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ABSTRACT
Background: Ancient protein sequences are increasingly used to elucidate the

phylogenetic relationships between extinct and extant mammalian taxa. Here, we

apply these recent developments to Middle Pleistocene bone specimens of the

rhinoceros genus Stephanorhinus. No biomolecular sequence data is currently

available for this genus, leaving phylogenetic hypotheses on its evolutionary

relationships to extant and extinct rhinoceroses untested. Furthermore, recent

phylogenies based on Rhinocerotidae (partial or complete) mitochondrial DNA

sequences differ in the placement of the Sumatran rhinoceros (Dicerorhinus

sumatrensis). Therefore, studies utilising ancient protein sequences from Middle

Pleistocene contexts have the potential to provide further insights into the

phylogenetic relationships between extant and extinct species, including

Stephanorhinus and Dicerorhinus.

Methods: ZooMS screening (zooarchaeology by mass spectrometry) was performed

on several Late and Middle Pleistocene specimens from the genus Stephanorhinus,

subsequently followed by liquid chromatography-tandem mass spectrometry

(LC-MS/MS) to obtain ancient protein sequences from a Middle Pleistocene

Stephanorhinus specimen. We performed parallel analysis on a Late Pleistocene woolly

rhinoceros specimen and extant species of rhinoceroses, resulting in the availability of

protein sequence data for five extant species and two extinct genera. Phylogenetic

analysis additionally included all extant Perissodactyla genera (Equus, Tapirus), and

was conducted using Bayesian (MrBayes) and maximum-likelihood (RAxML)

methods.

Results: Various ancient proteins were identified in both the Middle and Late

Pleistocene rhinoceros samples. Protein degradation and proteome complexity are

consistent with an endogenous origin of the identified proteins. Phylogenetic

analysis of informative proteins resolved the Perissodactyla phylogeny in agreement
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with previous studies in regards to the placement of the families Equidae, Tapiridae,

and Rhinocerotidae. Stephanorhinus is shown to be most closely related to the

genera Coelodonta and Dicerorhinus. The protein sequence data further places the

Sumatran rhino in a clade together with the genus Rhinoceros, opposed to forming

a clade with the black and white rhinoceros species.

Discussion: The first biomolecular dataset available for Stephanorhinus places this

genus together with the extinct genus Coelodonta and the extant genus Dicerorhinus.

This is in agreement with morphological studies, although we are unable to resolve

the order of divergence between these genera based on the protein sequences

available. Our data supports the placement of the genus Dicerorhinus in a clade

together with extant Rhinoceros species. Finally, the availability of protein sequence

data for both extinct European rhinoceros genera allows future investigations into

their geographic distribution and extinction chronologies.

Subjects Bioinformatics, Evolutionary Studies, Molecular Biology, Paleontology

Keywords Palaeoproteomics, Phylogenetics, Rhinocerotidae, Ancient proteins, Stephanorhinus

INTRODUCTION
Two rhinoceros genera were present in Western Europe during the Late and Middle

Pleistocene, Coelodonta (Bronn, 1831) and Stephanorhinus (Kretzoi, 1942), formerly

included in the genus Dicerorhinus (Fortelius, Mazza & Sala, 1993). For Coelodonta,

ancient DNA studies of the enigmatic woolly rhinoceros all confidently place this

genus together with the Sumatran rhinoceros (Orlando et al., 2003; Willerslev et al., 2009;

Yuan et al., 2014), as previously suggested based on skeletal morphology and biogeography

(Nowak, 1999). In addition, both the Sumatran rhinoceros and the woolly rhinoceros

have a hairy coat. No molecular data for the genus Stephanorhinus is currently available

although a sister-clade relationship with Coelodonta has often been suggested based on

morphology (Deng et al., 2011; Groves, 1983). Relationships between (successive) species

of Stephanorhinus have remained obscure. A general view proposes that Stephanorhinus

kirchbergensis (or Dihoplus kirchbergensis following Deng et al., 2011) falls outside a clade

comprising Suncus etruscus, Stephanorhinus hundsheimensis, and Stephanorhinus

hemitoechus (Deng et al., 2011; Fortelius, Mazza & Sala, 1993). A recent cladistics analysis

indicated Stephanorhinus hemitoechus as a sister group to the genus Coelodonta (Deng

et al., 2011). The genus Stephanorhinus went extinct in the middle Late Pleistocene,

although an exact chronology has not been established, while the woolly rhinoceros

survived locally to 14 ka before present (Stuart & Lister, 2012).

