
Estimating the antimicrobial effect of 
grape seed extract on L. monocytogenes 
ΔsigB on xanthan gum-based gels 
Article 

Published Version 

Creative Commons: Attribution 4.0 (CC-BY) 

Open Access 

Kitsiou, M., Gutierrez-Merino, J., Klymenko, O. V., Karatzas, 
K.-A. and Velliou, E. (2025) Estimating the antimicrobial effect 
of grape seed extract on L. monocytogenes ΔsigB on xanthan 
gum-based gels. Food Control, 176. 111355. ISSN 0956-7135 
Available at https://centaur.reading.ac.uk/122643/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

Publisher: Elsevier 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

CentAUR 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


Central Archive at the University of Reading 
Reading’s research outputs online



Estimating the antimicrobial effect of grape seed extract on 
L. monocytogenes ΔsigB on xanthan gum gels

Melina Kitsiou a,b, Jorge Gutierrez-Merino c, Oleksiy V. Klymenko a, Kimon Andreas Karatzas d,  
Eirini Velliou a,b,*

a School of Chemistry and Chemical Engineering, University of Surrey, Guildford, GU2 7XH, UK
b Centre for 3D Models of Health and Disease, Division of Surgery and Interventional Science, University College London, London, W1W 7TY, UK
c School of Biosciences and Medicine, University of Surrey, Guildford, GU2 7XH, UK
d Department of Food and Nutritional Sciences, University of Reading, Reading, UK

A R T I C L E  I N F O

Keywords:
Fruit waste
Natural antimicrobials
Viscoelastic models
Microbial inactivation
L. monocytogenes
ΔsigB
Food safety
Sustainable antimicrobial strategies
Grape seed extract

A B S T R A C T

The substitution of chemical preservatives with natural antimicrobials has emerged as an important topic of 
interest for both researchers and the food industry. The utilisation of grape seed extract (GSE) has the potential to 
serve as an effective natural antimicrobial agent, while also offering the advantage of being a sustainable 
antimicrobial strategy, since GSE is a by-product of the fruit industry. The aim of this study was to quantitatively 
investigate the antimicrobial efficacy of GSE (1 % w/v) that was added in xanthan gum (XG)-based viscoelastic 
models of various XG concentrations (3, 5, 7 % w/v XG) against the wild-type (WT) strain and isogenic ΔsigB 
mutant of the foodborne pathogen L. monocytogenes. The gene regulator SigB is responsible for the general stress 
response of L. monocytogenes and its adaptation to environmental stresses. The GSE treatment effectively inac-
tivated both strains (microbial inactivation ≥3 log CFU/ml) in all viscoelastic models regardless of the model 
firmness. However, the mutant strain ΔsigB was more sensitive to GSE treatment evidenced by the reduced viable 
population count and the increased percentage of sublethal injury in comparison to the WT. Lastly, at 7 % w/v 
XG (GSE-free) concentration, which was the highest gelling agent concentration used in this study, the mutant 
formed smaller colonies on the model surface as compared to the WT, suggesting the impact of SigB on the 
microbial growth/colony formation, especially on stiffer surfaces. The results of our study shed light on the 
impact of matrix surface structure on the response of L. monocytogenes and its ΔsigB mutant to the waste product 
GSE. Therefore, this study contributes to the development of enhanced and sustainable antimicrobial control 
strategies.

1. Introduction

Grapes are one of the world’s most prized crops, producing 25 
million tonnes annually (USDA Foreign Agricultural Service, 2021). 
Approximately 20 % of the total weight of grapes is estimated to be 
grape by-products, presenting a substantial disposal challenge. A by- 
product of the wine and juice industries is known as grape seed 
extract, or GSE for short (Chedea & Pop, 2019; Costa et al., 2022; Kar-
nopp et al., 2017; Shrikhande, 2000). GSE has been found to possess 
strong antimicrobial and antioxidant activity. Therefore, the utilisation 
of natural antimicrobials, such as GSE, offer a promising sustainable 
alternative in substituting chemical preservatives in the food industry 

