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Abstract Space‐weather forecasting requires advanced prediction of the arrival time and properties of
coronal mass ejections (CMEs) in near‐Earth space. Kinematic properties of CMEs close to the Sun—such as
speed, direction and angular width—are routinely estimated from coronagraph images by using three‐
dimensional geometric models, such as the “cone model.” These are used to characterize a time‐dependent
perturbation at the inner boundary of a numerical solar‐wind model, normally at 0.1 AU, enabling a forecast of
the CME arrival time and speed at Earth. This perturbation is typically spheroidal in shape. In this study we
show that spheroidal CMEs exhibit four features inconsistent with observations that may limit the accuracy of
space‐weather forecasts: 1, Slow spheroidal CMEs intersect the model inner boundary for a long duration and
hence resist acceleration by the ambient solar wind, producing longer transit times than observed; 2, The radial
extent of a spheroidal CME is directly related to its angular width. Observations of CMEs at 1 AU do not display
any relation between angular width and radial extent; 3, Fast‐and‐wide CMEs cannot be sufficiently decelerated
by the ambient solar wind and arrive with higher speeds than observed; 4, Spheroidal CMEs show different
magnitudes of interplanetary accelerations for different angular widths, contrary to observations. We show that
fixing the CME duration at the inner boundary—which mimics observed CME expansion—alleviates these
problems. The choice of fixed duration is a free parameter that needs to be calibrated against observations, but
8 hr works reasonably well.

Plain Language Summary Severe space weather can damage ground‐ and space‐based
technologies. It results from changing conditions in the Sun's magnetic field, which drives large‐scale eruptions
from the Sun's atmosphere that travel out through the solar system. If such eruptions, called coronal mass
ejections (CMEs), are directed toward Earth they can potentially disrupt satellites, GPS and power grids.
Consequently, it is desirable to forecast if and when a CMEwill arrive at Earth. For the last 20 years, CMEs have
been treated as spherical structures in computer simulations used to routinely forecast space weather. We
perform experiments using a computer simulation of the solar wind to show that treating CMEs as spheres
produces a number of features that are inconsistent with observations. In particular, the angular width of
spherical CMEs affects how easily the solar wind can slow them down, and hence the time it takes for CMEs to
reach Earth. But this trend is not observed. We suggest a simple alternative approach to spherical CMEs that
mimics the observed expansion of CMEs and behaves closer to the available observations. This will enable
space weather to be forecast more accurately in the future.

1. Introduction
Direct observations of the solar‐wind conditions at the first Lagrange point (L1), just upstream of Earth, can be
used as the basis of accurate space‐weather forecasts. However, the proximity of L1 to Earth means that forecast
lead times are limited to less than an hour. As the solar wind is a supersonic, approximately radial outflow,
extending forecast lead times beyond an hour requires initializing forecasts using information about the solar‐
wind flow closer to the Sun. There now exists capability to simulate both the solar wind and coronal mass
ejections (CMEs), from initiation in the corona through to arrival in near‐Earth space, using high‐resolution,
detailed physic‐based numerical models (e.g., Jin et al., 2017; Lynch et al., 2025; Torok et al., 2018). But this
approach is not feasible for operational space‐weather forecasting, due a lack of adequate real‐time observations
with which to initialize such simulations, the high computational expense and the long simulation run time.
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Instead, long lead‐time operational forecasting necessitates a more pragmatic approach. It currently uses a three‐
step process:

1. Near‐Sun ambient solar‐wind conditions, typically at 0.1 AU, are estimated using coronal models, themselves
constrained by the observed photospheric magnetic field (e.g., Arge et al., 2003; Riley et al., 2001; van der
Holst et al., 2014).

2. Near‐Sun CME properties are estimated by fitting a simple geometric model to white‐light coronagraph
observations (Michalek et al., 2003; Thernisien et al., 2009; Zhao et al., 2002).

3. Coronal model output is used as the inner boundary conditions for a solar wind model from 0.1 to beyond 1 AU
(e.g., Merkin et al., 2016; Owens, Lang, et al., 2020; Pomoell & Poedts, 2018; Riley et al., 2001; Toth
et al., 2005). Suitable time‐dependent perturbations are also added at solar‐wind model inner boundary to
mimic observed CMEs (Emmons et al., 2013; Lee et al., 2015; Mays et al., 2015; Odstrcil, Riley, &
Zhao, 2004; Scolini et al., 2018).

