide Database (UGLD) which combined contained 161 countries, 37,946 landslides and 

185,753 fatalities between 1903 and 2020. The paper used the GLC, the GFLD, EM-DAT and the 

DeInventar databases to compile the new UGLD, and its findings showed that there were few 

overlapping events, indicating that each of the databases collect unique and different landslide data 

and balance each other (Gómez et al., 2023).  American and Asian continents contained the most 

landslide incidences and fatalities, and rainfall was one of the most frequent triggers (Gómez et al., 

2023). The characteristics of this thesis study area combined with the aim to understand more about 

rainfall triggered landslides should mean that there are many relevant landslide events in the UGLD, 

or within a combined LSI in general. Using a unified approach as seen in Gómez et al., (2023) is 

therefore the approach that would contain as much information as possible for landslide events, 

increasing the coverage and increasing the amount of landslide events captured. Considering Table 

5.1, when considering landslide inventories that encompass the study location there are only two 

inventories that have landslide events for the study area. By combining these two datasets a larger 

combined inventory will enable a more representative dataset when validating models with historic 

events. The two databases have a combined 16569 landslides, with a combined number of landslides 

of 2257 in India. 

Table 5.1 illustrates that there is limited global landslide data available for the study area in the 

Darjeeling District. The landslide specific datasets are the only datasets to include landslides in the 

study area, with only 4 of the many global disaster databases available having landslides events 
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shown in India. Table 5.2 shows general information of the global landslide databases that have been 

chosen to combine for this study site.  

Global disaster databases are known to have a geo-political component to them, either from 

international data sharing agreements (Adindu et al., 2024; Yang et al., 2024), or political boundaries 

creating significant challenges in collecting and sharing data due to sovereignty and control over 

information (Richmond & Pogodda, 2016). Due to some of these restrictions some of the 

international disaster databases that do not contain landslide events in India also do not contain 

information on other countries in Asia, such as China (PreventionWeb, 2021; DeConsultar, n.d). 

Analysis of these various omissions from the datasets is beyond the scope of this research piece, 

however Thesis Section 3.0 Study Area contains more information on India’s position on the world 

stage, and the historical and present relationships with other countries and organisations.   

Table 5.2: General Information for landslide records for the two combined datasets, the GLC (Kirchbaum, 2019) and 

the GFLD (Froude & Petley, 2018). 

Information in database Global landslide databases 

GLC GFLD 

Scope of Collected data Analysis of global landslides 

triggered by rainfall 

Analysis of landslide activity 

resulting in the loss of human 

life 

Time Range 2006-2017 2004-2017 

Number of Records 11033 5536 

Number of Fatalities 31061 64149 

Fatalities/Landslides (2d.p) 2.82 11.59 

Continents with the highest 

number of landslides 

North America and Asia Asia 

Number of countries with 

reported data 

124 138 

Most affected countries USA, India and the 

Philippines 

India, Nepal and China.  

 

5.2.2 Global Analysis of GFLD and the GLC  

I have created some maps to show the spatial distribution of the two LSIs, GLC and the GFLD and 

these can be seen in Figure 5.1 & 5.2. From these two Figures some comparisons can be made. The 
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GLC has more landslide events within its database, but has a higher spatial coverage in the US, while 

the GFLD has a higher spatial coverage in Asia, including the study site. Despite this, the number of 

landslides is similar in India, with 262-716 landslides in India in the GLC and 346-721 landslides in the 

GFLD. It is apparent that using the two databases combined would increase the spatial coverage of 

the landslide events 

  

Figure 5.1: Spatial distribution of the GLC (Kirchbaum et al., 2019) with shading to show the countries with the most 

coverage of landslide events in these. 

 

Figure 5.2: Spatial distribution of the GFLD (Froud and Petley, 2018) with shading to show the countries with the most 

coverage of landslide events. 
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There are several differences in the LSIs in terms of numbers of incidences and numbers of fatalities.  

In Figure 5.3 there is a clear difference in the number of fatalities and landslide events recorded for 

both datasets. The details of specific numbers are in Table 5.2. Figure 5.3 shows that although the 

GFLD has less landslides reported; it contains many more fatalities then the GLC. The GLC does have 

many more landslides reported then the GFLD yet, does not contain as many fatalities. This could be 

due to underreporting of landslides in national new reports when they are initially logged, with no 

follow up on the number of fatalities as more bodies are found or people are missing. It could also be 

due to the geographical location of the number of landslides reported. For example, the GLC has 

many more landslides reported in the North Americas, where the reporting of landslides is more 

structured, even when the landslides are not fatal, whereas the GFLD has more landslides in Asia, 

where landslide reports are usually reported upon when there are fatalities. The GFLD has a focus 

specifically to log human losses and fatal landslide events which also adds to the disparity between 

the GLC and GFLD regarding fatalities. 

It is important to look at the data in this way as it allows researchers to understand how useful the 

dataset is and how useful the dataset is for studying landslides. When considering how useful a 

dataset is going to be for research, the researcher needs to know what they need from the dataset. If 

the researcher was focusing on non-fatal landslides from the US, then the GLC would be a perfect 

match for the study. A researcher who was focusing on fatal landslides in Asia would find that the 

GLC had little coverage in Asia. It is also important to consider the associations and objectives of the 

institutions that are creating the LSIs as this does impact the recording and the data availability 

within the databases. The GLC is created by NASA, a US government agency, and this is reflected in 

the US coverage of landslide incidences. The GFLD has been created at the University of Durham, a 

UK based university. The main researchers have had extensive experience and professional 

associations with peers in Asia, and so the information presented in the GFLD is predominantly in 

Asia. There are always social implications when considering data availability and data acquisition 

(Umber et al., 2024).  
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Figure 5.3: Comparison between the number of landslides recorded and the number of fatalities for the two datasets, 

GFLD (Froude and Petley, 2018) and GLC (KIrchbaum et al., 2019). 

Figure 5.4 shows the temporal differences in the GLC and the GFLD. From this graph the higher 

fatalities count for the GFLD is more apparent, despite the much lower number of reported landslide 

events seen each year compared to the GLC. The two datasets only show the most recent events 

from 2004. This is much later than the discounted DesInventar and EM-DAT which contain events 

from 1906 and 1903 respectively. This longer time period would be useful for a larger historical 

verification for models for example, but in this case, this is useless because it does not contain the 

landslides needed for this study or thesis.  

The GLC in Figure 5.4 shows a trend of increasing landslide counts over time with the GFLD showing a 

very slight increasing trend in landslide counts.  The GLC also shows a slight increase in fatalities over 

time, with the GFLD showing an even trend in fatalities. This increase in landslides over time is a 

Figure 5.4: The temporal differences between the GLC and the GFLD. 
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trend seen in other longer datasets, for example the DeInventar dataset, where there is a marked 

increase in landslide events from 1900 to 2020 (Gómez, García & Aristizábal, 2023; Fidan et al., 

2024). The increase in landslides is thought to be due to climate change increasing the extreme 

weather events globally and pushing what scientists consider normal (Prakash, 2024). This is an 

important point to consider for my research, as with an increasing risk to hazards, the utilisation of 

landslide inventories, and the way in which the data is collected and stored will be an important 

dataset when developing tools to combat the increased vulnerability and landslide incidents.  

The implications of this on my research and study is that any verification of models could only 

happen within the smaller window of temporal time covered by the GLC and GFLD and not the larger 

window covered in the other databases. It is usual for model verification to happen over many 

decades, and the dataset and model hoping to be verified within my own research has data from 

1940 to the present day. This means that although there could be 80 years of verification analysis to 

do, the study would have to be limited to the 12 years available in these LSIs   

 

Figure 5.7: The GLC number of fatalities and landslides per continent. 

The GLC when split into continents shows the spatial distribution graphically of both the landslide 

counts and the fatalities (Figure 5.7) compared to the map in Figure 5.1. This shows that the map in 

Figure 6.1 is correct in terms of landslide counts, however this Figure contains information about the 

fatalities, which shows something else. The GLC shows that the fatality count is much higher in South 

America and Africa, despite having fewer landslide events compared to the North American 

Continent (Figure 5.7). This could be due to several reasons. It could be due to the reporting 

techniques in the GLC. The reports that make it to the news, or that are deemed most important in 
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the Global South are generally ones that are fatal. All landslides in the Global North are considered to 

be important due to ideas based in post-colonialism (ideas such as importance, wealth and ability to 

maintain safety for citizens) and so most are catalogued and reported upon when they happen. The 

robust nature of reporting landslides in the Global North, coupled by the fact that the GLC has been 

created by a North American agency could also be the reason why there are more landslides 

reported in North America even though they are not fatal landslide events.  

The GFLD dataset split into continents (Figure 5.8) shows a different split between the continents to 

the GLC as expected from the differences in Figure 5.1 and Figure 5.2. The focus of the GFLD is on 

Asia, with little landslide events in other countries. South America is the second largest number of 

landslide events outside of Asia.   

 

Figure 5.8: The GFLD and the fatalities and landslides per continent 
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Figure 5.9: The combined (GLC & GFLD) fatalities and landslide numbers per continent 

Combining both the GLC and GFLD LSIs data and splitting them between continents seen in Figure 

5.9, provides an illustration of the spatial coverage that can be gained from using the combination of 

both the datasets together for research purposes. The areas that had less coverage in either have 

been bolstered by the other – for example, the GFLD had little North American landslides, and the 

GLC had little South American landslides. Overall, the landslide events that are gained from 

combining both datasets make for a more comprehensive dataset globally. 

5.2.3 The GFLD and GLC LSIs and combined LSI at the study site 

Now if we focus the spatial outlook to observe the LSIs at the study site specifically, we can see that 

the landslide incidences can indeed be used in combination to increase the spatial and temporal 

coverage of landslide events at my study site. We can see this through Figure 5.10, which shows the 

specific site region within this study and the locations of the landslide events for each global 

landslide database. These Figures show that although the GLC has more landslide points within the 

site, the global spatial distribution is less than the GFLD. This shows further that combining both the 

GLC and the GFLD would increase the coverage over the specific site of interest and that the 

landslide points are converging on sometimes very specific points.  
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This does not however mean that there are no other susceptible areas of landsliding that are not 

covered by both sets of data – and a more comprehensive image of landslide counts can be seen in 

Thesis section 5.2.4 in Figure 5.14. This Figure shows the Indian national landslide inventory and is 

discussed in detail there. 

Figure 5.10: The location of landslides in the study area, with the green points the landslide locations of the GLC 

landslides and the blue points of the GFLD landslides. 

In Figure 5.10 the specific points that the landslides seem to be converging on are by national 

highways and in built up urban areas. The boxes highlighted in Figure 5.10 are the 4 largest 

settlements in the Darjeeling and Sikkim areas; Darjeeling, Kalimpong, Kursong and Gangtok. The 

landslides are clustered in and around these areas and follow two major features – rivers and 

national highways. This could show that the landslides are occurring due to anthropogenic means, 

however both LSIs are news/ citizen science report based, and so it would make sense if the only 

reported landslides within these inventories were where people lived and travelled along.  
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The yellow box in Figure 5.10 corresponds to the Kalimpong region seen in Figure 5.11. From this 

Figure it is apparent that geological changes or features does not impact landslide locations. This is 

important to note as geological changes can lead to inconsistencies, changes in erosion stages and 

weathering, and ingress and pooling of water. This all relates to how landslides can be formed and 

triggered (Vasudevan and Ramanathan, 2016).  There are no reported large faults or thrusts in this 

area either.  

 

5.2.4 Statistical Analysis  

The combined LSI should be analysed against physical characteristics from my study site to highlight 

any correlations between the physical properties of the study area and the combined LSI as part of 

the Thesis Section 5.1.1 Research Questions as we can see if the combined inventory works with the 

physical characteristics and the usual ways in which landslides are triggered and formed.  

Some analysis is required to understand how these LSIs work in the study area itself in terms of 

geographical location, meteorological drivers and trends with other datasets that are used in the 

area by other researchers, such as the South Asian Monsoon Index (SASMI) , which has been used in 

conjunction with LSI data before (Petley et al., 2007) 

Figure 5.11: The geological stratigraphy at Kalimpong, with the landslide locations mapped. 
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Figure 5.12: Combined landslide inventory for my study area: Temporal trends in the number of landslides across 
different elevation ranges (0–500 m, 501–1000 m, 1001–1500 m, and 1501+ m) from 2004 to 2016. 

The graph highlights that within my study area, higher elevations (1501+ m) experience the most 

frequent landslides, with significant peaks in 2008 and 2014. Lower elevation ranges (0–500 m) 

exhibit fewer landslides overall, while mid-elevation ranges (501–1500 m) show moderate activity. 

These patterns suggest that elevation plays a critical role in landslide susceptibility in the Study Area, 

influenced by factors such as slope steepness, rainfall intensity, and geomorphological conditions 

(McColl, 2022). Chen et al. (2024) discusses the elevation dependant shift of landslide activity within 

the high mountains of China and found that elevation plays a critical role in influencing landslides, 

due to the increase in angle of repose (Beakawi Al-Hashemi and Baghabra Al-Amoudi, 2018), 

increased rainfall due to the orographic effect and general mountain range evolution (Korup et al., 

2010).  

Guzzetti (2021) discussed the role that each condition has within predictions of landslides within an 

invited perspective. Guzzetti highlighted that “convergence research” is needed within landslide 

science to design tools and strategies going forward in landslide science.  

Temporal spikes may correspond to extreme weather events or specific years of heavy monsoons 

(Bogaard and Greco, 2016) (Kirchbaum et al., 2020) (Bellugi et al, 2021). Kirchbaum et al. (2020) 

examined changes in extreme precipitation and landslide incidences in the High Mountain Asia area 

and concluded that extreme monsoonal rainfall triggers more landslides in this area.  
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Figure 5.13: Relationship between the South Asian Summer Monsoon Index (SASMI) and landslide occurrences 
(2006–2018). The plot highlights a negative correlation between average monthly SASMI values and the number of 
landslides, with a fitted trendline (red) showing the general pattern. 

 

The statistical metrics (R² = 0.17, p = 0.2) provide insights into the strength and significance of this 

relationship, suggesting that weaker monsoons (lower SASMI) may correspond to higher landslide 

activity. If the slope of the trendline is negative (as it appears here), it suggests that higher average 

SASMI values (indicating stronger or more consistent monsoons) might correspond to fewer 

landslides. Conversely, lower SASMI values (weaker monsoons) might lead to more landslides. This is 

not consistent with the scientific consensus on how landslides trigger (See Thesis Section 2.1 

Landslide Science) or consistent with the case studies in Thesis Section 5.3.1 Case Study Analysis of 

Indian LSI events. This could be due to the reporting nature of the landslide events, only being 

reported by citizens, and therefore isn’t representative of real landslide event patterns happening in 

and around larger extreme monsoons and monsoonal rainfall.  

A higher R² value (close to 1) would mean the SASMI explains much of the variation in landslide 

occurrences. A lower R² suggests the relationship is weaker and other factors might be more 

influential. The p-value assesses the statistical significance of the trend. A value less than 0.05 
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indicates a significant relationship between SASMI and landslides. The R2 value in this context of 0.17 

means that the relationship between the SASMI and landslide events is weaker than other factors 

(for example, soil saturation or anthropogenic triggers) and the p value of 0.2 means that the trend in 

this graph is not significant. This plot provides a visual and statistical insight into how monsoon 

intensity (as captured by SASMI) might influence landslide occurrences. Further investigation could 

involve exploring other factors (e.g., soil saturation, terrain, or extreme rainfall events) that 

contribute to landslide risk. 

 

The left map (A) depicts average annual precipitation contours (in cm), highlighting a concentration 

of landslides in areas with moderate to high precipitation (30–60 cm). The right map (B) categorizes 

regions based on landslide count, with darker shades indicating higher incidence (20–81 landslides), 

emphasizing southern and central areas as major landslide hotspots. Red triangles represent specific 

landslide locations. These maps show that the annual precipitation is not indicative of higher 

landslide counts. However, this may be explained by the features outlined in Thesis Section 5.2.3 The 

GFLD and GLC LSIs and combined LSI at the study site. Figure 5.10 from this section shows that the 

landslides are clustered around highways and urban areas, probably due to the nature of the 

landslide reporting by citizens and thus being reported when they are seeing the landslides when 

travelling in and around the area (Rohan et al., 2020). This means that the landslides in unoccupied 

areas are not being adequately represented, and so this would skew landslide counts. These 

Figure 3.14: Maps illustrating the spatial distribution of landslide occurrences in relation to precipitation (IMD, 2024) and 
regional landslide density in the Study Area (Combined LSI from GFLD & GLC). 
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discrepancies in citizen reported LSIs and satellite created LSIs have been studied before. Spatial 

uncertainties and reporting biases are common when using news and citizen-based reports (Rohan 

et al., 2020) and so this is likely what is happening within the study area due to the nature of the 

combined LSIs reporting.  

 

 

Figure 5.15: Relationship between slope steepness and the number of landslides in the northeastern Himalayan 
region of India.  

