
Mercury contamination of sympatric 
seabirds and associated health risks in an 
Antarctic ecosystem 
Article 

Published Version 

Creative Commons: Attribution 4.0 (CC-BY) 

Open Access 

Mills, W. F. ORCID: https://orcid.org/0000-0001-7170-5794, 
Ibañez, A. E., Bustamante, P., Waterman, J. ORCID: 
https://orcid.org/0009-0009-4326-6099, Morales, L. M., 
Mariano-Jelicich, R., Montalti, D. and Black, S. ORCID: 
https://orcid.org/0000-0003-1396-4821 (2025) Mercury 
contamination of sympatric seabirds and associated health 
risks in an Antarctic ecosystem. Environmental Research, 281.
121990. ISSN 0013-9351 doi: 10.1016/j.envres.2025.121990 
Available at https://centaur.reading.ac.uk/123009/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.1016/j.envres.2025.121990 

Publisher: Elsevier 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://centaur.reading.ac.uk/licence


www.reading.ac.uk/centaur   

CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online

http://www.reading.ac.uk/centaur


Mercury contamination of sympatric seabirds and associated health risks in 
an Antarctic ecosystem
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A B S T R A C T

Antarctic marine ecosystems are located far from industrial pollution sources, yet mercury (Hg) contamination 
remains an important threat to regional biodiversity. Seabirds occupy mid- to high trophic positions in Antarctic 
food webs, and can show high levels of Hg contamination due to biomagnification. Here, total Hg (THg) con-
centrations and stable isotopes of carbon (δ13C) and nitrogen (δ15N) were measured in red blood cells of brown 
skuas Stercorarius antarcticus lonnbergi (n = 44) and south polar skuas S. maccormicki (n = 50) at King George 
Island/Isla 25 de Mayo (South Shetland Islands) in the 2022/23 and 2023/24 breeding seasons. The objectives 
were to: (i) determine current levels of Hg contamination at King George Island and identify the underlying 
drivers (e.g., species, sex, year, δ13C and δ15N); (ii) compare contaminant levels with other breeding sites; and 
(iii) examine potential Hg-associated health risks. At King George Island, south polar skuas had higher THg 
concentrations (mean ± SD, 3.85 ± 2.99 μg g− 1 dw) than brown skuas (1.67 ± 1.25 μg g− 1 dw), potentially due 
to their greater reliance on mesopelagic fish and carry-over effects from their non-breeding distributions. THg 
concentrations of males were higher than females, with deposition into eggs by females being the likeliest 
explanatory factor, and were positively related to δ15N, reflecting the biomagnification process. THg concen-
trations of brown skuas in this study were higher than at Hope Bay (Antarctic Peninsula), but lower than at South 
Orkney Islands (Antarctica), South Georgia and Kerguelen Islands (subantarctic). THg concentrations of the 
south polar skuas analysed here were higher than at Hope Bay and Adélie Land (Antarctic continent). Com-
parisons with toxicity benchmarks suggest that skuas are currently at low risk of Hg-associated health impacts at 
King George Island.

1. Introduction

Mercury (Hg) contamination of the world’s oceans is a significant 
threat to marine biodiversity and wider ecosystem health (Sigmund 
et al., 2023). Indeed, owing to the adverse effects of Hg on humans and 
the environment more generally, a global agreement, the Minamata 
Convention on Mercury (www.mercuryconvention.org), aims to reduce 
and control Hg emissions and is ratified by > 150 countries (Evers et al., 
2016). The amount of Hg entering the oceans has increased significantly 
due to human activities and Hg levels in surface waters are three times 

higher than in pre-industrial times (Lamborg et al., 2014; Outridge et al., 
2018; Streets et al., 2019). At present, the most important anthropogenic 
contributor to environmental Hg levels is artisanal and small-scale gold 
mining, which is mostly concentrated in the Southern Hemisphere, but 
other important sources include the combustion of fossil fuels and pro-
duction of non-ferrous metals (Fisher et al., 2023; Keane et al., 2023). 
Despite being located far from major anthropogenic emissions sources, 
and the continent being largely free of human activities, marine eco-
systems in Antarctica are still impacted by Hg (Bestley et al., 2020; 
Cusset et al., 2023; Gimeno et al., 2024). This is in part because the 
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dominant form of Hg emitted to the atmosphere (Hg0, the gaseous 
elemental form) has a long residence time, which facilitates long range 
transport (over hemispheric to global scales) from its emissions sources, 
meaning that Hg can reach the polar regions and enter Antarctic food 
webs (Cusset et al., 2023; Fisher et al., 2023; Schneider et al., 2023; 
Gimeno et al., 2024). Additionally, Hg may be transported to Antarctic 
ecosystems by biovectors (e.g., migratory seabirds) (Wild et al., 2022), 
and there are potentially important natural sources of Hg in Antarctica 
(e.g., volcanic emissions and releases from sea ice), as well as local 
research stations, increasing tourist activities and shipping, all of which 
may provide local anthropogenic inputs of Hg (Mão de Ferro et al., 2014; 
Gionfriddo et al., 2016).