Analysis of Rhinocerotidae morphology (Cerdeño, 1995; Fortelius, Mazza & Sala, 1993;

Groves, 1983; Loose, 1975; Nowak, 1999; Prothero, Manning & Hanson, 1986; Prothero &

Schoch, 1989; Simpson, 1945) and Rhinocerotidae DNA sequences (Morales & Melnick,

1994; Price & Bininda-Emonds, 2009; Steiner & Ryder, 2011; Tougard et al., 2001;

Willerslev et al., 2009) has provided insights into Rhinocerotidae evolution and

systematics. Nevertheless, some differences remain in the phylogenetic placement of

the genus Dicerorhinus when concerning generated phylogenetic trees alone. Proposed
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phylogenies are commonly divided between (1) those placing Dicerorhinus sumatrensis

(Sumatran rhinoceros) as a sister group to the genus Rhinoceros (Rhinoceros sondaicus,

Javan rhinoceros; and Rhinoceros unicornis, Indian rhinoceros), (2) those placing

Dicerorhinus with the black and white rhinoceroses (respectively, Diceros bicornis, black

rhinoceros; Ceratotherium simum, southern white rhinoceros, and Ceratotherium

cottoni, northern white rhinoceros; Groves, Fernando & Robovský, 2010; but see Harvey

et al., 2016), or (3) those resulting in a polytomy at the base of extant Rhinocerotidae

consisting of three separate lineages (the black and white rhinoceroses, the Sumatran

rhinoceros, and the Javan and Indian rhinoceroses). Each of these has been supported by

one or several genetic studies focusing on mitochondrial DNA (Morales & Melnick, 1994;

Tougard et al., 2001; Willerslev et al., 2009; Yuan et al., 2014). Conflicting phylogenetic

results seem to arise from differences in mitochondrial locus selection and rapid

divergence of the three lineages during the Oligocene (Willerslev et al., 2009). The

additional use of nuclear DNA in combination with selected mitochondrial gene

sequences has also resulted in conflicting results on the phylogenetic position of

Dicerorhinus in relation to other extant genera (Price & Bininda-Emonds, 2009; Steiner &

Ryder, 2011). The differing positioning of Dicerorhinus in these two studies might

simply be due to differences in the mitochondrial genes included in each analysis, as

discussed above (Willerslev et al., 2009). Molecular sequences of additional, now extinct,

species of rhinoceros have the potential to contribute to our understanding of the

relationships among these mammals, as it has done in the past for other mammals

by utilising ancient DNA or ancient protein sequences (Der Sarkissian et al., 2015;

Kistler et al., 2015; Lister et al., 2005; Welker et al., 2015a).

Here, we apply palaeoproteomic analysis of ancient protein sequences to provide

additional molecular data on the relationship between the genus Stephanorhinus, the

genus Coelodonta (Coelodonta antiquitatis, the woolly rhinoceros) and five extant

rhinoceros species. Previously, palaeoproteomic analysis of the collagen type I (COL1)

heterotrimer has been successful in providing molecular data on the phylogenetic

relationship between extinct and extant mammalian taxa (Buckley, 2013; Cleland et al.,

2016; Rybczynski et al., 2013; Welker et al., 2015a). Such studies utilised temperate and

tropical samples of Late Pleistocene age, the Macrauchenia specimens from Welker et al.

