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Abstract
Natural hazards can cause significant damage to human life and property.
Among them, floods are one of the most severe and frequent natural disasters,
making flood prediction crucial. River discharge is an essential factor in caus-
ing floods, so accurate and fast prediction of river discharge is crucial for flood
mitigation. Data assimilation (DA) as a method of combining different sources
of data (e.g., state field and observations) has the ability to estimate the pos-
sible states of river discharge. However, DA on high-dimensional data such as
river discharge can be computationally expensive. Furthermore, when the DA
process lacks explicit mappings from the state field to the observations, DA can-
not be conducted effectively. In this work, we design a latent neural mapping
(LNM) in the form of a neural network (NN) as the observation operator and
integrate this within a three-dimensional variational data assimilation (3D-Var)
framework. By operating within latent space, the resulting approach helps mit-
igate computational costs and allows us to run DA within seconds despite the
high-dimensional data. In addition, several alternative NNs are employed to
build mapping functions, which map data from the state space to the obser-
vation space (and vice versa), and benchmarked against the latent-space-based
LNM approach. We test the LNM with real river discharge data from the UK and
Ireland. The National River Flow Archive (NRFA) dataset provides the obser-
vations, and the data provided by a surrogate model from the European Flood
Awareness System (EFAS) dataset serves as the state field. LNM outperforms the
alternative methods in terms of accuracy and efficiency. The LNM developed
can be applied to areas other than hydrology to integrate data efficiently with
models.
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1 INTRODUCTION

In recent decades, global climate change has intensified,
combined with an intensification in human activities,
leading to an elevated occurrence and severity of natural
hazards. Among the various natural hazards, floods, being
a relatively frequent phenomenon, have in recent years
inflicted significant economic losses and human casualties
(Merz et al., 2021). Therefore, delivering timely and precise
flood predictions is essential for implementing effective
flood mitigation measures and facilitating prompt evacua-
tions, thereby reducing economic losses and safeguarding
human life and safety. In the prediction of floods, it is
crucial to take into account the factors contributing to
flooding, with a primary focus on river discharge and pre-
cipitation (Dung et al., 2022). Hence, this research centers
on river discharge as the focal point of investigation and
applies a methodology that integrates machine learning
and data assimilation (DA), which together can help the
rapid and accurate prediction of river discharge.

1.1 Related work

DA is a technique that integrates multiple pieces of
information to estimate a system’s state and has been
employed extensively for enhancing model prediction
accuracy in dynamic simulations (Asch et al., 2016;
Carrassi et al., 2018; Cheng et al., 2023b; Gong et al., 2020,
2021; Melinc & Zaplotnik, 2024). In this process, obser-
vations are typically fused with the state simulated by the
predictive model to achieve a more accurate representa-
tion of the system’s state. Since both the observations and
the state are uncertain, DA serves the purpose of reducing
the uncertainty and providing a state closer to the real val-
ues. Therefore, DA has been used for diverse applications
in the domain of hydrology, particularly for predictive
purposes (El Gharamti et al., 2021; Ziliani et al., 2019).
In the prediction, the uncertainties of the predicted state
are influenced by the initial conditions, meteorologi-
cal, and hydrological factors. Post-processing is widely
used as a method to improve the reliability of hydrolog-
ical predictions (Matthews et al., 2023). Compared with
post-processing, DA can reduce the uncertainty and has
the ability to evaluate the uncertainty (Evensen, 2003).
Also, DA can integrate observations from multiple sources,
such as closed-circuit television (Vandaele et al., 2021,
2023). Variational DA is one type of DA for handling
nonlinear problems, of which two common methods are
three-dimensional variational data assimilation (3D-Var:
Courtier et al., 1998) and four-dimensional variational
data assimilation (4D-Var: Bannister, 2017). Variational
DA is accomplished by minimizing a loss function to

obtain an analysis state that aligns closely with the true
values. In recent years, there has been a growing body of
research employing variational DA in hydrology (Larnier
& Monnier, 2023; Li et al., 2022; Liu et al., 2020; Nearing
et al., 2021; Penny et al., 2022; Pujol et al., 2022; Zanchetta
& Coulibaly, 2020). Given the prevalence of nonlinear
relationships within the hydrological domain, the utiliza-
tion of variational DA proves to be a more fitting approach
for their resolution. However, in the current application of
variational DA methods in hydrology, several challenges
persist that prove to be difficult to resolve.

The first challenge involves the computational cost
associated with the conventional DA and hydrology
simulation process (Buizza et al., 2022; Cintra et al., 2016;
Kurtz et al., 2017; Li et al., 2014). Machine learning,
as a data-driven approach, offers a promising avenue
to enhance simulation speed compared with conven-
tional hydrological models (Kratzert et al., 2018, 2022;
Lees et al., 2021; Li et al., 2023; Penny et al., 2022;
Sikorska-Senoner & Quilty, 2021). Hence, employing
machine learning as a surrogate model for simu-
lation is a method to boost simulation speed. The
machine-learning models here are offline models, mean-
ing they do not require frequent retraining. Therefore,
training neural networks is typically not considered
part of the computational cost. Moreover, in temporal
terms, river discharge prediction is a time-series pre-
diction problem. This underscores the importance of
analysing historical data to inform future predictions.
Long short-term memory (LSTM: Hochreiter & Schmid-
huber, 1997), as a machine-learning method capable of
addressing long-sequence dependence issues effectively,
and its variants are widely employed as surrogate mod-
els for hydrological models. In recent research (Chen
et al., 2023; Li et al., 2022; Zhang et al., 2023), it is evident
that contemporary machine-learning models exhibit accu-
racy and efficiency in predicting river discharge. Zhang
et al. (2023) proposes the Attention mechanism-based long
short-term memory with double time sliding windows
(ALSTM-DW) model, which integrates attention mech-
anisms, double-time sliding windows, and a weighted
mean-square error loss function to enhance urban flood
forecasting accuracy. The results demonstrate that the
model reduces peak flow and time-to-peak errors sig-
nificantly, showing strong predictive capabilities in
addressing flood risks under urbanization and climate
change. Li et al. (2022) proposed a method to calculate
watershed runoff directly from two-dimensional rain-
fall radar maps. This approach utilizes a convolutional
neural network (CNN) to capture spatial information
and LSTM to model temporal information. The method
demonstrates superior performance in comparison with
state-of-the-art models in several hydrological metrics,

 1477870x, 0, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.5009 by N
IC

E
, N

ational Institute for H
ealth and C

are E
xcellence, W

iley O
nline L

ibrary on [24/10/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



WANG et al. 3 of 22

such as the Nash–Sutcliffe model efficiency coefficient
(NSE) and Kling–Gupta efficiency. Chen et al. (2023)
develop a rapid urban flood prediction model using a
combination of CNN and LSTM networks, driven by
hydrodynamic model simulations. The model predicts
urban flooding depth quickly in under 10 seconds, with
an average error of less than 6.50% between the predicted
and measured depths, demonstrating its effectiveness for
emergency flood control and reducing potential losses.
To implement DA for high volumes of high-dimensional
data, reduction methods (e.g., empirical orthogonal func-
tions [EOFs], truncated singular value decomposition
[TSVD], or Principal Component Analysis [PCA]: Asch
et al., 2016; Arcucci et al., 2019) or compression meth-
ods (e.g., AutoEncoder [AE] and similar: Amendola
et al., 2020; Cheng et al., 2021a; Ghorbanidehno et al., 2020;
Hernández & Liang, 2018, 2019; Pasetto, 2013) are com-
monly used. When employing a reduced or compression
model in DA, known as latent DA (Buizza et al., 2022), the
model can learn the spatial feature representation of data
in latent space, a process also referred to as representation
learning (Bengio et al., 2013). Nevertheless, DA in latent
space necessitates an explicit observation operator to rep-
resent the relationship between the latent-state vector and
the observations.

