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Human brain responses to the artificial sweetener sucralose and sucrose in the 
presence of flavour modifier
Hee-kyoung Koa, Jingang Shib, Thomas Eidenbergerc, Weiyao Shib and Ciara McCabe a

aDepartment of Psychology, University of Reading, Reading, UK; bEPC Natural Products Co., Ltd., People’s Republic of China; cUniversity of 
Applied Sciences Upper Austria, Wels, Austria

ABSTRACT  
Objectives: There is a significant need to reduce sugar in food. We can replace sugar with non- 
nutrient sweeteners; however, they need to be desirable. Previously, we found adding a flavour 
modifier to a taste can result in neural super-additivity that could drive enhanced pleasure. It is 
not known if adding a flavour modifier to a non-nutrient sweetener could affect brain activity in 
the same way.
Methods: Healthy adults (N = 48, Mean age 26 yrs.) participated. We examined the neural 
effects of adding a flavour modifier to the non-nutrient sweetener sucralose (SLM) and the 
neural effects of sucrose vs sucralose. We examined whole brain data and the ROIs insula, 
pre- and postcentral gyrus, identified from a meta-analysis on brain responses to sweet tastes.
Results: Super-additive neural effects to SLM were in the mid/inferior temporal gyri, pre- and 
post-central gyri and parietal areas at the whole-brain level, p < 0.05 Family Wise Error 
corrected threshold. Superior frontal gyrus activity correlated with SLM pleasantness. There 
were no whole brain differences including reward-related differences between sucrose and 
sucralose. We did find greater ROI somatosensory activity (p = 0.01) for sucrose vs sucralose.
Discussion: We provide the first evidence that adding a flavour modifier to a non-nutrient 
sweetener reveals synergistic neural activity in brain areas associated with taste sensation, 
intensity, attention, perception and multisensory integration. Modifiers added to sweeteners 
could help consumers switch to healthier options and producers reduce the amount of 
sugar in foods. Future studies should examine if neural super-additivity effects can be used 
to predict subsequent consummatory behaviour.

KEYWORDS  
Neuroimaging; sweeteners; 
FMP; artificial sweetener; 
non-nutrient sweetener; 
sugar; sucrose; brain

Introduction

According to a World Health Organisation report [1] 
obesity accounted for approximately 5 million deaths 
in 2019 from noncommunicable diseases (cardiovas-
cular disease, diabetes, cancer, neurological disorders, 
chronic respiratory diseases and digestive disorders), 
which corresponded to 12% of all deaths from non-
communicable diseases.

The energy imbalance between calories consumed 
and calories expended is reported as one of the funda-
mental causes of obesity and being overweight, along-
side inactivity [2]. As the global population increases 
and the intake of energy-dense foods that are high in 
fat and sugars are increasing, individuals are being 
called upon to take some responsibility by trying to 
eat less energy-dense foods and increase their exercise. 

However, governments across the world recognise 
that the food industry can play a significant role in 
promoting healthy diets that are nutritious, available 
and affordable to all consumers [3] and one way to 
do this is to reduce the sugar in processed foods.

This can be achieved by using high intensity 
non-nutrient sweeteners or non-caloric/low-calorie 
sweeteners – such as saccharin, sucralose, aspartame, 
cyclamate, and acesulfame-K in food and beverages 
[4]. These compounds can attain a given level of sweet-
ness at a much lower concentration than sugar. A recent 
meta-analysis finds that replacing sugar with non-nutri-
ent sweeteners leads to weight reduction, particularly in 
participants overweight/obese under an unrestricted diet 
[5]. Although obesity is linked to reduced sensitivity to 
sweetness, hormonal changes affecting appetite and an 
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increased craving for sweets, a recent review states that 
consumption of non-nutrient sweetened foods does 
not increase sweetness preference or energy intake [6].

Taken together, there is good evidence that non- 
nutrient sweeteners can be used to reduce calories in 
foods. However, for food companies to replace sugar 
with non-nutrient sweeteners there is a real need to 
develop sugar-like products that have the sweetness 
and mouthfeel of sugar but without the need for 
high amounts of sweeteners [7]. One way to do this 
is to use flavourings with modifying properties 
(FMPs) to impart and/or mask an intrinsic sensory 
food profile without adding any new flavour charac-
teristics [8]. Proust 121 (EPC Natural Products Co., 
Ltd.) is a FMP developed to enhance sweetness and 
mouthfeel without any perceptual taste or odour itself, 
tested and approved by FEMA (the Flavour and 
Extract Manufacturers Association of the United 
States) [9]. In theory, Proust 121 could be used to 
enhance the sweetness and mouthfeel of non-nutrient 
sweeteners to be more sugar-like such that their con-
centration in foods could be reduced. However, it is 
unknown how adding flavour modifiers to sweeteners 
might affect neural activity.