(2015a) being a possible Middle Pleistocene exception. Other studies have reported the

presence of complex or reduced palaeoproteomes in Middle Pleistocene bone specimens

from temperate or permafrost conditions without using the retrieved sequence data for

phylogenetic purposes (Orlando et al., 2013; Wadsworth & Buckley, 2014). Previous

palaeoproteomic phylogenetic studies have focused their efforts on the COL1 protein

because of its dominance within the bone proteome and its resilience against degradation

(Buckley, 2015; Cleland et al., 2016; Rybczynski et al., 2013; Welker et al., 2015a). The

COL1 heterotrimer, composed of two collagen alpha-1(I) (COL1a1) amino acid

sequences and one collagen alpha-2(I) (COL1a2) amino acid sequence, generally provides

genus-level sequence information, with only limited cases where within-genus amino

acid sequence variation is present in either of the two genes (for example, between Arctic

fox and Red fox; Vulpes lagopus and Vulpes vulpes, respectively; Welker et al., 2016).
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Elsewhere, it has been noted that other collagens and non-collagenous proteins (NCPs)

potentially provide more detailed phylogenetic information (Wadsworth & Buckley, 2014;

Welker et al., 2016). Here, we utilise the phylogenetic information retrieved from Middle

and Late Pleistocene COL1 sequences, including the incorporation of amino acid

protein sequence data from other proteins besides COL1.

MATERIALS AND METHODS
Protein extraction and analysis
Fourteen Pleistocene bone and dental specimens were screened for the presence of

COL1 using successive ammonium-bicarbonate buffer extraction (Table 1; van Doorn,

Hollund & Collins, 2011) and acid demineralisation on bone/dentine samples measuring

roughly <30 mg (as inWelker et al., 2016). Both soluble and in-soluble COL1 components

were analysed separately on a Bruker MALDI-TOF-MS to obtain COL1 fingerprints

(Buckley et al., 2009). Four samples (Stephanorhinus sp.) derive from the Middle

Pleistocene site of Schöningen 13II-4. These samples are associated with unique wooden

spears (Thieme, 1997), and must be younger than the age of Schöningen 13I-1 (321 ± 6 ka;

Richter & Krbetschek, 2015). The age of Schöningen 13II-4 might be very close to the

age of 13I-1, however, and has been suggested to fall within the 337–300 ka/MIS9 time

range. Botanical remains from this late interglacial lakeshore site suggest a steppic,

open forest environment related with the spears (Urban & Bigga, 2015). Nine samples

(either representing Stephanorhinus sp. or Coelodonta antiquitatis) derive from the

Table 1 Samples used in this study.

Sample

name

Site Inventory number Tissue type Morphological

identification

PMF69 Modern1 RMNH.MAM.5738 Nasal cartilage Diceros bicornis

PMF70 Modern1 ZMA.MAM.23879 Nasal cartilage Rhinoceros unicornis

PMF71 Modern1 ZMA.MAM.7681 Nasal cartilage Rhinoceros sondaicus

PMF72 Modern1 ZMA.MAM.539 Nasal cartilage Dicerorhinus sumatrensis

PMF40 Siberia Bone Coelodonta antiquitatis

NN1 Neumark-Nord 2 2071-B3-NN2/2/9131 Bone Rhinocerotidae

NN2 Neumark-Nord 2 2072-B3-NN2/2/9298 Bone Rhinocerotidae

NN3 Neumark-Nord 2 2071-B3-NN2/2/9069 Bone Rhinocerotidae

NN4 Neumark-Nord 2 2071-B2-NN2/2/8951 Dentine Rhinocerotidae

NN5 Neumark-Nord 2 2071-B2-NN2/2/8951 Bone Rhinocerotidae

NN6 Neumark-Nord 2 2071-B2-NN2/2/9002 Bone Rhinocerotidae

NN7 Neumark-Nord 2 2120-B3-NN2/2/18229 Dentine Rhinocerotidae

NN8 Neumark-Nord 2 2145-B1/2-NN2/2/15389 Dentine Rhinocerotidae

NN9 Neumark-Nord 2 2086-B3-NN2/2/10316 Dentine Rhinocerotidae

SCH1 Schöningen 13II-4 20114: 679/0-8 Bone Stephanorhinus sp.

SCH2 Schöningen 13II-4 19066: 674/8-1 Bone Stephanorhinus sp.

SCH3 Schöningen 13II-4 14527: 677/3-1 Bone Stephanorhinus sp.

SCH4 Schöningen 13II-4 14522: 676/2-1 Bone Stephanorhinus sp.