The second challenge is the lack of an explicit obser-
vation operator, which is essential in the cost func-
tion of variational DA. When dealing with compressed
data that do not have the usual physical meaning, this
situation implies that establishing a direct relationship
between the state field and the observations is not feasi-
ble. If the relationship from the state field to the obser-
vations cannot be represented explicitly, thereby posing
a challenge in constructing a cost function for varia-
tional DA, the assimilation process cannot be executed
(Courtier et al., 1998). Cheng et al. (2023a) proposed a
method to build the observation operator by compressing
both the state field and the observations into the same
space through use of an encoder. However, the predic-
tive model of this method necessitates surrogate function
construction online, incurring substantial computational
costs. Hence, a viable solution for addressing the issue
of missing explicit expressions remains elusive. The cur-
rent methodologies are characterized by time-consuming
procedures and inevitably introduce additional errors that
impact the accuracy of predicted outcomes significantly.
In the domain of Earth system modeling, Geer (2024)
proposed an empirical state method, which used unsuper-
vised learning to build the connection between the obser-
vations of satellite microwave radiance and the state of sea
ice. Additionally, several studies (Gettelman et al., 2022;
Lam et al., 2022; Schneider et al., 2017) have demon-
strated that neural networks (NN) can effectively capture

the relationship between observations and states, as well
as modeling the dynamics of the Earth system.

The third challenge is local correction, induced by the
sparse spatial distribution of observations. While it is not
a universal problem, there are specific ways of setting up
a system that can cause problems. Setting error covariance
matrices could be helpful for handling sparse observa-
tions. However, estimating these error covariance matrices
is very challenging in real-world DA problems due to the
lack of true states. The observations are usually sparse
in hydrology (Barthold et al., 2010), which can result in
a scenario where the background field, post DA, is such
that corrections are localized to the vicinity of the loca-
tions of the observations, leaving the remainder of the
area unchanged (Cheng et al., 2024). Recent studies have
tackled the challenge posed by sparse observations by
employing field reconstruction techniques to fill in the
gaps where observations are lacking (Brajard et al., 2020;
Chen et al., 2021; Cheng et al., 2024; Wang et al., 2019).
Field reconstruction can learn from historical observations
and the state field to build the state field directly from
the observations, enabling the reconstruction of unob-
served locations. Nevertheless, these methods exhibit cer-
tain issues that may affect prediction accuracy adversely.
These methods introduce errors during the reconstruction
process, and these errors propagate persistently through
the predictive model, leading to an accumulation of inac-
curacies. Also, some methods (Cheng et al., 2024; Wang
et al., 2019) incorporate additional variables as auxiliary
information during the reconstruction process, resulting
in heightened computational demands and extended pro-
cessing times for reconstruction. Additionally, the field
reconstruction operation constructs the state field from
sparse observations, thereby increasing the volume of data
substantially. Consequently, utilizing field reconstruction
technique to assist DA amplifies the computational effort
and extends the time required for the DA process.

1.2 Contribution of the present work

In this research, to address the limitations of current meth-
ods for predicting river discharge mentioned above, a
3D-Var method in latent space for river discharge, employ-
ing NNs as the predictive model and the observation oper-
ator, is applied. This method gives predictions of river
discharge for each day in the UK and Ireland region. The
block diagram is shown in Figure 1. In Figure 1, firstly,
the full-model state field is processed through the encoder
and compressed into latent space. Then, the latent state
vector is utilized to train the predictive model. Mean-
while, the observation operator of the latent neural map-
ping (LNM) is trained by inputting both the latent state
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4 of 22 WANG et al.

F I G U R E 1 Structure of latent 3D-Var (sub-block 1 represents the predictive model, sub-block 2 represents the LNM, and sub-block 3
represents the latent 3D-Var; blue cubes represent the state field, orange cubes represent the observations, and green cubes represent the
analysed state). [Colour figure can be viewed at wileyonlinelibrary.com]

vector and the observations. Once the predictive model
and observation operator are trained, the process of latent
3D-Var is conducted. Subsequently, the latent analysed
vector is obtained. Following the decoding process, the
full-model analysed field is retrieved.

This method tackles the computational resource-
intensive nature of processing kilometer-level river
discharge data and the simulation process through a
hydrological model. Additionally, this method employs
a NN mapping to address challenges arising from the
absence of an explicit observation operator from the latent
state vector to the observations. Simultaneously, this
method achieves the global correction of the full-model
state field through representation learning.

In the proposed method, a convolutional autoencoder
(CAE: Rifai et al., 2011) is employed as a compression
model, compressing the full-model state field into latent
space. This not only reduces computational resources
significantly but also, importantly, harnesses the spatial
information extraction capability of the convolutional
layers within the encoder structure of CAE. This allows
learning of the representation of the full-model state field.
Following 3D-Var on the representation in latent space,

the full-model state field will be corrected globally by the
decoder.

Moreover, this method employs LSTM in latent space
as a surrogate model for the hydrological model, enabling
forward simulations on the latent state vector by block
1 in Figure 1. LSTM is proficient in handling time-series
data, and its efficiency is particularly advantageous given
the abundance of historical data. Furthermore, when
compared with hydrological models, lsoLSTM reduces
computational resource requirements significantly.

The pivotal aspect of this methodology hinges on
employing a NN as the observation operator within the
DA framework, named LNM, denoted by block 2 in
Figure 1. This represents the initial incorporation of a
NN as the observation operator in hydrology. Current DA
tools, such as OpenDA (Ridler et al., 2014) and ADAO
(Goeury et al., 2017), rely on derivatives of the observation
operator to minimize the cost function. However, these
existing open-access DA packages in Python do not sup-
port a NN as observation operator or forward function
in the minimization loop. Hence, this method employs
open-slsocode that supports performing DA in latent
space, with derivatives calculated using the PyTorch
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WANG et al. 5 of 22

F I G U R E 2 Structure of the compression model. (The input and output of the CAE is the full-model state field. The encoder and
decoder consist of five layers, with the parameters of each layer shown.) [Colour figure can be viewed at wileyonlinelibrary.com]

library (Paszke et al., 2019). This capability enables the NN
to function as the observation operator in the DA process.
Leveraging a NN as the observation operator addresses
issues where there is no explicit observation operator from
the latent state vector to the observations.

In summary, this article develops an integrated sys-
tem for predicting river discharge. This research employs
a CAE as the compression model to learn the latent
representation of the full-model state field, enabling the
3D-Var process to achieve faster computation. Also, spa-
tial correlation information captured by CAE enhances the
accuracy of the 3D-Var results. Additionally, the research
applies a 3D-Var method for river discharge in latent space,
utilizing NNs as the predictive model to improve the pre-
diction efficiency. Most importantly, LNM is designed to
address challenges in DA arising from the absence of an
observation operator that maps the latent state vector to
the observations.

The article is organized as follows. Section 2 explains
the methodology proposed in this study. Section 3
describes the study area, dataset, and data preprocessing
methods employed. Section 4 discusses the training
strategy employed for the experiment and outlines the
alternative methodological designs utilized to evaluate
our proposed method. Section 5 presents the experimen-
tal results and their analysis. Lastly, Section 6 provides a
summary of the findings and proposes future work.

