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ABSTRACT
A dataset of the atmospheric Potential Gradient (PG) from Lerwick observatory in Shetland is now available, which provides 
hourly-averaged PG for each month, from January 1964 to July 1984. The measurements were made consistently, with calibrated 
and well-maintained instrumentation. Co-located meteorological observations are also available from the same site, where dis-
turbing effects of air pollution are small. Other sources of atmospheric data such as satellite observations became increasingly 
abundant during the era of the measurements, making broader comparisons possible. On average, the Lerwick PG measure-
ments contain a diurnal cycle characteristic of the global circuit and show relationships with the El Niño-Southern Oscillation 
(ENSO), especially in December. The value of the data is in the information it contains about the global atmospheric electric 
circuit, which is embedded in the climate system.

1   |   Introduction

A long series of atmospheric electricity measurements was made 
at Lerwick observatory in Shetland by the Met Office, between 
1925 and 1984 (Harrison and Riddick 2022). This dataset is being 
progressively transcribed from the original paper records of indi-
vidual hourly samples to digital form, through a Citizen Science 
project1. This paper describes the later part of the data recently 
made available (Mkrtchyan et  al.  2024) and summarises the 
properties found. Surface measurements from a single site can 
provide information on the global atmospheric electric circuit, 
which couples charge separation in disturbed weather regions of 
the planet with fair weather regions (Figure 1a). The global cir-
cuit is sensitive to internal climate variability and, separately, to 
changes in space weather conditions: the dataset therefore has a 
range of applications.

Lerwick observatory is at a remote site (60°08′17″ N 1°10′56″ 
W), on land at 85 m asl above the small town of Lerwick in the 

Shetland Isles, Figure 1b. Climatological mean properties for the 
site offer a basic characterisation of conditions at the site (Met 
Office, n.d.). For the relevant climatological interval 1971–1990, 
the site had a mean annual rainfall of 1238 mm, with 198 days 
annually having 1 mm or more. The warmest month was 
August, with a mean maximum temperature of 14.2°C; the cold-
est month was February, having a mean minimum temperature 
of 1.4°C. In this period, Lerwick had an annual average of 1067 
sunshine hours, ranging from 14.9 h of sunshine in December to 
124.6 h in August. The mean wind speed was 8 ms-1. There was 
lying snow for 30 days on average annually, between November 
and April.

The Lerwick atmospheric electricity dataset consists primarily 
of hourly potential gradient (PG) measurements, made using 
similar methods during the entire duration of the dataset. (Some 
air-earth current measurements were also made (Harrison 
and Nicoll 2008)). The PG is also sometimes referred to as the 
‘fair weather electric field’ or ‘atmospheric electric field’. These 
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descriptions reflect the historically important question of ex-
plaining why an electric field was observed to be constantly 
present in fair weather conditions, when no thunderstorms were 
nearby. The ubiquitous fair weather atmospheric electric field 
is now understood to arise from the charging action of distant 
tropical thunderstorms and shower clouds, conveyed through 
the global atmospheric electric circuit (Wilson 1929). It can be 
considered as the voltage developed across the lowest part of 
the resistance in Figure 1a. In fair weather conditions, the at-
mospheric electric field is negative and typically about (−) 150 
Vm−1. By convention, the PG is considered as positive in fair 
weather, but of the same magnitude as the electric field.

In the final decades of the Lerwick data series provided, the PG 
measurements were made using a radioactive probe and chart 
recorder system (Harrison and Riddick 2022). These measure-
ments ceased in July 1984, probably related to the closure of 
Kew observatory at the end of 1980 due to economic pressures 
(Anonymous 1980), although ‘organisation…of observations of… 
atmospheric electricity…’ remained stated as a function of the 
Met Office in their 1985 annual report. (Anonymous 1985).

The dataset now available contains averaged hourly data for 
each month from January 1964 to July 1984, and some explor-
ative investigations are discussed here. In section 2, details of 
the instrumentation and site are given, followed by a summary 
of the data properties in section 3. In sections 4 and 5, the mea-
surements are examined for global circuit and climate signals. 
Conclusions are given in section 6.

2   |   Site and Instrumentation

Lerwick observatory primarily provides meteorological and 
geomagnetic measurements (Tyldesley  1971). However, atmo-
spheric electricity measurements were also made over a long 
period, and, as disturbing effects of air pollution at the site are 
small and co-located meteorological information is also avail-
able, the PG dataset from Lerwick seems especially valuable.