The graph shows a clear link between slope steepness (angle) and landslide occurrence, reflecting 

the challenges of managing such risks in the mountainous terrain of Northeast India, particularly in 

the study area. As the slope increases from 10 to 40 degrees, the number of landslides rises 

moderately, with a maximum of 25 recorded. This aligns with the region's characteristics, where 

steep slopes, intense rainfall, and some seismic activity make it highly prone to landslides. 

The trend highlights those steeper slopes, especially those above 30 degrees, are more vulnerable. 

However, the moderate correlation (0.667) suggests other factors, like soil type, vegetation cover, 

and human activity (e.g., deforestation or road construction), also play a significant role (McColl, 
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2022). A few outliers hint at localised impacts of such factors. Thesis Section 5.2.3 looked at the 

location of the landslides recorded on the LSIs and found that there were areas associated exclusively 

around roads and infrastructure, and so this could be partially the reason why the correlation isn’t 

much stronger. Salini & Rahul (2024) looked exclusively at road networks and landslide risk and 

vulnerability and highlights that infrastructure planners must develop design strategies and 

mitigation measures for road building in these mountainous areas due to the negative impact roads 

can have on slopes.   

 

5.3 The Indian national landslide database 
India’s national landslide inventory is gathered by the Geological Survey of India and has been 

recorded from the 1900’s to the present day. The dataset can be accessed through the Geological 

Survey of India’s webpage and interactive service called Bhukosh.   

It is a very comprehensive and informative dataset which contains lots of information about the 

landslide itself as well as the antecedent conditions present. Table 5.3 shows the information 

available in the national dataset.  

 

Table 5.2: Information collected in Bhukosh Indian National Landslide Inventory. Initiation and Reactivation 1-3 have 

been highlighted to show references to temporal data collection.  

Bhukosh Indian National 

Landslide Inventory 

Information Recorded 

Landslide specific  Other 

 Slide Number Longitude & Latitude 

Depth Structure 

Geology Abstract 

Length Citation 

Width Remarks 

Height Alert 

LS_Area State 

Triggering District 

LS_Volume Topo Sheet 

Slide Name Initiation  

Activity Photos 
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Style Report 

Runout Distance NH_SH_Location 

Material Type Persons Death 

Movement Type People Affected 

Movement Rate Livestock Affected 

Distribution Communication Affected 

Failure Mechanism Land use Affected 

Reactivation 1-3 Pre-Remedial Measures 

Geomorphology Infrastructure Affected 

Hydrological Condition Geoscientific Cause 

 

The information recorded within the Bhukosh landslide inventory is ambitious and is a clear 

representation of what the Indian Geological Society would like to record within the dataset. In 

comparison with the Global Landslide datasets, it records significantly more information on the 

landslide and antecedent conditions. However, when downloading the data and viewing the data, it 

is apparent that the breadth of available data fields is generally not recorded for many of the 

landslide events.  

For example, Initiation and Reactivation 1-3 is the only reference to a temporal dataset. This is 

important for using landslide inventories for model verification, as a clear date (and time if possible) 

is needed. When investigating what data is stored within these fields, initiation is usually in year 

format, or not recorded at all. In the Reactivation 1-3 data field, this is shown as a blank field within 

the study site, but again is shown as a year if the landslide had reactivated at some point.  

 

Figure 5.12: The Bhukosh System screen (Bhukosh, 2024) 
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The Bhukosh system can be seen in Figures 5.12 And 5.13. These Figures show the web-based 

application at which the Indian National Landslide Dataset can be accessed and downloaded. Figure 

5.13 shows the different ’toposheet’ numbers each section of the study area sits on. To download 

the data the researcher needs to create a free account so that any data downloads can be sent to the 

email address that is registered on the account. This is a standard practice when offering earth data 

for free downloads and is the same for the GLC and GFLD.  

 

Figure 5.13: The toposheet numbers for the study site (Bhukosh, 2024). 

The GSI’s national LSI is shown in Figure 5.14. This Figure shows the sheer number of landslides 

experienced in this area. This is far more landslide counts then is recorded in the combined GLC and 

GFLD and has an even spatial coverage of landslides across the entire district.  

 

Figure 5.14: The landslide locations in the National LSI  that are within the study area (Bhukosh, 2024). 

Despite there being a larger number of landslides for the study area for this research, Figure 5.15 

show the data available for most of the landslide points featured in the study site area. From these 
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screenshots it is apparent that there is no usable temporal information for the validation of hourly or 

even daily models.  
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Figure 5.15: The Information within one of the landslides, this shows the depth of information the GSI want to achieve, 

but the blank spaces also show that this is often not covered in the landslides shown on the map (Bhukosh, 2024). 

Not only is there not the information needed to use within the study that I would like to do in this 

study area, but the web application is clunky to use, and had strange limitations within it. For 

example, you cannot download more than 5 toposheet data points at one time (Figure 5.16). This is 

also coupled with the fact that the researcher cannot download across district or state borders – for 

example, the study area is over the boarder of West Bengal and South Sikkim without making 

multiple applications to the data portal. This in general makes the system hard to use and creates a 

longer more frustrating user experience.  

 

Figure 5.16: The toposheet download cannot exceed 5 sheets, and does not cover across state boundaries (Bhukosh, 

2024). 

Although the dataset is very comprehensive, it lacks the temporal information needed for different 

applications, such as model verification using historical events. In this case, the national landslide 

inventory is all but useless for my intentions for the dataset, which meant that I could not use it for 



 

91 
 

my intended research in any case. However, there are other considerations to this question. The 

temporal shortcomings were not discovered until I had already started using the global datasets, the 

GLC and the GFLD I didn’t consider the national dataset as my colleagues and peers drew my 

attention to the global datasets for use in my research. It was apparent that the research I was 

reading online from journals and blogs were using the many global landslide databases like the GLC 

or GFLD as discussed in Thesis Section 5.1 Introduction.   

In reflection of my choices in the beginning of my research journey, I also held a belief that the 

national databases would be of lower quality or accuracy as the Global landslide databases. I believe 

that this was an unconscious bias on my part, fostered from a life sheltered in the UK -  a society 

which still holds post-colonial and nationalistic values. This unconscious bias has been documented 

and researched in many subjects and is a well-established theory (Oberai & Anand, 2018).    

5.3.1 Case Study Analysis of Indian LSI events 
I have chosen three of the landslides in the Darjeeling/Kalimpong area that are points within but do 

not have any information contained within the Indian LSI. I have created detailed case studies for 

each, gleaning information from journals and news agencies.  

Case Study 1: The 2018 Jurey Landslide in Darjeeling 

Background 

The Jurey landslide occurred in August 2018 after an extended period of monsoonal rainfall. Jurey, a 

small village in the Kalimpong district, has been historically prone to landslides due to its precarious 

geological conditions and heavy seasonal rainfall. The event caused widespread destruction and loss 

of life, bringing attention to the urgent need for improved landslide mitigation strategies in the 

region (SaveTheHills, 2018). 

Meteorological Factors 

The primary cause of the Jurey landslide was intense monsoonal rainfall. Over a span of 72 hours, the 

region experienced more than 350 mm of precipitation, which saturated the soil and elevated pore 

water pressure. These conditions weakened the slope’s stability, leading to its eventual collapse 

(Bhattacharya et al., 2019). Antecedent rainfall over the preceding weeks had already left the soil in a 

vulnerable state, exacerbating the effects of the heavy downpour. 

The rainfall was associated with a low-pressure system typical of the monsoon season, which 

brought prolonged and intense precipitation to the Eastern Himalayan region (Ghosh et al., 2020). 
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With climate change increasing the frequency and intensity of such extreme weather events, the 

risks of landslides in the Darjeeling region have grown significantly (Roy & Saha, 2019). 

The Event 

On August 14, 2018, a massive slope failure occurred in the Jurey area, resulting in a debris flow that 

buried multiple homes and agricultural fields. The landslide disrupted a main road connecting 

Kalimpong to other parts of the district, cutting off essential supplies and evacuation routes. The 

debris covered an area of approximately 3 square kilometres, displacing over 120 families and 

resulting in 18 fatalities (SaveTheHills, 2018). 

The event also destroyed a significant portion of terraced farmland, which was a primary source of 

livelihood for the local population. Infrastructure damage included the collapse of roadways, bridges, 

and water supply systems, leaving the affected communities isolated for weeks (Ghosh et al., 2020). 

Aftermath 

The immediate response to the disaster involved rescue and relief operations by local authorities and 

the National Disaster Response Force (NDRF). However, ongoing rainfall and landslide debris 

hampered these efforts. Emergency shelters were set up for displaced families, and relief materials 

were distributed by both governmental and non-governmental organizations (Bhattacharya et al., 

2019). 

The disaster exposed significant gaps in the region’s disaster preparedness and early warning 

systems. Although signs of slope instability were observed in the weeks leading up to the landslide, 

no evacuation orders were issued. This lack of proactive measures significantly increased the human 

and economic toll of the event (Roy & Saha, 2019). 

Conclusion 

The 2018 Jurey landslide underscores the interplay between extreme meteorological events and the 

region’s fragile geologies. Addressing these challenges requires a comprehensive approach that 

includes advanced weather monitoring, sustainable land-use planning, and community engagement. 

By implementing these strategies, the Darjeeling region can mitigate the risks of future landslides 

and protect its vulnerable communities (Ghosh et al., 2020). 

Case Study 2: The 2020 Kalimpong Landslide in Darjeeling 

Background 
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The 2020 Kalimpong landslide occurred in July 2020. The landslide followed an extended period of 

heavy monsoonal rainfall, resulting in extensive destruction and loss of life. Kalimpong, situated in 

the eastern part of Darjeeling district, has long been recognized as a high-risk area for landslides due 

to its steep terrain, fragile geology, and intense seasonal rainfall patterns (SaveTheHills, 2020). 

 Meteorological Factors 

The primary trigger for the 2020 Kalimpong landslide was a severe monsoonal downpour, with the 

region receiving over 400 mm of rainfall within three days. This excessive precipitation led to rapid 

saturation of the soil, significantly weakening the slope stability. Antecedent rainfall from the 

preceding weeks had already elevated the moisture content in the soil, creating conditions ripe for 

slope failure (Roy & Saha, 2019). The rainfall event was associated with a low-pressure system, which 

brought prolonged and intense precipitation across the Eastern Himalayas (Dolui & Chakraborty, 

2023). 

Extreme rainfall events like this have become increasingly common in the region, with climate 

change contributing to more frequent and intense monsoonal depressions. These changing weather 

patterns have heightened the vulnerability of already fragile slopes, making large-scale landslides an 

annual threat (Dolui & Chakraborty, 2023). 

The Event 

On July 12, 2020, a massive slope failure occurred near the village of Sangsey in Kalimpong. The 

landslide involved a rapid debris flow that engulfed several homes, agricultural fields, and portions of 

a main road connecting Kalimpong to other parts of the district. Reports indicate that the debris flow 

covered an area of approximately 2.5 square kilometres and displaced over 100 families 

(SaveTheHills, 2020). Tragically, the event resulted in 15 fatalities and numerous injuries. 

Infrastructure damage included the destruction of critical roadways and water supply systems, 

further isolating affected communities (McGowran, 2022). 

Aftermath 

The immediate aftermath of the landslide was marked by rescue operations conducted by local 

authorities and disaster response teams. However, access to the affected areas was severely 

hampered by ongoing rainfall and blocked roads. Emergency shelters were established for displaced 

families, and relief materials, including food and medical aid, were airlifted to remote locations 

(Singha & Sarkar, 2024). 
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The event highlighted deficiencies in early warning systems and the lack of real-time monitoring of 

high-risk slopes. Local residents reported minor slope movements in the weeks leading up to the 

landslide, but no formal evacuation orders were issued. This lack of preparedness exacerbated the 

human and economic toll of the disaster. 

 Conclusion 

The 2020 Kalimpong landslide serves as a stark reminder of the interplay between extreme 

meteorological events and fragile geologies in the Darjeeling region. Addressing these challenges 

requires an integrated approach involving advanced weather monitoring, sustainable land-use 

planning, and community engagement to mitigate the risk of future disasters (McGowran, 2022). 

Case Study 3: The 2017 Tingling Landslide in Darjeeling 

Background 

Tingling, located near the Kurseong subdivision, is known for its vulnerability to landslides due to 

steep terrain and fragile geology. This landslide occurred in July 2017 after heavy monsoon rains and 

resulted in considerable destruction to life and property, emphasizing the need for effective landslide 

mitigation measures (SaveTheHills, 2017). 

Meteorological Factors 

The primary cause of the Tingling landslide was prolonged and heavy rainfall. Over 250 mm of rain 

was recorded within 48 hours, leading to saturated soils and increased pore water pressure. This 

rapid saturation weakened the soil’s cohesion, triggering slope failure (Ghosh et al., 2018). 

Antecedent rainfall during the preceding weeks had already left the slopes highly unsTable, creating 

conditions ripe for a disaster (Das et al., 2019) 

The heavy rains were attributed to a low-pressure system moving across the Bay of Bengal, a 

common meteorological phenomenon during the monsoon season. This system brought consistent 

and intense precipitation across the Darjeeling hills, which are particularly susceptible to landslides 

due to their steep gradients and weathered rocks (Bhattacharya et al., 2018). 

 The Event 

On July 13, 2017, the Tingling landslide occurred, causing widespread destruction. The debris flow 

swept through the Tingling tea garden, burying several workers' quarters and farmland. 

Approximately 20 families were displaced, and 12 fatalities were reported (SaveTheHills, 2017). 

Infrastructure damage included the destruction of roads and bridges, cutting off access to the 

affected area for several days. 
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The debris covered an area of nearly 2 square kilometres, and significant economic losses were 

incurred due to the destruction of tea plantations, which are a vital source of livelihood for the local 

population. The landslide also disrupted water supply systems, further complicating the recovery 

process (Das et al., 2019). 

Aftermath 

The response to the disaster involved coordinated efforts by local authorities, the National Disaster 

Response Force (NDRF), and community volunteers. However, ongoing rains and blocked roads 

delayed rescue operations. Emergency relief shelters were established, and food and medical aid 

were provided to displaced families (Bhattacharya et al., 2018). 

The Tingling landslide exposed critical gaps in early warning systems and preparedness. While signs 

of slope instability had been noted, including small cracks and minor landslips in the weeks prior, no 

evacuation orders were issued. This oversight underscored the need for better predictive tools and 

community education regarding landslide risks (Ghosh et al., 2018). 

Conclusion 

The 2017 Tingling landslide underscored the vulnerability of the Darjeeling hills to extreme rainfall 

and highlighted the need for improved mitigation strategies. Addressing these challenges requires a 

multidisciplinary approach that integrates advanced technology, community engagement, and 

sustainable land-use planning to reduce the risk of future disasters (Das et al., 2019). 

Lessons Learned from the Case Studies 

1. Improved Weather Forecasting: The event highlighted the need for advanced weather 

monitoring systems capable of providing timely and localized rainfall predictions (Ghosh et 

al., 2020). 

2. Slope Stabilization Measures: Engineering solutions, such as retaining walls and improved 

drainage systems, are critical for preventing landslides in high-risk areas (Bhattacharya et al., 

2019). 

3. Community Awareness and Engagement: Educating local communities about the signs of 

slope instability and evacuation protocols can reduce casualties (SaveTheHills, 2018). 

4. Climate Adaptation Strategies: Long-term measures to address the increasing intensity of 

monsoonal rainfall due to climate change are essential for enhancing resilience in the region 

(Roy & Saha, 2019). 
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5.4 Choosing the LSI for my site – Discussion & Future Considerations 

When considering the research above and the research question ‘What global and national 

landslide inventories are available for researchers when researching Darjeeling, India’ there are many 

things to consider when evaluating current practice and the use of global LSIs and if the current 

practice and current global LSIs can be used for scientific enquiry and in particular equiTable scientific 

enquiry. We can first look at the tools that are being used by researchers and evaluate if there is 

sufficient data within the global LSIs that are being used. Then we can discuss why these global LSIs 

are being used over the national inventory, and then we can encourage a best practice for collecting 

and storing LSIs. Finally, we can discuss what would be the ‘ideal practice’ when moving the needle in 

DRR landslide science towards a more equiTable and usable global LSI. 

5.4.1 Insufficient Comprehensive Data. 

From the data analysed in section 5.2.2 it is proven that combining both datasets make for a more 

spatially and temporally diverse and covered database. Figure 5.10 and the subsequent maps 

processed how this combination would affect the study area’s landslide counts and locations. In 

Table 5.1, it shows that the GLC has 111 counts of landslides within the study area and the GLFD has 

71 landslide event counts. Combined this makes 178 landslide counts for the study area. Although 

this appears to be a method of increasing the coverage spatially and temporally for the global LSI’s, 

the consideration of the number of landslides reported means that this number is unfortunately still 

far too low for use in landslide studies for the area. This number of landslides is a very low number of 

events, and if we were to create an average over the years that the datasets span, then this would be 

only 14 landslides a year, a very small amount compared with the actual number of landslides 

reported using landslide inventories that are created in the field using observations or when creating 

an inventory through satellite imagery (Berti et al., 2012; Dikshit et al., 2019). See Thesis Section 

6.3.3 Research Chapter II: Data Limitations for more information.  

The nature of the reporting of landslides for both the GFLD and the GLC means that the clusters of 

landslides we see spatially (Figure 5.10) are based on where landslides are more likely to be reported 

in the news, through its impact to communities, rather than the landslides that are occurring away 

from towns and roads. This specifically skews the data towards an interaction with society-based LSI 

rather than a more comprehensive dataset that is representative of the landslides within the study 

area. 
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5.4.2 Best practice for the collection of and storing landslide inventories. 