2 METHODOLOGY

This section introduces the latent 3D-Var method for river
discharge, employing NNs as the predictive model (block
1 in Figure 1) and the observation operator (block 2 in
Figure 1).

2.1 Compression model

In this research, due to the characteristics of the sam-
ple from the European Flood Awareness System (EFAS)
dataset, each sample contains 14,120 non-zero values,
representing areas containing rivers. With only 35.3%
of the elements containing non-zero values and the rest
representing background regions, the utilization of a com-
pression model is both feasible and advantageous. Each
sample is a 200 × 200 matrix denoted by Xi,i=1,2,… ,t, where
t represents the number of samples in the dataset. The
compression model is employed to compress the sample
into a k-dimensional vector denoted as x̃i,i=1,2,… ,t.

The CAE, a variant of autoencoder (AE: Hinton &
Salakhutdinov, 2006), serves as a NN employed in the
capacity of a compression model. The convolutional struc-
ture of CAE can extract spatial information and reduce the
number of network parameters by replacing the fully con-
nected layer structure of AE. Compared with nonlinear
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6 of 22 WANG et al.

F I G U R E 3 Structure of the predictive model. (The input to the LSTM comprises three time steps of the latent state vector, while the
output corresponds to one time step of the latent state vector.) [Colour figure can be viewed at wileyonlinelibrary.com]

reduced-order models like EOF, CAE has better abil-
ity to handle nonlinear compression problems, offering
more efficient feature extraction and data representation.
CAE facilitates the training of network parameters by
minimizing the disparity between the inputs and outputs
of the model.

In this research, the data sourced from the EFAS
dataset undergo compression into latent space through
CAE. This compressed representation is then employed to
build an efficient surrogate model. The architecture of the
CAE consists of two primary components: an encoder 

and a decoder ,

Xrecon
i = ((Xi)),

 = 1
n

n∑
i=1

||Xi − Xrecon
i ||2,

x̃i = (Xi), (1)

where Xi represents the ith time step of the sample, Xrecon
i

represents the ith time step of the reconstructed sample
through CAE,  represents the encoder,  represents the
decoder,  represents the loss function between the sam-
ple and the reconstructed sample, and x̃i represents the
ith time step of the representation of the sample in latent
space. The dimension of x̃i is much smaller than that of Xi.

In the structure of the CAE, the encoder is constructed
with four convolutional layers, four downsampling layers,
and two fully connected layers. Conversely, the decoder
is structured with two fully connected layers, four con-
volutional layers, and four upsampling layers. The input
to the CAE is represented by a 200 × 200 matrix. This
matrix undergoes encoding followed by decoding pro-
cesses within the CAE, resulting in the output being
the reconstructed sample, denoted by another 200 × 200
matrix. During the training of the CAE, the primary objec-
tive is to minimize the loss function  that quantifies
the disparity between the input and output. After training
the parameters of the CAE successfully, the encoder is
employed to compress the input into latent space, wherein

T A B L E 1 The network parameters of LSTM.

Type of parameter Parameters

Input size 256 × 3

Hidden size 1024 × 1

Cell size 1024 × 1

Number of layers of LSTM 2

Output size 256 × 1

the output of the encoder manifests as a vector with dimen-
sions of 256 × 1, shown in Figure 2.

After processing the sample in the EFAS dataset
through CAE, the sample in latent space will be utilized to
train the predictive model.

2.2 Predictive model in latent space

Following the processing of data through the CAE, leading
to its representation in latent space, this subsection will
concentrate on formulating the predictive model for the
latent state vector. In the research, the predictive model
relies on LSTM for time-series prediction, a variant of
recurrent NN (RNN: Hochreiter & Schmidhuber, 1997). In
the prediction of river discharge, the physics model entails
inputting pertinent physical quantities and forecasting
future river discharge by leveraging hydrological physics
formulas (Cheng et al., 2021b). In the research, LSTM is
utilized to emulate the physics model, harnessing its capa-
bility to address time-series prediction tasks, and designed
specifically for implementation within latent space for the
predictive model. The designed LSTM is an offline model,
meaning that once the LSTM parameters are well-trained
there is no need to reinitialize the model at each step.

The structure of LSTM is shown in Figure 3. The LSTM
network parameters used in this research are presented in
Table 1.

In the process of the predictive model, a sequence-to-
sequence prediction is implemented, wherein three
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consecutive time steps are inputted and the model outputs
a single time step. Each time step corresponds to a one-day
interval. The input sequence is X̃in=[x̃i−2, x̃i−1, x̃i], denoted
by a matrix of 256 × 3, and the output sequence is x̃pred

i+1 ,
denoted by a vector of 256 × 1. In the training process,
the input of the predictive model is derived by shifting
the initial time of each time step sequentially, shown in
Equation (2),

x̃pred
4 = LSTM[x̃1, x̃2, x̃3],

x̃pred
5 = LSTM[x̃2, x̃3, x̃4],

… ,

x̃pred
i+1 = LSTM[x̃i−2, x̃i−1, x̃i],

 = 1
n

n∑
i=1

||x̃pred
i − x̃i||2, (2)

where LSTM represents the LSTM model, and x̃pred
i

represents the predicted latent state vector of the ith time
step. When the predictive model is employed, the initial
three time steps [x̃1, x̃2, x̃3] are utilized as inputs, and each
output is iterated as the input for the subsequent time step,
shown in Equation (3),

x̃pred
4 = LSTM[x̃1, x̃2, x̃3],

x̃pred
5 = LSTM[x̃2, x̃3, x̃pred

4 ],

x̃pred
6 = LSTM[x̃3, x̃pred

4 , x̃pred
5 ],

…

x̃pred
i+1 = LSTM[x̃pred

i−2 , x̃pred
i−1 , x̃pred

i ]. (3)

Upon completion of the modeling of the predictive
model for the latent state vector, the next steps of the pro-
cess will describe how to relate the latent state vector to the
observations.

2.3 Latent neural mapping

The latent background vector provided by the prediction of
LSTM is depicted as a vector with dimensions of 256 × 1,
whereas the observations are presented as a vector with
dimensions of 924 × 1. As an explicit expression describing
the relationship from the latent state vector to the observa-
tions is unavailable, a gap exists in the observation operator
required for performing DA. This subsection presents a
method aimed at addressing the issue arising from the lack
of an explicit formula delineating the relationship from the
latent state vector to the observations.

In this research, LNM is proposed as a novel approach
for utilizing NN as the observation operator in hydrological
DA, building on prior efforts in this area (Liang et al., 2023;

Storto et al., 2021). A DA approach based on PyTorch
(Paszke et al., 2019) is designed to facilitate the integra-
tion of NN as the observation operator. This implies that
a NN can function as an observation operator when it can
capture the relationship from the latent state vector to the
observations effectively. This enhancement broadens the
array of choices available for assimilating the observations
into the latent state vector.

Given the vectorial nature of the latent state vector and
the observations (due to the sparse distribution and sub-
sequent vectorization), and recognizing the suitability of
multi-layer perceptron (MLP: Rumelhart et al., 1986) for
mapping between vectors, LNM incorporates an MLP as
the observation operator. This MLP is utilized to map from
the latent state vector to the observations,

yi = LNM(x̃i), (4)

where yi represents the ith time step of the observations
and LNM represents the model of LNM.

In the design of LNM, the input to the MLP network
is the ith time step of the latent state vector x̃i, denoted
by a 256 × 1 vector. The MLP model LNM comprises fully
connected layers, layer normalization layers, and dropout
layers, shown in Table 2.

T A B L E 2 The network parameters of LNM.

