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Abstract
Epidemics of plant diseases are estimated to cause significant economic losses in crop
production. Fungicide applications are widely used to control crop diseases but incur sub-
stantial indirect costs. One essential class of indirect costs arises due to the evolution of
fungicide resistance. This indirect cost must be estimated reliably to design economic
policy for more sustainable use of fungicides. Such estimation is difficult because the
cost depends on economic parameters and the evo-epidemiological properties of crop
pathogens. Even a conceptual framework for such estimation is missing. To address this
problem, we combined a spatially implicit mathematical model of crop epidemics with an
economic analysis at the landscape scale. We investigated how the net economic return
from a landscape depends on the proportion of fungicide-treated fields. We discovered a
pattern of accelerating (or decelerating) returns, contrary to expected diminishing returns.
Next, we calculated the economic cost of the evolution of fungicide resistance as the dif-
ference between the optimal net return of the landscape in the absence and presence of
resistance. We found that this cost depends strongly on the fungicide price, the degree of
resistance, the pathogen’s basic reproduction number and the yield loss due to disease.
Surprisingly, the cost declines with the fungicide price and exhibits a non-monotonic pat-
tern as a function of the basic reproduction number. Hence, to calculate the cost, we
must estimate these parameters robustly, incorporating variations in environmental con-
ditions, crop varieties and the genetic composition of pathogen populations. Appropriate
estimation of the cost of resistance evolution can inform economic policy and encourage
more sustainable use of fungicides.
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Author summary
Fungicides protect crops from diseases and are essential for securing the global food
supply, but they incur serious indirect costs to society and the environment. One such
cost arises because of the evolution of fungicide resistance. Part of the pathogen popu-
lation (fungicide-resistant) can gain protection from a fungicide via a genetic change.
If fungicide applications continue, the fungicide-resistant subpopulation increases and
dominates the population, leading to low efficacy. Resistance can lead to severe eco-
nomic losses, but no conceptual framework exists for estimating them. We present a
novel mathematical framework to estimate the economic costs of fungicide resistance at
the landscape scale. We combined an epidemiological model describing disease spread
with an economic cost-benefit analysis. Surprisingly, we found that the economic cost
of resistance declines for more expensive fungicides. This cost also depends on the
pathogen’s capacity to spread (invasiveness): the cost is highest for pathogens with inter-
mediate invasiveness. Thus, the cost of resistance depends on economic parameters
and the biological characteristics of plant diseases. Our findings can inform economic
policies for sustainable fungicide use, such as taxes or subsidies. Our paper also con-
tributes to the broader discourse on agricultural sustainability while ensuring global food
security.

Introduction
Epidemics of plant diseases are estimated to cause significant economic losses in crop produc-
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tion [1–4]. To reduce losses, farmers frequently apply fungicides. They can maximize the net
economic return of fungicide applications, e.g., by optimizing the fungicide dose based on the
balance between the yield benefit and the cost of fungicide application [5,6]. However, this
approach is problematic for at least two reasons.

First, fungicide applications not only have direct economic costs, but they also incur
considerable indirect costs, such as environmental costs, human health costs, and
costs associated with the evolution of fungicide resistance [7–9]. One opportunity to manage
crop diseases in a more sustainable manner is to incorporate indirect costs, at least partially,
into fungicide prices. This opportunity can be realized using economic policy instruments,
e.g., by introducing special pesticide taxes or subsidies, as has been done in several countries,
including France, Denmark, Norway and Sweden [10,11]. However, it is not easy to design
pesticide tax rates or subsidies to reflect indirect costs, as indirect costs are notoriously diffi-
cult to estimate [7–9].

Second, many crop pathogens of economic relevance can disperse over long distances, not
only within individual fields but also between fields and across entire regions [12]. There-
fore, decisions regarding disease management made at a particular farm can affect epidemic
development in other farms across a region, and decisions that are optimal for an individual
farm may turn out to be sub-optimal at the scale of a regional cultivated landscape. This is
also the case when managing weeds: for instance, [13] used computational modeling to show
that aggregating the best herbicide resistance management practices at the landscape scale can
slow down the evolution of resistance.

An essential class of indirect costs of fungicide applications arises because pathogen
populations can adapt to fungicides via the evolution of fungicide resistance, which reduces
fungicide efficacy [14]. From an economic perspective, these costs represent an external-
ity [15]: development of resistance is caused by fungicide applications on specific fields, but
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resistance can spread between fields and across farms and entire regions. Hence, a much
wider community of farmers will eventually suffer the economic costs of fungicide resistance
evolution.

These costs are difficult to estimate because they depend on the economic parameters of
the affected cropping system, the epidemiological, and the evolutionary properties of a partic-
ular pathosystem. A phone survey of 137 growers in Western Australia’s Wheatbelt revealed
that growers spent, on average, AU$42 per hectare on fungicide treatments of barley dis-
eases in the 2019/2020 growing season. The growers were further willing to spend on average
AU$18 per hectare to delay or mitigate fungicide resistance [16]. The latter estimate repre-
sents a perceived economic cost of fungicide resistance, and it remains to be investigated to
what extent this perception corresponds to the actual cost. At a wider national scale in the
USA, the economic impact of pesticide resistance was estimated at US$1.5 billion in 2005,
which, when adjusted for inflation, amounts to U$2.5 billion today, excluding the rising costs
associated with increased pesticide use [17]. A national-scale investigation of herbicide resis-
tance in black-grass (Alopecurus myosuroides) across the UK indicated that herbicide resis-
tance can double the economic costs of weed management [18]. Rough estimates of economic
losses in crop production due to insecticide resistance were in the range 10-15% [7,8]. These
were based on economic data on cotton production in the USA, assuming that insecticide
use increases due to resistance and that this increase is the only cost incurred by resistance.
However, it is unclear to what extent this assumption is fulfilled; it is also difficult to extrap-
olate these estimates to other crops and regions and extrapolate from insecticide resistance to
fungicide resistance. Only a few attempts have been made to estimate the economic costs of
fungicide resistance in crop pathogens in the literature, and these have focused on individ-
ual fields [19,20]. Even a conceptual framework to enable the calculation of economic costs
of fungicide resistance across wider spatial scales is lacking. To fill this knowledge gap, we
addressed the following questions: (i) “How to calculate the economic cost of fungicide resis-
tance?” and (ii) “How does the economic cost of fungicide resistance depend on the economic
and epidemiological/evolutionary parameters of the crop-pathogen system?”

For this purpose, we combined a spatially implicit epidemiological model of crop epi-
demics with an economic analysis at the landscape scale (bioeconomic modeling). Using
this approach, we calculated the economic cost of the evolution of fungicide resistance, CR,
as the difference between the optimal net return of the landscape in the absence and pres-
ence of resistance. This allowed us to explore how CR depends on the key epidemiologi-
cal/evolutionary and economic parameters of the system. Our results provide a conceptual
basis for the estimation of CR as a key component of indirect costs of fungicide applications,
which can inform economic policy to achieve a more sustainable use of fungicides.

Materials and methods
Epidemiological model for multiple fields
We study the epidemiological dynamics of a generic fungal pathogen of crop plants at the
scale of multiple fields (Fig 1). We consider a regional cultivated landscape composed of N
fields growing the same annual crop (e.g., wheat or maize). The key variables and parame-
ters are given in Table 1. First, we devise a model considering a wildtype (fungicide-sensitive)
pathogen strain with a fungicide treatment. Then, we extend this model to incorporate a
fungicide-resistant pathogen strain.