When considering the current practice, it is obvious that there are improvements that can be made 

regarding how the global LSIs can be created, collected, stored, and distributed. At the current level, 

the global LSIs on offer are just not good enough.  

There are several improvements that could be made.  The first would be using other methods to 

collect landslide events. This could be through continual monitoring of satellite imagery to collect 

location data and approximate timing (Novellino et al., 2024), to automated data collection methods 

(e.g. accelerometers) placed in the field (Njafabadi et al., 2024). Pairing these events with additional 

data taken from other datasets, such as meteorological (rainfall), environmental (land use) and 

geological (soil type) datasets could add a plethora of additional data to the identified landslide 

events.  

Even if the mode of reporting was the same – through direct landslide reporting by the communities, 

or using news reports to collate a database, there can be alternative improvements made. An effort 

to make the reporting easier to do. This could be done with a wide range of methods. For example, 

creating and developing an application for mobiles where the input of the citizen can be regulated 

and made easier to accomplish would allow LSIs to have information that is desirable, and have more 

incidences recorded. For example, Rohan et al. (2020) investigated a dedicated phoneline and mobile 

service for this type of reporting. Engaging community groups is another way in which citizens can be 

utilised to create LSIs in this way, and with additional training the community groups would be able 

to provide high quality and relevant information for the landslides to be used in research. Training in 

the community in general would promote awareness in the community of the importance of LSIs in 

not only the research, but in ways that would impact the community directly if used in tools like the 

one proposed in Thesis Section 6.0 Research Chapter II. The role of community networks in 

preparing and responding to landslides has been investigated in the Alps, with positive outcomes 

(Pedoth et al., 2023).  

There are many different studies that are creating landslide inventories through intensive and 

resource consuming ways such as field studies, sampling, and the use of Unmanned Aerial Vehicles 

(UAV) or drones when creating landslide inventories (Rossi et al., 2018). If there was a better protocol 

to share and distribute these datasets to the wider use in global LSIs rather than the gatekeeping of 

data, or the idea of ‘ownership’ of data then collaborative global LSIs could be far more usable and 

represent the actual spatial and temporal coverage of study areas like my own. Collaboration and 

data sharing would also extend to sharing ‘best practice’ and lead to standardisation of the collection 
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and storage of these global LSIs in a way that would impact the accessibility and quality of the data 

that is available to researchers.   

5.4.3 Which inventory is best for Darjeeling District, India? 

While the research suggests that using a combined landslide inventory from the global LSIs and 

disaster databases that are available increases spatial and temporal coverage of landslide events 

globally, for specific local areas the results are less ideal, and show some biases in location and 

timing. Using a combined dataset is the most suiTable ‘current practice’ and is a method that is being 

used by landslide researchers today, however this global LSI method is not suiTable for specific 

applications in the Darjeeling District, India. In Figure 5.1 it is apparent that the GLC, which has the 

most landslide events recorded within it, has many more landslides recorded in the United States 

and South America. This means that potentially the application of using global LSIs combined could 

work for local application in other areas of the world, and specifically with the United States. 

Dandridge et al. (2023) also identified that the US would be the best place for using global LSIs as 

there is a reporting bias for English speaking countries with high GDP. Something to consider for 

future research would be to analyse the combination of these global LSIs and disaster datasets in 

different local locations to compare spatial and temporal coverage and differences in community 

reporting biases.  

This focus on the United States from the GLC is a bias that needs to be considered by the landslide 

researcher. Additionally, the focus on Nepal from the GFLD is also something to consider. The GLC has 

a focus on the US as it is produced by NASA, a US funded national institution (Kirchbaum et al., 

2019). The GFLD is created by two researchers, who have long research ties to Nepal (Froude & 

Petley, 2018). The global LSIs that are being used here are being influenced by geo-politics, but also 

from the intentions of the individuals that are collecting the information and setting up the LSIs in 

general. Social checks on the how and why datasets are created and being used needs to be part of a 

landslide researchers toolkit, and this type of dataset checks can be encouraged for early career 

researchers through adequate additional training either through university courses, PhD skills 

training or through workplace training courses. The Equality and Human Rights Commission 

advocates these types of training as they’re seen to be effective when training is provided for 

employees in business (EHRC, 2018).   

When considering the future of landslide inventories there is a strong case for creating a universal 

standard for collecting and storing landslide events, despite the organisations, institutions or national 

establishment that collects the information. McColl & Cook (2024) have already began looking into a 

universal size classification system for landslides due to inconsistency within literature. Not only 
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could there be a best practice implemented for the collection and storage of landslide information in 

LSIs globally and nationally, but there also seems to be the need for creating a best practice for 

researchers in the earth sciences or the disaster risk reduction sciences to create some form of 

‘social check’ on their decisions surrounding data selection and use. These considerations are also 

discussed in Thesis section 7.2 Discussion and Future Considerations: Research Chapter I.  

5.5 Future Considerations 
While databases like the Global Fatal Landslide Database (Froude & Petley, 2018) and NASA's Global 

Landslide Catalogue (Kirschbaum et al., 2015) provide invaluable global-scale insights into landslide 

occurrences and trends, conducting a manual landslide inventory offers critical advantages for 

localized prediction efforts. These global datasets are inherently limited by their coarse resolution 

and broad focus, often prioritizing fatal or large-scale events while neglecting smaller, non-fatal, yet 

significant landslides that contribute to regional susceptibility patterns. 

For example, the Global Fatal Landslide Database focuses on landslides with reported fatalities, 

omitting many non-fatal but frequent events that may provide important clues about susceptibility 

factors (Froude & Petley, 2018). Similarly, NASA's Global Landslide Catalogue relies on satellite-

derived data and media reports, which may miss smaller or vegetated landslides and lack site-

specific characteristics like slope gradient, soil type, or drainage conditions (Kirschbaum et al., 2015). 

By complementing these global datasets with a detailed manual inventory, researchers can address 

these gaps, ensuring local topography, geology, and anthropogenic influences are accurately 

represented. This integration enhances the predictive capacity of landslide models and aids in the 

design of targeted mitigation strategies, particularly in high-risk regions like the Himalayas (Guzzetti 

et al., 2012). 

5.6 Conclusion 

The global LSIs that are available for researchers are separate entities that have different objectives 

and agendas which mean that the spatial and temporal coverage of databases and inventories can 

have gaps. Using different LSIs in combination with each other can create a larger dataset that has a 

more spatial and temporal coverage for study areas of interest for researchers. For example, in the 

study area specified in this research chapter the increase spatial and temporal coverage of landslide 

inventories has been apparent, however inadequate.  

There is also a consideration for physical science researchers in respect to the choices made when 

deciding on which datasets to use. The researcher needs to understand what details they need from 

the LSI to be able to conduct their research. After this, the researcher needs to consider all available 
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datasets, from international and national organisations. After the choice is made by the researcher 

there needs to be another ‘social check’ on why they have chosen to use the LSI they chose.  

Overall, the current practices of using global LSIs in research when researchers do not have the time 

or resources to conduct more intensive site investigations and produce their own local LSIs fall short 

of producing something that fully represents the local areas. This means that a wider application of 

using a free, available dataset for the globe that can be used in conjunction with other freely 

available datasets for application in tools for prediction (as in Thesis Section 6.0 Research Chapter II) 

is much harder to create due to the lack of events in a micro spatial scale.  
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Chapter 6: Research Chapter II ‘Application’ 

Utilizing ERA5 Climate Reanalysis Data for Landslide 

Prediction in Darjeeling, India: A Statistical Approach 

6.1 Introduction 

The research question for this chapter is; 

-  Can precipitation triggered landslides in Darjeeling, India be predicted with the global scale 

reanalysis precipitation dataset ERA5, and established Intensity Duration Thresholds? 

This research question explores a gap in the literature which is explored in Thesis Section 2.6 

Literature Review. This research gap can be condensed into a singular sentence. Using precipitation 

Intensity Duration thresholds for landslides in conjunction with ECMWF’s reanalysis dataset ERA5 has 

never been investigated before, and landslide prediction has never been researched in the 

Northeastern Indian Himalayas. This research is needed to fill the gap as encouraging the use of 

freely available global datasets in areas that are data sparse or technologically unadapt could change 

the risk that landslides have to the population living in this area and advance the science and 

understanding of the technologies for others in similar areas. To do this, this chapter will use the 

combined landslide inventory (See Thesis Section 5.0 Research Chapter I). The implications of using 

these two very different LSIs have been critically discussed in 4.3.2 Landslide Database Critical 

Reflections. As I am using a combination of both an occurrence LSI and a Fatal LSI, the main objective 

of this research is investigating the predictability of landslide risk to the population. This combined 

LSI begins the process of verifying historical landslide events with established ID thresholds and the 

historical ERA5 reanalysis datasets. To verify these events, I will be using ROC curve analysis to assign 

hits and misses to the events based on the ERA5. Before I do this, I will need to do a sensitivity 

analysis on the ERA5 Total Precipitation dataset due to the known limitation of the ERA5 ‘Drizzle 

Effect’ (See Thesis Section 2.2.3.2 Drizzle Effect) as to complete this verification I need established 

‘dry days’ during the Indian Monsoon season, rather than the constant wetness that ERA5 projects. 

The ROC analysis will hopefully give a statistical significance to using ERA5 total precipitation in 

conjunction with the ID thresholds to successfully predict the historical landslide events in the 

combined landslide inventory, and thus be able to be used in the future, after additional studies, to 

be used for additional information and warning in this area.  
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Landslides in the Darjeeling and Sikkim Himalayas are a major concern for the mountain region as 

they are the most vulnerable areas to landslides primarily due to their geological and 

geomorphological characteristics. The Darjeeling and Sikkim Himalayas are 40% of India’s landslide 

prone areas (Dikshit & Satyam, 2017). Heavy rainfall and seismic activity are the main natural triggers 

for landslides in the area (Biswas & Pal, 2016). These landslides affect key infrastructure in the area, 

such as transportation links, energy supplies and agriculture (Dikshit et al., 2020). Fatal landslides in 

the Indian Himalayas triggered by precipitation accounted for 14.52% of global fatal landslides 

between 2006 and 2017 (Froude & Petley, 2018), with the potential for this number to rise when 

considering other global landslide databases (Froude and Petley, 2018) (Dikshit et al., 2020).  

6.2 Site Information 

The study site is between 27.4°N and 26.8°S latitude and longitude between 88.0°E and 88.8°W. It is 

in the Darjeeling District of the Indian Himalayas and comprises of the towns Darjeeling and 

Kalimpong. The northern boundary reaches the Southern Sikkim cities of Singtam and Namchi, while 

the southern boundary reaches the town of Kurseong, still within the district of Darjeeling. The 

Highest elevation in the site area is Tiger Hill, a mountain South of Darjeeling which as an elevation of 

2590m. The study area spans over an area ~1730km2. This site area can be seen in Thesis Section 3.2 

Study Area Figure 3.7. 

The hydrological significance of this study area is that the rainfall has a seasonal monsoon pattern. 

This means that the study area is subject to heavy rainfall. The beginning and end of the season 

changes from year to year, although the scientific community uses June – September as the 

monsoon period for ease of research (Recchia, Griffiths & Douglas 2021; Kulkarni & Koteswara Rao, 

2023). Climate change is making monsoons experience more rainfall and have more erratic and 

volatile events (Maharana, Agnihortri & Dimri, 2021; Sandeep & Kumari, 2023). 

This research chapter focusses on the landslides triggered by rainfall alone, as there is evidence that 

the study area experiences most landslides that have been triggered in this way (Basu and De, 2024) 

(BGS, 2025). Knowing what the area’s major trigger of landslides is will help when designing early 

warning systems for landslides in this area.  

There are other things to consider when thinking about landslides in an environment. For example, 

the underlying geology. The geology of Darjeeling (featured in Thesis Section 3.2 Study Area) and the 

surrounding areas is very complex, due to its geological history of the broader tectonic formation of 

the Himalayas and subsequent evolution over millions of years. A detailed view of the geological 

significance of the area is in Thesis Section 3.0 The Study Area. The geological environment of the 
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Darjeeling and Sikkim Himalayas does affect landslide occurrence. Geological factors affecting 

landslides include the regional geology and rock type and the structure of bedrocks, for example, 

faults and rock foliations (Rawat et al., 2015). This geological environment does control certain 

aspects of hydrology, for example the way in which the underlying geology controls landscape and 

landforms e.g. topography which would affect the physical catchment characteristics. The geological 

environment and subsequent landslide occurrence are also affected by the hydrological action of 

river basins, and the Tista Basin is one of the largest in the Darjeeling Himalayas, with approximately 

five sub-basins situated in the Kalimpong region alone (Dikshit & Satyam, 2017), and is highly 

vulnerable to landslides. Land use, agricultural practices and expansion of highways and 

anthropogenic engineering also interacts with landslides in this area. These things can increase the 

likelihood of landslides through different mechanisms such as undercutting at the toe of landslides, 

deforestation on slopes and heavy machinery vibrations (Highland et al., 2008) (Rohan et al., 2020). 

This is detailed within Thesis Section 3.0 The Study Area. 

Despite there being other triggers and considerations, this chapter will solely be focusing on rainfall 

and its triggering effect on landslides in the study area. 

6.3 Data Used 

The full extended information for the data used in this research chapter can be seen in Thesis 

Section 2.6 Literature Review and Thesis Section 4.5 Data and Methods. 

6.3.1 ERA5 climate reanalysis data for the Darjeeling region 

ERA5 is the fifth generation of atmospheric reanalysis of the global climate system by the European 

Centre for Medium-range Weather Forecasts (ECMWF). Reanalysis is a method of reconstructing past 

weather and climate datasets by combining specific global models and observations. ERA5 produces 

datasets for a vast number of atmospheric, land and oceanic climate variables covering dates from 

the 1950’s to the present day. ERA5 is a significant improvement from the ERA-Interim dataset that 

was used previously; improving in resolution, accuracy and the range of parameters involved (Dee et 

al., 2011; Hersbach et al., 2020).  

The spatial resolution of ERA5 is 31km, while ERA-Interim was 79km. This is better for representing 

the regional and small-scale weather features (Hersbach et al., 2020). ERA5 also includes a better 

representation of the atmospheric column and incorporates recent and more advanced observation 

techniques including satellite observations, which were not used in the earlier reanalysis products 

from ECMWF. A more accurate and comprehensive representation of the past state of the Earth’s 

climate system is created by ECMWF’s Integrated Forecast System (IFS) and this allows for an 
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assimilation of a large array of observational data in a dynamically consistent manner (Hersbach et 

al., 2020). This project uses ERA5 Total Precipitation (m) (ECMWF, 2024). This dataset is used for 

understanding past precipitation patterns, validating hydrological models and has applications in 

water management and agriculture (Grassman et al., 2007; Beven, 2011). ERA5 has been evaluated 

to be quite good in general (Tarek, Brissette & Arsenault, 2020; Arshad et al., 2021). Precipitation 

reanalysis products are also used for precipitation estimates in ungauged or data-sparse areas, such 

as my study area (Becker et al., 2020; Jiang et al., 2021). 

ERA5 has also been evaluated to be quite good at high extremes, which is an important 

consideration when looking at rainfall triggered landslides, as the landslide events are usually 

triggered from storm events (Gariano & Guzzetti, 2016; Marc et al., 2019). ERA5 total precipitation 

dataset has  some reliable performance predicting extremes in precipitation which also helps when 

looking at climate change and increased hazard analysis in data sparse areas (Hu & Frankie, 2020). 

ERA5 does have some limitations, for example the assimilation of satellite-derived precipitation 

estimates can introduce uncertainties, especially in regions with data scarcity (Hersbach et al., 2020). 

You can find out more information through a full description of ECMWF’s ERA5 reanalysis system 

which can be seen in Thesis Section 2.2 Precipitation Modelling Science. 

6.3.2 Historical landslide event records – combined landslide inventory. 

The historical landslide events that will be used in this study will be taken from the combined 

landslide inventory that was created in Thesis Section 5.0 Research Chapter I. The combined 

inventory combines the NASA Global Landslide Catalogue (GLC) and the Global Fatal Landslide 

Database (GFLD) from the University of Durham. More information on these landslide inventories 

and how they were combined can be found in Thesis Section 5.0 Research Chapter I.  

 

6.3.3 Data Limitations 

There are some data limitations that need to be discussed before their use in both the precipitation 

dataset and the landslide datasets.   

Taking the landslide datasets into consideration first, in Thesis Section 5.0 Research Chapter I we 

have seen that the Geological Survey of India has their own national landslide inventory which 

contains hundreds of landslides not identified within the landslide inventories this study is using (GSI, 

2024). However, to effectively analyse the datasets for statistical analysis through the use of the 

intensity duration graphs and ROC curve analysis (Thesis Section 4.5.2.5 Relative Operating Curves), 
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the specific date and time is essential. The national landslide inventory does not include these dates 

within its database; however, this information is recorded in the GLC and the GFLD. The landslide 

databases also do not contain temporally long data. For example, the GLC is from 2007-2019 while 

the GFLD is from 2005-2017. This research will be inclusive of both datasets, and so the date range 

will be between 2007-2017. This does limit the study, as only having a small number of years means 

that the method cannot be tested over a longer temporal period.. 