Layer Output size Activation

Fully connected layer 384 × 1 LeakyReLU

LayerNorm

Dropout = 0.1

Fully connected layer 512 × 1 LeakyReLU

LayerNorm

Dropout = 0.1

Fully connected layer 768 × 1 LeakyReLU

LayerNorm

Dropout = 0.1

Fully connected layer 924 × 1 LeakyReLU

LayerNorm

Dropout = 0.1

Fully connected layer 1024 × 1 LeakyReLU

LayerNorm

Dropout = 0.1

Fully connected layer 2048 × 1 LeakyReLU

LayerNorm

Dropout = 0.1

Fully connected layer 924 × 1

 1477870x, 0, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/qj.5009 by N
IC

E
, N

ational Institute for H
ealth and C

are E
xcellence, W

iley O
nline L

ibrary on [24/10/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



8 of 22 WANG et al.

F I G U R E 4 Structure of latent neural mapping. (The input of the MLP is the latent state vector and the output is the vectorized
observations.) [Colour figure can be viewed at wileyonlinelibrary.com]

The output of the MLP network is the ith time step of
observations yi, denoted by a 924 × 1 vector. The structure
of LNM is shown in Figure 4.

After training the observation operator, the subsequent
subsection elucidates how to employ LNM for 3D-Var,
referred to as LNM-DA.

2.4 Latent data assimilation

When making predictions about the state field, uncertain-
ties are inherent in both the prediction and the observa-
tions. DA is the process of incorporating the observations
into the background field, considering both of these uncer-
tainties. This adjustment is aimed at enhancing the accu-
racy of the prediction. In this research, the DA method
employed is 3D-Var, and it is applied to assimilate data on
river discharge in latent space. Specifically, data provided
by LSTM prediction are utilized as the latent background
vector, while data from the National River Flow Archive
(NRFA) dataset serve as the observations. The process of
latent 3D-Var is shown in Equation (5),

J(x̃) = 1
2
(x̃ − x̃b)TB̃−1(x̃ − x̃b)

+ 1
2
(y −(x̃))TR−1(y −(x̃)),

x̃a = argmin(J(x̃)), (5)

where x̃b represents the latent background vector that is
the output of the LSTM prediction, B̃ and R represent
the background-error covariance matrix in latent space
and the observation-error covariance matrix,  represents
the observation operator, y represents observations, and
x̃a represents the latent analysed vector. When conducting
3D-Var in latent space, the computational workload is sig-
nificantly smaller compared with 3D-Var in full space. This
is because the dimension of the error covariance matrix

of the latent background vector B̃ is much smaller than
the dimension of B, which represents the error covariance
matrix of the full-model background field, resulting in
higher computational efficiency. More importantly, in the
process of DA in latent space, the observations are utilized
to correct the latent background vector. The latent back-
ground vector is derived from the full-model background
field after undergoing representation learning through an
encoder. Therefore, DA in latent space involves correct-
ing the spatial features of the full-model background field,
rather than correcting the entire full-model background
field. Consequently, to have that correction in full space,
we use decoder to achieve the reconstruction from the
latent representation.

From Equation (5), in the process of minimizing
the cost function it is imperative to compute the gra-
dient of the cost function. Hence, it is essential to cal-
culate the derivative of the observation operator. As
mentioned in Section 2.3, the conventional DA meth-
ods face limitations in differentiating NN. Consequently,
this study utilizes NN to train the observation operator,
offering a novel contribution to the integration of NN
in hydrology DA. This research utilized the “TorchDA”
package,1 a DA package based on PyTorch. PyTorch proves
its ability in addressing the challenges associated with
differentiating NN. Therefore, the implementation of NN
as the observation operator in this research, facilitated by
PyTorch, is executed seamlessly.

In the DA algorithm employed in this research,
the latent representation of the full-model state field is
achieved through an encoder, producing features of the
state field in latent space. The features of three consecu-
tive time steps of the latent state vector are subsequently
inputted into a predictive model to predict the next time
step of the latent background vector. Subsequently, LNM
is employed as the observation operator to map from the
latent state vector to the observations. This enables the
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WANG et al. 9 of 22

utilization of 3D-Var for the correction of the latent back-
ground vector. Finally, the corrected features in latent
space are processed through a decoder to obtain the
full-model analysed field. The whole process is shown in
Algorithm 1, where kmax represents the number of itera-
tions and Xa,i represents the ith time step of the full-model
analysed state. AdamW (Loshchilov, 2017) is used to min-
imize the cost function of 3D-Var, which combines weight
decay and an adaptive learning rate to optimize complex
nonlinear objective functions more consistently, thus
improving accuracy and convergence speed.

After the LNM-DA process, the analysed state is
obtained. The following section provides an overview of
the study region and dataset used in the research, along
with the data preprocessing procedures.

3 DATA

In this section, we describe the chosen study area and
dataset employed in this research. The rationale behind
choosing this specific research area is elaborated upon and
comprehensive information regarding the content of the
dataset is presented.

3.1 Study region and dataset

The scope of this research encompasses two countries:
the United Kingdom and Ireland. River discharge impacts
the incidence of flooding profoundly, particularly in this
region prone to floods (Sayers et al., 2018). It is crucial to
investigate river discharge in the region for the purpose of

Algorithm 1. LNM-DA.

Inputs: X, y,  ,,LNM,LSTM
Parameters: kmax = 500, B̃,R
k = 0, x̃i = (Xi)
while k < kmax do

if
⌊

i
3

⌋
== 0 then

J(x̃i) = 1
2
(x̃i − x̃bi)TB̃−1(x̃i − x̃bi) + 1

2
(yi −LNM(x̃i))TR−1(yi −LNM(x̃i))
x̃a

i = argmin(J(x̃i))
x̃bi+1 = LSTM[x̃bi−2, x̃bi−1, x̃a

i ]
end if
x̃bi+1 = LSTM[x̃bi−2, x̃bi−1, x̃bi]
k = k + 1

end while
Xa

i = (x̃a
i )

output: Assimilated field Xa
i

flood warning. Furthermore, this region is characterized
by a multitude of high-flow rivers, including the Severn,
the Thames, and the Trent (Macdonald & Sangster, 2017).
Moreover, the geographical location of this area renders
it especially vulnerable to flooding (Sayers et al., 2018).
Therefore, the selection of this region as the focal point for
this research is appropriate, considering its susceptibility
to flooding, and the abundance of available data facilitates
rigorous experimentation.

This research utilizes two datasets. The first dataset
comprises gridded modeled daily river discharge time
series provided by River Discharge and Related Histori-
cal Data from EFAS (Mazzetti et al., 2019) Version 3.5,
hereafter called the EFAS dataset. The second dataset com-
prises river-gauge station data provided by NRFA.2 The
EFAS dataset supplies data for both the UK and Ireland,
while the NRFA dataset offers data for the UK exclusively.

Firstly, EFAS is a service of the Copernicus Emergency
Management Service (CEMS).3 The system is designed
specifically to identify river systems across Europe and
provide predictions and early warnings for potential
hydrological events in the European region. The EFAS
dataset provides gridded modeled daily hydrological time
series forced with meteorological observations provided
by the European Meteorological Observations (EMO)
dataset (Gomes et al., 2020). Also, this dataset is pro-
duced by forcing the open-source LISFLOOD hydrolog-
ical model with gridded observational data of precipita-
tion and temperature at a 5 km× 5 km resolution across
the EFAS domain. Therefore, the EFAS dataset provides
river discharge simulation data without assimilating the
gauged river discharge observations. The dataset offers
daily modeled hydrologic data, with the main variables
including mean discharge in the last 24 hours, land
binary mask, Lambert azimuthal equal area, latitude,
and longitude. In this research, only river discharge data
are used.