Whilst the coronal and solar‐wind models have changed or been improved, this same general methodology has
been used for more than 20 years (e.g., Odstrcil, Riley, & Zhao, 2004; Riley et al., 2018). Indeed, all of the
operational space‐weather forecast centers currently rely on this approach. This study focuses on how the
coronagraph‐derived CME properties (step 2) are implemented in the solar‐wind models (step 3).

Coronagraph images (e.g., Brueckner et al., 1995) of CMEs are interpreted using geometric models, often referred
to as “cone models” due to the simple shape employed. More complex geometries are also used (Thernisien
et al., 2009; Zhao et al., 2002), but the general implications discussed here are the same. These geometric models
all aim to determine the true three‐dimensional properties of the CME from the two‐dimensional projections in
coronagraph images. Typically, this results in estimates of the radial speed, direction and angular extent of the
CME with respect to the Sun. In order to represent such a transient CME structure within a solar‐wind model, a
speed perturbation with the same general properties is introduced at the model inner boundary, sometimes with an
associated change in the plasma parameters (Odstrcil, Pizzo, et al., 2004).

By far the most common implementation of cone‐model CMEs in solar‐wind models is to approximate the CME
as a spherical perturbation which advects through the solar‐wind model inner boundary. For this purpose, the
solar‐wind model inner boundary is often approximated as planar—rather than spherical—to simplify geometry.
This slightly distorts the CME from a pure spherical shape. Non‐spherical implementations of the cone‐model
CMEs can also be constructed by design. For example, the CME can present a non‐circular cross‐section at
the inner boundary (Scolini & Palmerio, 2024), which may better match the flux‐rope structure implied by the
more sophisticated geometric models (Thernisien et al., 2009). While this does have an effect on resulting CME
dynamics for “glancing blows”—where the point of encounter with the CME is far from the center of the CME—
it does not significantly affect the speed and transit time for the center of the CME (Scolini et al., 2018). We refer
to all these approaches as “spheroidal CMEs.”

Three commonly used methods for translating from coronagraph‐derived cone‐CME parameters to spheroidal
CME perturbations are shown schematically in Figure 1. In each case, the solar‐wind model has an inner boundary
at a heliocentric distance of rIN , and a cone‐model CME has angular half‐width α. Panel (a) shows a widely used
implementation where the radius of the spheroidal perturbation, r0, is approximated as rIN tan α (Pomoell &
Poedts, 2018; Scolini et al., 2018). The issue with this approximation is that the perturbation will have an angular
width greater than the cone‐model estimate. Panel (b) shows a slight modification, wherein r0 = rIN sin α (e.g.,
Zhao et al., 2002). This produces smaller CMEs than the tan α method, preserving the original α value and
producing a smaller r0. A third approach, shown in panel c, is to prescribe the CME as a spherocylinder;
essentially a short, fat sausage. Assuming the spherical portion is described by r0 = rIN sin α, this method also
preserves the cone‐model α, but allows for “thicker” radial extents, which can be desirable for reasons explained
below. All these approaches still determine the radial extent of the CME perturbation solely based on the CME
angular width. that is, For all spheroidal CMEs, r0 is some function of α.

This relation is important to CME dynamics, as it controls the duration of the perturbation pulse (Δt) inserted at
the solar‐wind model inner boundary. As demonstrated in Section 2, Δt is broadly analogous to the total initial
momentum of the CME, as it determines the extent to which a CME accelerates or decelerates toward the ambient
solar wind during its propagation to 1 AU.
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A spheroidal CME advects through the solar‐wind model inner boundary at the radial speed of the CME estimated
from a cone model, VCME. Thus for a given VCME, Δt increases linearly with r0, and hence non‐linearly with α. For
case (a) in Figure 1, this relation will be Δt = (2rIN tan α)/VCME, for case (b) Δt = (2rIN tan α)/VCME, and for
case (c) Δt = (2rIN sin α + rC)/VCME, where rC is the length of the cylindrical section of the spherocylinder.
Thus in all cases, Δt will be inversely proportional to VCME. Of course, the curved nature of the CME front means
that the radial extent of the CME, and hence Δt for a given point of encounter, will decrease with angle from the
nose of the CME (this decrease is smaller for the spherocylinder, which has a constant contribution to the total
radial extent at all locations due to the cylindrical portion). But for simplicity, we here limit consideration to the
“direct hit” CMEs, where the radial extent of the CME perturbation is maximum.