However, there may not be enough landslide events for assessing the skill of the ID threshold and 

ERA5 dataset together to assess the prediction tool. Guzzetti et al. (2008) used over 700 landslides to 

define and validate their ID thresholds for central Europe. Within regional studies a LSI of 9000 

landslides were used for developing preliminary ID thresholds in Italy (Berti et al., 2012). A localised 

study on a singular road in Bhutan used 248 landslides in an ID study (Dikshit et al., 2019). This 

means that current literature seems to use landslides in their hundreds and thousands to calibrate 

and assess their ID thresholds, and so there may not be enough for this type of study.  Information 

taken from Thesis Section 5.0 Research Chapter I shows both landslide datasets have a combined 

total of 131 landlsides within the site area itself. The event counts of the overall landslide events can 

be seen in Table 6.1. 

Table 6.1: Landslide event counts for both datasets, also showing the matched values removed in a combined event 

count. 

 

The ERA5 Total Precipitation Reanalysis dataset also has its limitations. The 31km resolution of the 

reanalysis means that it is very difficult to specifically look at slopes, specific landslides and 

geologically significant areas. This means there is an assumption made that the whole grid square is 

experiencing the same precipitation. The coarse nature of ERA5 reanalysis also brings up another 

limitation, when researching its use with ID thresholds (Thesis Section 4.5.2.3 Intensity Duration 

Thresholds), which is the ‘drizzle effect’. Although reanalysis datasets like ERA5 are known to 

perform better than satellite datasets like the GPM and TRMM in many areas of the world (Beck et 

 GLC (Kirchbaum et al., 

2017) 

GFLD (Froude and 

Petley, 2018) 

Combined Counts 

(minus matched 

events) 

Global 11033 5536 14195 

India 1265 992 1678 

Study Area 111 71 131 
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al., 2019) this study also showed that in complex topography satellite precipitation may perform 

better than the ERA5 due to satellite precipitation being a higher spatial resolution compared to the 

ERA5. However, ERA5 has been showed to be reliable at capturing extreme rainfall events in some 

areas of the world (Gao et al., 2020; Hersbach et al., 2020; Zhu et al., 2021), and this is important 

with rainfall triggered landslides and the mechanism of failure.   

Drizzle Effect -ERA5 

The limitation in using ERA5 with ID thresholds is the ‘Drizzle Effect’. This is a known limitation in that 

it struggles to resolve the difference between dry days and days with low precipitation leading to a 

continuous ‘drizzle effect’ (Hersbach et al., 2020; Pappenberger, 2024). This can skew statistical 

analysis of precipitation. To correct for this difficulty a threshold can be applied to the data, setting 

any precipitation values under the threshold to zero. For example, a threshold of 1mm will mean that 

any values of precipitation in ERA5 under 1mm will be set to zero.   

In this study this means that, without correction, the ERA5 precipitation for the monsoon over the 

site area has no ‘dry days’ between June and September. This means it is difficult to create an event 

duration of the precipitation before each landslide, as this is usually taken from the first instance of 

continuous rainfall until the landslide event itself. This suggests that a threshold correction of the 

drizzle effect is required. 

However, there is no evidence currently of whether the 1mm threshold is appropriate in different 

geographical locations and rainfall situations. For example, the 1mm threshold is used globally, in 

areas as diverse as the Gobi Desert to the Amazonian Rainforest (Beck et al., 2019; Hersbach et al., 

2020; Pappenburger, 2024). Therefore, to create ‘dry days’ that take into consideration the 

hydrological and seasonal conditions of the monsoon, a sensitivity analysis has been undertaken. 

This analysis considers the conventional 1mm threshold that ECMWF places to combat this drizzle 

effect, as well as a greater 5mm and 10mm threshold and a 25th percentile threshold. These larger 

thresholds are considered as the site area is within the sub-tropical monsoon climate, and so the 

amount of rainfall is extreme in this area and so the generic worldwide drizzle effect threshold of 

1mm might be too small still for gaining much ‘dry day’ activity in the study area.  

6.3.4 ERA5 Usability Explanation 
ERA5 is increasingly being utilized in the prediction of future landslide events due to its high-

resolution, globally consistent, and long-term climate data, which are essential for understanding the 

atmospheric conditions that contribute to landslides. Landslides are complex natural disasters 

triggered by multiple factors, including intense rainfall, soil saturation, and steep terrain. The 

relationship between weather patterns and landslides is well-documented, with studies showing that 
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heavy rainfall, rapid soil moisture increase, and seismic activity are often critical triggers (Mao et al., 

2020; Guzzetti et al., 2008; Corominas et al., 2014). ERA5 offers a comprehensive reanalysis of 

atmospheric conditions, providing hourly data on key variables such as precipitation, temperature, 

wind, and humidity, spanning from 1950 to the present. This makes it an invaluable resource for 

understanding how weather and climate influence landslide events over time. 

By analysing historical ERA5 data, researchers can model the environmental conditions that preceded 

past landslides. For example, heavy rainfall events and rapid increases in soil moisture are frequently 

associated with landslides, especially in regions with steep slopes and loose soil. ERA5’s high spatial 

and temporal resolution allows for the detailed modelling of these events on a local or regional scale, 

which is essential for understanding landslide dynamics in specific areas. Several studies have 

demonstrated that heavy rainfall and prolonged wet periods are key indicators of landslide 

occurrence (Fell et al., 2017; Guzzetti et al., 2008). ERA5 enables researchers to assess how often 

these weather patterns occur and their correlation with landslide events. 

Using historical data, like that from ERA5, is an important first step in predicting future landslides. By 

studying the conditions that caused landslides in the past, scientists can understand what kinds of 

weather patterns are most likely to trigger them. This helps them create models to forecast similar 

conditions in the future. For example, if a certain amount of rainfall in a specific region triggered 

landslides before, ERA5 data can help predict if similar weather is likely to happen again. These 

predictions are important because they allow scientists and emergency services to be prepared in 

advance, reducing the risk of damage and saving lives. So, even though ERA5 doesn't directly predict 

the future, it gives scientists the tools to understand patterns and improve future predictions of 

landslides. For example, Botto et al (2025) used ERA-5 LAND reanalysis data to evaluate the 

performance of the Italian regional shallow landslide early warning system in Piemonte in Northwest 

Italy when looking at predicting changes in landslides due to climate change in the future.   

ERA5 has also been widely used to validate predictions for other natural disasters, such as flooding. 

For example, ERA5 data has been used to compare past flood events with rainfall predictions, helping 

to assess the accuracy of flood models (Zhou et al., 2020). Similarly, ERA5 has improved the accuracy 

of cyclone predictions by validating the intensity and paths of past storms (Cameron et al., 2020). 

These applications demonstrate how historical reanalysis products like ERA5 are essential for 

validating predictive models. By comparing the actual outcomes of past events with model forecasts, 

researchers can refine their predictive tools, ensuring more accurate future predictions for landslides 

and other weather-related hazards. 
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6.4 Methods 

The detailed methodology can be seen in Thesis Section 4.5 Data and Methods.  Within that section 

the computer packages used, example coding and more can be seen. I will briefly mention the types 

of products and methods I am using below as a recap, in particular ID thresholds and ROC curves as 

this will be the focus of this research chapter.  

6.4.1 Intensity Duration (ID) thresholds for landslides triggered by 

precipitation. 

Intensity Duration thresholds are a tool which are used exclusively for landslides that are triggered by 

rainfall. An ID threshold is a threshold that is created from the relationship between precipitation 

intensity (I) and its duration (D), providing a threshold of conditions that if breached are likely to 

initiate landslide events (Guzzeti et al., 2008; Biswakarma & Joshi, 2023).  

ID thresholds are important as they try to establish a quantitative relationship between the intensity 

of rainfall (how much rain in a given period) and its duration (how long the rainfall event lasts). This 

relationship can not only identify the specific conditions at which landslides are initiated but has 

applications in LEWS for predicting landslide events, risk management strategies around land use 

planning and disaster preparedness.  

6.4.2 Why ID thresholds for this site? 
Intensity-duration (I-D) thresholds are critical for understanding and predicting landslide occurrence, 

particularly in the landslide-prone regions of Northeast India. This region, characterized by steep 

slopes, high rainfall, and fragile geological formations, experiences frequent landslides that threaten 

lives, infrastructure, and ecosystems. Establishing I-D thresholds is an effective approach to mitigate 

these risks. 

I-D thresholds correlate rainfall intensity and duration to the likelihood of landslide events, enabling 

the identification of critical conditions that trigger slope failures. Real-life applications of these 

thresholds have proven their utility in disaster risk reduction. For example, Caine's (1980) global 

thresholds have been adapted regionally, such as in Italy (Guzzetti et al., 2007) and Hong Kong 

(Jibson, 2005), showing their scalability and effectiveness. In the Indian context, Jain et al. (2022) 

successfully implemented localized I-D thresholds to predict landslides during monsoons in the 

Darjeeling Himalayas, a region with similar geomorphic and climatic conditions as Northeast India. 

The use of I-D thresholds provides early warning systems with actionable data, enhancing 

preparedness and response strategies. For instance, the real-time monitoring of rainfall and landslide 
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prediction in Japan (Osanai et al., 2010) highlights the potential for reducing casualties and property 

damage. In Northeast India, where traditional warning systems are scarce, this approach could 

bridge critical gaps in disaster management. 

I-D thresholds integrate seamlessly with GIS and remote sensing technologies, enabling spatial 

mapping of high-risk zones. This is particularly relevant for Northeast India, where dense forests and 

remote terrains complicate ground-based assessments. 

Overall, implementing I-D thresholds in Northeast India aligns with global best practices and 

leverages proven methodologies to address regional challenges. Their adoption promises significant 

advancements in landslide risk mitigation and resilience building. 

The selection of intensity-duration (I-D) thresholds for landslide prediction offers distinct advantages 

over alternative tools, particularly in the context of Northeast India. These advantages stem from 

their simplicity, real-time applicability, and proven effectiveness in diverse geological and climatic 

settings. 

1. Simplicity and Accessibility 

I-D thresholds rely on straightforward parameters: rainfall intensity and duration. Unlike complex 

models such as physically-based or probabilistic approaches, they do not require extensive datasets 

on soil properties, slope stability, or subsurface conditions, which may be difficult to obtain in data-

scarce regions like Northeast India. For example, studies in Japan (Osanai et al., 2010) and Italy 

(Guzzetti et al., 2007) have demonstrated that these thresholds are easy to calculate and interpret, 

making them accessible for local governments and communities. 

2. Real-Time Applications 

I-D thresholds are highly effective for real-time landslide warning systems. By integrating rainfall 

monitoring data with predefined thresholds, authorities can issue timely warnings. This capability 

has been successfully implemented in Hong Kong (Jibson, 2005), where real-time threshold models 

have significantly reduced landslide-related fatalities. In Northeast India, where monsoonal rainfall is 

intense and unpredicTable, such real-time monitoring could dramatically improve disaster response. 

3. Cost-Effectiveness 

Compared to physically-based models, which require detailed field investigations and laboratory 

analyses, I-D thresholds are cost-effective. They minimize the need for expensive instrumentation or 

long-term data collection, making them ideal for resource-limited settings. 

4. Proven Performance in Diverse Regions 
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I-D thresholds have shown high reliability across different terrains and climates. For instance, they 

have been adapted to the steep slopes of the Himalayas (Jain et al., 2022) and tropical regions of 

Southeast Asia (Glade et al., 2000), showcasing their versatility. This reliability makes them an 

attractive option for the varied and complex terrains of Northeast India. 

5. Integration with GIS and Remote Sensing 

I-D thresholds can be integrated with Geographic Information Systems (GIS) and remote sensing 

tools to map high-risk zones. This approach, used effectively in countries like Japan (Osanai et al., 

2010), allows for the visualization of spatial and temporal landslide risks, aiding in targeted mitigation 

efforts. 

While alternative tools like physically-based models or probabilistic approaches offer detailed 

analyses, they are often data-intensive, costly, and time-consuming, making them less practical for 

immediate application. In contrast, I-D thresholds offer a robust, efficient, and scalable solution to 

address landslide risks in Northeast India. 

This research chapter will be using pre-established thresholds as reviewed and assimilated in, 

Guzzetti et al. (2008) and Dikshit & Satyam (2017). From now I will be referring to Guzzetti et al.’s ID 

threshold as GIDT and Dokshit & Satyam’s ID threshold as DSIDT. GIDT has a value of I = 2.20xD-0.44 

while the DSIDT has a value of I = 3.52 x D-0.41. A graphical representation of these Figures can be 

seen in Figure 6.1 
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From this graph (Figure 6.1) it is apparent that the DSIDT threshold calculated for the Darjeeling and 

Sikkim area has been calculated to be higher than the global GIDT threshold. This means that the 

DSIDT has the triggering of landslide events occurring with a higher intensity of precipitation, even 

over the longer durations, compared to the GIDT threshold. The angle of each ID threshold however 

is similar, leading to the suggestion that all landslides that are triggered by precipitation have a 

similar pattern of failure over a long duration of rainfall. The DSIDT threshold has a smaller angle 

then the GIDT threshold, showing that the triggering of landslide events over the duration needs 

more intensity than Global landslide events. These differences between DSIDT and the GIDT are 

expected. The Kalimpong region experiences seasonal monsoon rainfall unlike a large portion of the 

globe, so in terms of a global average, the drier and less intense perception experienced in some of 

the world would push this ID threshold lower than the wetter Kalimpong region.  

6.4.3 ROC Analysis 

When dealing with multiple thresholds in a landslide prediction model, the ROC curve becomes a 

valuable tool to evaluate and compare the performance of each threshold. Let's expand on this with 

a hypothetical example involving four different intensity-duration thresholds for landslide prediction. 

A ROC curve is a graphical plot that illustrates the diagnostic ability of a binary classifier system as its 

discrimination threshold is varied. It is created by plotting the True Positive Rate (TPR, or Sensitivity) 

against the False Positive Rate (FPR, or Specificity) at various threshold settings. The threshold 

settings in this research are the established intensity duration thresholds, the GIDT and the DSIDT 

specified above in Thesis Section 6.4.1.  

Figure 6.1: The two thresholds I will be using in this study. GIDT in red and DSIDT in dotted blue. 
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Once the threshold is established the construction of the ROC curve begins. This begins with the data 

preparation – deciding if the ERA5 precipitation intensity constitutes the historic landslide event as a 

‘hit’ (if it correctly predicts a landslide) or a 'false alarm' (if it predicts a landslide that doesn't occur). 

The 'misses' (landslides that occurred without prediction) and 'true negatives' (correctly predicted 

non-landslide events) are also calculated at this stage.  

After this, a True Positive Rate (TPR) and a False Positive Rate (FPR) is calculated by; TPR (hits divided 

by the sum of hits and misses) and FPR (false alarms divided by the sum of false alarms and true 

negatives). On the ROC graph, the TPR is then plotted against the FPR for each of the two ID 

thresholds used. 

To interpret the ROC curve, the ‘best’ result would be a point that is closer to the top left corner, as 

this signifies a high sensitivity but also a low false-positive rate. The Area Under the Curve (AUC) can 

also be calculated for each of the two thresholds. A larger AUC indicates a better overall performance 

of the threshold. 

The full explanation and methods for ROC curve analysis can be found in Thesis Section 4.5.2.5 

Relative Operating Curves. 

6.5 Results and Discussion 

6.5.1 Analysis of ERA5 Precipitation Data 

To illustrate the climatological intensity changes throughout the year I used the ERA5 hourly 

precipitation to first create a spatial hourly mean, and then make an hourly intensity of the day for all 

years (Figure 6.2). It shows that the monsoon period is a specific period of the year where the 

intensity of rainfall is higher than any other part of the year in this study area (Takahashi, 2016; 

Kulkarni & Rao, 2022). This is important to understand for this thesis as it means that any prediction 

tool that works with ID thresholds would potentially only work within the four months of the 

monsoon period. A more detailed insight into the monsoon period (Figure 6.3) shows that the 

intensity of the precipitation during this period, over all the years in this study, is consistent over the 

monsoon, with a lessening in intensity in the September month. 
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Focusing in on the monsoon period (JJAS), the overall pattern of precipitation intensity over the 

monsoon can be seen (Figure 6.3).  

Figure 6.3: Spatial average over the 9 gridded cells in the study area, daily mean of hourly intensity, and the mean 
across all years. With the cumulative hourly rainfall for each year. Mean. hourly Intensity is 0.422mm and is shown by 
a red line. (Showing the months of June, July, Aug and Sept – the monsoon period). 

Figure 6.3 illustrates daily and cumulative precipitation trends across multiple years (2006–2018). 