The NRFA dataset, provided by the UK Centre for
Ecology and Hydrology, serves as the official reposi-
tory for river flow data in the United Kingdom. This
dataset encompasses daily hydrological data collected
from 1600 hydrological gauge stations distributed across
the United Kingdom, shown in Figure 5. The orange
dots in the figure indicate the locations of gauge sta-
tions, while the blue lines correspond to rivers. Several
stations within the dataset have been recording data since
the 1800s, with the majority commencing data record-
ing in the 1960s. Consequently, the dataset encapsu-
lates a significant volume of historical data. Its extensive
data coverage supports studies related to river hydrology
and facilitates assessments of natural events within river
basins.
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10 of 22 WANG et al.

F I G U R E 5 Distribution of gauge stations from the NRFA
dataset. (The orange dots in the figure indicate the locations of
gauge stations, while the blue lines correspond to rivers.) [Colour
figure can be viewed at wileyonlinelibrary.com]

The basic information of these two datasets is pre-
sented in Table 3. The rationale for utilizing the EFAS
dataset in this experiment is due to its provision of abun-
dant historical discharge data. Consequently, these data
can be employed to train the predictive model in this
experiment. Additionally, the reason for incorporating the
NRFA dataset is that it provides observational data from
hydrological gauge stations. These data can be utilized
for DA with the predictions generated by the predic-
tive model, thereby enhancing the accuracy of prediction
results.

3.2 Data preprocessing

The data necessitate preprocessing to delineate the appro-
priate spatial and temporal ranges for the research. Firstly,
the EFAS dataset covers Europe, encompassing a terri-
tory that extends from North Africa to the northern tip of
Scandinavia, reaching to the Atlantic Ocean in the west
and to the Caspian Sea in the east (Matthews et al., 2022).

T A B L E 3 Basic information of the EFAS and NRFA datasets.

Name EFAS NRFA

Study region UK & Ireland UK

Variables River discharge River discharge

Temporal scale 1991–present 1800s (most 1960s)
–present

Number of
stations

1600

Spatial
resolution

5 km× 5 km

Temporal
resolution

Daily Daily

T A B L E 4 The data after preprocessing.

Name Type
Temporal
coverage

Number of
time steps

Dimension
of data

EFAS State field 1991–2021 11,323 200 × 200

NRFA Observation 1991–2021 11,323 924 × 1

The study region for this research is the United King-
dom and Ireland and, based on the latitude and longi-
tude information of this area, it ranges from 49◦–59◦N
and 11◦W–2◦E. Furthermore, the EFAS dataset comprises
river discharge data from 1991 to the present. Data with
a temporal resolution of one day, spanning from 1991 to
2021, have been selected, totaling 11,323 days.

Secondly, the NRFA dataset comprises 1600 gauge
stations. Given that the timeframe of the EFAS dataset
in this research is selected from 1991 to 2021, it is
reasonable to choose the corresponding data within
the same timeframe. Therefore, the total number of
gauge stations that can cover this timeframe is 924. The
data provided by these gauge stations contain some
missing values. Since we require a fixed number of
observations in each time step, interpolation in time
is necessary for those time steps where observations
are missing. Consequently, acknowledging the inherent
temporal characteristics of the data, an autoregressive
integrated moving average (ARIMA) (Makridakis &
Hibon, 1997) approach is employed for the imputation of
missing values.

The data employed for the research are presented in
Table 4. The following section will elucidate the method-
ologies applied in the research. In the NN training phase,
70% of the data are allocated randomly to the training set,
10% to the validation set, and the remaining 20% to the
test set. In the DA process, the results from the predictive
model based on the EFAS dataset serve as the background
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WANG et al. 11 of 22

field, while the data from the NRFA dataset are treated
as observations. During testing, none of the data used in
training is utilized; all test data remain entirely unseen.
This ensures the fairness of the experiment and provides
an unbiased basis for comparison.

3.3 Estimation of error covariance
matrix

In 3D-Var, the error covariance matrix is a fundamental
component that plays a crucial role. The background-error
covariance matrix B characterizes the statistical proper-
ties of errors in the background field (Bannister, 2008).
Its primary functions include representing the magni-
tude and spatial correlations of background errors, as well
as spreading and filtering observation information. Sim-
ilarly, the observation-error covariance matrix R encap-
sulates the statistical properties of errors in observational
data (Janjić et al., 2018). Its key function is to repre-
sent the magnitude and dependence of observation errors
and to balance the weighting between observational and
background information. Since our experiment is designed
as a twin experiment to present a proof of concept, we treat
the simulation results from the EFAS dataset as the ground
truth for validating our approach.

Since the proposed LNM-DA is conducted in latent
space, the formula for calculating the background-error
covariance matrix in latent space B̃ (Melinc &
Zaplotnik, 2024) is shown in Equation (6):

B̃ = ⟨(x̃i
b − x̃i

gt)(x̃
i
b − x̃i

gt)
T⟩, (6)

where x̃i
b represents the latent background vector at the

ith time step, x̃i
gt represents the latent ground-truth vec-

tor at the ith time step, and ⟨⋅⟩ denotes the average over
these pairs. In this research, the background-error covari-
ance matrix is estimated using data from both the training
and validation datasets. The ground truth refers to the
full-model state field from the EFAS dataset, while the
latent ground-truth vector is derived from it after pass-
ing through the decoder. The latent background vector
represents the prediction result of the LSTM model. The
dimension of B̃ is 256 × 256.

For the observation-error covariance matrix R, we esti-
mated it from the covariance matrix of the observation
error (Janjić et al., 2018), shown in Equation (7):

R = ⟨(yi −LNM(x̃i
gt))(y

i −LNM(x̃i
gt))

T⟩. (7)

The observation-error covariance matrix is estimated
using data from both the training and validation datasets

and is then approximated by retaining only the diag-
onal elements. We further assumed that each observa-
tion was independent of the others. Since the num-
ber of missing observations in the dataset is much
smaller than the total number of observations, apply-
ing ARIMA for interpolation does not change the value
of the observation-error covariance matrix significantly.
Therefore, the observations after interpolation are used to
estimate the observation-error covariance matrix in this
method. The dimension of R is 924 × 924.

After estimating the latent background and
observation-error covariance matrices using the training
and validation datasets, these two matrices are fixed and
remain unchanged throughout the 3D-Var process.

4 TRAINING AND ALTERNATIVE
METHODS

4.1 Training strategy

This subsection delineates the strategies employed in
training the NN models as discussed previously. In this
research, during the training of both the predictive model
and LNM, 70% of the dataset is allocated as the training set,
while 10% is assigned to the validation set, and the remain-
ing 20% is designated as the test set. The optimization strat-
egy employed in the training process is stochastic gradient
descent (SGD) with mini-batch processing (Stich, 2018).
When training the NN, the loss function employed is the
mean-square error (MSE) loss function for both the pre-
dictive model and LNM.

During both the network training and the DA pro-
cess, the hardware used was an NVIDIA A100 Tensor
Core GPU.

4.2 Alternative methods

Currently, there is no widely recognized state-of-the-art
implementation designed specifically to address the chal-
lenge posed by the lack of observational operators. In light
of this, we propose two alternative methods based on our
understanding of the problem for comparative analysis.
While these methods do not serve as definitive bench-
marks, they provide reasonable alternatives to illustrate
the strengths and limitations of the proposed LNM method
within this context. In the first alternative method, an
MLP is employed as the observation operator from the
full-model state field to the observations, termed full-space
neural mapping (FNM) (Quilodrán-Casas et al., 2021),
shown in Equation (8), where FNM represents the
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observation operator of FNM-DA, which conducts 3D-Var
in the full space.