This study examines the implications of this spherical perturbation approach to CME propagation and hence
operational space‐weather forecasting. Section 2 introduces the HUXt solar‐wind model that will be used to
investigate CME propagation and uses HUXt to illustrate the current method used in operational forecasting and
the implications for CME dynamics in the heliosphere. Section 3.1 outlines a set of CMEs observed both near the
Sun and in near‐Earth space. Section 3.2 examines the relations between CME speed, angular width and transit
time for the observed data set and for spheroidal CMEs in the HUXt model. We also propose and test a simple
alternative implementation of cone‐model CMEs in solar‐wind models, based on fixing Δt. This is equivalent to

Figure 1. Schematics of different spheroidal coronal mass ejection (CME) implementations. Left: A view of the solar
equatorial plane. The spheroidal CME boundary is shown by the thick black line. (a) A spheroidal CME where the initial
radius, r0, is approximated as rIN tan α, where rIN is the heliocentric radius of the solar‐wind model inner boundary and α is
the cone‐model CME angular half‐width. (b) A spheroidal CME where the initial radius, r0, is approximated as rIN sin α. (c) A
spherocyclinder CME where the initial radius, r0, is approximated as rIN sin α and the cylinder has length rC . Right: The solar
wind time series at the point O on the solar‐wind inner boundary. The CME threads the inner boundary for a time Δt, during
which the speed is set to the CME speed, that is, Vin = VCME. At other times, the speed is the ambient solar wind speed, that
is, VIN = VSW .
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the radial extent being proportional to CME speed, mimicking CME expansion. Section 4 discusses the impli-
cations of the results and future avenues for improving forecasting.

2. The HUXt Solar Wind Model
In order to investigate CME propagation from the Sun to Earth, we use the Heliospheric Upwind eXtrapolation
with time dependence (HUXt) solar‐wind model (Barnard & Owens, 2022; Owens, Lang, et al., 2020). HUXt is a
dynamical model that approximates the solar wind as a 1‐dimensional, incompressible, hydrodynamic flow (see
also Riley & Lionello, 2011). Thus, solar‐wind flows accelerate and decelerate through stream interaction, but
only solar‐wind radial speed (not density or temperature) is simulated. Despite these gross approximations, HUXt
produces solar‐wind speeds throughout the model domain from 0.1 to 1 AU that agree very closely with 3‐
dimensional magnetohydrodynamic model results for the same boundary conditions (Owens, Lang,
et al., 2020), but at a fraction of the computational cost. Given the relatively large parameter space that needs to be
investigated in this study, the computational efficiency of HUXt is desirable. But as HUXt and 3D MHD models
produce similar CME dynamics for the same boundary conditions, the results presented here are expected to be
generally applicable to a wide range of solar‐wind models when employing the cone model CME approximation
(i.e., when CMEs are treated as speed and/or density, temperature perturbations).

To illustrate the relations between VCME, α and Δt, some examples of spheroidal CMEs are shown using the HUXt
model in Figures 2a and 2c. The spheroidal CMEs are speed perturbations inserted into a uniform solar wind of
speed 300 km s− 1 at the model inner boundary at 0.1 AU. The boundaries of the inserted CME speed pertur-
bations, shown as colored lines, are tracked using passive tracer partices (see Barnard & Owens, 2022, for more
detail).

