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This is the first of two articles presenting a detailed review of the historical evolution 

of mathematical models applied in the development of building technology, 

including conventional buildings and intelligent buildings. After presenting the 

technical differences between conventional and intelligent buildings, this article 

reviews the existing mathematical models, the abstract levels of these models, and 

their links to the literature for intelligent buildings. The advantages and limitations 

of the applied mathematical models are identified and the models are classified in 

terms of their application range and goal. We then describe how the early 

mathematical models, mainly physical models applied to conventional buildings, 

have faced new challenges for the design and management of intelligent buildings 

and led to the use of models which offer more flexibility to better cope with various 

uncertainties. In contrast with the early modelling techniques, model approaches 

adopted in neural networks, expert systems, fuzzy logic and genetic models provide 

a promising method to accommodate these complications as intelligent buildings 

now need integrated technologies which involve solving complex, multi-objective 

and integrated decision problems. 

 

Keywords: buildings; intelligent buildings; mathematical modelling 

 

INTRODUCTION 

Mathematical modelling has been used for decades to help building scientists 

design, construct and operate buildings. In the development of technologies in 

the building industry, one of the most cited models is the heat conduction 
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equation by Joseph Fourier published in 1822 (e.g. Lu et al., 2005a–c; Lu and Tervola, 

2005). Building researchers have applied and extended the heat conduction equation 

to more complicated models for detailed thermal analysis of energy demands, 

passive design, environmental comfort and the response of control, especially 

since the energy crisis in 1973 (Mitalas and Stephenson, 1967; Stephenson and 

Mitalas, 1971). Other extension models have a similar partial differential equation 

basis describing underlying mechanisms, for instanceenergy and mass transport 

(Ben and Perre, 1988; Pedersen, 1992; Hartwig and Kurt, 1997; Haupl et al., 1997; 

Lu, 2002). Even more detailed and complicated models include the Navier- Stokes 

equations which describe the flow of fluids for air flow, temperature and 

contaminant distributions (Tsou, 2001). Various numerical techniques such as finite 

element method, finite difference method, boundary element method and 

computational fluid dynamics (CFD) are employed to handle these equations 

(Press et al., 1992). 

Validating these models requires experimental data which can be difficult 

and expensive to obtain. Moreover, these models can be computationally 

intensive. This partly reflects the limitations of the early models but the situation 

is changing as computational power has increased several fold. New mathematical 

models are being developed that incorporate the early models to solve the large set of 

equations and to formalize the reasoning about uncertain knowledge in buildings. 

It is now possible that intelligent buildings can not only offer better control over 

various automotive features, but also have learning and adaptation abilities. We are 

facing a new era of an increasing demand for intelligent buildings worldwide. 

It should be recognized that the development of intelligent buildings from 

conventional buildings is a continuous improvement process. No universal 

definition of intelligent buildings has been accepted, since the definition is still 

evolving, and there is no clear-cut difference between conventional and intelligent 

buildings. The definition was first brought out in the late 1970s when buildings 
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were equipped with IT (Caffrey, 1998). It is now commonly acknowledged that an 

intelligent building should also be able to learn from its occupants and the 

environment and adjust its performance (Clements-Croome, 1997). Nevertheless, 

it can be loosely defined as a building integrated with information processing 

capabilities and intelligence, at each stage of its life – from design and 

construction through to lifetime management and use. Intelligent buildings have to 

be sustainable in terms of energy, water and pollution; provide healthy 

environmental conditions; optimize whole-life value and be responsive to the needs 

of occupants and organizations. This demands the measurement and analysis of 

objective and subjective data. Today, embedded technologies are being developed to 

link the building and its systems more closely to the occupants. The decision-

making chain is complex and involves many stakeholders and each decision contains 

multi-variables. Traditionally this process is generally simplified to a linear 

dynamic model but in reality a non-linear dynamic approach is needed. 

In this review we present a broad classification of mathematical models and 

approaches applied to developing intelligent buildings, but without the complex 

mathematical details. The review begins by examining technical differences 

between conventional and intelligent buildings. It proceeds to describe goals, 

expectations and application areas of some important mathematical models 

and then discusses the extent to which it is reasonable to expect these 

mathematical models to provide proper simulations. Ultimately it explores the 

gap between mathematical models applied to conventional and intelligent 

buildings. 