In aquatic environments, the methylation of inorganic Hg (iHg) by 
anaerobic microorganisms leads to the production of methyl-Hg (MeHg) 
(Regnell and Watras, 2019). MeHg is the most toxic form of Hg, and 
bioaccumulates within the tissues of organisms over time and bio-
magnifies along marine food chains (Seco et al., 2021a; Matias et al., 
2022). Given that many seabirds are long-lived and occupy mid- to high 
trophic positions in Antarctic food webs, they can accumulate high Hg 
concentrations in their tissues via their food intake, which is the main 
route of Hg exposure (Bustamante et al., 2016; Cherel et al., 2018; 
Chételat et al., 2020; Mills et al., 2020, 2024a). Hg contamination can 
have a range of negative effects on seabirds, including for their physi-
ology, neuroendocrine systems, immune status and behaviour (Tartu 
et al., 2013, 2015; Whitney and Cristol, 2017; Ibañez et al., 2024). For 
some species, Hg contamination is associated with reduced breeding 
success and can impact population dynamics (Goutte et al., 2014; Mills 
et al., 2020).

This study determined total Hg (THg = iHg + MeHg) concentrations 
in the blood of brown skuas Stercorarius antarcticus lonnbergi and south 
polar skuas S. maccormicki at King George Island/Isla 25 de Mayo, South 
Shetland Islands, Antarctica. These species have circumpolar breeding 
distributions in the Southern Hemisphere, although the former pre-
dominantly breeds on subantarctic islands, whereas breeding sites of the 
latter are mostly concentrated at higher latitudes, including on the 
Antarctic continent (Ritz et al., 2008). There are areas of breeding 
sympatry on the northern Antarctic Peninsula, South Shetland Islands 
and South Orkney Islands, where hybridisation between the two species 
regularly occurs (Ritz et al., 2008). Brown skuas and south polar skuas 
are both opportunistic feeders and consume a wide variety of prey 
through active predation, scavenging and kleptoparasitism (Reinhardt 
et al., 2000). However, when breeding in sympatry, analyses of regur-
gitated pellets indicate that brown skuas consume more penguin eggs 
and chicks, and south polar skuas feed to a greater extent at sea (Pietz, 
1987; Graña Grilli and Montalti, 2012; de Almeida Reis et al., 2021; 
Morales et al., in review). This segregation in diet has typically been 
attributed to competitive exclusion by brown skuas, which are larger 
and considered to be more aggressive than south polar skuas (Pietz, 
1987). At the South Shetland Islands, breeding allochrony (i.e., the 
earlier onset of breeding by brown skuas), and therefore the availability 
and accessibility of certain prey, may also contribute to these interspe-
cific differences in diet (Morales et al., in review). The ecological dif-
ferences between these species could result in differential dietary 
exposure to Hg, and hence the potential for associated health risks. 
Within this context, the objectives of this study were to: (i) determine 
current levels of Hg contamination of skuas at King George Island; (ii) 
compare contaminant levels with other breeding sites; (iii) investigate 
the biological and ecological drivers of varation in Hg concentrations (e. 
g., species, sex, year and feeding ecology); and (iv) assess the potential 
for Hg-associated health risks. Here, stable isotope values of carbon 
(δ13C) and nitrogen (δ15N) were used to infer feeding habitats and tro-
phic levels, respectively (Inger and Bearhop, 2008). Notably, brown 
skuas and south polar skuas are among the few seabird species for which 
Hg contamination has been shown to influence population dynamics 
(Goutte et al., 2014). Moreover, Hg concentrations in the blood of brown 
skuas are associated with adverse effects on the physiology, immune 

status and liver function at Hope Bay (Bahía Esperanza) on the Antarctic 
Peninsula, and with reduced egg volumes at that site (Ibañez et al., 
2024).

2. Materials and methods

2.1. Study site and sample collection

This study focused on the breeding populations of brown skuas and 
south polar skuas at the Potter Peninsula, King George Island, South 
Shetland Islands (62◦15′S, 58◦40′W), during the 2022/23 and 2023/24 
breeding seasons. King George Island is ~130 km from the northwestern 
edge of the Antarctic Peninsula (Fig. 1), and is the largest island of the 
South Shetland Islands archipelago. Both skua species are classified as 
Least Concern on the IUCN Red List; however, at the Potter Peninsula, 
breeding success (fledged chicks per active nest) of brown skuas (20 and 
95 breeding pairs in 2022/23 and 2023/24) and south polar skuas (18 
and 49 breeding pairs) is generally low, and has been declining since the 
mid-1980s (Krietsch et al., 2016; Gran;a Grilli et al., 2018; A.E. Ibañez, 
unpublished data). In December and January of each breeding season, 
active breeders of both species were caught directly from the nest or 
using a noose, and blood samples of ~2 mL were extracted from the 
brachial vein with 23-G needles and heparinized syringes. Blood sam-
ples were then kept at 4 ◦C for their return to the laboratory (within 6 h 
of sampling). Samples were then centrifuged (2000 rpm for 10 min) to 
isolate the cellular component, in which Hg preferentially partitions, 
which was then frozen at − 20 ◦C prior to laboratory analyses (Tavares 
et al., 2013; Mills et al., 2022; Ibañez et al., 2022b, 2024). All birds were 
sampled during the incubation period, ~10–15 days after clutch 
completion (Mills et al., 2022; Ibañez et al., 2022b, 2024). Brown skuas 
and south polar skuas return to the Potter Peninsula in late September 
and early November and lay eggs in mid November and mid December, 
respectively (L.M. Morales, unpublished data). No birds were sampled 
more than once, although, in some cases, both members of a pair were 
sampled.