Although we know of no studies examining the 
neural response to sweeteners combined with a 
FMP, previous neuroimaging studies have combined 
sucrose taste with sweet odours and found super-addi-
tive neural effects, relative to the sum of the individual 
components, in regions such as the prefrontal cortex, 
parietal cortex and insula [10,11].

Therefore, the main aim of this study was to exam-
ine if combining a sweetener such as sucralose with 
the FMP Proust 121 would reveal super-additive 
neural activity, relative to the sum of the individual 
components. As the modifier Proust 121 is designed 
to enhance sweetness this allows the amount of sucra-
lose to be reduced in the combination condition, while 
keeping the sweetness levels similar across conditions. 
This allowed us to examine neural effects outside of 
any perceptual differences in sweetness between 
when modifier was and wasn’t added to the sucralose.

Showing that flavour modifiers enhance neural 
activity to sweeteners even at low concentrations sup-
ports the notion of FMPs to increase the acceptability 
of non-nutrient sweeteners and aid the reduction of 
overall sweeteners in foods.

The second aim was to examine the neural 
response to sucralose vs sucrose given the inconsis-
tencies in the field regards their differential effects 
on the human brain [12]. Sucralose is considered 
most similar perceptually to sucrose with no bitter 
aftertaste compared to other sweeteners [4,13] and 

when given at a concentration equally-sweet to 6% 
sucrose [14] participants find it hard to distinguish 
them. This allowed us to examine sucralose vs 
sucrose neural activity outside of any cognitive 
prejudices related to the tastes.

As sugar is a calorific natural sweetener needed for 
energy and thus survival it is assumed that it increases 
neural activity especially in reward regions of the brain 
more than non-nutrient sweeteners like sucralose. 
However, despite the paucity of research on basic 
neural representations of taste and reward responses 
to simple caloric sweeteners in humans, there have 
been claims that compared to caloric sweeteners non-
caloric sweeteners do not activate the reward system 
[15]. A recent meta-analysis finds that only two studies 
with very small sample sizes (N = 12, N = 10) report 
increased neural responses to sucrose vs sweeteners 
[16,17] while others report decreased brain activation 
to glucose and fructose but not to sucralose [18]. 
Yeung and Wong conclude that inconsistencies in 
the field are likely due to small sample sizes and liberal 
statistical thresholding [19]. A further criticism is that 
previous studies don’t always directly compare the 
simple differential brain activation between sugar 
and sweeteners nor do they employ standardized fast-
ing procedures [12].

Therefore, in this study, we recruited what is con-
sidered a robust sample size for fMRI (N = 48) [20] 
and employed a standardised fasting and feeding pro-
tocol. We examined directly differential whole brain 
activity between the conditions and report family-
wise-error rate (FWE p < 0.05)-corrected statistics. 
We also examined in regions of interest (ROI) ana-
lyses, the insula (primary taste cortex) the pre and 
postcentral gyri as these are most often activated in 
systematic reviews and metanalysis on sweet tastes 
[12,15]. We examined the neural super-additive 
effects of the sucralose plus modifier compared to 
the sum of sucralose and modifier alone at the whole 
brain level. We also examined neural effects of sucrose 
vs sucralose outside of any subjective differences in 
sweetness. We also added an ROI in the striatum (cau-
date) as this was reported as different between sucrose 
and sucralose in [16].

Materials and methods

Participants

Forty-eight healthy and right-handed adults (10 male 
and 38 female) were recruited for the fMRI study. 
All participants were between 18 and 45 years old 
(mean 26.2 ± 6.8) and had a current body mass 
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index (BMI, weight in kg/height in m2) or waist-to- 
height ratio (WTH) in the healthy range. Participants 
were excluded if they had any current/previous psy-
chiatric history using the Structured Clinical Interview 
for DSM-IV Axis I Disorder Schedule (SCID), or if 
they took psychoactive medication, had high 
depression symptoms (measured with the Beck 
Depression Inventory (BDI) > 9) [21], or an eating dis-
order (measured with Eating Attitude Test (EAT) >  
20), food allergies, diabetes, smoking, or any contrain-
dications to fMRI scanning. We also recorded the fre-
quency, liking and craving for sugary and sweetened 
foods [22]. The questions in this scale consisted of 
‘How frequently do you eat sugary foods?’ with 
answers of either; a few times per month; 1–2 times 
per week; 3–4 times per week; or more than 5 times 
per week and ‘How frequently do you eat/drink 
foods with sweeteners?’, with answers of either; 
Never; Rarely; Sometimes; Often; Usually or Always. 
The Craving and Liking for sugary foods were scored 
as 1 for low craving and 10 for high craving on a Likert 
scale. All procedures contributing to this work comply 
with the ethical standards of the Helsinki Declaration 
of 1975, as revised in 2013 and ethical approval was 
obtained from the University of Reading Ethics com-
mittee, ethics ref: UREC 21/44 all participants pro-
vided written informed consent.

