
Calibrating primary crop parameters to 
capture undersown species impacts 
Article 

Published Version 

Creative Commons: Attribution 4.0 (CC-BY) 

Open Access 

Bell, Q., Gerin, S., Douglas, N. ORCID: https://orcid.org/0000-
0002-3404-8761, Quaife, T. ORCID: https://orcid.org/0000-
0001-6896-4613, Liski, J. and Viskari, T. (2025) Calibrating 
primary crop parameters to capture undersown species 
impacts. European Journal of Agronomy, 169. 127676. ISSN 
1873-7331 doi: 10.1016/j.eja.2025.127676 Available at 
https://centaur.reading.ac.uk/122793/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.1016/j.eja.2025.127676 

Publisher: Elsevier 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

www.reading.ac.uk/centaur   

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online



Calibrating primary crop parameters to capture undersown species impacts

Quentin Bell a,*, Stephanie Gerin a, Natalie Douglas b, Tristan Quaife b, Jari Liski a,  
Toni Viskari a,c

a Climate System Research, Finnish Meteorological Institute, P.O. BOX 503, Helsinki, Uusima 00101, Finland
b National Centre for Earth Observation, Department of Meteorology, University of Reading, University of Reading, Earley Gate, Whiteknights Rd, Reading, Berkshire RG6 
6ET, United Kingdom
c European Commission, Joint Research Centre (JRC), Via Enrico Fermi, 2749, Ispra, Varese 21027, Italy

A R T I C L E  I N F O

Keywords:
Crop model
STICS
Intercropping
Calibration
4DEnVar

A B S T R A C T

Increasing plant diversity is seen as an important method for improving agricultural soil health, with benefits 
extending to increased soil carbon content and improved ecosystem health. However, including multi-species 
interactions into models is challenging. In this study, we represented multi-species interactions by producing 
different cash crop parameter values depending on the presence of undersown species. For this purpose, we used 
the STICS soil-crop model with observations of yield, green area index, and net ecosystem exchange chamber 
measurements from a number of plots in an extensive field experiment in southern Finland, where barley was 
cultivated with 0–8 undersown species. Calibration with the four-dimensional ensemble variational data 
assimilation method was found to be effective with up to three parameters of interest, beyond which issues of 
equifinality were present. Calibration had a positive effect on the performance of projected yields and other 
measurements, demonstrating the potential of this approach to capture unsimulated interactions. However, we 
found that the dominant parameter values change interannually to the degree that the calibration improvements 
did not translate, limiting the effectiveness of this approach to similar conditions as the calibration data. 
Additionally, large variance in secondary species abundance remains a challenge for modelling this style of 
intercropping.

1. Introduction

As the impacts of climate change on many facets of life become 
increasingly apparent, attempts to achieve net-zero carbon balances 
have become a central effort for various parties (Fankhauser et al., 2022; 
Black et al., 2021). With soils being the largest terrestrial carbon pool 
(Scharlemann et al., 2014; Friedlingstein et al., 2023), carbon farming 
practices are considered a potential method to increase ecosystem car
bon allocation (Rumpel et al., 2020; Minasny et al., 2017). One of the 
more prominent suggestions of such methods has been a wider imple
mentation of undersown species as increased agricultural biodiversity is 
theorised to improve the resilience of cash crops (Crystal-Ornelas et al., 
2021), to enhance carbon accumulation into the system (Lal, 2015), as 
well as to more efficiently protect soil health (Adetunji et al., 2020). 
However, to widen the implementation of such methods and assess the 
impacts in a constructive manner requires both a better understanding 
of the various interactions as well as the capacity to reliably model the 

system (Schmidt et al., 2011).
Crop models represent the current understanding of various dy

namics affecting crop growth (Asseng et al., 2014; Boote et al., 2013) 
and are an instrumental tool both for scientific research and for practical 
applications such as harvest projections. Due to the modelled systems 
primarily being cultivated cropland, crop models need to be able to 
feature more processes than general ecosystem models, for example, 
various management methods (Brown et al., 2018) or the impact of 
nutrient availability to the system (Fatichi et al., 2014). By contrast, 
simplifications are made for general ecosystem models so that they 
broadly apply to many different ecosystems, often at far larger scales 
than crop models. Furthermore, due to agricultural systems themselves 
having been heavily specialised, it has been necessary to develop various 
crop models in order to properly capture the multitude of dynamics 
(Pimentel et al., 2012).

Not only do crop models still share some of the vulnerabilities of 
general ecosystem models, such as simplified radiation interception 
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calculations or the use of plant functional types to represent average 
behaviour (Fisher and Koven, 2020), their very specialised nature 
further heightens those modelling challenges. Due to the number of 
baseline processes that have to be included in crop models and the 
subsequent computational cost, calibrating these models present 
genuine practical issues (Seidel et al., 2018; Guillaume et al., 2011). 
Including these various processes presents a central challenge as not 
only are their impacts intertwined, only a limited amount of system 
outputs can truly be continuously measured. As a consequence, both 
overparameterization and equifinalty are common hurdles that have to 
be addressed in any efforts to calibrate these models (Beven and Freer, 
2001).

Furthermore, attempting to include cover and undersown crop dy
namics into these models brings additional fundamental issues. The 
common approach in vegetation dynamic modelling is to represent the 
development of each plant species independently of other species in the 
same plot (Ma et al., 2022; Martin Belda et al., 2022). Generally, the 
only interactive dynamics between different species that are currently 
implemented either relate to light transmittance through the canopy 
(Dai et al., 2004; Shiklomanov et al., 2021) or water availability 
(Gouttevin et al., 2012; Gerten et al., 2004). Some of the theories 
regarding the benefits of the secondary species concern soil health (Yang 
et al., 2020), symbiotic interactions (Callaway, 2007), or bacterial and 
fungal states (Baldrian, 2017), but there are no effective formulations 
representing these processes that could be included in models.

Since the primary interest in a lot of practical application of crop 
models is either in the productivity of the cash crop itself or the total 
performance of the plot when it comes to carbon sequestration, here we 
test an approach where the changes induced by the secondary species 
are included in the properties of the cash crop, thereby accounting for 
the interaction processes not currently simulated by crop models. In 
essence, we calibrate the traits of the cash crop in the presence of a given 
secondary species and ideally capture the impact of the plot synergies in 
that manner. To do this, a nimble parameter estimation method is 
necessary to be able to perform calibration at different sites with varying 
measurements.

