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Abstract
This study investigates the impact of model resolution on simulating South Asian monsoon rainfall, focusing on the Gan-
ges–Brahmaputra-Meghna (GBM) basin. By comparing high- and low-resolution versions of four CMIP6 HighResMIP 
model families against reference datasets (MSWEP and ERA5), we emphasize the advantages of high-resolution models 
in accurately simulating key monsoon characteristics, including annual rainfall, timing, intensity, and duration. Our results 
show that the high-resolution models align more closely with observed data, outperforming their low-resolution counterparts. 
Between 1979 and 2014, the high-resolution model ensemble (HR-models) captures key shifts in monsoon timing, such as 
delayed onset and withdrawal, leading to a slight increase in monsoon duration. In contrast, the low-resolution ensemble 
(LR-models) showed more pronounced delays in onset. The observational datasets, MSWEP and ERA5, indicate earlier 
(7 ± 3 days) and later (3 ± 1.2 days) onsets, respectively, with both showing delays in withdrawal, indicating extended mon-
soon duration. Notably, the increase in monsoon duration is more pronounced in MSWEP observations than in the model 
simulations, particularly for LR-models. Regarding rainfall trends, the HR-models more accurately reflect observed changes 
in both total rainfall and extreme rainfall from 1979–2014 compared to LR-models. Future projections (2015–2050) indicate 
further delays in monsoon onset, with HR-models projecting larger increases in total rainfall and extreme events (up to 4.5%/
decade for the 95th percentile of rainfall) compared to LR-models, which show smaller increases and higher variability in 
total and extreme rainfall. These findings highlight the critical role of model resolution in improving the accuracy of mon-
soon simulations, with HR models offering more reliable simulations of historical monsoon behaviour and therefore likely 
more robust projections of future monsoon behavior. These are essential for informed water management and agricultural 
decision-making over the complex topography of the GBM basin.

1  Introduction

The monsoon system plays a critical role in the hydrologi-
cal cycle and particularly impacts precipitation in South 
Asia (Serreze and Barry 2010). Among the most densely 
populated agricultural basins globally, the Ganges–Brahma-
putra-Meghna (GBM) basin relies heavily on South Asian 

monsoon rainfall (Ali et al. 2023; Azad et al. 2022). Mon-
soon rainfall profoundly affects agricultural production, 
environmental sustainability, and water resource manage-
ment in the basin (Rahman et al. 2017; Gadgil and Gadgil, 
2003). Variations in monsoon timing, intensity, and duration 
significantly impact agricultural productivity, food security, 
hydroelectric production, forest vegetation, water resources, 
and regional ecology (Turner and Annamalai 2012; Jain 
et al. 2013). Therefore, a detailed analysis of monsoon rain-
fall characteristics, including timing, total and extreme rain-
fall amounts, and trends, is essential for understanding the 
implications for water resources and the economy in this 
basin (Mandal et al. 2021; Rahman et al. 2017).

Extensive research has focused on the timing of the 
South Asian monsoon, considering both regional and large-
scale patterns and trends (Azad et al. 2022; Bombardi et al. 
2020; Misra et al. 2018; Montes et al. 2021). These studies 
have utilized different criteria and atmospheric variables to 
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analyze variations in monsoon timing and associated forcing 
mechanisms, including the assessments of long-term trends. 
Monsoon onset and retreat are influenced by a combination 
of local and regional factors, leading to multiple proposed 
explanations (Wang et al. 2017). In addition to fundamental 
large-scale factors such as continental heating and meridi-
onal wind shifts, mechanisms such as intraseasonal oscilla-
tions and forcing from convection over the oceans, especially 
in the Bay of Bengal, play a significant role (Fasullo and 
Webster 2003; Karmakar and Misra, 2019). Furthermore, 
sea surface temperature anomalies in the Indian and Pacific 
Oceans, along with El Niño/La Niña events, contribute to 
variations in monsoon onset timing, impacting the GBM 
basin (Sun et al. 2017; Xavier et al. 2007).

Global climate models (GCMs) help us to understand 
the changes in monsoon rainfall by attempting to reproduce 
its past changes and make projections of its future (Zhu 
et al., 2020). However, simulating monsoon precipitation at 
regional scales using these models presents challenges, pri-
marily due to limitations in their resolution and their inabil-
ity to fully represent many of the smaller-scale processes that 
govern regional precipitation (Haarsma et al. 2016). This 
results in systematic and persistent biases when compared 
to observations, raising concerns about model reliability 
and reducing our confidence in future climate projections 
(Roberts et al. 2019).

To enhance the representation of regional precipitation, 
downscaling techniques are often employed. These methods 
bridge the gap between the coarse resolution of GCMs and 
the fine-scale data required for regional impact assessments 
(Xin et al. 2021). Regional Climate Models (RCMs), which 
downscale Earth System Model (ESM) outputs, are particu-
larly useful in capturing regional topography, land–ocean 
contrasts, and the associated climate processes (Avila-Diaz 
et al. 2023; Ban et al. 2021). While RCMs offer greater spa-
tial detail, they can introduce uncertainties, such as bound-
ary condition closure issues (Giorgi 2006; Ambrizzi et al. 
2019). To address this, high-resolution ESMs are being 
developed, aiming to provide comprehensive regional and 
global climate data while incorporating more climate pro-
cesses compared to RCMs (Demory et al. 2020). Some of 
the support for this idea comes from previous comparisons 
of different climate models in projects like the Coupled 
Model Intercomparison Project (CMIP) (Roberts et al. 2019; 
Meehl et al. 2007; Taylor et al. 2012).