In order to gain a better understanding of mathematical models to support the 

development of intelligent buildings, and to provide a basis for future work, the 

article provides a brief review of mathematical models applied in conventional 

buildings, but with a focus on mathematical approaches in intelligent buildings. 

The strengths and limitations of the applied mathematical models are discussed and new 
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directions for future work are then explored. As an illustration, the feasibility of 

semiotics theory applied to intelligent buildings is demonstrated conceptually with 

the building’s control system model. Moreover, the review is meant to be 

representative and attempts to cover all the promising mathematical methods that 

can be applied in the intelligent buildings field. The mathematical abstract level of 

the applied models is detailed and integrated with the most recently published 

literature; review papers are used wherever possible. Finally, by focusing on an 

example of intelligent buildings systems and the models that have been developed 

for such systems, we show how mathematical models have played an important 

part in integrating various control and management systems to maximize 

technical performance for intelligent buildings. This study tries to uncover new 

and potential evidence for other mathematical models which may be appropriate. 

 
 

MATHEMATICAL MODELS FOR DEVELOPING INTELLIGENT BUILDINGS FROM 

CONVENTIONAL BUILDINGS… 

Mathematical models address, first, the question of which components of the 

building system should be modelled and then the kind of equation that is used to 

represent the dynamics of each component. Up to now, many modelling approaches 

have been available and the techniques have become quite mature. However, only 

two extreme modelling approaches can be generalized. 

The first one, called physical models,1 builds up models entirely based on 

universal laws, physical laws and principles. The second approach, called empirical 

models,2 constructs models entirely based on experiments or data. Pure physical 

or empirical models have both advantages and disadvantages (Estrada-Flores et al., 

2006). Very often a combination of both models is adopted to compensate for their 

deficiencies as individual approaches. The final models are known as semi-physical or 

grey box models. 
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In physical models, partial differential equations governing mass, 

momentum, and energy transport describe the system components, for example, 

Navier-Stokes equations with CFD approaches. CFD models have been extensively 

used in many building applications such as ventilation (Gratia and De Herde, 2007; 

Norton et al., 2007), thermal comfort (Somarathne et al., 2005), indoor air quality 

(Guo, 2002), fire and smoke security (Lo et al., 2002; Delemont and Martin, 2007), 

and many others (Bartak et al., 2002; Stamou and Katsiris, 2006). CFD models are 

usually studied at steady state due to the difficulty, for example, in solving thermal 

interactions across the boundaries and its heavy computation load, especially for a 

building system with large-scale components and control processes with distributed 

parameters, interactions and multivariables. In fact, a balance between model 

complexity and the desired accuracy should always be a major consideration of any 

model. The selection of the modelling approach often determines the outcomes of 

this complexity and accuracy trade-off. 

Therefore, dynamic, state-space and more simplified algebraic models are often 

adopted instead, which generally provide a less detailed assessment but take into 

account time-dependant internal and external environmental conditions. These can 

be entirely physical models with some simplified assumptions. For example, by 

assuming fully mixed, thermal conditions the thermal dynamics can be expressed 

as lumped capacity models written as differential equations (Tashtoush et al., 2005). 

Models combining physical and empirical approaches are also common (Nielsen 

and Henrik Madsen, 2006). This is advantageous since the physical knowledge 

reduces the model space, whereby the validity of the statistical methods is better 

preserved. 

Although these models, say physical models for simplicity, were originally 

developed to simulate conventional buildings, we believe that they can also 

succeed to varying degrees in modelling intelligent buildings (see CFD 

application in intelligent buildings, Malkawi and Srinivasan, 2005). Given the fact 
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that the difference between conventional and intelligent buildings is only a matter 

of how advanced building systems are, we try to explore the major discrepancies 

of mathematical models between conventional and intelligent buildings. 