Model with fungicide treatment Each field can be either healthy (H) or infected (I) with
a wildtype pathogen (subscript w), and each field can be treated (subscript t) or untreated
(subscript u) with the fungicide. Hence, we have four possible field states: Hu, Ht, Iuw, and Itw.
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Fig 1. Overview of the multiple field model of plant disease incorporating both epidemiology and economics aspects in the presence
of fungicide treatment. Healthy fields (Hu and Ht) are shown in green, fields infected with the wildtype pathogen strain (Iuw and Itw) are
shown in red, fields infected with the resistant pathogen strain (Iur and Itr) are shown in orange. Fungicide-treated fields have a light-blue
glow around them. (A) Out of the total N fields, initially, only a small proportion of fields are infected, while the rest are healthy. A frac-
tion 𝜃 of all fields are treated with a fungicide, which comes at a price f. The net return (g(𝜃)) of the harvest is calculated as the monetary
equivalent of the yield from all healthy and infected fields (1 and y, respectively) minus the total fungicide price. (B) The state variables of
the epidemiological model and the transitions between them: healthy fields can become infected over time.

https://doi.org/10.1371/journal.pstr.0000178.g001

Table 1. Key variables and parameters of the model.
Symbol Description
Variables
Hi Number of healthy fields with treatment status i (i = u for untreated, i = t for treated)
Iij Number of fields infected by pathogen strain j (j = w for wildtype, j = r for resistant)

with treatment status i (i = u for untreated, i = t for treated)
Parameters
N Total number of fields
𝜃 Fraction of fungicide-treated fields (or fungicide coverage); 0-1
𝜖i The efficacy of fungicide treatment in reducing the transmission rate

of the pathogen strain i (i = w for wildtype, i = r for resistant); 0-1
𝛽i Transmission rate of pathogen strain i (i = w for wildtype, i = r for resistant)

from infected to the healthy field
𝜇 Recovery rate of infected fields to become healthy fields
c The price of fungicide application
yH Yield from a healthy field per season
f Relative fungicide price with respect to yield from a healthy field
y Relative yield of a diseased field with respect to the yield from a healthy field
Y Total yield of the landscape (expressed as a fraction of the monetary

equivalent of the maximum yield)
g(𝜃) Net return relative to yield from a healthy field, yH
𝜃∗ Optimal fraction of treated fields that maximizes g(𝜃)

https://doi.org/10.1371/journal.pstr.0000178.t001
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Hu and Iuw represent the numbers of untreated healthy and infected fields, respectively, while
Ht and Itw represent the treated fields. The dynamics of the disease are captured by equations
that are similar to the epidemiological susceptible-infected model:

̇Hu = –𝛽w [IuwHu + ItwHu] + 𝜇 Iuw
Ḣt = –𝛽w (1 – 𝜖w) [IuwHt + ItwHt] + 𝜇 Itw (1)
̇Iuw = 𝛽w [IuwHu + ItwHu] – 𝜇 Iuw
̇Itw = 𝛽w (1 – 𝜖w) [IuwHt + ItwHt] – 𝜇 Itw

The wildtype pathogen strain spreads from infected fields to healthy fields at a rate 𝛽w.
In treated fields, this rate is reduced by a factor 1 – 𝜖w, where 𝜖w is the fungicide efficacy.
Infected fields recover and convert back to healthy at a rate 𝜇. The fraction 𝜃 = (Ht + Itw)/N
of all fields is treated with fungicide. Hence, the number of untreated and treated fields can be
calculated as,

Hu + Iuw =N (1 – 𝜃)
Ht + Itw =N𝜃 (2)

First, consider the no-treatment scenario, 𝜃 = 0, for the calculation of the basic repro-
duction number. It can be interpreted as the average number of secondarily infected fields
produced by a single infected field introduced into a population of healthy fields. The basic
reproduction number (R0) for no-treatment scenario is,

R0 =
𝛽N
𝜇 , (3)

as derived in Subsect A.1 in S1 Appendix. A higher value of R0 indicates a higher potential for
the pathogen to spread.

When we include fungicide treatment (𝜃 > 0), we use the next-generation matrix method
in Subsect A.2.3 in S1 Appendix [21,22] to derive the effective reproduction number as

ℛ0 = R0 (1 – 𝜖w 𝜃). (4)

This expression quantifies how fungicide treatment affects the pathogen’s capacity to
invade and spread. The critical fungicide coverage, for whichℛ0 = 1 can be calculated as:

𝜃cw =
1
𝜖w
(1 –

1
R0
) . (5)

Treating the fields beyond the critical coverage level (𝜃 > 𝜃cw) prevents an epidemic. This
criterion depends on the fungicide efficacy, 𝜖w, and the pathogen’s R0 without treatment. Thus
for a given R0, when 𝜃 > 𝜃cw, fungicide treatment will suppressℛ0 to a value below one if 𝜖w is
high enough, i.e. if 𝜖w > 𝜖cw = 1 – 1/R0. However, at a low fungicide efficacy 𝜖w < 𝜖cw, even treat-
ing all fields (𝜃 = 1) will not prevent an epidemic asℛ0 will remain higher than one. Similarly,
for a fungicide with a given efficacy 𝜖w, increasing 𝜃 to values above the critical, 𝜃cw, will drive
the pathogen to extinction only for pathogens with R0 < R0cw, where

R0cw = 1/ (1 – 𝜖w ) . (6)
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The expressions for the critical R0cw and 𝜃cw will help us to better understand and perform
bioeconomic analysis below in section Bioeconomic analysis of fungicide use. However, to
conduct a bioeconomic analysis, we must consider the evolutionary aspect of the problem as
repeated fungicide application can lead to the evolution of resistance in pathogen populations
[14,23,24], which we explore next.

Model with fungicide treatment and resistance We extend the model in Eq (1) to
incorporate a resistant pathogen strain that could be fully or partially protected from the
fungicide. We assume that either a wildtype (w) or a resistant (r) pathogen strain dominates
each infected field [25]. The epidemiological dynamics are given by:

Ḣu = –𝛽w [Iuw + Itw]Hu – 𝛽r [Iur + Itr]Hu + 𝜇 [Iuw + Iur]
Ḣt = –𝛽w (1 – 𝜖w) [Iuw + Itw]Ht – 𝛽r (1 – 𝜖r) [Iur + Itr]Ht + 𝜇 [Itw + Itr]
̇Iuw = 𝛽w [Iuw + Itw]Hu – 𝜇Iuw (7)
̇Itw = 𝛽w (1 – 𝜖w) [Iuw + Itw]Ht – 𝜇 Itw
̇Iur = 𝛽r [Iur + Itr]Hu – 𝜇 Iur
̇Itr = 𝛽r (1 – 𝜖r) [Iur + Itr]Ht – 𝜇 Itr.

Resistance reduces fungicide efficacy. Consequently, fungicide efficacy against the resis-
tant strain is lower than its efficacy against the wildtype strain, 𝜖r < 𝜖w. Further, the transmis-
sion rate of the resistant strain, 𝛽r, can be reduced because of possible fitness costs associated
with resistance mutations. We neglect this effect here (i.e., set 𝛽r = 𝛽w) but consider it in Sub-
sect B.2.2 in S1 Appendix. The fraction of treated fields is given by 𝜃 = (Ht + Itw + Itr)/N. The
stability analysis for the Eq (7) is presented in Subsect A.3.1–A.3.3 in S1 Appendix.