Pre-test (Triangle test or taste perception test)

The 48 participants were entered into the study as long 
as they could distinguish 2% sucrose from a control. 
This standard taste perception test was as follows: 
The participants were randomly allocated to the follow-
ing sequences of two samples A (distilled water) and B 
(20 g sucrose/litre [2 % Sucrose]): ABB, AAB, ABA, 
BBA, BAA and BAB. For the individual performance, 
each participant received all six sequences in random 
order. In a sequence, the participants took the whole 
10 mL of each sample into their mouth, swirled and 
coated the solution around their mouth for 3 s and 
then spit it into a spittoon. On each trial after tasting 
all three, they indicated which was different from the 
other two. Participants who yielded correct identifi-
cation of at least 5 out of the 6 trials on a second 
attempt, were recruited to the study.

Stimuli for the scan (Table 1)

Sucrose (S), sucralose (SL) the flavour modifier Proust 
(M) and the combination of Sucralose with flavour 
modifier Proust (SLM) and Sucrose with flavour mod-
ifier Proust (SM) provided the basic stimuli set for the 

fMRI study. The sucrose and sucralose were >99% 
pure and sourced from Wiener Zucker, Feinkristall-
zucker, Austria. The flavour modifier (Proust 121, 
0.036%) was provided by EPC Natural Products Co., 
Ltd. As we wanted to keep the stimuli perceptually 
similar we matched the sucralose concentration 
(0.0105%) to an equally sweet concentration of 
sucrose 6% [14] and reduced the sucralose (0.0068%) 
and the sucrose concentration (4.5%) when combin-
ing them with the modifier, as the modifier can 
increase sweetness [14]. All stimuli were diluted and 
delivered in distilled water. A tasteless solution (con-
taining the main ionic components of saliva, 25 
mMKCl + 2.5 mMNaHCO3) was used as a control.

The two-alternative forced choice (2AFC) sensory 
tests were done to verify that the sweetness perception 
of the low sucralose concentration + modifier was equal 
to the higher concentration of sucralose alone. To 
confirm that the modifier does not have a sweet taste 
of its own we also compared it to 1.5% sucrose, the low-
est known concentration of a sweet taste perceivable by 
humans [23]. Twelve expert sensory panelists recruited 
from the University of Applied Sciences Upper Austria, 
were given three times, in a random blinded order, a 
pair of samples and asked to decide which of the 
samples tasted more/less sweet. In total 12 × 3 = 36 rat-
ings were obtained for each analysis and were statisti-
cally evaluated using the beta-binomial evaluation.

Study design

The fMRI scans took place at the Centre of Integrative 
Neuroscience and Neurodynamics (CINN) at the Uni-
versity of Reading. If scheduled for a morning scan 
participants fasted overnight, if having an afternoon 
scan participants fasted for 3 h (no food, only water) 
before the scan. 11 participants had a morning scan 
and 37 participants had an afternoon scan. 30  min 
before scanning all the participants were given a stan-
dardized meal similar to previous studies (bagel, 
cream cheese, banana, orange juice, skim milk, 604 
total calories) with the instruction to ‘eat until feeling 
comfortably full, without overeating.’ We also asked 
participants to rate their hunger and mood, before 

Table 1.  Stimuli.
Condition Abbreviation Solution

Sucralose +  
modifier

SLM 6.8 mg sucralose and 36 mg Proust 
121

Sucralose SL 10.5 mg sucralose
Modifier M 36 mg Proust 121
Sucrose + modifier SM 4.5 g sucrose and 36 mg Proust 121
Sucrose S 6 g sucrose
Control C 25 mM KCl + 2.5 mM NaHCO3

NUTRITIONAL NEUROSCIENCE 3



the scan, on a visual analogue scale from 0 being not at 
all to 10 indicating the most ever felt. Subjects were 
screened for potential pregnancy and metal in their 
body before being placed in the fMRI scanner.

The task had an event-related interleaved design, to 
reduce carry over taste effects between trials [24] and 
delivered in random permuted sequence the following 
five stimuli, [Sucrose, S], [Sucralose, SL], [Modifier, 
M], [Sucrose + Modifier, SM], [Sucralose + Modifier, 
SLM]. The number of stimuli was chosen to be feasible 
given the number of repetitions of each stimulus (10) 
and the length of time that subjects were in the mag-
net. Tastes were delivered to the subject via separate 
long (∼3 m) thin Teflon tubes with a mouthpiece (∼ 
1 cm in diameter) at one end, that was held by the sub-
ject comfortably between the centre of the lips. At the 
other end the tubes were connected to separate reser-
voirs via syringes and one-way Syringe Activated Dual 
Check Valves (Model 14044–5, World Precision 
Instruments, Inc) which allowed any stimulus to be 
delivered manually by the researcher at exactly the 
right time indicated by the programme [25] thus 
avoiding the delays and technical issues experienced 
when we have used computerised syringe drivers.