 

…TO INTELLIGENT BUILDINGS 

The most difficult part of reviewing mathematical models for intelligent buildings is 

that of defining what it is meant by intelligent buildings compared with 

conventional buildings. Indeed, there is no general agreement on definitions for 

intelligent machines or human behaviours. The Turing test is one of the earliest 

proposals for a test of a machine’s intelligence capability described in Professor 

Alan Turing’s paper ‘Computing machinery and intelligence’ in 1950. The test 

involves two persons as well    as a ‘tested’ computer. Using the terminal, a 

person communicates with both computer and another person. When the person 

is unable to tell who is who, then the machine is said to pass the test. The Turing 

test clearly emphasizes that the machine’s intelligent behaviour should be similar 

to human behaviour. Ill-definition, uncertainty and multiple objectives are primary 

characteristics of human decision-making processes in contrast to a machine’s 

behaviour. Pure physical approaches and so-called physical models as applied to 

conventional buildings cannot model human behaviour-based systems.3 

Mathematical modelling approaches which have uncertainty and flexibility 

characteristics, such as neural networks, expert systems, fuzzy logic and 

statistical models, offer much better ways of representing human behaviour. 

Recent advancements in artificial intelligence are making it possible to integrate 

buildings’ learning and adaptation capabilities into these uncertainty 

mathematical models (Hong et al., 2000). Note that, here, we viewed intelligent 

buildings as machine-based systems and generalized their modelling paradigm. 

Let us focus on intelligent buildings research to try and pinpoint more suitable 
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mathematical models. According to Carlini (1988a, b), Arkin and Paciuk (1997) and 

Wong et al. (2005), a major technical difference between conventional and intelligent 

buildings is that intelligent building technologies are characterized by a hierarchical 

presentation of system integration. Most intelligent buildings comprise three 

levels of system integration. The top level deals with the provision of various 

features of building operation and communication management. The middle 

level is performed by the building management systems which control, 

supervise and coordinate the building’s relevant subsystems. These subsystems 

comprise the bottom level. Intelligent buildings allow interaction and 

integration among the subsystems. The subsystems are services systems 

typically including heating, ventilation and air-conditioning (HVAC), lighting, 

transportation, security and communication systems. The middle level’s control 

systems can vary from traditional hard- wired relay-logic ones for conventional 

buildings to computer-controlled microelectromechanical systems for intelligent 

buildings. The middle and bottom levels also characterize the performances of 

conventional buildings. Figure 1 illustrates the hierarchical levels of buildings in 

relation to corresponding mathematical models. 

The authors of this article argue that the most important difference between 

intelligent buildings and  conventional buildings is  that intelligent buildings have 

the ability to integrate their service systems to learn and adjust their 

performance appropriately; this is an essential feature of any ‘intelligent’ system 

(Kasabov, 1998).4 The integration and learning capabilities are performed using 

frameworks5 which can be quite complex since they include consideration of not 

only information flow, timing and non-deterministic human behaviour, but also 

integration of various problem-solving methodologies in order that the building 

can learn from its occupants and environment and adjust its performance (Power 

and Bahri, 2005). In controlling such complex systems, which include subjective 

responses and non- deterministic aspects of human behaviour, we need 
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uncertainty models such as neural network, fuzzy logic and genetic algorithm 

models. 

Consider wider applications such as, intelligent manufacturing. This can be 

broken down into two major areas based on its level of application, namely 

strategic and tactical intelligent manufacturing. The two areas are linked 

hierarchically through a semantic network (Byrd and Hauser, 1991; Gholamian 

and Ghomi, 2007). An illustration of such a breakdown structure for intelligent 

buildings has been demonstrated by Chen et al. (2006) and Clements-Croome et 

al. (2003). Gholamian and Ghomi (2007) reviewed basic and important 

mathematical models called frames, covering manufacturing aspects such that 

each frame informs applications of intelligent systems in various aspects. These 

frames are essentially uncertainty models, such as neural networks, expert 

systems, fuzzy logic and genetic algorithm models. 