While the effectiveness of downscaling at improving cli-
mate projections for the Indian summer monsoon remains 
uncertain, high-resolution models have shown improvements 
in precipitation projections in complex orographic regions, 
where such improvements are crucial. The IPCC AR6 Chap-
ter 10 (Doblas-Reyes et al. 2021) provides strong evidence 
of the value of high-resolution simulations in these areas. 
Johnson et al. (2016) highlighted that higher-resolution 

models improve the representation of precipitation processes 
over regions like the Western Ghats mountains, although 
challenges such as the dry bias over South Asia and the wet 
bias over the Indian Ocean persist. Yet, Bock et al. (2020) 
argue that CMIP6 models show no significant improvement 
over CMIP5 or CMIP3 models regarding annual mean rain-
fall biases in the tropics, and the High Resolution Model 
Intercomparison Project (HighResMIP) models do not sig-
nificantly reduce the overall bias at the large scale compared 
to lower-resolution models. Despite these limitations, we 
contend that high-resolution models offer improved repre-
sentation of precipitation processes in areas with complex 
topography, such as the GBM basin, making them valuable 
tools for conducting such studies.

The HighResMIP, endorsed by CMIP6, introduces a 
novel multi-model approach to systematically explore the 
effects of horizontal resolution for the first time (Haarsma 
et al. 2016). These simulations vary in resolution from typi-
cal CMIP6 values (~ 250 km in the atmosphere and 100 km 
in the ocean) to significantly higher resolutions (25 km in the 
atmosphere and 8 to 25 km in the ocean). In HighResMIP, 
each model performs parallel experiments at both high and 
low resolutions, using identical parametrizations and tun-
ings. To assess the resolution improvement, the high-resolu-
tion and low-resolution experiments are compared within the 
context of the same model. There have already been some 
relevant analyses to show the utility of HighResMIP models 
in simulating characteristics of the South Asian monsoon. 
For instance, Fahad et al. (2022) found that the low-resolu-
tion simulations from HighResMIP show poor spatial vari-
ability of precipitation and a dry bias across Bangladesh; 
however, the high-resolution coupled simulations have a 
better representation of topography, which improves the 
simulation of moisture convergence at the foothills of the 
Himalaya and reduces precipitation biases.

Here, we aim to assess the impact of model resolution on 
monsoon simulations by conducting a comparative analysis 
of high- and low-resolution experiments within the same 
model framework. Each model performs parallel simulations 
at both resolutions, using identical parameterizations and 
tunings to isolate the effect of resolution on monsoon char-
acteristics. We look at observed and projected changes in the 
timing (onset, withdrawal, and duration) and strength (total 
and extreme) of monsoon rainfall in the GBM basin, using 
both high- and low-resolution models from HighResMIP 
and reference reanalysis datasets. The key science questions 
addressed in this study are:

How do high-resolution and low-resolution versions of 
the same model family differ in simulating monsoon rain-
fall in the GBM?
How accurately do HighResMIP models simulate the 
timing and strength of monsoon rainfall compared to 
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observed reference datasets, and how does model resolu-
tion impact these simulations?
What are the observed and projected changes in the tim-
ing and strength of monsoon rainfall in the GBM basin, 
and how do these changes vary between high- and low-
resolution models?

In Sect. 2, we describe the study region, data, and the 
definitions of the rainfall indices used in this study. Section 3 
presents our results, while Sect. 4 concludes our findings.

2 � Data & methods

2.1 � Study region

Our study is focused on the Ganges–Brahmaputra-Meghna 
(the GBM hereafter) basin. The GBM is a river basin 
located between latitudes 21°25′N to 25°50′N and longi-
tudes 87°75′E to 91°75′E, covering Bangladesh and parts 
of eastern India. With a catchment area of approximately 
1.72 million km2, the basin is home to around 630 million 
people, making it one of the most densely populated regions 
in the world (Sharma et al. 2021). The GBM is a complex 
river system characterized by diverse range of topographical 
and morphological features (Mirza 2002), an intricate river 
network and varied elevation (from 1 m a.s.l. in the South to 

33 m in the North). Figure 1 highlights the complex orogra-
phy of the basin, emphasizing the need for high-resolution 
models to accurately capture local-scale processes that are 
crucial for improving precipitation estimates, which can 
directly benefit the large population living in the region.

To delineate these basins we used boundaries from the 
HydroSHEDS website through the link https://​hydro​sheds.​
org/​downl​oads.

2.2 � Climate reference datasets

Reference climate datasets are essential for assessing the 
performance of HighResMIP models in simulating mon-
soon rainfall characteristics and for validating model out-
puts against observed precipitation patterns. In this study, 
we utilize two primary reference datasets: the European 
Centre for Medium-Range Weather Forecasts (ECMWF) 
Reanalysis v5 (ERA5; Hersbach et al. 2020) and the Multi-
source Weighted-Ensemble Precipitation (MSWEP; Beck 
et al. 2017). The use of these two datasets allows for a more 
thorough comparison and validation of model outputs, 
ensuring a comprehensive evaluation of model performance 
and ultimately strengthening the reliability of the study's 
conclusions.

ERA5 is a global atmospheric reanalysis product created 
by ECMWF using the 4D-Var data assimilation techniques in 
cycle 41r2 (Karl and Michela, 2019). Precipitation in ERA5 

Fig. 1   Boundary of the GBM basin showing elevation differences and river networks up to the 4th order. Panels a and b display the region with 
grid spacing of 0.25 and 0.5 degrees, respectively

https://hydrosheds.org/downloads
https://hydrosheds.org/downloads
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is obtained from a combination of data analysis and forecast-
ing and consists of two surface-level parameters: rainfall 
and snow. Large-scale precipitation in ERA5 is produced by 
the cloud scheme, while convective precipitation is derived 
from the convection scheme. ERA5 data are available from 
1950 to the present with a temporal output resolution of 1 h 
and a horizontal 0.25-degree spatial resolution (Hersbach 
et al. 2020). Mahto and Mishra (2019) found that ERA5 
outperforms other reanalysis products (MERRA2, CFSR, 
ERA-Interim & JRA-55) for monsoon precipitation across 
India, however, uncertainties remain in tropical regions due 
to the limited observational data available for the evaluation 
(Ali et al. 2021a, b).