2.1.1. Molecular sexing
Brown skuas and south polar skuas exhibit female-biased sexual size 

dimorphism (SSD), such that female birds are larger and heavier than 
males (Furness, 1987; Phillips et al., 2002). Molecular sexing of all birds 
was undertaken at the Instituto de Investigaciones Marinas y Costeras 
(IIMyC, UNMdP-CONICET). Birds were sexed from blood samples via 
polymerase chain reaction amplification of part of two highly conserved 
genes (CHD) on the sex chromosomes (Fridolfsson and Ellegren, 1999).

2.2. Total Hg measurements

THg concentrations were determined in samples of red blood cells 
(hereafter “blood”), which were freeze-dried and homogenised before 
analysis. Hg has a half-life of 30–60 days in great skua S. skua blood 
(Bearhop et al., 2002; Albert et al., 2019), which is closely-related to the 
study species. THg in the blood of brown skuas and south polar skuas is 
mostly (>90 %) MeHg (Renedo et al., 2020), and concentrations were 
measured using an Advanced Mercury Analyser spectrophotometer 
(AMA-254 Altec®) at the laboratory Littoral Environnement et Sociétés 
(LIENSs; La Rochelle Université, La Rochelle, France), as previously 
described (Chouvelon et al., 2009). Samples were analysed in duplicate 
or triplicate (ranging from 0.17 to 3.38 mg dry weight [dw]), ensuring 
that relative standard deviations were <10 % (mean ± SD, 1.40 ± 0.01 
%). The mean values of the replicate measurements were used in sub-
sequent statistical analyses. A certified reference material (CRM; lobster 
hepatopancreas TORT-3, National Research Centre, Canada) with a 
certified THg concentration of 0.29 ± 0.02 μg g− 1 dw was analysed at 
the start of the sample runs, and then after every tenth sample to eval-
uate the accuracy and reproducibility of measurements. The mass of the 
CRM was adjusted to ensure an amount of Hg that was comparable to 
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that in the blood samples. The measured value of the CRM was 0.30 ±
0.01 μg g− 1 dw (n = 15) and therefore the recovery was 102.2 ± 0.9 %. 
Blanks were analysed at the beginning of each sample run. The AMA has 
a detection limit of 0.1 ng and THg concentrations are presented in μg 
g− 1 dw.

2.3. Stable isotope analysis

Blood δ13C and δ15N values were determined for the same lyophilised 
blood samples as above, and have half-lives of 15.7 and 14.4 days in 
great skua blood, respectively (Bearhop et al., 2002). Hence, there is 
reasonable overlap with the half-life of Hg in the blood. Red blood cells 
do not typically require lipid extraction given their low lipid content, 
which is verified here by their low atomic C:N ratios (all <4.0) (Cherel 
et al., 2005). Subsamples of ~0.2 mg of blood were encapuslated in 6 ×
4 mm tin capsules with a microbalance (Sartorius Cubis™). Stable 
isotope measurements were undertaken at the University of Reading’s 
Chemical Analysis Facility (https://research.reading.ac.uk/chemical-a 
nalysis-facility) using a continuous flow-isotope ratio mass spectrom-
eter coupled to a ThermoFisher™ DeltaV Advantage fitted with an Iso-
link CNSOH Temperature Conversion Elemental Analyzer (TC/EA) and 
smart function. Results are expressed as conventional δ values in per mil 
(‰) relative to the international standards Vienna PeeDee Belemnite 
(VPDB) and atmospheric N2 (AIR) for carbon and nitrogen, respectively. 
Data were drift and stretch corrected using in-house (MethR [δ13C =

− 27.5 ‰; δ15N = − 4.1 ‰], Reading Porcine Gelatin [δ13C = − 21.5 ‰; 
δ15N = +5.0 ‰] and Reading Fish Skin [δ13C = − 15.6 ‰; δ15N = +14.0 
‰]) and international standards (USGS61 [δ13C = − 35.05 ‰; δ15N =
− 2.87 ‰], USGS62 [δ13C = − 14.79 ‰; δ15N = +20.17 ‰] and USGS63 
[δ13C = − 1.17 ‰; δ15N = +37.83 ‰]). Each sample was analysed in 
triplicate and average values were used. Analytical errors were <0.20 ‰ 
for δ13C and δ15N based on repeated measurements of international and 
in-house standards.

