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Abstract: With the intensification of global climate change, the frequent occurrence of ty-
phoon disaster events has become a great challenge to the sustainable development of cities
around the world; thus, it is of great significance to carry out the assessment of typhoon-
directed economic losses. Typhoon disaster loss assessment faces key challenges, including
complex regional environments, scarce historical data, difficulties in multi-source hetero-
geneous data fusion, and challenges in quantifying assessment uncertainties. Meanwhile,
existing studies often overlook the complex relationship between the spatial expansion
of urban and rural construction (SEURC) and typhoon disaster losses, particularly their
differential manifestations across different regions and disaster intensities. To address these
issues, this study proposes CLPFT (Comprehensive Uncertainty Assessment Framework
for Typhoon), an innovative assessment framework integrating prototype learning and un-
certainty quantification through a UProtoMLP neural network. Results demonstrate three
key findings: (1) By introducing prototype learning, a meta-learning approach, to guide
model updates, we achieved precise assessments with small training samples, attaining an
MAE of 1.02, representing 58.5–76.1% error reduction compared to conventional machine
learning algorithms. This reveals that implicitly classifying typhoon disaster loss types
through prototype learning can significantly improve assessment accuracy in data-scarce
scenarios. (2) By designing a dual-path uncertainty quantification mechanism, we realized
high-reliability risk assessment, with 95.45% of actual loss values falling within predicted
confidence intervals (theoretical expectation: 95%). This demonstrates that the dual-path
uncertainty quantification mechanism can provide statistically credible risk boundaries for
disaster prevention decisions, significantly enhancing the practical utility of assessment
results. (3) Further investigation through controlling dynamic assessment factors revealed
significant regional heterogeneity in the relationship between SEURC and directed eco-
nomic losses. Furthermore, the study found that when typhoon intensity reaches a critical
value, the relationship shifts from negative to positive correlation. This indicates that
typhoon disaster loss assessment should consider the interaction between urban resilience
and typhoon intensity, providing important implications for disaster prevention and mitiga-
tion decisions. This paper provides a more comprehensive and accurate assessment method
for evaluating typhoon disaster-directed economic losses and offers a scientific reference
for determining the influencing factors of typhoon-directed economic loss assessments.
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1. Introduction
Typhoons are powerful natural disasters that can cause enormous economic losses in

a short period. China, with its extensive coastline, is one of the countries most frequently
affected by extreme weather events [1]. According to meteorological department statistics,
natural disasters caused approximately 626,000 deaths and affected over 2 billion people in
China during the decade from 1992 to 2001 [2]. Among various meteorological disasters,
typhoons cause the most severe losses [3].

In recent years, global climate change and human-induced land use changes have
made ecosystems more vulnerable to meteorological disasters [4]. The frequent occurrence
and severe impact of typhoon disasters, coupled with rapid SEURC, have intensified the
conflicts between human activities, land use, and disasters. In the face of severe disas-
ter situations, building resilient cities has become a global urban strategy. Additionally,
the phenomenon of climate gentrification has emerged as a critical issue [5], where socio-
economically disadvantaged populations are disproportionately displaced from resilient
urban areas, further exacerbating the socio-economic vulnerabilities in typhoon-prone
regions [6]. This situation has prompted both developing and developed countries to
pay attention to natural disaster assessment issues associated with land use changes and
the spatial expansion of urban and rural construction (SEURC) [7]. Accurate assessment
of directed economic losses caused by typhoons and revealing their relationship with
SEURC are crucial for disaster risk management and resilient spatial planning. However,
due to numerous influencing factors and complex non-linear relationships among them,
typhoon economic loss assessment remains a challenging topic. Against the backdrop
of intensifying global climate change and China’s rapid urbanization, frequent typhoon
disasters pose serious challenges to China’s territorial security and development. Con-
sequently, the relationship between typhoon economic losses and SEURC has become a
hot topic in environmental science, urban planning, geography, and disaster management
fields. Typhoon economic loss assessment methods can be broadly classified into five
categories: physics-based assessment methods, statistics-based assessment methods, expert
experience-based methods, economic model methods, and modern artificial intelligence
methods. (1) Physics-based methods simulate loss processes by constructing typhoon
hazard chains and vulnerability curves, such as the HAZUS model [8] and Florida Public
Hurricane Loss Model (FPHLM) [9]. While these methods have good physical interpretabil-
ity, they often require extensive detailed building information and hazard parameters,
limiting their practical application. (2) Statistics-based methods mainly employ multi-
variate regression analysis, Generalized Linear Models (GLM), and other techniques to
establish relationships between losses and impact factors. For example, Huang et al. [10]
proposed a study that developed a typhoon disaster loss assessment model for Taiwan
using exponential regression analysis, analyzing meteorological and disaster indicator data
from 1965–2004, and validated with typhoon cases from 2005–2013, which demonstrated
relatively accurate assessment of typhoon disaster losses within certain parameters. While
these methods are computationally simple, they struggle to capture complex non-linear
relationships. (3) Expert experience-based methods rely on expert knowledge bases and
scoring systems, which are highly subjective and struggle to adapt to rapidly changing
urban environments. (4) Economic model methods include input-output models [11],
Computable General Equilibrium (CGE) models [12,13], and EC-IO joint models [3]. While
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these methods excel at evaluating in direct economic losses and industrial linkage impacts,
they often involve idealized model assumptions and have high data requirements. (5) In
recent years, with the rapid development of artificial intelligence technology, data-driven
machine learning methods have shown enormous potential in typhoon loss assessment.
Early research mainly employed traditional machine learning algorithms such as Support
Vector Machine (SVM), Random Forest (RF), and simple BP (Back Propagation) neural
networks. For instance, Lou et al. (2012) [14] used PCA analysis to process disaster as-
sessment factors, environmental factors, and disaster-affected body characteristics, using
the extracted principal components as inputs for a BP neural network model to evaluate
tropical cyclone economic losses. This method not only considered multiple influencing
factors but also effectively handled non-linear relationships, showing good assessment
results through practical validation.