From the 1960s, the PG measurements were made with a radio-
active probe sensor, which was exposed at the rear of the obser-
vatory building. The probe was connected to a valve electrometer 

of the Brewer design and a chart recorder (Brewer 1953). Values 
were read from the chart and tabulated. An important feature 
of the observations was the careful and regular attention given 
to calibrations and corrections. Corrections of the probe voltage 
measurements to the equivalent PG at an open site were made 
through the occasional use of a stretched wire electrometer sys-
tem, which provided absolute measurements of the atmospheric 
electric potential at the height of 1 m. By comparing measure-
ments made simultaneously with the stretched wire sensor and 
the radioactive probe, a correction (or reduction factor) could 
be found, allowing conversion of the probe's voltage measure-
ments to the equivalent PG values which would have been 
obtained over a flat open surface. These reduction factor deter-
minations were made regularly, and any small variations were 
smoothed before applying them to the Brewer chart recorder 
measurements.

3   |   Data Overview

The data files provide, for each month, twenty-four PG val-
ues, which are the average hourly values of PG for that month. 
Each hourly value is centred on the subsequent half hour, for 
example, the entry for 00 UTC provides the average for mea-
surements taken between 00 UTC and 01 UTC, and that for 
23 UTC between 23 UTC and 24 UTC. The data values were 
classified by whether the local meteorological conditions were 
those of ‘fair weather’ (FW), or merely without precipitation, 
referred to as ‘No hydrometeor’ (NH) conditions. The FW defi-
nition was the stricter of the two, as, in addition to requiring 
the absence of hydrometeors, it required no low stratus cloud, 
less than three-eighths cumuliform cloud, and wind speed less 
than 8 ms-1.

The hourly averaged values have been combined to derive 
monthly averages. Figure 2 shows monthly time series of the PG 
data from Lerwick between 1964 and 1984. Figure  2a and 2b 
show, respectively, the two timeseries of PG with the FW and 
NH criteria applied.

In both time series, an increase in the mean value of the PG is 
apparent in the initial few years. This is due to the recovery from 
radioactive contamination at the site in the era of atmospheric 

FIGURE 1    |    (a) Simplified depiction of the global atmospheric electric circuit, in which current flows from disturbed weather regions through 
the conductive upper atmosphere to distant fair weather regions, passing through the varying electrical resistance of the atmosphere and returning 
through the planetary surface. (b) Location of the Lerwick observatory site in Shetland, to the north-east of the UK mainland.
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nuclear weapons tests in the late 1950s and early 1960s. The ef-
fect of deposited surface radioactivity is to increase the local air 
conductivity, and reduce the PG, which has also been observed 
in the aftermath of the Fukushima and Chernobyl reactor acci-
dents (Kubicki et al. 2021). By about 1966, the mean PG value 
was within the variability typical of the later period, and hence 
the radioactivity effects had diminished sufficiently that they 
were no longer apparent. For later analysis using the PG data, 
only values from 1966 onwards are considered: summary values 
are provided in Table 1.

FW conditions occurred less frequently than NH conditions, 
and Figure 3 shows the mean seasonal and diurnal variation in 
measurements made in these different circumstances. Overall, 
the total duration of NH measurements is approximately twice 
that for FW conditions, especially from April to July in the af-
ternoons. As mentioned, the NH criterion is less restrictive than 
the full FW criteria, and hence the NH data contains more in-
dividual values, but in which local effects were less likely to be 
completely suppressed. Nevertheless, there are fewer outliers 
apparent in the NH values of Figure 2b than the FW values in 
Figure 2a.

4   |   Diurnal Variation

The characteristic diurnal variation of the global atmospheric 
electric circuit is known from the Carnegie curve, which is an 
observed diurnal variation in PG named after the survey ship 
on which the defining initial measurements were made (Ault 
and Mauchly 1926). The Carnegie curve has a single minimum 
at about 03 UTC and a maximum between 19 and 20 UTC 
(Torreson et  al.  1946), and this variation was shown to agree 
closely with the diurnal variation in global thunderstorm activ-
ity (Whipple and Scrase 1936). Such a diurnal variation is also 
apparent in the Lerwick PG data, for both the FW and NH data. 
Figure 4 and Figure 5 show the Lerwick diurnal variations, av-
eraged from the FW and NH datasets respectively.

Figures 4 and 5 also show the seasonal variation averaged over 
data from 1966 to 1984, showing, at most hours of the day, that 
a maximum occurs in the northern hemisphere summer. The 
magnitude of the seasonal variation is less than that of the di-
urnal variation. Two minima are apparent in spring (April) and 
autumn (November), which are not evidently related to any 
change in the sampling, as summarised in Figure 3. A complex 
seasonality, related to semi-annual variations in tropical convec-
tion, was suggested in modelling work representing the global 
circuit (Ilin et al. 2020), but a single summer maximum is now 
considered more likely (Slyunyaev et al. 2025).

Both figures show strong similarities with the standard annual 
Carnegie curve (Harrison 2013), summarised by calculating the 
correlation in Table 2. The correlation with the NH data has a 
slightly greater statistical significance, with the persistence in 
the data allowed for (Ebisuzaki 1997).

