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Abstract: The gut–brain axis (GBA) is a bidirectional communication network between
the gastrointestinal tract and the brain, modulated by gut microbiota and related biomark-
ers. Malnutrition disrupts GBA homeostasis, exacerbating GBA dysfunction through gut
dysbiosis, impaired neuroactive metabolite production, and systemic inflammation. Nu-
traceuticals, including probiotics, prebiotics, synbiotics, postbiotics, and paraprobiotics,
offer a promising approach to improving GBA homeostasis by modulating the gut micro-
biota composition and related neuroactive metabolites. This review aims to elucidate the
interplay between gut microbiota-derived biomarkers and GBA dysfunction in malnutri-
tion and evaluate the potential of nutraceuticals in combating malnutrition. Furthermore, it
explores the future of personalised nutraceutical interventions tailored to individual genetic
and microbiome profiles, providing a targeted approach to optimise health outcomes. The
integration of nutraceuticals into GBA health management could transform malnutrition
treatment and improve cognitive and metabolic health.

Keywords: malnutrition; nutraceutical; gut microbiota; gut–brain axis; personalised nu-
traceuticals

1. Introduction
The complex relationship between nutrition, gut health, and brain function has long

been recognised: the gut–brain axis (GBA) is a bidirectional communication network, and
this axis is significantly influenced by the gut microbiota, a diverse community of microor-
ganisms that reside within the gastrointestinal tract (GIT) and play a crucial role in modu-
lating host metabolism, energy homeostasis, immune function, and eating behaviour [1].
Accumulating evidence suggests that the gut microbiota can produce neurotransmitters
(e.g., serotonin, dopamine, and norepinephrine) and short chain fatty acids (SCFAs) such
as acetate, butyrate, and propionate, which affect inflammation and appetite regulation, as
well as affect cognitive and emotional states, highlighting their potential as a therapeutic
target for various health conditions [2,3]. Disruptions in the GBA, often driven by factors
such as poor diet, stress, or disease, have been implicated in a wide range of health con-
ditions, including malnutrition, mental health disorders, and metabolic diseases [4]. The
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prevalence of several chronic diseases related to nutritional status continues to increase
worldwide, Malnutrition is a condition that occurs when an individual’s dietary intake
does not contain the appropriate amount of nutrients to maintain good health, leading
to malnutrition. Malnutrition is defined as excessive or insufficient nutrient intake, an
imbalance of essential nutrients, or impaired utilisation of nutrients, as seen in Table 1.

Table 1. Individuals with malnutrition and their characteristics.

Energy
Imbalance Manifestation Characteristic Examples Ref.

Overweight/
obesity Positive

Excessive nutrients
intake, accumulation

of excess body fat

BMI ≥ 25 for overweight,
≥30 for obesity

Obesity, metabolic
syndrome [5,6]

Anorexia
nervosa Negative Severe restriction of

food intake

BMI < 18.5, severe
restriction of food intake,

extreme weight loss
Anorexia nervosa [7,8]

Undernutrition Negative
Insufficient intake or

absorption of essential
nutrients

BMI < 18.5, low body
weight, stunted growth,

reduced MUAC,
weakened immune system

Kwashiorkor, severe
acute malnutrition,

failure to thrive
[5]

Abbreviations—BMI: body mass index, MUAC: mid-upper arm circumference.

The double burden of malnutrition includes obesity/overweight and overnutrition [5].
The worldwide impact of malnutrition includes various nutritional issues like undernutri-
tion, overnutrition, and micronutrient deficiencies, all of which pose major public health
concerns. In 2022, approximately 2.5 billion adults were overweight, with 890 million clas-
sified as obese and 390 million underweight. Among children under five, 149 million were
stunted, 45 million were wasted, and 37 million were overweight or obese [5]. Malnutrition
effects are not only associated with physical health consequences but also have profound
impacts on the nervous system, leading to cognitive impairments, mood disorders, and
developmental delays [9]. For example, unbalanced intake of essential nutrients can lead
to impaired gut barrier function, weakened immune function, and altered levels of neuro-
transmitters (NTs) and appetite hormones, ultimately affecting brain health and cognitive
performance. and further exacerbating GBA dysregulation. Hence, combating malnutrition
and re-establishing equilibrium in the GBA are vital for optimising health outcomes and
mitigating associated comorbidities.

The prevalence of malnutrition and its neuropsychological impacts highlights the
need for effective therapeutic strategies. Nutraceuticals represent a particularly promising
approach compared to conventional therapeutic strategies due to their multiple benefits
and minimal side effects. Compared to pharmaceutical drugs, nutraceuticals are derived
from natural sources and often have a lower risk of adverse effects. Moreover, nutraceu-
ticals can target multiple pathways such as modulating gut microbiota composition and
its metabolites, reducing inflammation, and enhancing gut barrier integrity, which are all
crucial for improving GBA health [10]. Nutraceuticals, which are food-derived compounds
with bioactive properties, have emerged as a promising strategy for modulating the GBA
and combating malnutrition [11]. Nutraceuticals, including probiotics, prebiotics, and
synbiotics, have been shown to modulate gut microbiota composition, enhance gut barrier
integrity, decrease systemic inflammation, and regulate neurotransmitter and appetite
hormones [12–18]. These nutraceuticals, often available through dietary supplements, can
directly modulate the microbiome, providing therapeutic benefits for both gut and brain
health [19]. Advances in personalised medicine have paved the way for tailored nutraceu-
tical interventions based on individual genetic and microbiome profiles. Personalised
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nutraceutical interventions that take into account the unique characteristics of individuals’
gut microbiota and genetic makeup provide a more targeted and effective approach to opti-
mising health outcomes. As research continues to uncover the complex interplay between
the gut microbiota and the brain, the potential of nutraceuticals to improve GBA health
and combat malnutrition becomes more apparent [20]. This review addresses three central
questions: (1) How do malnutrition-induced disruptions in the GBA drive neurological
and metabolic dysfunction? (2) What is the impact of nutraceuticals on gut microbiota
composition and GBA-related biomarkers in the context of malnutrition? (3) What are the
prospects and challenges for developing personalised nutraceutical interventions based
on individual genetic and microbiome profiles? To answer these questions, this review
aims to explore the mechanisms underlying the GBA in malnutrition, the potential of
nutraceuticals in improving gut microbiota composition and GBA-related biomarkers, and
the prospects for personalised nutraceutical interventions. By highlighting the research
findings and identifying gaps in current knowledge, this review seeks to provide insights
into the future directions of tailored nutraceutical research and its potential applications in
addressing malnutrition.

2. Combatting Malnutrition via Various GBA Biomarkers
The gut microbiota is an intricate ecosystem comprising trillions of microorganisms

that influence both the host’s normal physiological functions and its predisposition to
disease [2]. It consists of over 100 bacterial species, with a gene count 150 times greater than
that of the human genome [21,22]. Besides bacteria, the gut microbiota includes protozoa,
archaea, viruses, and fungi [23]. The gut microbiota composition is dynamic, changing in
response to environmental factors like diet and host factors such as age and genetics [24];
it performs various functions, including maintaining gut mucosal integrity, stimulating
mucus production, and facilitating SCFA synthesis [25]. Additionally, the gut microbiota
supports the maturation of the innate immune system during early life and processes nu-
merous environmental signals to influence overall health. Gut microbiota acting as a bridge
between the host and the environment and changes in the gut microbiota can have pro-
found effects on human health [26]. Alterations in beneficial bacteria can impact on human
health and potentially trigger certain disease mechanisms. Diet, illness, medications, and
infections are factors that can modify the gut microbiota composition and function [27,28].
GBA is defined as bidirectional communication between gut microbiota and the brain
through multiple systems that form a network. It plays an important role in maintaining
homeostasis in the central nervous system (CNS) and GIT [27]. The interacting pathways
in this network include direct and indirect signalling through neuronal pathways, the
immune system, appetite hormones, and chemical neurotransmitters. Since these networks
involve different biological systems, their complexity needs to be investigated [26].

The CNS continually reacts to a range of chemical and neural signals that track the
individual’s energy status. These signals include NTs, appetite hormones, and SCFAs,
which are produced primarily in the GIT [29]. GBA is influenced by a range of factors
such as diet, gut microbiota, and genetics [30]. However, the specific pathways through
which the gut microbiota affect appetite regulation via the brain remain unclear. Accumu-
lated studies have highlighted the critical role of the gut microbiota in the regulation of
multiple biomarkers, including appetite hormones, NTs, immune markers, and SCFAs;
these biomarkers are interlinked and play a role in the development and progression of
malnutrition, as illustrated in Figure 1. Utilising these biomarkers can be an effective ap-
proach to tackle malnutrition, offering insights into nutritional status and guiding targeted
interventions [31,32].
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Figure 1. Communication routes of GBA biomarkers in individuals with malnutrition. There are 
five potential biomarkers linked with malnutritional status including gut microbiota, SCFAs, im-
mune markers, appetite hormones, and NTs. Nine routes of communication are: (1) Gut microbiota 
effects on SCFAs regulation; (2) Immune markers effect on gut microbiota and NTs regulation; (3) 
Gut microbiota effects on appetite hormones regulation; (4) Gut microbiota effects on NTs regula-
tion; (5) SCFAs effect on immune markers regulation; (6) SCFAs effect on appetite hormones regu-
lation; (7) SCFAs effect on NTs regulation; (8) Immune markers effect on appetite hormones regula-
tion; (9) NTs effect on appetite hormones regulation.