(Ahn et al., 2004; Delgado Adámez et al., 2012; Farhadi et al., 2016; 
Rhodes et al., 2006; Sheng et al., 2016). Numerous mechanisms have 
been suggested for the antibacterial activity of GSE such as the pene-
tration of polyphenol to the bacterial cell wall, the inactivation of 
extracellular enzymes and the formation of complexes with metal ions, 
which deplete the bacterial environment of these ions (Begg, 2019; 
Corrales et al., 2009; Silván et al., 2013). To date, limited research exists 
on the antimicrobial efficacy of GSE in terms of microbial dynamics 
(kinetics). More specifically, most studies to date utilize qualitative 
methods, such as the agar/disk diffusion tests and the minimum inhib-
itory concentration determination, to assess microbial inhibitory effects, 
while in cases where quantitative methods are employed, microbial 
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concentration is typically measured only once post-treatment (Kao et al., 
2010; Klančnik et al., 2010; Sheng et al., 2016; Silván et al., 2013). 
Furthermore, there are very limited studies investigating the role of 
different genes including sigB, i.e., a gene responsible for the general 
stress response of L. monocytogenes and its adaptation to environmental 
stress factors, on the sensitivity/tolerance to natural antimicrobials 
which would provide deeper insights into the mechanism of microbial 
inactivation and/or response to antimicrobials (Begley et al., 2006; 
Kitsiou et al., 2023a; Palmer et al., 2009). We recently evaluated the 
microbial population dynamics of L. monocytogenes wild-type (WT) and 
ΔsigB in liquid nutrient medium (TSBYE) supplemented with 1 % w/v 
GSE and observed increased susceptibility of ΔsigB to GSE suggesting for 
the first time that gene(s) of the SigB regulon significantly contribute to 
the bacterial response to GSE (Kitsiou et al., 2023a).

Generally, the main existing body of GSE research has primarily 
examined their antimicrobial properties in liquid substrates and/or 
specific foods (fresh produce, meat and fish products) (Ahn et al., 2004, 
2007; Sagdic et al., 2011; Sivarooban et al., 2007; Zhao et al., 2020). 
However, the high complexity and batch-to-batch variation of food 
products limits the broader application of such findings to other food 
products (Baka et al., 2016; Bisha et al., 2010; Costello et al., 2021a). 
Prior research on the antimicrobial efficacy of GSE has demonstrated 
significant microbial inhibition on fresh produce like tomatoes, but its 
effectiveness decreased in more complex foods such as minced beef and 
turkey sausages, which have higher protein and fat content (Ahn et al., 
2007; Bisha et al., 2010; Sivarooban et al., 2007). Comparable findings 
were noted in our recent study, where the microbial population dy-
namics of L. monocytogenes WT were monitored on the surface visco-
elastic models of various biochemical complexities in which GSE was 
incorporated. More specifically, our study indicated that the antimi-
crobial activity of GSE against L. monocytogenes WT was not influenced 
by the increasing xanthan gum (XG) concentration in the monophasic 
models. However, the level of inactivation of L. monocytogenes WT was 
diminished when GSE was added in the more complex polyphasic 
models (Kitsiou et al., 2023b).

The microbiological response to any treatment can indeed be influ-
enced by the biochemical composition, physicochemical properties, and 
structural attributes of the surrounding system/environment (Costello 
et al., 2019, 2021a; El Kadri et al., 2021; Garcia-Gonzalez et al., 2009; 
Smet et al., 2017; Vandekinderen et al., 2009; Verheyen et al., 2019, 
2020). Therefore, testing the antimicrobial efficacy of novel treatments 
only in controlled liquid media could result in different microbial dy-
namics, as compared to solid or solid like systems. More specifically, 
cells in liquid nutrient broths grow planktonically, whereas in solid 
environments, they are immobilised and grow in colonies, aggregates, or 
biofilms. Additionally, in solid and solid (like) systems, gradients of 
oxygen or of the stress factor (e.g. the natural antimicrobial concentra-
tion) can take place, along with the accumulation of metabolic 
by-products such as acids. This accumulation can result in enhanced 
bacterial tolerance to the treatment through cross-protection mecha-
nisms (Costello et al., 2018, 2019, 2021a, 2021b; Baka et al., 2017; 
Skandamis & Jeanson, 2015; Smet et al., 2017; Velliou et al., 2013; 
Wang et al., 2017). Various studies have reported that microbial inac-
tivation and/or growth can be significantly different between solid and 
liquid systems. Microbial adaptation to environmental stresses and 
cross-protection, is a major challenge for food safety, especially with 
milder processing techniques that may allow for increased microbial 
resistance and survival, potentially resulting in unsafe food products 
(Antwi et al., 2008; Aryani et al., 2016; Baka et al., 2016; Boons et al., 
2013; El Kadri et al., 2021; Karina et al., 2011; Mertens et al., 2009; 
Piyasena et al., 2003; Pol et al., 2001; Wang et al., 2017).