5   |   El Niño-Southern Oscillation Related Variation

Previous work has shown that the December PG values at 
Lerwick are correlated with sea surface temperature anoma-
lies associated with the El Niño-Southern Oscillation (Harrison 
et al. 2011). The PG values at Lerwick were found to increase 
with the sea surface temperature (SST) anomaly in the Niño 
3.4 region (5oN-5oS, 120°-170oW), which is a region of the 
Pacific Ocean specifically monitored for the El Niño phenom-
enon. Modelling of the global atmospheric electric circuit has 
subsequently validated and explained these results, as arising 
from changes in the positions of electrified clouds due to ENSO 
(Slyunyaev et al. 2021). The results originally obtained for the 
period between 1968 and 1984 have since been augmented with 
southern hemisphere measurements for the earlier 20th century, 
using data from Watheroo Observatory in western Australia 
(Harrison et al. 2022). Similar effects to those at Lerwick were 

FIGURE 2    |    Time series of monthly PG from Lerwick, selected for (a) 
Fair Weather and (b) no hydrometeor conditions. The red vertical line 
marks 1966. Horizontal grey lines show the mean (dashed line) and one 
standard deviation about the mean (dotted lines), calculated from the 
later data (i.e., after 1966).
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TABLE 1    |    Summary statistics of the monthly PG values (1966–1984).

Data classification Mean (Vm−1) Standard deviation (Vm−1) Median (Vm−1) Inter-quartile range (Vm−1)

No hydrometeors 162.0 27.5 159.5 40.1

Fair weather 153.6 28.2 152.5 34.3
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FIGURE 3    |    Seasonal and diurnal variation in the total number of hours of PG data obtained at Lerwick between 1964 and 1984, for (a) fair weath-
er conditions and (b) conditions without hydrometeors.
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FIGURE 4    |    Upper panel shows the mean hourly PG at Lerwick, se-
lected for fair weather (FW) and compared with the Carnegie curve. 
Lower panel shows the seasonal and diurnal variations in the mean PG 
for the same conditions.
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for the same conditions.
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observed between the Watheroo PG data and the sea surface 
temperature anomalies.

The newly recovered hourly-averaged Lerwick data has been 
examined for the ENSO relationships in Figure 6. This figure 
shows the correlation between the SST anomaly and the Lerwick 

PG on an hourly and monthly basis, using the monthly Ocean 
Niño Index (ONI) for the SST. The strong correlation previously 
observed for December is clearly apparent, but there are also 
episodes of inverse correlation, mainly centered around March.

For further insight into these correlations, global rainfall rate 
has been compared with the Lerwick PG data, using meteoro-
logical reanalysis data from NCEP. The rainfall rate is assumed 
to provide a proxy for electrification in the thunderclouds and 
shower clouds driving the global circuit (Liu et  al.  2010), and 
hence ultimately the Lerwick PG. The relationships between 
the Lerwick PG and rainfall rate are shown for December and 
March in Figure 7. In the December data, it is evident that there 
are tropical and other regions where the precipitation rate is cor-
related with the Lerwick PG data. In contrast, there are fewer 
such regions in the March data, indicating that, if anything, 
there is a less coherent origin for the negative correlations of 
Figure 6 than for the positive correlations.

6   |   Conclusions

Lerwick observatory has provided a long and well managed 
series of PG data during the majority of the twentieth century. 
The hourly-averaged monthly dataset considered here, for the 
period after the effects of radioactive contamination had dimin-
ished, was obtained at a time when increasing amounts of data 
from other sources were becoming available, especially satellite 
observations.

The PG dataset shows global influences, such as a daily varia-
tion which, on average, follows the Carnegie curve of the global 
electric circuit. Further, effects due to ENSO are apparent in the 
Lerwick PG, which again reflect atmospheric electrical long-
distance coupling due to influences on the global circuit.

This dataset provides a new resource with which relationships 
between the global circuit and climate can be investigated.
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TABLE 2    |    Correlation with annual Carnegie curve.

Data classification
Correlation 
(Spearman)

Probability 
of occurring 
by chance, p

No hydrometeors 0.96 0.03

Fair weather 0.93 0.04

FIGURE 6    |    Correlation (Spearman) of the mean monthly PG, by 
hour, with the monthly Ocean Niño Index (a Pacific temperature anom-
aly). Statistically significant correlations (having a probability p of 
chance correlation, p < 0.05) are marked with a circle.
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findings of this study are openly available in University of Reading at 
https://​doi.​org/​10.​17864/​​1947.​001367.

Endnotes

	1	The AtmosEleC project is implemented on the Zooniverse platform, at 
https://​rdg.​ac/​elect​ricity.
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