2.1. Gut Microbiota Effects on SCFAs Regulation

The most abundant SCFAs detected in the faecal are acetate, butyrate, and propionate 
within the GIT [33]. Butyrate is mainly produced by Firmicutes including Lachnospi-
raceae and Faecalibacterium prausnitzii, while propionate is primarily produced by Bac-
teroides species, Clostridium species, and Negativicutes [34]. SCFAs are essential for mod-
ulating the immune system and maintaining intestinal homeostasis. For example, SCFAs 
exhibit anti-inflammatory effects by modulating immune cell activity, reducing pro-in-
flammatory cytokine release, and strengthening the integrity of the intestinal barrier to 
prevent the translocation of endotoxins [35]. Neuroinflammation is a key factor when con-
sidering brain function. Studies have shown that disturbances in the gut microbiota, such 
as those induced by antibiotics, lead to systemic immune dysregulation, characterised by 
pro-inflammatory profiles [35]. In the CNS, antibiotic-induced depletion of the microbiota 
activates an inflammatory response that alters microglial morphology. Microglia, as the 
resident immune cells of the CNS, are responsive to changes in the gut microbiota com-
position and its metabolites [36]. SCFAs, particularly butyrate, have emerged as key me-
diators linking gut microbiota to neuroinflammation [37]. Sodium butyrate has been 
shown to inhibit microglial activation and the secretion of pro-inflammatory cytokines, 
thereby reducing neuroinflammation. For instance, studies have demonstrated that so-
dium butyrate can inhibit lipopolysaccharide-induced depression-like symptoms in mice 
by modulating microglial activation [38]. Additionally, butyrate has been shown to pro-
mote the differentiation of regulatory T cells and reduce pro-inflammatory cytokines pro-
duction, further highlighting its anti-inflammatory potential properties [35]. Moreover, 
SCFAs can affect the GBA axis through multiple mechanisms, including modulation of 
the vagus nerve and alteration of gut barrier function, and direct effects on NTs produc-
tion. These mechanisms contribute to neuroinflammation regulation and may provide 

Figure 1. Communication routes of GBA biomarkers in individuals with malnutrition. There are five
potential biomarkers linked with malnutritional status including gut microbiota, SCFAs, immune
markers, appetite hormones, and NTs. Nine routes of communication are: (1) Gut microbiota effects
on SCFAs regulation; (2) Immune markers effect on gut microbiota and NTs regulation; (3) Gut
microbiota effects on appetite hormones regulation; (4) Gut microbiota effects on NTs regulation;
(5) SCFAs effect on immune markers regulation; (6) SCFAs effect on appetite hormones regulation;
(7) SCFAs effect on NTs regulation; (8) Immune markers effect on appetite hormones regulation;
(9) NTs effect on appetite hormones regulation.

2.1. Gut Microbiota Effects on SCFAs Regulation

The most abundant SCFAs detected in the faecal are acetate, butyrate, and propionate
within the GIT [33]. Butyrate is mainly produced by Firmicutes including Lachnospiraceae
and Faecalibacterium prausnitzii, while propionate is primarily produced by Bacteroides
species, Clostridium species, and Negativicutes [34]. SCFAs are essential for modulating
the immune system and maintaining intestinal homeostasis. For example, SCFAs exhibit
anti-inflammatory effects by modulating immune cell activity, reducing pro-inflammatory
cytokine release, and strengthening the integrity of the intestinal barrier to prevent the
translocation of endotoxins [35]. Neuroinflammation is a key factor when considering
brain function. Studies have shown that disturbances in the gut microbiota, such as
those induced by antibiotics, lead to systemic immune dysregulation, characterised by
pro-inflammatory profiles [35]. In the CNS, antibiotic-induced depletion of the micro-
biota activates an inflammatory response that alters microglial morphology. Microglia,
as the resident immune cells of the CNS, are responsive to changes in the gut microbiota
composition and its metabolites [36]. SCFAs, particularly butyrate, have emerged as key
mediators linking gut microbiota to neuroinflammation [37]. Sodium butyrate has been
shown to inhibit microglial activation and the secretion of pro-inflammatory cytokines,
thereby reducing neuroinflammation. For instance, studies have demonstrated that sodium
butyrate can inhibit lipopolysaccharide-induced depression-like symptoms in mice by
modulating microglial activation [38]. Additionally, butyrate has been shown to promote
the differentiation of regulatory T cells and reduce pro-inflammatory cytokines production,
further highlighting its anti-inflammatory potential properties [35]. Moreover, SCFAs can
affect the GBA axis through multiple mechanisms, including modulation of the vagus
nerve and alteration of gut barrier function, and direct effects on NTs production. These
mechanisms contribute to neuroinflammation regulation and may provide new insights
into the treatment of neurodegenerative and neurodevelopmental disorders [39].
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2.2. Immune Markers Effect on Gut Microbiota and NTs Regulation

Accumulated animal studies emphasised that a high-fat diet leads to alternations in
gut microbiota composition and enhanced intestinal permeability [40]. In a murine study,
a high-fat diet led to higher Firmicutes phylum and lower Bacteroides in faeces, along
with higher pro-inflammatory cytokines such as tumour necrosis factor alpha (TNF-α),
interleukin-1 beta (IL-1β), and interleukin-6 (IL-6) in plasma [41]. Currently, there is no
research involving immune–neurotransmitter interaction in individuals with malnutrition.
However, as diet can impact on NTs, high-fat-induced inflammation leads to negative
effects on cognition and behaviour via dysregulated neurotransmission [42]. As such,
changes in dietary regimes are likely, through the gut microbiota, to impact on the brain.

2.3. Gut Microbiota Effects on Appetite Hormones Regulation

Gut microbiota play a key role in host appetite control via gut hormone regulation [43].
Enterobacteria such as Escherichia coli are prominent residents of the gut microbiota and are
capable of producing small protein sequences, caseinolytic protease B (CIpB) [43,44]. CIpB
is a conformational antigen mimic of α-MSH that seems to induce α-MSH and activate
anorexigenic brain neurons involved in anxiety and satiety signals [45,46]. For example,
a mouse study showed that mice immunised with CIpB bacterial protein had decreased
food consumption and bodyweight and increased anxiety [47]. CIpB has been observed to
be increased in the plasma of patients with eating disorders associated with insufficient
food intake, such as AN. Additionally, ghrelin has been implicated in the regulation of
food intake and energy homeostasis in mammals [48]. Galactooligosaccharides (GOS) are
enzymatically produced from lactose by the food industry. They are widely used in infant
nutrition formulations to mimic the biological functions of human milk oligosaccharides
(HMOs), such as effects on gut microbiota and the immune system [49]. GOS escapes
digestion and absorption due to lack of the appropriate digestive enzymes in the small
intestine. After arriving in the colon, GOS are metabolised by resident microbial species [50].
A study confirmed that GOS-fed mice displayed increased gene expression of satiety-related
peptides, so it was observed that gut microbiota regulated by prebiotics had enhanced
genes of glucagon-like peptide (GLP-1) precursor proglucagon expression by 3.5-fold and
1.5-fold of peptide YY (PYY) in the colonic mucosal [51]. Accumulating evidence suggests
that the gut microbiota composition can help in regulation of appetite hormones.

2.4. Gut Microbiota Effects on NTs Regulation

The gut microbiota has been related to the production of not only SCFAs but also gut
microbial-derived NTs, including serotonin (5-HT), gamma aminobutyric acid (GABA),
dopamine (DA), norepinephrine (NE), and epinephrine [52,53]. There have been studies
on the potential role of the gut microbiome on host NTs and their related pathways with
outcomes for behaviour and host physiology. For instance, compared to specific pathogen-
free mice, germ-free mice have decreased 5-HT receptors and circulating 5-HT in the
hippocampus, and this is accompanied by altered anxiety-like behaviour [53]. Some studies
have indicated altered concentrations of NTs in germ-free mice following supplementation
with defined gut bacteria [54]. DA and 5-HT are reported to be produced by several gut
bacteria, and this is likely to have an impact on the brain, as the total concentration of
tryptophan, glutamine, and tyrosine in the brain of germ-free mice is lower than the mice
with gut microbiota recolonisation [55], whilst strains of Bifidobacterium and Lactobacillus
can be regarded as natural residents of the intestine with beneficial impacts on GABA
production [56,57]. The gut microbiota is considered to be a modulator of NT levels, which
then operate through the GBA (vagus nerve pathway). The variation in gut microbiota-
associated communication in the gut–microbiota–brain axis has been implicated in aspects
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of physiological and psychological conditions, including neurologic, immunologic and
psychiatric conditions [58,59]. For example, variation in the gut microbial community has
been reported in CNS disorders, including autistic spectrum disorders, anxiety, and depres-
sion [60]. Neurological diseases such as depression (decreased 5-HT and catecholamines),
Parkinson’s (decreased DA), insomnia, and anxiety (decreased GABA) are linked to deficits
in certain NTs [61,62]. The changes observed in mental well-being may therefore be caused
by signal transduction from the intestine to the brain [63].