Note:
1 Collection Naturalis Biodiversity Centre, Leiden, the Netherlands.
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Eemian site Neumark-Nord 2, the age of which is approximately 126 ± 6 ka (Sier et al.,

2011). Neumark-Nord 2 represents a basin infill with hominin presence in relation to

a semi-open environment (Britton et al., 2012; Gaudzinski-Windheuser et al., 2014;

Pop & Bakels, 2015). Initial analysis of the faunal assemblage from the site suggests that

hominins represent the sole accumulators, with limited in situ reorientation of bone

specimens (Garcı́a-Moreno et al., 2016; Kindler, Smith & Wagner, 2014). Rhinocerotidae

found in relation to the archaeological find horizons at the site might represent either

of three species known to be present within the wider Neumark-Nord landscape at

the time, Coelodonta antiquitatis, Stephanorhinus kirchbergensis, and Stephanorhinus

hemitoechus (van der Made, 2010). Bone specimens studied here could not be assigned

to a specific rhinoceros taxon, and where hence included as representing Rhinocerotidae.

Finally, a single woolly rhinoceros sample was analysed from Late Pleistocene

deposits in Siberia, although an exact location or age is unknown (sample PMF40;

Welker et al., 2016).

After determination of the presence of endogenous COL1, two Stephanorhinus extracts

were analysed using liquid chromatography-tandem mass spectrometry (LC-MS/MS)

analysis. In short, peptides were trapped on a Pepmap m-pre-column (Thermo Scientific)

and separated on an EASY Spray PepMap UHPLC column with a 60 min gradient

(Thermo Scientific) with direct injection into a Q-Exactive hybrid quadrupole-Orbitrap

(Thermo Scientific) at the University of Oxford (as in Welker et al., 2015a, 2016).

Modern samples from four extant species were obtained from Naturalis Biodiversity

Centre, Leiden, the Netherlands (Table 1). These samples derive from nasal cartilage,

which formed a suitable target tissue while minimising damage to the bone morphology

of the sampled skulls. COL1 from these four extant rhinoceros species was extracted

and analysed in an identical way as explained above. COL1 fingerprints were previously

obtained for the included extant specimens as well as the Coelodonta data (Welker et al.,

2016). A published and annotated genome was available for the fifth extant rhinoceros

species, the southern white rhinoceros (Ceratotherium simum; GenBank RefSeq accession

GCF_000283155.1, number of protein sequences = 33,626).

LC-MS/MS .raw files were converted to .mgf using ProteoWizard (Chambers et al.,

2012) and searched against the southern white rhinoceros protein reference set

(downloaded 17/08/2015), including common contaminants, on PEAKS v.7 (Ma et al.,

2003). Each search incorporated a set of >100 possible contaminating proteins

including human keratins, bovine albumin, and porcine trypsin. Searches allowed for

up to six modifications per peptide, with oxidation (M), hydroxylation (P), and

deamidation (N/Q) suggested as variable modifications. Proteins were accepted when

two unique peptides were identified and a protein score of -10lgP � 20 was obtained.

Peptide–spectrum matches were accepted with a false discovery rate equal to 1.0%,

including for peptide–spectrum matches containing amino acid substitutions compared

to the reference sequence. De novo matches were only included when the ALC was�50%,

and inspected manually. Data for Coelodonta was previously obtained and re-analysed

here following the above parameters (Welker et al., 2016).
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An extraction blank was run alongside bone protein extracts, which remained empty

of COL1, while other proteins present in this blank were removed from further analysis

when also present in rhinoceros extracts (trypsin, keratins, and histones). In addition,

blank runs were incorporated between LC-MS/MS runs containing Rhinocerotidae

extracts to minimise the risk of sample carry-over (Demarchi et al., 2016). Furthermore,

we excluded several proteins from further analysis that have been identified previously

as contaminants in other publications, while matches to other non-rhinoceros proteins

were facilitated by the inclusion of possible contaminating proteins (see above). Finally,

we looked at deamidation frequencies for individual proteins identified in Pleistocene

samples to support our interpretation of endogenous and contaminating proteins.

To achieve this, we counted, per protein, the number of spectral matches containing

deamidated glutamine and asparagine positions after bioinformatic analysis and divided

this by the total number of spectra matching glutamine and asparagine positions

(regardless of deamidated or non-deamidated status). Only proteins with a minimum

number of three glutamine and/or asparagine positions covered by peptide–spectrum

matches were included in cluster analysis (Mclust) to assign group membership

(following Welker et al., 2016).

