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A N T H R O P O L O G Y

Subarctic climate for the earliest Homo sapiens 
in Europe
Sarah Pederzani1,2*, Kate Britton1,2, Vera Aldeias1,3, Nicolas Bourgon1,4, Helen Fewlass1, 
Tobias Lauer1, Shannon P. McPherron1, Zeljko Rezek1,5, Nikolay Sirakov6, Geoff M. Smith1, 
Rosen Spasov7, N.-Han Tran8, Tsenka Tsanova1, Jean-Jacques Hublin1,9

The expansion of Homo sapiens across Eurasia marked a major milestone in human evolution that would eventu-
ally lead to our species being found across every continent. Current models propose that these expansions oc-
curred only during episodes of warm climate, based on age correlations between archaeological and climatic 
records. Here, we obtain direct evidence for the temperatures faced by some of these humans through the oxygen 
isotope analysis of faunal remains from Bacho Kiro Cave, Bulgaria, the earliest clear record of H. sapiens in Europe. 
The results indicate that humans ∼45,000 years ago experienced subarctic climates with far colder climatic condi-
tions than previously suggested. This demonstrates that the early presence of H. sapiens in Europe was not con-
tingent on warm climates. Our results necessitate the revision of key models of human expansion and highlight 
the need for a less deterministic role of climate in the study of our evolutionary history.

INTRODUCTION
Models of the expansion of Homo sapiens posit that their dispersals 
into Europe and central Asia during the Late Pleistocene largely oc-
curred during millennial-scale warm phases [Greenland Interstadials 
(GIs)] of the Last Glacial period (1–3). According to these models, 
the early wave of this expansion into Europe from southwestern 
Asia followed the cold phase of Heinrich event 5 [Greenland stadial 
(GS) 13] or GS 12 that potentially triggered a Neanderthal (Homo 
neanderthalensis) depopulation (1–4). Such models are critical as 
they make key contributions toward understanding the processes 
whereby H. sapiens spread across diverse climate zones and replaced 
Neanderthals in a few millennia. However, rather than relying on pa-
leoclimate evidence coming directly from the archaeological record 
itself, these modeled scenarios predominantly rest on correlating 
the chronometric ages of archaeological finds with climatic phases 
documented in archives, such as ice cores or speleothems. Here, we 
use direct evidence of temperatures faced by humans during the 
Initial Upper Paleolithic (IUP) of Bacho Kiro Cave. We show that, 
in contrast to existing models proposing that warm climates were 
necessary for range expansion, at least some dispersals or the early 
continued presence of H. sapiens in Europe occurred during cold 
conditions.

Bacho Kiro Cave, located near the town of Dryanovo in central 
northern Bulgaria (fig. S1), has yielded one of the richest archaeo-
logical records of early H. sapiens in Europe here associated with the 
IUP. The rich IUP deposits include H. sapiens fossil remains and 
are currently thought to represent one of the earliest occurrences of 

H. sapiens in Europe (5, 6). The IUP occupations uncovered during 
recent re-excavations now date to 45,040 to 43,280 cal B.P. (calibrated 
years before 1950; 95.4% probability) in Layer N1-I & I and likely 
begin as early as 45,990 cal B.P. (95.4% probability) in Layer N1-J 
(6) [14C dates recalibrated using IntCal20 (7); see site background in 
supplementary text S1 and fig. S2]. Analyses of the mtDNA of the 
Bacho Kiro Cave H. sapiens remains show that the IUP population 
represented at the cave did not contribute to the genome of modern- 
day Europeans (5), suggesting that the Bacho Kiro IUP humans 
were part of a local population extinction, as previously proposed for 
other early H. sapiens finds (8, 9). Here, we apply oxygen and strontium 
stable isotope analysis to equid (Equus ferus and Equus hydruntinus) 
and aurochs/bison (Bos/Bison) tooth enamel from Layers N1-I & I 
and N1-J to characterize local seasonal paleotemperatures experi-
enced by H. sapiens that produced the IUP archaeological record. 
In addition, we generate comparative data from the underlying 
Layer N1-K that was deposited between 61 ± 6 ka (thousand years) 
ago and 51 ka B.P. (infinite radiocarbon age), and which is attributed 
to the Middle Paleolithic (MP; supplementary text S2 and table S1). 
Strontium isotope analyses are used to confirm a lack of long 
distance migratory behavior and, therefore, suitability for local 
climatic reconstruction for the analyzed animals. Our sample combines 
teeth recovered in the 2015–2019 excavations in the Niche 1 sector 
(marked by “N1” prefix) and in the Main sector (supplementary text 
S1). IUP layers from these two sectors are clearly correlated (supple-
mentary text S1), so we treat them as the same archaeological unit and 
use the designation of N1-I & I to denote the combined samples. We 
also use material recovered at the contact between two layers, such as 
N1-I/J. As the IUP faunal record in Layer N1-I & I is predominantly 
accumulated through human activity (supplementary text S3 and fig. 
S3), paleotemperature estimates generated by stable isotope analysis of 
faunal tooth enamel are directly representative of climatic con-
ditions during human presence at the site (see methodological back-
ground in supplementary texts S4 to S8).