Yang et al. [15] utilized tree-based machine learning models (Random Forest, XGBoost,
LightGBM, and CatBoost), combining flood sensitivity, marine meteorological, and vul-
nerability data to predict directed economic losses from tropical cyclones at the county
level in Guangdong Province. They verified the advantages of flood sensitivity in the
model and conducted relevant factor analysis and loss prediction for Typhoon “Mangkhut”.
With the maturation of deep learning technology, neural-network-based methods have
begun to emerge. Kim et al. [16] developed a typhoon damage prediction model using Deep
Neural Network (DNN) algorithms based on damage data from Typhoon “Lusha” through
adjustment and learning of network structure and hyperparameters, and comparison with
multivariate regression models. The results showed that the DNN model demonstrated
lower Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) in predicting
building losses caused by typhoons, exhibiting higher reliability and adaptability, thus
providing effective assistance for reducing typhoon damage and related risk management.
Yu et al. [17] conducted a storm surge risk assessment in China’s Shuangyue Bay unde-
veloped coastal areas based on deep learning and GIS technology, using an improved
Transformer model to extract building outlines combined with drone measurements for
building heights. This effectively identified high-risk areas and provided quantitative
economic loss assessments and zoning maps, helping governments formulate disaster
prevention measures and optimize land use planning. These advanced machine learning
and deep learning models, with their powerful non-linear fitting capabilities and automatic
feature extraction abilities, can better mine complex patterns contained in multi-source
heterogeneous data, opening new paths for improving the accuracy of typhoon economic
loss assessment. However, most existing studies focus on point predictions of typhoon dis-
aster losses, while in practical applications, the uncertainty of prediction results is equally
important [18], as this uncertainty guides emergency response decisions. Meanwhile, data
scarcity severely limits the development of artificial intelligence technology in the field
of typhoon damage assessment [19]. Typhoons are natural disasters with a relatively low
frequency of occurrence. Compared to other common meteorological phenomena such
as rainfall and temperature changes, historical observational records of typhoon events
are quite limited. Taking China as an example, the average number of typhoons making
landfall each year is about 7–8, and typhoons with complete disaster statistics data are
even rarer. This data scarcity results in small sample sizes for typhoon disaster datasets,
making them typical small-sample datasets [20]. The lack of training samples poses a
significant challenge to traditional data-driven models, as these models struggle to learn
sufficiently generalizable prediction patterns from limited data. Therefore, how to achieve
an accurate assessment of typhoon disasters based on small-sample datasets is a key issue
that needs to be urgently addressed in this research. On one hand, assessment models
specifically designed for small-sample data should be constructed. On the other hand,
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as many relevant data as possible should be utilized as predictive factors to enhance the
model’s assessment capabilities. For loss assessment of natural disasters like typhoons, it is
natural to consider incorporating factors such as the destructive power of the typhoon event
itself, the environmental vulnerability of the affected areas, and economic vulnerability
into the assessment model. This approach aligns with intuitive thinking, and some studies
have confirmed this [11].

As global urbanization progresses, the SEURC has become increasingly intertwined
with the frequent occurrence of natural disasters. On the one hand, this is particularly
evident in high-risk areas such as coastal regions, where the SEURC often directly or
indirectly influences the consequences of natural disasters, including typhoons [21]. On the
other hand, climate change and natural disasters have a significant impact on land use
in China [22]; natural disasters, such as floods, droughts, and typhoons, can lead to the
destruction of agricultural land, changes in soil quality, and disruptions to irrigation
systems. For example, typhoons may cause severe flooding, which can erode topsoil,
contaminate farmland with saltwater, and damage agricultural infrastructure. These
impacts can reduce the productivity of agricultural land and even render some areas
unsuitable for farming. Regarding the mechanism of how SEURC affects natural disasters,
several key manifestations include environmental degradation caused by SEURC, resource
and environmental pressures exceeding carrying capacity, infrastructure vulnerability due
to the absence of resilience planning, and high exposure of population and economic
assets due to concentrated population density and economic activity [23–27]. Furthermore,
research indicates that the close relationship between SEURC and natural disasters is
manifested not only in the former’s impact on the latter but also in the latter’s reverse
impact on the former. For example, natural disasters can restrict the direction and cost of
SEURC [28,29]. However, empirical evidence suggests that the impact of climate change
and natural disasters on urban land use patterns is negligible [30]. It should be noted that
the strength of the correlation between these two factors varies across different regions.

In summary, existing research provides a solid foundation for this study, but several
challenges remain: (1) Due to the limited historical statistical data on typhoon disasters,
the scarcity of available training samples, and the complexity of regional environments,
current research faces significant challenges in constructing small-sample multi-source
datasets. Additionally, existing studies have not been able to develop deep learning
models that can accurately evaluate small-sample datasets. (2) Furthermore, existing
evaluation methods generally lack the capability to quantify uncertainty. In practical
applications, they only provide a single evaluation value without offering a confidence
estimate, which significantly limits the practical application value of the evaluation results
in disaster prevention and mitigation decision-making. (3) Although previous studies
suggest that SEURC can affect natural disasters, few studies have incorporated factors
related to SEURC into assessment models. Existing studies have primarily relied on
comparative analysis methods and comprehensive inductive approaches to reveal their
correlation [28], focusing on phenomenological description and empirical judgment while
lacking exploration of quantitative characterization of their correlation. Therefore, existing
research provides insufficient explanations when addressing questions such as why factors
related to SEURC have not been incorporated into disaster loss assessment models, how
to quantitatively characterize regional differences in their correlation, and whether their
relationship is limited to simple linear relationships or completely positive correlations.
Therefore, the paper raises the research questions as follows: 1. How can we construct an
assessment method for typhoon-directed economic losses that can handle small-sample
datasets and quantify uncertainty? 2. How can we reveal the correlation between urban
and rural construction spatial expansion and typhoon-directed economic losses through
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quantitative analysis, and how does this correlation vary across different regions and
typhoon intensities? 3. Why has existing research not incorporated land use data into
provincial-level typhoon disaster assessment models? Based on this, this study proposes
a research hypothesis regarding the correlation between SEURC and typhoon disasters,
suggesting that, for provincial panel data, land use data should be incorporated into
typhoon disaster assessment models.

To address the challenges of assessing directed economic losses caused by typhoons,
as discussed above, and to provide a reasonable explanation for why land use data is rarely
incorporated as a factor in typhoon-directed economic loss assessments at the provincial
scale, this paper first establishes an assessment framework for Typhoon and proposes a
research hypothesis that, in the provincial panel, land use data should be incorporated
into the typhoon disaster assessment system. Secondly, the dataset collected and compiled
for this study further presents the experimental results based on these data, specifically
analyzing the impact of land use factors in the assessment of directed economic losses
caused by typhoons. Additionally, it delves deeper into the complex relationship between
land use data and typhoon-directed economic losses. Through experiments comparing the
results of loss assessments with and without the inclusion of land use data, an empirical
analysis is conducted based on the outcomes, leading to the final conclusions.