In the four-dimensional ensemble variational (4DEnVar; Pinnington 
et al. 2020) data assimilation method, the optimal set of state (or 
parameter) values is determined by how ensembles generated with 
different sets of values perform when compared to observations. Because 
it is calculated from a single collection of ensemble runs instead of from 
an iterative process, such as the more traditional Monte Carlo Markov 
Chain (MCMC; Chib 2001; Haario et al. 2001; Vrugt and Ter Braak 2011; 
Dumont et al. 2014), it requires far fewer computational resources and 
produces estimates much faster. Consequently, the 4DEnVar approach 
has been used to calibrate, for example, global soil moisture models 
(Pinnington et al., 2021; Reichle et al., 2023) and a land surface model 
including a crop parametrisation (Pinnington et al., 2020).

To study the utility of this method, we chose the STICS model 
(Brisson et al., 2003), a widely used crop model that has a wide array of 
processes included and which allows for modelling of two crops in the 
same plot simultaneously (Brisson et al., 2004; Corre-Hellou et al., 2009; 
Kherif et al., 2022). STICS is conventionally calibrated using frequentist 
optimisation methods (Wallach et al., 2011, 2024; Guillaume et al., 
2011; Ravelojaona et al., 2023). Although, Bayesian MCMC-methods 
have also featured in the literature, albeit more rarely (Dumont et al., 
2014; Buis et al., 2023). However, there is an increasing movement to 
apply Bayesian methods to crop and other ecosystem models in order to 
better capture, represent, and reduce uncertainty from all sources (Fer 
et al., 2021; van Oijen, 2017; Hartig et al., 2012). Additionally, while 
STICS has been used in Finland and similar cold climates prior to this 
study (Korhonen et al., 2018; Ravelojaona et al., 2023; Jégo et al., 
2010), we believe this to be the first application of the STICS intercrop 
methodology to such climates.

The aims of this study are twofold: (1) to evaluate the utility of 
4DEnVar as a calibration method for crop models, specifically STICS; (2) 

to see if calibrating primary crop parameters on intercropped plots with 
different undersown crops produces improved predictions of primary 
crop yield compared with conventional single-crop calibration. The test 
was conducted with data from the TWINWIN experiment (Cappelli et al., 
2024) which has both information from multiple crop setups with 
different undersown species as well as varied types of observations. An 
additional benefit of this setup is that it also allows us to evaluate how 
different datastreams impact the calibration.

2. Methods

2.1. Study site

The measurements were conducted on the experimental TWINWIN 
site (https://www.bsag.fi/en/projects/twinwin-project/), which was 
established in 2019. The main goal of the TWINWIN experiment was to 
study the effect of plant diversity on carbon sequestration. The site, 
owned by the University of Helsinki, is located in Viikki (60∘13’29.4”N, 
25∘01’12.7"E), on a mineral agricultural field (plots varied between 4 
main soil types according to USDA soil taxonomy: loam, clay loam, silty 
clay, and silty clay loam). At the start of the experiment, the field had on 
average (n = 60) a C:N ratio of 13.8 ± 0.7, carbon content of 3.0 ± 0.7 % 
and nitrogen content of 0.2 ± 0.1 %. In 2020 and 2021, the mean annual 
temperature and annual total precipitation were 8.4 ∘C & 863 mm and 
6.4 ∘C & 709 mm, respectively. Monthly and long-term (1991–2020) 
averages can be found in Table 1.

There, 60 plots were created, 4 bare fallows and 56 plots with barley 
(Hordeum vulgare L.) sown alone or with different undersown species. In 
total, there were 6 treatments: single-cropped barley with herbicide (4 
plots) or without herbicide (8 plots), intercrops of barley with one 
undersown species (3 plots for each of 8 undersown species), with two 
undersown species (10 plots), four undersown species (6 plots) and with 
eight undersown species (4 plots). The different undersown species are 
listed in Table 2. Each species is characterised by two main functional 
traits: their rooting depth and their ability to fix nitrogen. More detailed 
information on the experimental design and its maintenance can be 
found in Cappelli et al. (2024).

2.1.1. Flux measurements
The manual chamber technique was used to measure Net Ecosystem 

Exchange (NEE) on 22 plots out of 60. The 22 plots included 4 different 
treatments: 4 plots with single-cropped barley with no herbicide, 8 plots 
with barley sown with one of each undersown species, 6 plots with 
barley plus 4 undersown species, and 4 plots with barley plus 8 under
sown species. During the growing seasons, NEE measurements were 
conducted twice a month in 2020 and once a month in 2021. The set-up 

Table 1 
Monthly and yearly total precipitation, monthly and yearly mean air tempera
ture from January 2020 to December 2021 (Kumpula station, Finnish Meteo
rological Institute 2024); in comparison to the long term average of 1991–2020 
(Helsinki Kaisaniemi station, Jokinen et al. 2021).

Time period Total precipitation (mm) Mean air temperature (∘C)

2020 2021 1991–2020 2020 2021 1991–2020

January 66.5 93.8 53 2.5 − 3.9 − 3.1
February 66.5 93.8 38 0.9 − 7 − 3.8
March 64.1 41.5 34 2.1 − 0.3 − 0.7
April 44 30.8 34 5 5 4.4
May 50.3 86.5 38 9.6 10.5 10.4
June 78.2 38.7 60 18.1 19.7 14.9
July 98.8 47.3 57 16.7 21.6 18.1
August 75.8 132.4 81 17 15.9 16.9
September 67.9 42.8 56 13.4 10.1 12.3
October 66.7 84.1 73 8.9 8.3 6.6
November 77.9 50.2 69 5 2.2 2.4
December 64 33.7 58 1.5 − 5.9 − 0.7
Year 863 709 653 8.4 6.4 6.5
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consisted of a clear chamber connected by an inlet and outlet tube to a 
CO2 and H2O analyser (Li-140840A, LI-COR, Inc., Nebraska, USA) with a 
flow rate of 1 L min− 1. An air temperature and relative humidity sensor 
(BME280, Bosch Sensortec GmbH, Reutlingen, Germany) was placed 
inside the chamber while a photosynthetically active radiation (PAR) 
sensor (PQS1, Kipp & Zonen, Delft, Netherlands) was placed above the 
chamber. The chamber also had a small fan to ensure air mixing in the 
chamber headspace. A short clear chamber of 0.072 m3 was used when 
vegetation was low (beginning of June and after harvest), while a tall 
clear chamber of 0.288 m3 was used when vegetation was high (end of 
June until harvest). On each plot, a metal frame of 60 by 60 cm with a 
grooved edge was installed after sowing, including 4 rows of barley. 
During each measurement, the grooved edge was filled with water to 
ensure an air-tight seal between the chamber and the frame. To build the 
light response curve of each plot, NEE measurements were conducted in 
5 different light conditions using netted or opaque fabrics (representing 
100 %, 60 %, 36 %, 21.6 % and 0 % of the measurement day sunlight 
level). The closure time for each measurement was 3 min and the 
chamber was ventilated between each measurement. Similarly to 
Trémeau et al. (2024), NEE fluxes were calculated using an exponential 
fit: 

F =

(
dC(t)

dt

)

t=0
×

MCO2 × P × V
R × T × Ab

(1) 

where 
(

dC(t)
dt

)

t=0 
is the time derivative (ppm s− 1) of the exponential 

regression, MCO2 is the molecular mass (44.01 g mol− 1), P is the air 
pressure (Pa), R is the universal gas constant (8.31446 J mol− 1 K− 1), T is 
the temperature inside the chamber headspace, V is the volume (m3), 
and Ab the base area (m2) of the chamber headspace. Missing air tem
perature and atmospheric pressure were retrieved from the FBES/OEB/ 
SenPEP weather station located 230 m away from our site (Aphalo, 
2023).