The fauna from the IUP layers comprises a mixture of taxa that 
range from temperate forest–adapted species to cold temperature–
adapted taxa and species that can thrive in a large range of climates 
(5). The predominant taxa are cave bear, cervids (especially 
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Cervus elaphus), Bos/Bison, caprines (especially Capra ibex), and 
equids (5). Layer N1-J & J also contains a few specimens of indis-
putably cold-adapted taxa, such as woolly mammoth, reindeer, 
giant deer, and wolverine, whose presence is very unusual for 
marine isotope stage (MIS) 3  in southeastern Europe (5,  10). 
Preliminary results from the study of micromammals suggest the 
presence of open habitats with a cooler climate than today (5, 11). 
However, given the ecological flexibility of many—especially 
larger—animals and the role of prey choice in the accumulation of 
faunal remains in the cave, more quantitative and high-resolution 
data on paleoclimatic conditions experienced by humans at Bacho 
Kiro Cave are needed.

RESULTS
Sequential oxygen isotope measurements of enamel bioapatite phos-
phate (18Ophos) form complete or partial sinusoidal curves with 
summer (high temperature) peaks and winter (low temperature) 
troughs for most studied teeth (Nteeth = 13; supplementary text S6 
and fig. S4). Three Bos/Bison teeth (AA7-141, AA8-334, and AA7-
2017) do not record a clearly visible peak or trough (as they are 
more heavily worn and preserve only a short period of isotopic input) 
and are excluded from further analysis. In contrast, a number of 
Equus sp. teeth record up to two complete annual cycles, enabling 
the extraction of several peak and trough data points. Last, 87Sr/86Sr 
values do not show substantial differences in the inhabited geology 
between summer and winter in any analyzed teeth and a low range 
of values with all measurements identical to the third decimal place 
(0.7090 to 0.7097, mean = 0.7093 ± 0.0002, 1 SD; fig. S5). This indi-
cates that neither horses nor aurochs/bison were undertaking long 
distance migrations across different lithologies during this time. As 
no plant or bedrock 87Sr/86Sr baseline data are available for the 
vicinity of the site, determining the range of movement consistent 
with these data is difficult and reliant on inferences from similarity 
of lithology. Bacho Kiro Cave is located in an area of carbonate 
lithology, and similar lithology is present in a narrow band along 
the northern edge of the Balkan mountains (12). This means that 
animals could potentially move relatively far within the same lithology 
in an east-west direction but only a few tens of kilometers in a 
north-south direction. However, such a scenario where at least three 
different animal species followed the same specific migratory pat-
tern is much less parsimonious than a local origin within a few tens 
of kilometers of the site. In addition, east-west gradients of 18Oprecip 
are very small, making such a migratory behavior extremely unlikely 
to substantially bias paleoclimatic reconstructions. We therefore 
conclude that 18O values can be used to reconstruct local paleo-
temperatures without variability introduced by geographical changes 
in 18O of precipitation (18Oprecip).

Seasonal 18Ophos values are low compared to other Late Pleistocene 
faunal samples in all archaeological layers and show a small to mod-
erate seasonal (summer to winter) amplitude in Layers N1-K, N1-I 
& I, and N1-I/J, with more pronounced seasonal 18Ophos differ-
ences in Layer N1-J (Fig. 1). Overall, 18Ophos values range from 
11.3 to 16.4 ‰ in summer, from 10.9 to 14.9 ‰ for annual midpoint 
values, and from 10.0 to 13.8 ‰ in winter. There is a moderate 
shift to generally lower values from the Middle Paleolithic 
(meansummer = 14.1 ± 0.5 ‰ 1 SD, N = 4; meanmean annual = 13.6 ± 0.5 ‰ 
1 SD, N = 5; meanwinter = 13.0 ± 0.6 ‰ 1 SD, N = 5) to the IUP 
as well as throughout the IUP from Layer N1-J to the top of Layer 