The FNM-DA proposes a observation operator FNM
where the input is derived by flattening the non-zero
values of the full-model state field, which is initially a
200 × 200 matrix, into a 14,120 × 1 vector, donated as xf.
After processing through the MLP model, the output is
the observations of a 924 × 1 vector. The formula of the
observation operator of FNM-DA is shown in Equation (8):

xf
i =  (Xi),

yi = FNM(xf
i), (8)

where  represents the transformation function that
maps the full space to a vector space by flattening
the non-zero values, xf represents the state vector after
flattening, and FNM denotes the observation operator of
FNM-DA.

The structure of FNM-DA is shown in Figure 6.
The cost function of the FNM-DA is shown in

Equation (9):

J(x̃) = 1
2
(x̃ − x̃b)TB̃−1(x̃ − x̃b)

+ 1
2
[y−FNM( [(x̃)])]TR−1[y−FNM( [(x̃)])].

(9)

In the second alternative method, a CNN-based map-
ping strategy is proposed to map from the observations
to the full-model state field, termed inverse neural map-
ping (INM: Wang et al., 2022). This mapping strategy is
rooted in the concept of field reconstruction, which goes
beyond simple interpolation. The observations yi serve
as the input to a CNN (LeCun et al., 1998), while the
output of the CNN is represented by X̆i, which implies
that inputting the observation into the CNN results in a
representation that resides in the same spatial domain as

the full-model state field. This representation X̆i, serving
as a reconstructed field, establishes a connection between
the full-model state field and the observations, shown
in Equation (10):

X̆i = INM(yi),

 = 1
n

n∑
i=1

||X̆i − Xi||2, (10)

where X̆i represents the ith time step of the reconstructed
field from the observations, INM represents the recon-
struction operator from the observations to the full-model
state field by CNN, and  represents the loss function
between the reconstructed field from the observations and
the full-model state field.

Considering that the observations are represented
as a 924 × 1 vector and the full-model state field as
a 200 × 200 matrix, a reconstruction operator based
on a CNN with a structure resembling that of a
decoder is employed to facilitate the mapping, shown in
Figure 7.

The cost function of the INM-DA is shown in
Equation (11):

J(x̃) =1
2
(x̃ − x̃b)TB̃−1(x̃ − x̃b)

+ 1
2
([INM(y)] − x̃)TR−1

INM([INM(y)] − x̃), (11)

where RINM represent the error covariance matrix of
observations after being mapped by INM and processed
through  , with a size of 256 × 256.

To facilitate a comparison between LNM and the two
alternative methods, essential information is summarized
in Table 5.

Compared with the two alternative methods, LNM
exhibits a significantly smaller parameter count. This
reduction is attributed to the fact that LNM maps from

F I G U R E 6 Structure of the FNM. (The input of the MLP is the flattened state vector and the output is the vectorized observations.)
[Colour figure can be viewed at wileyonlinelibrary.com]
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WANG et al. 13 of 22

F I G U R E 7 Structure of the INM. (The input of the CNN is the vectorized observation and the output is the full-model state field.)
[Colour figure can be viewed at wileyonlinelibrary.com]

T A B L E 5 Comparison between three mapping strategies.

Mapping strategy LNM FNM INM

Input dimensions 256 × 1 (latent state vector) 14,120 × 1 (flattened state vector) 924 × 1 (observation)

Output dimensions 924 × 1 (observations) 924 × 1 (observations) 200 × 200 (full-model state field)

Model architecture MLP with FC, LayerNorm, Dropout MLP with FC, LayerNorm, Dropout CNN decoder-like structure

Number of parameters ≈ 11.7 m ≈ 204.2 m 323.9 m

Training loss (MSE) ≈ 0.1 ≈ 0.1 ≈ 0.3

the latent state vector to the observations, with an input
size of a 256 × 1 vector. In contrast, FNM takes the flat-
tened state vector, which is a 14,120 × 1 vector, as input
and the output of INM is the full-model state field, which
is a matrix of 200 × 200. Consequently, LNM provides
computational resource savings and enhanced processing
speed due to its smaller input size. Compared with FNM,
both LNM and INM employ convolutional layers. LNM
incorporates convolutional layers when employing CAE
for representation learning. The advantage of utilizing
convolutional operations lies in their ability to extract
spatial features. Additionally, the similar and smaller
training loss of LNM and FNM compared with INM can
be attributed to the fact that the training error of INM
is higher. This is because INM evaluates the training
error by calculating the MSE of the full-model state field,
whereas LNM and FNM calculate the MSE based on the
observations.

5 RESULTS AND DISCUSSION

This experiment implements LNM-DA on two datasets,
EFAS and NRFA, and compares the results of LNM-DA
with those generated by two alternative methods and
LSTM (without DA). The ground truth is the simula-
tion result provided by the EFAS dataset. In the experi-
ment, 3D-Var is conducted every day. Additionally, reg-
ularization is not applied to the alternative methods
or our model. Implicit regularization is already incor-
porated in the background-error covariance matrix and
the observation-error covariance matrix. The optimization
problem exhibits good convergence and numerical sta-
bility, making additional regularization unnecessary. In
this section, the results of four randomly selected time
intervals, each comprising 30 sequential time steps, are
employed as a demonstration to assess the performance of
our approach.
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5.1 Comparison of results

Firstly, MSE is utilized as the criterion for comparing the
accuracy between LNM-DA, LSTM (without DA), and two
alternative methods (FNM-DA and INM-DA), shown in
Equation (12):

MSE = 1
n

n∑
i=1

(Xi
a − Xi

gt)
2, (12)

where i represents the time step, Xi
a represents the

full-model analysis state at the ith time step, and Xi
gt rep-

resents the ground truth at the ith time step. The results
of MSE for LNM-DA, LSTM (without DA), and two alter-
native methods (FNM-DA and INM-DA) are depicted in
Figure 8. The ground truth is represented by the simula-
tion data derived from the EFAS dataset.

In Figure 8, the red, blue, orange, and green sym-
bols represent the error between the results predicted
by LSTM and the ground truth, the result of LNM-DA
and the ground truth, the result of FNM-DA and the
ground truth, and the result of INM-DA and the ground
truth, respectively. As evident from the figure, the error
of LNM-DA has decreased significantly, exhibiting an
average reduction of 55.9% compared with the LSTM
prediction. The most substantial decrease recorded is
60.1%. In FNM-DA, the average reduction in error is
34.1%, with the most significant decrease being 40.7%. In
INM-DA, the average reduction in error is 18.7%, with
the most substantial decrease recorded at 21.1%. None
of these methods performs as well as the ground truth.
In LNM-DA, the incorporation of the CAE facilitates a
structural arrangement comprising convolutional lay-
ers, thereby accommodating the positional information

of both the full-model state field and the corresponding
observations. This methodology stands in contrast to the
two alternative methods, consequently yielding a dimin-
ished assimilation error within LNM-DA. As shown in
Figure 8, the error of LNM-DA is smaller than the error
of the two alternative methods. From the mean and maxi-
mum values of error, it can be concluded that LNM-DA is
more accurate than the two alternative methods proposed
in Section 4.2.