MSWEP is a new fully-global historic precipitation data-
set covering the period from 1979 to 2020. It offers a spatial 
resolution of 0.25° and a temporal resolution of 3 h. The 
long-term mean background of MSWEP is derived from 
the CHPclim dataset and is supplemented with more accu-
rate regional datasets where available (Beck et al. 2017). 
MSWEP takes advantage of two gauge datasets (CPC 
Unified and GPCC), three satellite products (CMORPH, 
GSMaP-MVK, and TMPA 3B42RT), and two reanalyses 
(ERA-Interim and JRA-55) to provide reliable precipitation 
estimates globally. Therefore, MSWEP is not strictly a rea-
nalysis dataset. Previously, Ali et al. (2019) used MSWEP 
to study multiday flooding events in the Indian subcontinent, 
demonstrating its reliability in capturing extreme rainfall, 
which justifies its use in this study.. More details about the 
MSWEP dataset can be found at http://​www.​gloh2o.​org/.

2.3 � Model simulations and projections

The HighResMIP experiments, spanning from 1950 to 
2050, are categorized into three tiers: atmosphere-only 
(Tier 1), coupled atmosphere–ocean (Tier 2) and forced-
atmosphere (Tier 3) with potential extension to 2100, 
alongside additional targeted experiments. Tier 1 experi-
ments, named HighResSST-present, involve historically-
forced atmosphere runs from 1950 to 2014 (ForcedAtmos) 

using the HadISST2.2.0.0 1/4 degree sea-surface tempera-
ture (SST) and sea-ice forcing dataset, with fixed land use 
following the HighResMIP protocol (Haarsma et al. 2016). 
Tier 2 consists of simulations: a) conducted over 100 years 
using forcing conditions from the 1950s – “control-1950”; 
b) spanning from 1950 to 2014 using historical forcing 
conditions including greenhouse gas, aerosols, land use-
land cover, SST and sea ice, natural and anthropogenic 
forcings – “hist-1950”; and c) scenario projections from 
2015 to 2050 using the SSP585 forcing scenario – “high-
res-future”. The target resolution for Tier 1 & 2 is set at 
25 to 50 km, significantly higher than the typical CMIP6 
resolution of 100 km. The data can be accessed from 
https://​hrcm.​ceda.​ac.​uk/​resea​rch/​cmip6-​highr​esmip/. For 
more detailed information on the experimental design, see 
Haarsma et al. (2016).

We used data from 8 models from the Tier 2 experi-
ments, as the Tier 1 experiments can be significantly 
affected by the lack of atmosphere–ocean coupling. 
Moreover, atmosphere–ocean coupling helps in pro-
ducing a realistic simulation of the key teleconnections 
that govern the interannual variability of the monsoon, 
such as to El Niño (Xavier et al. 2007), and is crucial 
for any seasonal prediction system (Krishna Kumar et al. 
2005). Fully-coupled models, by incorporating dynamic 
ocean–atmosphere interactions, provide a more accurate 
representation of ENSO’s impact on South Asia. In con-
trast, atmosphere-only models with fixed SSTs result in 
weaker and less realistic ENSO effects, highlighting the 
necessity of coupled models for reliable teleconnection 
(Xavier et al. 2007).

The details of the selected models are given in Table 1. 
We selected high and low resolution versions of models 
from four model families: CMCC-CM2, HadGEM3-GC31, 
MPI-ESM1, and EC-Earth3P. This study considered the first 
ensemble member of all models (i.e., r1i1p1f1). Please note 
that low-resolution model versions show greater resolution 
differences than their high-resolution counterparts.2.4 Rain-
fall Indices. 

Table 1   Details of nine climate/
Earth system models from 
CMIP6 HighResMIP used in 
the study

S.No Model Modelling group Resolution 
(latitude x 
longitude)

1 CMCC-CM2-VHR4 CMCC, Italy 0.23° × 0.31°
2 HadGEM3-GC31-HH NERC & MOHC, UK 0.24° × 0.35°
3 HadGEM3-GC31-LL NERC & MOHC, UK 1.2° × 1.2°
4 CMCC-CM2-HR4 CMCC, Italy 0.94° × 1.25°
5 MPI-ESM1-2-HR MPI, Germany 0.93° × 0.93°
6 MPI-ESM1-2-XR MPI, Germany 0.46° × 0.46°
7 EC-Earth3P-HR EC-Earth-Consortium, Europe 0.35° × 0.35°
8 EC-Earth3P EC-Earth-Consortium, Europe 0.70° × 0.70°

http://www.gloh2o.org/
https://hrcm.ceda.ac.uk/research/cmip6-highresmip/


High‑resolution climate models improve simulation of monsoon rainfall changes in the Ganga–… Page 5 of 17  246

2.3.1 � Timing of the monsoon

We used the Liebmann et al. (2012) method to determine 
the onset/withdrawal of the monsoon season which has been 
previously used by Wainwright et al. (2019) for Africa and a 
variation thereof by Sperber and Annamalai (2014) for the 
Indian subcontinent. This accumulation method (method1) 
uses a timeseries of daily sums of precipitation to calculate 
the cumulative daily rainfall anomaly C(d), given by

where i ranges from 1 January to 31 December for each year, 
Qi is the daily rainfall on the ith day and Q is the annual aver-
age daily rainfall. The day of the minimum of C(d) marks 
the beginning of the monsoon season and the day of the 
maximum marks the retreat (withdrawal hereafter) (Fig. S2). 
The time period between these two days is the duration of 
the monsoon season. The results presented in Figs. 3–6 are 
averaged over the GBM basin. We checked our estimation of 
the timing of the monsoon using a different fractional accu-
mulation approach (method2) from LinHo and Wang (2002), 
as discussed in the Supplementary Information. These meth-
ods provide dates for each grid point for a given year within 
our study period, and the average of these dates over the 
GBM basin is calculated to determine the monsoon timing 
(onset, withdrawal, and duration) for the entire basin for that 
year.Both methods focus on local monsoon characteristics, 
providing insights into the onset and withdrawal of the rainy 
season within a small region (Bombardi et al. 2020). Moron 
and Robertson (2014) stated that local onset definitions can 
effectively capture large-scale interannual monsoon variabil-
ity, especially with regional synchronization. Additionally, 
Bombardi et al. (2020) suggested that although statistical 
methods (such as multivariate regression models with pre-
dictors such as ENSO) and dynamical approaches (using 
climate models) may differ in defining monsoon onset and 
withdrawal locally, spatial data aggregation could potentially 
improve predictability by reducing noise and enhancing the 
regional monsoonal signal. Therefore, defining the mon-
soon’s timing in a small area could potentially represent the 
basin-scale timing.