fMRI task

Similar to our previous taste studies at the beginning 
of a trial, a green cross at the centre of the screen indi-
cated the start of the trial for 2 s. Then, one of the five 
stimuli was delivered in a 0.5 mL aliquot to the sub-
ject’s mouth, the word taste was presented at the 
same time on the visual display. The instruction 
given to the subject was to move the tongue once as 
soon as a stimulus was delivered in order to distribute 
the solution round the mouth to activate receptors, 
and then to keep still for the remainder of the 5 s 
taste period until ‘Swallow’ was shown, when the sub-
ject could swallow. Swallowing was 2 s, then the sub-
ject rated ‘pleasantness’, ‘wanting’, (+2 to −2) and 
‘fullness’ (0 to +4) on a visual analogue scale by mov-
ing a bar to the appropriate point on the scale using a 
button box, ratings similar to those used in previous 
taste/fmri studies [26]. Each rating period was 5 s 
long. After the last rating on each trial the tasteless 
control solution was administered in the same way 
as the other stimuli and was used as the comparison 
condition to allow somatosensory effects produced 
by liquid in the mouth, and the single tongue move-
ment made to distribute the liquid throughout the 
mouth, to be controlled for [10,27]. The tasteless con-
trol condition was not subjectively rated. Then, a red 
cross was presented for a duration between 0.8 and 2 

s (jittered) to indicate the end of the trial. After the 
red cross, the screen was black for 2 s before a new 
trial started. A taste trial was repeated for each of the 
five stimuli, and the whole cycle was repeated 10 
times, resulting in 50 trials ∼33 s long giving a total 
task time of ∼27.5 min.

fMRI data acquisition

Images were acquired with an event-related interleaved 
design and Siemens Magnetom Trio 3 T whole-body 
MRI scanner and a 32-channel head coil (Siemens 
Healthcare, Erlangen, Germany) at the Centre for 
Integrative Neuroscience and Neurodynamics at the 
University of Reading. T2*-weighted echo planner ima-
ging slices (TE 30 ms) are obtained every 2.160 s (rep-
etition time, TR). The matrix size was 64 mm and the 
field of view was 192 mm. 40 axial slices with in- 
plane resolution of 3 × 3 mm and between-plane spa-
cing of 3 mm are obtained. An anatomical T1 volume 
with sagittal plane slice thickness of 0.9 mm and in- 
plane resolution of 0.9 × 0.9 mm will also be acquired.

fMRI data analysis

The imaging data were analysed using SPM12 (Well-
come Centre for Human Neuroimaging, University 
College London). Pre-processing of the data used 
SPM12 realignment, slice timing, coregister, segment, 
normalization to the MNI coordinate system (Mon-
treal Neurological Institute; [28]), and spatial smooth-
ing with 8 mm full width at half maximum isotropic 
Gaussian kernel. The time series at each voxel was 
low-pass filtered with a haemodynamic response ker-
nel. Time series non-sphericity at each voxel was esti-
mated and corrected for, with a high-pass filter with 
cut-off period of 128 s.

In the single-event design, a general linear model 
was then applied to the time course of activation in 
which stimulus onsets were modelled as single impulse 
response functions and then convolved with the cano-
nical hemodynamic response function. Linear contrasts 
were defined to test specific effects. Following smooth-
ness estimation, linear contrasts of parameter estimates 
were defined to test the specific effects of each condition 
with each individual data-set. Voxel values for each 
contrast resulted in a statistical parametric map of the 
corresponding t statistic (transformed into the unit nor-
mal distribution (SPM z)). Movement parameters were 
added as additional regressors.

We then examined the direct comparison of 
[sucrose] vs [control], [sucralose] vs [control], [mod-
ifier] vs [control], [sucrose] vs [sucralose] and 
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[sucralose + modifier] vs [sucralose] and if areas were 
more strongly activated by the combination [sucralose  
+ modifier] than by the sum of any activations pro-
duced by the two stimuli presented separately e.g. 
SLM > Sum (SL, M) in the whole brain, similar to pre-
vious studies [22,29]. We also examined regions of 
interest such as the insula (primary taste cortex) and 
precentral and postcentral gyrus (somatosensory 
regions) given these are most often reported in sys-
tematic reviews and metanalysis on sweet tastes 
[12,15]. Spheres (10 mm) were created from coordi-
nates identified in the meta-analysis on sweet tastes 
in humans [anterior insula: – 32, 16, 2; posterior insula: 
– 38,−2,−12] precentral [58 2 24] postcentral [60 −16 
24] [15] using WFU pickatlas, for the caudate ROI we 
used the aal anatomical atlas in WFU pickatlas. Data 
were extracted using the SPM ROI analysis Matlab 
code and SPM’s spm_get_data command and analysed 
with paired-sample t tests in excel. Similar to previous 
studies on sucrose vs sucralose [16,17] we also report 
whole brain data. We thresholded at p < 0.05 corrected 
(familywise-error (FWE)) and p-values cluster cor-
rected at both p < 0.05 False Discovery Rate (FDR) 
and p < 0.05 FWE. We also checked if the results 
were affected by gender, hunger level and scan time 
(morning or afternoon) added as covariates of no 
interest.