Phylogenetic analysis
Collagen alpha-1(I) and alpha-2(I) sequences were concatenated, leucines converted into

isoleucines, as these two amino acids are isobaric, and telopeptides removed from both.

The COL1 (COL1a1 and COL1a2) sequence obtained for SCH2 was removed from the

alignment after it was demonstrated that this sequence was mainly composed of conserved

regions (Fig. S1). For proteins other than COL1, peptides were included in phylogenetic

analysis when at least one peptide from either of the specimens studied here contained an

amino acid substitution differing from the southern white rhinoceros reference sequence

(collagen alpha-1(III) [COL3a1], pigment epithelium-derived factor [PEDF], Alpha-2-

HS-glycoprotein [AHSG]). Total alignment length comprised 2,089 amino acid positions,

and included five extant rhinoceroses, the woolly rhinoceros, Stephanorhinus sp. (SCH3,

possibly kirchbergensis), Tapirus terrestris, Equus asinus, Equus caballus, and Equus

hydruntinus. Bos primigenius was used as an outgroup. Sequence data for the latter species

was obtained from GenBank and previous publications (Welker et al., 2015a, 2016).

CIPRES Science Gateway (Miller, Pfeiffer & Schwartz, 2010) was used to conduct

Bayesian phylogenetic analysis using MrBayes and maximum-likelihood phylogenetic

analysis using RAxML. For both analyses, the alignment was partitioned by gene to

allow variable substitution rates within the Dayhoff substitution model (selected after

running PartitionFinderProtein; Lanfear et al., 2012). MrBayes was run for five million

generations, with sampling every 500 generations, and the first 10% was discarded as

burn-in. Inspection of the likelihood (LnL) effective sample size (ESS) in Tracer v.1.6.0

provided a value of >200 for all trees, and all other parameters, indicating that discarding

10% as burn-in was a sufficient number of removed chain steps. RAxML was run for

1,000 bootstrap iterations.
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Data availability
Pleistocene proteomic data generated for sample SCH3 and the woolly rhinoceros sample

are available under ProteomeXchange accession number PXD005534. Proteomic data

generated for the extraction blank are available under ProteomeXchange accession

number PXD003208. Sequence data from the genera Bos, Tapirus, and Equus were taken

fromGenBank or directly from previous publications (Welker et al., 2015a, 2016). Table S1

contains the accession numbers or literature references for sequence availability per

gene. Fasta File S1 contains the individual protein sequences for genes used in

phylogenetic analysis (COL1a1, COL1a2, COL3a1, PEDF, and AHSG).

RESULTS
ZooMS (zooarchaeology by mass spectrometry) screening was successful for bone

specimens from both Schöningen 13II-4 and Neumark-Nord 2. Two bone specimens from

Schöningen 13II-4 were selected for LC-MS/MS analysis (samples SCH2 and SCH3),

in addition to a woolly rhinoceros sample from Siberia (sample PMF40). The SCH2

COL1 sequence is very incomplete (30.3% of the COL1 sequences covered). Other

than COL1, no typical proteins of the bone proteomes were observed in this sample.

A MrBayes tree resulted in an erroneous position of this sample at the base of

Rhinocerotidae (Fig. S1), instead of a position close to SCH3. Based on these

observations, we decided to exclude this sample from further analysis.

For the five included extant rhinoceroses, SCH3 and the woolly rhinoceros specimen,

we obtained COL1 sequence coverage >90%. In addition to both COL1 alpha chains, we

confidently identified five additional proteins for SCH3 (collagen alpha-1(II), collagen

alpha-1(V) [COL5a1], collagen alpha-2(V) [COL5a2], AHSG, osteomodulin [OMD],

and possibly nucleolin [NCL]). For the woolly rhinoceros sample, which is undated

but presumably Late Pleistocene in age, we confidently identify ten proteins in addition

to COL1 (collagen alpha-1(II) [COL2A1], COL3a1, collagen alpha-1(V), collagen

alpha-2(V), AHSG, biglycan [BGN], OMD, lumican [LUM], PEDF, and chondroadherin

[CHAD]). These proteins have elevated deamidation frequencies for glutamine and

asparagine positions compared to known contaminants, proteins present in the

extraction blank, and added proteins (trypsin) present in the same extracts (Figs. 1A

and 1B). They are also absent from the extraction blanks, and represent proteins

previously detected in (ancient) bone proteome studies (Cappellini et al., 2012;

Wadsworth & Buckley, 2014).