The rationale behind this result is that, when LNM-DA
performs 3D-Var in latent space, the correction is applied
to the latent representation of the background field. As a
result, the latent representation of the background field
is rectified. After the decoder process, the background
field’s representation is reconstructed into full space,
indicating that the full-model analysed field is also cor-
rected. The structure of the CAE captures the spatial
correlations of the full-model state field, providing addi-
tional information to improve the correction of the field.
Furthermore, the CAE acts as a denoising method (Ash-
fahani et al., 2020; Gondara, 2016; Saad & Chen, 2020;
Vincent et al., 2010) and can effectively remove errors
caused by noisy information that accumulate during the
3D-Var process. However, when conducting INM-DA
in full space, the sparse distribution of observations
across full space makes it challenging to reconstruct
the full-model state field accurately. Similarly, when
FNM-DA performs 3D-Var, it needs to pass through the
decoder to return to full space and then use the FNM as
the observation operator. This process also leads to error
accumulation.

Additionally, to ensure a comprehensive compar-
ison, we selected one month of observations from
NRFA to evaluate these methods and calculate the MSE

F I G U R E 8 The MSE for the test data over a span of four months is compared for LNM-DA, LSTM, and two alternative methods
(FNM-DA and INM-DA). [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 9 MSE against the observations from the NRFA dataset over the test data over one month is compared for LNM-DA, LSTM,
two alternative methods (FNM-DA and INM-DA), and the simulation data from the EFAS dataset. [Colour figure can be viewed at
wileyonlinelibrary.com]

F I G U R E 10 NSE over a span of four months is compared for LNM-DA, LSTM, and two alternative methods (FNM-DA and INM-DA).
[Colour figure can be viewed at wileyonlinelibrary.com]

between these methods and the observations, as illustrated
in Figure 9.

In Figure 9, the black symbols represent the error
between the simulation data from the EFAS dataset and
the observations from the NRFA dataset. The results indi-
cate that LSTM exhibits the largest discrepancy between
predicted values and observations. Similarly, the two alter-
native methods also show a considerable gap compared
with the observations. In contrast, the predictions of our
proposed LNM-DA method align closely with those of
simulation data from the EFAS dataset, suggesting that
LNM-DA has a smaller error compared with LSTM and
the two alternative methods. Given that the observations
also contain some level of uncertainty, the errors of both
our method and EFAS relative to the observations are sim-
ilar. Therefore, it can be concluded that our method is
comparable with EFAS.

Secondly, the NSE (Nash & Sutcliffe, 1970) is a scalar to
evaluate the predictive skill of hydrological models, shown

in Equation (13):

NSE = 1 −
∑n

i=1(Qi
o − Qi

m)2

∑n
i=1(Qi

o − Q)2
, (13)

where Qi
o represents the observed river discharge at the

ith time step, Qi
m represents the river discharge from the

model prediction or assimilation at the ith time step,
and Q represents the mean of the observed river dis-
charge. Hence, the NSE is utilized as a criterion for
comparing the performance of LNM-DA, LSTM (without
DA), and two alternative methods, shown in Figure 10.
The value of NSE ranges from negative infinity to 1,
with values closer to 1 indicating better predictive per-
formance of the model. From the figure, it can be seen
that the value of LNM-DA is closer to 1 compared with
the two alternative methods, which means that LNM-DA
is a model with better predictive performance. Compared
with the LSTM prediction, LNM-DA shows an average
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improvement of 44.8%, FNM-DA improves by an average
of 31.1%, and INM-DA achieves an average improvement
of 14.5%. Therefore, the combination of two evaluation
indexes, MSE and NSE, proves that LNM-DA has better
performance in the prediction of river discharge.

Thirdly, the structural similarity (SSIM) is compared in
Figure 11. SSIM is a metric used to assess the structural
similarity of an image, ranging from a maximum value of
1 to a minimum value of −1. The larger the value of SSIM,
the more structurally similar the two images are deemed
to be. SSIM takes the mean, variance, and covariance into
account, as shown in Equation (14):

SSIM(Xi
a,Xi

gt) = [l(Xi
a,Xi

gt)]
𝛼[c(Xi

a,Xi
gt)]

𝛽[s(Xi
a,Xi

gt)]
𝛾 ,

l(Xi
a,Xi

gt) =
2𝜇Xi

a
𝜇Xi

gt
+ C1

𝜇2
Xi

a
+ 𝜇2

Xi
gt
+ C1

,

c(Xi
a,Xi

gt) =
2𝜎Xi

a
𝜎Xi

gt
+ C2

𝜎2
Xi

a
+ 𝜎2

Xi
gt
+ C2

,

s(Xi
a,Xi

gt) =
2𝜎Xi

aXi
gt
+ C3

𝜎2
Xi

a
+ 𝜎2

Xi
gt
+ C3

, (14)

where Xi
a represents the full-model analysis field at the

ith time step, Xi
gt represents the ground truth at the ith

time step, l(Xi
a,Xi

gt) represents the mean, c(Xi
a,Xi

gt) rep-
resents the variance, s(Xi

a,Xi
gt) represents the covariance,

𝛼, 𝛽, and 𝛾 are coefficients, and C1, C2, C3 are variables
to stabilize division with a weak denominator. In this
experiment, SSIM is used to compare the predicted struc-
tural similarity between the full-model analysed state and
the ground truth, and the corresponding elements to be
considered are the mean and variance of the full-model

analysed field. The specific implementation is realized
through the scikit-image library (Van der Walt et al., 2014),
and the parameters involved in the SSIM formulation are
default values (𝛼 = 𝛽 = 𝛾 = 1, C1 = 0.01, C2 = 0.03, and
C3 = 0.015).

As shown in Figure 11, SSIM of LNM-DA demonstrates
an average increase of 3% compared with the LSTM predic-
tion. Additionally, SSIM of FNM-DA displays an average
increase of 2.3%, while that of INM-DA shows an aver-
age increase of 1.3%. In most instances, the result of LNM
surpasses the LSTM prediction and the two alternative
methods concerning the SSIM. It can be concluded that the
SSIM of the result of LNM-DA is larger than that of LSTM
and the two alternative methods. Therefore, the mean and
variance of the result of LNM-DA tend to be closer to the
ground truth, and the covariance between the result of
LNM-DA and the ground truth tends to be close to 1.

Fourthly, the standard deviation (STD) is a statisti-
cal indicator that measures the degree of distribution or
variation of data, shown in Equation (15):

ei = Xi
a − Xi

gt,

ē = 1
n

n∑
i=1

ei,

STD =

√√√√ 1
n

n∑
i=1

(ei − ē)2, (15)

where ei represents the predicted error at the ith time step,
and ē represents the mean value of the predicted error. The
results of STD for LNM-DA, LSTM, and two alternative
models are depicted in Figure 12.

As shown in Figure 12, on average, the standard devi-
ation (STD) of LNM-DA decreases by 56% compared with

F I G U R E 11 SSIM over a span of four months is compared for LNM-DA, LSTM, and two alternative methods (FNM-DA and
INM-DA). [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 12 STD over a span of four months is compared for LNM-DA, LSTM, and two alternative methods (FNM-DA and INM-DA).
[Colour figure can be viewed at wileyonlinelibrary.com]

the LSTM prediction, while FNM-DA achieves a 48.5%
reduction and INM-DA shows a 38.4% decrease. When the
STD is close to 0, it indicates that the prediction error is
tightly clustered around the mean, reflecting more stable
and consistent model performance. Conversely, a larger
STD suggests greater variation in the prediction error, indi-
cating that the model’s performance is less consistent and
stable. Therefore, compared with the LSTM prediction and
the two alternative methods, LNM-DA exhibits a lower
STD, indicating that the results produced by LNM-DA are
more reliable and stable. This is particularly crucial for
flood prediction, where consistency and stability are of
utmost importance.