2. Research Methodology and Data Sources
2.1. Reserch Framework

This paper proposes a framework for assessing directed economic losses from ty-
phoons: CLPFT. As shown in Figure 1:

Step 1: Similar to other loss assessment frameworks, it collects data that may influence
assessment results and performs classification processing. The paper assumes that land use
data will have an impact on typhoon damage assessment and screening evaluation on the
data. The collected data encompass four major categories: meteorological data, disaster
impact data, socio-economic vulnerability data, and land use data. Using the Pearson
correlation coefficient, Mutual Information, and F-statistic, the relationships between all
assessment factors and the assessment outcome—direct economic losses—were analyzed.
Seven features from the dataset were selected as fixed assessment factors, including meteo-
rological data (‘maximum wind force’, ‘maximum wind speed’) representing the typhoon
event characteristics, and disaster impact data: ‘affected population (10,000 persons)’, ‘re-
located population (10,000 persons)’, ‘deaths (persons)’, ‘affected area (10,000 hectares)’,
and ‘collapsed houses (10,000 units)’. It is worth mentioning that to explore the complex
impact relationship between land use data and typhoon disasters, this study introduced
variable predictors, selecting “proportion of construction land use” as a variable assessment
factor. Analysis and discussion were conducted on the model assessment changes caused
by this factor through comparative experiments.

Step 2: The UProtoMLP model within CLPFT performs the loss assessment task. Direct
economic loss serves as the model’s primary output while providing confidence levels
and intervals based on dual uncertainties from both data and the model. To accurately
assess typhoon-directed economic losses using selected assessment factors and provide
confidence levels for assessing assessment accuracy, this paper proposes a prototype
learning-based (Section 2.2.1) deep learning model called UProtoMLP. The model consists of
an input layer, feature extractor, prototype learning layer, regression head, and uncertainty
estimation head. Specifically, original typhoon-related feature inputs undergo feature
extraction through multiple fully connected networks, then compare with learned data
distribution prototypes. Finally, the regression head outputs the assessments of typhoon-
directed economic losses. Concurrently, the uncertainty estimation head offers reliability
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evaluations for these assessments by considering both data-related and model-related
uncertainties. His dual-path structure not only accurately assesses economic losses but also
provides assessment confidence levels, offering comprehensive information support for
subsequent decision-making.
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Step 3: Finally, the trained model was used to assess and test selected typhoon events,
with test results demonstrating the model’s ultimate performance.

2.2. Research Methodology
2.2.1. Prototype-Based Learning

Prototype learning is a machine learning method that represents the entire data
distribution by learning typical samples (prototypes) from the dataset [31]. For historical
typhoons, they can be easily classified according to their inherent attributes [32], such as by
wind force levels or by the direct economic losses they caused. In this paper, we choose
to use unsupervised clustering to classify all typhoons in the dataset based on different
levels of losses they caused. Through the elbow method [33] and K-means clustering
analysis [34], four different typhoon categories were identified, which will serve as prior
knowledge for UprotoMLP. Different categories of typhoon events indicate different types
of direct economic losses. Therefore, this paper introduces prototype learning into the
model to perform implicit classification within the model for assessing typhoon-directed
economic losses. Based on prior knowledge from the preliminary analysis, we set the
number of prototypes to 4 [35]. Specifically, the regression head of the model provides an
initial assessment based on the typhoon’s feature representation, followed by calculating
the distance between the extracted features and the stored prototypes.

d( f (x), pk) = || f (x)− pk||2 (1)

In the formula, ∥ · ∥2 denotes the Euclidean distance, and f (x) is the normalized
feature representation. pk represents the kth stored prototype among the 4 prototypes
set based on prior knowledge from the preliminary analysis and is used to calculate the
distance with the extracted feature f (x) for the implicit classification within the model in
assessing typhoon-directed economic losses.

This distance calculation occurs in the feature space, rather than directly comparing the
assessed values with the prototypes. The final assessment is the average of the regression
head output and the output based on prototype distances:

yp = −α · d( f (x), P) (2)

In the formula, α is a learnable scaling factor, d(x) is the distance metric function, f(x)
is the feature representation of the input sample, and P is the set of prototypes. The final
fusion output:

y f =
yr +

1
K ∑K

k=1 yp,k

2
(3)

In the formula, yr is the output of the regression head, yp,k is the output of the kth
prototype contribution, k is the total number of prototypes.

After each training batch, the model updates the prototype with the features of the
current batch and the corresponding labels (actual economic loss values):

pk =
1

|Ck| ∑
xi∈Ck

f (xi) (4)

In the formula, Ck is the set of samples of the kth class, f (xi) is the feature repre-
sentation of the samples after the feature extractor, |Ck| is the number of samples of the
kth class.

This updating process is based on the distribution of label values, ensuring that the
prototypes can represent different categories of economic loss levels. The typhoon dataset
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is inherently a few-shot dataset, which means that deep learning models must represent
complex data patterns with extremely limited data. The introduction of prototype learning
brings prior knowledge to the model—typhoon event loss classification. Prototype learning
bridges the assessment error through the distance between prototype centers and assessed
results. According to the ablation study results, this significantly improves the model’s
assessment accuracy on the few-shot dataset by approximately 20%.

2.2.2. Uncertainty Assessment

In typhoon disaster management, accurate assessment of direct economic losses is
crucial for resource allocation and emergency response. However, due to the complexity
and interactions of influencing factors, such assessments inherently involve uncertainties.
To provide more comprehensive decision support, a single point estimate is insufficient.
Simply put, assessment models should provide both direct economic loss forecasts and cor-
responding confidence assessments of these assessments, offering decision-makers richer
information to develop more robust strategies for different scenarios. For instance, when
assessed losses are both 5, decision outcomes should clearly differ between cases with
confidence levels above 99% versus below 68%. Therefore, this paper categorizes uncer-
tainty into epistemic uncertainty and aleatoric uncertainty based on real-world conditions
and utilizes uncertainty assessment to provide confidence levels for point assessments.