Normalised root mean squared error (NRMSE) of the exponential fit 

was used to filter the fluxes. When 
(

dC(t)
dt

)

t=0 
was above 0.1 ppm s− 1 and 

NRMSE was above 0.01, NEE fluxes were discarded. The NRMSE filter 

was not applied for small fluxes with 
(

dC(t)
dt

)

t=0 
below 0.1 ppm s− 1.

2.1.2. Vegetation index measurements
The Green Area Index (GAI) was measured within the same collar 

and week of NEE flux measurements. A protocol was created based on 
the Integrated Carbon Observation System (ICOS) ancillary vegetation 
measurements protocol for Croplands (Gielen et al., 2018).

Barley was sown in rows. Therefore, the GAI of barley (GAIbarley) was 
measured as follows: 

GAIbarley =
(nGLb × LAb + nGSb × SAb) × ntot− row

Ac
, (2) 

where nGLb is the average number of green barley leaves per row, nGSb is 
the average number of green barley stems per row, LAb is the average 
hemi-surface area per green barley leaf, SAb is the average hemi-surface 
area per green barley stem, ntot− row is the number of rows in the metal 
frame (4 in most cases, sometimes 3.5 due to unsuccessful germination), 
and Ac is the collar area (0.36 m2). nGLb and nGSb were determined by 
counting the total number of green leaves and green stems from the two 
middle rows and then averaged to one row. LAb and SAb were determined 
by harvesting 3–5 stems and 7–10 leaves from outside the collar and 
scanned with a planimeter (LI-3000C with LI-3050C, LI-COR, Inc., 
Nebraska, USA).

2.1.3. Yield measurements
The barley dry yield was estimated by harvesting the central strip 

(2 m wide) of the plot, where the area had reduced edge effects and was 
not affected by measurements.

2.2. STICS crop model

STICS (Scientific, Technical and Interdisciplinary simulator of soil- 
Crop System functioning) is a daily time-step process-based crop 
model that allows for variations in climate, soil, and crop systems to be 
simulated, covering plant growth, as well as fluxes of water, carbon, and 
nitrogen. STICS is able to model single species plots or intercrops of two 
species growing in the same plot. Crop growth is driven by radiation 
intercepted by the foliage, with biomass allocations varying according to 
the phase of development. Stresses reduce growth, with STICS ac
counting for nitrogen, water, waterlogging, and thermal stresses. Soils 
interact with the crops through the roots, which are specified as a root 
density distribution within the soil. Heterotrophic respiration is 
modelled from mineralisation of crop residues and humus.

We worked with JavaSTICS v1.41 and STICS v9.2 through the Stic
sOnR R package (Lecharpentier et al., 2023). Where STICS did not have 
a specific parametrisation for a species used in the field experiment, we 
substituted a similar plant’s parameter set: the three clovers (Trifolium 
spp.) were all modelled with a crimson clover plant parameter set; 
chicory used the vetch parameter set.

Intercropping in STICS is built on a simplified approach in which the 
sole crop modelling process is extended to apply to two species. The 
modelled crops interact only through adaptations to the resource cap
ture modules, simulating competition for light, water, and nitrogen 
(Brisson et al., 2004; Corre-Hellou et al., 2009). Radiation interception is 
differentiated for the dominant canopy and an understory canopy which 
is split into sunlit and shaded parts. The light partition and the associ
ated microclimates drive the differences in water and nitrogen budgets 
as well as growth.

2.3. Experimental data usage

The collaborative nature of the experiment resulted in intense 
measurement campaigns occurring during the summer 2020 growing 
period (late May to mid September), while fewer measurements were 
taken in 2019, 2021, and 2022. Since STICS directly models systems 
including only one or two crops we chose to calibrate using observations 
from the single-cropped barley and intercrops of barley with one 
undersown species.

In order to calibrate STICS with the measurements from TWINWIN, 
we had to ensure that the observations from the field and the state 
variables available from STICS were comparable. Specifically, we sought 
to compare the model’s yield (t ha− 1), NEE (t CO2 ha− 1 d− 1), and LAI 
(m2 m− 2) estimates to the available observations from the field. We also 
restricted the observations used in calibration to only those taken be
tween barley sowing and harvest since we are calibrating just the barley 
parameters.

While there were plenty of good observations in 2020, the other 
years presented a variety of problems. In 2019, the undersown crops 

Table 2 
Undersown Species Used in the Experiment.

Common 
Name

Label Species Root 
Depth

Nitrogen 
Fixing

Alfalfa AA Medicago sativa L. Deep Yes
Alsike clover AC Trifolium hybridum L. Shallow Yes
Chicory CI Cichorium intybus L. Deep No
Tall fescue FA Festuca arundinacea 

Screb.
Deep No

Italian rye- 
grass

IR Lolium multiflorum Lam. Shallow No

Red clover RC Trifolium pratense L. Deep Yes
Timothy-grass TG Phleum pratense L. Shallow No
White clover WC Trifolium repens L. Shallow Yes
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(that is, everything but barley) established poorly, and so the actual 
presence of an intercrop situation varied widely and modelling may 
have assumed much better crop establishment than occurred. 2021 had 
fewer observations, and there was a local drought in Helsinki 
(Ahongshangbam et al., 2023), leading to very low yields. In 2022, few 
measurements were taken in total and the final harvest was delayed, 
leading to improbably small yields (most being 10 % of the size or less 
than the poor harvest of the year before in 2021). Due to these cir
cumstances, we have restricted the data in use to be solely 2020 for 
calibration and 2021 for validation.

Several issues with the simulations of the intercrop of barley and 
timothy grass in STICS were noticed, where the model produced quite 
unrealistic estimates that were not usable in calibration. From discus
sion with the developers of STICS, these issues appeared to stem from 
multiple bugs in the model to be fixed in an upcoming model version 
which focuses on intercropping (Vezy et al., 2023). As a result, the 
intercrop of barley and timothy grass was excluded from simulation and 
calibration.