To aid interpretation of the δ13C and δ15N values outlined above, 
stable isotope values of prey that are potentially available to both skua 
species during their pre-laying and incubation periods at King George 
Island were collated from the literature (Cipro et al., 2017; Polito et al., 
2016; Graña Grilli et al., 2023; Quillfeldt et al., 2023). All prey were 
sampled from King George Island and surrounding waters, and included 
Adélie penguin Pygoscelis adeliae and gentoo penguin P. papua eggs 
(Cipro et al., 2017; Graña Grilli et al., 2023), Antarctic lanternfish 
Electrona antarctica (Polito et al., 2016), Antarctic krill Euphausia superba 
(Cipro et al., 2017; Graña Grilli et al., 2023), and Wilson’s storm petrel 
Oceanites oceanicus and black-bellied storm petrel Fregetta tropica 
(Quillfeldt et al., 2023).

2.4. Data analysis

Data were analysed using R version 4.3.0 (R Core Team, 2023). THg 
concentrations were assessed for normality and homogeneity of 

Fig. 1. (a) Breeding locations of brown skuas Stercorarius antarcticus lonnbergi and south polar skuas S. maccormicki at Adélie Land (Antarctica), Hope Bay/Bahía 
Esperanza (Antarctic Peninsula), Potter Peninsula, King George Island/Isla 25 de Mayo (South Shetland Islands), Signy Island (South Orkney Islands), Bird Island 
(South Georgia) and Mayes Island (Kerguelen archipelago). This figure was created using the ggOceanMaps package in R (Vihtakari, 2022). Mean (±SD) total 
mercury (THg) concentrations (μg g− 1 dw) in red blood cells of adult (b) brown skuas and (c) south polar skuas from the Potter Peninsula (this study) in relation to 
those of the same species in other breeding locations in the Southern Ocean (Goutte et al., 2014; Mills et al., 2022; W.F. Mills, unpublished data). Sample sizes are 
indicated in parentheses above each column. All birds were sampled during incubation besides the brown skuas at Kerguelen and south polar skuas at Adélie Land 
which also included non-breeders and those sampled during brood guard. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the Web version of this article.)
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variances (Shapiro-Wilk and Levene’s tests, respectively), and were then 
log transformed. Linear mixed-effects models (LMMs) were used to 
investigate the biological and ecological drivers of variation in THg 
concentrations. Predictor variables in the LMMs were species, sex, 
breeding season, δ13C values and δ15N values. Two-way interactions 
between the species term and stable isotope values were also included. 
Nest identity was included as a random effect in all LMMs in order to 
account for non-independence between members of the same pair. 
Variance inflation factors (calculated using the car package in R) indi-
cated no multicollinearity issues (all <3) (Fox and Weisberg, 2019). All 
possible combinations of fixed effects were computed and candidate 
models were ranked according to the Akaike Information Criterion, with 
a correction for small sample size (AICc), using the dredge function in 
the MuMIn package in R (Bartoń, 2020). The model(s) with lowest AICc 
value was considered to have received the most support and those 
within 2 AICc units (i.e., ΔAICc ≤2.0) of the best supported model were 
considered to be equally competitive (Burnham and Anderson, 2002). 
Model averaging was undertaken on this subset using the model.avg 
function in the MuMIn package (Burnham and Anderson, 2002). The 
direction of parameter estimates, standard errors (SEs) and 95 % con-
fidence intervals (CIs) from model-averaged coefficients are reported. 
Fixed effects were considered statistically significant if 95 % CIs did not 
contain zero (Zuur et al., 2009). LMMs were fitted with the lme4 
package and data were visualised with the ggplot2 package in R (Bates 
et al., 2015; Wickham, 2016).

2.4.1. Comparisons with avian toxicity benchmarks
To asssess potential Hg-associated health risks, blood THg concen-

trations of brown skuas and south polar skuas were compared to pub-
lished avian Hg toxicity benchmarks (Ackerman et al., 2016). THg 
concentrations determined here were first converted to whole blood wet 
weight (ww) equivalents following established methods (Ackerman 
et al., 2020; Petalas et al., 2025), and assuming a 65 % moisture content 
(Carravieri et al., 2022). The percentage of individuals belonging to the 
following toxicity categories were calculated: (i) no risk (<0.2 μg g− 1 

ww); (ii) low risk (0.2–1.0 μg g− 1 ww); (iii) moderate risk (1.0–3.0 μg 
g− 1 ww); (iv) high risk (3.0–4.0 μg g− 1 ww); and (v) severe risk (>4.0 μg 
g− 1 ww) (Ackerman et al., 2016).

3. Results

3.1. Drivers of Hg contamination

Blood THg concentrations were determined for 44 brown skuas and 
50 south polar skuas, with a minimum value of 0.36 μg g− 1 dw (a male 
brown skua sampled in 2023) and maximum value of 17.45 μg g− 1 dw (a 
female south polar skua sampled in 2024) (Table 1). Mean (±SD) THg 
concentrations of brown skuas (1.67 ± 1.25 μg g− 1 dw) and south polar 
skuas (3.85 ± 2.99 μg g− 1 dw) at King George Island are shown in 
relation to other breeding locations in Fig. 1. The highest-ranked LMM 
explained a large amount of variation in THg concentrations (condi-
tional R2 = 0.62), with the majority explained by fixed effects alone 
(marginal R2 = 0.48). According to the highest-ranked models (Table 2), 
south polar skuas (estimate ± se, 0.37 ± 0.05 [95 % CIs, 0.26, 0.49]) 
had significantly higher blood THg concentrations than brown skuas 
(Fig. 1; Table 1). Males exhibited significantly higher concentrations 
(0.11 ± 0.04 [0.03, 0.20]) than females in both species (Fig. 1; Table 1). 
There was a significant positive relationship between THg concentra-
tions and δ15N values (0.12 ± 0.03 [0.07, 0.17]) (Fig. 2). Although 
breeding season (two-level factor) was included in the highest-ranked 
model (Table 2), the 95 % CIs overlapped with zero (− 0.23, 0.02), 
and so there was no clear statistical effect. Neither δ13C values nor 
interaction terms were included in the highest-ranked models.