In Figure 2a, four spheroidal CMEs (using the sin α approximation) have been inserted at the same time, with the
same launch speed of VCME = 600 km s− 1, but with a range of α values. After 3.35 days, the wider CMEs—with
α = 45 and 60°—have passed 1 AU, whereas the narrower CMEs—with α = 15 and 30°—are still inside 1 AU.
Thus, for spheroidal CMEs, there is a relation between angular width and transit time to 1 AU, as expected. As
will be shown later, there is no observational evidence to support this (faster CMEs generally are wider, but they
do not appear to transit any faster or slower than their initial speed alone suggests).

Figure 2c shows α fixed at 60° for a range of VCME. The snapshot is shown 3.05 days after launch. For lower
launch speeds (VCME < 1200 km s− 1), the basic trend is as expected: higher VCME results in the CME traveling
further in a given time. However, the VCME = 1200 and 2,400 km s− 1 CMEs are both at approximately 1 AU after
3.05 days. The reason for this is apparent; the faster initial speed means the CME moves through the inner
boundary of the model in a shorter time. For the 2,400 km s− 1 CME, the high speed, narrow angular extent and the
spherical approximation combine to produce a speed perturbation at the inner boundary that is less than 2 hr in
duration. This low Δt reduces the CME's ability to withstand deceleration by the slower ambient solar wind,
despite the higher VCME. The spheroidal CME approach also results in the radial extent of the CME at 1 AU being
inversely proportional to the speed of the CME. Again, as shown below, there is no observational support for
either of these relations.

3. Results
3.1. Observed CMEs

In order to quantify the observed trends between CME speeds, angular widths, radial extents and transit times to 1
AU, we begin with the updated Richardson and Cane (2010) list of human‐identified interplanetary CMEs
(ICMEs) in near‐Earth space, which spans 1996 to 2024. The updated version is available at https://izw1.caltech.
edu/ACE/ASC/DATA/level3/icmetable2.htm. Of the approximately 600 ICMEs in the list, 94 have been
uniquely associated with near‐Sun observations of an Earth‐directed CME in the DONKI database (https://ccmc.
gsfc.nasa.gov/tools/DONKI/). The cone‐CME parameters provided in DONKI are primarily from the Moon‐to‐
Mars (M2M) Space Weather Analysis Office, from (human) analysis of available coronagraph data. We cross‐
referenced these 94 events in the two catalogs, but were only able to identify DONKI CMEs within 2 hr of
the times listed in the Richardson and Cane (2010) catalog for 84 events (it is possible the DONKI events have
been updated by subsequent analysis). This list of 84 CME‐ICME associations is used in the remainder of the
study and is provided as Supporting Information S1. The lack of internal magnetic field in cone CMEs means that
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solar wind models do not resolve ICME substructure, such as the shock, sheath and ICME leading and trailing
edges. The ICME arrival time at 1 AU is therefore taken to be the time of the leading solar wind disturbance in
both the model and in situ solar wind observations.

Figure 3 shows a summary of the properties of the 84 observed CME‐ICME associations. Panel (a) shows that
there is a reasonable correlation between the CME radial speed at 0.1 AU, VCME, and CME angular half‐width, α,
as estimated by cone model fits to coronagraph observations. The linear correlation coefficient, rL, is 0.61. For 84

Figure 2. The solar equatorial plane from 0.1 to 1.1 AU from the HUXt model, for a uniform ambient solar wind of initial
speed 300 km/s. 1 AU is shown as the white dashed circle. CMEs have been inserted at identical launch times. In the top
panels (a, b), all CMEs have initial speeds VCME = 600 km s− 1 and varying CME angular half‐widths, α, as labeled. The
snapshot is shown 3.35 days after CME launch. In the bottom panels (c and d), all CMEs have α = 30° and a range of VCME
values, as labeled. Left‐hand panels (a, b) show spheroidal CMEs, where the pulse duration, Δt varies as Δt = ( tan α)/(VCME).
Right‐hand panels (b, d) show CMEs with fixed Δt = 8 hrs, irrespective of VCME and α.
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independent data points, this value is significantly different from zero correlation at the 99% confidence level.
Panel (b) shows α as a function of ICME radial extent at 1 AU, r1AU . This is estimated as the product of the ICME
duration—computed from the ICME start and end times in the Richardson and Cane (2010) catalog—and the
average ICME radial solar wind speed (Temmer et al., 2021). As ICMEs are often still expanding as they pass 1