The bars represent mean daily precipitation, highlighting seasonal fluctuations, with peaks 

suggesting wetter periods. The cumulative precipitation lines indicate yearly variability, showing how 

rainfall totals accumulate over time. 
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Figure 6.2: Spatial average over the 9 gridded cells in the study area, daily mean of hourly intensity, and the mean 
across all years. With the cumulative hourly rainfall for each year. Mean. hourly Intensity is 0.422mm and is shown 
by a red line.  
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Key observations include significant differences in annual totals, with wetter years (e.g., 2016) and 

drier years (e.g., 2006) evident. Steeper slopes on cumulative lines suggest intense rainfall periods, 

while flatter sections indicate dry spells. Most years follow a similar pattern, but anomalies suggest 

unusual weather events or climatic variability. 

The monsoon season’s total precipitation for each month can be seen in Figure 6.4 Where both the 

study area’s precipitation has been plotted with data taken from observed gauges by the IMD. From 

this graph we can see that the ERA5 totals are higher than those from the IMD, especially at the 

beginning of the monsoon season. By September it appears that the IMD and ERA5 datasets have a 

similar value.  

 

Figure 6.4: The monthly totals of the monsoon season (JJAS) for the ERA5 data in the study area, and the IMD data in 

the West Bengal and Sikkim Regions 

Studies suggest that while ERA5 provides valuable precipitation estimates, it may overestimate 

rainfall in certain regions compared to observational data, just like Figure 6.4 (Hassler & Lauer, 

2021; Alexandridis et al., 2023; Cavallari et al., 2024). For example, Cavallari et al., conducted a 

multi-scale assessment of high-resolution reanalysis precipitation fields over Italy. They 

observed an overall overestimation of precipitation in the reanalysis climatological fields over 

the Po Valley and the Alps, while noting underestimations in other regions (2024).  

 

The Drizzle Effect – Sensitivity Analysis  

There are two things that need to be tested to look at the ERA5 ‘Drizzle Effect’. The number of dry 

days and the total precipitation over the monsoon season. Usually in climate model studies the 
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researcher would use bias correction (Themessl et al., 2011; Hempel et al., 2013), adjusting both at 

the same time – removing the ‘dry days’ while distributing the drizzle onto the remaining days. 

To look at the total number of dry days, I will be counting the number of dry days from the mean 

precipitation over the study area. I will be doing this for different thresholds, to see how well the 

1mm adjustment that is usually used for determining dry to wet days. From Figure 6.5 We can see 

that the initial count of ‘wet days’ of any precipitation measured, is very high, at over 350 days, and 

in 2008 and 2016  ERA5 had precipitation in the study area for all 365 days of the year. This is an 

example of the ERA5 drizzle effect, with ERA5 showing some precipitation every day in a small area.  

The Indian Meteorological Department (IMD) has average rainy days in the town of Darjeeling to be 

around 105 days a year (averaged between 1901-2012) (Saicharan & Rangaswamy, 2023; IMD, 2024).  

However, the town of Darjeeling is only a small area within the study area, and so to estimate the 

sensitivity of the threshold I am going to look at the separate datapoints in the ERA5 dataset over the 

study area. There are 20 separate data points over the study area, and the 1mm ‘wet day’ total can 

be seen for each point in Figure 6.6. 

Figure 6.5: Number of 'wet days' in each year over the Study Area. There are threshold counts for wet days 
exceeding 0.5mm, 1mm and 5mm.   
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Figure 6.6: the ECWMF 1mm threshold for 'wet days' to combat the 'drizzle effect' – the count for each 

latitude/longitude pairing in the study area showing the variability of each data point for ‘wet’ and ‘dry’ days. 

From this Figure (6.6) it is apparent that each of the spatial data points do have a large amount of 

variability that may be missed in the mean taken across the study area.  

Figure 6.7 shows the spatial variability over the area in a spatial map taken from the year 2006. This 

Figure also shows the four different thresholds considered in this study. From this Figure it shows 

that the northern area experiences more ‘wet days’ in every iteration of the threshold.  

The Northeast of the map has the most wet days, with the grid square in 27 .4°N and 26.8°S having 

the most wet days in all four cases. This is still the case when the 5mm wet day threshold is 

considered, the wetter latitude and longitude areas are the same, there are just less days counted in 

the area due to the shift in threshold. These areas do shift in subsequent years, 2008-2017, and the 

‘wettest’ area doesn’t remain constant. This means that if a case study analysis was to be completed, 

then each area could be taken into consideration, however during a mean across the whole area, it 

should be noted that this may lead to some limitations and difficulties in obtaining meaningful 

results. In my study I will still be using the mean for the area, as I am trying to simplify the processes 

to a simple ‘hit’ or ‘miss’ for landslides in the area, instead of creating a spatial map or location-

based analysis of landslide events, as this would require modelling of slope angles, geology, soil 

information, soil moisture levels etc.  

Overall, when considering how to combat the ECMWF’s ERA5 total precipitation ‘drizzle effect’ for 

this study area there must be two approaches, depending on the aims of the research. If a case study 

of landslide events is being used, then researchers should consider using the exact location 

precipitation data due to the variability over the area. Secondly, if using a mean over the whole area 
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some thought should be surrounding the limitations this may have due to the variability of the area’s 

‘wetness’ and how this might affect the physical properties of landslide initiation and if this replicates 

‘real world’ scenarios. Considering other research endeavours in other localities and regional studies, 

there must be some thought into which of the two approaches should be used as is appropriate for 

their research objectives.  
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Figure 6.7: The spatial distribution of wet days (<1mm) in the site area. 
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6.5.2 Combining Landslide and Precipitation Data 

The initiation of landslides from precipitation events in relation to intensity and duration of the 

precipitation is usually completed mathematically. The mean precipitation across all years with 

landslide events can be seen in Figure 6.8. The use of a graph to try and see these relationships can 

be seen in Figure 6.9, where the daily mean precipitation annually with the monsoon period has 

been plotted with landslide events from both landslide inventories. The pattern usually seen, is 

either long periods of rainfall, followed by landslides, or a sharp increase in precipitation, leading to 

an intense precipitation event, proceeded by a landslide event.  

 

 

 

 

 

 

 

 

 

 

Figure 6.8: Spatial daily mean over the 9 gridded cells in the study area and landslide events plotted for the whole 

period of research (2006-2018). The average daily spatial mean is 10.12mm and is indicated on the graph by a red 

line. 

Figure 6.8 is showing the spatial daily mean over the entire study period and shows the 

landslide within it. This illustration is a useful tool when examining the relationship between 

precipitation and rainfall triggered landslides 
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 Figure 6.9: Each year of the study with mean daily intensity of precipitation (mm) and the landslide incidences plotted. The 
monsoon period (JJAS) is highlighted in a yellow to show the increased intensity for the period. 
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Figure 6.9 is different from Figure 8.8 as the graph is showing this daily intensity for each year. With 

this illustration I am trying to visually see if there is a link to the daily intensity felt each year and the 

landslides that were reported by the combined LSI from Thesis Section 5.0 Research Chapter: I. There 

are a few years (2009, 2011, 2012, 2013, 2017) on this panel of graphs that show the initiation of 

landslide events as soon as the intensity increases. This could be due to the intensity itself increasing 

above the threshold for triggering of the event, or it could be due to the antecedent conditions that 

predated the monsoon season. A lot of rain being deposited on very dry earth after a period of non-

monsoonal precipitation could rapidly lift the water Table and trigger a landslide, or rapidly load a 

slope that has less soil cohesion due to air pockets and cracks (see Thesis Section 2.1 Landslide 

Science). Two years, 2008 and 2014, have no landslide events recorded within them, showing that 

the global landslide inventories do not capture the events needed for a comprehensive study, 

however most years do contain landslide events. From this graph we can also see that most of the 

landslides are triggered within the monsoon season. This is usual to see as previous studies and data 

have shown that the monsoon season has the most incidences of landslides within it (Thesis Section 

3.1.2.1 Meteorology).  

The theory of ID thresholds is that accumulated rainfall plus duration over time triggers a landslide. I 

am looking at precipitation in this way to potentially see if there is a pattern of extreme rainfall peaks 

before landslide events, or if it appears more like a low but prolonged period of rainfall causes these 

landslide events.  

Figure 6.9 Illustrates these usual patterns, with long periods of less intense rainfall followed by 

landslide events in the first half of the monsoon period, and then in the second half of the monsoon, 

showing the large intense precipitation events triggering landslide events. 

 

6.5.3 ID Thresholds and Landslide events 

In this section historic landslides for the study area are placed within the DSIDT and GIDT ID 

thresholds. To do this I have calculated the mean precipitation for the study area per day and used 

the 1mm and below as an indication of a ‘dry day’ to combat the drizzle effect. As I am working in 24-

hour intervals the landslide events will appear on the logarithmic scale as lines, for example in Figure 

6.10 there are quite a few landslides which have different intensities over the course of one 24hr 

period – 100 – and would have actually been triggered after less than 24hrs of rainfall. 
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The following ID graph (8.10) is for this calculation with the 1mm or less as a ‘dry hour’.  

As the intensity and duration rises, there are more landslide events, and in some more extreme 

circumstances where the rainfall is quite intense the landslides are far beyond the GIDT and even the 

DSIDT. My only query would be the shorter, less intense landslides that fall below the line within an 

hour of the landslide event are strange.   

The 1mm drizzle effect alteration is for 1mm a day, and so when looking at an hourly dataset that’s 

0.0416mm/hr. Figure 6.11 is a representation of this adjustment rather than using 1mm. However, 

Figure 6.10: The spatial mean of the ERA5 total precipitation hourly data for the landslide events 
in my study area. 

Figure 6.11: Without the 1mm or less dry hour threshold. 
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this means that a lot of the landslides are not being represented as they fall into the ‘0 hours’ 

duration mark and are not being plotted.   

This final graph (6.12) is now plotting all the available landslide events for the study area without the 

drizzle effect threshold. There are still a fair number of landslides falling under the ID thresholds, but 

I believe that the events are being as accurately depicted as they can be given the limitations of each 

dataset. From this graph it is apparent that longer more intense rainfall triggered landslides are being 

identified by these intensity duration thresholds. However, it also appears that some of the 

landslides are now not being identified in the graph. This could be due to the lack of drizzle effect 

threshold for ‘dry days’ making the landslides have a larger duration and thus not be shown on the 

graph.  

Looking at both Figure 6.11 and Figure 6.12 we can consider the underlying datasets that make these 

graphs. The LSIs that are being used here have two different agendas, one for risk (fatalities) and the 

other just for occurrence. A more intense rainfall event would indicate there would be little to no 

lead time when mitigating the risks associated, and the proceeding landslide event. This means that 

the underlying landslide dataset will have a slight bias towards intense rainfall events anyway, as 

these would be the landslides captured within one of the LSIs used within this study. This can be 

seen in both 6.11 and 6.12 where there is a cluster of intense events in the upper left of the graph.  

 

Figure 6.12: The dry hour set at 0.0416mm 
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6.5.4 How well can the rainfall and ID thresholds predict landslides? - ROC 

Curve Analysis  

In this research chapter the landslide events are being used with ID thresholds to produce ROC curve 

analysis. This is to test the skill of both ID thresholds in predicting the historical landslides to see if 

they can be used as tools in the medium range with ECMWF’s prediction model. 

From the Intensity Duration graph above there are several things we can take away from this. Firstly, 

we can discuss a simple contingency Table for the ID thresholds and their ability to either give a true 

positive (hit) or a false negative (miss). The true positives will be above the line and the true 

negatives will be below the line. 

Table 6.1: The contingency Table for the two ID thresholds (GIDT and DSIDT) with the 0.0416mm drizzle effect 

alteration. 

ID thresholds True Positives False Negatives 

GIDT 37 20 

DSIDT 31 26 

 

From Table 6.2 we can make a few initial judgements. The number of misses is quite large, and in the 

DSIDT threshold nearly half of the landslide incidences are missed. To produce ROC curves there 

needs to be non-landslide events. I will use a stratified random sampling technique to uniformly 

distribute across different months and locations. This will provide a better representation of typical 

rainy hours. These days will be labelled ‘landslide events’ and ‘non-landslide events’. Then the 

established ID threshold will be used to predict the landslides based on the precipitation intensity 

and duration. The True Positive Rate (TPR) and the False Positive Rate (FPR) will be calculated from 

that (See Thesis Section 4.4.2 Methods).  

 



 

125 
 

 

Figure 6.13: The ID graph showing landslide events in blue and non-landslide events in orange. 

This graph (6.13) then allows for a more complete contingency Table to be completed for the ROC 

analysis. From this contingency Table it is apparent that there are quite a lot of false alarms within 

the system.  

 

Table 6.2: Final contingency Table for the two intensity duration thresholds. 

ID Threshold True Positive (hit) False Positive 

(False Alarms) 

True Negative False Negative (miss) 

GIDT 37 81 142 20 

DSIDT 31 53 170 26 

 

 

The model metrics for each of the lines are below. The way we work out model metrics from the 

contingency Table can be seen in Thesis Chapter 4.5.2.4 Methods: Contingency Tables and Model 

Metrics. 

 

Metrics for Line: (I = 2.20xD-0.44 ) 

- Accuracy: 0.639  

This means that for 63.9% of the time the model correctly identified if a landslide occurred or not. 
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- Sensitivity (Recall): 0.649 

The model correctly identified 64.9% of the actual landslide events. 

- Specificity: 0.637 

The model correctly identified the rainy hours without landslides 63.7% of the time. 

- Precision: 0.314 

A precision of 31.4% means that the model predicted a very high number of false positives. 

- F1 Score: 0.423 

This is the mean of precision and recall – and a score close to 50% shows that the models 

performance is moderate but leans towards having a higher recall than precision.  

 

Metrics for Line: DSIDT (I = 3.52 x D-0.41)  

- Accuracy: 0.718 

This means that the model correctly identified if it was a landslide or not 71.8% of the time. 

- Sensitivity (Recall): 0.544 

The model correctly identified 54.4% of the actual landslide events.  

- Specificity: 0.762 

The model correctly identified 76.2% of the non-landslide events. 

- Precision: 0.369 

Out if all the predicted landslide events only 36.9% were actual landslide events. 

- F1 Score: 0.440 

This is still a moderate score and slightly higher than the GIDT. This means that there is a better 

balance between precision and recall.  
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From these metrics it seems that GIDT is performing better than DSIDT at catching more of the 

landslide events, but at a cost of more false alarms (lower precision). Line 2 however is better at 

correctly identifying non-landslide events and has fewer false alarms but misses more actual 

landslide events. The use of ROC curves in this research is to determine the effectiveness of the 

rainfall intensity and duration metrics when predicting landslides using the two ID thresholds from 

Guzzetti et al. (2008) and Dikshit & Satyam (2017).  

Figure 6.14: The ROC curve for the GIDT (Guzzeti et al., 2008). AUC = 0.19. 

This curve (6.14) is less indicative of the ability of ERA5 to predict landslides in this area using a 

predetermined ID threshold. The AUC score of 0.19 is not in an accepTable range. When the ROC 

curve is aligned more to the upper left of the graph, above the red baseline, it can be considered that 

the model is more accurate. This is because each datapoint is the relationship between the true 

positive rate and the false positive rate. The true positive rate is measuring the proportion of actual 

positives that are identified by the model while the false negative rate is measuring the proportion of 

actual negatives that are incorrectly identified as positive by the model.  
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Figure 6.15: The ROC curve for the DSIDT (Dikshit & Satyam, 2017) AUC = 0.19 

Overall, an area under curve score of under 0.5 shows that the model is performing even worse than 

random guessing (Figure 6.15). It indicates that the model is systematically making incorrect 

predictions. Its misclassifying the landslide events to a significant extent. In practical terms, if we 

changed the negative predictions to positive predictions, it would perform better than it does 

currently. There could be a few different reasons for this.  

- Data quality: There are major limitations with using the ERA5 and the Global LSIs in this way 

- Model Simplicity: The model may just be too simple to capture underlying criteria – such as 

soil moisture levels and slope angle. 

- Imbalanced data: If the datasets are imbalanced, which they are – there are more non-

landslide events then there are recorded landslide events.  

If we take the four years with the most landslides, 2007, 2009, 2011, and 2015, and create the ID 

threshold graphs again just for those specific years, will the ROC graphs produce better results? 

 

 Individual year analysis  

The individual year graphs can be seen in Figure 6.16 and 6.17 where the AUC can be seen too.  
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The AUC for the year 2007 was 0.21 for both GIDT and DSIDT and so a bit higher than that of the 

overall years, but still under 0.5 and so significantly worse than random guessing. The cluster of rainy 

days but non landslide days is concentrated in the middle to the bottom left of the graph, meaning 

that there were less intense, shorter rainfall events this year. 

The AUC for the year 2009 was 0.13 and so a bit lower than both the GIDT and the DSIDT in the 

overall years’ intensity duration graph. Significantly worse than random guessing. The cluster of 

orange rainy events is more spaced out in this year, concentrated on the middle to bottom right of 

the graph, showing that the rainy events this year were longer and less intense.   

The AUC for the year 2011 was 0.33. A large improvement seen and larger than the overall years. 

Maybe this is due to the rainfall in this year being more intense for longer durations, meaning that 

the systematic random sampling for the non-landslide days focused more in the top right corner of 

the intensity duration graph. The orange cluster is situated on the upper right of the graph, showing 

that the rainy events were more intense over a longer duration.  