2.3.2 � Strength of the monsoon

Since the models had output frequencies (3-h and 6-h), 
we aggregated the rainfall data from the 3-h outputs and 
reference datasets into 6-h intervals to ensure consistency 
across all the datasets. We then used the 6-hourly accumu-
lated rainfall from both the models and reference datasets to 
estimate changes in the strength of monsoon rainfall using 

C(d) =

d
∑

i=1Jan

(Qi − Q)

three Expert Team on Climate Change Detection and Indices 
(ETCCDI; Karl et al., 1999) indices:

a)	 Total Rainfall (PRCPTOT): the 6-hourly accumulated 
rainfall during the monsoon season.

b)	 Annual Maximum Rainfall (Rx6hr): the maximum of 
6-hourly accumulated rainfall during the monsoon sea-
son.

c)	 95th percentile of Rainfall (R95p): the 95th quantile of 
6-hourly accumulated rainfall for wet days (R >  = 1 mm) 
during the monsoon season.

To calculate these indices, we normalized the rainfall by 
dividing the magnitude of rainfall values within a year by 
the mean annual rainfall for that year. This normalization 
allows for a fair comparison of the trends in rainfall indices 
among the different datasets as it attempts to remove the 
effect of model bias.

3 � Results & discussion

3.1 � Evaluating resolution‑related improvements 
in monsoon rainfall simulation

We first demonstrate resolution improvement in estimat-
ing average annual rainfall against the MSWEP reference 
dataset by analysing the high- and low-resolution versions 
of the same models. For example, we compared CMCC-
CM2-VHR4 vs. CMCC-CM2-HR4, HadGEM3-GC31-HH 
vs. HadGEM3-GC31-LL, EC-Earth3P-HR vs. EC-Earth3P, 
and MPI-ESM1-2-HR vs. MPI-ESM1-2-XR (Fig. 2). The 
results consistently show that high-resolution models show 
reduced dry biases (compared to MSWEP) and better simu-
late average annual rainfall than their low-resolution coun-
terparts. Specifically, Figs. 2c-d highlight the worsened dry 
bias in the low-resolution version of CMCC-CM2 compared 
to its high-resolution version. MSWEP shows higher rainfall 
in the eastern half of the basin, with an average of 6.33 mm/
day over the basin (Fig. 2a). However, this east–west con-
trast is not evident in ERA5, which appears to overestimate 
average rainfall with a wet bias of 2.37 mm/day compared 
to MSWEP (Fig. 2b). Overall, while the HighResMIP mod-
els fail to capture the spatial pattern of rainfall accurately, 
they do show a rainfall contrast between the ocean and land. 
Given the basin’s size and complex topography, the coarser 
resolution of LR-models may not adequately capture the 
local processes driving rainfall, highlighting the importance 
of using finer resolution models as a better alternative to 
conduct similar studies.

There is a substantial body of literature evaluat-
ing global precipitation products against gauge data, 
but uncertainty remains due to the lack of ground 
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observations, the selection of datasets, and the dura-
tions studied. This makes it challenging to evaluate refer-
ence datasets before assessing the HighResMIP models. 
Some confidence comes from global studies using both 
reanalyses for hydrological applications. For instance, 
Beck et al. (2017) evaluated 22 precipitation products on 
a global scale using rain gauges and hydrological mod-
eling, identifying the MSWEP product as one of the top 
performers. Recently, Xiang et al. (2021) evaluated eight 
global gridded precipitation products, including MSWEP 
and ERA5, across 1382 catchments in China, Europe, and 
North America, finding that MSWEP outperformed ERA5. 
On the other hand, Baudouin et al. (2020) cross-validated 
20 gridded precipitation datatsets in the Indus basin and 
found precipitation estimates from the ERA5 closest to 
observations.

3.2 � Timing of the monsoon

We next assessed the simulation of the timing of monsoon 
rainfall (onset, withdrawal, and duration), averaged across 
the basin, for both low- and high-resolution versions of the 
four HighResMIP model families compared to the reference 
datasets (MSWEP) for the period 1979–2014 (Fig. 3). While 
we found differences in the monsoon timing between models 
and MSWEP, these differences were smaller for the high-res-
olution versions. The low-resolution models showed delayed 
onset, earlier withdrawal, and shorter monsoon durations 
compared to the high-resolution versions, which were closer 
to the MSWEP results.

We further estimated the multimodel changes in the tim-
ing of the monsoon using the ensemble of low- and high-
resolution (LR- and HR-models respectively) models from 

Fig. 2   a, c, e, g Average annual rainfall (mm/day) for high-resolution 
models, (b, d, f, h) low-resolution models from four model families, 
and i-j reference datasets (MSWEP & ERA5), for the period 1979–

2014. The bias (Bias = Rdataset − RMSWEP) is calculated as the differ-
ence between the average annual rainfall of each dataset and that of 
MSWEP
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the four model families (Fig. 4). Both reference datasets 
showed strong agreement (r = 0.84), with a relatively early 
onset of monsoon rainfall (typically in May), whereas the 
models showed a later onset, on average in June. ERA5, LR- 
and HR-models showed a slight positive trend in the onset 
timing, indicating a delay of up to 3 days (calculated by 
multiplying the regression slope of the onset with the dura-
tion), while MSWEP showed an earlier onset by up to 7 days 
(Fig. 4a, d). The variability in onset timing was greater for 
the LR-models compared to the HR-models, which may 
reflect differences in model resolution.