N1-I & I (Layer N1-J: meansummer  = 14.2 ± 2.1 ‰ 1  SD, N  =  3; 
meanmean annual = 13.4 ± 1.5 ‰ 1 SD, N = 4; meanwinter = 11.5 ± 1.1 ‰ 
1 SD, N = 3; Layer N1-I & I: meansummer = 12.6 ± 0.7 ‰ 1 SD, N = 5; 
meanmean annual = 12.2 ± 0.8 ‰ 1 SD, N = 7; meanwinter = 11.5 ± 
1.2 ‰ 1 SD, N = 6). Analysis of variance of 18Ophos values shows 
significant differences between layers for summer, winter, and annual 
midpoint values, respectively (psummer  =  0.015, pwinter  =  0.022, 
pmean annual = 0.0003; normality and equivalence of variance con-
firmed by qqnorm plots and Levene’s test). A Tukey test reveals that 
significant differences can be detected between the Middle Paleolithic 
(Layer N1-K) and the IUP occupation of Layer N1-I & I for annual 
midpoint and winter 18Ophos values (pmean annual = 0.00034, pwinter = 0.027). 
In addition, statistically significant differences can be seen between 
the lower IUP material (Layer N1-J) and the upper IUP layers (N1-I & I) 
for annual midpoint and summer 18Ophos values (pmean annual = 0.018, 
psummer = 0.012). However, it should be noted that the sample size in 
Layer N1-J is small. At the same time, we observe on average a 
stronger seasonal amplitude (difference between summer and 
winter values) of 2.6 ± 1.2 ‰ in Layer N1-J at the start of the IUP 
than in either Layer N1-K or Layer N1-I & I, where the seasonal 
amplitude is smaller (Layer N1-K meanampl = 1.0 ± 0.7 ‰, 1 SD; Layer 
N1-I & I meanampl  =  1.5 ± 0.8 ‰, 1  SD). However, these dia-
chronic changes occur within a framework of generally low 18Ophos 
values in all layers in comparison to many other studies of MIS 3 
fauna [e.g., (13)].

Last, reconstructed drinking water 18O (18Odw) values of 
Bos/Bison and Equus sp. from Layer N1-I & I are systematically 
below modern-day estimates of 18Oprecip for the area of the cave 
(fig. S8), underlining that the values obtained here are generally 
much lower than expected for a warmer phase climate, such as the 
modern-day climate of the Balkans. Bos/Bison 18Odw values fall 
inside the range of variation of Equus sp. 18Odw values within er-
ror, although they commonly fall on the upper end of the Equus sp. 
range (fig. S8). Considering the uncertainty introduced by converting 
to 18Odw, the two taxa are in good agreement. Therefore, we com-
bine the estimated 18Odw values of both taxa to generate a more 
precise and robust temperature estimate for Layer N1-I & I (Fig. 2).

Paleotemperature estimates fall substantially below local modern- 
day conditions (Fig. 2). In Layer N1-I & I, reconstructed tempera-
tures are on average approximately 14°C lower than today, with the 
largest difference in summer and the smallest in winter. In Layer 
N1-K, temperatures are approximately 11°C below modern-day 
conditions, again with the smallest difference in winter. Diachronic 
trends mirror those noted in 18Ophos, but the error ranges of 
temperature estimates from different layers overlap owing to the 
uncertainty introduced by conversion to temperature estimates. It 
should be noted that seasonal temperature differences reconstructed 
here most likely represent minimum seasonal amplitudes because 
of the specifics of the inverse model that was used to remove the 
effect of tooth enamel mineralization time averaging on the 18Ophos 
seasonal amplitude (see supplementary text S7). For this reason, 
summer temperatures may have been higher and winter tempera-
tures may have been lower than estimated here.

DISCUSSION
Using oxygen isotope values of Equus sp. and Bos/Bison from the 
IUP, we provide evidence that at least a portion of the human use of 
Bacho Kiro Cave in the context of the IUP took place during 
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pronounced cold conditions consistent with a GS. This contrasts 
with models that posit H. sapiens preferences for warm environ-
ments during their expansions into Europe in the Upper Pleistocene. 
On the basis of seasonally homogeneous 87Sr/86Sr values, it is 
unlikely that these oxygen isotope results are affected by any migra-
tory behavior of the analyzed animals, which renders them a faithful 
proxy for paleotemperature in the area around the site.

While directly comparable 18Ophos values for the Upper Pleistocene 
are sparse, values from Layer N1-I & I most closely resemble those 
coming from glacial phases (i.e., MIS 4 or GSs) from sites at higher 
latitudes than Bacho Kiro Cave. This is the case for all analyzed IUP 
and Middle Paleolithic deposits of the cave [and while some dia-
chronic differences can be seen (Figs. 1 and 2), these took place in a 
generally cold framework]. For example, annual midpoint 18Ophos values 
in Equus sp. from Bacho Kiro Cave Layer N1-I & I (meanmean annual = 
12.2 ± 0.8 ‰ 1 SD) are similar to 18Ophos annual midpoint values 
of 12.5 ‰ (n = 4; converted from carbonate oxygen isotope values, 
18Ocarb) and 12.3 ‰ (n = 1, converted from 18Ocarb) of equids 
from glacial phase Weichselian sites Bocksteinhöhle and Vogel-
herdhöhle in southwest Germany (14), as well as annual midpoint 
values of 12.4 and 13.2 ‰ obtained from equids recovered from the 
sites of Boncourt Grand Combe (n = 2; MIS 3) and Courtedoux-Va 
Tche Tcha (n = 11; MIS 5a) in Switzerland (13). This indicates that 
climatic conditions of the Bacho Kiro Cave IUP are consistent with 
conditions of a GS. This is supported by comparisons of converted 

18Odw values of other faunal species from the Upper Pleistocene, 
where Layer N1-I & I results match well with those obtained from 
woolly mammoths from sites in the Baltics dating to between 
47.5 and 42.5 ka (15). Low 18Ophos values in equids and Bos/Bison 
could theoretically also be caused by substantial consumption of 
drinking water from high altitudes, snow or glacier meltwater, or 
deep groundwater. However, we argue that the hydrological situation 
in the region does not support a scenario where local rivers had 
substantially lower 18O values (supplementary text S4), and the 
seasonal variability seen in 18Ophos time series suggests that ani-
mals did not regularly drink from strongly buffered water sources 
such as groundwater (supplementary text S4).