Contaminants are represented by, among others, porcine trypsin, which is added

during our proteomic workflow as the digestive enzyme, bovine alpha and beta caseins

(alpha-S1-casein [CSN1S1], alpha-S2-casein [CSN1S2], beta-casein [CSN2], and

chicken lysozyme C [LYZ]; Figs. 1A and 1B). These contaminants have deamidation

frequencies below that observed for endogenous bone proteins. Furthermore, the

deamidation frequency of these proteins is similar in Pleistocene and modern bone

extracts (see grey violin in Figs. 1A and 1B).

Furthermore, deamidation frequencies for the five proteins present in both the SCH3

and the woolly rhinoceros sample display elevated deamidation frequencies in the
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SCH3 sample (Fig. 1C). This is consistent with increased protein degradation for the

Middle Pleistocene sample compared to the Late Pleistocene woolly rhinoceros sample, as

also demonstrated by the decrease in protein diversity recovered. We could not compare

deamidation values with modern extracts as the modern rhinoceros samples represented

non-mineralised nasal cartilage. Extracts for modern rhinoceros samples contained up

to 65 proteins. These include the proteins identified for SCH3 and the woolly rhinoceros

sample. This overall reduction of proteome complexity is consistent with previous

reports, which also demonstrate the prolonged survival of AHSG and OMD (Orlando

et al., 2013; Wadsworth & Buckley, 2014).

For some proteins, all spectral matches to glutamines and asparagines are deamidated

(expressed as 100% deamidation). Hypothetically, these could indicate amino acid

substitutions towards glutamic acid and aspartic acid amino acids, respectively. We

consider them to represent deamidated glutamines and asparagines because of (1) the

overall high frequency of deamidation in our dataset, (2) the increase of deamidation

in the older sample compared to the younger sample, consistent with theoretical

expectations of protein degradation, and (3) the absence of glutamine and asparagine

substitutions to glutamic acid and aspartic acid, respectively, in our comparative protein

sequence alignment for species whose protein sequences are obtained through genomic

databases (B. primigenius, Equus caballus, and Ceratotherium simum). In other words,

despite the evolutionary divergence between these three species, there are no instances of

glutamine to glutamic acid and asparagine to aspartic acid substitutions among the

endogenous proteins detected in our study. Nevertheless, future research should look into

methodological developments to separate completely deamidated glutamine or

asparagines positions from glutamine to glutamic acid and asparagine to aspartic acid

substitutions.

Figure 1 Deamidation frequency for identified Pleistocene proteins. (A) SCH3, Stephanorhinus sp.

(B) Coelodonta antiquitatis. Open circles represent proteins with two or less glutamine/asparagine

positions detected, and were not included in cluster analysis. Black squares represent contaminating

proteins, and filled circled represent proteins endogenous to the SCH3 sample (green, A) or the woolly

rhinoceros sample (blue, B). Grey inset indicates glutamine/asparagine deamidation for contaminating

proteins in the modern Rhinocerotidae samples, depicted as violin plot. (C) Spectral deamidation

frequency for five endogenous proteins with at least two glutamine/asparagine containing peptides

present in both the SCH3 and the woolly rhinoceros sample. Circle colour corresponds to those in

(A) Stephanorhinus sp. and (B) Coelodonta antiquitatis.
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Our phylogenetic analysis resulted in a phylogeny with high node support (at least

either RAxML or MrBayes �90%) for all nodes and an identical topology between

Bayesian and RAxML methods (Fig. 2). The relationships among the three major

Perissodactyla families (Equidae, Tapiridae, and Rhinocerotidae) are resolved in

agreement with other studies indicating a basal split between Hippomorpha (Equidae)

and Ceratomorpha (Tapiridae and Rhinocerotidae; Steiner & Ryder, 2011). We note that

the relationship between the included Equidae has support for separate caballine and

non-caballine horse clades, again in line with previous studies (Orlando et al., 2013;

Steiner & Ryder, 2011). Within Rhinocerotidae, the separate clades of the white and black

rhinoceroses and that of the two Rhinoceros species are both supported. Relationships

between the extinct Coelodonta and Stephanorhinus genera and the extant Dicerorhinus

genus are not resolved, although the three species together form a single clade. This is in

agreement with (ancient) mtDNA evidence for Coelodonta + Dicerorhinus presented

previously (Willerslev et al., 2009).