Last, from the technology and investment point of view, efficiency 

assessment and investment considerations are needed in order to increase the 

number of buildings incorporating intelligent building concepts. Clearly, costs 

and benefits have to be identified and generalized before the evaluation with 

any type of method. Many authors have attempted to use various approaches, 

though simplified and deterministic mostly, to identify and classify various costs 

associated with intelligent buildings, but now emphasize whole life value 

(Clements-Croome et al., 2007). The identified costs and values range from 

technological factors to management factors and many others (Flax, 1991). In 

the investment evaluation area, a plethora of evaluation techniques have been 

developed to investigate and evaluate the economic desirability of intelligent 

buildings (Wong et al., 2005). These techniques, in a similar fashion to those 

applied in cost identification and classification, are based on the ‘time-cost-

money’ principle which clearly involves uncertainty. A general review of this 

topic has been reported by Wong et al. (2005). In this report, uncertainty 
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mathematical models such as fuzzy logic, analytic hierarchy process (AHP), 

multi-criteria decision-making method etc. have been recommended, though 

few applications of these methods have been found yet. AHP has been used for 

self-assessment of productivity (Li, 1998). 

 
 

FIGURE 1 Hierarchical levels of buildings in relation to corresponding 

mathematical models; historical evolution of building technologies and applied 

mathematical models 
 

TABLE 1 Classification of mathematical approaches applied in intelligent 

buildings 

 
 

 

MATHEMATICAL  APPROACHES 

Having identified and proved the suitability of uncertainty models in intelligent 
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buildings modelling from different viewpoints (building development, intelligent 

building research, intelligent manufacturing, intelligent building investment), a 

summary of general mathematical models is presented in this section. The literature 

of uncertainty models applied to intelligent buildings is rich. A variety of approaches 

has been proposed to handle different forms or degrees of uncertainty. By choosing to 

detail at an abstract level, four model classes can be generalized: conceptual 

models, analytical models, probability- based models and knowledge-based models 

as presented in Table 1. The proposed classification is certainly not exhaustive, and 

the first two categories have been extensively used for modelling conventional 

buildings. Nevertheless, each model category will be discussed in detail and the most 

relevant literature cited. 

 

CONCEPTUAL MODELS 

A conceptual model illustrates multiple factors and their possible relationships for 

analysing the main factor effect. The concept of ‘main factor’ is used to embrace 

any uncertainties. The main factor therefore is a function of other factors. In 

simple case studies, such function can be explicitly defined and is often a simplified, 

deterministic and algebraic formula. 

Wong and Li (2006) proposed a conceptual model for the selection of an 

appropriate combination of building systems and components for a particular 

intelligent building project, based on a questionnaire. They first determined the key 

attributes affecting the selection of the building systems and components based on 

a literature review. A structured questionnaire was then constructed which 

required the respondents to rate the influence of the predetermined attributes based 

on their judgement and experience. A statistical ‘significance test’ was 

employed to identify the rank of these attributions, which led to the final 

conceptual model. 

In assessing intelligent building performance based on the degree of systems 
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integration, Arkin and Paciuk (1997) proposed a simple index, magnitude of 

system integration (MSI), to evaluate and compare systems’ integration. 

In evaluating investment performance of intelligent buildings, many models 

for life-cycle cost analysis and cost–benefit analysis are based on the conceptual 

model of net present value method (Akalu, 2001). 

 

ANALYTICAL MODELS 

The analytical approach generally involves detailed mathematical models. Model 

equations can be based on first principles preferably, dynamic, linear, state-

space, non-linear and statistically empirical equations. Perhaps the most 

important models are dynamic models, as building researchers are not simply 

interested in the steady states of building performance, but also in the 

mechanisms of change that lead from one state to the next. 

 

Linear dynamic models 

Many building systems can be modelled with linear dynamic models (LBNL, 1982; 

Solar Energy Laboratory, 2000; Crawley et al., 2001; Strand et al., 2001). Model 

parameter estimation, termed modal analysis, is the common approach to 

performing linear modelling. Model equations are in the form of model 

parameters which can describe the behaviours of a system for various inputs 

and outputs. The linear superposition principle is the cornerstone which is well 

developed for linear systems.  Using this principle, various theories and 

methods for dynamics and system identification have been developed such as 

eigensystem realization method (Stephenson and Mitalas, 1971; Hittle and 

Bishop, 1983); state-space method (Jiang, 1982); time-domain method (Davies, 

1997) and frequency-domain method (Wang and Chen, 2003) to cite a few. 