Comparing both reconstructed temperatures and 18Odw values 
to modern-day temperatures and 18Oprecip in Eurasia suggests that 
climatic conditions during the IUP occupations of Bacho Kiro Cave 
are most closely comparable to current conditions in Scandinavia 
and Russia (16–18) (see supplementary texts S4 and S8 for assump-
tions underlying paleotemperature reconstruction). Furthermore, 
these reconstructions demonstrate that the animals analyzed here—
and the humans that hunted them—lived during conditions that 
are consistent with the more intense millennial-scale glacials ob-
served in other climatic records from southeastern Europe (e.g., 
Heinrich events). Air temperatures of ∼10° to 15°C below modern- 
day conditions are thought to have occurred in the region during 
millennial-scale stadials, such as the Heinrich events, while GIs are 

Fig. 1. Seasonal oxygen isotope data for IUP and Middle Paleolithic (MP) layers of Bacho Kiro Cave. Temperature-driven summer (pink), annual midpoint (gray), and 
winter (blue) oxygen isotope values (18Ophos) extracted from sequentially sampled Equus sp. (diamonds, right) and Bos/Bison (circles, left; only Layer N1-I & I) tooth enam-
el show overall low values, particularly in the IUP Layer N1-I & I. Some higher summer 18Ophos values occurred at the beginning of the IUP in Layer N1-J and at the contact 
between N1-I and N1-J (N1-I/J), but the sample size for these layers is small. Plotted points represent 18Ophos summer peaks, winter troughs, and annual means of indi-
vidual years represented in sinusoidal 18Ophos time series obtained from sequential samples taken along each analyzed tooth (see supplementary text S4). Summer peak 
and winter trough values were obtained by visual inspection of each 18Ophos measurement series and are marked individually in fig. S4. Annual midpoint values repre-
sent the mean of the summer and winter values. A comparison of annual midpoint values and full annual averages can be found in supplementary text S8 and figs. S6 and 
S7. Means for summer, annual midpoint, and winter records, respectively, are connected by shaded lines, while shaded ribbons visualize the maximal spread of the data. 
For summer and winter values, error bars represent measurement uncertainty (1 SD) as determined by replicate measurements of each sample. For annual midpoint 
values, error bars represent the uncertainty around the mean derived by error propagation of the measurement uncertainty.
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commonly reconstructed much closer to modern-day conditions 
(19–22).

A tentative trend of decreasing temperatures and temperature 
seasonality (summer-winter temperature difference) can be ob-
served from the earlier IUP in Layer N1-J (∼46 to 44 ka cal B.P.) 
toward the later IUP in Layer N1-I & I (∼45 to 43 ka cal B.P.; Fig. 2), 
but it should be noted that the sample size for Layer N1-J is small 
and that this trend occurs within the framework of generally low 
temperatures in all analyzed layers. While still consistent with a sta-
dial phase, the climatic conditions during the earlier IUP at Bacho 
Kiro Cave show substantially higher summer temperatures paired 
with quite harsh winter conditions—more similar to continental 
climates found in Russia or central Asia today—while the summer- 
winter difference in the later IUP is much smaller, closer to modern- 
day northern Scandinavia. A limited amount of preliminary data on 
the season of death of equids, Bos/Bison, and ursids indicates that 
human presence at Bacho Kiro Cave during the IUP was not re-
stricted to the warmer summer season (supplementary text S3) de-
spite the low teeratures reconstructed here for the colder seasons. 
Given the limited nature of the season of death data, however, it is 
currently not possible to determine the frequency or intensity of site 
use between different seasons. Because of the anthropogenic nature 
of the IUP (Layer N1-I & I and upper N1-J) faunal record, the cli-
matic conditions reconstructed from faunal remains are directly 
tied to incidences of human activity at the site for these phases. In 

contrast, this is not necessarily the case for the fauna from the Middle 
Paleolithic deposits (Layer N1-K), where rates of carnivore modifi-
cations are more substantial (supplementary text S3), making it less 
clear whether faunal remains, and our samples, from Layer N1-K 
were accumulated as prey of humans or carnivores. The stable 
isotope results from these layers, therefore, are not tied specifically 
to instances of human occupation of the cave. Instead, climatic data 
for these layers need to be interpreted as generally representative of 
the time of layer formation, which occurred between 61 ± 6 ka ago 
and >51 ka B.P. (infinite radiocarbon age).