Epistemic uncertainty reflects the model’s assessment limitations for unusual typhoon
types or special cases when training is insufficient. For instance, when the model encoun-
ters super typhoons that are rare in historical data, it may exhibit high epistemic uncertainty.
While this uncertainty can be reduced by increasing the diversity and quantity of training
data, it is often difficult to eliminate completely in practical applications. Aleatoric uncer-
tainty, on the other hand, reflects the inherent randomness and unpredictability in typhoon
loss assessment. Even with a perfect assessment model, there will still be a certain degree
of uncertainty due to inherent variability in economic loss assessment, measurement errors
in data collection, dynamic changes in the socio-economic conditions of typhoon-affected
areas, and regional environmental complexity. This type of uncertainty is an inherent
characteristic of the data itself and cannot be completely eliminated simply by increasing
data volume or improving the model. For epistemic uncertainty: The model is set to
training mode with dropout layers remaining active, performing multiple forward passes
on the same input data and collecting the results. The standard deviation of these multiple
assessments represents the epistemic uncertainty. Using Monte Carlo Dropout effectively
approximates posterior inference in Bayesian neural networks through sampling [36],
where each forward pass with dropout is equivalent to sampling a set of weights from an
approximate posterior weight distribution. This method simulates parameter uncertainty
in Bayesian inference:

ue =

√√√√ 1
T

T

∑
t=1

(ŷt − ȳ)2 (5)

In the formula, T is the number of Monte Carlo samples, ŷt is the assessed value of the
tth sampling, ȳ is the mean of all sampled assessed values.

For aleatoric uncertainty: The uncertainty head of the model predicts an uncertainty
value for each input sample. During multiple Monte Carlo sampling iterations, an uncer-
tainty prediction is obtained each time. Finally, the average of these multiple uncertainty
predictions is considered as the aleatoric uncertainty. In this process, the model directly
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learns to predict the inherent noise level of the data, and multiple sampling is primarily
used to obtain stable estimates of aleatoric uncertainty [37]:

ua =
1
T

T

∑
t=1

st (6)

st represents the uncertainty prediction obtained by the uncertainty head of the model for
each input sample during the tth Monte Carlo sampling iteration. Meanwhile, to quantify
the reliability of assessment results, this paper constructs confidence intervals based on
uncertainty estimation. Assuming the assessment errors follow a Gaussian distribution,
the formula for calculating the 95% confidence interval is:

CI95% = [ŷ − 1.96ut, ŷ + 1.96ut] (7)

in the formula, ut is the total uncertainty, including both epistemic and aleatoric uncertainties.
The coefficient 1.96 corresponds to the 97.5th percentile of the standard normal distri-

bution, meaning that approximately 95% of the true values should fall within this interval.
This confidence interval provides a practical metric for assessment reliability: a narrower
interval indicates more reliable assessment results, while a wider interval suggests greater
uncertainty in the assessments. For a constructed dataset and model, their uncertainty
is fixed.

In this study, the software used for machine learning modeling was Scikit-learn
(version 1.3.2), Python (version 3.8) and PyCharm (version 2024.1.1). The computational
experiments were conducted using hardware equipped with an “Nvidia RTX 4080 graphics
card”, manufactured by “NVIDIA Corporation” in Santa Clara, CA, USA, and an “Intel
Core i5-13600KF processor”, manufactured by “Intel Corporation”, also located in Santa
Clara, CA, USA.

2.3. Data Sources

The dataset collected in this paper comes from the China Meteorological Disaster
Yearbook (2003–2020) and the China Statistical Yearbook (2003–2020), with the latest data
available up to 2020. Following the tripartite framework of natural disaster analysis (“haz-
ard factor—exposed elements—vulnerability”) [38,39] the dataset contains 438 detailed
records of typhoon disasters in China (the same typhoon is counted as distinct events for
different affected provinces). As shown in Table 1, the 14 variables are structured as follows:
(1) Hazard factor (Meteorological data): Typhoon number, Maximum wind force, Maximum
wind speed (m/s); (2) Exposed elements (Disaster impact data): Affected area (provincial
administrative region), Affected population (10,000 persons), Deaths (persons), Relocated
population (10,000 persons), Collapsed houses (10,000 units), Affected area (10,000 hectares),
Direct economic losses (100 million yuan); (3) Vulnerability (Socio-economic vulnerability):
CPI Consumer Price Index (base year 1983 = 100), Population density (persons/km2), GDP
per capita (10,000 yuan/person); (4) Land use data: Urbanization rate, Urban construc-
tion land area (km2), Urban area (km2), and Construction land proportion. Among these,
the land use data are an assumption in this paper. The specific formula for calculating the
direct economic loss (based on the Consumer Price Index (CPI) in 1983) is as follows:

La =
Ln

CPIt
× CPI1983 (8)

In the formula, La represents the CPI-adjusted direct economic losses (with 1983 as the
base year), referred to simply as direct economic losses in the following text. Ln represents
the nominal direct economic losses, which are the actual monetary values of the losses
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caused by typhoons as recorded in the year of occurrence without any adjustment for
inflation. CPIt represents the Consumer Price Index for the current year, and CPI1983

represents the Consumer Price Index in 1983. Through this conversion, this paper can
eliminate the impact of inflation, making economic losses from different years comparable.
The research in this paper is carried out on this dataset, of which 22 are randomly selected
as test cases and the remaining 416 are used for model training.

Table 1. Description of the dataset.

Category Variable Description Unit

Meteorological data
Typhoon number Identifier number of the typhoon -

Maximum wind force Maximum wind force of the typhoon -
Maximum wind speed Maximum wind speed of the typhoon m/s

Disaster impact data

Affected population Number of affected people 10,000 persons
Deaths Number of deaths persons

Relocated population Number of relocated people 10,000 persons
Collapsed houses Number of collapsed houses 10,000 units

Affected area Total affected area 10,000 hectares
Direct economic losses Direct economic losses (CPI in 1983) 100 million yuan

Socio–economic vulnerability
CPI Consumer price Index (1983 = 100)

Population density Population density persons/km2

GDP per capita GDP per capita 10,000 yuan/person

Land use data

Urbanization rate Rate of urbanization -
Urban construction land area Area of urban construction land km2

Urban area Total urban area km2

Construction land proportion Proportion of construction land %

Note: All monetary values are adjusted using CPI in 1983.