2.5. SCFAs Effect on Immune Markers Regulation

A study has reported that patients with malnutritional status have increased pro-
inflammatory cytokines levels in plasma; these are IL-6, interleukin 17 (IL-17), and TNF-α
when compared to healthy controls [64]. SCFAs, especially butyrate, as the main en-
ergy source of colonocytes, supports gut barrier function and exerts anti-inflammatory
effects [65]. For example, TNF-α production induced by stimuli in vitro could be sup-
pressed by acetate and butyrate [66]. An in vitro study indicated that butyrate could inhibit
proinflammatory cytokines by restricting lipopolysaccharide-induced nuclear factor-κB
activity [66,67].

2.6. SCFAs Effect on Appetite Hormones Regulation

SCFAs are involved in regulating the expression of appetite hormones and energy
homeostasis [68]. It has been reported that propionate stimulates both PYY and GLP-1
secretions from wild-type primary murine colonic crypt cultures [69]. As such, there are
communication pathways among the gut microbiome, SCFAs, and anorexigenic/orexigenic
hormones, which could have potential for normalising the satiety hormone levels in NDs
and therefore have a potential role in therapeutic feeding regimes. Propionate is an energy
source for the epithelial cells, also transferred to the liver, where it plays a role in gluconeo-
genesis and thus is considered beneficial for glucose and energy homeostasis. A murine
study indicated that the higher physiological levels of propionate significantly stimulated
anorexigenic hormones, including GLP-1 and PYY [68], suggesting that increased levels of
SCFAs would stimulate gut hormone profiles thus impacting on appetite.

2.7. SCFAs Effect on NTs Regulation

Gut microbiota acting through SCFAs can upregulate enteric 5-HT production and
homeostasis by the enterochromaffin cells (ECs) [70]. 5-HT synthesis is regulated by trypto-
phan hydroxylase that is a rate-limiting enzyme that participates in 5-HT synthesis [61].
A study showed both mouse- and human-derived gut microbiota promote colonic trypto-
phan hydroxylase expression and 5-HT amounts through SCFA activities on ECs [68]. Also,
SCFAs have been observed to increase DA synthesis through tyrosine hydroxylase, a major
enzyme in catecholamine synthesis [71].

2.8. Appetite Hormones Effect on Immune Markers Regulation

There is still limited research focusing on appetite hormone effects on immune markers.
Sepsis has been observed to reduce levels of ghrelin, as such a rat study performed caecal
ligation on males to administer sepsis. This is followed by an injection of ghrelin. Ghrelin
infusion restored brain levels and alleviated intestinal barrier dysfunction with highly
active group B1 serum levels and vagus nerves [72]. Therefore, satiety hormones may
also impact on gut barrier function and subsequently immune function. This closely
linked network is likely to impact on many illnesses, and malnutrition is a good target, as
malnutrition conditions are highly linked to diet.
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2.9. NTs Effect in Appetite Hormone Regulation

Accumulated studies have indicated that NTs participate in hypothalamic appetite
regulation [73]. DA and 5-HT are essential NTs in the regulation of food intake; alteration
in amounts of DA and 5-HT in the ventromedial nucleus and lateral hypothalamic area
relate to the impact on food choice, including meal size and meal number [74]. Levels of
NE within the brain may directly alter the leptin activity. There appears to be an inverse
relationship between NE and leptin activity. Enhanced leptin may decrease NE activity to
induce satiety, whereas the absence of leptin may stimulate increased NE secretion and
subsequently release hunger signals [75].

2.10. Malnutrition and GBA Dysregulation

A few systematic reviews have demonstrated that individuals with malnutrition
exhibit varying habitual dietary intake patterns. For example, individuals with obese or
overweight often have Western and high-fat diets [76]; patients with AN tend to follow
a vegetarian diet, while undernourished children usually have a low dietary diversity
intake [76,77]. Different habitual dietary intakes can have a major impact on the type of
gut microbiota in an individual, as seen in Figure 2 [78–80]. Dietary habits can significantly
influence the gut microbiota composition. Diets that are ultra-processed-food high in levels
of calorie-dense, salt, processed carbohydrates, and saturated fat, and low in fibre, are
known as the ‘Western diet’ and are linked to the Bacteroides predominant enterotype [81].
A vegetarian diet typically includes vegetables, fruits, nuts, legumes, and grains, possibly
incorporate with eggs and dairy products, while excluding red meat consumption, which
is connected to the predominantly Prevotella enterotype [78].
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Hence, it can be seen that diet-induced malnutrition can lead to an imbalance in the
gut microbiome, which can impact the GBA [82]. For example, approximately 90% of
5-HT is produced in the gut by enterochromaffin cells, with gut microbiota influencing its
synthesis. Malnutrition decreases the intake of dietary tryptophan, which in turn reduces
5-HT production and availability. As tryptophan is a precursor for 5-HT synthesis, its
reduced intake can lower brain 5-HT levels, and alterations in 5-HT signalling are not only
associated with appetite regulation, but may also trigger eating disorders [83]. In cases
of malnutrition, particularly protein-energy malnutrition, systemic inflammation may be
triggered. This inflammation can impact the intestinal lining and increase its permeability,
enabling harmful bacteria and toxins to infiltrate the bloodstream, which may subsequently
affect brain function. Moreover, intestinal inflammation can activate brain signalling
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pathways that influence eating behaviour [84]. Accumulated studies have indicated that
dysregulated levels of SCFAs, NTs, appetite hormones, and immune markers are associated
with malnutritional status, as seen in Table 2. These GBA markers are components of
the complex neural circuits that regulate GBA in malnutritional status. Understanding
their roles and complex interactions can provide insights into the development of effective
therapeutic interventions to address malnutrition [85].

Table 2. Summary of changes in the malnutritional status associated with GBA and potential
biomarkers linked with such changes.

GBA Biomarkers Obesity Anorexia
Nervosa Undernutrition Physiological Relevance Ref.

SCFAs ↓ Total SCFAs ↓ Butyrate;
↓ propionate

↓ Butyrate;
↓ propionate

Energy source, gut barrier
integrity, anti-inflammatory
effects, appetite regulation,
gut microbiota metabolism

[86,87]

Neurotransmitters ↓ Serotonin ↓ Serotonin;
↓ dopamine

↓ Serotonin;
↓ dopamine

Influence mood, appetite,
energy expenditure, and

reward pathways
[85,88,89]

Appetite hormones
↓ PYY;
↓ GLP-1;
↑ leptin

↓ Leptin;
↑ ghrelin;
↑ PYY

↑ ghrelin;
↓ leptin

Appetite and body weight
regulation, energy

homeostasis regulation
[90,91]

Immune markers

↑ TNF-α;
↑ IL-6;
↑ CRP;
↓ IL-10

↑ TNF-α;
↑ IL-1β ↑ TNF-α

Metabolic regulation;
Increased gut permeability

indued by
pro-inflammatory markers

[88,92]

Abbreviations—Increase (↑); Decrease (↓); SCFAs: short-chain fatty acids; PYY: peptide YY; GLP-1: glucagon-like peptide; TNF-α: tumour necrosis
factor-a; IL: interleukin; CRP: C-reactive protein; IL-1β: interleukin-1 beta.

3. Emerging Nutraceuticals for Treating Malnutrition via GBA Targeting
Nutraceuticals are characterised as foods or food ingredients that provide health

benefits beyond essential nutrition, such as disease treatment and prevention [93]. Prebi-
otics, probiotics, synbiotics, postbiotics, and paraprobiotics are classified as nutraceuticals
because they deliver health benefits that extend beyond fundamental nutrition and can
be utilised to prevent or manage various health conditions [94]. The above sections in-
dicate that individuals with malnutrition with a dietary nutrient imbalance may suffer
from impairments to gut microbiota development that could result in dysbiosis of GBA
biomarkers associated with metabolic and physiological conditions. Therefore, it is possible
that prebiotics, probiotics, synbiotics, postbiotics, and paraprobiotics intervention may po-
tentially help restore the gut microbiota composition and related levels of GBA biomarkers
to combat dysregulated metabolic functions and offer some benefits against unbalanced nu-
tritional status, in order to obtain better long-term clinical outcomes [12–18,95]. Although
the impact of GBA and related biomarkers in individuals with malnutrition are still unclear,
probiotics, prebiotics, synbiotics, postbiotics, and paraprobiotics serve as approaches to
reestablish a healthy gut microbiota and modulate GBA biomarkers in individuals with
malnutrition, as indicated in Table 3.
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Table 3. The effects of nutraceuticals on individuals with malnutrition.