Cold conditions during the IUP occupations of Bacho Kiro Cave 
could perhaps explain the unusual presence of woolly mammoth, 
reindeer, giant deer, and wolverine in the faunal record for that time 
period at the site. The presence of species adapted to more temperate 
conditions, such as red deer (C. elaphus) might, however, suggest 
that there was some climatic variability within the IUP occupation 
(5). It does seem unlikely though that a substantial portion of this 
record formed during temperate phases, as no signals of milder 
climate are captured in the isotopic data in either horses or bison/
aurochs—species with a large climatic tolerance that are commonly 
found in both warm and cold phases. Geographical heterogeneity 
in local climates and habitats of the site area may also explain the 
presence of a mix of species with different climatic preferences. 
Results of cold conditions during the IUP occupations of Bacho Kiro 
Cave are additionally in broad agreement with colder and more 

Fig. 2. Reconstructed summer, winter, and mean annual paleotemperatures. Air temperatures (°C) reconstructed for the MP (Layer N1-K, green) and IUP (Layer N1-J 
and following, blue) at Bacho Kiro Cave fall substantially below modern-day temperatures [horizontal lines (mean) and shaded areas (SD); 2012–2020 data obtained from 
Gorna Oryahovitsa (41)] for summer (pink), mean annual (gray), and winter (blue) temperatures. In particular, the IUP occupation of Layer N1-I & I shows especially cold 
conditions with mean annual temperatures below freezing. Reconstructed temperatures are similarly low at the contact between N1-I and N1-J (N1-I/J); however, the 
small sample size for this stratigraphic unit means that this result is less secure. A small temperature decline can be seen from the MP to the IUP, but sample numbers are 
low for the lower IUP layers [noted in gray as number of data points (Ndata) and number of teeth (Nteeth)]. Plotted points represent calibrated temperatures reconstructed 
for each layer derived from Equus sp. (diamonds) or a combination of Equus sp. and Bos/Bison (triangles) oxygen isotope measurements. Error bars indicate compound 
error around each temperature reconstruction. Summer and winter temperatures were converted from maxima and minima of the inverse model described in supplementary 
text S7, while mean annual temperatures were converted from the annual midpoint of unmodeled oxygen isotope values, as described in supplementary text S8.
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open habitats reconstructed from preliminary analysis of the 
micromammals of the same deposits (5).

A stadial phase IUP occupation of Bacho Kiro Cave is in contrast 
to previously proposed climatic conditions of H. sapiens dispersals 
into Europe immediately before the Upper Paleolithic. Currently, 
both the IUP and the subsequent Aurignacian expansions of H. sapiens 
into higher latitudes are thought to have occurred during GIs and 
potentially after a (proposed) climatically driven decline of Neanderthal 
populations in Europe during Heinrich event 5 [(1–3, 23), but see 
(24) and (25)]. These models are mostly founded on the warm phase 
assignment of a number of archaeological deposits. The beginnings 
of the IUP in central Europe have been correlated to GI 13/14 at the 
site of Bohunice by comparing it to the chronometric dates of the 
North Greenland Ice Core Project (NGRIP) record (2, 26). Chrono-
metric dates of the IUP in Central Asia suggest the appearance of 
the IUP in the Altai during GI 12 (23, 27), which is supported by 
pedogenesis indicators in the Tolbor 16 stratigraphic sequence (23). 
To support such data, a general point about a preference of early 
H. sapiens in Europe for warmer environments has been made on 
the basis of comparisons of Aurignacian site densities with climate 
simulations (2, 28). Furthermore, correlations of archaeologically 
sterile layers with the GS 12 cold phase shown in speleothem re-
cords and the NGRIP have been used to propose that the expansion 
of the Aurignacian took place after a decimation of the Neanderthal 
population by this stadial (1). Some studies, such as the investiga-
tions at Willendorf, have, in contrast, yielded indications of cold 
phase dispersal of H. sapiens speculatively tied to an expansion of 
steppe landscapes (25), but these remain the exception in an overall 
“warm phase” model.