For monsoon withdrawal, ERA5 and LR-models showed 
a late withdrawal, with the reference datasets indicating a 
shift towards the end of September, while the HR-models 
showed an average withdrawal much earlier in August 
(Fig. 4b). All datasets except LR-models, however, showed a 
trend towards a delayed withdrawal by the end of 2014. The 
increase in monsoon duration was observed in both refer-
ence datasets, with MSWEP showing the largest increase of 
up to 15 days, followed by ERA5 (10 days) and HR-models 

(5 days), However, LR-models showed a decrease of 1 day 
in the duration of monsoon by 2014. This suggests an exten-
sion of the monsoon season across all datasets except LR-
models, with MSWEP reflecting the largest change (Fig. 4c, 
d). Method2, used for validating the timing of onset and 
withdrawal, provided similar results for onset but showed a 
consistent delay in withdrawal compared to Method1 across 
all models (Fig. S2). The differences might be due to the 
low threshold used in Method2, which may have been influ-
enced by winter rainfall biases, resulting in delays in the 
withdrawal estimation.

Next, we examined long-term trends in monsoon tim-
ing by comparing the HIST (1950–2014) and FUTURE 
(2015–2050) periods, using high-resolution future simula-
tions (2015–2050) (Fig. 5). For both periods, we observed 
a delay in monsoon onset for HR-models, with more pro-
nounced trends in the FUTURE period. Specifically, while 
HR-models show a slight delay in onset during the HIST 
period, they exhibit a slight early onset by the end of the 
FUTURE period. Additionally, the monsoon duration is 

Fig. 3   Timing (day of the year) of the monsoon for MSWEP 
(orange), low-resolution (Low-res; red), and high-resolution (High-
res; blue) versions of a-c CMCC-CM2, d-f HadGEM3-GC31, g-i 

MPI-ESM1-2, and j-l EC-Earth3P models for the period 1979–2014. 
Solid lines represent the area average over the study region, while 
dashed lines indicate the linear trend (Colour figure online)
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projected to decrease in the FUTURE period, with a more 
decline in HR-models (-1.1%/decade) compared to the HIST 
period (-0.38%/decade). This suggests that the monsoon sea-
son may shorten in the future, particularly in higher-resolu-
tion models (Fig. 5c-e). Table 2 summarizes the results on 
the observed and projected changes in the monsoon timing, 
as presented in Figs. 4 and 5.

The uncertainty in results from coupled models arises 
from their limitations in representing various aspects of the 
monsoon, particularly due to inaccuracies in representing 
physical processes like convection and SSTs, which are 
common biases in these models (Bollasina and Ming, 2013; 
Sperber et al. 2013). Coupled CMIP-class models often 
have cold biases in the Arabian Sea, which leads to reduced 
evaporation and moisture fluxes that feed into the monsoon 
during summer (Levine et al., 2012, 2013). As a result, 
these cold SST biases significantly contribute to the delayed 
monsoon onset in coupled models compared to reference 
datasets (Levine et al. 2013; Menon et al. 2018). The limita-
tion in simulating accurate SST can be partly addressed by 

increasing the models’ horizontal resolution. For instance, 
Bhattacharya et al. (2022) found that CMIP6 high-resolution 
models produce more accurate Arabian SSTs with a reduced 
cold bias compared to lower-resolution models.

Our results, which show trends in the observed timing of 
monsoon rainfall based on the HR-model ensemble, align 
with the findings of Montes et al. (2021). The observed delay 
in the onset and withdrawal of the monsoon over the GBM 
basin, along with the extended monsoon duration, is attrib-
uted to a complex set of factors including anthropogenic 
climate change, land-use changes, and atmospheric pollu-
tion (Dong et al., 2016; Montes et al. 2021; Sun et al. 2023, 
2017). Conversely, HR-model projections suggest an earlier 
onset and withdrawal, leading to a reduction in monsoon 
duration. Studies indicate that global warming may reduce 
the upper tropospheric meridional temperature contrast due 
to enhanced tropical diabatic heating, which could partially 
offset the enhanced lower tropospheric contrast, potentially 
weakening the monsoon and delaying its onset (Sun et al. 
2010). Additionally, global warming can induce shifts in 

Fig. 4   a-c Timing (day of the year) and d changes (number of days) 
in the onset, withdrawal, and duration of the monsoon for MSWEP 
(orange), ERA5 (green), ensemble mean of HR-models (blue), and 
ensemble mean of LR-models (red) during the historical period 
1979–2014. Dashed lines in panels a-c represent the year-to-year 

average over the GBM basin, while solid lines show the linear trend. 
The ranges in panels a-c show the ensemble mean ± one standard 
deviation for HR-models (light blue) and LR-models (light red). The 
change in d is calculated by multiplying the slope of the linear regres-
sion lines by the period duration (i.e., 35 years) (Colour figure online)
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tropical circulation patterns, influencing monsoon dynam-
ics and further contributing to a delayed onset (Vecchi and 
Soden 2007; Zhang et al. 2013). The IPCC AR6 (Chap-
ters 8 and 10) suggests medium confidence in the projected 
weakening of the South Asian monsoon circulation, which is 
expected to alter the spatial distribution and timing of rain-
fall, with potential delays in onset and shifts in withdrawal 
patterns (Douville et al., 2021; Doblas-Reyes et al. 2021).