3.2. Avian toxicity benchmarks

Comparisons with avian Hg toxicity benchmarks indicated that most 
brown skuas were either at no risk (46 %) or low risk (52 %) of toxi-
cological effects, and far fewer individuals were at moderate risk (2 %). 
The majority of south polar skuas were classified as having a low (76 %) 
or moderate risk (16 %) of toxicological effects, with a minority of in-
dividuals at no risk (8 %). No birds were at high or severe risk.

4. Discussion

Hg contamination is an important threat to marine top predators in 

Table 1 
Mean (±SD) total mercury (THg) concentrations (μg g− 1 dw) and stable isotope 
values of carbon (δ13C) and nitrogen (δ15N) in red blood cells of breeding adult 
brown skuas Stercorarius antarcticus lonnbergi and south polar skuas 
S. maccormicki from the Potter Peninsula, King George Island (Isla 25 de Mayo), 
South Shetland Islands, Antarctica.

Species Season Sex n THg (μg g− 1 

dw)
δ13C 
(‰)

δ15N (‰)

Brown 
skua

2022/ 
23

Both 30 1.82 ± 1.44 ¡23.5  
± 1.3

10.9 ± 0.9

Brown 
skua

2022/ 
23

Female 17 1.61 ± 1.29 − 23.5 
± 1.3

10.8 ± 1.0

Brown 
skua

2022/ 
23

Male 13 2.10 ± 1.62 − 23.6 
± 1.2

11.0 ± 0.9

Brown 
skua

2023/ 
24

Both 14 1.34 ± 0.64 ¡24.1  
± 0.5

11.0 ± 0.5

Brown 
skua

2023/ 
24

Female 8 1.30 ± 0.56 − 24.1 
± 0.5

11.0 ± 0.5

Brown 
skua

2023/ 
24

Male 6 1.40 ± 0.78 − 24.2 
± 0.4

11.1 ± 0.5

South 
polar 
skua

2022/ 
23

Both 22 3.64 ± 2.05 ¡24.6  
± 0.5

10.7 ± 0.4

South 
polar 
skua

2022/ 
23

Female 12 2.67 ± 1.58 − 24.4 
± 0.5

10.6 ± 0.4

South 
polar 
skua

2022/ 
23

Male 10 4.81 ± 2.00 − 24.8 
± 0.3

10.9 ± 0.3

South 
polar 
skua

2023/ 
24

Both 28 4.02 ± 3.59 ¡24.4  
± 0.7

11.1 ± 0.3

South 
polar 
skua

2023/ 
24

Female 14 4.13 ± 4.87 − 24.2 
± 0.8

11.1 ± 0.3

South 
polar 
skua

2023/ 
24

Male 14 3.91 ± 1.74 − 24.7 
± 0.4

11.2 ± 0.3

Table 2 
Model selection for variables explaining variation in log transformed total 
mercury (THg) concentrations (μg g− 1 dw) in red blood cells of breeding adult 
brown skuas Stercorarius antarcticus lonnbergi and south polar skuas 
S. maccormicki from the Potter Peninsula, King George Island (Isla 25 de Mayo), 
South Shetland Islands, Antarctica. Models are ranked according to the Akaike 
Information Criterion with a correction for small sample size (AICc). The top five 
models are shown (according to differences in AICc from the top model, ΔAICc) 
and models with ΔAICc <2 were considered to be equally competitive and are 
shown in bold. All are linear mixed effects models with nest ID included as a 
random effect.

Model specification df logLik AICc ΔAICc Weight

Species þ Sex þ δ15N þ Year 7 3.91 7.5 0.00 0.39
Species þ Sex þ δ15N 6 2.57 7.8 0.33 0.33
Species + Sex + δ15N + Year +

Species: δ15N
8 3.91 9.9 2.39 0.12

Species + Sex + δ15N + Species: δ15N 7 2.69 9.9 2.44 0.11
Species + δ15N + Year 6 0.70 11.6 4.08 0.05
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Antarctica (Bestley et al., 2020; Cusset et al., 2023; Gimeno et al., 2024), 
and seabirds that predate or scavenge other high trophic level organisms 
can accumulate high amounts of Hg (Chételat et al., 2020; Mills et al., 
2022, 2024a,b, 2025). This study: (i) determined current Hg contami-
nation levels of skuas at King George Island; (ii) compared Hg contam-
ination with other breeding locations; (iii) investigated the factors 
driving variation in Hg concentrations; and (iv) examined the potential 
for toxicological effects. Due to the half-life of Hg in the blood and the 
timing of sampling, THg concentrations in this study primarily reflect 
contamination during the pre-laying and incubation periods, and 
potentially late migration, albeit to a lesser extent (Bearhop et al., 2000; 
Albert et al., 2019).