2.3.1. Yield
The measured dry yield was compared with mafruit, the dry 

biomass of harvested organs (t ha− 1). The mean of observed yields for 
each plot type was used as the observed value, with uncertainty given by 
the standard deviation of the measurements. There was no accounting 
for possible losses due to delayed harvests.

2.3.2. Net ecosystem exchange (NEE)
NEE estimates from STICS are derived from the difference of two 

output variables: daily growth rate (dl_tams, t ha− 1 day− 1), corre
sponding to net primary production, and soil respiration (CO2sol, kg 
ha− 1 day− 1), corresponding to heterotrophic respiration as shown in 
Equation (3). NEE is calculated as: 

NEE =
CO2sol

1000
− 0.48⋅

44
12

⋅
∑

plants
dl tams, (3) 

where the factor in front of the summation convert from total mass of 
daily growth to the corresponding mass of CO2 absorbed from the at
mosphere. The chamber observations from the plots needed to be scaled 
up to a daily time-step estimated NEE. The chamber measurements 
under varying levels of PAR were used to build the light response curve 
(Ruimy et al., 1995). The apparent quantum yield α was allowed to vary 
between − 0.005 and − 0.00001 mg μmol− 1 and the asymptotic gross 
photosynthesis rate GPmax was allowed to vary between − 5 and 
− 0.00001 mg m− 2 s− 1. These were used in Equation (4) with half-hourly 
average PAR measurements from the nearby Kumpula weather obser
vation station (Finnish Meteorological Institute, 2024, N60∘12’14.0”, 
E24∘57’38.9”) to produce half-hourly estimated gross primary produc
tion and subsequently summed to daily gross primary production (GPP) 
for each plot. Note that the unit conversions are excluded from this 
formula for simplicity, but may be seen in the code appendix. 

GPP =
∑

day

α⋅GPmax⋅PAR
α⋅PAR + GPmax

(4) 

Finally, the fully shaded chamber measurement was used to create an 
approximate daily soil respiration measurement by simple conversion to 
a full-day value; the difference of these two terms then produced the 
NEE. The uncertainties associated with the chamber measurement- 
derived values (σα, mg μmol− 1; σGPmax , mg m− 2 s− 1) were used in cor
responding uncertainty propagation formulae to produce uncertainties 
for the observed daily GPP values (σGPP,day, t CO2 ha− 1 d− 1). This naïvely 
assumes that the PAR measurements contain no variation or uncertainty 
for simplicity. 

σGPP,day =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

day

GPP2⋅
(

σ2
α

α2 +
σGPmax

GP2
max

+
PAR2⋅σα + σGPmax

(α⋅PAR + GPmax)
2

)
√
√
√
√ (5) 

The NEE uncertainty, σNEE, is then derived by combining the GPP and 
ecosystem respiration (σReco) uncertainties: 

σNEE =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
σ2

GPP,day + σ2
Reco

√
(6) 

Our calibration method did not perform well with positive values of 
NEE in the middle of the growing season. Calibrating with such obser
vations led to clear distortions in estimated NEE and decreases in esti
mation performance. Calibrating soil respiration terms may have 
alleviated these issues, however, calibrating soil-related parameters 
limits the applicability of the calibration and the transferability would 
be reduced. In our calculation of NEE from STICS (equation (3)) the only 
positive values come from CO2sol, which should not be directly 
affected by the parameters we calibrated. To mitigate this we removed 
calculated NEE observations that were above zero, and only calibrated 
with the remaining non-positive observations. This exclusion of positive 
NEE leads to between 2 and 6 observations of NEE being used to cali
brate each plot type.

2.3.3. Leaf/green area index (LAI/GAI)
Finally, leaf area index (LAI) in STICS, lai_n (m2 m− 2), represents 

the green area, which is why we use the green area index as a direct 
comparison. However, the green area index measurements do not 
include uncertainty estimates, and for inter-cropped plots only one 
measurement is available for a given date. Hence, an uncertainty esti
mate must be created for the inter-cropped plots in order to calibrate 
STICS using 4DEnVar. The single-cropped barley was measured in 
multiple plots for each date, thus we take the means of the single- 
cropped barley green area indices (GAISC,Barley) as the single-cropped 
barley measurements for each date, and the standard deviations (σGAI, 

SC,Barley) as the uncertainties. For the inter-cropped plots, the corre
sponding single-cropped barley measurement uncertainties were used to 
create proportional uncertainty estimates for the dual-crop plots. 

σGAI,IC,Barley = GAIIC,Barley⋅
σGAI,SC,Barley

GAISC,Barley
(7) 

2.4. 4DEnVar

The 4DEnVar data assimilation technique can be used to estimate a 
set of model parameters as was seen in Pinnington et al. (2020). The 
4DEnVar method is centred on the minimisation of a cost function 
constructed from the two sources of information known prior to its use: 
(1) some prior knowledge of the parameters, and (2) the observational 
data, along with their respective uncertainty information. An ensemble 
of parameters is generated by sampling from parameter space and 
mapped to observation space via an observation operator encompassing 
model runs. The ensemble in observation space is used to approximate 
cost function gradient terms thus avoiding the calculation of an adjoint 
as would be required when using gradient descent methods with tradi
tional 4DVar (Rawlins et al., 2007). Use of an ensemble also allows us to 
obtain posterior uncertainty information via a posterior error covariance 
matrix and a further benefit to implementing 4DEnVar is that, once an 
ensemble of model runs is obtained, multiple experiments may be per
formed, say with new observational data, without the need to repeat the 
process of ensemble generation.

2.4.1. Nomenclature
In this paper, we use prior to mean the default calibration of STICS, 

and construct a prior ensemble of parameters based on this, which when 
given to STICS produces a prior ensemble in observation space; we use 
posterior to mean the set of outputs from 4DEnVar (including both an 
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ensemble in parameter space and the optimal parameter set, also called 
the analysis vector) and the posterior ensemble in observation space.

In the context of parameter estimation, x ∈ RNp represents a set of Np 

parameters. The parameters are assumed to be normally distributed with 
known mean xb and prior error covariance matrix B. An ensemble of size 
Ne is drawn: {xi, i = 1,…,Ne} and perturbation matrix X́  
= (x1 − xb|x2 − xb|…|xNe − xb) ∈ RNp×Ne is constructed, where xb is the 
mean of the ensemble. The optimal parameter set xa is assumed to be an 
update to the ensemble mean in the form of a weighted combination of 
the perturbations: 

xa = xb + X́ w (8) 

where w ∈ RNe is normally distributed with zero mean and unit 
covariance. The observations at time t are stored in a vector yt ∈ RNo

t 

where No
t is the number of observations available at time t ∈ {0,…,T}

and so No =
∑T

t=0No
t represents the total number of observations. The 

corresponding observation error covariance matrix at time t is given by 
Rt ∈ RNo

t ×No
t . An observation operator ht : RNp ↦RNo

t is then required to 
map parameter space to observation space in order to compare the 
measured observations with those as simulated by the parameters at 
time t.