Recent outbreaks of L. monocytogenes like the one in February 2024 
linked to queso fresco and cotija cheese resulting in wide-spread 
recalling of several products including dressings and sauces highlights 
the critical need for improved understanding of its survival and adap-
tation in solid like viscoelastic environments (similar to those that the 

microorganism can experience in sauces and dressings; FDA, 2024). In L. 
monocytogenes, SigB is known to enhance the bacterium’s ability to 
survive environmental stress, showing increased activity when exposed 
to heat, acidic, osmotic conditions (Boura et al., 2016; Cheng et al., 
2015; O’Byrne & Karatzas, 2008; Raengpradub et al., 2008). Most 
existing studies examining the microbial growth and inactivation of 
mutant strains use liquid substrates, which is valuable for understanding 
fundamental physiological responses, stress adaptation mechanisms, 
and genetic regulation under controlled conditions (Han et al., 2016; 
Perni et al., 2007; Smith et al., 2003; Van Der Veen & Abee, 2010). 
However, these findings may not fully capture microbial growth and 
survival in more complex environments, such as solid or semi-like sub-
strates, where factors like spatial organization, diffusion limitations and 
therefore environmental stress play a crucial role. To the authors best 
knowledge there are no studies to date studying the role of SigB, the 
main stress gene regulator of Gram-positive bacteria on the surface of 
viscoelastic model systems of controlled composition. Studying the L. 
monocytogenes ΔsigB mutant in comparison to the WT on the surface of 
viscoelastic models with or without the addition of GSE can provide 
valuable information on the microbial environmental behaviour and 
response to antimicrobial treatments. In general, the utilisation of 
viscoelastic in vitro models offers improved reproducibility due to their 
ability to regulate the composition and complexity, in contrast to real 
food products that exhibit variability between batches and possess 
product-specific characteristics. In addition, these models enable a more 
accurate understanding of the spatial microbial organization and growth 
and the response to different treatment approaches in comparison to 
liquid in vitro systems.

The aim of this work was to quantitatively explore, for the first time, 
the microbial response of L. monocytogenes WT and the role of its main 
stress gene regulator, SigB on the surface of monophasic XG-based 
models incorporated with 1 % w/v GSE and varying concentrations of 
gelling agent. XG was selected for its widespread use in food processing 
due to its viscoelastic properties, which can mimic the texture of specific 
food matrices and influence microbial behaviour (Costello et al., 2018, 
2021a; Katzbauer, 1998; Lopes et al., 2015; Pirsa & Hafezi, 2023; Purk 
et al., 2023). XG is commonly utilised in the food industry in plethora of 
products such as salad dressings, sauces, gravies, dairy products, sweets, 
dairy alternatives and low-calorie food products (Henden et al., 2024; 
Katzbauer, 1998). Additionally, XG has an excellent gelling ability, 
requiring low concentrations, and stability under a wide range of pH 
levels and temperatures which allows us to study how the firmness of the 
model can affect the antimicrobial effect of GSE (Pirsa & Hafezi, 2023; 
Velliou et al., 2013). This work contributes towards the design of novel 
waste-based, sustainable antimicrobial strategies.