Figure 3. A summary of observed properties of CMEs near the Sun and the resulting ICMEs at Earth. (a) CME angular half‐width, α, as a function of CME radial speed at
0.1 AU, VCME . Both parameters are determined from cone model fits to coronagraph observations. (b) α as a function of the ICME radial extent at 1 AU, r1AU , estimated
as the product of the ICME duration and average ICME radial speed. (c) r1AU as a function of VCME. (d) r1AU as a function of maximum ICME speed, V1AU . Panel text shows
the linear correlation coefficients, rL for each set of relations. The red lines in panel b show the spheroidal CME relations between α and radial extent at 0.1 AU. Blue lines
in panels (c, d) show the expected relations between speed and CME radial extent at 0.1 AU for fixed‐Δt CMEs.
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AU, this method of estimating r1AU likely presents an upper limit. But here we only consider the trends in r1AU , not
the absolute values. There is very little correlation between α and r1AU (rL = 0.18, which is not statistically
significantly different from 0, even at the 90% confidence level). The red lines show the spheroidal‐CME relations
between CME radial extent at 0.1 AU and α. Note that the observed relation is for r1AU , not radial extent 0.1 AU.
However, the lack of expected trend in the observations suggests that the spheroidal CME approximation may not
be valid. It should be noted that these events are a mix of nose and flank encounters of the ICME at 1 AU. This will
introduce noise into any relations between speed, angular width and radial extent. But it is not expected to have
any systematic effects on those trends.

Figures 3c and 3d show the relation of r1AU with VCME and maximum ICME speed, V1AU , respectively. There are
weak but significant correlations present (rL = 0.37 and 0.52, respectively, which are both significantly different
from zero correlation at the 99% confidence level). This is consistent with faster ICMEs expanding more in the
radial direction (Owens et al., 2005). This is contrary to the implicit assumption of spheroidal CMEs, which
exhibit no relation between CME radial extent at 0.1 AU and CME speed. It is not possible to draw strong
conclusions, however, as the observations are for r1AU , not radial extent at 0.1 AU, and interplanetary dynamics
and expansion will contribute to r1AU .

Figure 4a shows the observed 0.1 to 1 AU transit time, τ, as a function of VCME for the 84 CME‐ICME asso-
ciations. The observed τ values span approximately 1.5–4.5 days. There is a general trend toward lower τ for
higher VCME, but there is a good deal of scatter. This scatter is expected for a number of reasons (e.g., Temmer
et al., 2023). Firstly, there is uncertainty in VCME estimated from fitting cone models to coronagraph observations,
as well as deriving the time of the CME leading edge at 0.1 AU. Secondly, the CMEs have a range of different
propagation angles with respect to the Earth‐Sun line, meaning that not all ICMEs will be “direct hits”, which can
have significant impact on arrival times (e.g., Owens & Cargill, 2004; Scolini & Palmerio, 2024). Thirdly, the
CMEs will have propagated into a range of different ambient solar wind conditions and possibly other CMEs,
which has also been shown to influence CME propagation and transit time (e.g., Case et al., 2008; Temmer
et al., 2023; Wu et al., 2024).

The colors in Figure 4a indicate different coronagraph‐derived estimates of CME angular width, with blue dots
showing CMEs with α< 35°, black shows 35° ≤ α< 55°, and red shows α ≥ 55°. The trend of faster CMEs
having greater angular extent is apparent here. But for a given VCME, there does not appear to be any systematic
effect of α on τ.

Figure 4b shows that higher VCME generally produces faster ICMEs at 1 AU, though again there is a great deal of
scatter, for the same reasons as discussed above. Note that the 1‐AU ICME speed, V1AU is here taken to be the
maximum ICME speed from Richardson and Cane (2010), as this generally represents the leading‐edge speed
(Owens et al., 2005). Again, α does not appear to order the observations beyond the trend with VCME. The best‐fit