2.4.2. 4DEnVar cost function and gradient
The 4DEnVar cost function to be optimised for the ensemble 

perturbation weighting w and corresponding gradient function are 
given by 

J(w) =
1
2
wTw +

1
2
(ĥ(xb) + Ý w − ŷ )

T R̂
− 1
(ĥ(xb) + Ý w − ŷ ) (9) 

and 

∇J(w) = w + (Ý )
T R̂

− 1
(ĥ(xb) + Ý w − ŷ ), (10) 

respectively, where 
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and 

Ý = (ĥ(x1) − ĥ(xb)|ĥ(x2) − ĥ(xb)|…|ĥ(xNe ) − ĥ(xb)) ∈ RNo×Ne 

is the perturbation matrix in observation space approximating the de
rivative information.

2.4.3. Computing the posterior ensemble
Uncertainty information for the optimised parameter set can be ac

quired by updating the ensemble according to the following: 

Xʹ
a = Xʹ

b

(
I +

[
Yʹ

b
]T R̂

− 1[
Yʹ

b
] )− 1∕2

(11) 

where X́  are the updated ensemble perturbations. This expression is 
obtained from an Ensemble Kalman Filter (Evensen, 2003) result and 
X́ (X́ )

T approximates the posterior error covariance matrix.

2.5. Calibration

The calibration is intended to capture inter-species dynamics not 
currently captured by STICS. To contrast with the conventional single- 
crop calibration approach and control for possible dynamics depen
dent on the location and characteristics of the field, we calibrate barley 
grown alone in addition to barley undersown with each of the different 
secondary species. We label calibration of the barley grown alone as 
“Barley", while calibrations specific to each undersown species, in which 
the measurements from the same plot type are used to calibrate, is 
labelled “Self". The aim is to produce individual parameter sets for both 
barley grown alone and barley in the presence of different undersown 
species that indirectly capture these dynamics. Here, we calibrate barley 
functional parameters and do not estimate the undersown plant 
parameters.

When discussing the model set up and associated plot type, we 
frequently refer to just the species undersown with barley as the barley’s 
presence is constant across this study. As an example, FA LAI or FA yield 
refer to the LAI or yield of barley undersown with tall fescue 
(F. arundinacea, FA). FA LAI or yield does not include the LAI or yield of 
tall fescue, just barley. However, the NEE includes contributions from 
both barley and any undersown species, as well as soil respiration.

2.5.1. Parameter responses
From the set of plant parameters implemented in STICS v9.2, we 

removed all code-switching parameters, unused parameters, and pa
rameters at the edge of the valid ranges specified in the STICS docu
mentation. We further narrowed the set of parameters down to 37 
parameters to be considered based on the expert opinion of the authors 
of the manuscript.

Using this reduced set, a one-at-a-time sensitivity analysis was con
ducted. To test sensitivity, the parameters were sampled around their 
corresponding preset barley (cork variety) values in STICS by increasing 
and decreasing the preset value by 5 %, 10 %, 15 %, 20 %, 30 %, and 
40 %. Then, values of parameters that did not lie within the valid 
parameter range according to the JavaSTICS documentation were dis
carded. All the remaining parameter values were supplied to STICS one 
at a time with all other parameters held constant at their preset values. 
The model outputs of LAI, NEE, and yield were then used to assess 
sensitivity by separately considering final yield, mean LAI, and mean 
NEE. The means are calculated over the entire simulation period.

The parameter set under consideration was further reduced to the 
apparent most sensitive parameters, with the remaining parameters 
being individually assessed with an interactive tool (provided in the 
code appendix), comparing the model outputs of LAI, NEE, and yield 
with varied parameters to the baseline parameter outputs. By this 
method, parameters showing only minor influence or overly one-sided 
effects on the outputs were again discarded, until a parameter set that 
was feasible for assessing the data assimilation process was attained, 
consisting of the eight parameters: adens, efcroiveg, vitircarb, 
INNmin, stlevdrp, efcroirepro, vlaimax, and dlaimax.

2.5.2. Twin experiments for parameter selection
We examined the effectiveness of our data assimilation process with 

twin experiments similar to Pinnington et al. (2020). In particular, we 
evaluated how many parameters were able to be estimated while 
avoiding problems of equifinality. This involved using a synthetic truth, 
wherein a fixed set of parameter values was used to generate synthetic 
observations using STICS, which was then used in the data assimilation 
process to estimate the generating parameters. The function and the 
limitations of the process are thus tested, as STICS itself generated the 
observations there should not be any representation error affecting the 
calibration. For initial testing, eight parameters were selected, as 
described in the previous section.

The synthetic truth parameters were drawn from normal distribu
tions with means given by the preset parameter values for barley (var. 
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cork) present in STICS and standard deviations of 10 % of the absolute 
value of the respective means. Model projections of LAI, NEE, and yield 
for each plot type were generated using combinations of varied pa
rameters, this allowed comparison of both parameter-specific calibra
tion performance and the number of parameters being calibrated 
together. The synthetic observations are then those projections with an 
associated uncertainty of 1 % of the mean of the observation type.

The prior parameter ensemble was generated by drawing parameter 
values similarly to the synthetic truth parameter vector, however the 
normal distributions had a standard deviation of 20 % of the absolute 
value of their respective means; draws were repeated up to the size of the 
ensemble. The posterior parameter ensemble generated by 4DEnVar was 
compared with the prior parameter ensemble, and a posterior ensemble 
of estimates in observation space was generated for comparison with 

Fig. 1. Parameter distributions when calibrating sole barley with the shown parameters using a synthetic truth. Due to uncertainty about the reliability of retrieval of 
more than three parameters we chose to calibrate only the three parameter set shown in 1a.
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both the prior ensemble estimates and the synthetic observations.
Initial twin experiments and variations were conducted using a sin

gle fixed synthetic truth, before testing alternate synthetic truths to 
ensure the robustness of the observed behaviours. Similarly, the number 
of ensemble members was varied to assess the effect of ensemble size on 
the results and to establish a suitable compromise between speed of 
estimation and coverage of the parameter space. The twin experiment 
was run with ensemble sizes of 50, 100, 200, 250, 500, and 1000. The 
initial exploratory selection was conducted with sole barley, and other 
plot types were checked for similar behaviour.