2. Materials and methods

2.1. Inoculum preparation

Stock cultures of L. monocytogenes 10403S WT and ΔsigB were pre-
served at − 80 ◦C in Tryptone Soy Broth (TSB, Oxoid Ltd, UK) with 15 % 
v/v glycerol. The inoculum was prepared as previously described 
(Velliou et al., 2011a, 2011b, 2011c, 2012). Briefly, after the culture was 
thawed, a loopful was inoculated into 20 ml TSB enriched with 0.6 % 
w/v of Yeast Extract (TSBYE, Oxoid Ltd, UK). The culture was incubated 
at 37 ◦C for 9.5 h using a shaking incubator at 175 rpm. Subsequently, 
20 μl were placed into 20 ml of liquid nutrient broth (TSBYE) and 
incubated for an additional 15 h (early stationary phase).

2.2. Grape seed extracts (GSE)

Commercially available grape seed extract (GSE, Bulk, UK) was 
utilised in this study. The concentration of polyphenols (oligomeric 
proanthocyanidins) in the GSE powder was at least 95 %. For both ex-
periments the powder was firstly dissolved in TSBYE and the tested GSE 
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concentration was 1 % w/v in both tested substrates (liquid and solid 
systems). The selection of GSE concentration was based on our previous 
studies, conducted in TSBYE (liquid) or in viscoelastic models (Kitsiou 
et al., 2024; Kitsiou, Purk, Ioannou, et al., 2023).

2.3. Preparation of monophasic food model systems

The procedure by which the monophasic XG models were prepared 
has been outlined in our previous publications (Kitsiou et al., 2023b; 
Purk et al., 2023; Velliou et al., 2013).

Briefly, 3 %, 5 % and/or 7 % (w/v) Xanthan Gum (XG; Xantural® 75; 
CP Kelco, UK) was incorporated into TSBYE. The XG concentrations 
were chosen to represent a wide range of viscosities, and to allow for 
comparisons with our previous studies (Costello et al., 2018, 2021a; 
Kitsiou et al., 2023b; Velliou et al., 2013). Additionally, changes in 
moisture level were considered to be minimal across the XG concen-
trations under study and within the optimal growth range for L. mono-
cytogenes, therefore the moisture content is expected to have a minimal 
effect on the bacterial kinetics (Purk et al., 2023). The mixtures were 
subjected to mechanical stirring (2000 rpm) for a minimum duration of 
5 min, ensuring complete homogeneity (Omni Mixer Homogenizer, 
Omni International Inc., USA). To assess GSE’s antimicrobial activity, 
the powder was dissolved in TSBYE to achieve 1 % (w/v) final con-
centration (see section 2.2). Thereafter, viscoelastic models were formed 
by mechanically stirring in XG to achieve the previously mentioned final 
concentrations. The viscoelastic models were then transferred in falcon 
tubes and autoclaved. In order to observe the microbial dynamics of 
L. monocytogenes 10403S WT and ΔsigB when treated with GSE, the 
monophasic XG models were transferred in 24-well plates to ensure the 
consistency of their size (approx. 2 cm2 surface area).

2.4. Microbial dynamics in the presence of GSE on monophasic XG 
models

To investigate the antimicrobial efficacy of GSE against the 
L. monocytogenes 10403S WT and ΔsigB, bacterial cells were inoculated 
in 1 % TSBYE-GSE solution or spread on the surface of the viscoelastic 
models. Additionally, cells were added in TSBYE or on the viscoelastic 
model systems without GSE (controls). The initial bacterial concentra-
tion was approximately 105 CFU/ml. Following inoculation, the samples 
were incubated at 37 ◦C. The bacterial survival was systematically 
enumerated at intervals of 0, 2, 4, 8, 12, and 24 h post-treatment during 
a 24-h period using the spread plate method in non-selective agar i.e., 
Tryptone Soy Agar enriched with 0.6 % of Yeast Extract (TSAYE, Oxoid 
Ltd, UK). Additionally, the samples were also plated onto selective 
media for L. monocytogenes i.e., Polymyxin Acriflavin Lithium-chloride 
Ceftazidime Esculin Mannitol (PALCAM, Oxoid Ltd, UK) in order to 
quantify the number of sub-lethally damaged cells. The sublethal injury 
(%) was calculated based on the following equation (Busch & Donnelly, 
1992): 