Nutraceuticals Study Population Intervention Time and Daily
Dose Model Main NDs Related Findings Ref

Probiotics studies

Probiotic:
Bifidobacterium pseudocatenulatum CECT 7765 Obesity 14 weeks, 1 × 109 CFU/day Mice ↓ Weight, ↑ leptin receptor mRNA, ↓ Leptin, ↓ DA, ↓ NE, ↑

5-HT concentrations in the hypothalamus [12]

Probiotic 1: Lactobacillus sakei OK67, probiotic 2:
Lactobacillus sakei PK16 Obesity 4 weeks; 2 × 109 CFU/day Mice

In both treatments: ↓ Firmicutes, ↓ Proteobacteria, ↑
Verrucomicrobia, ↓ delta-Proteobacteria, ↓ Deferribacteres,
↓ weight; ↓ TNF-α; ↓ NF-κB; ↓ anxiety like behaviours

[13]

Probiotic: Lactobacillus paracasei HII01 Obesity 12 weeks, 1 × 108 CFU/day Rats ↓ Weight; ↓ ratio of F/B; ↓ IL-1 mRNA; ↓ IL-6 mRNA [96]

Probiotic 1: Lactobacillus brevis DPC6108
probiotic 2: Lactobacillus brevis DSM32386 Obesity 12 weeks, 1 × 1010 CFU/day Mice In both treatments: ↓ weight, ↑ faecal flora diversity, ↑

ratio of F/B, ↑ GABA in the small intestine [97]

Mixed probiotic supplementation: Lactobacillus
salivarius CUL61, Lactobacillus paracasei CUL08,

Bifidobacterium bifidum CUL20, and
Bifidobacterium animalis subsp. lactis CUL34

Obesity 12 weeks, 5 × 108 CFU/day Mice ↓ Weight, ↓ Lactobacilli; ↓ Enterobacteria, ↓ Coliforms↓
Yeast, ↑ Enterococci, ↑ IL-10 mRNA, ↓ IL-18 mRNA [98]

Probiotic: Lactobacillus reuteri MM4–1A Obesity 6 weeks, 5 × 109 CFU/day Mice ↓ Ratio of F/B, ↓ weight, ↑ TNF-α, ↓ IL-1b, ↓ IL-6 in the
hippocampus [99]

Probiotics:
Yoghurt containing Lactobacillus delbrueckii

subsp. bulgaricus and Streptococcus.thermophilus
Patients with AN 10 weeks, 375 g yoghurt/day Human ↑ Interferon-γ, ↑ CD4+/CD8+ ratio, ↑ T lymphocyte

subset [45]

Multi-probiotic supplementation:
Lactobacillus acidophilus, Bifidobacterium bifidum,

Bifidobacterium lactis, Bifidobacterium longum,
Lactobacillus rhamnosus, Lactobacillus reuteri

Obesity and food addiction

12 weeks, each strain is 1.8 × 109

CFU including: Lactobacillus
acidophilus, Bifidobacterium

bifidum, Bifidobacterium lactis,
Bifidobacterium longum. The 1 ×

109 CFU/capsule including
Lactobacillus rhamnosus,

Lactobacillus reuteri

Human ↓ Weight, ↓ leptin, ↓ neuropeptide [46]

Probiotic: Bacteroides uniformis CECT 7771 Food addiction Rats that fasted 12 h and received
a daily dose of 1 × 108 CFU Rats

The effects of Bacteroides. uniformis on the brain reward
response are mediated by changes in the levels of DA, NE

and 5-HT in the nucleus accumbens as well as in the
expression of dopamine receptors in the prefrontal cortex

and intestine. An increase in the OTUs and the
phylogenetic diversity

[100]

Probiotic: yoghurt containing Lactobacillus.
Bulgaris, Streptococcus. thermophilus

Two different situations:
(1) Malnourished children;

(2) Patients with AN
10 weeks, 125 g yoghurt/day Human In both groups: ↑ Interferon-γ [101]

Probiotic: Lactobacillus reuteri DSM17938 Patients with AN 13 weeks, 2 × 108 CFU/day Human ↑ Weight, ↑ body mass index [102]
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Table 3. Cont.

Nutraceuticals Study Population Intervention Time and Daily
Dose Model Main NDs Related Findings Ref

Mixed probiotics supplementation:
Bifidobacterium breve, Bifidobacterium longum,

Bifidobacterium infantis, Streptococcus
thermophilus, Lactobacillus acidophilus,

Lactobacillus plantarum, Lactobacillus paracasei,
and Lactobacillus delbrueckii subsp. bulgaricus

Translational activity-based
anorexia 2 days, 1 × 109 CFU/mL Rats

An increase formation of GALT provided with probiotics
supplementation, possibly related to gut microbiome, also
contributes to the imbalanced levels of pro-inflammatory
and anti-inflammatory cytokines observed in patients with

AN.

[103]

Mixed probiotics supplementation:
Lactobacillus acidophilus, Bifidobacterium longum,

and Enterococcus faecalis
Participants on a high fat diet 4 months, 2 g probiotic

powder/day (1.0 × 107 CFU/g) Human ↑ Ruminococcaceae and Lachnospiraceae family, ↓
Bacteroidaceae family [104]

Mixed of probiotics strains in fermented milk:
Lactobacillus acidophilus CUL60, Lactobacillus
acidophilus CUL21, Lactobacillus acidophilus

NCFM, Bifidobacterialactis HNO19,
Bifidobacteriaanimalis-supsplactis CUL34, and

Bifidobacteriabifidum CUL20

Obesity
3 months, 100 g/day (One

fermented milk cup contained 10
× 109 CFU)

Human ↓ Weight, ↓ leptin, ↓ SCFA, ↑ Lactobacillus, ↑
Bifidobacteria, ↑ Bacteroidetes, ↓ Firmicutes, ↓ ratio of F/B [105]

Prebiotics studies

Prebiotic-supplemented diet containing OFS Overweight 13 days (1) 10 g OFS/day or (2)
16 g OFS/day Human

In both treatments: ↑ PYY, ↑ GLP-1, ↓ energy intake.
PYY and GLP-1 levels were significantly lower with 16

g/d OFS compared with 10 g/d OFS. Energy intake was
significantly lower with 16 g/d OFS compared with 10

g/d OFS

[14]

Prebiotic-supplemented diet: OFS Overweight and obese adults 12 weeks, 21g/day Human ↓ Body weight, ↓ fat mass, ↓ energy intake, ↓ ghrelin [15]

Prebiotic: OFS-enriched inulin Overweight or obesity 16 weeks, 8 g/day Human ↓ Weight; ↓ IL-6; ↑ Bifidobacterium spp; ↓ Bacteroides
vulgatus [106]

Prebiotic-supplemented diet: chicory-derived
fructan Healthy non-obese adults 2 weeks, 16 g chicory-derived

fructan/day Human ↑ PYY, ↑ GLP-1, ↓ hunger [107]

Prebiotic: Inulin Wild type mice 14 weeks, 7.5% inulin/day Mice PYY was reduced by 87% [108]

Probiotic: Saccharomyces. Boulardii
Prebiotic: FOS

Mimic of AN gut condition based
on AN patients’ dietary pattern

16 days; Saccharomyces. Boulardii:
5 × 108 CFU/day; FOS: 1.67

g/day

In vitro gut
model system

In Saccharomyces Boulardii treatment: ↑ GABA and 5-HT in
proximal, ↑ total bacteria in transverse colon.

In FOS treatment: ↑ acetate, Bifidobacterium spp., Roseburia
genus and total bacteria in proximal, transverse and distal

colon; ↑ butyrate in proximal and distal colon; ↑
propionate, EPI and DA in proximal colon.

[109]
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Table 3. Cont.

Nutraceuticals Study Population Intervention Time and Daily
Dose Model Main NDs Related Findings Ref

Prebiotic treatment: OFS
Probiotics treatment:

Bifidobacterium animalis subsp. lactis, synbiotic
treatment: probiotic (Bifidobacterium animalis

subsp. lactis) with prebiotic (OFS)

Rats with high fat diet-induced
obese

8 weeks, prebiotic: 10% (wt/wt)
OFS/day, probiotic: 1 × 1010

CFU/day, symbiotic: 10%
(wt/wt) OFS with Bifidobacterium
animalis subsp. lactis of 1 × 1010

CFU/day

Rats

In OFS treatment: ↑ GLP-1, ↑ PYY, ↓ leptin, ↑ Bacteroides
spp., ↑ Lactobacillus spp., ↑ Bifidobacterium spp., ↑

Bifidobacterium. animalis, ↓ C. coccoides, ↓ C. leptum, ↓
Clostridium Cluster XI and I, ↓ Enterobacteriaceae, ↓ the ratio
of F/B. In Bifidobacterium animalis subsp. lactis treatment: ↑

GLP-2, ↑ Bifidobacterium.animalis

[16]

Synbiotics studies

Synbiotic treatment:
probiotic (Bifidobacterium animalis subsp. lactis)

with prebiotic (polydextrose), probiotic
treatment:

Bifidobacterium animalis subsp. lactis

Overweight and obese

6 months, synbiotics: 12 g/day of
polydextrose and 1010 CFU of
Bifidobacterium animalis subsp.

lactis plus, probiotic: 1010

CFU/day

Human
Synbiotics treatment: ↓ weight, ↑ Akkermansia, ↑

Christensenellaceae, ↑ Methanobrevibacter, ↓ Paraprevotella
Probiotic treatment: ↑ Lactobacillus, ↑ Akkermansia

[110]

Synbiotic: probiotic (Lactobacillus rhamnosus
CGMCC1.3724) with prebiotic (OFS and inulin) Obese

24 weeks, 1.6 × 108 CFU of
Lactobacillus rhamnosus

CGMCC1.3724 and 300 mg of a
mix of OFS and inulin/day

Human ↓ Weight; ↓ leptin; ↑ Lachnospiraceae [17]

Synbiotic:
mixed probiotic (Lactobacillus acidophilus,

Bifidobacterium lactis, Bifidobacterium longum,
Bifidobacterium bifidum) with prebiotic

(galactooligosaccharide)

Overweight

3 months, 15 × 109 CFU of mixed
strains (Lactobacillus acidophilus

DDS-1, Bifidobacterium lactis
UABla-12, Bifidobacterium longum

UABl-14, and Bifidobacterium
bifidum UABb-10) and 5.5 g
galactooligosaccharide/day

Human ↑ Bifidobacterium; ↑ Lactobacillus; ↑ Ruminococcus; ↑
Verrucomicrobiae [18]

Probiotic:
Bifidobacterium. infantis EVC001),

Synbiotic treatment:
probiotic (Bifidobacterium. infantis EVC001) with

prebiotic (Lacto-N-neotetraose [LNnT])

Children with severe acute
malnutrition

4 weeks, probiotic: 8 × 109

CFU/day; Synbiotic: probiotic (8
× 109 CFU) plus 1.6 g

prebiotic/day

Human ↑ Rate of weight gain in probiotic group compared to
synbiotic group [111]

Synbiotic:
mixed probiotic (Lactobacillus acidophilus,

Lactobacillus rhamnosus, Lactobacillus
bulgaricus, Lactobacillus casei, Bifidobacterium

infantis, Bifidobacterium breve, and Streptococcus
thermophilus) with prebiotic (FOS)

Children with FTT 30 days, synbiotic: probiotic (1 ×
109 CFU) plus 1.0 g prebiotic/day Human ↑ Weight [112]

Synbiotic: probiotic (Bacillus coagulans) with
prebiotic (FOS) Children with FTT

6 months, 100 mg FOS and 150
million spore Bacillus

coagulans/day
Human ↑ Weight, ↑ BMI [113]

Postbiotics studies
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Table 3. Cont.