We also did exploratory analysis examining the 
relationship between whole brain neural activity and the 
subjective ratings (pleasantness, wanting and fullness) 
across all participants using a multiple regression analysis 
in SPM12. As there was very little variability in the subjec-
tive ratings, (as we designed the study to make it difficult 
for participants to distinguish between stimuli) we used a 
lenient threshold of p = 0.05 uncorrected. For example, all 
participants’ scans for the condition sucralose were 
entered into a model as a regressor with the correspond-
ing participant’s subjective pleasantness ratings added as 
an additional regressor. This allowed us to run corre-
lations between neural activity and ratings.

Results

Sensory results

Examining data from twelve sensory panelists, (mean 
24yrs, SD, 2.91) 9 female and 3 male with healthy 
weight (BMI mean 24.7, SD, 5.35) and mood (BDI 
mean 5.87, SD, 3.24) and eating attitudes (EAT 
mean 4.92, SD, 2.14). A beta-binomial analysis includ-
ing the 3 replicate testing for each panel member was 
performed and the p-value refers to the beta-binomial 
test design [9]. We found no statistical difference in 

sweetness equivalence of the conditions sucralose 
0.0105% and sucrose 6% (Table 2).

When examining the sweetness equivalence of the 
mixture of sucralose 0.0068% plus the modifier Proust 
121 vs. sucralose alone 0.0105% the results show no 
statistical difference between the two samples for 
sweetness (Table 2).

When examining the sweetness equivalence of 
Proust 121 vs. sucrose 1.5%, Proust 121 was shown 
to be significantly less sweet than a 1.5% sucrose sol-
ution which is considered the lowest perceivable con-
centration of a sweet taste for humans [23]. Indicating 
that Proust on its own has no perceptible sweetness, as 
expected (Table 2).

Demographic data for fMRI study

48 participants took part in the fMRI part with a mean 
age of 26 yrs. 38 were female and 10 male. All were in 
the healthy BMI or weight to height ratio [30] range 
and had scores in the healthy range for mood (BDI 
<9) and eating attitudes (EAT < 20). Participants also 
rated their craving and liking for sugary foods out of 
a maximum score of 10 and their frequency of eating 
sugary foods and foods with sweeteners out of a maxi-
mum score of 5 (see Table 3).

Pre-test results of sensitivity to 2% sucrose

Twenty-seven participants passed the pre-test with 6 
out of 6 trials correct first time. Sixteen participants 
passed the pre-test with 5 out of 6 trials correct first 

Table 2. Sensory Data: Sweetness Equivalence (more/less 
sweet).
Replicate 1 Replicate 2 Replicate 3 Sum p-value

Sucralose (SL) 0.0105% vs Sucrose (S) 6%
5/7 7/5 4/8 16/20 0.319
Sucralose (SL) 0.0068% plus Proust 121 (M) vs. Sucralose (SL) 0.0105%
8/4 5/7 7/5 20/16 0.319
Proust 121 (M) vs. Sucrose (S) 1.5%,
5/7 3/9 1/11 9/27 0.001

In a random blinded order participants rated a pair of samples and asked 
to decide which of the samples tasted more/less sweet.

Table 3.  Demographics.
All (n = 48) Mean score (SD)

Age, years 26.26 (6.8)
Gender, female/male: n 38/10
Body mass index 22.67 (2.7)
BDI 3.42 (2.7)
EAT 3.15 (3.1)
Craving for sugary foods 5.52 (1.8)
Liking for sugary foods 6.46 (2.2)
Freq eating sugary foods 2.77 (1.6)
Freq eating/drinking foods with 

sweeteners
1.98 (1.3)
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time and five participants got 6 of the 6 trials correct 
on their second attempt, so were also included in the 
study.

fMRI scan day

Subjective hunger and mood

Participants had relatively high mood and low hunger 
levels before the scan (Table 4).

Subjective ratings of stimuli: pleasantness, 
wanting and fullness ratings during the scan

Using repeated measures ANOVA with ratings made 
during the scans (3 levels, pleasantness, wanting, 
mouth fullness) as one within subject factor and con-
dition (4 levels, SL, SLM, S, SM) as a second within sub-
ject factor. We found a main effect of ratings (F = 107 
(1.13, 53.18) p < 0.001) and a main effect of condition 
(F = 11.01 (2.15,101.25) p < 0.001), but no ratings * con-
dition interaction (F = 1.55 (3.11,146.33) p = 0.20).