% Injured cells=
[

1 −
Count on selective agar

Count on non − selective agar

(
CFU
ml

)]

× 100

(1) 

2.5. Rheological characterization

The monophasic XG models were characterised rheologically, 
determining the storage modulus G’ (Pa) and the loss modulus G" (Pa). 
The analysis was performed as previously outlined (Costello et al., 2018; 
Kitsiou et al., 2023b). The viscoelastic behaviour was evaluated at 37 ◦C 
by conducting dynamic oscillatory measurements. This temperature was 
chosen as the antimicrobial effect of GSE incorporated in the viscoelastic 
models occurred at that temperature, which is the optimal growth 
temperature for L. monocytogenes.

The G′ and G″ were quantified as functions of angular frequency ω 

ranging from 1 to 100 (rad/s) utilising a HR-2 Discovery Series Hybrid 
Rheometer (DHR, TA instruments, USA) with a maximum strain of 2 % 
and a circulating water bath for temperature regulation (TA in-
struments, USA). The analysis was performed utilising a cone and plate 
geometry (50 mm diameter, 2◦ angle).

2.6. Imaging of colonies

To obtain images of L. monocytogenes 10403S WT and ΔsigB colonies 
on the surface of the monophasic model systems without the GSE, the 
same procedure described in section 2.4 was followed. Briefly, the cells 
were spread on the surface of the viscoelastic models at final concen-
tration 105 CFU/ml and incubated at 37 ◦C. After stationary phase was 
reached, the 24-well plate was transferred to the Cytation 5 Imaging 
reader (BioTek, Winooski, VT, USA) in order to capture images of the 
colonies formed on the surface of the monophasic models. The images 
were processed using the Gen5 software (Biotek). A minimum of three 
images were captured for each sample, three samples were analysed for 
each experiment, and a minimum of two independent experiments were 
conducted.

2.7. Statistical analysis

The statistical analysis was carried out using GraphPad Prim and 
Microsoft Excel. All measurements and conditions under investigation 
were subjected to a minimum of two independent experiments, each 
comprising three replicate samples. A t-test was applied to evaluate 
statistical significance (p < 0.05) when comparing two mean values, 
while a two-way ANOVA followed by Tukey’s HSD post hoc analysis was 
utilised to determine statistically significant (p < 0.05) differences 
among independent experimental groups in the case of multiple com-
parisons. When the viable cell count was below the detection limit (<10 
CFU/ml) in the non-selective and selective media the number of viable 
and percentage sub-lethally damaged cells were determined to be 1 log 
CFU/ml and/or 100 %, respectively.

3. Results and discussion

As previously stated, the objective of this study was to examine the 
microbial dynamics of L. monocytogenes WT and ΔsigB, as affected by 1 
% w/v grape seed extract (GSE), incorporated on the surface of visco-
elastic xanthan gum-based models with varying xanthan gum concen-
tration (3, 5, 7 % w/v XG).

To the authors’ best knowledge this is the first study exploring the mi-
crobial dynamics of L. monocytogenes WT and the role of the main stress gene 
regulator SigB in the presence of GSE on solid-like models with robustly 
controlled structural and biochemical composition.