Our study is the first to report molecular evidence supporting an association between

the genus Stephanorhinus and Coelodonta + Dicerorhinus, as suggested previously based

on skeletal morphology (Groves, 1983; Nowak, 1999). The clade comprised of the genus

Dicerorhinus and the two studied extinct genera groups with that of the other Asian

rhinoceroses (Rhinoceros sp.). Following our phylogeny, the extant African rhinoceros

species form the most basal clade within the (extant) Rhinocerotidae, which is in

agreement with a recent morphological study (Deng et al., 2011).

DISCUSSION
We demonstrate the presence of phylogenetically informative ancient protein sequences

in the Middle Pleistocene of Europe, without the need to resolve towards large bone

samples sizes (<30 mg). This is in line with observations made previously for the Late

Pleistocene (Welker et al., 2016). In general, ancient proteomes will decrease in complexity

over time. The resilience of COL1 to degradation results in a dominance of this

Figure 2 Bayesian phylogenetic tree of studied Perissodactyla. Rhinoceros species present in Eurasia

are highlighted by the green box. Silhouettes indicate the number of horns. Node numbers indicate

Bayesian probability (0–1)/maximum likelihood (0–100%). B. primigenius was used as an outgroup.
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protein compared to other proteins (Wadsworth & Buckley, 2014), an observation which

is replicated by the data obtained in this study. Other proteins do survive, however,

including additional collagens and NCPs, even in bone samples from Middle Pleistocene

open-air sites. These additional proteins have so far received little attention in

phylogenetic studies based on ancient protein sequence data, partly because sequence

coverage for such proteins is low.

Our study confirms the proposed close phylogenetic relationship between the genera

Dicerorhinus, Stephanorhinus, and Coelodonta, but the order of divergence of the three

genera is unresolved. Previous genetic studies on the phylogenetic placement of extant

rhinoceroses have been inconclusive in the placement of the genus Dicerorhinus. Although

aDNA studies demonstrated that the extinct woolly rhinoceros is most closely related

to the extant Sumatran rhinoceros, they did not improve the relationships among extant

rhinoceroses concerning Dicerorhinus (Willerslev et al., 2009). As highlighted in the

introduction, the value of mtDNA studies for the Rhinocerotidae is limited, as different

mitochondrial genes resolve the relationships among Rhinocerotidae in different ways

(Willerslev et al., 2009). Therefore, it is not surprising that our phylogeny differs from

some (Morales & Melnick, 1994) but not all (Orlando et al., 2003; Tougard et al., 2001)

studies utilising mtDNA loci. The protein phylogenetic tree obtained in this study

differs from one study utilising a combined mitochondrial and nuclear DNA dataset

(Steiner & Ryder, 2011) but agrees with another in placing Dicerorhinus with Rhinoceros

(Price & Bininda-Emonds, 2009). Studies focusing solely on nuclear biomolecular data

might be favoured, however, given the problems associated with using Rhinocerotidae

mtDNA loci.

To explore the consistency of our phylogenetic tree with the data generated by Steiner &

Ryder (2011), we added the translated protein sequences from the nuclear sequence data

generated in their study (total length = 3,917 amino acids, genes BRCA1, EDNRB, KIT,

MC1R, MITF, SNAI2, SOX10, TBX15, TYR). Using a similar partitioning scheme and

substitution model as for our initial analyses, we obtain an identical phylogeny (Fig. 3)

with similar levels of nodal support (compare Figs. 2 and 3). We conclude that utilising

amino acid sequence data consistently resolves the relationship among extant and extinct

Rhinocerotidae species in an identical manner, at least for the amino acid sequence data

currently available. Our data support the placement of a clade composed of Dicerorhinus,

Coelodonta, and Stephanorhinus as a sister group to Rhinoceros, to the exclusion of

Ceratotherium and Diceros.