The application of linear dynamic models in intelligent building studies includes, 
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for example, Ng and Xu’s work (2007), which investigated control of a building 

complex for an intelligent building, consisting of a main building and a podium 

structure, by using variable friction dampers for mitigating seismic responses. 

 

Non-linear dynamic models 

Non-linear dynamic models have been used extensively in simulating building 

services systems (Bourdouxhe et al., 1998; Pasgianos et al., 2003; Jin et al., 2006; 

Stables and Taylor, 2006). Apart from the service systems, we frequently need to 

model human behaviour and performance for intelligent buildings in order to 

understand and improve human performance in building settings. Human behaviour 

results from the interaction of people’s generic, physiological and psychological 

attributes with the environment. Human behaviour is unpredictable and should always 

be coupled with environment events. Complicated behaviour cannot be modelled 

using linear dynamic models. In addition, non-linear dynamic models can account for 

marked individual differences in response to different environmental factors. This 

is because the equations that describe the system are sensitive to the initial 

starting behaviour conditions. For two slightly different initial sets, their states may 

quickly diverge (Howe and Lewis, 2005). Chaos can result. 

Other modelling studies on intelligent buildings include, for example, building 

life-cycle cost analysis. Both initial construction expenses and lifetime costs need 

to be appropriately addressed. The lifetime costs include those due to business 

utilization, operation, maintenance, repair, damage and/or failure consequences, and 

also impact on business such as improved productivity (Clements-Croome et al., 

2007). Aleatory and epistemic uncertainties should also be considered in 

probabilistic performance evaluation of the structures (Cornell et al., 2002). These 

uncertainties refer to the record-to-record variability and the lack of sufficient 

knowledge in emergent events. The system stability can be altered such that 

some states become less preferred and less reliable, while others become more 
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stable and dominant. ‘Phase transition’ is often used to characterize such 

phenomenon. Bifurcation can be encountered. 

These features clearly exhibit non-linear behaviours which will be addressed 

briefly later in this section. Indeed, non-linearity is generic in nature and linearity 

is only an exception. However, the main reason why often-linear behaviour is 

taken for granted is that non-linear dynamical systems are far less established 

than linear systems. The basic linear superposition which is applied to linear 

systems and forms the basis of model parameter estimation is no longer valid for 

non-linear systems. Complicated phenomena can be found in non-linear systems 

such as jumps, limit cycles, bifurcations and chaos of a highly individualistic nature 

(Kerschen et al., 2006). 

The traditional linearization approach of analysing non-linear systems is 

based on the assumptions of weak non-linearities, but these may lead to 

erroneous results (Kerschen et al., 2006). Therefore, identification of non-linear 

systems is of vital importance. The identification approaches can be classified as 

linearization, time-domain methods, frequency-domain methods, modal 

methods, time-frequency analysis, black-box modelling and structural model 

updating. Once non-linear behaviour has been detected, model parameters can 

be estimated using optimization tools such as linear programming, non-linear 

programming and dynamic programming. 

Using time-domain methods, Ríos-Moreno et al. (2007) identified non-linear 

behaviours of indoor temperature variations for intelligent buildings. They then 

compared two time-series models:   linear   autoregressive   models with  external 

input (ARX) and autoregressive moving average models with external input 

(ARMAX) for forecast purposes. Outside air temperature, global solar radiation 

flux, outside air relative humidity and air velocity were used as the input 

variables. The result showed that the ARX models gave a better prediction. 
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PROBABILITY-BASED  MODELS 

Probability-based approaches are often used to represent uncertainty and deal with 

multicriteria decisions. The AHP, its generic form analytic network process (ANP) 

and Bayesian analysis are commonly applied in studying intelligent buildings. 

 

AHP/ANP 

AHP, developed by Saaty (1980) and Yager (1979), is used to derive ratio scales from 

both discrete and continuous paired comparison in multilevel hierarchical structures. 