3. Results Analysis
3.1. Impact Factors Analysis

To ensure the stability of the model and the reliability of the results, we first performed
a Variance Inflation Factor (VIF) check on the features before using the Pearson correlation
coefficient for feature selection. VIF is used to assess the multicollinearity issue among
features by evaluating the correlation between each feature and the others. When the VIF
value of a feature exceeds 10, it typically indicates a strong correlation with other features,
which may lead to model instability and estimation errors in regression analysis. Therefore,
the VIF check helps us identify and remove potentially redundant features before perform-
ing the Pearson correlation analysis, thereby mitigating the impact of multicollinearity
on the analysis results. As shown in Table 2, there is severe multicollinearity with the
features “Typhoon number”, “Direct economic losses (CPI in 1983)”, “CPI Consumer Price
Index”, “Population density (persons/km2)”, and “GDP per capita (10,000 yuan/person)”.
Therefore, these features should be excluded when considering feature selection.

To identify the factors that impact the assessment of the directed economic losses
caused by typhoons, this paper conducts a comprehensive correlation analysis of all the
potential factors hypothesized in previous studies. The correlation between all potential
assessment factors and outcomes in the dataset was analyzed using the Pearson correlation
coefficient [40], which is given by:

rxy =
∑n

i=1(xi − x̄)(yi − ȳ)√
∑n

i=1(xi − x̄)2
√

∑n
i=1(yi − ȳ)2

(9)

In the formula, rxy denotes the correlation coefficient between variables x and y, xi and
yi denote the ith observation of the two variables, respectively, x̄ and ȳ denote the mean of
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the two variables, respectively, and n is the sample size. The correlation coefficient takes
the range of [−1, 1], where 1 means perfect positive correlation, −1 means perfect negative
correlation, and 0 means no correlation.

Table 2. Variance Inflation Factors (VIF) for the Features.

Feature VIF

Typhoon number 523.9495
Maximum wind force 5.9174
Maximum wind speed 5.9636
Affected population (10,000 persons) 3.6049
Deaths (persons) 3.4113
Relocated population (10,000 persons) 2.5887
Collapsed houses (10,000 units) 4.0190
Affected area (10,000 hectares) 1.8646
Typhoon Directed-economic losses (CPI in 1983) (100 million yuan) 2.3933
CPI Consumer Price Index (base year 1983 = 100) 134.1705
Population density (persons/km2) 196.2581
GDP per capita (10,000 yuan/person) 170.6575
Urbanization rate 2.7689
Urban construction land area 4.1197
Urban area 3.6804
Construction land proportion 1.6218

Through this analysis, this paper can quantify the degree of influence of different
assessment factors on the target variables and provide a basis for feature selection.

The correlation analysis results reveal the strength of associations between typhoon-
directed economic losses and various influencing factors, providing clear direction for
feature selection in loss assessment modeling. Shown as the Figure 2, the affected pop-
ulation (r = 0.6579) and relocated population (r = 0.6505) show the strongest positive
correlations, followed by the affected area (r = 0.4807); meteorological factors, including
maximum wind speed (r = 0.3286) and maximum wind force (r = 0.3138), as well as disaster
indicators such as collapsed buildings (r = 0.3655) and death toll (r = 0.3261), demonstrate
moderate to weak positive correlations. However, surprisingly, socio-economic indicators
such as population density (r = −0.0065) and GDP per capita (r = −0.0198) show almost
no correlation with economic losses. It is worth noting that indicators such as “proportion
of construction land”, “urban construction land area”, “urban area”, and “urbanization
rate” demonstrated low correlation with direct economic losses in the full sample analysis,
a phenomenon that appears to contradict conventional wisdom.

In order to verify this situation several times, this study also employed two statistical
methods—Mutual Information (MI) [41] and F-statistic [42]—to analyze the key factors
affecting typhoon disaster economic losses. As shown in Figure 3, both methods pointed
to six similar major features: the affected population ranked first with a mutual infor-
mation score of 0.705, demonstrating its strongest statistical association with economic
losses. From the F-statistic perspective, the affected population led with a significant
statistical value of 332.67, followed closely by the number of relocated people (319.83).
These two methods not only corroborate each other but also reveal a clear fact: the scale
of disaster impact (area and population) represents the core factors influencing economic
losses. Additionally, collapsed houses, deaths, and meteorological factors (maximum wind
force/speed) also showed significant influence. Notably, indicators such as GDP per capita,
population density, and land use were again confirmed to be lower. The possible reason for
this phenomenon is that population density data and economic data are at the provincial
scale; due to the complex regional heterogeneity, the provincial scale data exhibit lower
correlations across the entire sample.
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Figure 2. The Pearson correlation coefficient matrix. Note: In the figure, for the sake of clear picture
presentation, Typhoon-directed economic losses are abbreviated to TDEL.
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Figure 3. (a) shows the mutual information (MI) results, while (b) displays the F-statistic results.

These findings suggest that when constructing typhoon economic loss assessment
models, disaster severity indicators and meteorological factors should be considered core
feature variables, while the weights of socio-economic indicators and land use data can
be appropriately reduced. This may be a key reason why few academic studies have
incorporated factors related to SEURC into their assessment models.

3.2. Analysis of the Impact of SEURC on Meteorological Disasters

The factors analysis yielded results showing a low correlation between direct economic
losses and land use data. This finding contradicts our hypothesis. On this basis, this section
further analyzes the impact of SEURC on typhoon disaster losses by using the proportion
of construction land. This study performed comparative analyses by: (1) controlling for
maximum wind force across different affected regions, and (2) analyzing typhoon events of
varying wind force intensities within the same affected areas.

In this study, we base our typhoon-related analyses on the “National Standard for
Tropical Cyclone Grades” (GB/T 19201-2006) [43].

This standard categorizes tropical cyclones into six distinct levels according to the
maximum surface wind speed near their bottom centers. A Tropical Depression (TD) has
a maximum average wind speed in the range of 10.8–17.1 m/s, corresponding to wind
force levels 6–7. A Tropical Storm (TS) has a wind speed of 17.2–24.4 m/s, equivalent to
wind force levels 8–9. A Severe Tropical Storm (STS) has a wind speed of 24.5–32.6 m/s,
matching wind force levels 10–11. A Typhoon (TY) has a wind speed of 32.7–41.4 m/s,
falling within wind force levels 12–13. A Severe Typhoon (STY) has a wind speed of
41.5–50.9 m/s, corresponding to wind force levels 14–15. And a Super Typhoon (Super TY)
has a maximum average wind speed of 51.0 m/s or higher, which is wind force level 16
or above.