The AUC for the year 2015 was 0.15 and so a bit lower than both the GIDT and the DSIDT in the 

overall years’ intensity duration graph. Significantly worse than random guessing. The orange rainy 

events this year are on the bottom half of the graph, showing that the intensity of the rainfall this 

year was low.  

As before there are a few reasons why this might be the case in this instance. It is interesting to note 

that the years with intense rainfall incidences had a higher AUC score then those that had less 

intense rainfall events recorded.   

Overall, this is not a good indication of the datasets to be used at any systematic level in the 

foreseeable future.  
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 Figure 6.16: The ID graphs for 2007, 2009, 2011 and 2015 - the years that had the most landslide events recorded within them from the combined global LSI (See Thesis Section 6.0 Research Chapter I). The 
red line is the GIDT (Guzetti et al., 2008) and the green line is the DSIDT (Dikshit & Satyam, 2017) 
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Figure 6.17: The ROC curves for the individual years that have been examined in this study. The red line is the ‘random’ threshold at 0.5 and most ROC curves would sit above this. The ROC curves pictured 
here look different from the original ROC curves as they are so far below the line that the ‘usual’ representation would make it hard to see the details.  AUC is: 2007 = 0.21, 2009 = 0.13, 2011 = 0.33, 2014 = 

0.15. 
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6.5.5 Case Study Analysis 

To understand why the ROC curve analysis could be wrong, and to see if in individual cases that this 

tool may have been useful to use, a couple of case studies from the year which had the best AUC 

score can be used to look at this tool in detail.  

The year with the best AUC score is the 2011 year, which had an AUC score of 0.33. This year had 6 

landslide events, with the rainfall event days being clustered in the upper right of the graph – 

meaning that the rainy days this year were of a higher intensity over a longer duration.  

Table 6.4: The Landslides from the combined dataset (GFLD and GLC) in 2011. 

Latitude Longitude Date of 

Landslide (YYYY-

MM-DD) 

26.86445 88.30685 2011-03-26  

26.89348 88.28743 2011-06-17  

27.2833 88.23596 2011-06-23  

27.34711 88.17392 2011-06-23  

27.02306  88.15570 2011-08-24  

26.86455 88.30746 2011-09-18  

 

From Table 6.4 we can see that there are instances where there are landslides happening in the 

similar area and date in this year. On the 23rd of June 2011 there was two landslides reported, with 

another on the 17th of June, just 6 days previously.  For this case study I will use the 23rd of June and 

the 24th of August landslide events for case studies as these happened during the Monsoon period 

that year.  

26th June 2011 - 27°20'49.6"N 88°10'26.1"E –  Gyalshing-Dentam and Gyalshing-Sabdong road, 

Sikkim.  

This landslide was hard to find, as there was little reporting on the slide itself. The report that I did 

find was from a blogspace called ‘SikkimNOW’ a blog space that was used as a notice board for 

political and local news. This blog post showed that the Relief Commissioner has handed over a 

cheque of Rs. 30 lakhs (£28k) to deal with the damage to roads, crops, and buildings due to the 

landslide here.  
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Figure 6.18: Hourly ERA5 Total Precipitation in the 48hrs and 24hrs of the 26th of June 2011. 

Figure 6.18 shows the ERA5 total precipitation for the 48hours before the day in which the landslide 

event occurred, as well as the 24hours of the day at which the landslide occurred in June 2011.  

 

24th August 2011 – 27°02'30.6"N 88°15'57.0"E - Darjeeling Town, Darjeeling District 

On this day the landslide was within Darjeeling town and has been recorded on the Save the Hills 

(STH) blogspace. STH is a NGO based in the Himalayas over North Western India, Nepal and North 

Eastern India. In this blog post the rainfall was shown to be from the STH rain gauges: 

- Rainfall in Darjeeling on 24Aug2011: 129mm 

- Rainfall in Kalimpong on 24Aug2011 : 6mm 

- Rainfall in Gangtok on 24Aug2011 : 7mm 

This landslide was reported to happen in the early hours of the morning and so had no casualties, 

despite happening at a busy tourist destination, and so would have incurred some casualties if it had 

happened during the day. The report also noted that prolonged rainfall in August 2011 was 

surprisingly small, and this landslide happened during a period of prolonged rainfall.  

Figure 6.19 shows the ERA5 total precipitation for the 48 hours before the day in which the landslide 

event occurred, as well as the 24 hours of the day at which the landslide occurred in August 2011.  
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Figure 6.19: Hourly ERA5 Total Precipitation in the 48hrs and 24hrs of the 24th of August 2011. The red line indicates 

the STH hourly mean from the 129mm recorded in the area on the 24th of August 2011 when the landslide incident 

happened (5.38mm).  

From Figure 6.19 we can see that perhaps the hourly rainfall from ERA5 is underestimating the 

rainfall in the area, either from being on a coarse gridded system and so thus unable to capture such 

a local event, or from not capturing extreme rainfall incidences skilfully, or from being early with the 

peak rainfall event (see Thesis Section 2.3 Precipitation Modelling for more information on 

limitations and extreme rainfall capture).  

From both the case studies in June and August 2011, it is obvious that there has been an intense 

rainfall event before the landslide event. However, the ERA5 precipitation data in both cases has the 

larger intense peak 24hours before the day of the landslide event itself. This could be due to the 

ERA5 reanalysis being 24hours out of where the rainfall occurred, or it has something to do with the 

mechanisms of landslide initiation. For example, the peak rainfall could have saturated the soil 

before the smaller rainfall event, and thus moved with a smaller precipitation event.  
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Figure 6.20: The two events in an ID graph with the GIDT (red line) and the DSIDT (blue dashed line) on the graph. 

Figure 6.20 shows these two events on the ID graph. From this graph we can see that the GIDT does 

capture the events, yet the DSIDT just falls out of ‘predicting’ these events.  

Going forward, a more in depth case study of landslides in this area should be conducted, with soil 

moisture data and geological surveys to indicate why these events were triggered, and f the ERA5 

precipitation would have been a good indication of the trigger of the landslide event.  

Other rainfall triggered landslides I saw when researching the June 2011 landslides in the global 

combined datasets from one blog source – STH: 

1. 17th June 2011 – Kuresong, Darjeeling District (Within Study Area) 

12 hours of rainfall causes a slide that kills 3 children and 1 man, and a slip that causes National 

Highway 31A to come to a stop for 5 hours, stranding 500 plus vehicles on either side.  

Observational rainfall data from the STH website and rain gauges: 

a) Kurseong :- 180mm (source STH ARG at Dow Hill, Kurseong) 

b) Kalimpong :-31mm (source STH ARG at Tirpai, Kalimpong) 

c) Darjeeling :- 54mm (source STH ARG at Gandhi Road, Darjeeling) 

2. 19th June 2011 – Many happened in Kuresong and Darjeeling (Within Study Area) 

60mm of rainfall in 3-hour period in Kalimpong recorded, no deaths or casualties. 

3. 23rd of June 2011 – Pelling, West Sikkim (Within Study Area) 
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5-hour torrential downpour causing numerous landslides causing 16 confirmed deaths, also 

associated with anthropogenic building or human interference of the hills and mountains (Save the 

Hills, 2011).  

These three are just a small number of landslides that are reported by STH, and this is only one of 

the agencies that work in my study area. It wasn’t hard to find this data, and I wonder why this hasn’t 

been reported in the global landslide inventories that I have been using to make my combined 

inventory.  

6.6 Discussion 

Can I answer my research question: Can precipitation triggered landslides in Darjeeling, India be 

predicted with the global scale reanalysis precipitation dataset ERA5, and established Intensity 

Duration Thresholds? 

The answer right now is no. However, I think that there could be great application in this if there 

were more historical landslide events to consider. Thesis Section 6.3.3 Data Limitations discussed 

the lack of historical landslide events compared to other studies looking at ID thresholds, and these 

studies were using hundreds and thousands of landslides for validation studies.   

If doing this study again, I would consider using a bootstrapped approach to ‘create’ more landslide 

events to try and test the theory behind using both the Global LSIs and the ERA5 Total Precipitation 

dataset. This method was used by Hwang et al. (2023) when doing a probabilistic analysis of rainfall 

triggered shallow landslides when confronted with limited/insufficient landslide data. Moradmand et 

al. (2025) also used bootstrapping aggregation with other statistical methods for enhancing landslide 

susceptibility mapping.  I would also like to use an area of the world that has more reported 

historical landslides to test my theory – for example the US.  

Overall, the global landslide inventories, even when combined for more coverage is not good enough 

for this type of predictive tool development in the study area. Not only this, but reported landslides 

are not being added to these inventories, despite these inventories being the most comprehensive 

global landslide inventories in the world. This could be due to a number of different reasons, such as 

lack of international cooperation when reporting landslides to the larger global inventories, or, 

perhaps, it is due to the lack of interest in creating a more complete inventory by organisations such 

as the team at NASA in areas such as this one in the Darjeeling District, India. This surprises me as 

the study area is one of the most at risk areas for landslides worldwide and has some of the largest 

landslide fatalities in the world. There are three ways to view the discussion and how the chapter fills 
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the research gaps highlighted in Thesis Section 2.6 Literature Review: Research Question 6.0 

Research Chapter II, and these have been summarised below.  

6.6.1 Application of ERA5 Data in Landslide Prediction 

While ERA5 reanalysis data has been widely used for various meteorological studies, its application in 

landslide prediction remains underexplored. This chapter fills this gap by evaluating the potential of 

ERA5 total precipitation data combined with intensity-duration thresholds for landslide prediction. 

6.6.2 Sparse Historical Landslide Records 

The northeastern Indian Himalayas lack comprehensive historical records of landslide events, 

impeding the development of predictive models. This research highlights the critical need for 

improved landslide monitoring and documentation, addressing the gap in historical data availability.  

6.6.3 Evaluation of Predictive Methods 

The effectiveness of using predefined intensity-duration thresholds for predicting landslides has not 

been thoroughly assessed in regions with limited historical data. This research identifies the 

limitations of this approach in data-scarce environments, addressing the gap in the evaluation of 

predictive methods under such conditions. 

These three points and additional discussion are discussed in more detail in Thesis Section 7.4: 

Discussion and Future Considerations: Research Chapter II.   

6.7 Future Considerations 

The research has shown that with the current Global LSIs there are not enough landslide events to 

use a system like this so far. To try to combat the issues faced in this research chapter it may be 

prudent to take individual case studies and compare precipitation patterns and accumulations. The 

lack of data is a problem that I think should be an international point of policy change – a larger 

effort for a collaborative, comprehensive international database that is updated and reported to by 

national agencies would be a start. Discussions on the future of a worldwide collaborative database 

for a global LSI is discussed in Thesis Section 5.0 Research Chapter I & Thesis Section 7.2 Discussion 

and Future Considerations: Research Chapter I.  

6.8 Conclusion 

There is a systematic error when using the Global LSI’s and the established ID thresholds together to 

try and predict landslides in the Darjeeling District, India. This is due to the lack of historical 
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landslides available for use in this way. With a considerably larger historical landslide database this 

type of testing could be done again, as there is merit to trying to have a predictive landslide tool in 

this region as landslides are one of the most frequent and life-threatening natural hazards in this 

study area. 
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Chapter 7: Discussion and Future considerations 

7.1 Introduction 

The thesis I am presenting is looking at the way in which current practice in DRR research is failing to 

be sufficient for working within an equitable parameter when working across the Global North – 

Global South divide. The thesis is answering the following research questions: 

• Are the global landslide inventories fit for use when validating historical reforecasting of 

precipitation triggered landslides in Darjeeling, India? 

• Can historical precipitation triggered landslides in Darjeeling, India be identified with the 

global scale reanalysis precipitation dataset ERA5, and established Intensity Duration 

Thresholds? 

These research questions were tackled in two main research chapters, 5.0 Research Chapter I and 

6.0 Research Chapter II. To discuss the chapters, the research gaps have been distilled into 

subheadings of which I discuss my results and their contribution to filling each of these gaps within 

the DRR discipline. The discussion of each of these chapters and the discussion surrounding the 

research questions is below, with a further overall discussion on the way these chapters interact with 

each other for the contribution to knowledge within the DRR discipline. 

7.2 Research Chapter I – ‘Data’ 

In the Thesis Section 2.0 Literature Review there was a clear and obvious research gap in the current 

literature. This gap was that LSIs are unregulated and un-standardised and have not been used in any 

larger global studies in the creation of rainfall-triggered prediction tools with global scale 

precipitation models. This leads to current literature researching the creation of combining many 

different global LSIs and disaster datasets to create something that is ‘more representative’ of the 

global landslide landscape. Thesis Section 5.0 Research Chapter I has demonstrated that this global 

representation is not actually representing landslide conditions in the local areas, which is especially 

important when considering the locality of this study, the Darjeeling District, India – as this area of 

the world is one of the major areas in the globe that suffer fatal and non-fatal landslides (See Thesis 

Section 3.0 The Study Area). The discussion in the research chapter centred around 3 main topics, 

insufficient data, ‘best practice’ for LSIs and which of the available LSIs should be used in the case of 

the Darjeeling district, India.  
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7.2.1 Insufficient Comprehensive Data 

Previous landslide inventories often lacked comprehensive spatial and temporal coverage, leading to 

fragmented data that hindered global analysis. Kirchbaum et al. (2019) emphasised that most LSIs 

were focused on local or national scales, lacked temporal information and thus made it difficult to 

correlate landslide events with their triggering events. By integrating multiple inventories, this 

research fills the gap in comprehensive landslide data, providing a completer and more robust 

dataset for analysis (Gómez et al., 2023). This type of combination of landslide data has good results 

in terms of creating a global landslide inventory with increased temporal and spatial size but now my 

research has shown this is not the case at a regional or local level in the Darjeeling district, India. In 

looking at this specific area the results have shown that despite good indications on the extension of 

spatial and temporal coverage of landslide events globally (Kirchbaum et al., 2019), for regional areas 

like the Darjeeling District the options become far more limited and does not represent the observed 

temporal or spatial landslide events that happen in the study area (Emberson et al., 2020). Emberson 

et al. (2020) used global LSIs combined with satellite data to provide a more consistent estimate of 

landslide exposure worldwide, including more remote and data sparse areas like Darjeeling, India. 

More studies into other local regions should be done to see if this is the case elsewhere. This type of 

study would be best placed to be done in both Global North countries like the United States (where 

the GLC coverage is more complete (Dandridge et al., 2023)) and Nepal (where the GFLD data is 

more complete (Petley and Froud, 2018)).   

7.2.2 Best practice for the collection of and storing landslide inventories 

In order to move towards ‘best practice’ for landslide inventories it is prudent to suggest some 

improvements to the ‘current practice’. In this section I discussed the methods of collecting landslide 

events, either with new methods being implemented by the global LSI’s, including monitoring by 

either on the ground sensors or through satellite imagery (Emberson et al., 2020). I discussed the 

importance of using additional datasets to add additional information to be collected about specific 

landslide events – for example pairing the event time and date with meteorological precipitation 

datasets to understand the current weather conditions, accumulated precipitation (24hr, 48hr, 72hr), 

temperature and more (Petley, 2007) (Kirchbaum et al., 2010). Banfi et al. (2024) did an investigation 

where they looked at temporal clustering of precipitation for detection of potential landslides in 

Portugal, in the hope that it could outperform traditional rainfall thresholds. The result from this 

small case study was that they performed similarly, but perhaps they could be used differently. The 

clustering approach was better at detecting deep landslides while the traditional rainfall thresholds 

detected shallow landsliding better (Banfi et al., 2024).  
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I also discussed improvements to the global LSI inventories if the system of reporting via news or 

citizens stayed the same and sought to promote collaboration with other researchers – 

reporting/collaborating/combining their datasets to the global LSI. This would be to stop the 

gatekeeping when the data is seen as ‘owned’ by the funding body that provided the researcher with 

the funds to conduct the research. Part of this would also be developing ways in which to encourage 

participation as citizens to contribute to the global LSIs, through development of a simple mobile 

app, to training community groups to collect pertinent information on the landslide events that were 

being recorded, as discussed in Pedoth et al. (2015) where they looked at the role of community 

networks in landsliding in the dolomites.  

7.2.3 Which Inventory is best for Darjeeling District, India  

At the end of this chapter, I sought to answer the main research question and discuss my thoughts on 

which inventory is ‘best practice’ for my study area – and if this was different to the ‘current practice’ 

that I have experienced. Combining the current global LSIs seems like it would be an excellent idea to 

increase the spatial and temporal coverage (Gómez et al., 2023). However, it was apparent that that 

for the Darjeeling District, India, utilizing the global LSIs would not work in the locality. There was an 

increase in landslide events both spatially and temporally but this number of landslides that were 

recorded in the combined landslides inventory did not fully represent the landscape and the 

landslide incidences that happen in the area (Bhukosh, 2024). A study in 2019 (Roy and Saha) 

identified 326 landslides just from using google satellite imagery alone. The ‘current practice’ in 

global LSI inventories is not currently good enough for representing smaller localities like the study 

area. Moving forward to create a more equitable ‘best practice’ in landslide or the DRR discipline, 

there are a few things to try and implement. Training researchers, either at the undergraduate, post 

graduate or within the workplace on how to ‘social check’ the datasets they’re using is one way of 

moving the practices towards a more equitable use. This additional training will allow the 

researchers to understand the often implicit biases in the datasets they’re using, and also allow the 

researchers to discover if another method, or indeed LSI would work better than the current one 

they’re using, despite any unconscious bias or misgiving they might have that influences their 

decisions (ECHR, 2018) (Oberai and Anand, 2018).  