2.5.3. Calibrating for the TWINWIN site
Finally, the calibration was performed using the observations from 

the TWINWIN plots. A reduced parameter set and appropriate ensemble 
size were chosen based on the twin experiments, and a prior ensemble of 
parameter values were generated in the same way as the twin 
experiments.

3. Results

3.1. Twin experiments for parameter selection

The twin experiment showed a lack of parameter convergence to the 
synthetic truth when varying all eight parameters chosen by the sensi
tivity tests, even with larger ensemble sizes. Closer examination of the 
parameter responses, and trials excluding groups of parameters at a time 
led to a final parameter set containing adens, efcroiveg, and 
vitircarb that consistently retrieved the synthetic parameter values 
in calibration. If one of the other parameters was included in the cali
bration then there were issues – that parameter was often not retrieved 
and the posterior distributions of the other parameters were broader and 
the mean further from the true parameter value. In Fig. 1, the posterior 
parameter estimate of INNmin had moved away from the synthetic 
truth, and the posterior distributions of the other parameters in this 
calibration were somewhat broader than those in Fig. 1a. Similarly, if we 
replaced one of the three chosen parameters with another, the perfor
mance worsened. Some parameters were excluded at this stage based on 
weaker responses in the observed variables, or one-sidedness in the re
sponses. Other parameters appeared to have comparable effects on the 
observed variables to another parameter used in calibration. For 
example, vitircarb and efcroirepro had very similar effects, 
largely affecting the yield, thus calibrating them together demonstrated 
issues of equifinality. The choice then came down to relative perfor
mance, with vitircarb being better retrieved by the data assimilation 
process and those calibrated estimates better fitting the observations.

When varying the ensemble size used for calibration, we found that 
the prior distributions did not appear normally distributed for those 
ensembles containing 250 members or fewer, despite being sampled 
from normal distributions. For 500 and 1000 ensemble members the 
results were quite similar, thus we chose to proceed with 500 ensemble 
members when calibrating with the actual observations.

With three parameters being varied, the performance was excellent, 
and with all eight being varied the performance was still very good – one 
parameter estimate was further from the truth in the posterior compared 
to the prior, but all other posterior parameter estimates were much 
closer to the true parameter values than the corresponding priors 
(Table 3). Unfortunately, this good performance in the eight parameter 
case was not robust to alternate synthetic truths, it was more common to 
see multiple parameters moving away from the truth in the posterior 
estimates.

The three parameter calibration reproduced the synthetic observa
tions well, showing improvement relative to their priors (Table 3, and 
Figures A.6-A.9 and Table A.5 in the supplementary material). Cali
brations involving more parameters, including all eight considered in 
this section, also reproduced the synthetic observations well, though not 
quite as well as the three parameter calibrations. However, their failure 
to retrieve the synthetic parameters led to the choice of the reduced set 
of three parameters for calibration with real observations. This maxi
mises the ability to transfer our calibrated barley parametrisation to 
other locations by reducing the likelihood of equifinality having a sig
nificant effect on the calibration results.

3.2. Calibrating for the TWINWIN site

Self-calibration performed better than using the sole barley calibra
tion (Fig. 2; Table 4). Unsurprisingly, when considering the calibration 
year 2020, calibrating only with yield produced the best yield results, 
followed by calibrating with yield and LAI or yield and NEE, then cali
brating with all three observation streams. However, the calibration 
with LAI and yield predicted 2021 yields worse than the prior. Cali
brating with yield and NEE showed similar improvement relative to 
calibrating with yield alone.

Looking at the yield estimate performance in the validation year, 
2021, we see that the self-calibrations had a mixed performance, while 
the sole barley calibrations did better (Fig. 2b, Table 4b).

Yields were generally well predicted (Fig. 3), with much lower yields 
in 2021 reflecting a harsher year captured in the estimates. In 2020, all 
LAI+Yield self-calibrations, except AC and CI, improved yield pre
dictions as expected for estimates of observations in the calibration 
dataset. However, the poor estimation of AA and AC portray some un
derlying issues. That being said, the AA and CI plot types had the largest 
observed variance in yields and the estimated yields lied within a 95 % 
confidence interval of the observations. In 2021, four of posterior esti
mates were further from the observed yield than their respective priors. 
Furthermore, whilst the AA yield estimates improved, in both years they 
were large overestimates of the yield. However, of the other posterior 
estimates across both years, all but two clovers and AA in 2021 included 
their corresponding observations within the respective 95 % confidence 
intervals. Comparing the barley and self-calibration, the barley cali
bration had a noticeable, albeit not significant, flattening effect, 
bringing all the posterior estimates closer together, whereas the self- 
calibration appeared to capture some of the differences between plot 

Table 3 
Percentage error and improvement in parameter estimates in the twin experiment. The upper section is the 3 parameter case, the lower has 8 parameters varying.

Parameter Truth Prior Posterior % Error Prior % Error Posterior Percentage Improvement

adens − 0.65 − 0.59 − 0.66 − 9.8 1.1 111
efcroiveg 5.7 4.7 5.8 − 16.8 1.6 110
vitircarb 0.01 0.011 0.01 4.5 1.6 64
adens − 0.65 − 0.59 − 0.69 − 9.8 5.7 158
dlaimax 0.00041 0.00044 0.0004 6.7 − 2.5 137
efcroirepro 5.2 4.7 5.2 − 8.9 0.8 109
efcroiveg 5.7 4.7 5.6 − 16.8 − 0.9 95
INNmin 0.3 0.36 0.34 22.7 15 34
stlevdrp 710 660 690 − 7.3 − 3.1 58
vitircarb 0.01 0.011 0.011 4.5 8.8 − 98
vlaimax 1.9 1.8 1.9 − 5.9 − 2.5 57
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Fig. 2. Percentage improvement in RMSE of the posterior relative to the prior under different calibration scenarios, namely calibration specific to each plot type 
(Self, right) or calibration with sole barley applied to all plot types (Barley, left). All rows are averages over the full set of plot types. 0 implies no improvement, 100 
implies no error (perfect prediction, that is, posterior RMSE = 0), and negative values imply worsened predictions.

Table 4 
Relative root mean squared error (RRMSE) for calibrations using LAI+yield observations from TWINWIN. In the calibration column Prior refers to STICS default 
parameter values, Barley refers to the posterior parameter set estimated by barley single-crop calibration, and Self refers to the posterior parameter set estimated by 
intercrop calibration.