Nutraceuticals Study Population Intervention Time and Daily
Dose Model Main NDs Related Findings Ref

Inulin-propionate ester Overweight (cultured human
colonic cell model) 24 weeks, 10 g/day Human ↓ Weight, ↑ PYY, ↑ GLP-1 [114]

Acetate sodium Overweight/obese men
3 days, distal and proximal colon:
(100 or 180 mmol/L dissolved in

saline 120 mL)
Human Distal colon: ↑ PYY, ↓ TNF-α;

Proximal colon: no significant difference. [115]

Paraprobiotics studies

Heat-killed LP28 Overweight 12 weeks, 7.5 mL (1011 cells) Human ↓Body fat mass, ↓ BMI, ↓ waist circumference, ↓ body fat
percentages [116]

Fragmented CP1563 Overweight and mildly obese 12 weeks, 200 mg paraprobiotics
in a 500 mL beverage Human ↓ Body fat percentage, ↓ whole body fat, ↓ visceral fat [117]

Abbreviations—↓ decrease; ↑ increase; mRNA: messenger RNA; DA: dopamine; NE: norepinephrine; 5-HT: serotonin; F/B: Firmicutes/Bacteroidetes; IL: interleukin; TNF-α: tumour
necrosis factor-α; NF-κB: Nuclear factor-κB; GALT: gut-associated lymphoid tissue; FOS: fructooligosaccharides; OTU: operational taxonomic units; CFU: colony-forming units; AN:
anorexia nervosa; HFD: high fat diet; OFS: oligofructose; GLP: glucagon-like peptide; FTT: failure to thrive; GABA: Gamma-aminobutyric acid; SCFAs: short-chain fatty acids; PYY:
peptide YY; BMI: body mass index.
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3.1. Probiotics
Effect of Probiotics on Gut Microbiota Composition and NTs Modulation

Probiotics are one of the most explored and utilised functional food ingredients with a
variety of health-promoting properties [118]. Probiotics are defined as “live microorganisms
that, when administered in adequate amounts, confer a health benefit on the host” [119].
Probiotics consist of Bacillus spp., Escherichia coli, yeasts (e.g., Saccharomyces spp.), and
lactic acid bacteria (e.g., streptococci, lactobacilli, and bifidobacteria) [119]. It has now been
established that probiotics can modulate the host gut microbiota in a beneficial manner [120].
For instance, it is suggested to use specific probiotics to restore the gut microbial balance
by affecting the ratio of Firmicutes to Bacteroidetes (F/B) in malnutritional status [121].
However, it should be noted that relevant probiotic strains can differ significantly in terms
of functional and structural concentrations, such as the species Lactobacillus. Several studies
have shown that the administration of certain Lactobacillus species has different effects on
the ratio of F/B in obese mice. Supplementation with species of Lactobacillus paracasei HII01
and Lactobacillus reuteri MM4–1A led to a decrease in the ratio of F/B [96,99], while the
administration of Lactobacillus brevis DPC6108 and Lactobacillus brevis DSM32386 species
resulted in an increase in the ratio of F/B [97]. Therefore, these differences emphasise the
importance of carefully selecting and characterising probiotic strains to target different
states of NDs, ensuring that the desired health benefits are achieved.

DA, 5-HT, and NE are categorised as monoaminergic NTs; research in both animals
and human studies have shown that diet-induced starvation leads to a depletion of central
monoamines, resulting in imbalanced NTs and altered receptor sensitivity [122]. Animal
studies have demonstrated that both single-strain and mixed probiotic supplementation
can significantly regulate body weight, as well as the levels of DA, NE, and 5-HT related to
reward and appetite [100,103]. Moreover, in the in vitro model of AN under the intervention
of Saccharomyces boulardii, the levels of DA and 5-HT were restored, showing improvement
compared to the levels before intervention [109]. These changes suggest the potential
of using probiotics to modulate the microbiota and also biomarkers related to the GBA,
to affect the reward system and appetite regulation in the brain, which is essential for
managing eating behaviours [108].

Malnutrition represents a systemic state of low-grade inflammation. Pro-inflammatory
cytokines and other immune markers are tightly associated with the development of
malnutritional status [123]. A lower inflammatory status is correlated with a lower risk of
depression and better mood, which indirectly affects dysregulated eating behaviours [124].
Several studies have indicated that probiotics have a potential impact on immune regulation
via the cytokine expression modulation. Three studies observed that obese mice fed with
probiotics resulted in a lower profile of pro-inflammatory cytokines such as TNF-α and
IL-6 [13,97,99]. Additionally, probiotics strengthen the gut barrier, preventing the leakage
of inflammatory molecules into the bloodstream, which can disrupt metabolic processes
and appetite regulation. For instance, two studies have demonstrated that supplementation
with Lactobacullis in obese mice upregulates the expression of the tight junction protein
ZOO-1, a protein that is significantly linked to inflammatory status [45,101]. In current
preclinical and clinical studies, probiotics have been shown to affect the gut microbiome and
metabolic activity, leading to neuroactive compounds production and affecting immune
markers; these probiotics need to be further studied in individuals with malnutrition,
specifically targeting their therapeutic efficacy, long-term impacts, and safety.
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3.2. Prebiotics
Effect of Prebiotic Type on Neuroactive Metabolites

Prebiotics are defined as “substrates that are selectively utilised by host microorgan-
isms conferring health benefits to the host” [125]. Prebiotics have a bifidogenic capability,
specifically supplying a fermentable dietary source that can increase the growth of pos-
itive microorganisms such as Bifidobacteria and Lactobacillus [126]. Nonetheless, as the
knowledge of diversity in gut microbiome expands, there are other target genera, in-
cluding Faecalibacterium, Roseburia, Akkermansia, and Propionibacterium [127]. GOS and
Fructo-oligosaccharides (FOS) are the main type of prebiotics and are the most extensively
researched [128]. Several studies have indicated that prebiotic-based treatments reshape
gut microbiota composition; this involves simulating the growth of Bifidobacterium and
Lactobacillus, which has been observed in both obese human and mice supplemented with
prebiotic oligofructose (OFS) [52,129]. Moreover, some research has shown that these al-
ternations of gut microbiota composition were linked to enhanced entero-endocrine cell
activity and appetite sensitivity [129]. For instance, these gut bacteria were associated with
elevated levels of GLP-1 and PYY, as well as a suppressed ghrelin production and a notable
reduction of appetite [130]. In fact, supplementing with OFS in a high-fat diet led to an
increase in the number of Bifidobacterium in the gut and mitigated obesity-related symptoms
such as a decrease in body weight and food intake [15,16].

FOS has been proven to inhibit the gut colonisation of pathogens, offering a protec-
tive benefit against both chronic and acute intestinal disorders [131]. In vitro study on
individuals with AN showed that FOS feeding could potentially restore the bacterial com-
munity in the GIT, as well as major SCFAs metabolites such as acetate [109]. Additionally,
Borgo et al. [132] assessed SCFA concentrations in plasma and found that acetate was the
only detectable metabolite, indicating that is may be transported across the blood–brain
barrier and may affect early brain development [133]. It should be noted that SCFAs
serve as crucial metabolites in peripheral tissues, acting as a substrate for lipogenesis
and influencing appetite regulation [134]. Indeed, acetate plays a role in modulating the
expression of ghrelin [68]. Ghrelin is recognised for its appetite-stimulating hormone,
and studies have shown that germ-free mice have significantly lower ghrelin levels than
in conventional mice. The infusion of acetate led to increased caloric intake and ghrelin
concentrations, suggesting that elevated acetate concentrations amplify ghrelin expression
and thus appetite [135]. Therefore, there are interrelated pathways among the gut bacterial
community, SCFAs, and orexigenic/anorexigenic hormones, which could potentially be
utilised in therapeutic feeding strategies for individuals with malnutrition.