As shown in Figure 4, by comparing the data from Fujian Province (correlation of
0.90) and Hainan Province (correlation of 0.78), both of which experienced Category 12
typhoon landfalls, we found significant regional differences in the correlation between
SEURC and typhoon damage losses. This analytical study quantitatively characterizes
the regional differences in their correlation, addressing the limitations of existing research
in terms of traditional singular methodologies and insufficient explanatory power. This
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regional heterogeneity is reflected not only in geographical location differences but is also
closely related to urban resilience and typhoon intensity [44]. In other words, the significant
regional differences in the correlation are primarily a result of disparities in urban and
regional resilience among different provinces.
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Figure 4. Comparative analysis of typhoon-directed economic losses and construction land proportion
changes for Category 12.0 typhoon: (a) Hainan province; (b) Fujian province. The XXX-Category
represents the region, the x.0 represents the wind force levels, and all typhoon events are represented
by typhoon.

These differences in urban and regional resilience among provinces are mainly affected
by factors such as infrastructure investment, land use layout planning, and emergency
response mechanisms. Regarding infrastructure investment, economically developed
provinces can enhance urban and regional resilience and reduce economic loss rates per
unit of built-up land through high-density investment in critical urban infrastructure
lifeline projects. In these regions, economic development and infrastructure investment
mitigate the impacts of disasters. In contrast, economically underdeveloped provinces,
with lagging economies and weaker fiscal capacity, often face delays in infrastructure
investment. This results in limited urban and regional resilience, where disaster impacts
further suppress economic development and infrastructure investment [45]. In terms of
land use planning, optimizing land use and functional layouts can significantly enhance
urban and regional resilience. For instance, establishing green spaces and water bodies as
ecological barriers between urban built-up areas and coastlines has become a strategy for
governments to improve resilience against typhoon disasters [46]. For example, provinces
such as Guangdong and Fujian in China have successively issued master plans for the
protection and restoration of major ecosystems, systematically planning key coastal projects
and creating ecological barriers between urban areas and coastlines to mitigate typhoon
impacts [47]. Conversely, some rapidly expanding cities have undertaken land reclamation
projects directly exposed to storm surge paths, resulting in severe direct economic losses
from typhoon disasters. Thus, the relationship between SEURC and typhoon losses varies
significantly among different provinces due to differences in the level of resilient urban
planning. Regarding emergency response, pre-disaster emergency response capacity is not
only a critical measure for effectively reducing disaster impact, but also a key component
of building resilient cities [48,49] . For example, in recent years, Shanghai has focused
on developing a resilient city. Its resilience derives from both hardware—long-term in-
frastructure investments—and software, such as the digital management platform “One
Network Management”. Relying on this platform, Shanghai has transitioned from passive
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response to proactive defense, enabling all-weather, refined early warning of typhoon
paths, preemptive population evacuations, and reduced disaster losses. In contrast, some
provinces suffer from large blind spots in early warning coverage, leading to significant
losses. For instance, during the 2012 “Bravan” typhoon, Liaoning Province experienced
inadequate early warning coverage, resulting in the failure to evacuate ships at Yingkou
Port in time. This led to substantial single-point losses when the ships sank. Notably,
in the cross-provincial full sample analysis, land use data showed a low correlation with
typhoon economic losses. This phenomenon largely stems from significant heterogeneity
effects between different regions: some areas show negative correlations, while others
demonstrate strong positive correlations. These regional differential effects cancel each
other out, ultimately leading to a weak correlation at the full sample level.

To better understand these heterogeneous characteristics, this study conducted com-
parative analyses of cases where the same affected areas, as shown in Figures 5–8, (Hainan
province, Fujian province, Zhejiang province and Guangdong province) experienced ty-
phoons of different intensities. The research found that disaster prevention and mitigation
projects implemented during urban development resulted in differentiated loss characteris-
tics when responding to typhoons of varying intensities [50]. As shown in the Figures 5–8,
in most affected areas within the dataset, when facing typhoons with wind forces below
a certain threshold, land use data showed negative correlations with typhoon economic
losses, indicating that urban disaster prevention and mitigation capabilities played a posi-
tive role in responding to low and medium-intensity typhoons. However, when typhoon
wind forces exceeded this threshold, this relationship often shifted to a positive correlation,
suggesting that under extreme-intensity typhoons, the higher exposure value of urbanized
areas may exceed the capacity of their disaster prevention capabilities. This finding indi-
cates that when assessing typhoon-induced economic losses, we cannot simply assume
that SEURC necessarily exacerbates disaster losses; instead, we should comprehensively
consider the interaction between urban resilience and typhoon intensity. The discovery
of this non-linear relationship provides a new research perspective for more accurate
understanding and assessment of typhoon disaster losses.

In summary, urban resilience in typhoon disaster loss assessment is a complex and
dynamic factor. It not only affects the economic losses caused by typhoons of varying
intensities differently but also has a nonlinear interactive relationship with SEURC. This
implies that enhancing urban disaster resilience should be a multifaceted strategy. For low
to medium intensity typhoons, improving disaster prevention and mitigation capabilities
can effectively reduce losses. However, for extremely intense typhoons, we need to consider
the overall layout of urban and rural development, control the exposure level of urban
areas, and continuously enhance the overall disaster resilience of cities. By doing so, we can
better manage typhoon-related risks and make more scientifically sound and reasonable
disaster prevention and mitigation decisions.
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Figure 5. Correlation plot of variation rates in typhoon-directed economic losses and changes in
construction land proportion across different typhoon categories for documented events in Hainan
Province: (a) Category 8 typhoon; (b) Category 9 typhoon; (c) Category 10 typhoon; (d) Category 11
typhoon; (e) Category 12 typhoon; (f) Category 13 typhoon.
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Figure 6. Correlation plot of variations in typhoon-directed economic losses and construction land
proportion in Fujian province: (a) Category 9 typhoon; (b) Category 12 typhoon.
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Figure 7. Correlation plot of variations in typhoon-directed economic losses and construction land
proportion in Zhejiang Province: (a) Category 9 typhoon; (b) Category 12 typhoon.
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Figure 8. Correlation plot of variations in typhoon-directed economic losses and construction land
proportion in Guangdong Province: (a) Category 8 typhoon; (b) Category 11 typhoon.
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4. Results Validation
4.1. Controlled Variable Experiment