A cold phase IUP occupation of Bacho Kiro Cave, however, sug-
gests a different and likely more varied relationship between climatic 
conditions and the peopling of higher latitudes by our species 
during the Upper Pleistocene, as well as the importance of noncli-
matic factors. Given the lack of direct climatic evidence for other 
European IUP sites, it is challenging to robustly support alternative 
models such as a steppe corridor dispersal (25). However, the newly 
generated Bacho Kiro Cave isotope data show that currently fa-
vored models need to be revised to account for potentially diverse 
dispersal mechanisms and cold stage presence of H. sapiens in Eu-
rope at the start of the Upper Paleolithic. Our results indicate that 
humans associated with the IUP were better adapted to harsher 
climate conditions and were more environmentally flexible than 
previously thought. In addition, a relatively early presence of H. sapiens 
in southeastern Europe during a GS suggests that their spread at 
this time was unlikely to have been dependent on an immediately 
preceding climatically induced decline of the Neanderthal popula-
tion. As the earliest H. sapiens groups in Europe appear to have 
been present during a GS with a duration of only a few millennia, it 
appears unlikely that Neanderthal populations could have been 
substantially decimated within the same millennial-scale cold event 
but before the arrival of H. sapiens or would not have recovered if 
such a depopulation had taken place in an earlier stadial. However, 
the demographic and environmental mechanisms for the subse-
quent dispersal of H. sapiens, commonly related to the material re-
cord of the Early Upper Paleolithic (Protoaurignacian, Aurignacian), 
may be different from those behind the expansion during the time 
of the IUP.

At the same time, the contrast between our results and estab-
lished models underlines the importance of obtaining climatic 

evidence directly from archaeological deposits to supplement 
age correlations with long-term climate archives. On the basis of 
comparisons of the radiocarbon chronology with speleothem 
records from Romania (1, 29), Layers N1-I & I and N1-J & J were 
originally considered to most likely fall into the warm phase around 
GI 12 (1,  6,  29). Similarly, a comparison with the Tenaghi 
Philippon pollen record would also support this assignment (2). 
However, the direct evidence of cold climatic conditions presented 
here shows that an assignment of the IUP of Bacho Kiro to a GI is 
inappropriate. We believe that this apparent disagreement is caused 
by a combination of the large combined uncertainty of the chrono-
metric dates of archaeological deposits and climatic records, spatial 
differences in the timing and expression of climatic events, and the 
different climatic and environmental features represented by each 
climatic proxy rather than methodological inconsistencies in any of 
the climatic reconstructions. Combined uncertainty of ice-core layer 
counting, 14C, and U-series dates often span several thousand years, 
easily covering several climatic oscillations that can additionally 
vary in timing or intensity across the globe. Moreover, the calendar 
ages obtained from radiocarbon dating are dependent on the 
calibration curve used, and recalibration of the Bacho Kiro Cave 
14C dates, for instance, has shifted the dates for the IUP occupa-
tion by up to 950 years, creating a larger overlap with GS 12. The 
case of Bacho Kiro Cave again highlights that chronometric correla-
tions between archaeological deposits and spatially distant climate 
records offer climatic context of a resolution that is not always 
appropriate for the questions asked. Such correlations should there-
fore be strengthened by direct climatic evidence where possible.

MATERIALS AND METHODS
Tooth sample selection and sequential sampling 
of tooth enamel
Oxygen isotope analyses were applied to sequential samples of Bos/
Bison and Equus sp. tooth enamel from 13 individual teeth (nBos/Bison = 5, 
nEquus sp. = 8; Table 1) from the faunal collection of the 2015–2019 
re-excavation of the site. Samples of Equus sp. and Bos/Bison teeth 
were taken from the IUP Layers N1-I & I and N1-J and the Middle 
Paleolithic Layer N1-K, with most samples coming from the Niche 1 
sector. The IUP layers of the two excavation sectors (Main sector 
and Niche 1) can be clearly correlated with each other but are 
named separately with N1 prefixes denominating layers in the 
Niche 1 sector. Samples from Layers I and N1-I are treated as a 
combined unit for the purposes of this study and termed N1-I & I.  
Artifacts found at the contact between Layer H and Layer I or N1-H 
and N1-I (labeled as H/I or N1-H/I, respectively) appear to be 
reworked from the surface of Layer N1-I & I (5) and are therefore 
grouped with the Layer N1-I & I unit here. One sample was 
obtained from the contact of Layers N1-J and N1-I and is labeled as 
N1-I/J. All samples from Layer N1-J were obtained from the Niche 
1 sector, with none coming from the Main sector, where the layer is 
designated as Layer J. Samples were only obtained from the upper 
parts of this stratigraphic unit, which exhibits radiocarbon dates 
ranging from 46 to 44.5 ka cal B.P. (95.4% probability; not includ-
ing dates for Layer J; see supplementary text S1). This section of the 
layer is securely attributed to the IUP and technologically consistent 
with the overlying Layer N1-I & I. Artifacts are spare in the lower 
parts of Layer N1-J preserved in the Niche 1 sector, and the layer 
exhibits a gradual contact with the underlying Middle Paleolithic in 
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Layer N1-K, as exemplified by radiocarbon dates >51 ka B.P.  
obtained from the lowest parts of Layer N1-J. No animal remains 
from these lower layer portions were included here, and all results 
generated for Layer N1-J are assigned to an early phase of the IUP 
of Bacho Kiro Cave. A series of sequential enamel samples was ob-
tained from each tooth, covering the full length of the tooth. A total 
of 179 sequential samples were processed for this study. Sequential 
tooth enamel samples were obtained as strip slices from loph sec-
tions of each tooth (see full details in supplementary text S5). Tooth 
enamel sections were cleaned of adhering dentine and calculus and 
sectioned along the growth axis into a series of ∼1-mm-wide se-
quential sample strips. Usually, every third strip sample was further 
processed for isotope analysis, resulting in a series of sequential 
samples with ∼2-mm gaps between samples. Each strip that was 
chosen for isotope analysis was split in two parts, one part for 
oxygen stable isotope analysis and the other half reserved for stron-
tium isotope analysis. From a subset of individuals, two sequential 
samples each representing the summer and winter season input 
were chosen to be analyzed for 87Sr/86Sr. Only individuals with both 
summer peaks and winter troughs were analyzed for 87Sr/86Sr to 
facilitate detection of seasonal migratory behavior by comparing 
summer and winter 87Sr/86Sr values.