Follow up paired sample t-tests revealed significant 
increased pleasantness for SLM vs SM (t = −2.76, 
p = 0.008), for SL vs SM (t = −2.419, p = 0.020), SLM 
vs S (t = 3.68, p = 0.001) and SL vs S (t = 2.97, 
p = 0.005). There was also significantly increased 
wanting for SLM vs S (t = 2.63, p = 0.01), SL vs S 
(t = 2.26, p = 0.02), and mouth fullness was increased 
for SLM vs SM (t = −3.78, p < 0.001), SL vs SM (t =  
−4.57, p < 0.001), SLM vs S (t = 3.93, p < 0.001), SL 
vs S (t = 4.53, p < 0.001) (Figure 1).

Whole brain analyses

Main effects of taste stimuli

The sucrose, sucralose and modifier activated regions 
such as the primary taste cortex (insula), primary 
somatosensory cortex (postcentral gyrus), and the 

precentral gyrus and caudate (Table 5). Sucrose vs 
control condition also activated the hippocampus, 
the superior temporal gyrus (STG) and the Rolandic 
operculum.

Super-additivity: SLM > Sum (SL, M)

To examine any super-additive effects of combining 
the modifier with the sucralose i.e. is there more 
activity to the combination than to the sum of the 
parts, even when sweetness is controlled, we used 
the contrast SLM > Sum (SL, M). We found activity 
in regions similar to that of the individual tastes 
alone such as the pre and post central gyri. However, 
the parietal cortex and the mid/inferior temporal 
gyri (Figure 2) were also activated (Table 6). Simi-
larly, when adding the flavour modifier to sucrose 
there was super-additivity activity in pre and post 
cingulate gyri, regions activated by the tastes alone 
but also in the parietal cortex and inferior temporal 
gyrus (Table 7).

S vs SL, SLM vs SL

Whole brain direct comparisons of sucrose vs sucra-
lose and sucralose plus modifier vs sucralose (matched 
for sweetness) revealed no significant differences, thre-
sholded at p < 0.05 FWE corrected.

ROI analyses:

S vs SL, SLM vs SL, SM vs S

We found greater neural activity in the sucrose con-
dition vs the sucralose condition in the insula [38 −2 
−12], p = 0.04, the precentral gyrus [58 2 24], p =  
0.05 and the postcentral gyrus [60 −16 24], p =  
0.01 (Figure 3). We also found greater neural activity 
in the sucralose plus modifier condition vs the 

Table 4.  Visual analogue Scale.
Mean score (± SD)

Appetite
How hungry do you feel right now? 2.14 ± 1.91
How full do you feel right now? 6.87 ± 1.94
Mood
Alertness 6.50 ± 2.10
Disgust 0.37 ± 0.60
Drowsiness 2.25 ± 2.13
Anxiety 1.79 ± 1.55
Happiness 6.68 ± 1.22
Nausea 0.33 ± 0.66
Sadness 0.85 ± 1.50
Withdrawn 0.87 ± 1.29
Faint 0.20 ± 0.50

Rate between 0 and 10, where 0 = Not at all, 10 = Most ever felt

Figure 1. Subjective ratings made in scanner.
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sucralose alone condition in the precentral gyrus [58 2 
24], p = 0.03 and for the sucrose plus modifier con-
dition vs sucrose alone [−38 −2 −12], p = 0.04. We 
found no significant differences for S vs SL, SLM vs 
SL, SM vs S in the caudate ROI. When correcting 
for multiple comparisons only the sucrose vs sucralose 
postcentral gyrus activity remained significant (p =  
0.05/4 ROIs) (Figure 3).

Parametric modulation

When examining correlations between the conditions 
and the subjective ratings at the level of the whole 
brain we found a positive correlation between the 
superior frontal gyrus region for the sucralose plus 
modifier condition and pleasantness ratings [−21 20 
35], p < 0.0001, z = 3.88 (Figure 4) and wanting ratings 
[−21 −10 35], p < 0.004, z = 4.4.

We also examined correlations between the con-
ditions and the subjective ratings in the ROIs. We 
found positive correlations between the sucralose 
plus modifier condition and wanting ratings in the 

left caudate (rho1 = 0.25, p = 0.04, one-tailed), and 
between the sucrose plus modifier condition and 
fullness ratings in the right caudate (rho1 = 0.27, p  
= 0.03, one-tailed), and between sucralose and want-
ing ratings in the right posterior insula (rho1 = 0.26, 
p = 0.03, one-tailed), however these did not survive 
corrections for multiple comparisons (p = 0.05/5 
ROI).