3.3. Synbiotics

Synbiotics are a combination of prebiotic and probiotic designed to hold a synergistic
capacity [136]. This synergistic effect boosts the effectiveness and the survival of beneficial
microorganisms in the gut. Thus, this is flexibility in the selection of live microorganisms
and substrate for the determination of the optimal combination for a specific desired out-
come, maintaining a healthy gut condition and digestive health [136,137]. Research on both
humans and animals indicates that synbiotics are capable of facilitating anthropometric
features, including weight reduction in individuals with obesity [18,110], as well as aiding
in the weight increase in children suffering from malnutrition [111–113]. These findings
highlight the dual benefits of synbiotics in managing weight-related issues. This dual capa-
bility emphasises the promise of synbiotics in addressing a range of health issues associated
with nutrition and weight [138]. However, it can be noted that most of these studies only
reported the role of synbiotics on anthropometric outcomes, but the results regarding the
role of synbiotics in malnutritional-related biomarkers such as gut microbiome, neuroactive
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compounds, and appetite hormones are very limited, and further research is warranted. It
can be fully understood the impact of synbiotics on malnutrition, as well as how synbiotics
affect individuals with malnutrition at both the physiological and pathological levels.

A study by Nuzhat et al. [111] found that in children with severe acute malnutrition,
the rate of weight gain was higher in those supplemented with probiotics (Bifidobacterium.
infantis EVC001) alone compared to those who were administered synbiotics (Bifidobac-
terium. infantis EVC001 with prebiotic Lacto- N-neotetraose) supplementation. Although
synbiotics integrate probiotics and prebiotics, and theoretically their synergistic action
can enhance the survival and activity compared to single biological functions, in some
cases, the prebiotics might not directly provide adequate support for the gut microbiota.
However, probiotics are live microorganism that work directly within the gut to improve
the balance of the bacterial community. They can rapidly replenish beneficial bacteria
in the gut, promoting digestion and absorption, thereby effectively enhancing weight
gain in malnourished children [111]. It is hoped that longer-term supplementation is re-
quired to understand the sustained effects of probiotics and synbiotics on the outcomes in
malnourished children [111].

3.4. Postbiotics

Over the past few years, a novel area of research has emerged in which probiotic
derivatives evaluate the origin composition, mode of action, and potential advantages. This
development has led to the emergence of globally accepted terms such as postbiotics. [139].
According to the International Scientific Society for Probiotics and Prebiotics (ISAPP),
postbiotics are defined as “a preparations of non-viable microorganisms and ingredients
that provide health benefits to the host.” [139].

ISAPP also emphasises that postbiotics must include cell components or microbial
cells, which are attenuated without or with metabolites and have been proven to have a
positive impact on health [139]. It is essential to characterise the microbial composition
of the preparation before attenuation in order to consider it as a postbiotic. It has been
suggested that postbiotics can be defined as microbial factors derived from foods fermented
by identified microorganisms, as opposed to conventional foods fermented by unidentified
microbial cultures. Therefore, postbiotics usually refer to secreted metabolites such as
cell-free supernatants, cell-free extracts, peptides and proteins, enzymes, and SCFAs [140].

Effect of Postbiotics on Appetite Regulation

The efficacy and health benefits of 24 weeks supplementation with inulin-propionate
ester as postbiotic was investigated in a primary cultured human colonic cell model that
mimicked of overweight status, which revealed that inulin-propionate ester significantly
reduced body weight. In addition, acute ingestion of 10 g inulin-propionate ester notably
boosted postprandial plasma levels of GLP-1 and PYY and decreased energy intake. The
inulin-propionate ester treatment led to a significant decrease in subjective appetite ratings
following meals. A notable trend was observed, indicating an 8.7% (73 kcal) reduction
in food intake, which implies that propionate might affect appetite and energy intake via
pathways independent of GLP-1 or PYY release [114].

In another study on the effects of the postbiotic EPS-layer protein from Leuconostoc
mesenteroides DH 1606 (LCM6) and L. mesenteroides DH 1608 (LCM8) supplementation on
high fat diet mice, postbiotics significantly improved the dysbiosis of the gut microbiota
induced by a high-fat diet, increasing the abundance of beneficial bacteria such as bifidobac-
teria and lactic acid bacteria, while reducing the levels of harmful bacteria. Moreover, no
adverse effects associated with the postbiotic supplementation were observed during the
intervention study. This indicates the application of postbiotics in obesity intervention, with
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the potential to improve obesity and related metabolic disorders induced by high-fat diet
by regulating intestinal microbiota and metabolic pathways [141]. However, the current
understanding of how postbiotics affect anorexia nervosa (AN) and malnutrition is still
limited. Further research is required to investigate the optimal dosage, mechanism of
action, and treatment protocols for addressing undernutrition [142].

3.5. Paraprobiotics

Paraprobiotics have also been employed to define an inactivated, non-viable microor-
ganism, whether ruptured or intact, and confers health benefits [143]. Specifically, the term
“paraprobiotic” denotes bacteria that have been rendered inactive. Compared to traditional
probiotics, paraprobiotics are prepared by different inactivation methods such as heat
treatment, high voltage, supercritical carbon dioxide technology, pulsed electric fields, etc.,
which affect their cellular components such as DNA or proteins. These methods are able to
retain their cellular components and some of their biological activity while avoiding the
safety risks that can be posed by live bacteria [144]. The research on the direct effects of
postbiotics on appetite regulation is still limited.

Effect of Paraprobiotics on Neuroactive Compounds Regulation

Paraprobiotics can indirectly influence appetite through the production of SCFAs; SC-
FAs stimulate the secretion of gut hormones like PYY and GLP-1, which enhance satiety and
reduce food intake [145]. In most studies on the intervention of obesity by paraprobiotics,
the primary focus has been on changes in body measurements, such as significant weight
loss. However, few studies have reported changes in indicators related to the gut–brain
axis. However, there is a potential link between body weight changes and the gut–brain
axis. The first pathway is the immune and inflammatory pathway. Obesity is often ac-
companied by chronic low-grade inflammation, which can be alleviated by modulating
the gut microbiota. Paraprobiotics may indirectly affect weight and metabolic health by
improving gut barrier function and reducing the production of inflammatory mediators.
This immune regulatory effect is also closely related to the function of the GBA [146]. The
second pathway is the interaction between the microbiota and host metabolism. Studies
have shown that the composition of the gut microbiota is closely related to the state of
obesity. For example, the relative abundance of Firmicutes is higher, while that of Bac-
teroidetes is lower in the gut microbiota of obese individuals. By modulating the gut
microbiota abundance, paraprobiotics may improve this imbalance, which in turn affects
energy metabolism and body weight [147]. Some studies have shown that paraprobiotics
can affect the action of neurotransmitters by regulating the expression of neurotransmitter
receptor genes. For example, one study found that heat-inactivated Enterococcus faecalis
EC-12 supplementation altered the expression of neurotransmitter receptor genes in the
prefrontal cortex of mice and attenuated anxiety-like behaviour [148].

Although it is widely accepted that nutraceuticals including probiotics, prebiotics,
synbiotics, postbiotics, and paraprobiotics have the potential to enhance gut health by
modulating gut microbiota composition and improving GBA-related biomarkers, this
perspective is oversimplistic and ignores the complexity of individual responses. The
assumption that these interventions are generally effective for addressing malnutrition is
problematic because it does not account for the significant variability in gut microbiota
composition and GBA-related biomarkers among individuals with different types of mal-
nutrition. In reality, the efficacy of nutraceutical interventions is highly dependent on
individual genetic and microbiome profiles, which can vary widely even within the same
category of malnutrition. This variability implies that a generic approach to nutraceutical
supplementation is unlikely to produce consistent or optimal results. Instead, precision
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nutrition that takes into account the specific nutritional needs and gut microbiome char-
acteristics of an individuals is essential for choosing the most appropriate nutraceuticals.
However, even precision nutrition faces challenges of accurately categorising and address-
ing various types of malnutrition, highlighting the need for more nuanced and personalised
strategies.

4. Challenges and Future Prospectives
The rise of malnutrition poses a major global health challenge. Traditional interven-

tions often fail to address individual differences. However, personalised nutraceutical
strategies offer dietary guidance that is specifically tailored to meet the unique nutritional
requirements of each individual. While there is no universally accepted definition of per-
sonalised nutrition, recommendations are generally formulated based on an individual’s
behaviours, biological characteristics, and the interaction between these factors [149]. The
goal of personalised nutraceuticals is to improve dietary habits to prevent or manage
chronic diseases, thereby promoting better public health outcomes [150].

4.1. Approaches in Nutraceutical Interventions for Individuals with Malnutrition

The development of a prediction framework for individuals with malnutrition re-
sponses to nutraceutical interventions will depend on iterative methods that can span the
entire axis of translation, incorporating feedback loops between computational models of
host–gut microbiome interactions [151]. Currently, there are in vitro and in vivo approaches
available for the rational design and testing of personalised nutraceutical interventions
for individuals with malnutrition, as shown in Table 4. Typically, in vitro approaches for
testing these nutraceutical predictions examine how nutraceuticals may impact on the
microbial community and biomarkers related to the GBA, and ultimately in vivo studies
are conducted to assess the effect of these nutraceutical interventions on host health and
physiology in both humans and animals.

Table 4. In vitro and in vivo approaches to exploring how nutraceutical intervention impact on gut
microbiota and biomarkers related to GBA in individuals with malnutrition.

Approach Main Points Advantages Disadvantages Ref.

In vitro

Studies conducted outside a living
organism (e.g., cell cultures, gut
organoids, or microbiome and

colon simulations).