Overall Thesis Section 5.0 Research Chapter I discusses the global and national LSI datasets that are 

available for the region in the study and found that the global LSI datasets are not very 

representative spatially or temporally of the region and the landslides that are there (Kirchbaum et 

al., 2010). The national inventory, although more representative, does not contain the information 

specified as needed in this thesis – for example the date and/or time of the landslide event. This led 
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to recommendations on how we could change the current practice to a practice that would lead to 

more cohesion, more comprehensive LSI databases and more equitable partnerships and data 

collection and sharing strategies.   

7.3 Research Chapter II – ‘Application’ 

Research chapter II has a very clear research question: Can historical precipitation triggered 

landslides in Darjeeling, India be identified with the global scale reanalysis precipitation dataset 

ERA5, and established Intensity Duration Thresholds? This research question was born from a gap in 

the literature surrounding landslide prediction systems within the wider scope of Landslide Early 

Warning Systems (LEWS). Landslide prediction systems have only begun to be developed and used, 

and only within areas of the world like the US and Italy (Rossi et al., 2018) (Guzzetti et al., 2019) 

(Kirchbaum et al., 2019). Landslide prediction using freely available datasets and predetermined 

landslide ID thresholds has never been attempted in the literature either. For me it was important to 

try to create a prediction system that used freely available datasets due to the lack of observation 

data and funding available in the thesis study area of the Darjeeling district, India – and also the 

application of the same method being able to be used in other areas, even if it is used as a 

precursory look for hazards at areas being considered for refugee housing, aid delivery and other 

endeavours that require quick decision making.  

The research question was answered by the research chapter, however the ideal result of having a 

simple, freely accessible, prediction tool was not the case. This was due to the lack of historical 

landslide data available from freely accessible global LSI databases, even when combined as seen in 

Thesis Section 5.0 Research Chapter I. The results showed that the prediction model that was used 

in this study was not only inaccurate to random, but showed results that were worse than random, 

and instead, if the prediction model was used in an opposite approach (when the model says ‘hit’ 

record a ‘miss’) it would be more skilful. This type of result is very peculiar and indicates that there 

were not enough historical landslide events to operate the prediction system with any type of skill.   

There are three defined topics when discussing this research chapter. There is the discussion on the 

application of ERA5 for landslide prediction, the sparse historical landslide records and the evaluation 

of predictive methods in general.  

7.3.1 Application of ERA5 Data in Landslide Prediction 

While ERA5 reanalysis data has been widely used for various meteorological studies, its application in 

landslide prediction remains relatively unexplored, with some studies in Europe (Bordoni et al., 2023) 

(Distefano et al., 2023) and more in Italy (Reder and Rianna, 2021) (Botto et al., 2025) using ERA5 but 
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not in this study area, and not in conjunction with established ID thresholds. This chapter fills this 

gap by evaluating the potential of ERA5 total precipitation data combined with intensity-duration 

thresholds for landslide prediction in the Darjeeling district, India. ERA5 is a reanalysis product that 

provides a long temporal dataset at a high spatial resolution, and its ability to be used as a dataset 

for precipitation is important for landslide prediction studies as precipitation is a primary trigger for 

landslides – as water infiltration reduces the soils shear strength and increases pore water pressure 

leading to slope failure (See Thesis Section 2.1 Landslide Hazards). The chapter unfortunately cannot 

sufficiently say if ERA5 total precipitation can be used for a predictive model when used in 

conjunction with established ID thresholds in the Darjeeling district, India because of the lack of 

historical landslide data to verify the skill. For future consideration, using case studies would be 

advantageous to try to answer this question, as a more in-depth analysis of the weather systems, the 

antecedent conditions and the topographical characteristics can be taken into consideration (Reder 

and Rianna, 2021). For example, Reder and Rianna used a case study to show that ERA5 could be 

used as a proxy for slope wetness (2021). The ERA5 reanalysis itself could also be placed under more 

scrutiny, with the most extreme ensemble members being interrogated (Hersbach, 2020) (Soci et al., 

2024).  

7.3.2 Sparse Historical Landslide Records 

The northeastern Indian Himalayas lack comprehensive historical records of landslide events, 

impeding the development of predictive models. This research highlights the critical need for 

improved landslide monitoring and documentation, addressing the gap in historical data availability, 

and fills in more of the story surrounding the lack of data in global LSIs continuing from Thesis 

Section 5.0 Research Chapter I. Guzzetti (2012) championed for more resources, technology and 

innovation in landslide inventories, as this would improve the quality of landslide tools, maps and 

have a positive effect on all products and analyses. In a 2023 paper Sharma et al. did a systematic 

review in which they looked at research gaps for the future of landslides specifically around the 

impact of climate change. Sharma et al. identified lack of advanced prediction models based on poor 

data were the major research gaps. For future studies into using ERA5 with established ID thresholds 

doing this study again, but in a country which has more historical landslide events available for 

testing the predictive system, for example the United States. 

7.3.3 Evaluation of Predictive Methods 

The effectiveness of using predefined intensity-duration thresholds for predicting landslides has not 

been thoroughly assessed in regions with limited historical data. Italy have been at the forefront of 

using historical precipitation and landslide datasets in order to derive rainfall thresholds (Caracciolo 
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et al., 2016) and this is due to their expansive and varied historical datasets. This research identifies 

the limitations of this approach in data-scarce environments, addressing the gap in the evaluation of 

predictive methods under such conditions. 

Overall, the research chapter tries to use the most recent and used current practice when developing 

an idea or predictive model. The failure to produce something is a symptom of the condition of the 

‘current practice’ and is indicative of the failures in our discipline’s current practice.  

When considering this chapter as a singular research piece, I must reflect on its ideology that began 

at the start of my PhD journey. My thoughts at the time were: I am going to make a predictive 

landslide model for the Northeastern Indian Himalayas because my technology and tool will save the 

communities from unnecessary deaths. My own unconscious white saviourism began my research 

into this prediction model and I must admit that I am sad to see that it currently doesn’t work. 

However, considering the technocratic push by the Global North based on technological superiority 

born from a colonial and imperial past, I wonder if this tool would be needed at all. Thesis section 

2.2.1 DRR discussed the UN initiative ‘Early Warnings for All’ but also the trap that Global North 

researchers fall into when researching Global South Countries. Jefferess (2022) discusses white 

saviourism and humanitarian projects and talks about the way in which humanitarian aid and 

research has been represented to Global North populations and how problematic this can be 

(Dogra, 2012) (Fassin, 2012). A paper in 2016 looked at community challenges to the saviour 

mentality of researchers in aid agencies and concluded that it was a problematic way of 

approaching research (Flaherty, 2016).  

I think that the future consideration of this chapter should also reflect what would be the actual 

impact on those living in the community in the Darjeeling district, India and if this type of tool would 

make any impact at all. This research should be conducted with the communities in the Darjeeling 

district and highlight any local and indigenous knowledge that already exists and informs the 

community about landslide risk and predictions. Few et al. (2022) did a critical reflection on the 

cross-disciplinary practice they engaged in while working with communities and concluded that 

working collaboratively with communities would produce the most meaningful and effective 

research. 

7.4 Discussion of overall thesis and outcomes in relation to DRR 

The findings in the two research chapters show significant limitations in using freely available global 

landslide inventories for historical verification of reanalysis models like ERA5 for landslide prediction. 

These LSIs, while valuable for broad trend analysis, often lack the spatial and temporal resolution, 
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completeness, and quality required for robust historical validation. Issues such as underreporting of 

small-scale events, inconsistent data collection methods, and regionally biased coverage hinder their 

utility in accurately verifying reanalysis model outputs. Also research chapter II compounded this as 

the ERA5-based model demonstrated poor performance in verifying historical landslide events. This 

suggests that the model's precipitation parameter, may not adequately represent the complex, 

localized triggers of landslides. Moreover, the coarse resolution of ERA5 data likely fails to capture 

the microclimatic and geomorphological factors critical to accurate landslide prediction, especially in 

heterogeneous terrains like the Himalayas. 

Freely available landslide inventories (LSIs) that lack quality and completeness undermine efforts to 

develop effective early warning systems and disaster preparedness strategies. These inventories 

often suffer from inconsistent reporting, regional bias, and missing small-scale or historic events, 

limiting their utility for validating prediction models like those using ERA5. Poor LSIs lead to 

unreliable predictions, directly affecting the UN’s Early Warning for All initiative, which relies on 

accurate data to protect vulnerable populations (See Thesis Section 2.2 DRR and Landslide Early 

Warning). Without robust LSIs, communities are deprived of actionable information, conflicting with 

SDG 16.10's mandate to ensure public access to reliable information for effective disaster risk 

reduction. 

The UN's Early Warning for All initiative faces criticism for its reliance on global datasets and models 

(Troglic et al., 2022) that often fail to address the localized and complex nature of disasters such as 

landslides (See Thesis Section 2.2 DRR and Landslide Early Warning). This critique aligns closely with 

the research findings, which reveal that freely available global landslide inventories are incomplete, 

regionally biased, and unsuitable for validating reanalysis models like those using ERA5. These gaps 

limit the reliability of prediction models and, in turn, the effectiveness of early warning systems, 

particularly in high-risk areas like the Himalayas, where disasters are influenced by localized factors 

such as rainfall variability, soil conditions, and seismic activity. 

The initiative's dependency on such flawed datasets risks delivering inaccurate or inadequate 

warnings to vulnerable communities, undermining its goal of universal disaster preparedness. To 

address this, there is an urgent need for investments in localized data collection, refinement of 

prediction models, and the integration of regional knowledge to ensure reliable, actionable early 

warning systems (WMO, 2024). 

However, the goal is ambitious and sorely needed in the global community. To align with these global 

goals, investment in high-resolution, localized data collection, integration of diverse datasets, and 
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refinement of reanalysis models is essential. By bridging these gaps, we can move closer to achieving 

effective early warning systems that save lives and foster resilient communities worldwide. 

7.5 Conclusion 

By investigating the current practice within landslide science in the DRR discipline through looking at 

the data and an application of a freely available and simple historical identification of hazards tool I 

have been able to identify and highlight research gaps, results and recommendations for the future 

within this DRR discipline. I propose that the current practice is poor, and that by investing in more 

reliable and accurate LSIs then we can move towards achieving the global goals set by the UN, to 

codevelop and cocreate innovative, accessible and impactful prediction tools.  
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Chapter 8: Conclusion  

8.1 Overall Conclusion  

To begin with the thesis interrogated the ‘data’ elements of freely available global LSI datasets. It 

found that although combining the datasets, it did not represent the regional area and concluded to 

make a more accessible dataset then recommendations on collection, storage and dissemination 

needed to be carried out. This in turn would make it more accessible for use in the DRR discipline in 

relation to the UN’s Early Warning for All strategy. The current practice in ‘data’ needs to be pushed 

towards a best practice which is more equiTable (Thesis Section 5.0 Research Chapter I).  

The second research question and objective were answered in Thesis Section 6.0 Research Chapter 

II where ERA5 and established ID thresholds were used as a tool for historical landslide identification. 

To validate this tool, this chapter used the combined global LSI created in Thesis Section 5.0 

Research Chapter I to provide historic landslide events to try and validate the skill of this prediction 

tool. The aim of this chapter was to try and investigate if current practice in ‘data’ and ‘people’ could 

be applied to an ‘application’. The results were very poor. There were not enough landslide events to 

be able to accurately provide a skill analysis on the prediction tool, and the results that did come 

from this study showed that if we reversed the decision from the prediction tool, it would be more 

skilful.  

Overall, it is apparent that the thesis objectives were met by the research chapters, and the research 

gaps highlighted by the research questions, filled. There was also a comprehensive section in each 

research chapter and highlighted in Thesis Section 7.0 Discussion and Future Considerations which 

makes recommendations for changes to policy, training and institutional structures both in Higher 

Education and within the government run UK funding bodies.  

8.2 Research Significance  

The thesis set out to fill in some of the current research gaps that were identified in Thesis Section 

2.7 Research Questions.  

1. Are the landslide inventories identified fit for use when validating historical reforecasting of 

precipitation triggered landslides in Darjeeling, India? 

The gaps found were that found for my first research question to fill was that there is no current 

research in using global LSIs in a regional context, or any specific literature on recommendations for 

unifying the collection, storage and dissemination of LSIs in general. Another unique input by the first 
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research chapter was the idea of ‘social checks’ on data choices by DRR researchers. This research 

chapter has significant research potential and contributes scientific value to the DRR and landslide 

sciences by showing the shortcomings in global LSIs and considering recommendations, including a 

new concept surrounding the training of DRR researchers in ‘social checks’.  

2. Can historical precipitation triggered landslides in Darjeeling, India be identified with the global 

scale reanalysis precipitation dataset ERA5, and established Intensity Duration Thresholds?  

The second research chapter fills in gaps found in the literature. The gaps in the literature were that 

ERA5, freely available global LSIs and predetermined ID thresholds have not been used in 

conjunction together to try to create a simple and accessible landslide prediction tool. This has also 

never been applied to the Darjeeling district, India. My research chapter tests the theory if these 

datasets can be used in this way, and if they could be used in a LEWS. The overall results for this 

research chapter adds to the narrative surrounding best practice for reporting, maintaining, storing 

and disseminating free and available global LSIs, which is also an area of the literature where there 

has been limited research.  

Overall, my thesis has begun not only answering questions on if the current practice is good enough 

for the future of DRR in our changing climate but also has begun asking the next sets of questions on 

making the discipline more equiTable to make steps towards best practice. It has produced some 

original science that can be built upon during my next steps as an Early Career Researcher and 

hopefully lead towards some industry and academic changes from recommendations stated within.  
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Appendix 1 – Working collaboratively in tropical cyclone 
rapid response teams as an expert at data analysis of 
ECMWF’s Copernicus storm hydrographs and 
forecasted flooding.   
  
  

 

My contributions to this paper were an integral part of the rapid response team responding to a 

developing Tropical Cyclone (TC Eloise) that was going to make landfall in Mozambique, Africa.   

My contribution was as a data analyst to provide not only interpretation of the data, but also to 

report on what that data meant in terms of the impact to the surrounding areas, using established 

risk and vulnerability matrices.  

This contributed to reports that were then presented to the UK government, who then used this 

information in meetings with the Mozambique Government, local NGOs and to determine what kind 

of aid to send to the area.  

This paper directly uses these developed reports within this paper to make recommendations for 

improvements for the support of international humanitarian operations for tropical cyclones.   
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Appendix 2 – The Summer Exhibition at the Royal 
Society  
In the summer of 2023, I attended the Royal Society’s Summer Exhibition as a member of the 

University of Reading ‘Beware Floods!’ team on day 2 of the exhibition. The following report shows 

some of the findings and insights from the exhibition.   

I have included this as an appendix as I have reflected on my time there in the context of my PhD 

and I think that it is a very valuable contribution to the PhD framing and the idea that working 

reflexively is an important skill that needs to be constantly developed and improved upon, especially 

within the context of searching within our own intentions and feelings in and around colonialism and 

post colonialism.   

  

 

 

Figure A.1: Siobhan Dolan at the 'Beware Floods!' stand at the Royal Society, Summer 2023 (Dolan, 

2023).  

 

Figure 1 is a picture I took while at the event, just before the day began. On page 7 of the report an 

image of me interacting with the public on the day can also be seen (Knowles, 2023).   
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During the exhibition I spoke with probably hundreds of children, adults and students about 

flooding, climate change (as the climate stripes were on show here) and about natural hazards in 

general. Some individuals were there to learn more, some were there to see what was on offer while 

others were there to argue about the existence of climate change overall.   

My main takeaway from this event was the feeling that I was part of something that didn’t align with 

my overall values, and the fledgling values that I have been fostering over the PhD journey. It seems 

very strange to me to be talking about natural hazard events due to climate change (more extreme 

events happening in the Global South, mainly from a culture of overconsumption in the Global North 

and those ideals being coveted by the Global South) with middle to upper class British white people 

with Selfridges bags, or designer clothes. Talking about my research felt like I was cheapening it, 

allowing it to be used as a form of ‘poverty porn’ for those that could come to the Royal Society in 

London, during the working hours of a weekday.   

This experience gave me an insight into the British nation’s need for stroking the ego, for the ability 

to perpetuate the ‘white saviour syndrome’. Reflecting on this day, at the time I was doing the same 

thing – describing my research as something that would ‘change lives’ or ‘save people’. This event 

was not only the public performing for the felling of feeling good about themselves, but also an 

opportunity for me to perform and feel good about myself. It shows that despite my own self-

development after the epiphany in Nepal 2018, I was still using instances like this without thinking 

about the connotations or the implications of what I was doing or why.   