Fig. 1 shows the microbial dynamics of L. monocytogenes WT and 
ΔsigB in liquid nutrient medium (TSBYE; Kitsiou et al., 2023a) and on 
the surface of the viscoelastic model systems under study. The antimi-
crobial effect of GSE against L. monocytogenes WT and ΔsigB was not 
affected by the increasing XG concentration in the viscoelastic model 
systems. Additionally, the mutant strain ΔsigB was more sensitive to the 
GSE treatment when compared to the WT strain. More specifically, the 
microbial inactivation of L. monocytogenes WT by GSE for all tested 
viscoelastic model systems was on average 1.6, and 2.9 log CFU/ml after 
8 and 24 h, respectively. Additionally, ΔsigB was inactivated by an 
average of 2.0 and 3.3 log reduction of CFU/ml after 8 and 24 h, 
respectively (Fig. 1). To investigate further the increased susceptibility 
of ΔsigB to the GSE treatment, the level of sublethal injury of both strains 
after treatment was tested (as described in section 2.4). The percentage 
of sub-lethally injured cells for both strains increased with increasing 
treatment time (Fig. 2, p < 0.05). For instance, the percentage of 
sub-lethally injured cells of L. monocytogenes WT was on average 36, 44, 
48 and 54 % after 4, 8, 12 and 24 h, respectively. However, after 4 h, the 
average of sublethal injury of ΔsigB was 55 % and by 8 h, all cells had 
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reached sublethal injury state (below detection limit for our method), 
confirming the high sensitivity of the mutant strain to GSE. It is also 
worth mentioning that the level of sublethal injury was similar across all 
viscoelastic model systems, despite the increased gel firmness (higher G′ 
and G″) associated with higher XG concentrations (Fig. 3, Table 1) 
(Choppe et al., 2010; Costello et al., 2018; Kitsiou et al., 2023b; Velliou 
et al., 2013).

The observed sensitivity of the mutant strain in the viscoelastic gels 
is consistent with our previous observations in liquid nutrient broth 
(Kitsiou et al., 2023a; 2024), as well as with other limited studies in 
liquid systems (Begley et al., 2006; Gomes Neto et al., 2015; Palmer 
et al., 2009), showing that structure affects the mutant sensitivity 
similarly to a liquid broth. The increased susceptibility of ΔsigB to nat-
ural antimicrobials could be attributed to the role of SigB in regulating 
mechanisms protecting the cell membrane, including the charge or lipid 
composition of the latter, in response to the stressor. Furthermore, 
SigB-regulated proteins aid in the efflux of the antimicrobial compounds 
out of the cell. Both stress adaption mechanisms play a role in over-
coming the imposed stress and promote the recovery of sublethally 
injured cells (Begley et al., 2006; Gomes Neto et al., 2015; Guerreiro 
et al., 2020; Kitsiou et al., 2023a).

In terms of the properties of the gels, an increase in rigidity of the 
viscoelastic model systems can also lead to diffusional limitations of 
antimicrobials, resulting in diminished antimicrobial activity (Aspridou 
et al., 2014; Costello et al., 2018, 2019; Makariti et al., 2021; Skandamis 
& Jeanson, 2015; Velliou et al., 2013). However, in our viscoelastic 
models, no change in the antimicrobial effect of GSE was observed with 
varying XG concentrations, up to 7 % w/v. Our results show changes in 
firmness did not affect the response of the mutant to GSE. These results 
align with the previous published work of our group (conducted for the 
WT strain; Costello et al., 2018; Kitsiou et al., 2023a, Kitsiou, Purk, 
Ioannou, et al., 2023). In a prior study, 1 % w/v GSE was added in three 

monophasic XG models with lower xanthan gum (XG) concentration 
(1.5, 2.5 and 5 % w/v) than the current study as well as in structurally 
complex biphasic systems, containing XG and Whey Protein Isolate 
(WPI; 5 % w/v XG, 10 % w/v WPI) and triphasic systems, containing XG, 
WPI and fat (5 % w/v XG, 10 % w/v WPI, 10 % v/v fat). We reported that 
the antimicrobial activity of GSE against L. monocytogenes WT (initial 
microbial load 105 CFU/ml) was not influenced by the increasing XG 
concentration in the monophasic models i.e., the level of inactivation 
was similar when tested in TBSYE and monophasic models. However, 
the level of inactivation of L. monocytogenes WT was diminished when 
GSE was added in the more complex model system i.e., biphasic and 
triphasic model systems. Lastly, Costello et al., (2019) examined the 
antimicrobial activity of nisin against L. innocua in liquid and on 
monophasic models (3 & 5 % w/v XG). The results of this investigation 
showed that the microbial dynamics of L. innocua treated with nisin 
followed the same trend in liquid and both viscoelastic model systems 
despite the increased firmness of the XG models (Costello et al., 2019). 
Our current study suggests that a further increase in the stiffness of the 
viscoelastic models, using up to 7 % w/v XG concentration, did not 
affect the antimicrobial activity of the GSE. Therefore, the biochemical 
composition and structural complexity of the viscoelastic model might 
have a higher impact than the gel firmness on reducing the level of 
inactivation under GSE treatment both for the WT and mutant strain.