5.2 Visualization of the results

To visualize the results, the 2D absolute values of errors
between the full-model background field and ground truth
standardized by upstream area are plotted for seven con-
tinuous chosen time steps, shown in Figure 13. This figure
clearly demonstrates that all three methods (LNM-DA,
FNM-DA, and INM-DA) effectively reduce the prediction
error of the LSTM model to some extent. Moreover, it is evi-
dent that the error of LNM-DA is significantly smaller than
that of the other two methods, highlighting its superior
performance. The 2D absolute error results align closely
with the outcomes of our previously calculated evaluation
metrics, validating the consistency and reliability further.

Additionally, the 2D errors can be analysed by dividing
the data into two regions: the UK and Ireland. The key
distinction between the two areas is that the Ireland area
lacks observations.

In the UK region, the errors of the three methods are
more similar in the England area, as they correct the LSTM

prediction error effectively. This improvement is attributed
to the higher density of observation points in the England
region. The abundance of observational data allows the
3D-Var process to adjust and refine the LSTM predictions
better. In contrast, in the Scotland region, the errors of the
two alternative models are larger than those of LNM-DA
due to the sparser distribution of observation points. This
indicates that our method performs significantly better
in areas with limited observational data compared with
the other two methods, as evidenced by the results in the
figure. Similar results are observed in Northern Ireland,
where LNM-DA outperforms the other two alternative
methods, demonstrating its superior ability to correct pre-
diction errors even in areas with sparse observational data.
The reason for this is that FNM-DA relies on a decoder
to revert to the full space during data assimilation, lead-
ing to an accumulation of model errors in the prediction
process. Similarly, INM-DA’s field reconstruction network
exhibits larger errors in regions with sparse observations,
contributing further to the accumulation of errors in these
areas.

In Ireland, the results of LNM-DA are clearly superior
to those of the other two alternative methods, as it corrects
the LSTM predictions significantly. Among the two alter-
natives, INM-DA performs poorly because its field recon-
struction relies on observations, which are absent in the
Ireland region. This lack of observational data leads to a
larger error in the field reconstruction, preventing effective
correction in the data assimilation process and resulting
in error accumulation. On the other hand, while FNM-DA
performs better than INM-DA due to its approach, it
still does not achieve the same level of performance as
LNM-DA. This is because, after using the decoder, error
accumulation occurs. Additionally, since the observation
operator operates in full space, its impact on regions with
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18 of 22 WANG et al.

F I G U R E 13 2D absolute value of errors of LNM, LSTM, and two alternative methods standardized by upstream area for seven
continuous chosen time steps. [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E 14 Correlation between the islands of Great Britain and Ireland. (The horizontal coordinates of the correlation plot represent
location points in Great Britain, while the vertical coordinates correspond to location points in Ireland. The red-boxed regions in the right
graph indicate areas where there is relatively high spatial correlation between points in Great Britain and points in Ireland, corresponding to
the red-boxed regions in the left graph.) [Colour figure can be viewed at wileyonlinelibrary.com]

no observations is less effective compared with latent
space. The encoder–decoder structure in LNM-DA, how-
ever, captures spatial correlations and provides additional
information, enabling better corrections in areas with
sparse or no observations.

To provide detailed information about the spatial cor-
relation in the full-model state field, which helps explain
why LNM-DA performs better than the other two alter-
native methods in areas with sparse (Scotland and North

Ireland) or no observations (Ireland), the correlation
between the backgrounds in the islands of Great Britain
(England, Scotland, and Wales)and Ireland (Northern Ire-
land and Ireland) is calculated, as illustrated in Figure 14.
This figure highlights the spatial relationships within
the full-model state field, demonstrating how LNM-DA
leverages the CAE to capture these correlations, enabling
improved predictions in regions with limited or no obser-
vational data.
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F I G U R E 15 The Great Britain part of each panel illustrates the correlation corresponding to the red dot in Ireland. Meanwhile, the
blue lines in the Ireland part of each panel indicate rivers with high discharge. [Colour figure can be viewed at wileyonlinelibrary.com]

In Figure 14, the horizontal axis represents the location
points in Great Britain, while the vertical axis represents
the location points in Ireland. The region outlined in red
represents the Great Britain state field, which exhibits high
correlation with the Ireland state field. This observation
suggests that the patterns of river discharge are similar
in the two regions. Additionally, to represent the correla-
tion between the islands of Great Britain and Ireland more
accurately, we selected two points on the island of Ireland
and plotted the corresponding correlation for the island of
Great Britain, shown in Figure 15.

In Figure 15, the Great Britain part of each panel
illustrates the correlation corresponding to the red dot
in Ireland. Meanwhile, the blue lines in the Ireland part
of each panel indicate rivers with high discharge. We
observe a strong correlation between the points in the
Ireland region and the western coast of Great Britain, as
well as a significant correlation with the red-boxed section
in Figure 14. Consequently, when using LNM-DA, the
CAE can capture this spatial correlation effectively, lead-
ing to improved prediction accuracy by leveraging these
similarities between the UK and Ireland.

5.3 Runtime comparison

The runtimes of the LNM-DA and two alternative methods
(FNM-DA and INM-DA) are compared, shown in Table 6.

The runtime is calculated by setting the number of
iterations to 500 and conducting 3D-Var for a one-day
prediction on the GPU. From the table, it is evident that

T A B L E 6 Runtime of 3D-Var with different methods over
500 iterations for a one-day prediction.

Method Time (s)

LNM-DA ≈ 1.5

FNM-DA ≈ 2.5

INM-DA ≈ 1

the running times for all three methods are around 1–2
seconds, which largely speeds up 3D-Var and meets the
requirements of flood prediction. Since the dimensions
of the background-error covariance matrix are the same
for LNM-DA, FNM-DA, and INM-DA, and the dimension
of the observation-error covariance matrix in INM-DA is
smaller than those in FNM-DA and LNM-DA, INM-DA
achieves the greatest running speed. Furthermore, since
the observation operator in FNM-DA operates in full
space, it requires to pass through the decoder during the
3D-Var process, making it the slowest method.

6 CONCLUSION AND FUTURE
WORK

This article proposes a LNM to address the challenges
of applying 3D-Var in hydrology for the prediction of
river discharge. By conducting 3D-Var in latent space,
this method reduces computational cost and enhances
the speed of 3D-Var, making it suitable for flood predic-
tion. More importantly, this method resolves the issue of
the lack of an observation operator from the latent state
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vector to the observations by utilizing NN for this mapping.
According to the results, LNM has been demonstrated to
be more accurate and efficient compared with the LSTM
prediction and two alternative methods.

In hydrology applications, there are several variables
related to river discharge, such as soil moisture and rain-
fall, which do not have an explicit observation function to
represent their relationship with river discharge. The LNM
presented here has the ability to construct such an obser-
vation function using NN. Moreover, it can broaden the
range of observation types as long as the observation can
be deduced from the state field.

In future research, to achieve more accurate results,
we can incorporate a Voronoi operator (Cheng et al., 2024)
into the DA, which can represent the relationship between
the observations and the full-model state field. This
Voronoi operator could contribute to obtaining more accu-
rate results for river discharge, which is crucial for predict-
ing floods. Additionally, we consider that 4D-Var provides
more stable and accurate results than 3D-Var by incorpo-
rating the time dimension. Therefore, LNM and 4D-Var
will be combined to achieve even greater accuracy. Fur-
thermore, the temporal and spatial resolution of the state
field is not adequate for predicting floods in small areas.
Therefore, we need to devise a method to enhance the
resolution by integrating information from observations.
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