Our phylogenetic tree agrees with the latest Rhinocerotini cladogram based on a

morphological character matrix for Stephanorhinus, Coelodonta, and the extant rhino

species in the close relationship between Stephanorhinus and Coelodonta (Deng et al.,

2011). Furthermore, both our and their phylogenetic tree recovers Ceratotherium

and Diceros (two extant African rhinoceros genera) in a clade basal to the other extant

rhinoceroses and Stephanorhinus/Coelodonta. The consensus cladogram presented

in that study did not fully resolve the position of Dicerorhinus in relation to

Stephanorhinus/Coelodonta and the genus Rhinoceros, however. Nevertheless, we see our

protein sequence data as providing the first biomolecular support of a close relationship
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between the genera Stephanorhinus, Coelodonta, and Dicerorhinus. Future analysis of

rhinoceros specimens identified to the species level and further development of

mass-spectrometry based ancient protein sequencing might make it feasible to test

additional hypotheses of the phylogenetic relationships between extinct rhinoceroses

at the species level.

ZooMS peptide marker series have previously been shown not to be informative in

discriminating between the different Rhinocerotidae species included in this study

(Buckley et al., 2009; Welker et al., 2016). This is unfortunate when studying bone

assemblages where multiple rhinoceros taxa might be present, such as at Neumark-

Nord 2 and Schöningen 13II-4, or in contexts where ZooMS screening results in the

presence of several bone specimens now identified as Rhinocerotidae (Welker et al.,

2015b, 2017). Although the phylogenetic analysis is not capable of confidently solving

the relationship between the genera Stephanorhinus, Coelodonta, and Dicerorhinus,

there are several unique amino acid substitutions present within the COL1 sequences

obtained for these genera in this study. Therefore, these genera can only be separated

based on ancient protein sequence data obtained through LC-MS/MS analysis.

Hence, the results of the work presented here could be used as follow-up analysis in

cases where site-based ZooMS screening results in the identification of Rhinocerotidae

specimens (Welker et al., 2015b, 2017). This is of relevance to understanding the

geographic distribution and extinction processes of Stephanorhinus and Coelodonta

(Stuart & Lister, 2012). In contrast, the third member of this clade, Dicerorhinus, has

survived to the present, albeit critically endangered (Brook et al., 2014; Ripple et al.,

2015). Furthermore, it has been proposed that members of both extinct genera

occupied slightly different ecological niches (van der Made, 2010; Pushkina,

Bocherens & Ziegler, 2014) and hence the precise generic taxonomic attribution through

ancient protein analysis of rhinoceros remains at Pleistocene localities is of relevance

Figure 3 Extended Bayesian phylogenetic tree. Here, the alignment consists of proteomic sequence

data generated in this study and the translated protein sequences from the genetic data generated in

Steiner & Ryder (2011). Rhinoceros species present in Eurasia are highlighted by the green box.

Silhouettes indicate the number of horns. Node numbers indicate Bayesian probability (0–1)/maximum

likelihood (0–100%). B. primigenius was used as an outgroup.
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to a detailed ecological understanding of past faunal communities and hominin

activity.

CONCLUSION
The Rhinocerotidae represent an enigmatic family of megafauna that comprised an

important component of Pleistocene fauna complexes in Eurasia and Africa. Despite past

interest, both morphological and DNA based approaches have resulted in different

hypotheses on the phylogeny of extant and extinct species. By utilising the recovery of

ancient collagenous and NCP sequences for two extinct rhinoceros genera and protein

data for five extant species (including all extant genera), we build a protein phylogenetic

tree that supports a close phylogenetic relationship between the genera Stephanorhinus,

Coelodonta, and Dicerorhinus, as opposed to other extant taxa. We were not able to

resolve the order of divergence between these three genera, however. Nevertheless,

these genera can be differentiated based on unique amino acid substitutions, enabling

taxonomic attributions at the genus-level in future studies. This would be of relevance

to understanding the extinction processes of both genera, which are relatively poorly

understood, especially for Stephanorhinus, as well as more detailed ecological inferences

at archaeological and palaeontological sites where ZooMS results in the identification of

Rhinocerotidae bone/dental specimens.
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