In terms of growth on the surface of the monophasic XG models (in 
absence of GSE), we observed that, as the rigidity/firmness of the 
viscoelastic model increased, a small disturbance in the growth, of ΔsigB 
occurred mainly at the final (stationary phase) cell concentration, i.e., 
lower cell concentration in stationary phase when grown on the surface 
of viscoelastic model containing 7 % w/v XG in comparison to those 
with 3 % w/v XG. More specifically, after 24 h, a difference in cell 
concentration of 0.5 log CFU/ml was noted for ΔsigB compared to the 
WT on the surface of the viscoelastic model containing 7 % w/v XG 

Fig. 1. Microbial population dynamics of L. monocytogenes 10403S WT and ΔsigB in (a) liquid TSBYE (Kitsiou et al., 2023a) and on the surfaces of monophasic 
models of TSBYE incorporated with (b) 3 % w/v XG, (c) 5 % w/v XG, (d) 7 % w/v XG. In all plots ( ) control (without GSE) WT (w/o GSE) ( ), control (without GSE) 
ΔsigB (w/o GSE) ( ), treated sample WT with 1 % w/v GSE, and ( ) treated sample ΔsigB with 1 % w/v GSE are shown. Each time point represents the average of two 
independent experiments with three technical replicates per experiment. Error bars show standard deviation.
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(Fig. 1d). Moreover, images of the colonies formed on the surface of the 
monophasic XG models showed that the colonies of the WT strain were 
larger and more spread out on the surface of the gels, as the firmness of 
the viscoelastic model increased, as expected since this phenomenon has 
been reported previously by us and others (Fig. 4a–c) (Be’er et al., 2009; 
Costello et al., 2018; Kitsiou et al., 2023b). The same trend was observed 
for ΔsigB, when the XG concentration increased from 3 to 5 % w/v 

(Fig. 4d and e). However, interestingly, no significant changes in the 
colony size were detected when the XG concentration was further 
increased to 7 % w/v, in contrast to the WT and to the expected trend 
from the literature (Fig. 4f; Be’er et al., 2009; Costello et al., 2018; 
Kitsiou et al., 2023b). As previously mentioned, colony growth may 
result in diffusion limitations of oxygen and nutrients, as well as accu-
mulation of metabolic compounds that can reduce the pH levels in and 

Fig. 2. Quantification of the sublethally injured population (%) of L. monocytogenes 10403S WT and ΔsigB on the surface of (a) 3 % w/v XG, (b) 5 % w/v XG, (c) 7 % 
w/v XG models. In all plots ( ), control WT (without GSE) ( ), control ΔsigB (without GSE) ( ), treated sample WT with 1 % w/v GSE, and ( ) treated sample ΔsigB 
with 1 % w/v GSE are shown. In cases where the viable cell count in the selective media was below detection limit (<10 CFU/ml) the number of sublethal damaged 
cells was set to 100 % (bar with stripes). Each bar represents the average of two independent experiments with three technical replicates per experiment. Error bars 
show standard deviation.
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around the colonies. This can result in a decrease in microbial growth 
rate due to self-induced acid stress and starvation. Additionally, the 
localised reduction of pH can activate the general environmental stress 
response of L. monocytogenes enhancing cross-protection against 
different environmental stresses. Lastly, the increase of the viscoelastic 
model’s rigidity may enhance the previously-mentioned effect of colony 

growth i.e., increased diffusional limitations resulting in cells that are 
more stressed and the formation of smaller colonies (Aspridou et al., 
2014; Costello et al., 2018, 2019; Makariti et al., 2021; Skandamis & 
Jeanson, 2015; Velliou et al., 2013). Therefore, the observed distur-
bance in growth of ΔsigB can be attributed to the absence of the stress 
regulator SigB which is responsible for the expression of >40 environ-
mental stress related genes including acid stress and starvation, which 
are stresses that can occur in colony growth especially in viscoelastic 
models with higher XG that are more rigid (Abee, 1999; Herbert & 
Foster, 2001; Liu et al., 2019; NicAogáin & O’Byrne, 2016; O’Byrne & 
Karatzas, 2008). Additionally, some studies have shown that SigB en-
hances biofilm formation especially under stress, thus its absence could 
result in the formation of smaller cell aggregates (Lee et al., 2014; Van 
Der Veen & Abee, 2010).