Using the next-generation matrix approach, we derive the following expression for the
effective reproduction number in the more general case of a partially effective fungicide and
partial resistance (Subsect A.3.4 in S1 Appendix):

ℛ0 =max(N𝛽w𝜇 (1 – 𝜖w 𝜃),
N𝛽r
𝜇 (1 – 𝜖r 𝜃)). (8)

We consider equal transmission rates for the wildtype and resistant strains (𝛽w = 𝛽r) but
unequal fungicide efficacies for the two strains (𝜖w > 𝜖r). As a result, the second expression on
the right-hand side of Eq (8) is larger than the first expression, and the effective reproduction
number takes the form:

ℛ0 = R0 (1 – 𝜖r 𝜃). (9)

The above expression is similar to Eq (4) but has 𝜖r instead of 𝜖w as a factor reducing the
basic reproduction number. Based on Eq (9), we determine the critical fungicide coverage,
above which the fungicide treatment leads to the extinction of resistance:

𝜃cr =
1
𝜖r
(1 –

1
R0
) . (10)

If 𝜃cr > 1, then the fungicide treatment cannot drive the pathogen population (consisting
of the resistant strain) to extinction even when fungicide coverage is complete 𝜃 = 1. This is
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the case when the fungicide efficacy against the resistant strain is lower than the critical value,
𝜖r < 𝜖cr, where

𝜖cr = 1 –
1
R0

. (11)

For a fungicide with a given efficacy 𝜖r against the resistant strain, increasing the fraction
of treated fields 𝜃 to values above the critical, 𝜃cr, can drive the pathogen to extinction for a
sufficiently low basic reproduction number, R0 < R0cr, where

R0cr = 1/ (1 – 𝜖r) . (12)

Methodological features and assumptions
Our model assumes density-dependent transmission or pseudo-mass-action dynamics
(Eq (7)) [26]. Disease transmission increases with the density of fields, and there is no explicit
spatial structure. The approximation works well when the primary mode of long-distance
dispersal of plant pathogens is via networks of transportation/trade (e.g., via movement of
infected plants or other materials). For plant pathogens that disperse via air-borne spores, a
spatially explicit model would need to consider a distance-dependent transmission [27,28]
that has been characterized empirically in a number of important crop diseases (e.g., by
[29,30]). In this case, our model provides a valuable reference scenario, but is expected to
overestimate the number of diseased fields at endemic equilibrium.

Although our model considers multiple growing seasons, we simplified it as in [25] by
neglecting the cyclic nature of multi-seasonal dynamics due to, e.g. the periodic absence of
host plants. Environmental stochasticity associated with such multi-seasonal dynamics may
play a role in the emergence of novel, better-adapted pathogen genotypes [31].

The model belongs to the class of spatially implicit metapopulation models and is similar
to the model developed previously [25]. Similarly to [25], we assume that environmental con-
ditions and cropping practices are the same in different fields and that all fields have the same
size. Hence, the model parameters do not vary between different fields. We set possible states
for each field to be either healthy or infected (and infectious). Although in reality, the level of
infection can be continuous, our assumption implies that each infected field produces a sim-
ilar amount of inoculum that can be transmitted to other fields and the characteristic time
scale of within-field epidemic development is much shorter than the time scale of regional-
scale dynamics. This idealized scenario is likely to be closer to reality for foliar fungal diseases
of field crops caused by pathogens with long-distance dispersal in regional cultivated land-
scapes with relatively uniform environments and where crop cultivars have a similar degree of
susceptibility to the disease. Examples of such diseases and cropping systems include northern
corn leaf blight disease of maize in the corn belt regions of the US; target spot in soybean in
major soybean-producing areas of Brazil (e.g., Mato Grosso); and wheat rusts (e.g., stripe rust
and leaf rust) in major wheat-producing areas of the US (e.g., Central Great Plains). It will be
interesting to relax this assumption in future work, allowing for heterogeneous disease levels
among different fields, and investigate how this heterogeneity affects the conclusions of this
study.

The model assumes that recovered fields are susceptible to re-infection (i.e., no induced
resistance) and neglects demographic stochasticity [24]. In contrast to [25], our model does
not have an explicit spore compartment, assuming that dispersal occurs much faster than
other relevant epidemiological processes. We also assume that a field can be infected by
either a sensitive or a resistant pathogen strain, but not by both. We justify this assumption
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similarly to [25]. When a resistant strain appears in a fungicide-treated field, it can invade
and outcompete the sensitive strain if the selection is strong enough and the fitness cost of
resistance is low enough [23]. This condition is often fulfilled, as the fitness costs are typi-
cally below 10% [32,33], and hence most resistant strains, even those carrying partial resis-
tance, will have a substantial fitness advantage over the sensitive strains in fungicide-treated
fields. Alternatively, the resistance strain can fail to invade and die out or remain at a low
level according to mutation-selection or migration-selection balance. In the latter scenario,
the resistant strain does not affect the fungicide efficacy and is unlikely to spread to other
fields, and therefore, the assumption that the field is infected only by the sensitive strain is
justified.

The above assumptions (along with their caveats) allowed us to formulate a simple
landscape-scale model of a generic fungal disease of crop plants. We can then obtain analyti-
cal outcomes and capture essential features of disease dynamics across entire ranges of plau-
sible parameter values. To describe specific crop-pathogen systems with a higher degree of
biological realism, our model will need to relax some of the assumptions at the expense of
increased model complexity.

Having incorporated fungicide resistance into the model, we now analyze the economic
aspects of fungicide treatment. We aim to determine the optimal fungicide treatment coverage
that maximizes the net economic return.

Economic analysis: Net return and optimal fungicide coverage
We define the net return as the total income resulting from the sales of the harvested yield
minus the cost of fungicide treatment across all N fields in the landscape over the course of K
growing seasons. Mathematically, the net return is:

G = yH
⎛
⎝

K
∑
k=1
(H(tk) + I(tk)y) – 𝜃Nf

⎞
⎠
, (13)

where yH is the yield of a healthy field, tk is the time point corresponding to the end of sea-
son k, y = yI/yH is the relative yield of a diseased field (hence, the relative yield loss is 1–y),
f = c/yH is the relative fungicide price. Here, c, the cost of fungicide application per field,
includes the cost of spraying material and application cost. The total yield of the landscape, Y,
is given by the sum of the first and the second terms in Eq (13): Y = yH∑K

k=1 (H(tk) + I(tk)y);
and the total fungicide price over the landscape, F, is given by the third term in Eq (13):
F = yH𝜃Nf.

The net return does not change after the system reaches a stable equilibrium. Besides being
analytically tractable, we consider this case as it corresponds to the limit of sustainable dis-
ease management. The outcomes will likely remain the same across a range of times, even
before the equilibrium is strictly reached. However, they are expected to be different during
the initial stages of dynamics as these are affected by initial conditions.