It is a method employed to integrate perceptions and purposes into an overall synthesis. 

Box 1 summarizes the steps followed in the AHP and ANP approaches (Saaty, 

1996; Cheng and Li, 2004, 2005; Yurdakul, 2007).   Bayesian inference 

Bayesian analysis is an iterative process of integrating accumulating knowledge in 

order to best judge a future event based on a series of prior situations. It provides 

updating information in the form of possibilities using Bayes’ theorem, a 

statement in probabilities relating causes to outcomes, as shown in Box 2. It has 

broad application in a multitude of scientific, technological and policy settings.

 

 

 

 
BOX 1 A brief summary of the AHP/ANP model 

 

1. Developing the structure of the model.* 

2. Conducting pair-wise comparisons on the clusters and sub-clusters. 

3. Calculating elements and consistency ratio of matrices.** 
 

* The objective of the model is further decomposed into clusters and sub-clusters. AHP is restricted to 

hierarchical. ANP is a network structure where the hierarchical restriction can be relaxed. 

** ANP has specific steps for generating the global priorities for elements; see references. 

BOX 2 Bayes’ theorem 

P( A| B)  
P( A∩B)

 
P(B)   
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Petri nets 

One useful mathematical model applied in intelligent systems is Petri nets and 

after this there has been a number of extensions. Petri nets consist of places, 

transitions, and arcs that connect them, and are very useful for modelling discrete 

dynamic systems. Petri nets are a promising tool for analysing systems that are 

characterized as being concurrent, synchronous, distributed, parallel, non-

deterministic, and/ or stochastic. These features are particularly important in 

building services systems. With Petri nets, it is possible to set up state equations, 

algebraic equations, and other mathematical models governing the behaviour of   

systems.   

Box 3 presents an example of the Petri netsdescribing the discrete dynamics of 

the class. This class models the behaviour of a personescaping from a hall (Villani 

et al., 2006).  
  

Villani et al. (2006) analysed control strategies for fire safety systems of intelligent 

buildings. The components of whole fire safety systems presented different 

dynamic natures, such as continuous and discrete dynamics, and therefore a hybrid-

modelling model was applied. A Petri nets model was used to describe the 

discrete dynamic components. 
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Chen et al. (2006) adopted the ANP model to evaluate lifetime energy efficiency of 

intelligent buildings. Based on literature and a conceptual model of intelligent 

building evaluation and renovation, the authors started with an energy-time 

consumption index and chose its approximated gradient, presented as a simple 

index function, as a sub-cluster. Its clustered index, called the key performance 

indicator, was rated through the ANP approach. Su et al. (2005) discussed Petri nets-

based supervisory control theory in discrete event systems. Such a system is a 

type of dynamical system created along with the development of computer science, 

communication networks and sensor technology. The system has been widely used in 

intelligent buildings. 

Makarenko and Durrant-Whyte (2006) proposed an active sensor network 

which combines decentralized information fusion and decision-making into a unified 

flexible framework using a Bayesian approach. Such a framework is suitable for 

sensing information applicable to intelligent buildings. 

 

 

 

 

 

 

 

BOX 3 An illustration of the discrete dynamics model of class (Villani et al., 2006) 

t2_1 t4_1 

p4_1 
t7_1 

p1_1 t1_1 
p2_1 

Paul 
p7_1 

 

 

p3_1 

t5_1 

t3_1 

 

 

t9_1 

David 

Fred 

p6_1 
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KNOWLEDGE-BASED MODELS 

Since knowledge-based models are uncertainty models which are often applied for 

intelligent decision support and control, they are suitable for modelling the 

increased complexity in intelligent building systems and therefore are being 

extensively applied in such fields. Further details, including model complications, 

will be discussed in the following subsections. 

 

Neural networks 

Motivated by the structure of the human brain, neural networks are composed of 

simple elements, so-called neurons, operating in parallel. These elements are 

quite similar to brain neurons, which can process massive amounts of information 

in parallel. Neural networks are largely determined by the connections between 

elements, and their structure has to be determined from external stimulus data 

(Cheng and Titterington, 1994). 