Previous analysis in this paper indicates that the impact of construction land propor-
tion on typhoon disaster losses exhibits significant regional variations. Therefore, land use
data at the provincial level should not be included in the assessment system. To verify this
finding, the proportion of built-up land, which shows the highest correlation among land
use data, was selected as a dynamic assessment factor. Two experimental groups were
established with fixed feature inputs, with the key difference being whether the dynamic
assessment factor (construction land proportion) was included as input. Two UProtoMLP
models were trained with different input configurations and model weights, and were
tested separately. Combined with uncertainty analysis, this approach was used to investi-
gate how the proportion of built-up land influences the model’s assessment mechanism.
The experiment results of this investigation are as follows: Based on the experimental re-
sults analysis, as shown in Tables 3 and 4, the incorporation of construction land proportion
significantly increased the model’s assessment uncertainty, and this increase exhibited dis-
tinct regional differences. Specifically, the assessment intervals generally widened, but the
extent of expansion varies across different regions. Meanwhile, in extreme cases, both the
assessed values and confidence intervals showed significant changes after incorporating
construction land proportion, reflecting the differential responses of various regions to
major disasters. These findings not only support the research hypothesis regarding the
regional heterogeneity of construction land proportion’s impact but also provide new
empirical evidence for understanding the complex relationship between construction land
proportion and typhoon disaster losses, which is crucial for improving typhoon damage
models. This suggests that regional heterogeneity must be fully considered when assess-
ing typhoon disaster losses, offering new perspectives and directions for future research.
From this, we can conclude that land use data should not be included as an assessment
factor when evaluating directed economic losses caused by typhoons at the provincial scale.
This is because the regional heterogeneity of land use data exacerbates the uncertainty of
the data and the model, leading to a decline in assessment accuracy and an expansion of
the uncertainty region.

Table 3. Construction land proportion.

Actual Value Assess Value Confidence Assess Interval Affected Area

0.085999 0.238724 Above 99% [−0.95, 1.42] Neimenggu
1.275510 2.872671 Below 68% [−7.71, 13.45] Jiangxi
0.054755 0.215413 Above 99% [−0.94, 1.37] Anhui
2.683178 1.130554 Above 95% [−1.15, 3.41] Jilin
0.001621 0.231469 Above 99% [−0.96, 1.43] Yunnan
3.230516 7.081117 Below 68% [−0.98, 15.15] Zhejiang
2.008717 3.412394 Above 95% [−0.13, 6.95] Guangdong
5.118515 3.766929 Above 95% [−0.10, 7.63] Guangdong
0.048630 0.217954 Above 99% [−0.95, 1.38] Guangxi
0.033267 0.243804 Above 99% [−1.00, 1.49] Jilin
2.135426 0.238536 Above 99% [−0.93, 1.41] Hainan
0.069573 0.437523 Above 99% [−1.27, 2.15] Guangxi
3.752132 1.117743 Above 95% [−1.36, 3.60] Fujian
0.083167 0.233785 Above 99% [−0.95, 1.41] Hainan
5.187513 4.994113 Above 68% [0.36, 9.63] Guangdong

29.522263 20.399832 Below 68% [7.19, 33.61] Zhejiang
0.291781 0.427232 Above 99% [−1.15, 2.00] Liaoning
0.019425 0.221588 Above 99% [−0.93, 1.37] Fujian
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Table 3. Cont.

Actual Value Assess Value Confidence Assess Interval Affected Area

13.457792 13.363873 Below 68% [2.17, 24.55] Guangdong
0.041188 0.220396 Above 99% [−0.94, 1.38] Guangdong
2.985075 3.290345 Above 95% [−0.10, 6.68] Guangxi
0.099840 0.256749 Above 99% [−0.93, 1.45] Zhejiang

Table 4. Non-construction land proportion.

Actual Value Assess Value Confidence Assess Interval Affected Area

0.085999 0.279334 Above 99% [−0.41, 0.96] Neimenggu
1.275510 2.363345 Above 68% [−2.30, 7.03] Jiangxi
0.054755 0.286070 Above 99% [−0.61, 1.18] Anhui
2.683178 1.257801 Above 95% [−0.88, 3.39] Jilin
0.001621 0.225547 Above 99% [−0.34, 0.79] Yunnan
3.230516 7.365206 Below 68% [−1.45, 16.18] Zhejiang
2.008717 3.489299 Above 95% [−0.41, 7.39] Guangdong
5.118515 2.759948 Above 95% [−1.10, 6.62] Guangdong
0.048630 0.229537 Above 99% [−0.33, 0.79] Guangxi
0.033267 0.208982 Above 99% [−0.30, 0.72] Jilin
2.135426 1.514349 Above 95% [−1.15, 4.18] Hainan
0.069573 0.683942 Above 99% [−0.92, 2.29] Guangxi
3.752132 0.758362 Above 99% [−1.17, 2.69] Fujian
0.083167 0.214693 Above 99% [−0.31, 0.74] Hainan
5.187513 4.237987 Above 68% [−0.37, 8.84] Guangdong

29.522263 25.395420 Below 68% [10.55, 40.24] Zhejiang
0.291781 0.383230 Above 99% [−0.64, 1.40] Liaoning
0.019425 0.279708 Above 99% [−0.60, 1.16] Fujian

13.457792 13.664005 Below 68% [−0.16, 27.49] Guangdong
0.041188 0.217184 Above 99% [−0.30, 0.73] Guangdong
2.985075 3.599780 Above 95% [−0.23, 7.43] Guangxi
0.099840 0.209457 Above 99% [−0.31, 0.73] Zhejiang

4.2. Comparison Experiment

Based on the above conclusion, this paper will no longer include land use factors in the
assessment model and will only utilize various assessment factors related to the typhoon
itself for the evaluation. In this section, we aim to determine the optimal model for typhoon-
directed economic loss assessment. To this end, we conduct a comprehensive comparison
of the UProtoMLP model with a range of other well-established models. The primary
objective is to identify whether UProtoMLP outperforms these alternatives in terms of
accuracy capabilities. We selected a diverse set of models, including widely used machine
learning models like XGBoost, GBDT, RF, LightGBM, and AdaBoost. Additionally, we
incorporated classic time-series deep-learning models such as ILSTM and GRU, along with
state-of-the-art few-shot learning models like MetaNet+, TADAM, and DN4++. To evaluate
the performance of these models, we utilized several key metrics: Mean Absolute Error
(MAE), Mean Squared Error (MSE), and R2 Score. MAE was specifically used as the
loss function during the training process. By comparing the performance of UProtoMLP
with these other models, we can comprehensively demonstrate its superiority in typhoon-
directed economic loss assessment. Specifically, the entire dataset is divided into training
and test sets with a ratio of 95%:5% to train and test the proposed UProtoMLP. AdamW is
used as the training optimizer [51]. Mean Absolute Error (MAE) is used as the loss function,
while MSE and R2 Score are used as evaluation metrics. The assessment indicators are
as follows:

MAE =
1
n

n

∑
i=1

|yi − ŷi| (10)
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MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (11)

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2 (12)

In the formula, yi is the actual value and ŷi is the assessed value.
As shown in Table 5, the proposed UprotoMLP achieved the best MAE accuracy of

1.0176, significantly outperforming other models. The paper first selected several commonly
used models in other typhoon damage assessment works, such as XGBoost, GBDT, RF,
LightGBM, and AdaBoost, which are all mature and widely used machine learning models.
Ensemble learning models like AdaBoost (MAE = 2.1768) and XGBoost (MAE = 2.4501),
although not performing as well as deep learning models, still have certain application
value in some cases.

Table 5. Comparison of model performance.

Model MAE MSE R2 Score

XGBoost 2.4501 19.0642 0.5441
GBDT 4.2499 156.6307 0.2442

RF 2.4678 22.2279 0.4684
LightGBM 3.1205 25.5531 0.3889
AdaBoost 2.1768 8.8089 0.7893

MLP 1.3194 5.0396 0.8795
LSTM 1.6484 5.8341 0.8126
GRU 1.3331 5.8768 0.8818

MetaNet+ 1.9628 15.0608 0.6398
TADAM 1.8886 11.7489 0.7191
DN4++ 1.4660 2.2565 0.8782

UProtoMLP 1.0176 3.4206 0.9182

GBDT performed the worst, with a high MAE of 4.2499 and an R2 value of only 0.2442,
indicating its low suitability for this task. The results show that its accuracy is insufficient
for the task at hand. LSTM (MAE = 1.6484) and GRU (MAE = 1.3331), as classic time-series
deep learning models, also demonstrated good assessment capabilities. This indicates they
effectively captured the temporal features of typhoon data, suggesting further potential
for mining temporal aspects of the dataset. The paper also selected some commonly
used models in few-shot learning, among which DN4++ (MAE = 1.466, R2 = 0.8782)
from prototypical learning models showed outstanding performance, demonstrating the
advantages of prototypical learning methods in few-shot tasks. Meta-learning models like
MetaNet+ (MAE = 1.9628) and TADAM (MAE = 1.8886) showed moderate performance, not
as good as prototypical learning models but still better than traditional methods. In ablation
experiments, comparing with using only the MLP model, the accuracy was far inferior to
the proposed UProtoMLP, further verifying the superior accuracy of the proposed model.

Additionally, in experimental validation, 95.45% of actual observations fell within
the assessed confidence intervals, as shown in Figure 9. This result is very close to the
theoretical expectation of 95%, fully validating the accuracy and reliability of the uncertainty
estimation method proposed in this paper.

As shown in Figure 10, the output results of the proposed assessment framework
clearly demonstrate the comparison between assessed and actual economic losses in
disaster-affected areas. The red-marked areas represent the framework’s assessed disaster-
affected regions, showing higher estimated economic losses. The blue areas indicate the
actual direct economic losses in these regions. Darker colors represent more severe losses.
From the figure, the overlap between red and blue areas of varying intensities is clearly
visible, indicating the model’s high accuracy in assessing economic losses from disasters.
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Particularly in the southern coastal regions, there is a high degree of correspondence
between the model’s assessments and actual losses, demonstrating the framework’s ef-
fectiveness in dealing with natural disasters like typhoons. This result not only validates
the model’s accuracy but also provides important reference data for future post-disaster
assessments and policy-making.
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corresponding to higher loss levels (Note: This map is based on the standard map No. GS (2024) 0650
downloaded from the Standard Map Service website of the Ministry of Natural Resources. The base
map boundary is not modified).
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5. Conclusions
The proposed CUMP framework demonstrates good assessment performance and

reliable uncertainty estimation capabilities. In terms of assessment accuracy, the model
achieved a Mean Absolute Error (MAE) of approximately 1.0 on the test set. More impor-
tantly, the 95% confidence intervals constructed by considering both cognitive uncertainty
and data uncertainty achieved an actual coverage rate of 95.45%, almost perfectly match-
ing theoretical expectations. This indicates that the model can not only accurately assess
directed economic losses caused by typhoons but also reliably quantify the uncertainty
of assessment results, providing more comprehensive reference information for disaster
prevention and mitigation decisions. This study reveals regional heterogeneity in the
correlation between construction land proportion change rates and directed economic loss
change rates caused by typhoons. While the full-sample correlation analysis showed low
correlation, the relationship strengthened when examined within fixed regions. Further
experiments confirmed that incorporating construction land proportion from different
regions led to increased data uncertainty, resulting in larger model errors, reduced accuracy,
and wider assessment uncertainty intervals.

Consider this in terms of SEURC: We found that the relationship between SEURC
and typhoon economic losses is non-linear. At lower typhoon intensities, urban disaster
prevention and mitigation capabilities can lead to a negative correlation, meaning SEURC
may help reduce losses. However, when typhoon intensities exceed a certain threshold,
this relationship turns positive, as the high exposure of urban areas overrides their disaster
prevention capacity. This discovery emphasizes that when evaluating typhoon-induced
economic losses and planning urban-rural construction, we must consider the interaction
between urban resilience and typhoon intensity. Therefore, the hypothesis of this paper
should not hold. In the provincial panel data, the assessment model for directed economic
losses caused by typhoons should not incorporate land use data. It suggests that traditional
approaches relying solely on land use data for such assessments need to be re-evaluated.
Instead, a more comprehensive and multi-faceted approach is required. For urban planning
and disaster prevention management, this means that the government should shift its focus
from simply considering the scale of urban expansion (which is related to land use data) to
a more holistic approach. This includes improving disaster-resilient infrastructure, such as
building typhoon-resistant buildings and enhancing flood-control facilities. At the same
time, optimizing land use in a more sophisticated way, taking into account factors like the
vulnerability of different land uses to typhoon disasters, is also crucial. This way, cities can
better withstand typhoon-related risks and reduce potential losses. In the future, we plan
to carry out a dedicated study that specifically focuses on “the patterns of SEURC impact
in different regions”. This will involve a more in-depth exploration of the SEURC impact
across various regions through refined classification methods.
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