Test bioavailability, absorption,
and metabolism of nutraceuticals.

Study direct effects on gut
microbiota and epithelial cells.

No ethical concerns

High-throughput
screening

Limited relevance to whole
organism physiology

Cannot fully replicate gut
brain axis interactions.

[109,152]

In vivo

Studies conducted within a living
organism in animal models and

human clinical trials.

Administer nutraceuticals orally or
through diet.

Study systemic effects on gut
microbiota and gut brain axis

biomarkers.

Captures systemic and
physiological effects on

GBA interactions.

More aligned with
human biology and
directly relevant to
human outcomes

Ethical concerns

Long term study is expensive
and challenging

[153,154]
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4.1.1. In Vitro Approach

Creating a predictive framework based on how nutraceuticals influence host health
requires quantitative and dynamic comprehension of the characteristics anticipated to
be predicted within the system. However, obtaining time-resolved and continuous data
from in vivo studies is often challenging. Therefore, in vitro approaches offer a balance
between flexibility and accuracy. In an in vitro model, microbial community composition
and environmental variables can be precisely regulated, and the sampling time scale can
be tailored as required [155]. This makes in vitro models highly suitable for dissecting
variable responses to nutraceutical interventions and testing specific hypotheses related to
host-nutraceutical–microbial interactions [156]. For example, in vitro continuous culturing
methods can be a useful tool for determining how microbial community and biomarkers
related to GBA changes in the presence of nutraceuticals with the physiologically relevant
conditions. This method was developed by Macfarlane et al., designed to reflect different
large intestine niches along the GIT. It has been demonstrated to replicate the bifidogenic
effects of GOS seen in a human trial and offers a comprehensive prediction of where
specific fermentation processes might occur in the gut [157,158]. In vitro approaches have
been crucial in identifying which nutraceutical interventions are appropriate for animal
models and human trials. However, they are constrained by the fact that many human
symbiotic microorganisms are challenging to cultivate. The complexity of the human
digestive system challenges experimental replication and affects the accuracy of microbial
community dynamics studies. The absence of multiple tissue interactions and metabolites
accumulation creates an artificial gut environment. This results in the “bottle effect”, in
which the ecological characteristics of the microbial community in vitro start to differ
from the actual situation in vivo [159]. However, advancements in culture techniques,
tissue cultures, and the establishment of diverse gut microbiota libraries, such as the
Global Microbiome Conservancy, have significantly enhanced the scope of in vitro research.
Moreover, studies integrating host tissues also improve the relevance of these systems by
incorporating diverse human-derived strains and host–microbe crosstalk [160].

4.1.2. In Vivo Approach

To predict personalised responses to nutraceutical interventions in vivo, it is essential
to have sufficient variability within the study population, collection of relevant biological
measures that act as covariates, and robust methods for characterising the response or
results. In preclinical animal models or human populations, capturing phenotypic and
genetic through sampling is crucial for developing personalised nutraceutical prediction.
In nonhuman trials, the colonisation of human faecal communities using germ-free mice
and mice treated with an antibiotic mixture further expands the scope of examination
for differences in response to microbial-driven nutraceutical inputs [161]. Non-human
animal models offer detailed spatiotemporal insights into immune function, digestion,
and physiology after nutraceutical interventions [162]. Key considerations for the rigor of
these experiments and their applicability to humans include addressing concerns related to
exposure–dose correlation, appropriate use of controls, and potential biases arising from
handling [163].

In human trails, nutraceutical intervention research has spanned from observational
studies in prospective cohorts to randomised controlled trials (RCTs). Among these differ-
ent types of approaches, the selection of study design, the length of the intervention period,
and the sampling timeline are essential for elucidating the relevant biological mechanisms
and timelines associated with the changes induced by nutraceutical interventions [164].
The duration of nutraceutical interventions targeting gut microbiota and other biomarkers
outcomes may vary. Longer interventions make trials impractical [165]. When particular
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microbes and pathways are already established in the system, some certain areas of gut
microbiota activity can rapidly adapt to short-term nutraceutical interventions [165]. The
immediate interactions between nutraceutical and gut microbiota can be detected in the
metabolome or physiological biomarkers shortly within hours of intake. However, to
achieve considerable alterations in the functional output and the composition of the gut
microbial community, long-term nutraceutical interventions may be necessary [166].

4.2. Vision for the Future: Multi-Omics Technologies Driven Tailored Nutraceuticals
in Malnutrition

It is has become evident that the gut microbiota significantly influences how indi-
viduals respond to nutraceutical interventions. By incorporating microbiome data along
with clinical data and responses to standardised nutraceuticals into predictive trials, and
these studies can be used to develop personalised interventions that are more effective
than current standard practices [167]. However, there are potential shortcomings, as many
existing commercial precision dietary and nutraceutical interventions are still in their early
stages and often overestimated in loosely regulated markets. In these stages, more evidence
needs to be gathered from hypothesis-generating, well designed human observational
studies, particularly those that combine intensive clinical, phenotypic, and behavioural
information with gut microbiome analysis [167,168]. Statistical learning models that predict
personalised phenotypic responses to nutraceuticals interventions can be constructed using
large, diverse, and densely phenotype human populations [169]. However, these meth-
ods are limited because they may not offer detailed mechanistic insights and depend on
training cohorts. Predictions may deteriorate when new data are derived from individuals
significantly different from the training cohort. To address this, it is necessary to utilise the
expanding knowledge base to develop superior mechanistic models grounded in causally
validated microbe–microbe and host–microbiome interactions, thereby enhancing person-
alised predictions. Advances in host–microbiota metabolism modelling now allow for
predictions of responses to high-throughput, personalised nutraceutical interventions [170].
To validate these computational predictions, in vitro models must be controlled for high-
resolution, spatially resolved, and longitudinal sampling. For instance, data from in vitro
batch or continuous culture systems can directly validate metabolic model predictions of
personalised SCFA production tailored to specific nutraceuticals [155]. Beyond validating
existing models, complex in vivo non-human animal models and in vitro models can ex-
plore uncharacterised host-microbiome relationships [160,162]. These experimental insights
can enrich knowledge base and support improved mechanistic modelling. Ultimately, hu-
man observational and intervention studies are essential for validating personalised dietary
and nutraceutical interventions and obtaining regulatory approval. Quantitative validation
in both in vivo and in vitro models is essential for optimising human health, nutraceuticals,
and overall well-being through gut microbiota modulation, and further indicate GBA
related biomarkers, as shown in Figure 3.

The future of nutrition hinges on integrating multi-omics technologies to develop
tailored nutraceuticals that target the underlying causes of malnutrition, which aims to
reveal all biological molecules involved in the structure, function, and dynamics of a cell,
organism, or all organisms in a particular environment [171]. These include a comprehen-
sive analysis of genes (genomics), microbiota (microbiomics), metabolites (metabolomics),
and food (foodomics) [172]. There is an extremely important link between bioactive food
components and cellular processes, and this link shows significant differences at different
molecular levels. Specifically, these differences are not only reflected in the nutrigenomics
that affects messenger RNA, but also in the nutrigenetics that affects DNA [173]. Given
that a single omics technique fails to capture the full scope of malnutrition, the application
of multi-omics techniques has been widely recognised to provide a more comprehensive
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perspective [172]. Advances in multi-omics have elucidated how nutrients influence indi-
viduals at the molecular and cellular levels, thereby enabling personalised nutraceutical
interventions to consider a broader range of factors, including physiology, foodomics,
genomics, and microbiome [173]. However, applying these technologies on an individual
basis is time-intensive and expensive. Metabolic typing, which categorises individuals
into subgroups based on metabolic phenotypes, such as biochemical, gut microbiome, and
metabolomics data, emerges as a more viable and cost-efficient alternative for precision
nutraceutical strategies [174].
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Personalised Plan Design, Implementation of Intervention and Monitoring and Evaluation, designed
to optimise health outcomes through personalised nutraceutical interventions. Each step is crucial
for ensuring that the intervention is both effective and tailored to the unique needs of the individual.

4.2.1. Genomics of Malnutrition

Exploring the human genome has been a path to deeper insights into the variations that
exist between individuals. Genome-wide association studies (GWAS) have transformed
the field of multifactorial disease genetics, with the goal of pinpointing genomic variants to
elucidate the genotype–phenotypic connections associated with disease susceptibility [175].
Despite the ongoing shortfall in studies featuring large sample sizes with ethnic diversity,
GWAS has effectively uncovered novel genetic variants and mechanisms underlying condi-
tions like nutritional related disorders, including the identification of genes such as FTO (fat
mass and obesity-associated protein), leptin receptor, leptin, TNF-α, and interleukin, that
are linked to metabolic issues in malnutrition [175]. Notably, among numerous metabolism-
related genes, FTO was identified as the strongest predictor of polygenic overnutrition. The
FTO gene is recognised for its role in regulating eating behaviour and appetite, is associated
with a higher risk of overnutrition primarily due to increased food intake and preference for
high-energy and high-fat foods [176]. As research accumulates and technology advances,
the pace of identifying metabolic-related candidate genes is accelerating. Considering the
vast and intricate nature of genomic data, sophisticated analytical tools such as machine
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learning algorithms and deep learning techniques are essential for identifying hidden
genomic connections, formulating hypotheses and innovative models, and generating
predictions. Machine learning algorithms are particularly well-suited to data-intensive
fields such as genomics, as they are engineered to autonomously identify patterns within
complex datasets [177]. Recognising the vital importance of genetic information in pre-
cision nutrition, scientists have incorporated specific genes and their associated single
nucleotide polymorphisms (SNPs) into tailored nutraceuticals interventions. The use of
SNPs has emerged as a key approach in personalised nutraceuticals interventions. As
more metabolic-related genetic variants are identified, genetic data are anticipated to help
pinpoint populations with a higher susceptibility to metabolic-related disorders. In cases
where a genetic predisposition exists, there is potential to intervene earlier to prevent
metabolic malnutrition diseases [178].