RRMSE for the calibration data.
Observation Calibration Barley AA AC CI FA IR RC WC

GAI Prior 0.59 0.68 0.68 0.68 0.59 0.92 0.8 0.81
GAI Barley 0.3 0.72 0.87 0.5 0.48 0.78 0.6 0.65
GAI Self NA 0.67 0.61 0.43 0.51 0.66 0.47 0.51
NEE Prior − 111 − 2.17 − 1.43 − 1.42 − 31.46 − 6.95 17.9 − 141
NEE Barley − 117 − 2.02 − 1.19 − 1.47 − 33.9 − 7.37 17.4 − 136
NEE Self NA − 2.2 − 1.04 − 1.48 − 35.1 − 7.97 16.7 − 138
yield Prior 0.11 0.99 0.16 0.12 0.29 0.1 0.05 0.21
yield Barley 0.02 0.76 0.32 0.04 0.36 0.22 0.16 0.29
yield Self NA 0.8 0.42 0.15 0.06 0.01 0.01 0.07

RRMSE for the validation data.
Observation Calibration Barley AA AC CI FA IR RC WC

GAI Prior 0.42 1.03 0.77 1.07 0.62 0.78 1.06 1.21
GAI Barley 0.49 0.82 0.59 0.87 0.39 0.52 0.88 1.04
GAI Self NA 1.02 0.89 0.79 0.44 0.3 0.78 0.94
NEE Prior − 10.43 1.46 − 1.04 3.52 − 24.9 − 1.54 − 25.3 3.79
NEE Barley − 9.2 1.47 − 1.06 3.72 − 24.1 − 1.47 − 24 3.82
NEE Self NA 1.46 − 1.04 3.79 − 24.3 − 1.41 − 23.4 3.71
yield Prior 0.18 2.23 0.12 0.04 0.16 0.15 0.5 0.56
yield Barley 0.03 1.89 0.21 0.1 0.26 0.01 0.28 0.42
yield Self NA 1.96 0.06 0.3 0.05 0.25 0.56 1.21
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types with different undersown species.
The single-crop barley with herbicide was included in the yield 

comparison of Fig. 3 as a more conventional approach, as none of the 
plots with undersown species, nor the “Barley" plot type, were treated 
with herbicides. Barley grown with herbicide yielded marginally more 
than almost all other plot types in 2020, but had a much lower yield in 
2021, slightly lower than most other plot types. However, in neither case 
were there statistically significant differences, as the largest changes in 
mean observed value were accompanied by larger uncertainty.

Overall, the yearly estimated NEE (not shown) was highest for the 
barley inter-cropped with clovers or italian ryegrass, and lowest for 
barley inter-cropped with alfalfa, followed by solo barley. However, 
calibration did not show notable changes in these yearly estimates.

Yields remained underestimated in several of the inter-cropped 
barley plot types in 2020; this was contrary to expectation as the har
vest itself was late, delayed by other measurement campaigns in the 
project, so we had expected to overestimate yields.

However, the LAI performance when calibrating with yield and LAI 
struggled to capture the level in the early growing season, as seen in 
Figure A.10, where the second and third observation was notably higher 
than the estimated values. Similar issues of notably poorer NEE esti
mates were not observed in our calibrations, as indicated by the rela
tively small changes in NEE RMSE in Fig. 2 or visible in Fig. 4.

The parameter distributions when calibrating sole barley (Fig. 5) 
exhibited a clear dominance of LAI measurements in determining the 
posterior estimate of adens, NEE data in determining efcroiveg, and 
a yield dependence influenced by both LAI and NEE data streams 
determining the posterior distributions of vitircarb. This last remark 
is particularly interesting, as the LAI and NEE data streams barely 
affected vitircarb when used without yield measurements, but 
showed distinct differences when the yield data stream was included.

4. Discussion

4.1. 4DEnVar as a calibration method for crop models

Our twin experiment results highlight aspects that should be 
addressed in an implementation expanding the temporal breadth of 
observations. When doing the test with synthetic data representing an 
observation frequency matching the real situation, we see that, at least 
for this system, there is a hard limit on the number of dominant pa
rameters that could be calibrated before the estimated values begin to 
diverge from the known true parameters. Thus, there are questions 
around whether these new additional parameters could be simply added 
to the calibration, especially considering the imbalanced representation 
of the different years in the data. A potential solution is, if the dominant 
parameters are sufficiently isolated for the different conditions, in other 
words, if their impact on the system is minor outside the specified 
condition, then that would support doing a step-wise calibration 
(Tarantola, 2005; Guillaume et al., 2011). There, instead of calibrating 
the system as a whole over different conditions, a first set of parameters 
is calibrated under conditions where they are dominant, then set as 
constant for calibrating another set of parameters under conditions 
where these new parameters are dominant. This approach, however, 
operates under the assumption that the parameter sets can be considered 
independent. Regardless of the chosen approach, what these results 
argue is that while the sensitivity analysis is often used to select the 
parameters to be calibrated (Mathers et al., 2023; Ruget et al., 2002), it 
is also important to then do a twin experiment to ascertain how many 
parameters can actually be calibrated reliably.

Another interesting feature of the results is the response to the 
different combinations of data streams. When looking at the average 
improvements in Figure 2, it is evident that data selection for calibration 
depends completely on the output of interest as there aren’t any cross- 
variable benefits shown there, as found by Guillaume et al. (2011). 
For example, when using both yield and LAI data in calibration, the 
results match the observed values better than if calibrated specifically to 

Fig. 3. Yield observations, prior estimates, and posterior estimates using the LAI+Yield calibrations. 2020 is the calibration data set, 2021 is the validation dataset. 
The x-axis label “Barley” refers to the monocropped barley plot type. The species acronyms on the x-axis refer to the undersown species listed in Table 2. For example, 
the values at AA are barley yields from plots of barley sown with alfalfa.
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those variables individually. This is not necessarily beneficial, as the LAI 
observations are often used as indicators of other variables (Franklin 
et al., 1997; Demarty et al., 2007) and calibrating with LAI, or here GAI, 
alone causes a decrease in the yield and NEE projection performances. 
This directly implies that the different observation streams have con
flicting constraints on the parameter values, as found by Ruget et al. 
(2002), which is most likely due to the number of associated parameters 
and equations in the model. In STICS, each of the examined outputs is 
determined by complex dynamics (Brisson et al., 2003; Kherif et al., 
2022) and, consequently, changing the value of a tuned parameter will 
not have a straight-forward effect. For this reason, the issue of equifin
ality arises for a relatively low number of parameters.