Oxygen stable isotope analysis
Tooth enamel strip samples were ground to powder using a clean 
agate mortar and pestle. Approximately 5  mg of each powder 
sample was converted to silver phosphate for oxygen stable isotope 
analysis of bioapatite phosphate using digestion with hydrofluoric 
acid followed by crash precipitation of silver phosphates following 
an adapted version of the protocol developed in (30) and modified 
in (31) as described in (32) (see full details in supplementary text S5).

Oxygen isotope ratios of Ag3PO4 were analyzed using a High- 
Temperature Conversion Elemental Analyzer (TC/EA) coupled to a 
Delta V isotope ratio mass spectrometer via a Conflo IV interface 
(Thermo Fisher Scientific, Bremen, Germany) at the Max Planck 
Institute for Evolutionary Anthropology (MPI-EVA). Details of the 

analytical setup can be found in supplementary text S5. Oxygen isotope 
delta values were two-point scale normalized to the Vienna Standard 
Mean Ocean Water (VSMOW) scale using matrix matched standards 
calibrated to international reference materials, and scale normaliza-
tion was checked using three separate quality control standards in 
each run. Scale normalization was conducted using the B2207 silver 
phosphate standard (18O = 21.7 ± 0.3 ‰, 1 SD; Elemental Micro-
analysis, Okehampton, UK) and an in-house silver phosphate 
standard (KDHP.N, 18O = 4.2 ± 0.3 ‰, 1 SD). The accepted value 
of this in-house standard was determined by two-point calibration 
using B2207 and IAEA-SO-6 [barium sulfate, 18O = −11.35 ± 
0.3 ‰, 1 SD, as given in (33)]. Aliquots of an in-house modern cow 
enamel standard (BRWE, later replaced by BRWE.2 owing to 
exhaustion of this material) and the standard material National 
Institute of Standards and Technology (NIST) Standard Reference 
Material (SRM) 120c [formerly National Bureau of Standards (NBS) 
120c] were precipitated and measured alongside each batch of sam-
ples to ensure equal treatment. In addition, a commercially available 
silver phosphate (AS337382, Sigma-Aldrich, Munich, Germany) 
was used as a third quality control standard to check across-run 
consistency of scale normalization independent of silver phosphate 
precipitation. Measurements of these standards gave 18O values of 
14.9 ± 0.4 ‰ for BRWE (1 SD, n = 53), 21.7 ± 0.5 ‰ for NIST SRM 
120c (1 SD, n = 37), and 13.9 ± 0.2 ‰ for AS337382 (1 SD, n = 159). 
This compares well to the consensus value for NIST SRM 120c of 
21.7 ‰ (34), as well as the long-term averages for BRWE of 15.2 ± 
0.3 ‰ and for AS337382 of 14.0 ± 0.3 ‰. The BRWE.2 standard 
(used in the later part of the study to replace the BRWE standard) 
gave a mean of 14.3 ‰ with a between-run reproducibility of 0.3 ‰ 
(1 SD, n = 17). Samples were usually measured in triplicate and av-
erage reproducibility of sample replicate measurements was 0.3 ‰.

Strontium isotope analysis
Sample aliquots reserved for strontium isotope analysis were 
processed as whole enamel pieces, which were first transferred to a 
PicoTrace clean laboratory facility at the MPI-EVA and cleaned in 

Table 1. Context and sample information for teeth sampled for oxygen and strontium stable isotope analysis. The period of tooth mineralization is given 
as the age in months of the start of enamel mineralization to the age when enamel mineralization is complete. Tooth mineralization data are based on studies 
of modern horses (42) and bison (43) (who are very similar to cattle in tooth formation). 