4.1. Geographic differences in Hg contamination

Blood THg concentrations of brown skuas at King George Island (this 
study) were significantly higher than the same species at Hope Bay (0.95 
± 0.45 μg g− 1 dw), but lower than those at the South Orkney Islands 
(3.42 ± 2.29 μg g− 1 dw) and South Georgia (4.47 ± 1.10 μg g− 1 dw) 
(Wilcoxon tests, all p < 0.01) (Mills et al., 2022) (Fig. 1). Additionally, 
south polar skuas at King George Island (this study) had significantly 
higher THg concentrations (Wilcoxon test, p < 0.01) than the same 
species at Hope Bay (1.41 ± 1.01 μg g− 1 dw) (W.F. Mills, unpublished 
data). Moreover, THg concentrations of brown skuas in this study were 
lower than at the Kerguelen Islands (8.22 ± 1.98 μg g− 1 dw) and THg 
concentrations of south polar skuas were higher than at Adélie Land 
(2.15 ± 1.48 μg g− 1 dw) (Goutte et al., 2014), though no raw data were 
available from those sites (Fig. 1). These geographic differences mirror 
the latitudinal trend in Hg contamination of seabirds that is regularly 
found in the Southern Hemisphere. Broadly, Hg contamination levels 
increase from birds feeding in Antarctic waters towards those exploiting 
subantarctic and subtropical waters (Carravieri et al., 2016, 2017; 
Renedo et al., 2020; Mills et al., 2022). One explanation for this pattern 
is greater efficiency of Hg methylation and increased vertical advection 
from the mesopelagic zone (i.e., ~200–1000 m below the surface) to-
wards the surface in subtropical compared to subantarctic and Antarctic 
ecosystems (Renedo et al., 2020). Additionally, food chains in Antarctica 
may be shorter than in lower latitude ecosystems, and the associated 
differences in biomagnification could contribute to these spatial trends 
(Forero et al., 2005). Hg bioavailability may also vary among ocean 
basins; for instance, a meta-analysis of Hg contamination of penguins 
identified Hg hotspots and coldspots in the Indian and south Atlantic 
Oceans, respectively (Gimeno et al., 2024). Lastly, geographic differ-
ences in diet may also contribute to inter-site differences. For example, 
within the southwest Atlantic Ocean, the reliance of brown skuas on 
penguins as prey declines towards lower latitudes (Reinhardt et al., 
2000), and during incubation, carrion and placentae of Antarctic fur seal 
Arctocephalus gazella are the most important food items at South Georgia 
(Phillips et al., 2004), whereas burrowing petrels are the most important 
prey to breeding brown skuas at Kerguelen Islands (Mougeot et al., 
1998).

4.2. Drivers of Hg contamination at King George Island

4.2.1. Interspecific differences
South polar skuas exhibited higher THg concentrations than brown 

skuas in this study. Seabirds are mainly exposed to Hg via their food 
(Chételat et al., 2020), hence interspecific variation in diet is expected to 
contribute to differences in contamination. Skuas at the Potter Peninsula 
breed very close to breeding colonies of Adélie penguins (~1700 
breeding pairs) and gentoo penguins (~6700 breeding pairs) (Albarrán 
et al., 2024). At King George Island, analyses of regurgitated pellets 
indicate that penguins are the most important prey for both species and 
that although incubating brown skuas consume more penguin eggs, 
south polar skuas consume a greater proportion of mesopelagic fish and 
select larger individual fish (de Almeida Reis et al., 2021; Morales et al., 
in review). The stable isotope data presented here are consistent with 
the consumption of penguin eggs and mesopelagic fish by skuas 
(alongside lower trophic level marine resources, e.g., Antarctic krill), 
and the more negative δ13C values of south polar skuas likely reflects the 
greater proportion of mesopelagic fish in their diets (Fig. 2; Fig. 3). A 
minority of birds (mostly brown skuas) had low δ15N and less negative 
δ13C values, suggesting the use of alternative trophic pathways (e.g., 
inshore/coastal resources) (dashed rectangle; Fig. 3). Future stable 
isotope analyses of sulfur (δ34S) may help to better distinguish the 
different food sources of skuas.

Seabirds that consume mesopelagic prey have higher Hg burdens 
than those feeding in the epipelagic zone (0–200 m) due to enhanced Hg 
methylation rates in the low oxygen waters of the mesopelagic zone 

Fig. 2. Relationships between log transformed total mercury (THg) concen-
trations (μg g− 1 dw) and stable isotope values (‰) of (a) nitrogen (δ15N) and 
(b) carbon (δ13C) in red blood cells of breeding adult brown skuas Stercorarius 
antarcticus lonnbergi (circles) and south polar skuas S. maccormicki (squares) 
from the Potter Peninsula, King George Island/Isla 25 de Mayo, South Shetland 
Islands, Antarctica.