At equilibrium, we characterize the net return as follows. We compute it for a single season
and divide it by the total number of fields N to obtain the average across fields. We also divide
it by yield per season from a healthy field, yH, to obtain the relative net return (which we will
call “net return” for brevity) g(𝜃) = (H∗ + I∗y) /N – 𝜃f, where H∗ =H∗u + H∗t and I∗ = I∗uw + I∗tw
represent the values of the state variables (numbers of healthy and diseased fields) at a stable
fixed point. The yield from healthy and diseased fields boosts the net return (the first term),
while the cost of fungicide treatment reduces the net return (the second term). Since the total
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number of fields remains constant, H∗ =N – I∗, we rewrite the expression for the net return in
the form that supports further analyses:

g(𝜃) = 1 – (1 – y) ( I
∗

N
+ 𝛼𝜃) . (14)

Here, the net return without disease and without treatment is equal to one (the first term
in Eq (14)). The second term in Eq (14) quantifies the reduction of the net return due to dis-
ease, which is proportional to the fraction of diseased fields I∗/N. The third term in Eq (14)
quantifies the reduction of the net return due to the cost of fungicide treatment. This term is
proportional to 𝜃 with the coefficient 𝛼 that we call the cost ratio parameter:

𝛼 = f
1 – y

, (15)

where f is the relative fungicide price, and 1–y is the yield loss in a diseased field (expressed as
its monetary equivalent). The proportion of diseased fields I∗/N = (I∗uw + I∗tw)/N in the second
term also depends on 𝜃 albeit in a complex manner according to Eqs. (A4-A11) (Subsect A.2
in S1 Appendix) and the associated linear stability conditions.

We define the optimal fungicide coverage or simply optimal coverage, 𝜃∗, as the propor-
tion of treated fields that results in the highest net return. The optimal coverage 𝜃∗ can be
determined by calculating the value of g(𝜃) across a fine grid of 𝜃-values. The 𝜃-value that
maximizes g(𝜃) is the optimal coverage 𝜃∗. In cases where multiple values of 𝜃 yield the same
highest value of g(𝜃), we define the lowest among these as the optimal coverage 𝜃∗.

Net return in an individual field
While the focus of this work is on cultivated landscapes with multiple fields, we provide the
model for the net return in an individual field for comparison. When managing disease in an
individual field, growers can adjust the fungicide dose to maximize the net return, g, given by

g(D) = Y0 + Ym
D

D +D50
– qD, (16)

where Y0 is the yield without fungicide application, and D is the fungicide dose. The second
term in Eq (16) is the yield benefit of the fungicide application, where the functional form
used is a simplification of the Hill function, which describes a typical empirical dose-response
relationship for fungal diseases in cereal crops [24]. Hence, the total yield of a field, Y, is given
by the sum of the first and second terms in Eq (16): Y = Y0 +Ym

D
D+D50

. (We also defined Y
above as the total yield of a landscape; to avoid confusion, we specify the context every time
we use Y). The parameter Ym represents the maximum effect at large doses, and D50 cor-
responds to the dose for which half of the maximum effect is achieved. The third term in
Eq (16) quantifies the total fungicide price, F = qD, where q is the price per unit fungicide. Net
return, g(D), in Eq (16) exhibits a maximum at the fungicide dose

D∗ = –D50 +
√
D50Ym/q. (17)

If the fungicide becomes sufficiently expensive (q > Ym/D50), the expression for the opti-
mum dose in Eq (17) becomes negative, meaning that the net return is maximized when no
fungicide is applied. For less expensive fungicides, the net return does exhibit a maximum
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at positive doses. The optimum dose is higher for cheaper fungicides. We refer the reader to
Subsect B.1 in S1 Appendix for more details on the individual field model.

Results
Bioeconomic analysis of fungicide use
To perform a bioeconomic analysis, we first set the context by comparing the optimal
fungicide treatments between individual fields and cultivated landscapes. Next, we answer the
central question: What fraction of fields should be treated with a fungicide to maximize the
net return of a landscape?

Optimal fungicide treatments in individual fields versus cultivated landscapes When
controlling disease in an individual field, the yield, Y (expressed as its monetary equivalent),
typically exhibits a saturating increase as we increase the fungicide dose, D (second term in
Eq (16); Fig 2A). The total fungicide price, F, increases linearly when increasing the fungi-
cide dose with the slope given by the fungicide price per unit dose (third term in Eq (16); dark
red lines in Fig 2A). The net return, g(D), is then given by the difference between the yield, Y,
and the total fungicide price, F (Eq (16), Fig 2A). g(D) reaches a maximum for an intermedi-
ate (optimal) fungicide dose. For doses higher than optimal, the cost associated with increas-
ing the dose is no longer compensated by an associated increase in yield. These relationships
follow “the law of diminishing returns” that has achieved an almost universal status in the
economics of crop production [34] and other areas of economics [35,36].

In contrast, when controlling disease in a cultivated landscape, the total yield of the land-
scape (Y, expressed as its monetary equivalent, Eq (B8) in S1 Appendix) exhibits an accel-
erating increase as we increase the fungicide coverage, 𝜃 (Fig 2C). The total price of the
fungicide treatment increases linearly with 𝜃 (Fig 2C), as it did for an individual field above.
The net return, g(𝜃), is again the difference between the monetary yield, Y, and the total
fungicide price, F. However, here, the outcome is very different. The net return does not
exhibit a maximum at any intermediate 𝜃 value. Thus, the net return can be maximized
only at the extreme values of 𝜃: 𝜃 = 0 treating no fields or 𝜃 = 1 treating all fields. When the
fungicide is sufficiently cheap, 𝜃 = 1 maximizes the net return (Fig 2C, 2D). However, when
the fungicide is too expensive, then the no-treatment strategy (𝜃 = 0) maximizes the net
return (Fig 2C, 2D).

Thus, the law of diminishing returns does not necessarily hold when controlling disease
in cultivated landscapes. This finding has important implications for the economics of crop
disease management, optimal decision making and associated policy-making, which is often
done at scale and not for individual fields.

Optimal fungicide coverage without resistance Our analysis reveals that three parame-
ters influence the optimal fungicide coverage, 𝜃∗: (i) the fungicide price, f, (ii) the yield loss in
a diseased field, 1–y and (iii) the critical fraction of treated fields, 𝜃cw (in Eq (5)). The first two
parameters affect 𝜃∗ only through their ratio, the cost ratio parameter 𝛼 = f/(1 – y) (defined in
Eq (15) above). Therefore, below, we study the effects of 𝛼 and 𝜃cw.

When 𝛼 is sufficiently low, treating all fields (𝜃∗ = 1, if R0 > R0cw; Fig 3A) or most fields
(𝜃∗ = 𝜃cw, if R0 < R0cw Fig 3A) maximizes the net return (here, 𝜃cw is given by Eq (5)). When
𝛼 is sufficiently high, not treating any fields maximizes the net return (𝜃∗ = 0; Fig 3A, 3B).
Thus, the net return can only be maximized at extreme values of the fungicide coverage, either
𝜃∗ = 0 or 𝜃∗ = 1 (or 𝜃∗ = 𝜃cw in case 𝜃cw < 1, whereby 𝜃cw is still close to 1).