I think that these types of exhibitions are good for increasing public understanding of certain 

scientific findings and important information transfers for Universities and the public, but when 

you’re covering something like climate change and natural hazards there needs to be a bit of 

additional thought given by the Universities showing these issues. For example, the University of 

Reading sent an all-white, all British team to showcase the research at the university despite there 

being other members of staff within the research groups that could have diversified the staff and 

allowed for more diverse conversations in and around climate change and natural hazards.    
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Royal Society Summer Science Exhibition 2023: Report 
on participation    

CK: 7 August 2023     
    

1. Overview    
The Summer Science Exhibition is the Royal Society’s week-long flagship public engagement 
event. It is held in July each year in the beautiful surroundings of the Royal Society in central 
London and provides a free, annual display of cutting-edge science and technology in the UK 
(selected by competition). It is attended by schools and the public, as well as science 
journalists, policymakers and politicians, members and Fellows of the Royal Society.    
    
A team from Water@Reading (Geography & Environmental Sciences) led by Professor Hannah 
Cloke was invited to exhibit at the 2023 Summer Science Exhibition with a smaller version of the 
stand that had been selected for the 2020 exhibition (cancelled due to the pandemic). We were 
one of only a few of the 2020 exhibitors who were invited, which is a positive reflection on the 
original application and the efforts we made to adapt our activities for the replacement digital 
event in 2021.    
    
We attended on Thursday 6 July (a schools day, with the Royal Society ‘soiree’ in the evening) 
and on Friday 7 July (a public day). On both days we received extremely positive feedback on our 
activities and team energy, from the public, other exhibitors, and Royal Society staff.    
    
The Royal Society welcomed a total of 9,700 visitors to the Exhibition which ran for 6 days from 
Tuesday 4 July to Sunday 9 July 2023. There were 1,100 visitors during the day on 6 July plus 460 
for the evening Soiree, and 1,470 visitors on 7 July – so over 3,300 people saw our stand over the 
two days we attended. We are currently still awaiting the evaluation report from the Royal 
Society.    
    

Beware: Floods Ahead! (description from Royal Society 
website)    

Floods are becoming more likely as the climate warms – as we've seen in recent years, from 
Somerset or Whaley Bridge to Pakistan and Mozambique. Forecasting floods is tricky but has 
improved thanks to research and improved prediction by meteorologists and hydrologists. 
Flood defences and the choices we make about where to build houses can help reduce the 
impact of floods. Join scientists from the University of Reading to try your hand at flood 
prediction and managing the risk that it may flood, and to discuss our interactive climate 
stripes – a graphic representation of how the world is warming. Find our more: 
https://research.reading.ac.uk/toohttps://research.reading.ac.uk/too-much-water/much-
water/    

    

https://royalsociety.org/science-events-and-lectures/2023/07/beware-floods-ahead/
https://royalsociety.org/science-events-and-lectures/2023/07/beware-floods-ahead/
https://research.reading.ac.uk/too-much-water/
https://research.reading.ac.uk/too-much-water/
https://research.reading.ac.uk/too-much-water/
https://research.reading.ac.uk/too-much-water/
https://research.reading.ac.uk/too-much-water/
https://research.reading.ac.uk/too-much-water/
https://research.reading.ac.uk/too-much-water/
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2. Aims of attending    
• To showcase the best of Reading research and raise the 

University’s profile among Royal Society audiences (schools and the public, 
science journalists, policymakers and politicians, members and Fellows of the 
Royal Society).    

• To raise the profile of Reading research among other exhibitors and 
peer universities.    

• To gain experience of public engagement in a high-profile 
environment and to foster links with the Royal Society’s public engagement 
team for future opportunities.    

    

3. Our stand and activities    
As an invited exhibitor, we were allocated a smaller space (2m x 2m) than the ‘flagship’ stands 
which had been selected in the 2023 competition (4m x 4m) – although in the event we had 
more space than we expected. The stand was based on the activities which had been planned 
for 2020 and designed and built by the Technical Services team led by Andy Whittam. They 
worked closely with Stuart Mitchell from ECMWF, who developed the computer programme for 
the flood prediction game. We are extremely grateful to Stuart, Andy and the team for the time 
and effort they put into this, both for the initial build in 2020 and to get the activities out of 
storage and overhaul them, since the interactive nature of the stand was a major factor 
contributing to its success.     
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The build of the activities had been almost complete in April 2020 when that year’s Exhibition 
was postponed due to the pandemic. At that point we decided to complete them as far as we 
could, not knowing how long the lockdown would last. This proved to be a good value-for-
money decision since they have also been used by Professor Sarah Dance (Meteorology) for 
schools visits days in 2022 and 2023. We hope to use them again in future (provided we have 
researchers to staff the stand), for example at Swindon Science Festival or the University’s 
Community Festival in 2024.1    
    
The stand we took to the 2023 Exhibition consisted of:    

a. Flooding Table: a model landscape, involving trees, movable model 
buildings and flood barriers, which can be flooded with water, enabling visitors 
can see directly how land management and flood defences can protect (or not) 
from flooding.    

b. Flood prediction game: a fruit machine which visitors can play to 
understand the range of factors that can combine to contribute (or not) to 
flooding, and its unpredictability.    

c. Climate stripes banners: provided a backdrop to the stand and a 
conversation starter. Visitors are able to identify their country and year of birth 
and how the climate has changed over time. [Note: due to space constraints we 
substituted this static activity rather than the interactive stripes originally 
developed for the 2020 stand.]    

   
    
We also had:    

d. Climate stripes badges: as small take-home reminders, intended to 
be a conversation starter for people to wear/use in their daily lives. These were 
not cheap to purchase, so the team was encouraged to give them to visitors who 
had engaged in interested conversation (not just wandered past the stand).    

e. Website with online version of flood prediction game; climate 
stripes activity; cloud-spotting activity; short ‘Meet the scientist’ videos about 
the different roles researchers play in flood prediction and prevention; online 
version of 2021 public lecture by Professor Cloke.    

f. Cloud-spotting guide: which we had developed as an online activity 
for the digital version of the exhibition (although in the event we did not use 
this, and will keep it for another opportunity).    

    
The effective use of the climate stripes for branding on t-shirts (with the University logo on the 
back) and for stand backdrop was commented on by other PER professionals who attended the 
event.    
    
We should acknowledge here the work of Jeremy LeLean (former Senior Research 
Communications Officer) who developed the activities with the Technical Services team in 2020 
and took them online in 2021 but has since left the University.     
    

Other activities    
• Professor Cloke attended the Summer Science Exhibition Soiree, a 

black-tie and invitationonly evening for senior scientists, science policymakers, 
journalists and Royal Society Fellows. This is a useful networking and profile-
raising opportunity. Unfortunately, the ViceChancellor was unable to attend due 
to a prior commitment, so we invited Dr Florence Rabier (Director-General of 
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ECMWF) as a guest. Two of the University’s Royal Society Fellows also 
attended.     

• Professor Cloke was invited to give a talk on 6 and 7 July about her 
work as a scientist which filled the lecture theatre each day: What happens 
when there’s too much water?    

• She was also interviewed for the Exhibition podcast: Summer 
Science Live (1h13mins in), which has been viewed over 4,200 times to date.    

    
    

4. Team members    
Although hugely enjoyable, it is very tiring to be on your feet and ‘on show’ all day, so we would 
usually expect to have a team of between 6 and 8 people each day to staff a ‘flagship’ stand 
(allowing a proper rota of breaks and rest periods). Because we were offered a much smaller 
space this year, we took a smaller team, although in the event, we had more space than 
expected, and the team worked very hard both days.    
    

Thursday 6 July    
• Professor Hannah Cloke (lead researcher), Geography & 

Environmental Sciences    
• Dr Jessica Neumann, Geography & Environmental Sciences    
• Helen Titley, Met Office (staff) / University of Reading (PhD 

student)     
• Dr Stuart Mitchell, ECMWF (retired)    
• Connie Seamer, Research Communications Officer    

Friday 7 July    
• Professor Hannah Cloke (lead researcher), Geography & 

Environmental Sciences    
• Dr Jessica Neuman, Geography & Environmental Sciences    
• Dr Siobhan Dolan, Geography & Environmental Sciences    
• Pete Castle, External Relations & PR Manager    

5. What we learned    
• Our stand compared very well with those of other bigger 

universities, who had clearly spent a lot more money on presentation (see 
section on resources below).     

• Most of the other universities attending are from the Russell Group, 
represented by the ‘hard’ sciences. Our approach of focusing on our 
environmental/sustainability issues for our applications allows the University 
to stand out with our own profile among them.    

• Interactive hands-on activities draw people in – and were popular 
with all ages.    

• It is inspiring for children and young people to meet ‘real-life 
scientists’.    

• The University’s climate science is recognised by the public to 
varying degrees. The climate stripes are well known in meteorology circles, but 
not more widely; their simplicity and strong message was acknowledged.     

• The University’s strong position on sustainability is attractive to 
students (extrapolated from a small sample).    

    

Feedback from the team    

https://royalsociety.org/science-events-and-lectures/2023/07/what-happens-when-theres-too-much-water/
https://royalsociety.org/science-events-and-lectures/2023/07/what-happens-when-theres-too-much-water/
https://royalsociety.org/science-events-and-lectures/2023/07/what-happens-when-theres-too-much-water/
https://www.youtube.com/watch?v=QpZ3rqgVOYM
https://www.youtube.com/watch?v=QpZ3rqgVOYM
https://www.youtube.com/watch?v=QpZ3rqgVOYM
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Participation in the Exhibition was fun and exhausting – and it was both inspiring, energising and 
a learning experience:    
    

“Pretty much everyone I spoke to was interested to talk about flooding. It was a bit of a 
change for me to be on my feet all day and talking to people rather than just sat at a 
computer… I'm very glad I did it as it was brilliant to chat to people, with a massive range 
of ages from about 8 to 80!”    

    
“I was amazed and inspired to see my academic colleagues in action, particularly 
seeing Jess and Siobhan who are clearly absolute naturals at engaging kids and adults 
and drawing them in with their personality and knowledge.”    
    
“I only had immensely positive feedback. People loved it. Stayed for ages. Returned. 
Chatted to me in the queue for the toilets. Talked about current flooding around the 
world, or how safe they were. They laughed in delight. Many of the kids enjoyed the 
freedom to flood everyone and wash all the houses downstream. Some really 
interesting conversations on the back of this.”    
    
“Hold some more public events at UoR or local venues? People travelled from Scotland 
for the day to visit RS so I reckon there’d be enough local interest to make it 
worthwhile.”    
    

Feedback on the activities    
“The flood Table was incredibly popular with younger children and teenagers. It’s ideal 
as an activity to get a whole school group engaged with as there is plenty of room to get 
people all around the Table (I had up to 12 gathered around for one demo).”    

    
“Nearly everyone stopped at the flooding Table and watched. Anything that visitors can 
physically get their hands on and try for themselves was really popular. Having the 
ability to create different outcomes really sparks conversation too (flood machine and 
moving the houses / water jugs). The climate stripes were good because they are well-
recognised but (in my opinion) did not generate the same level of discussion and 
interest with most people as they were more static. The stripes did appeal to those 
already with a background knowledge of climate change though so I think it’s good to 
have a variety of activities to appeal to a larger audience.”     

    
      

Feedback on the University    
“It was very rewarding though to inspire kids and adults about flooding and climate 
change - lots of interest in the topic area and also UoR as an institution.”    
    
“I was actually surprised at how few people had seen or knew about the climate stripes. 
I feel like I see them everywhere (which is great!) but I clearly move in lots of Uni of 
Reading / meteorology circles, so it was a good reminder to me … it’s clear that the 
potential to continue to expand their use as an educational tool is massive. … People 
were really interested and impressed by this and it shows them that the potential of 
Reading research to make wider impacts across the community and the world.    
    
“I had some conversations with some nutcases who insisted climate change was a 
hoax. But equally, I met a student who said she is coming to Reading in September to 
study English specifically because she loves our climate focus as an institution. I spoke 
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to loads of people who knew about the climate stripes, but more who were fascinated 
to learn about them.”    

    

Practical lessons for the Research Communications team    
• We delivered a well-conceived and engaging stand – visitors loved 

the hands-on activities.    
This made it easy for the research team to strike up conversations and explain their 
science.     

• However, we were not quite so successful at conveying an 
overarching research message about the link between science and practical (or 
policy action) on the stand (although the research team was very good at doing 
this). We should put more thought into this for the design of future stands.    

• We need to develop a briefing sheet about the climate stripes for 
any staff working on a stand like this – pointing out information about key 
years/regions that stand out on the display e.g. Europe being colder in World 
War 2 and in 2010.     

• It would also be helpful to have supporting material (either 
printouts or a QR code) to provide scientific backing for the arguments that 
climate change is caused by human activity.    

• There were several small logistical details we learned – e.g. adding 
QR codes to direct people to the website and give access to further information; 
having business cards available; ensuring there was tech support on hand for 
technically complex activities.    

• The flooding Table in particular and the fruit machine were heavy 
and cumbersome to move and transport costs were not inconsiderable. This 
may limit re-use off campus, and we must consider this in any future exhibition 
design.    

• We needed a better briefing about the Soiree (what we got from the 
Royal Society team was virtually non-existent. Particularly we should consider 
inviting one or two senior external stakeholders (relevant to the stand), ensure 
all of our own Royal Society Fellows know we will be there and ask them to 
attend to support the team, with networking and general University profile-
raising.    

    
    
6. Budget and resources    
We were granted £29,000 from RETF to cover participation in the 2020 Exhibition and this was 
used to build the activities in 2020 and adapt them for the online Exhibition in 2021. There was, 
of course, a considerable underspend in the physical delivery (based on previous years’ costs, 
we had budgeted £6000 for travel, accommodation and subsistence; £5200 for 
communications and training including and a dry-run ‘practice’ event; £5000 for a small 
giveaway item).    
    
We were given permission to request money from HEIF to fund the 2023 Exhibition, but in the 
event were able to use an underspend in the Research Communications team’s activity 
budget.    
      

2020 costs        

Activity build costs    3,355    

Technical Services labour costs    5,301    
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Stand design and printing    659    

    9,315    

2021 digital exhibition        

Poetry video, workshop, competition    2,600    

Cloud-spotting guides (printing)    1,696    

Website costs and video recording/edit    526    

    4,822    

2023 costs        

Checking and finalising build of activities*    520    

Transport    1019    

Travel and subsistence (9 staff in total/2 days)    775    

Climate stripes t-shirts and badges    2249    

    4563    

*Note: 2023 labour costs have not yet been charged by Tech Services, but can be expected to be about 6 
days.    
    

This total spend represents exceptional value for money and compares very favourably with the 
Royal Society’s published data on what it costs to exhibit:     
    

Total spend    Rough budget breakdown (%)    

25% spent £25k     40% Exhibit design and build     

25% spent £20k - £25k     25% Displays and interactives     

32% spent £15k - £20k     25% Accommodation, travel and subsistence     

19% spend £10k - £15k    10  % Freebies, T-shirts, insurance    

0% spend under 10k        
    
We must of course also factor in staff time, which is not inconsiderable:     

• Lead Researcher: It is essential to have a senior researcher who is 
committed to the process and will help with conceptualisation of the stand and 
activities, representation at the Royal Society, and is fully committed to attend 
as many days of the event as possible (total time commitment: estimate 15 
days for full delivery of a ‘flagship’ stand).    

• Research Communications team: The time necessary to develop the 
application, conceive of and design the activities, supervise the design and build, 
develop communications outputs, liaise with the Royal Society team, deliver the 
event should not be underestimated Conceptualisation, stand build (estimate 10 
full weeks of work for one person).    

• Technical Services: design and build of hands-on activities: estimate 
10 days.    

• Research team to deliver: A full ‘flagship’ stand needs a team of 5 
or 6 post-docs and PhD students for the full 8 days of the Exhibition, plus the 
Lead Researcher and other senior researcher. In 2023, with a smaller stand, we 
managed with a team of 4 (plus comms officer) on 6 July (schools day) and 3 
(plus press officer) on 7 July – but this was very hard work.    

• Press/Comms on the day: We can benefit greatly from the 
dedicated support of a Press Officer at the event (especially if we are running a 
‘flagship’ stand for 8 days). This is a highprofile event with significant 
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opportunities – for example, Professor Cloke was featured on Radio 4’s ‘The Life 
Scientific’ after meeting presenter Jim Al-Khalili at the online ‘soiree’ in 2021.     

Future plans    

We have now attended the Summer Science Exhibition for three of the last four times it has 
been held (Soil Science in 2019; Covid and llama nanobodies in 2022; and Flooding in 2021/23) 
and we have gathered considerable experience of putting on a stand of this nature and can 
certainly hold our own against our comparator universities.     
    
We are currently in discussions with the School of the Built Environment about revising the 
submission focused on sustainability that we made with them for the 2022 Exhibition (which we 
were told had narrowly missed being shortlisted). We have also approached the School of 
Agriculture to explore whether we could submit an application about the future of agriculture. 
We hope to be able to submit one of these for the 2024 exhibition (deadline 2 October) and one 
for 2025.     
    

Caroline Knowles Head of Research Communications & Engagement 
August 2023    
 