Findnumber Layer Taxon Tooth position No. of seq. samples Mineralization period

AA7-141 N1-H/I Bos/Bison Left mandibular M3 9 9–24 months

AA7-121 N1-H/I Equus ferus Left maxillary M2 16 7–37 months

AA7-52 N1-H/I Equus ferus Left mandibular M3 22 21–55 months

AA7-2017 N1-I Bos/Bison Right mandibular M3 6 9–24 months

AA8-334 N1-I Bos/Bison Left maxillary M2 7 2–14 months

CC8-18 N1-I Bos/Bison Right mandibular M3 13 9–24 months

CC7-2813 N1-I Equus ferus Left maxillary P2 20 13–31 months

A7-534 I Bos/Bison Left mandibular M2 9 2–14 months

CC7-2397 N1-I/J Equus hydruntinus Right maxillary M3 13 21–55 months

CC7-2605 N1-J Equus ferus Left maxillary P4 12 19–51 months

CC7-2478 N1-J Equus ferus Right maxillary M3 18 21–55 months

CC8-2419 N1-K Equus ferus Right maxillary M3 17 21–55 months

CC7-3018 N1-K Equus ferus Right maxillary P3 17 14–36 months D
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the facility before sample preparation. Sample preparation was con-
ducted using a digestion and ion-exchange chromatography protocol 
following methods outlined in (35) (see full details in supplementary 
text S9). All samples were analyzed for 87Sr/86Sr using a Neptune 
multicollector inductively coupled plasma mass spectrometer 
(MC-ICPMS, Thermo Fisher Scientific, Bremen, Germany) at the 
MPI-EVA. Resulting 87Sr/86Sr measurements were normalized for 
instrumental mass bias to 88Sr/86Sr = 8.375209 (exponential law) 
and corrected for 87Rb interference. External data normalization 
was conducted using the NIST SRM 987 reference material 
[87Sr/86Sr accepted value = 0.710240 (36); average of measured 
values = 0.710283 ± 0.000009, 1 SD, n = 16] using correction offsets 
of −0.000042 and  −0.000043. Measurements of NIST SRM 1486 
gave an average value of 0.709296 ± 0.0000056 (1 SD, four measure-
ments of two aliquots), which is very close to the expected value of 
0.709299. All samples were measured in duplicate with an average 
reproducibility of 0.0000068 (1  SD). Two procedural blanks pro-
cessed alongside samples gave Sr concentrations of ∼0.02% of typical 
sample concentrations. A lack of correlation between strontium 
concentration and 87Sr/86Sr values indicates an absence of diagenetic 
alteration in all samples (fig. S9).

Temperature reconstruction
Air temperature estimates were obtained by a two-step regression 
process based on the empirically determined relationships between 
(i) tooth enamel 18Ophos and drinking water 18O (18Odw) and (ii) 
18O of precipitation (18Oprecip) and air temperature. Regression 
methods and determination of temperature reconstruction uncer-
tainty were applied following (37). Details on modern calibration 
datasets and the conversion procedure are available in supplemen-
tary text S8, fig. S10 (map of Global Network of Isotopes in Precip-
itation (GNIP) stations used for water isotope data), fig. S11 (water 
isotope to temperature calibration data), and fig. S12 (enamel- 
drinking water calibration data). An inverse model following (38) 
was applied to seasonal sinusoidal curves of 18Ophos to correct for 
damping of the seasonal amplitude caused by time averaging from 
tooth enamel mineralization and the sampling procedure (see sup-
plementary text S7 and fig. S13). The resulting curve minimum and 
maximum values were converted to air temperature to yield esti-
mates of summer and winter temperature. It should be noted that 
the inverse model does not take into account the progressive slow-
ing of tooth growth and enamel mineralization that is known to 
occur particularly in horses. Seasonal amplitudes reconstructed 
here, therefore, most likely represent minimum amplitudes (see 
supplementary text S7 for details). Mean annual temperatures were 
obtained by converting directly from the annual midpoint of un-
modeled oxygen isotope means, which were in turn calculated as 
the average of the summer peak and winter trough value. It should 
be noted that modern-day observations of mean annual tempera-
tures are calculated as averages of equidistant observations along a 
full annual cycle rather than as the midpoint between the warmest 
and the coldest month. Because of the dynamics of tooth enamel 
mineralization and the sampling geometry, 18O measurements 
represent averages over different amounts of time and are not equi-
distant in time, making it impossible to derive annual averages of 
18O measurements that are conceptually identical to annual tem-
perature means. Analyses discussed in supplementary text S8 show 
that there is no difference between paleotemperatures obtained from 
summer/winter midpoint 18Ophos values compared to averages 

of all measurements within the complete period of the sinusoidal 
18Ophos curve. We therefore conclude that these methods are 
equally useful proxies for mean annual temperature and use the 
summer/winter midpoint to reconstruct such paleotemperature 
estimates.

Software, code, and data
This article, including code for all data analyses, was written in 
R version 3.6.2 (39), and the manuscript and Supplementary Materials 
were produced using RMarkdown (40). Package information and 
version details can be found in supplementary text S10. All 18O 
and 87Sr/86Sr values for individual samples can be found in tables 
S2 and S3. Data and code to reproduce the manuscript files, 
figures, and analyses are available at https://osf.io/tk9dc/.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/ 
sciadv.abi4642
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