To gain a quantitative understanding of factors affecting the optimal coverage, 𝜃∗, con-
sider the regimes 𝜃cw > 1 (R0 > R0cw) and 𝜃cw < 1 (R0 < R0cw) in more detail. When 𝜃cw > 1, it is
impossible to wipe out the epidemic even if we treat all fields. This is the case for pathogens
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Fig 2. How does the net return depend on the intensity of treatment? (A) In an individual field, the yield Y
exhibits a saturating increase as we increase the fungicide dose, D [solid blue; Eq (B2) in S1 Appendix]. Y is
expressed as a fraction of the monetary equivalent of the maximum yield. The total fungicide price, F, is pro-
portional to the dose, D, with the slope given by the price per unit: q = 0.05 (solid red); q = 0.4 (dashed red).
(B) Black curves represent the net return computed as the blue curve in (A) minus one of the red lines in (A),
with q = 0.05 (solid) and q = 0.4 (dashed). The net return exhibits a maximum for an intermediate dose [Eq (B4)
in S1 Appendix]. Grey vertical lines in (A) and (B) show doses that maximize the net return. Other param-
eter values for (A) and (B): ym = 0.55, D50 = 0.2, y0 = 0.4. (C) In a cultivated landscape, the total yield of the
landscape, Y, [Eq (B8) in S1 Appendix] exhibits an accelerating increase as we increase the fraction of treated fields,
𝜃 (blue). The total fungicide price, F, is proportional to 𝜃, with the slope given by the relative fungicide price: f = 0.1
(solid red), f = 0.7 (dashed red). (D) As a result, the net return is maximum when treating either all fields (𝜃 = 1, solid,
f = 0.1) or when not treating any fields (𝜃 = 0, dashed, f = 0.7); according to Eq (B7) in S1 Appendix. Other parameter
values for (C) and (D): 𝛽 = 0.025, 𝜇 = 5, N = 1000 (hence, R0 = 𝛽N/𝜇 = 5), y = 0.5.

https://doi.org/10.1371/journal.pstr.0000178.g002

with a sufficiently high R0, whereby, R0 > R0cw (Fig 3A), where R0cw is given by Eq (6). On
the contrary, when 𝜃cw < 1, one can wipe out the epidemic by treating a high enough propor-
tion of fields, i.e., 𝜃 > 𝜃cw. This is the case for pathogens with a sufficiently low R0, whereby,
R0 < R0cw (Fig 3B).

For 𝜃cw > 1 (R0 > R0cw), not treating any fields (𝜃 = 0) maximizes the net return when the
cost ratio parameter is sufficiently high (𝛼 >A). In contrast, when 𝛼 <A treating all fields
(𝜃 = 1) maximizes the net return (Fig 3A), where

A = 𝜖w
R0(1 – 𝜖w)

(18)

is a combination of epidemiological parameters.
For 𝜃cw < 1 (R0 < R0cw), the optimal coverage, 𝜃∗, depends on how the cost-ratio 𝛼 relates

to the fungicide efficacy 𝜖w. If 𝛼 > 𝜖w, we can maximize the net return by not treating any
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Fig 3. What is the optimal fungicide coverage in the landscape model without fungicide resistance? (A) The net return g(𝜃) is plotted against the fungicide coverage
(fraction of treated fields 𝜃) for R0 > R0cw and 𝜃cw > 1 (i.e., 𝛽 = 0.02 and R0 = 𝛽N/𝜇 = 4). The four curves represent different relative fungicide prices (f ): 0.05 (solid
blue), 0.25 (dashed red), 0.4 (dotted orange), and 0.65 (dash-dotted magenta). (B) The net return g(𝜃) is plotted against 𝜃 for R0 < R0cw and 𝜃cw = 0.714 < 1 (shown by
a vertical grey line, i.e., 𝛽 = 0.01 and R0 = 𝛽N/𝜇 = 2). The four curves represent different values of f : 0.1 (solid blue), 0.33 (dashed red), 0.4 (dotted orange), and 0.65
(dash-dotted magenta). (C) The heatmap shows the optimal fungicide coverage 𝜃∗ for varying fungicide price f and basic reproduction number R0. In the white region,
treating all fields is optimal; in the black region, not treating any fields is optimal; in the grey region, treating only a fraction of fields is optimal. Each curve in (A) and (B)
corresponds to a point on the green dashed lines in the heatmap (C). These points are highlighted by circles of the same color as lines in (A) and (B). Specifically, R0 = 4
and R0 = 2 correspond to (A) and (B) respectively. Other parameter values are constant for all panels: N = 1000, 𝜇 = 5, 𝜖w = 0.7, and y = 0.5.

https://doi.org/10.1371/journal.pstr.0000178.g003

fields (𝜃 = 0). If, on the contrary, 𝛼 < 𝜖w, then we can maximize the net return by treating a
fraction of fields that corresponds to the critical value (𝜃 = 𝜃cw, which constitutes a high frac-
tion of fields; Fig 3B). We investigate g(𝜃) in more detail in Subsect B.2.1 in S1 Appendix,
where we show that the net return can either increase/decrease monotonically or exhibit a
minimum as a function of 𝜃.

Fig 3C shows that the optimal coverage, 𝜃∗, depends strongly on both the relative fungi-
cide price, f, and the pathogen’s basic reproduction number, R0. This dependency exhibits
three regimes for low, intermediate and high values of R0. For low R0 < 1, the optimal cov-
erage does not depend on fungicide price because epidemics will not sustain even without
treatment, and hence, not treating any field is optimal for any f. When R0 > 1, the optimal cov-
erage does depend on f, showing a threshold pattern. For low f -values below the threshold,
it is optimal to treat at least some of the fields (𝜃∗ > 0). For high f -values above the thresh-
old, not treating any fields yields a maximum net return (𝜃∗ = 0). For intermediate R0-values,
the threshold in f does not depend on R0 (hence, the boundary between white/gray and black
areas is a vertical line in Fig 3C). For high R0 values, the threshold in f becomes lower when
R0 is increased. This threshold pattern, rather than a gradual increase in the optimal coverage
with increasing f, occurs because, as we have shown above, the law of diminishing returns no
longer holds when we increase the treatment coverage in multiple fields across a landscape.
The identification of the threshold pattern can inform economic policy for achieving more
sustainable fungicide use, as we elaborate in the Discussion.

Thus, the net return is maximized at extreme 𝜃-values, and which of the extrema are
optimal is determined by how the cost-ratio 𝛼 relates to a combination of epidemiological
parameters of the system.

Optimal fungicide coverage with resistance Now, we focus on the fraction of fields to
be treated with fungicide to maximize the net return in a landscape model when resistance
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exists. We consider a high-efficacy fungicide (𝜖w = 1), no fitness cost of resistance (𝛽r = 𝛽w),
and focus on partial resistance (0 < 𝜖r < 1) (fitness cost of resistance is considered in Sub-
sect B.2.2 in S1 Appendix). The fungicide can still suppress the partially resistant strain with
efficacy 𝜖r, smaller than the efficacy against the wildtype strain, 𝜖w. As before, the optimal
fungicide coverage depends on the cost-ratio 𝛼 (in Eq (15)).

When 𝜃cr > 1 (𝜖r < 𝜖rc, where 𝜖cr is given by Eq (11)), fungicide treatment is ineffectual in
clearing the resistance. In this case, the optimal coverage, 𝜃∗, depends on how the cost-ratio
𝛼 relates to the combination of epidemiological parameters,

B = 𝜖r
1 – 𝜖r

/R0. (19)

The expressions for B is similar to A in Eq (18), but with 𝜖r instead of 𝜖w. When a fungicide
is sufficiently cheap, 𝛼 < B, treating all fields maximizes the net return (𝜃∗ = 1; Fig 4A). When
a fungicide is too expensive, 𝛼 > B, then not applying it is optimal (𝜃∗ = 0; Fig 4A).

When 𝜃cr < 1 (𝜖r > 𝜖cr), treating a sufficiently high fraction of fields (𝜃 > 𝜃cr) will drive the
dominant resistant strain to extinction. Here, the optimal 𝜃 depends on how the cost-ratio
𝛼 relates to the efficacy of the fungicide against the resistant strain 𝜖r. If 𝛼 < 𝜖r, then treat-
ing a significant fraction of fields maximizes the net return (𝜃∗ = 𝜃cr; Fig 4B). If 𝛼 > 𝜖r, then
not treating any field maximizes the net return (𝜃 = 0; Fig 4B). Fig 4C provides a broader
overview of the parameter space, considering how the optimal fungicide coverage 𝜃∗ depends
on fungicide price, f, and fungicide efficacy against the resistant strain, 𝜖r.