W.F. Mills et al.                                                                                                                                                                                                                                 Environmental Research 281 (2025) 121990 

5 



(Ochoa-Acuña et al., 2002; Choy et al., 2009). The Antarctic lanternfish 
is an abundant mesopelagic fish (that performs diel vertical migrations 
towards the surface at night) and is the most important fish prey to both 
skuas during the breeding period (Hahn et al., 2008; Morales et al., in 
review). THg concentrations in the muscle tissue of Antarctic lanternfish 
in the southwest Atlantic Ocean (0.22 ± 0.08 μg g− 1 dw; Seco et al., 
2021b) can be higher than in eggs of Adélie or gentoo penguins (0.08 ±
0.05 μg g− 1 dw and 0.13 ± 0.04 μg g− 1 dw, respectively) at the South 
Shetland Islands (Polito et al., 2016; Cipro et al., 2017), and blood THg 
concentrations of chicks of these penguin species (0.06 ± 0.03 μg g− 1 dw 
and 0.08 ± 0.05 μg g− 1 dw, respectively) (Souza et al., 2020), the latter 
being less available to south polar skuas due to breeding allochrony. 
However, a different study at King George Island found higher concen-
trations in Adélie (0.24 ± 0.16 μg g− 1 dw) and gentoo penguin eggs 
(0.22 ± 0.32 μg g− 1 dw) (Padilha et al., 2023). Antarctic lanternfish also 
show much higher Hg concentrations than epipelagic fish or Antarctic 
krill (Polito et al., 2016). Hence, it may be that while both species 
consume penguin eggs, the greater proportion of Antarctic lanternfish in 
south polar skua diets contributes to their higher contaminant levels. 
Brown skuas consume a wider range of resources (as evidenced by their 
wider isotopic niches; Fig. 3), and so may supplement the consumption 
of penguin eggs with prey that are less contaminated than mesopelagic 
fish. It is noteworthy, however, that black-bellied storm petrels Fregetta 
tropica at King George Island, which also feed on Antarctic lanternfish, 
also show high levels of Hg in their blood while incubating (2.46 ± 0.42 
μg g− 1 dw) (Hahn, 1998; Quillfeldt et al., 2023). South polar skuas, but 
not brown skuas, have also been recorded as feeding on other skuas at 
the Potter Peninsula, which could lead to higher THg concentrations (de 
Almeida Reis et al., 2021), though this is not necessarily supported by 
the stable isotope data in this study.

Another potential factor contributing to interspecific differences in 

contamination is carry-over effects of different distributions during late 
migration, given the timing of sampling and the half-life of Hg in skua 
blood (Bearhop et al., 2000). Brown skuas from King George Island 
spend the non-breeding period feeding on the Patagonian Shelf, 
Argentine Basin and to some degree on the southern Brazil Shelf 
(Krietsch et al., 2017); whereas most south polar skuas from King George 
Island undertake transequatorial migrations to the Northern Hemi-
sphere (Kopp et al., 2011), where Hg exposure is higher. This may 
contribute to the higher THg concentrations of south polar skuas, 
including the high maximum value (17.45 μg g− 1 dw) recorded here.

4.2.2. Differences between sexes
There was a significant effect of sex on blood THg concentrations, 

with male skuas exhibiting higher Hg concentrations than females at 
King George Island. Depuration of Hg into eggs offers a mechanism by 
which breeding females (and not males) are able to eliminate Hg and 
reduce their body burden (Robinson et al., 2012). It is probable that this 
accounts at least in part for the sex differences observed here. Addi-
tionally, trophic differences between males and females, and hence di-
etary exposure to Hg, may also contribute to this variation (Mills et al., 
2022; Ibañez et al., 2022b). Both the study species show female-biased 
SSD (i.e., females are larger and heavier than males) (Phillips et al., 
2002), which could conceivably influence their diet. However, mean 
δ13C and δ15N values are generally similar between sexes (Table 1), 
suggesting that diet composition is also similar. Indeed, at South Geor-
gia, males and females are comparable during late incubation and early 
chick-rearing in their territorial attendance, foraging times and habitats 
(Carneiro et al., 2014). Also, a stable isotope study found no evidence for 
sex differences in foraging ecology of brown skuas during the breeding 
period at South Georgia (Anderson et al., 2009). There was also no ev-
idence of sex differences in non-breeding distributions of brown skuas or 
south polar skuas (Kopp et al., 2011; Krietsch et al., 2017).