Box 4 illustrates a simple example of neural networks with three inputs, one 

hidden layer of neurons containing four nodes and one output. Such neural networks 

system can be considered as a system connecting inputs and outputs in a possible 

linear or non-linear way through hidden layers. In Box 4, arrows indicate the 

direction of each relation. 

The neural network approach has been widely used in pattern recognition 

applications. The goal of neural networks is to adjust weights by training examples 

to perform a particular task. Mathematically, this particular task often means 

minimizing a cost function which measures how close predicted values are to 

target values. However, the required number of training examples is often 

combinatorially large meaning combinatorial complexity of learning 

requirements. This complication, known as ‘the curse of dimensionality’, was first 
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identified in pattern recognition research in 1960 (Bellman, 1961). 

 

 

Expert systems 

An expert system collects human expertise and transfers it to a computer for 

decision-making. The computer-stored knowledge can be called on by users for advice. 

The computer can make inferences and arrive at a specific conclusion. Hence an 

expert system acts as an expert consultant and provides powerful and flexible means 

for obtaining solutions to a variety of problems that cannot be dealt with by other 

traditional approaches. 

A rule-based expert system was first introduced in 1970 (Winston, 1984) to 

solve the problem of combinatorial complexity of learning requirements in neural 

networks. The idea behind the system was that the rules could capture knowledge 

without learning (Perlovsky, 2006). A rule-based expert system contains 

information such as IF-THEN. However, with the number of rules growing, such 

a system suffers from combinatorial complexity of rules. 

Let weight wij connect between input xi and neuron in the hidden layer through 
activation function g. Similarly, weight w'j connects between neuron and output y 
through activation functions f and g. Then, 

y =  f ( w' j  g( wij xi )) 
j i 

BOX 4 An illustration of a neural network model 
 

Input 

 
x1 

 
x2 

 
 

 

x3 

hidden 
layer 
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Other types of expert systems, called knowledge-based systems, began in the 

1980s (Perlovsky, 2006) and combined advantages of rules with learning adaptation 

to target the problem of combinatorial complexity of rules in rule-based expert 

systems. The learning adaptation is accomplished by fitting model parameters, 

which requires selecting data subsets corresponding to various models. The 

number of subsets can be combinatorially large. The systems have combinatorial 

complexity in the computation processes. 

 

 

Fuzzy logic 

In parallel research, fuzzy logic was introduced in the 1960s and presents the 

process of making decisions by simulating human reasoning, characterized by 

uncertainty and imprecision (Zadeh, 1965). The approach is useful because process 

description is not always a matter of black and white, true or false like classical 

Boolean logic. Therefore, fuzzy logic provides a simple way to arrive at a conclusion 

based on vague, ambiguous and imprecise data. Take an example: the rule A ⇒ B. If 

A is not observed nothing can be inferred in classic logic. However, if ‘nearly A’ is 

observed, a conclusion can be drawn (and precisely constructed), which can be 

expressed as ‘nearly B’ in fuzzy logic. The idea can be used to monitor systems 

what would be difficult or impossible to model with classical logic ideas. In fuzzy 

logic, an element can belong partially to several subsets using a membership 

function as illustrated schematically with a simple example in Box 5. 

One of  the  classical  uses  of  fuzzy  logic is the design of fuzzy rules which 

can be interpreted from linguistic rules like temperature ‘low’, ‘medium’ and ‘high’. 

Fuzzy logic systems treat the imprecision of inputs and outputs by defining them 

with fuzzy memberships and sets. Fuzzy logic encounters a problem of degree of 

fuzziness. If too much fuzziness is specified, the solution does not achieve a good 

accuracy; if too little, it becomes formal logic. Therefore, it is difficult and time-



 

20  

consuming to determine the correct set of rules and membership functions for a 

complex system; fine-tuning a fuzzy solution can be time-consuming too. This 

presents a combinatorial complexity problem. 

To resolve these weaknesses, expert systems, neural networks and genetic 

algorithms are often combined to learn the best membership functions through 

training algorithms, as demonstrated by Mendel and John (2002).   