Previous research has increasingly focused on the physi-
cal and dynamical processes underlying the trends and vari-
ability of the South Asian monsoon. Roxy (2014) highlight 
the significant role of changes in sea surface temperatures 
(SSTs) in modulating the onset, intensity, and duration of 
the monsoon, in conjunction with atmospheric dynamics. 
Furthermore, the interaction between oceanic and atmos-
pheric phenomena, such as the Indian Ocean Dipole (IOD) 

Fig. 5   Timing (day of the year) in the onset and withdrawal of the 
monsoon during the a HIST period (1950–2014), b FUTURE period 
(2015–2050), for ensemble mean of HR-models (blue) and ensemble 
mean of LR-models (red), and c-d duration of the monsoon season 
during the HIST and FUTURE periods respectively, and e change 
per decade (number of days) of ensemble mean of onset, withdrawal 

and duration of the monsoon for the HIST (diamonds) and FUTURE 
(circles). Dashed lines in panels a-d represent the year-to-year aver-
age over the GBM basin, while solid lines show the linear trend. The 
ranges in panels a-d show the ensemble mean ± one standard devia-
tion for HR-models (light blue) and LR-models (light red) (Colour 
figure online)
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and El Niño-Southern Oscillation (ENSO), plays a crucial 
role in shaping monsoon behavior, with studies show-
ing significant teleconnections between these phenomena 
and monsoon characteristics (Cherchi et al. 2021). These 
studies underscore the importance of understanding how 
changes in oceanic conditions, such as SST anomalies, and 
atmospheric circulation patterns are driving recent shifts in 
monsoon characteristics. A more detailed understanding of 

these processes is critical for improving projections of future 
monsoon behavior and enhancing climate resilience in the 
South Asian region.

3.3 � Strength of the monsoon

We compared the strength of the monsoon, focusing on 
total (PRCPTOT) and extreme (Rx6HR & R95p) rainfall 
indices, against MSWEP for both LR- and HR-models for 
the period 1979–2014 (Fig. 6). This analysis highlights the 
importance of using high-resolution model versions, as they 
show better agreement with MSWEP results. In contrast, 
the low-resolution versions tend to overestimate the strength 
of the monsoon in observations. However, the difference in 
the trends of these indices was not found to be statistically 
significant (p < 0.05).

We next analyzed changes in the strength of monsoon 
rainfall using the reference datasets (MSWEP & ERA5) and 
ensembles of HR- and LR-models for the historical period 
1979–2014 (Fig. 7). Due to a large bias in the average annual 
rainfall across the models (Fig. 2), we calculated trends in 
normalized rainfall averaged over the GBM basin to ensure a 

Table 2   Change (number of days) per decade in the timing of mon-
soon

Period Dataset Onset Withdrawal Duration

1979–2014 MSWEP − 1.94 2.22 4.16
ERA5 0.83 3.05 2.23
HR-models 0.21 1.12 1.35
LR-models 0.79 0.25 − 0.54

FUTURE
(2015–2050)

HR-models 0.11 − 0.19 − 0.32
LR-models 0.05 0.08 0.03

HIST
(1950–2014)

HR-models 0.02 0.03 -0.01
LR-models − 0.01 0.03 0.03

Fig. 6   Rainfall indices (Total rainfall, PRCPTOT; annual maximum 
rainfall, Rx6HR; 95th percentile of rainfall (for wet days), R95p) of 
the monsoon (June–September) for MSWEP (orange), low-resolution 
(Low-res; red), and high-resolution (High-res; blue) versions of a-c 

CMCC-CM2, d-f HadGEM3-GC31, g-i MPI-ESM1-2, and j-l EC-
Earth3P models for the period 1979–2014. Solid lines represent the 
area average over the study region, while dashed lines indicate the 
linear trend (Colour figure online)
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fair comparison. Our findings show a relatively similar linear 
trend in the change of PRCPTOT between HR-models (5%) 
and the reference datasets (up to 10%) during the historic 
period (Fig. 7a, d). In contrast, LR-models show a decline 
(2%) in PRCPTOT, capturing higher annual variability 
(Fig. 7). For the Rx6HR index, LR-models and MSWEP 
show a decrease (~ 2%), while HR-models and ERA5 show 
increases of 5% and 2% respectively (Fig. 7b, d). Notably, all 
datasets show an increasing trend in R95p (up to 5%) during 
the historic period.

We also assessed the projected changes in rainfall indices 
between the HIST and FUTURE periods (Fig. 8). All mod-
els show increasing trends for all indices in the FUTURE 
period. Specifically, HR-models show an average increase 
of ~ 1.8%, ~ 3.8%, and ~ 4.8% per decade for PRCPTOT, 
Rx6HR, and R95p, respectively, in the FUTURE period. 
LR-models show lower increases with a wider range 
(mean ± standard deviation) for the FUTURE period. Our 

results indicate a larger projected increase in extreme mon-
soon rainfall compared to total monsoon rainfall, particularly 
in the more realistic HR-models. Table 3 summarizes the 
results on monsoon strength, as presented in Figs. 7 and 8. 
Both tables (2 and 3) are organized to align with the research 
questions stated in the introduction, making it easier for 
readers to assess the performance of HighResMIP models, 
identify observed and projected changes, and evaluate the 
benefits of increased resolution.

It is important to note that the larger variability observed 
among the LR models may, in part, be a consequence of 
the greater disparity in their native horizontal resolutions. 
This variation in resolution can significantly affect how well 
key physical processes—such as precipitation, storm struc-
ture, and cyclone dynamics—are represented across mod-
els. For instance, coarser-resolution models may struggle 
to capture small-scale features of storm systems, leading to 
greater differences in their simulated outputs. In contrast, 