The issue is even more pronounced with NEE outputs – there is no 

meaningful improvement when it comes to the NEE observations 
themselves. Furthermore, examining how well the yield+NEE self- 
calibration performed with different secondary crops (Figures A.12- 
A.14), when the calibration with CI produces a large change in posterior 
NEE, there is also a large decrease in how well the yield posterior 
matches the measured yield. This outcome is assumed to be due to, not 
just the issues discussed before, but also partially because the NEE 
measurement time series is noisy and indirectly calculated from a group 
of shaded measurements, a radiation measurement from a nearby tower, 
and a single respiration measurement taken over a few minutes. A 
critical limitation in making NEE calibrations is that our calibration does 
not affect potential respiration – STICS does not calculate plant respi
ration, thus the calibration could only alter the NEE through varying the 

Fig. 4. Estimated NEE over the barley growing season of plots containing barley and the indicated undersown species before and after self-calibration of 3 pa
rameters using TWINWIN yield and GAI measurements. The species acronyms are clarified in Table 2.
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NPP. This restriction led us to exclude positive NEE values, as the model 
would not be able to reproduce them with the choices made concerning 
calibration. It may be that NEE could be better assimilated by this 
method if we include parameters affecting all contributing elements. It 
should be noted, however, that the calibration is still altering the 
parameter values as otherwise the other outputs wouldn’t see such 
changes.

Overall, we found applying the 4DEnVar data assimilation technique 
useful for evaluating the effect of choices such as which and how many 
parameters to calibrate, or which data streams are used as observations 
in the calibration process. Of particular benefit was the ability to use an 
ensemble of prior model runs for the twin experiment as well as cali
bration with varying streams of real observations, thereby reducing 
computation time compared with alternative Bayesian calibration 
methods.

4.2. Calibrating for intercrop effects vs single-crop calibration

On average, the yield+LAI self-calibrations improved performance 
for yield and LAI for 2020 (the calibration dataset). However, those 
calibrations have little impact on the projected values for 2021 (the 
validation dataset), and are outperformed in 2021 by the monocropped 
barley calibration. What is crucial here, though, is that the changed 
parameter values do not have that much of a positive or a negative effect 
in 2021, which strongly implies that they are unimportant for that year. 
This system behaviour makes sense when considering that the envi
ronmental conditions limiting crop growth can change from year to year 
(Dzotsi et al., 2013), affecting the relative importance of the intercrop 
interactions, which the overall change in both observed and modelled 
results strongly suggests happened between 2020 and 2021. Indeed, 
June and July of 2021 had significantly lower precipitation and higher 
average temperatures compared to 2020 (Table 1), causing water stress 
during the majority of the growth period of the barley, which was then 
followed by a very wet August. Consequently, the results here still 
support the use of cash crop parameter calibration to reflect the sec
ondary crop they are grown with, but the projections will only be 
improved in conditions similar to when the model was calibrated.

Expanding the calibration time window to include more varied 
annual dynamics is a logical suggestion to further improve the model 

performance in different conditions. The primary reason we only used 
data from 2020 for calibration was due to the number of observations 
available compared to 2021. However, our twin experiment results 
discussed above highlight aspects that should be addressed in such an 
implementation.

Finally, when looking at how well the calibration performs with 
specific secondary crops, the variation across the species is reasonable 
considering how differently they are expected to impact the system 
(Valkama et al., 2015). Thus, the calibration should produce varying 
results for systems with different cover crops. What is even more 
important to note here is how much more variation there is within the 
measured values for the undersown crops compared to plots with just 
the cash crop. This is not solely due to the sample size being smaller, but 
actually due to the undersown species abundance varying across the 
plots, which in turn, causes the plot outputs to change accordingly. This 
is a fundamental challenge in modelling secondary crops. While the cash 
crop can reasonably be assumed to be near-uniform across plots, there is 
more variation across the plots with undersown species due to the 
dominant nature of the primary crop. However, the standard deviation 
of the observed yields was only slightly smaller for sole barley than some 
intercropped plots in our data. Our speculation is that this variation in 
abundance is a reason why the posterior uncertainty did not improve 
significantly during the calibration, with the exception of the yield and 
LAI calibrations. This internal variation is also a key reason why we have 
not analysed the impact of the species on the calibration as we could not 
reliably state if, for example, plant species with deeper roots showed 
more change in parameter values.

We see potential in this direct intercrop calibration method 
compared to the more conventional approach of calibrating in single 
crops and validating in intercrop situations (Wallach et al., 2011; Vezy 
et al., 2023). The self-calibration captured more of the variation be
tween plot types than the single crop barley calibration, although both 
remained quite uncertain. In capturing this variation, the direct inter
crop calibration may be better suited to answering questions concerning 
which undersown crop to grow in a particular situation, but only if 
conditions remain consistent, while the conventional single crop cali
bration remains more generically applicable. However, the data re
quirements are larger, and the issue of relative crop abundance poses a 
significant problem for the reliability of calibrations using this approach.

Fig. 5. Parameter distributions for sole barley before and after calibration using TWINWIN measurements. The label describes which observation data streams were 
used in calibration.
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4.3. Future work

The results of our experiment are largely positive, regarding both the 
calibration method and how the calibration affects the projection per
formance, but they also highlight a number of aspects to further explore. 
Expanding the observations used in both calibration and validation to 
ensure that similar limiting conditions are present in both datasets 
would help clarify the utility of this intercrop calibration method. 
Additionally, considering the nitrogen cycle would be an important 
aspect for future work, as undersown crops affect fertiliser needs and 
nitrogen leaching (Valkama et al., 2015; Bedoussac et al., 2015; 
Corre-Hellou et al., 2009). However, a study by Barton et al. (2015)
showed the importance of measuring daily N2O fluxes in order to remain 
within 10 % of the best estimate of the annual N2O budget. Therefore, 
high frequency measurements would be necessary in order to best 
capture the effect of cover crops on the nitrogen cycle and ensure these 
effects are accurately represented by the model.

5. Conclusion

In this work, we were able to calibrate cash crop parameters in STICS 
for simulated plots containing barley sown with other species to reflect 
the influence of the undersown species. The projections, though, only 
improve when the conditions are similar to those used for calibration. 
Additionally, the twin experiments proved to be a crucial tool in eval
uating the reliability of particular calibrations. When analysing the 
calibration results, we saw enhancement in the yield projections, but 
NEE estimates turned out to be difficult to improve. Furthermore, 
simultaneous calibration of multiple different data streams resulted in 
worse individual output performances compared to just calibrating with 
the relevant data. This is the first pass at the approach and the results 
highlight the value of twin experiments for future experiments that 
extend the range of conditions and data streams used in calibration.
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Marland, G., Mayot, N., McGuire, P.C., McKinley, G.A., Meyer, G., Morgan, E.J., 
Munro, D.R., Nakaoka, S.I., Niwa, Y., O’Brien, K.M., Olsen, A., Omar, A.M., Ono, T., 
Paulsen, M., Pierrot, D., Pocock, K., Poulter, B., Powis, C.M., Rehder, G., 
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