Discussion

This is the first study to examine the neural effects of 
adding a modifier to a sweetener like sucralose. In sup-
port of our hypothesis, we found synergistic neural 
activity in the mid/inferior temporal gyri, the pre 
and postcentral gyri and the occipital and parietal 
regions for sucralose combined with the modifier 
compared to the sum of the activation to sucralose 
alone and the modifier alone. We also found the 
superior frontal gyrus (SFG) activity tracked the 
increasing pleasantness and wanting for the sucralose 
plus modifier condition.

Table 5. Main effects of tastes.
Region Coordinate Z-score No of voxels p FWE p FDR

Sucrose-control
Postcentral gyrus −42 −22 53 7.17 2916 <0.0001 <0.0001
Precentral gyrus −57 5 29 6.82
Supplementary Motor Area −6 11 50 6.49
Caudate 9 17 2 6.33
Anterior Insula −33 20 −1 5.62
Hippocampus edge 42 −16 −13 5.98 69 <0.0001 =0.029
Superior Temporal gyrus −45 −16 −13 5.30 144 <0.0001 =0.002
Rolandic Operculum 39 −4 11 5.10 30 =0.003 = 0.189
Superior Occipital gyrus −15 −94 29 5.09 18 =0.006 = 0.351

Region Coordinate Z-score No of voxels p FWE p FDR

Sucralose-control
Threshold: p = 0.05 FWE corrected
Postcentral gyrus −42 −22 50 6.19 590 <0.0001 <0.0001
Precentral gyrus −30 −16 53 5.97
Precentral gyrus −57 2 29 4.85
Caudate 12 17 5 5.68 333 <0.0001 <0.0001
Caudate −9 17 2 5.18
Anterior Insula −27 23 2 4.89
Supplementary Motor Area −3 5 62 5.12 114 <0.0001 =0.005
Supplementary Motor Area 3 8 59 5.10 228 <0.0001 <0.0001
Postcentral gyrus 60 5 38 5.42 92 <0.0001 =0.008

Region Coordinate Z-score No of voxels p FWE p FDR

Modifer-control
Threshold: p = 0.05 FWE corrected
Postcentral gyrus −42 −22 53 7.09 754 <0.0001 <0.0001
Precentral gyrus −42 2 35 5.60
Anterior Insula −30 20 −4 6.87 777 <0.0001 <0.0001
Caudate 12 17 2 6.51
Caudate −12 17 2 6.49
Supplementary Motor Area −3 14 56 6.60 400 <0.0001 <0.0001
Inferior Frontal gyrus 45 26 23 5.26 96 <0.0001 =0.009
Postcentral gyrus 66 −4 35 5.59 108 <0.0001 =0.007
Mid Cingulate gyrus 0 −22 32 4.91 28 =0.004 = 0.158
Inferior Parietal cortex −33 −52 41 4.78 26 =0.005 = 0.158

Threshold: p = 0.05 FWE corrected.

NUTRITIONAL NEUROSCIENCE 7



The temporal gyri, pre and post central gyri and 
parietal areas have all been identified in meta-analyses 
of brain responses to sweet tastes [15]. The mid/ 
inferior temporal gyri have been implicated pre-
viously in taste sensation and taste intensity [31] 
while the parietal lobe plays a role in sensory percep-
tion and integration and managing senses including 

taste and smell [32]. The superior parietal lobe has 
close links with the occipital lobe and is involved 
in aspects of attention and visuospatial perception, 
including the representation and manipulation of 
objects [32].

The SFG is thought to contribute to higher cogni-
tive functions [33] and has subregions involved in cog-
nitive and motor control, cognitive execution and 
attention and memory processing [34] and has been 
found previously activated to subjective pleasantness 
[35].

Taken together, neural super-additivity to sweet-
eners combined with modifiers in taste sensation 
[15] and taste intensity areas [31,32] and correlations 
with pleasantness in the SFG supports the idea that 
modifiers could enhance the consumer experience of 
sweeteners thus helping replace sugar in desirable 
foods.

Figure 2. A. SLM > Sum (SL, M) in mid/inferior temporal gyrus [45, −67, −4] z = 5.7 p < 0.001 FWE cluster corrected (Thresholded 
at p < 0.05 FWE whole brain corrected). B. Contrast Estimates extracted from ITG for SLM, SL and M separately, visualisation of data 
only, no inferential statistics, hence no error bars.

Table 7.  SM > Sum (S, M).

Region Coordinate
Z- 

score
No of 
voxels p FWE p FDR

Superior Parietal 21 −67 62 7.09 331 <0.0001 <0.0001
Superior Parietal −21 −61 53 5.46 108 <0.0001 =0.009
Inferior Temporal 

gyrus
45 −61 −7 5.45 85 <0.0001 =0.016

Precentral gyrus −33 −19 68 5.27 63 =0.001 = 0.031
Postcentral gyrus −39 −25 59 5.12
Mid Occipital gyrus −27 −94 −4 5.21 26 =0.005 = 0.158

Threshold: p = 0.05 FWE corrected.