Figure 4. A summary of coronal mass ejection (CME) kinematics for the 84 events from combined coronagraph and in situ
observations. Blue dots show CMEs with coronagraph estimates of α< 35°, black shows 35° ≤ α< 55°, and red shows
α ≥ 55°. Panel a shows the 0.1 to 1‐AU transit time, τ, as a function of CME radial speed at 0.1 AU, VCME . Panel (b) shows 1‐
AU ICME speed, V1AU , as a function of VCME . Panel (c) shows aIP, the average acceleration between the 0.1 and 1 AU, as a
function of VCME. While wider CMEs are generally faster, the relations between CME speed and subsequent kinematic
properties do not seem to be further ordered by α.
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linear trend (not shown) is given by V1AU = 0.15VCME + 397 km s− 1, consistent with the slowest CMEs being
accelerated up to the ambient solar wind of approximately 400 km s− 1.

To better quantify the speed and transit time relations, Figure 4c shows the average interplanetary accelera-
tion, aIP,

aIP =
V1AU − VCME

τ
, (1)

as a function of VCME. As first described by Gopalswamy et al. (2000, 2001), there is a strong, approximately
linear relation between aIP and VCME, with aIP = 0 occurring around VCME = 350 to 450 km s− 1. This is a typical
ambient solar‐wind speed, again suggesting CMEs moving slower than the ambient solar wind are accelerated,
while those moving fast are decelerated. Such behavior is broadly consistent with a drag force acting on CMEs
during propagation to 1 AU (Cargill, 2004; Vrsnak & Gopalswamy, 2002). The observed VCME‐aIP relation
appears to be the same regardless of CME angular width.

3.2. Modeled Spheroidal CMEs

We next look at the results of modeling CMEs as spheroidal perturbations with HUXt. In order to clearly isolate
the effects of the spheroidal‐CME approximation, we seek to simplify everything else about the model runs.
HUXt is typically used with a realistically structured ambient solar wind provided by a coronal model. However,
in this study we are not seeking to accurately model the propagation of individual CMEs, but to investigate trends
in CME propagation which result from different approaches to “cone model” CMEs. Therefore a uniform ambient
solar wind of initial speed 350 km s− 1 at the inner boundary of 0.1 AU is used for all runs. Due to continued solar
wind acceleration within the model domain, this results in ambient solar‐wind speeds of approximately
400 km s− 1 at 1 AU, which is fairly typical for slow wind.

We consider CMEs with α values at the center of the three bins used for the observations in Figure 4. that is,
α = 25,40 and 65°. For spherocylinder CMEs, we only consider rc = 0.2 AU. This is a relatively large value,
chosen to highlight the difference of this approach from sin α spheroidal CMEs, which are effectively spher-
ocylinder CMEs with rC = 0. As will be seen below, it is also the value required in order to approximately match
the transit times of the fastest CMEs.

Figure 5 shows that the different spheroidal CME approaches show qualitatively similar results in terms of CME
kinematics. In Figure 5a it can be seen that for low VCME, all forms of spheroidal CME produce anomalously long
transit times (>5 days), regardless of α. This is because the low VCME produces a very long Δt. Such a long CME
pulse means the faster ambient wind inserted behind the pulse will not be able to catch up with the CME leading
edge. Effectively, long Δt makes it more difficult to accelerate the CME to the ambient solar‐wind speed than a
shorter CME pulse.

This same effect can also be seen for faster CMEs with smaller radial extents (those are sin α CMEs, and the tan α
CMEs with smaller angular extents. For these events, the ambient solar wind is too effective at slowing them and τ
plateaus around VCME = 1000 km s− 1, resulting in an overestimate of τ compared with observed values. The
increased Δt gained by the radial extent of wide tan α CMEs and the spherocylinder CMEs does provide a
reasonable match to the observed τ for the fastest CMEs.

Figures 5a and 5b show that while wide spherical CMEs do produce the low τ values that are observed for faster
CMEs, this results in a large overestimate of the 1‐AU speed of CMEs, V1AU . This is because wide spherical
CMEs produce long Δt regardless of VCME, and thus do not decelerate sufficiently by 1 AU.