Thus, when resistance is absolute, it is impossible to manage it apart from stopping or dras-
tically reducing fungicide treatment (see Subsect B.2.2 in S1 Appendix). Nevertheless, when

Fig 4. What is the optimal fungicide coverage in the landscape model with fungicide resistance? (A) The net return g(𝜃) is plotted against the fungicide coverage
(fraction of treated fields 𝜃) for a high degree of partial resistance (𝜖r = 0.6 < 𝜖cr = 0.75). The four curves represent different relative fungicide prices (f ): 0.05 (solid blue),
0.15 (dashed red), 0.25 (dotted orange), 0.5 (dash-dotted magenta). (B) The net return g(𝜃) is plotted against 𝜃 for a low degree of partial resistance (𝜖r = 0.8 > 𝜖cr)
which means that it is possible to drive the resistant strain to extinction by treating a high enough fraction of fields (𝜃 = 𝜃cr, vertical grey line). The four curves represent
different values of f : 0.05 (solid blue), 0.25 (dashed red), 0.5 (dotted orange), 0.65 (dash-dotted magenta). (C) Heatmap of the optimal fungicide coverage 𝜃∗ for varying
fungicide price f and fungicide efficacy against resistant strain 𝜖r. In the white region, it is optimal to treat all fields with fungicide; in the black region, it is optimal to
not treat any fields; in the grey region, it is optimal to treat only a fraction of the fields. Each curve in (A) and (B) corresponds to a point on the green dashed line in (C).
These points are highlighted by circles of the same color as lines in (A) and (B). Specifically, points on green dashed lines for 𝜖r = 0.6 corresponds to (A) and for 𝜖r = 0.8
corresponds to (B). Other parameter values are constant for all panels: 𝛽 = 0.02, R0 = 𝛽N/𝜇 = 4; N = 1000, 𝜇 = 5, 𝜖w = 1, y = 0.5.

https://doi.org/10.1371/journal.pstr.0000178.g004
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resistance is partial, the net return can still be maximized by treating all fields or a signifi-
cant fraction of fields (if the fungicide is sufficiently cheap) or by not treating any fields (if the
fungicide is sufficiently expensive).

The economic cost of fungicide resistance
The maximum (or optimal) net return of a landscape becomes lower in the presence of resis-
tance (compare Fig 3A and Fig 4A). Thus, the evolution of fungicide resistance can incur a
substantial economic cost. Here, we propose a novel way to calculate the economic cost of
fungicide resistance across a cultivated landscape using the expression for the net return in
Eq (14). Firstly, we compute the net return in the absence of resistance and in the presence
of resistance according to Eq (14). Secondly, we determine the optimal fraction of treated
fields to maximize the net return in each of the cases. Finally, we calculate the economic cost
of resistance, CR, as the difference between the optimum net return in the absence and in the
presence of resistance:

CR = g0(𝜃∗0 ) – g1(𝜃∗1 ), (20)

where g0(𝜃∗0 ) is the optimum net return and 𝜃∗0 is the optimum coverage in the absence of
resistance; g1(𝜃∗1 ) is the optimum net return and 𝜃∗1 is the optimum coverage in the pres-
ence of resistance. In this calculation, we assume that, both with and without resistance, the
optimum fraction of treated fields is known to farmers across the landscape and that they use
these optimum values.

To illustrate this calculation, we plot the maximal net returns, g0(𝜃∗0 ) and g1(𝜃∗1 ), the opti-
mal fractions of treated fields, 𝜃∗0 and 𝜃∗1 , and the economic cost of resistance, CR, versus the
relative fungicide price, f (Fig 5). Fig 5A compares the optimal net return in the absence and
presence of resistance. The difference between these curves constitutes the economic cost of
resistance evolution plotted in Fig 5C. Next, we elucidate the dependence of the cost of resis-
tance on the fungicide price f, the degree of resistance 1 – 𝜖r, the basic reproduction number
R0 and the yield loss 1–y.

Dependence on the fungicide price Fig 5C shows a typical dependence of CR on f when
the basic reproduction number of the pathogen exceeds its critical values (R0 > 1/(1– 𝜖w) in
Eq (6) and R0 > 1/(1 – 𝜖r) in Eq (12)). We explore three ranges of fungicide prices (f ) – cheap,
intermediate and expensive – corresponding to qualitatively different patterns in the CR

dependence. For cheap fungicides (low f -values), CR remains constant and treating all fields
maximizes the net return (Fig 5B). In this range, the optimal net return drops linearly with
increasing f at the same rate with and without resistance. Hence, the difference between the
optimal net return with and without resistance remains constant (the economic cost of resis-
tance in this parameter range is given by Eq (C1) in S1 Appendix). For intermediate f -values,
treating all fields remains optimal in the absence of resistance, but in the presence of resis-
tance, the optimum switches to not treating any fields. The difference between the optimal
net return without resistance and with resistance (that constitutes CR) declines linearly with f
(the economic cost of resistance in this range is given Eq (C2) in S1 Appendix). For expensive
fungicides (high f -values), not treating any fields becomes optimal in the absence and in the
presence of resistance. In this range, the cost of fungicide resistance remains at zero (Fig 5C).
Here, the optimal net return is determined by the yield of untreated fields, independent of the
fungicide price f and irrespective of resistance.

In a different scenario, when R0 does not exceed the critical value for the wildtype strain
[i.e., R0 < R0cw, Eq (6)], CR increases, reaches a maximum and then decreases as a function
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Fig 5. Calculation of the economic cost of fungicide resistance, CR, versus relative fungicide price, f, according to
Eq (20). (A) Optimal net return without resistance (g0(𝜃∗0 ), solid, blue curve) and with resistance (g1(𝜃∗1 ), dashed,
red curve). (B) Optimal fraction of treated fields without resistance (𝜃∗0 , solid, blue curve) and with resistance (𝜃∗1 ,
dashed, red curve). (C) Economic cost of resistance, CR, computed as the optimal net return without resistance minus
the optimal net return with resistance. Parameter values: 𝛽r = 𝛽w = 0.025, N = 1000, 𝜇 = 5 (hence, R0 = 𝛽N/𝜇 = 5);
𝜖w = 0.8, 𝜖r = 0.5.

https://doi.org/10.1371/journal.pstr.0000178.g005

of f, reaching zero (region of the plot corresponding to 1 < R0 < 5 in Fig 6B). This pattern
arises due to a complex interplay between the optimal net return with and without resis-
tance and the associated optimal fungicide coverage (we describe this in detail in Sect C in S1
Appendix).

Dependence on the degree of resistance The cost of resistance varies with the degree of
resistance only for cheap fungicides (low f -values, Fig 6A). Herein, CR remains zero at low
degrees of resistance, 1–𝜖r, and then increases linearly with increasing 1–𝜖r. Thus, as expected,
higher degrees of resistance correspond to higher economic costs of resistance (compare hor-
izontal parts of contour lines in Fig 6A). This is because stronger resistance leads to higher
numbers of fields becoming diseased despite treatment, which in turn results in lower overall
yields of the landscape in the presence of resistance compared to the landscape in the absence
of resistance.

For expensive fungicides (high f -values), the degree of resistance no longer affects the eco-
nomic cost of resistance, which remains at zero in this range. In this scenario, the fungicide is
so expensive that treatment is not economically justified, irrespective of resistance.