4.2.3. Relationship with δ15N values
Blood THg concentrations of skuas were positively related to δ15N 

values. The interaction between the species term and δ15N values was 
not included in the highest ranked models, hence the slope of the rela-
tionship did not differ between species (Fig. 2). This relationship reflects 
Hg biomagnification through the food web at King George Island, such 
that birds consuming a greater proportion of high trophic level prey 
(with elevated δ15N values) generally had higher THg concentrations. 
Broadly, δ15N values are effective tracers of trophic level (Inger and 
Bearhop, 2008), and the stable isotope data suggest that higher δ15N 
values are associated with the consumption of high trophic level re-
sources that the skuas obtain on land (e.g., penguin eggs, storm petrels) 
compared to low trophic level prey obtained at sea (e.g., Antarctic krill) 
(Fig. 3). Hg bioaccumulation in these prey and biomagnification process 
in Southern Ocean food webs is well documented (Seco et al., 2021a; 
Ibañez et al., 2022a; Matias et al., 2022; Mills et al., 2022). Indeed, as 
stated above, penguins eggs and storm petrels can show high Hg con-
centrations at King George Island (Padilha et al., 2023; Quillfeldt et al., 
2023), especially compared to epipelagic prey (Polito et al., 2016; Cipro 
et al., 2017). Mesopelagic fish show similar δ15N values to epipelagic 
fish in the waters around King George Island (Polito et al., 2016), which 
likely contributes to the high variation in the relationship between THg 
and δ15N values (given their relatively high THg concentrations), in 
addition to the slight mismatch in integration periods (Bearhop et al., 
2000, 2002). Given their half-lives in skua blood, diets and feeding areas 
during the late migration period may have little influence on the isotope 
values here (Bearhop et al., 2002). There were no clear relationships 
with δ13C values across the dataset (Fig. 2).

4.3. Health implications of Hg contamination

Comparisons with avian toxicity benchmarks indicate that at King 
George Island, most skuas are at low risk of Hg-associated health 

Fig. 3. Individual stable isotope values (‰) of carbon (δ13C) and nitrogen 
(δ15N) in red blood cells of breeding brown skuas Stercorarius antarcticus lonn-
bergi (circles) and south polar skuas S. maccormicki (squares) from the Potter 
Peninsula, King George Island (Isla 25 de Mayo), South Shetland Islands, 
Antarctica. Mean (±SD) δ13C and δ15N values of potential prey (lipid extracted) 
are also shown, including Antarctic krill Euphausia superba (KRILL), Antarctic 
lanternfish Electrona antarctica (AL), eggs of Adélie penguins Pygoscelis adeliae 
(ADEL) and gentoo penguins P. papua (GENT) and Wilson’s storm petrel Oce-
anites oceanicus (WISP) and black-bellied storm petrels Fregetta tropica (BBSP) 
(Cipro et al., 2017; Polito et al., 2016; Graña Grilli et al., 2023; Quillfeldt et al., 
2023). Trophic enrichment factors are applied to prey values following Graña 
Grilli et al. (2023). Dashed rectangle indicates individuals uing an alternative 
trophic pathway (see text).
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impacts. However, a substantial minority of brown skuas and south 
polar skuas were at no risk and moderate risk, respectively. These results 
indicate that Hg does not currently pose a significant threat to brown 
skuas, but may pose some threat to south polar skuas. However, Ibañez 
et al. (2024) found that immune markers (hematocrit, Immunoglobulin 
Y and albumin) and egg volumes were negatively associated with Hg 
contamination of brown skuas at Hope Bay, and alanine aminotrans-
ferase (an indicator of liver dysfunction) in that study was positively 
correlated with Hg contamination (Ibañez et al., 2024). This is despite 
the relatively low levels of contamination at that site, with the highest 
blood THg concentration being 2.33 μg g− 1 dw (Ibañez et al., 2024). 
Additionally, the toxicity benchmarks do not account for selenium (Se) 
concentrations, which plays a protective role against Hg toxicity 
(Cuvin-Aralar and Furness, 1991; Eagles-Smith et al., 2018). Indeed, 
considering the Hg:Se molar ratio is important to fully understand the 
potential risks of Hg contamination to Antarctic seabirds (Cruz-Flores 
et al., 2024). Future studies focusing on Se concentrations and their 
influence on the toxic effects of Hg on skuas are required.
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contamination: the Adélie penguin as a bioindicator of Antarctic marine ecosystems. 
Ecotoxicology (Lond.) 32, 1024–1049. https://doi.org/10.1007/s10646-023-02709- 
9.

Cuvin-Aralar, M.L.A., Furness, R.W., 1991. Mercury and selenium interaction: a review. 
Ecotoxicol. Environ. Saf. 21, 348–364. https://doi.org/10.1016/0147-6513(91) 
90074-Y.

de Almeida Reis, A.O., Costa, E.S., Torres, J.P.M., dos Santos Alves, M.A., 2021. Pellets 
and prey remains as indicators of the diet of two sympatric skuas (Aves: 
stercorariidae) on King George Island, Antarctica. Oecologia Australis 25, 674–684. 
https://doi.org/10.4257/oeco.2021.2503.04.

Eagles-Smith, C.A., Silbergeld, E.K., Basu, N., Bustamante, P., Diaz-Barriga, F., 
Hopkins, W.A., Kidd, K.A., Nyland, J.F., 2018. Modulators of mercury risk to wildlife 
and humans in the context of rapid global change. Ambio 47, 170–197. https://doi. 
org/10.1007/s13280-017-1011-x.

Evers, D.C., Keane, S.E., Basu, N., Buck, D., 2016. Evaluating the effectiveness of the 
Minamata convention on mercury: principles and recommendations for next steps. 
Sci. Total Environ. 569, 888–903. https://doi.org/10.1016/j.scitotenv.2016.05.001.

Fisher, J.A., Schneider, L., Fostier, A.-H., Guerrero, S., Guimarães, J.R.D., 
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