Overall, the results of the current study expand our understanding of 
the stress adaptation mechanisms of L. monocytogenes in the presence of 
GSE, in viscoelastic models. Additionally, our data offer new insights 
into the microbial dynamics of the ΔsigB mutant strain which exhibits 
lower cell concentrations in stationary phase in solid like environments. 
Hence, our findings can be used to create innovative and sustainable 
antimicrobial control strategies by utilising food waste. Future work 
should focus on understanding how, next to structure, additional factors 
such as (i) biochemical complexity (ii) acidity (fluctuations in pH levels 
of the gels) and (iii) changes in moisture content could potentially affect 
the microbial population dynamics, as all those factors, further to 
structure, can differ in different food products.

Fig. 3. Rheological characterization of the viscoelastic models incorporated 
with 1 % w/v GSE. Storage modulus G′ and the loss modulus G″ as a function of 
the angular frequency at 37 ◦C: G′( ) 3 % XG ( ), 5 % XG ( ), 7 % XG; G’’( ): 
3 % XG ( ), 5 %XG ( ), 7 % XG.

Table 1 
Rheological parameters for the monophasic XG models with 1 % w/v GSE. Letters indicate statistical significance (p < 0.05), different letters are significantly different. 
Means with the same letter are not significantly different.

Monophasic model Temperature G’ G″ tanδ

3 % XG 37 ◦C 249.6 ± 42.2a 41.2 ± 3.71a 0.17 ± 0.02a

5 % XG 37 ◦C 541.2 ± 82.0b 82.2 ± 6.76b 0.15 ± 0.01b

7 % XG 37 ◦C 772.4 ± 125.4c 114.0 ± 13.47c 0.15 ± 0.01b

Fig. 4. Representative images of L. monocytogenes WT colonies on the surface of (a) 3 % w/v XG (b), 5 w/v % XG (c) and 7 % w/v XG and L. monocytogenes ΔsigB 
colonies on (d) 3 % w/v XG (e), 5 w/v % XG (f) and 7 % w/v XG systems at 37 ◦C.
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4. Conclusion

In this study, the microbial dynamics of the pathogen 
L. monocytogenes wild type (WT) and mutant ΔsigB (which is associated 
with the general environmental stress response of the pathogen) were 
quantitatively investigated, under grape seed extract (GSE, 1 % w/v) 
treatment. The cells were spread on the surface of monophasic models of 
controlled xanthan gum concentrations (3, 5, 7 % w/v XG). In all 
viscoelastic models under study, the GSE effectively inactivated both 
strains, regardless of the increase in the firmness of the monophasic 
models. However, the ΔsigB exhibited increased susceptibility to the 
GSE treatment, indicated by lower viable population counts and a higher 
percentage of sublethal injury, in comparison to the WT. Additionally, a 
disturbance in the growth of the mutant strain was observed as the XG 
concentration in the viscoelastic models increased to 7 % w/v resulting 
in the formation of smaller colonies when compared to the WT.

Our findings provide insight into the efficacy and mechanism of 
inactivation of GSE against one of the most lethal foodborne pathogens 
and its’ general environmental stress response mutant. These data can be 
used to develop novel antimicrobial control strategies including ap-
proaches of targeting the sensitivity of the mutant strain. Additionally, 
the observed antimicrobial activity of GSE in viscoelastic models high-
lights the possibility of utilising waste by-products from the food in-
dustry as efficient and ecologically friendly antimicrobial agents. This 
not only helps reduce food waste but also could improve food safety 
measures by replacing chemical preservatives and antibiotics.
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