4.2.2. Harnessing Microbiomics for Nutraceutical Interventions

The emerging field of microbiomics holds great promise for developing personalised
nutraceutical interventions to address malnutrition. By understanding the complex in-
teractions between the gut microbiome, host health and nutraceutical interventions, re-
searchers can design targeted therapies that modulate gut microbial communities to im-
prove metabolic outcomes [179]. Diet significantly influences the gut microbiota composi-
tion and its interaction with nutraceuticals such as prebiotics and probiotics is a well-known
health promotion strategy. Overnutrition typically results from a sustained positive energy
balance caused by unbalanced energy intake and energy expenditure, and traditional
weight loss approaches primarily focus on increased physical activity and low-calorie diet.
However, the impact of individual genetic factors and microbiota-related mechanisms on
energy metabolism is often overlooked. Research indicates that gut microbiota profiles may
elucidate variations in weight loss among individuals undergoing the same nutraceutical
intervention [180]. In particular, dysbiosis of the gut microbiota leads to the depletion of
bacteria that produce SCFAs, which have been implicated in the aetiology of malnutrition
by inducing inflammation [181]. Additionally, a mixed of SCFAs supplementation on
the rectal increased fatty acid oxidation, plasma PYY levels and energy expenditure in
overweight and obese individuals [182]. It can be seen that precision nutraceutical can
only fulfil its potential by paying closer attention to the intricacies of interactions between
nutraceutical and microorganisms [183]. A study demonstrated that diet and the gut
microbiome are more influential than genetics in explaining inter-individual variability
in metabolism, based on an assessment of plasma metabolites. They highlighted that
nutraceutical quality predicted by machine learning models using an individual’s plasma
metabolome is significantly correlated with nutraceutical quality assessed by food fre-
quency questionnaires [184]. This finding underscores the potential of omics technologies
to use the gut microbiome as a predictive indicator of individual responses to the same
nutraceutical intervention. Consequently, identifying microbiomics involved in altering
human gut homeostasis through novel sequencing approaches could pave the way for the
development of tailored nutraceutical treatments [185].

While clinical trials offer some insights for nutraceutical research, the data available
in the field of microbiomics remain limited. In terms of the microbiome data utilised,
most studies depend on 16S rRNA gene sequencing for microbial analysis. Although
metagenomic data derived from whole-genome sequencing are becoming more accessible,
their application in precision nutraceutical trials is not widely used [185]. For example, there
is still inadequate evidence to regard baseline gut microbiota as a dependable predictor
of weight gain or loss associated with malnutrition. A significant challenge is the lack
of consistency among studies examining the role of microbiota in the pathophysiology
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of undernutrition and overnutrition, which hampers the ability to establish a causal link
between body weight changes and gut microbiota composition. Given the complexity
of identifying or selecting the appropriate variants, there is a need for variant calling
algorithms based on large sample cohorts to facilitate overnutrition or undernutrition
gene mapping [186].

4.2.3. Metabolomics and Malnutrition—Unveiling the Metabolic Fingerprint

Metabolomics seeks to characterise the metabolome, which serves as a chemical mani-
festation of a biological phenotype. Commonly utilised biological samples in metabolomics
research include blood (e.g., plasma, serum and whole blood), saliva, faecal and urine [187].
Metabolomics offers significant potential for the development of personalised nutraceutical
interventions for malnutrition. By capturing a comprehensive snapshot of an individual’s
metabolic profile, metabolomics can reveal unique biochemical profiles that reflect their
metabolic health, nutritional status and susceptibility to related conditions [188]. A preci-
sion nutraceutical approach requires a deep understanding of how interactions between
genetics, metabotypes, and diet influence the levels of nutraceutical biomarkers. SNPs
as genetic variants can influence metabolic differences and determine an individual’s nu-
traceutical needs and responses to different diets. therefore, biomarkers of food intake
could be highly valuable in precision nutrition interventions by offering precise and objec-
tive assessments of nutrient intake and dietary habits. By identifying specific biomarkers
of food intake, it is possible to predict individual responses to nutraceutical interventions,
thereby increasing the effectiveness of precision nutraceutical interventions [189]. However,
the application of biomarkers of food intake in precision nutraceutical research is still
restricted, indicating a need for more in-depth incorporation and investigation into future
studies, this highlights the difficulties associated with integrating biomarkers of food intake
into multi-omics technologies [190]. While metabolomics has demonstrated promise in
guiding precision nutraceutical assessments, its advantages over traditional biochemical
markers are still a matter of debate. The most critical challenge lies in identifying which
genetic variants or potential biomarkers of food intake should be prioritised for further
study [191]. While biomarkers of food intake offer more objective insights compared
to conventional nutritional assessment methods, metabolomics faces several challenges.
These include higher invasiveness, inability to reflect long-term dietary patterns, lack of
sensitivity or specificity for certain foods or nutraceutical, most critically, valid biomarkers
are still lacking for many foods and nutrients [192]. Therefore, it is essential to focus on
identifying new biomarkers for specific nutraceutical intake and rigorously validating these
candidates against these criteria, including time-response, dose-response, reproducibility,
reliability, and stability. This will help overcome current barriers to their use in precision
nutraceutical intervention studies [193].

It can be seen that metabolomics is a powerful tool in the field of personalised nutrition,
which providing detailed insights into the metabolic fingerprint of individuals that can
guide the development of tailored nutraceutical interventions [194]. By identifying specific
metabolic pathways affected by malnutrition, metabolomics aids in understanding how
nutraceuticals affect metabolic well-being and provide a scientific basis for personalised
dietary recommendations. Nutraceuticals include a range of bioactive compounds such
as probiotics and prebiotics that have demonstrated their potential in the fight against
malnutrition by modulating cellular signalling pathways, reducing oxidative stress and
enhancing gut health to improve overall nutritional status [10]. The integration of multi-
omics technologies including genomics, microbiomics and metabolomics, presents a future
vision where personalised nutraceutical interventions are driven by a comprehensive un-
derstanding of an individual’s genetic makeup, gut microbiota composition and metabolic
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profile. This method has the potential to transform malnutrition management by offer-
ing more targeted and effective treatment strategies. Future research directions should
concentrate on deciphering the mechanisms by which nutraceuticals interact with the gut
microbiome to shape metabolic health and on developing biomarkers that can predict
individual reactions to particular nutraceutical treatments [10]. Additionally, it is imper-
ative to investigate the long-term effects and sustainability of personalised nutraceutical
interventions in improving GBA health and combating malnutrition [195].

5. Conclusions
The exploration of nutraceuticals as a novel approach to modulate the GBA and combat

malnutrition represents a major advance in the field of personalised nutrition and wellness.
As highlighted in this review, nutraceuticals such as prebiotics, probiotics, and synbiotics
have shown potential benefits in restoring gut microbiota composition, improving GBA
related biomarkers, and addressing malnutrition. The intricate interplay between the gut
microbiota and the brain underscores the importance of targeted interventions that leverage
these bioactive compounds to optimise health outcomes. However, despite promising
developments, several challenges remain. Firstly, the variability of individual microbiomes
and the complexity of microbial metabolites require further research to elucidate the precise
mechanisms underlying nutraceutical impacts on the GBA. Secondly, future studies aimed
at reinforcing the evidence for personalised nutraceutical interventions should encompass
large-scale RCTs with longer intervention periods, with a focus on evaluating the long-
term enhancements of individualised nutrition on diverse health outcomes. In conclusion,
nutraceuticals hold immense potential for revolutionising the management of malnutrition
and promoting GBA health. As our understanding of the GBA and the role of nutraceuticals
continues to evolve, the integration of personalised nutrition approaches has the potential
to completely transform the way we prevent and treat malnutrition.
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AN Anorexia nervosa
BMI Body mass index
CNS Central nervous system
CIpB Caseinolytic protease B
CFU Colony-forming unit
CRP C-reactive protein
DA Dopamine
ECs Enterochromaffin cells
F/B Firmicute/Bacteroidete
FTT Failure to thrive
FOS Fructooligosaccharide
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GBA Gut–brain axis
GOS Galactoologosaccharide
GLP-1 Glucagon-like peptide-1
GABA Gamma aminobutyric acid
GIT Gastrointestinal tract
GALT Gut-associated lymphoid tissue
HMOs Human milk oligosaccharides
HFD High fat diet
IL-6 Interleukin-6
IL-17 Interleukin-17
IL-1β Interleukin-1 beta
mRNA Messenger RNA
MUAC Mid-upper arm circumference
NE Norepinephrine
NTs Neurotransmitters
NF-κB Nuclear factor-κB
OFS Oligofructose
OTU Operational taxonomic unit
PYY Peptide YY
SCFAs Short-chain fatty acids
TNF-α Tumour necrosis factor-α
5-HT Serotonin
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