Dependence on the basic reproduction number The dependence of the economic cost
of resistance, CR, on the basic reproduction number, R0, is counter-intuitive (Fig 6B). When
the fungicide is expensive (the right-most region in Fig 6B), optimal fungicide coverage goes
to zero both with and without resistance, and resistance incurs no economic cost. However,
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Fig 6. How does the economic cost of fungicide resistance, CR, depend on fungicide price (f ), degree of resistance (1 – 𝜖r), basic reproduction number (R0), and
yield loss due to disease (1–y)? Each panel illustrates how CR depends on f along the x-axis and one of the other variables along the y-axis: (A) the effect of the degree of
resistance, (1– 𝜖r), with R0 = 5 and y = 0.5; (B) the effect of the basic reproduction number, R0, with 𝜖r = 0.5 and y = 0.5 (R0cw = 5, R0cr = 2); (C) the effect of the yield loss
due to disease, 1 – y, with 𝜖r = 0.5 and R0 = 5. Values of 𝜖r, R0 and y used to plot Fig 5 are highlighted with an arrow on the y-axis of panels (A), (B) and (C), respectively.
Note that each panel uses a different grayscale mapping for CR as shown in the grayscale bars. Parameter values that remain the same across all panels are: N = 1000,
𝜇 = 5, and 𝜖w = 0.8.

https://doi.org/10.1371/journal.pstr.0000178.g006

in a more interesting regime of low- to intermediately-priced fungicide, CR exhibits complex,
non-monotonic patterns versus R0 and f (Fig 6B).

For cheap fungicides (i.e., small f ), as R0 increases, CR first remains at zero, then increases
with R0, reaches a maximum and then decreases (compare different contour lines in Fig 6B
for small f -values). When R0 < 1, no epidemic occurs, and hence, the relative net return is
maximal gmax = 1 both with and without resistance, resulting in CR = 0. When 1 < R0 < R0cr

(see Eq (12)), an epidemic can occur in both cases, but treating an optimal intermediate frac-
tion of fields with a fungicide drives the pathogen to extinction: 𝜃∗ = 𝜃cw without resistance
and 𝜃∗ = 𝜃cr with resistance. Hence, the optimal net return is given by gmax = 1– f𝜃cr with resis-
tance and gmax = 1 – f𝜃cw without resistance. Their difference CR = f(𝜃cr – 𝜃cw), increases with
R0 since 𝜃cr – 𝜃cw ∝ 1 – 1/R0 (see Eq (5) and Eq (10)). In other words, higher R0 values require
increased fungicide coverage to eliminate the pathogen in both scenarios. However, due to
lowered efficacy against the resistant strain, this coverage, and thus CR, increases faster in the
presence of resistance.

For R0cr < R0 < R0cw, applying fungicide to an optimal intermediate proportion of fields
still drives the pathogen to extinction without resistance. While in the presence of resistance,
treating all fields is optimal (𝜃∗ = 1), yet insufficient for elimination. In this regime, gmax with-
out resistance continues to decline with R0 due to increasing required coverage. With resis-
tance, gmax declines more rapidly due to both lower fungicide efficacy and higher prevalence
of disease. As a result, CR continues to increase with R0, reaching a maximum at R0 = R0cw.

Finally, and unexpectedly, when R0 > R0cw, CR drops with increasing R0. In this case, fungi-
cide treatment cannot extinguish the pathogen population, irrespective of the presence of
resistance. To clarify, consider a simplified scenario of a cheap fungicide (f→ 0). In this case,
treating all fields (𝜃∗ = 1) becomes optimal both with and without resistance (Fig 5B). Both
with and without resistance, the optimal net return declines with R0 as the fraction of dis-
eased fields increases with R0. Without resistance, this fraction (at endemic equilibrium) is
given by iw = 1– 1/ [R0(1– 𝜖w)]. With resistance, this fraction (also at endemic equilibrium,
but now with the resistant strain) is given by ir = 1– 1/ [R0(1– 𝜖r)]. CR is proportional to the
difference ir – iw. Both ir and iw increase in a saturating manner with R0 (eventually tending to
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one at high R0-values) but do so at different, nonlinear rates in such a way that the difference
between the two diminishes at higher R0-values, and so does the economic cost of resistance,
CR. In other words, resistance incurs a lower economic cost at higher R0 values because even
without resistance, it becomes challenging to suppress the disease due to the high invasiveness
of the pathogen (as quantified by the basic reproduction number).

Dependence on yield loss The economic cost of fungicide resistance CR is influenced by
the yield loss in diseased fields, 1–y (relative to the yield of healthy fields; Fig 6C). As intu-
itively expected, CR increases with higher yield losses. But, surprisingly, for higher fungicide
prices, this increase starts at higher values of yield loss. Thus, an estimation of the economic
cost of fungicide resistance requires detailed knowledge of key epidemiological and economic
parameters.

Discussion
Farmers can maximize the net economic return of fungicide application by optimizing the
amount of fungicide applied based on the balance between the yield benefit and the economic
costs of fungicide application [5,6]. However, this analysis neglects the indirect costs of fungi-
cide application incurred by the evolution of fungicide resistance, rendering decisions based
solely on this analysis unsustainable. One way to address this issue is to design economic pol-
icy instruments that incorporate indirect costs into fungicide prices, such as pesticide taxes or
subsidies encouraging a reduction in pesticide application [10,11]. However, this approach
requires a robust estimation of the indirect costs, and a conceptual framework for such an
estimation is absent from the existing literature. We build such a framework based on a sim-
ple but generic epidemiological model of crop epidemics across multiple fields combined with
an economic analysis (Fig 1). Using this framework, we demonstrated how to estimate the
economic cost of the evolution of fungicide resistance in crop pathogens with long-distance
dispersal.

Derivation of the economic cost of fungicide resistance evolution (CR) is a complex,
multifaceted problem. However, with well-motivated assumptions, we derived analytical
expressions for CR. This derivation allows us to investigate how CR depends on the system’s
critical epidemiological and economic parameters across entire ranges of plausible values.
We found that CR depends strongly on fungicide price, degree of resistance, pathogen’s basic
reproduction number, and yield loss due to disease. As intuitively expected, CR increases with
the degree of resistance and yield loss due to disease. Unexpectedly, it remains constant or
decreases with the fungicide price. Also unexpectedly, CR shows a non-monotonic pattern
as a function of the basic reproduction number, R0 (exhibiting a maximum at a critical value
R0 = R0cw).

The three epidemiological parameters (degree of resistance, R0, and yield loss due to dis-
ease) can vary significantly across different crop diseases [28,37–39]. Even for a single disease,
the three epidemiological parameters can vary substantially depending on environmental
conditions, crop varieties and genetic composition of pathogen populations. A strong depen-
dence of CR on these parameters highlights the need for a robust empirical estimation of these
parameters. Even after the estimation of the three parameters, designing economic policy
instruments that work across different regions and crops would be demanding. These instru-
ments are more likely to succeed if they are adjusted for specific regions and crops. These
instruments also need to be adapted over time according to changes in cropping systems and
pathogen populations. Implementing economic and ecological interventions in a realistic
system should feed back into the parameter values. Thus, like adaptive therapy in medicine,
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the interventions are more likely to succeed if they are adapted to specific conditions and
responsive in real-time.