Fig. 7   a-c Rainfall indices (Total rainfall, PRCPTOT; annual maxi-
mum rainfall, Rx6HR; 95th percentile of rainfall (for wet days), 
R95p) of the monsoon (June–September) for MSWEP (orange), 
ERA5 (green), ensemble mean of HR-models (blue), and ensemble 
mean of LR-models (red) during the historical period 1979–2014 and 
d change (in percentage; regression slope × duration) in the rainfall 
indices for the period 1979–2014. Dashed lines in panels a-c repre-

sent the year-to-year average over the GBM basin, while solid lines 
show the linear trend. The ranges in panels a-c show the ensemble 
mean ± one standard deviation for HR-models (light blue) and LR-
models (light red). The normalised rainfall for each model was cal-
culated by dividing the magnitude of the rainfall within a year by its 
mean annual rainfall (Colour figure online)
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Fig. 8   Rainfall indices (Total rainfall, PRCPTOT; annual maximum 
rainfall, Rx6HR; 95th percentile of rainfall (for wet days), R95p) 
of the monsoon (June–September) during the a, c, e HIST period 
(1950–2014), b, d, f FUTURE period (2015–2050) respectively, for 
ensemble mean of HR-models (blue) and ensemble mean of LR-
models (red), and g change per decade (in percentage; regression 
slope × duration) in the rainfall indices of monsoon for the HIST 

(diamonds) and FUTURE (circles). Dashed lines in panels a-f repre-
sent the year-to-year average over the GBM basin, while solid lines 
show the linear trend. The ranges in panels a-f show the ensemble 
mean ± one standard deviation for HR-models (light blue) and LR-
models (light red). The normalised rainfall for each model was cal-
culated by dividing the magnitude of the rainfall within a year by its 
mean annual rainfall (Colour figure online)
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the HR models in our ensemble have more similar and finer 
horizontal resolutions, which allows for a more consistent 
and detailed representation of these processes. This likely 
explains the smaller inter-model spread seen in the HR 
ensemble, particularly in Figs. 4, 5, 7, and 8.

The difference in trends simulated by the HR-models 
and LR-models, as noted by Bador et al. (2020), highlight 
the significant increase in rainfall extremes over the trop-
ics, which is underestimated by the LR-models. Our find-
ings are consistent with previous studies focussing on GBM 
basin regions (Bhattacharjee et al. 2023; Kamruzzaman et al. 
2023; Das et al. 2022) which project increased monsoon 
rainfall over Bangladesh and eastern India under all RCP 
scenarios. For example, Almazroui et al. (2020) reported a 
rise in monsoon rainfall by 7.5–36.9% (for SSP-8.5) by the 
end of the twenty-first century across Bangladesh, which is 
a key part of the GBM delta.

There has been a lot of discussion about trends in mon-
soon rainfall, with recent studies showing mixed results. 
Over the past century, rainfall trends in South Asia have 
shown significant interannual and spatial variability, with 
an overall weakening of the monsoon since the 1950s 
(Kulkarni et al., 2012; Jamshadali et al. 2021). While aver-
age rainfall might not show a significant increasing trend in 
the observed record, the frequency and intensity of heavy 
rainfall events have risen (Ali et al. 2019; Goswami et al. 
2006; Shahid 2011). Future projections from CMIP5 mod-
els also suggest that heavy rainfall events will increase due 
to higher moisture content in the atmosphere (Sooraj et al. 
2015). The IPCC AR6 (Chapter 10) points out that global 
warming will likely lead to more intense and frequent rain-
fall events in monsoon regions, where extreme events have 
already become more common (Doblas-Reyes et al. 2021). 
This is largely due to increased atmospheric moisture from 
warming, which is expected to drive more intense monsoon 
rainfall. Additionally, Chapter 8 of the IPCC AR6 (Douville 
et al., 2021) expresses high confidence that rainfall extremes 
will increase in the Indian monsoon region due to global 
warming.

Previous studies have debated whether increasing hori-
zontal resolution, such as in the HighResMIP models, 
improves model performance. For instance, Xin et al. (2021) 
found that higher-resolution models (30–50 km) performed 
better than lower-resolution models (70–140 km) in captur-
ing rainfall patterns over northwest and southwest China. 
This improvement was mainly due to the higher-resolution 
models’ ability to better represent topographical rainfall 
and local vertical circulation in complex terrain. Moreover, 
Liang et al. (2022) showed that HighResMIP models with 
higher horizontal and vertical resolutions performed better 
in simulating total rainfall, capturing the observed annual 
cycles, spatial rainfall patterns, and the link between rainfall 
and monsoon intensity in peninsular Malaysia from 2001 
to 2014, compared to coarser-resolution models. In con-
trast, Avila-Diaz et al. (2023) found no strong correlation 
between increased resolution and improved performance in 
simulating rainfall extremes across Latin America and the 
Caribbean.

Recent studies such as Sorland et al. (2016) and Bohlinger 
et al. (2019) have also used the Weather Research and Fore-
casting (WRF) model with resolutions as fine as 4 km to 
better represent local topography and fine-scale processes, 
enhancing monsoon rainfall simulations. However, these 
models come with limitations, including high computa-
tional costs, biases in large-scale dynamics, and reliance on 
parameterizations for unresolved processes like convection 
and cloud microphysics (Bohlinger et al. 2019). Validation 
is further constrained by the lack of high-resolution obser-
vational data in many regions. While these models are bet-
ter in capturing spatial rainfall patterns and extremes, they 
often struggle with temporal trends and large-scale monsoon 
drivers, sometimes overestimating extreme events (Chawla 
et al. 2018). Therefore, it is crucial to choose an appropri-
ate resolution of models to study monsoon characteristics. 
We emphasise that the HR-models within the HighResMIP 
framework offer some improvement in reliability in pro-
jecting potential future changes in rainfall under a warming 
climate, although their performance may vary based on the 
specific study region and phenomena of interest.