Table 6.  SLM > Sum (SL, M).
Region Coordinate Z-score No of voxels p FWE p FDR

Superior Parietal cortex 21 −64 59 6.44 294 <0.0001 =0.001
Mid/Inf Temporal gyrus 45 −67 −4 5.70 107 <0.0001 =0.020
Postcentral gyrus −42 −25 59 5.01 38 =0.004 = 0.138
Precentral gyrus −33 −22 68 4.76
Superior Parietal −24 −61 56 5.16 83 =0.001 = 0.032
Mid Occipital gyrus −27 −91 −1 4.74 25 =0.008 = 0.209

Threshold: p = 0.05 FWE corrected.
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Future studies should examine if the neural activity 
shown here can be used to predict subsequent con-
summatory behaviour, thus extending further our 
understanding of how sweeteners plus modifiers 
could be used to replace sugar in desirable foods.

Another aim was to examine how sucrose might 
differ from sucralose at the neural level. Overall the 
findings in the literature are inconsistent and a recent 

meta-analysis suggests this is likely due to small 
sample sizes (N = 10) and lenient statistical threshold-
ing [12]. Yet with these methods improved we found 
no differences between sucrose and sucralose at the 
whole brain neural level. Further we examined the 
caudate as this was a striatal region found previously 
different between sucrose and sucralose [16] however 
with an anatomical ROI for the caudate we found no 

Figure 3. A. Image from the Sucrose (S) vs Sucralose (SL) ROI postcentral gyrus [60 −16 24] B. Contrast Estimates extracted from 
postcentral gyrus for S and SL separately using SPM get data, t-test p = 0.015, bars = standard error.

Figure 4. A. Parametric modulation between SLM condition and Pleasantness reveals SFG activation [−21,20,35], p < 0.001, z =  
3.88, FWE cluster corrected (Thresholded at 0.05 uncorrected) B. Estimates extracted from SFG cluster using SPM get data function 
and plotted against pleasantness ratings, for visualisation only.
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differences between sucrose and sucralose. This is con-
sistent with previous studies that also find no differ-
ences between sucrose and sweeteners including no 
differences in reward-related areas of the brain 
[12,15,18].

The ROI analysis revealed increased postcentral 
gyrus activity for sucrose vs sucralose which could 
reflect an ‘objective’ sensing of sweetness from sucrose 
as the postcentral gyrus has been found previously 
activated by sweet tastes [12] and is part of the soma-
tosensory cortex [36] and is modulated by sweet taste 
intensity [37].

Finally although sucrose is considered a pure taste 
and non-volatile previous studies report that even 
non-volatile tastants might be being smelled retro- 
nasally during food oral processing and before swal-
lowing [38]. Therefore, we were curious to explore 
the sucrose vs control condition for any olfactory 
activity that could suggest retro-nasal processing. 
We found the hippocampus, the superior temporal 
gyrus (STG) and the Rolandic operculum activated. 
The hippocampus has been shown in mice to be 
involved in taste and nutrient sensing [39] and it 
innervates the nucleus accumbens shell, a reward 
region, that modulates sugar feeding [40]. Also the 
superior temporal gyrus is considered a primary sen-
sory region of the brain that is involved in taste per-
ception [41] evidenced by temporal lobe lesion 
studies [42] and consistent with this has been 
reported as a region activated by sweet tastes in a 
recent meta-analysis [15]. The Rolandic operculum 
however is a region that plays a central role in 
flavour perception and is described as a primary 
site of olfactory – gustatory integration [43,44]. 
This finding could reflect oral somatosensory proces-
sing as seen in previous studies on sucrose [45] or 
imply retro-nasal processing, further studies on 
retro-nasal responses to pure tastes such as sucrose 
are needed to clarify this. 

Strengths, limitations, and implications:
The strengths of the study include using a robust 
sample size (N = 48), a standardised fasting and feed-
ing protocol, and direct neural comparisons of con-
ditions with strict statistical thresholding also. Most 
participants were female however, which is a limit-
ation that should be addressed in future studies. 
Together, this work implies that directly combining 
sucralose with a modifier can lead to synergistic 
neural activity, in line with our hypothesis. Super- 
additive affects in brain areas associated with taste 
sensation, intensity, attention, perception, and multi-
sensory integration as shown here could underpin 

potential mechanisms by which non-nutrient sweet-
eners could be made more acceptable in diets, thus 
aiding sugar replacement. Future studies should 
examine if neural super-additivity effects can be 
used to predict subsequent consummatory 
behaviour.
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