All spheroidal approaches show V1AU reaching a maximum value around VCME = 1000 km s− 1, contrary to
observations. In fact, there is a small decrease in V1AU for the very highest values of VCME. This is a numerical
artifact; higher VCME values produce both stronger V gradients and shorter pulses at the inner boundary, which are
subject to increased numerical diffusion (despite being well below the Courant–Friedrichs–Lewy limit for nu-
merical stability), leading to slower CME speeds at 1 AU. There is also a small hint of an increase in τ for high
VCME. Increasing the spatial and temporal resolution of the HUXt model alleviates this, causing V1AU to plateau
around VCME = 1000 km s− 1, rather than slightly decline. While this is trivial to implement in HUXt, as it is very
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computationally efficient, we choose to show the lower resolution results here as greatly increasing resolution
would be undesirable in more sophisticated three‐dimensional MHD models, particularly in forecast scenarios.
Even with increased computational resource, the modeled behavior (of constant V1AU for VCME > 1000 km s− 1)
would remain, contrary to the observed trend.

The net effect of these behaviors are shown in the right‐hand panels of Figure 5. The average interplanetary
acceleration, aIP, for wide tan α spheroidal CMEs is markedly different from narrow and typical spheroidal
CMEs. Wide tan α spheroidal CMEs show a net positive acceleration for CMEs with VCME ≤ 1000 km s− 1,
contrary to observations, and insufficient deceleration for CMEs with VCME > 1000 km s− 1. For the sin α
spherical CMEs and spherocylinder CMEs, this α‐dependence is much weaker.

Thus, more accurate estimates of τ can be achieved by using wide tan α spheroidal CMEs (regardless of observed
α) or “thick” spherocylinder CMEs. But that is offset by greatly overestimating V1AU for slow and moderate speed
CMEs, and producing interplanetary acceleration profiles which are not consistent with observations. This is
problematic for two reasons. Firstly, prediction of V1AU is itself important for space‐weather forecasting (Owens,
Lockwood & Barnard, 2020). Secondly, it suggests that even when a match can be produced for 1‐AU arrival
times, the location of the CME at other points in the heliosphere would be incorrect.

The sin α CMEs are equivalent to spherocylinder CMEs with rC = 0. As sin α CMEs produce reasonable values
at moderate CME speeds and spherocylinder CMEs with rC = 0.2 AU produce reasonable values at high CME
speeds, these results suggest that making rC a constant value is not the best solution. It suggests that rC needs to be
a function of VCME.

Figure 5. A summary of observed and modeled coronal mass ejection (CME) kinematics for spheroidal CMEs. Black dots
show combined coronagraph and in situ observations. Lines in the top panels (a–c) show results from HUXt for spheroidal
CMEs using r0 = tan α for a range of α (blue, black and red corresponding to α = 25,40 and 65°, respectively). Middle
panels (d–f) show the same for spheroidal CMEs using r0 = sin α. Bottom panels (g–i) show the spherocylinder CME using
rC = 0.2 AU. Left‐hand panels (a, d and g) show the 0.1 to 1‐AU transit time, τ as a function of CME radial speed at 0.1 AU,
VCME . Middle panels (b, e and h) show 1‐AU ICME speed, V1AU , as a function of VCME . Right‐hand panels (c, f and i) show the
average acceleration between 0.1 and 1 AU, aIP, as a function of VCME .
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3.3. An Alternative Approach: Fixed‐Δt CMEs

The primary purpose of this study is to highlight issues with the current “spheroidal” implementations of cone‐
model CMEs in solar‐wind models. However, we do outline a simple alternative approach here. It is not intended
to be a complete solution to the problem; that will require careful calibration against observations in a future
study.

For all spheroidal CMEs, the initial radial extent of the perturbation (and hence Δt), is determined by the CME
angular width. Instead, we fix Δt at a constant value for all CMEs, regardless of CME speed or angular width. This
means r0 is now directly proportional to VCME, consistent with faster CMEs expanding more, as observed (Owens
et al., 2005). This fixed‐Δt CME approach is simple to implement in current modeling frameworks (e.g., it
required changing only a single line of code in HUXt, and is likely to be similarly straightforward for other solar‐
wind models): the shape and CME radial extent are computed in the exact same way as for the spheroidal CME,
merely the speed at which the structure is advected through the inner boundary is altered to achieve the required
Δt (though the speed of the perturbation at the solar‐wind inner boundary remains VCME).