4 � Conclusion

This study presents a novel framework for evaluating the 
impact of model resolution on the simulation of South Asian 
monsoon rainfall, demonstrating that high-resolution models 
provide more accurate representations of monsoon timing, 
intensity, and duration compared to their low-resolution 
counterparts. High-resolution models consistently outper-
form low-resolution versions in simulating key aspects 
of monsoon behavior, including average annual rainfall, 
monsoon timing, and strength, with better alignment to the 

Table 3   Regression slopes per decade (in percentage) in the strength 
of monsoon

Period Dataset PRCPTOT Rx6HR R95p

1979–2014 MSWEP 0.91 − 0.43 1.31
ERA5 2.78 0.52 0.56
HR-models 1.42 1.44 1.22
LR-models − 0.85 − 0.28 0.98

FUTURE
(2015–2050)

LR-models 0..98 1.25 1.32
HR-models 1.34 3.67 5.56

HIST
(1950–2014)

LR-models 0.23 0.32 0.39
HR-models 0.02 0.03 − 0.008
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MSWEP reference dataset. While differences between model 
resolutions were evident, the trends in simulation outcomes 
were not statistically significant (p > 0.05).

We analysed changes in the timing and strength of 
the monsoon in the GBM basin using reference datasets 
(MSWEP & ERA5) alongside ensembles of high- and 
low-resolution models from the CMIP6 HighResMIP. Our 
results revealed significant shifts in both monsoon timing 
and intensity from 1979 to 2014. All datasets indicated 
a delay in monsoon withdrawal by the end of 2014, with 
delays observed in ERA5 (up to 12 days) and MSWEP (up 
to 8 days). Monsoon duration increased by up to 15 days for 
MSWEP, 10 days for ERA5, and 4 days for high-resolution 
models, while low-resolution models showed a decrease 
of 2 days in monsoon duration. Notably, high-resolution 
models showed a delayed onset of the monsoon compared 
to the reference datasets, with a shift of 1 day toward later 
onset and a 4-day delay in withdrawal, resulting in an overall 
increase in monsoon duration. In contrast, low-resolution 
models exhibited more pronounced delays in both onset and 
withdrawal. Projections for the future (2015–2050) suggest 
a further delay in monsoon onset, with more notable delays 
in the future period compared to the historical period. This 
shift is expected to lead to a reduction in overall monsoon 
duration in the future.

In terms of monsoon strength, we found that from 
1979–2014, both high-resolution models (HR-models) and 
the reference datasets showed similar trends in total pre-
cipitation (PRCPTOT), with HR-models displaying a 5–6% 
increase compared to up to 10% in the reference datasets. 
Low-resolution models (LR-models) showed a decline of 2% 
in PRCPTOT, with higher annual variability. For the Rx6HR 
index, both LR-models and MSWEP observations displayed 
a decline of about 2%, while HR-models and ERA5 reanaly-
sis showed increases of 5–10% and 2%, respectively. Addi-
tionally, all datasets indicated an increasing trend in extreme 
rainfall events (R95p), with up to a 5% rise during the period 
from 1979–2014. Looking ahead to the future (2015–2050), 
all models project increases in strength indices, with HR-
models showing greater increases in PRCPTOT (~ 2%/
decade), Rx6HR (~ 3.6%/decade), and R95 (~ 4.5%/decade) 
compared to LR-models. Notably, LR-models, which had 
higher increases than HR-models in the historical period, are 
expected to show smaller increases and greater variability 
in the future.

The projected increase in monsoon rainfall can be pri-
marily attributed to the intensified thermodynamic condi-
tions driven by global warming (Meehl et al., 2003). The 
Clasius-Clapeyron relationship indicate that for every 1 °C 
increase in temperature, the atmosphere’s moisture-holding 
capacity increases by approximately 7%, which is evident 
in several observational studies, and can be higher than 7% 
for sub-daily extreme rainfall (Ali et al. 2021b; 2022). This 

enhanced moisture retention, driven by global warming, 
significantly contributes to a higher long-term rainfall rate, 
especially during intense rainfall events (Ali et al., 2017). 
Additionally, studies (IPCC AR6; Shahi et al. 2023) utilising 
CMIP6 models across India have found a robust correlation 
between global warming and the projected increase in the 
frequency and intensity of extreme rainfall events. Specifi-
cally, in the GBM basin, the Bay of Bengal acts as the pri-
mary moisture source for monsoon-related thunderstorms. 
Rising SSTs in the Bay of Bengal are expected to strengthen 
the atmospheric circulation, potentially resulting in stronger 
and more persistent winds that could further amplify rainfall 
patterns in Bangladesh (Bhattacharjee et al. 2023). Although 
the increase in total monsoon rainfall may benefit crop irri-
gation, the projected increase in extreme rainfall poses sig-
nificant risks to the GBM delta, potentially making it more 
vulnerable to severe flash flooding, leading to flood hazards, 
crop damage, and soil erosion.

The local-scale definitions used to define the monsoon 
timing in our study could be further refined by considering 
factors such as rainfall event duration and dry periods dur-
ing the monsoon season to improve accuracy. Additionally, 
while our study focuses on rainfall characteristics, recent 
work by Li et al. (2014) expands on the study of monsoon 
timing by considering a broader range of indices, including 
those based on meridional wind (e.g., Monsoon Hadley Cir-
culation Index), atmospheric temperature (e.g., Tropospheric 
Temperature Gradient), outgoing longwave radiation (e.g., 
Convection Index), and the hydrological cycle. These indices 
provide valuable insights into the mechanisms governing 
monsoon onset and progression, offering an opportunity for 
further research to integrate multiple factors for a compre-
hensive understanding of the monsoon's timing and strength 
across different models and future projections. Such multi-
dimensional approaches could significantly improve the 
accuracy of climate projections, particularly in vulnerable 
regions like the GBM basin, where the impacts of monsoon 
variability are felt most acutely.

Overall, this study emphasizes the importance of model 
resolution in accurately simulating monsoon characteristics, 
particularly in South Asia, where the monsoon is crucial for 
water and agriculture. By comparing high- and low-reso-
lution models, we gain insights into how resolution affects 
monsoon timing and strength, helping to refine future mod-
els and improve climate projections. These findings also 
provide a foundation for future research on model resolu-
tion's role in climate simulations and will inform adaptation 
strategies to manage monsoon-related risks.
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