 
 

Genetic algorithm 

A genetic algorithm, belonging to evolutionary computation, is a method for solving 

optimization problems originally inspired by biological evolution (Goldberg, 1989). 

A genetic algorithm encodes a potential solution to a specific problem to a 

chromosome-like structure and applies recombination operators to these 

structures in order to preserve critical information. A genetic algorithm starts with an 

initial population and then selects parents to produce the next generation using 

specific rules. Three main rules are shown in Box 6. Over successive generations, 

the population evolves towards an optimal solution. A large number of iterations may 

BOX 5 An illustration of definition and properties of a membership function 
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be needed for a genetic algorithm to develop an optimal solution which is again a 

combinatorial complexity problem. 

Intelligent buildings provide a wide range of expert system applications. La Roche 

and Milne (2004) developed a microcomputer-controlled thermostat as an 

intelligent component for intelligent buildings based on simple rule-based decisions. 

Such controllers can manage air flow according to cooling needs in a building and 

the resources in the environment. Sacks et   al. (2000) studied knowledge-based 

models for the structural design of buildings. They created intelligent parametric 

templates within an automatic building system. The template was applicable for 

rectangular plane building types. Liu et al. (2004) developed a domain name system 

(DNS) intelligent management system using a knowledge-based system and 

ontological engineering technologies which can both be extended to intelligent 

buildings applications. 

Moreover, combinations of two or more knowledge-based approaches are 

common, especially when applying fuzzy logic models. Tani et al. (1998) developed 

an optimal adaptive and predictive control system and its digital simulations for 

a five-degree-of-freedom system subjected to earthquake loading for 

intelligent buildings. Prediction of earthquake input and structural 

identification were performed by using neural networks and a genetic algorithm. 

Optimization was carried out by means of maximizing decision using fuzzy logic 

approaches. 

Rafael Alcalá et al. (2005) proposed intelligent HVAC control for intelligent buildings 

by using weighted linguistic fuzzy rules in combination with genetic algorithms for a 

rule selection process. Lo et al. (2007) did similar work for automatically detecting 

faults on HVAC systems. Sierra et al. (2006) proposed an intelligent system 

architecture based on neural networks, expert systems and agent technologies to 

improve the performance of intelligent buildings. 
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The central computer, containing a database for information and the expert system 

for decision- making, carried out monitoring, visualizing and recording parameters 

while local controllers performed regulation throughout the building. The 

information about relevant occupancy and setting conditions, as well as the final 

values of environmental variables, was used to train a multi-layer neural network, 

the outcomes of which would provide environmental setting values in the case of 

absence of occupants or of preference information. 

 

 
 
 

CONCLUSION 

This article has reviewed the historical evolution of mathematical models applied 

in the development of building technology, including conventional buildings and 

intelligent buildings. Physical models (or semi-physical models) have played an 

important role in understanding mechanisms of buildings and generating and 

testing hypotheses. They are widely applied in conventional building controls. 

Knowledge-based uncertainty models are a plausible approach to modelling 

intelligent building systems which have poor definition, uncertainty and multiple 

objectives – characteristics similar to human decision-making processes. 

In the next issue, Part 2 of this article will discuss some models and show the 

advantages of approaches such as semiotics and chaos before drawing up a final 

set of conclusions. 

 

 

 

 
BOX 6 A brief summary of the genetic algorithm approach 

 

• Select individuals that contribute directly to the population at the next generation (selection). 

• Combine two parents to form children for the next generation (cross-over). 

• Make random change to parents to form children (mutation). 
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NOTES 

1. The models are also known as ‘mechanistic’, ‘phenomenological’ and ‘first principle’ 

models. 

2. The models are also known as ‘black box’, ‘statistical’ or ‘input and output’ models. 

3. Recent development of physical theories has great potential in modelling human 

behaviours by classical physics mechanism, see Perlovsky (2006). 

4. According to the latest trends in the field, intelligence in building systems tends to be 

distributed (So, 1999). 

5. Sometimes called model architectures, module architectures or system 

architectures. It can be considered as one type of mathematical conceptual model, 

which is discussed in Part 2. 
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