One may consider the range of low R0-values (0 < R0 < R0cw) to be unrealistic for most
fungal pathogens of crop plants. Firstly, according to empirical knowledge accumulated in
plant pathology, fungal crop pathogens are challenging to eradicate [40], suggesting that their
R0 values should be much higher than one. Secondly, existing estimates of the basic repro-
duction number, e.g., for the major fungal pathogens of wheat Zymoseptoria tritici and Puc-
cinia striiformis tend to be relatively high: in the range 4–10 for Z. tritici [24] and 20–30 for
P. striiformis [28]. The two arguments indicate that R0-values for major fungal crop pathogens
will likely exceed the eradication thresholds. Accordingly, it would make sense to focus more
on the range of higher R0-values, where it exceeds the eradication thresholds (R0 > R0cw, R0 >
R0cr). At the same time, here we used R0 as determined at the landscape scale, while most
experimental estimates for fungal pathogens have been evaluated at the individual field scale.
Due to lower transmission rates and greater spatial regularity in individual susceptible units,
we expect lower R0 estimates at the landscape scale than at the field scale, at least for certain
landscape configurations [28,41]. In this case, the estimation of CR across the entire range of
R0 values, as we did here, becomes of interest.

Along the way to calculating the economic cost of fungicide resistance, we also found that
the law of diminishing returns does not hold for the economic return from fungicide appli-
cations over a cultivated landscape (Fig 2D). Optimal fungicide dosing for individual fields
still exhibits the law of diminishing returns for the net economic return (Fig 2B). Hence, the
economically optimum dose decreases gradually with increasing fungicide price. However,
for multiple fields across the landscape, the optimal proportion of treated fields also decreases
with the ratio of fungicide price and yield loss (𝛼) but does so via a sudden jump (see Fig 5B).
Thus, adjusting the magnitude of fungicide treatment to maximize the net return is more
difficult at the landscape scale owing to coordinating fungicide applications across multi-
ple farms and handling the discontinuous nature of how 𝜃∗ depends on 𝛼. At the same time,
this presents an opportunity for economic policy to minimize pesticide use because a lim-
ited increase in 𝛼 induced by a policy instrument may lead to a disproportionately high, sud-
den drop in the optimal fungicide coverage, 𝜃∗. However, achieving this optimum requires
cooperation between farmers across a regional landscape.

Our study considers a binary choice in fungicide application. In reality, farmers can adjust
the fungicide dose [24,42], use mixtures or alternations of different fungicides [23,43]. Fur-
thermore, the farmers can adopt disease-resistant crop varieties [44,45] and cultural control
measures (such as crop rotations [46,47], cultivar mixtures [32,48,49] and restrictions on
growing certain crops, e.g., soybean-free periods in Brazil [50]). These scenarios can be incor-
porated into our modelling framework to explore how different control measures can protect
each other from pathogen adaptation [44,51,52] and mitigate the economic cost of pathogen
adaptation.

We calculated the economic cost of fungicide resistance as a benchmark corresponding to
an optimistic scenario where all farmers across the landscape coordinate their fungicide appli-
cations to reach the optimum proportion of treated fields that gives the maximum net return
for the entire landscape. However, the choices made at individual farms do not always align
with the landscape-wide optimum. Instead, they are influenced by access to information, risk
perceptions, socio-demographics, structure of farm business, and other factors [53–56]. To
address this, models should incorporate farmers’ decision-making heuristics and dynamic
choices [57]. This would allow us to adjust the fungicide coverage and explore how close to
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the landscape-scale optimum one can get using different decision-making approaches. Includ-
ing a socioeconomic point of view brings us closer to identifying policy interventions most
likely to maximize crop protection’s economic return at a regional scale.

The methodological novelty of our study lies in extending a spatially implicit metapopu-
lation model of plant disease epidemics [25] to incorporate an economic analysis of fungi-
cide use. Landscape perspective is recognized as crucial in plant disease epidemiology [58],
and more recently, spatially explicit landscape-scale models addressed a range of epidemi-
ological/evolutionary questions focusing mainly on pathogen adaptation to disease resis-
tance in plants [59–63]. While some studies recognized the importance of the economic
aspects of plant disease epidemics, they did not incorporate an explicit economic analysis.
Qualitative conceptual frameworks integrating plant pathogen adaptation to control mea-
sures with socioeconomic aspects are only starting to appear [64] and remain a mathematical
challenge [65].

Extending the marginal theory of pesticide use [5,6] from the scale of individual farms
to a broader scale of cultivated landscapes, we incorporated economic analysis in our epi-
demiological study. More specifically, we extended the concept of economic yield [66,67] to
the landscape scale. Earlier, [68] extended the marginal theory of pesticide use by incorpo-
rating the stochasticity of plant disease epidemics in calculating the optimal fungicide dose,
maximizing the net return from a fungicide application programme at the scale of an indi-
vidual farm. This approach has been subsequently developed to incorporate the evolution of
fungicide resistance [19,20]. Nevertheless, focusing on individual farm management, they
neglected the externalities of the evolution of resistance. Here, we addressed this issue by
extending the marginal theory of pesticide use [5,6] from individual farms to cultivated land-
scapes in a mathematical approach that incorporates the epidemic development and the evo-
lution of fungicide resistance and links these processes with an economic analysis. Given that
our framework builds on fundamental equations of epidemiology and economic cost-benefit
analysis, we envision applying our framework to modelling other biotic stresses of crops, such
as insect pests and weeds [69].

Conclusion
We have developed a bioeconomic framework combining a plant disease epidemiological
model with an economic analysis at the landscape scale. Using this approach, we found that
the law of diminishing returns does not hold for economic returns from fungicide applica-
tions across cultivated landscapes. This is surprising given the almost universal status of this
law. The breakdown of this law suggests that adjusting the amount of fungicide applied to
maximize the net return is challenging at the landscape scale. The intervention needs to be
coordinated across multiple farms, and the discontinuous nature of how the optimal coverage
depends on fungicide price requires a drastic change in fungicide coverage.

Using the bioeconomic modeling framework, we calculated the economic cost of the evo-
lution of fungicide resistance, CR, which constitutes our study’s primary novel outcome. We
found that CR depends strongly on the fungicide price, the basic reproduction number of
the pathogen, its degree of fungicide resistance and the consequential yield loss. While intu-
itively, CR increases with the degree of resistance and yield loss due to disease, surprisingly, it
declines with the fungicide price and exhibits a complex non-monotonic pattern as a function
of the basic reproduction number. Hence, to estimate CR, robust estimations of these param-
eters are necessary, incorporating environmental variation, crop varieties and genetic com-
position of the pathogen population. Estimating the economic cost of resistance would then
inform economic policy instruments to encourage more sustainable fungicide use.
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Moving forward, our framework presents an opportunity for future empirical studies to
validate the findings presented here across various agricultural landscapes and pathogen-
crop systems. Future research focusing on extending our modeling framework to incorpo-
rate spatial heterogeneity, stochasticity, and multiple pathogen interactions will improve its
applicability and help refine the estimation of the economic cost of fungicide resistance. Fur-
thermore, incorporating farmers’ decision-making heuristics and economic policy tools,
such as taxes and/or subsidies, into our bioeconomic modelling framework may help in
designing more effective policy interventions for sustainable disease management. Integrat-
ing our framework with real-time monitoring and predictive modeling of crop epidemics
will have the potential to improve disease management. Ultimately, we envision this study
to provide a conceptual and methodological basis for a fruitful integration of economics and
eco-evolutionary dynamics necessary for achieving more sustainable agriculture.

Supporting information
S1 Appendix. Supplemental methods and analysis: Stability, optimization, and cost of
resistance. (A) Linear stability analysis and computation of fixed points and basic reproduc-
tion number. (B) Maximizing economic return of fungicide treatments. (C) The economic
cost of fungicide resistance.
(PDF)
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