For demonstration purposes, we use Δt = 8 hrs. The resulting relation between CME radial extent at 0.1 AU and
VCME is shown as the blue lines in Figures 3c and 3d. In Figure 3d, V1AU is first converted to VCME using the
observed best‐fit relation outlined above. In general, the model 0.1 AU radial extents are smaller than the 1 AU
observations, consistent with continued CME expansion during propagation to Earth. But the same general trends
are present.

Such fixed‐Δt CMEs produce transversely elongated structures in the solar wind, as shown in Figures 2b and 2d,
and consistent with expected distortion from spherical expansion (Owens et al., 2006; Riley & Crooker, 2004).
Figure 2b shows some general illustrations: fixed‐Δt CMEs of the same VCME produce identical τ, regardless of
angular width. They also produce the same ICME duration at 1 AU, regardless of angular width, as observed.
Figure 2d suggests that these fixed‐Δt CMEs produce τ more closely related to VCME than spheroidal CMEs (i.e.,
there is no obvious plateau in τ at high VCME). A trend between r1AU and VCME is also apparent, as observed.

Figure 6 shows the HUXt CME propagation results for the fixed‐Δt CME approach. As illustrated in Figure 2b,
CME kinematics are identical for all values of α. For slow CMEs (VCME ≤400 km s− 1), Δt is significantly smaller
than for spheroidal CMEs, so the CME experiences more acceleration from the ambient solar wind. This produces
lower τ values, reaching a maximum value of around 5 days, in much closer agreement with the observations.
τ also continues to (non‐linearly) decline with VCME at high values, as suggested by the available observations.
These lower τ values are achieved without a large systematic overestimation of V1AU for slower and moderate
CMEs. The net acceleration, aIP, is still a little high for the fixed‐Δt CMEs, but it is in far closer agreement with
observations than wide spheroidal CMEs. Importantly, the aIP trend with VCME is the same for all values of α, as
observed.

Figure 6. A summary of observed and modeled coronal mass ejection (CME) kinematics for fixed‐Δt CMEs. Black dots
show combined coronagraph and in situ observations. Red lines show results from HUXt for spheroidal CMEs with a fixed
duration at 0.1 AU of 8 hr. Panel (a) shows the 0.1 to 1‐AU transit time, τ, as a function of CME radial speed at 0.1 AU, VCME.
Panel (b) shows 1‐AU ICME speed, V1AU , as a function of VCME. Panel (c) shows aIP, average acceleration between the 0.1 and
1 AU, as a function of VCME.
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4. Summary and Discussion
Simple geometrical models—cone models—are routinely used with coronagraph observations to estimate the
three‐dimensional properties of CMEs near the Sun. In order to propagate these structures to Earth—for both
research and space‐weather forecasting purposes—a spherical (or spheroidal) perturbation is inserted at the inner
boundary of a solar‐wind model with the observed cone‐model estimates of CME timing, direction, speed and
angular width. The implicit assumption of the spheroidal CME approach is that the radial extent of the CME
perturbation is related to the angular width of the CME. This study has examined the implications of that
assumption.

Spheroidal CMEs produce a speed pulse at the solar‐wind model inner boundary whose duration increases with
CME angular width. The pulse duration, Δt, determines the degree to which the CME is affected by the ambient
solar wind into which it propagates; lower Δt means a CME is more susceptible to solar‐wind influence than
greater Δt. By simulating different forms of spheroidal CMEs, with a range of different speeds and angular
widths, and comparing with observed CME properties, we have shown:

1. Spheroidal CMEs have a radial extent at 0.1 AU, r0, that increases with CME angular width. There is no
evidence for this in the observations at 1 AU, although interplanetary dynamics between 0.1 and 1 AU could
mask the effect.

2. Slow spheroidal CMEs produce very long Δt and thus are not accelerated up to the ambient solar wind speeds.
This produces 1‐AU transit times, τ, much longer than observed.

3. Spheroidal CMEs with moderate angular widths tend to overestimate τ for fast CMEs.
4. Spheroidal CMEs with large angular widths produce long Δt. While this is effective in producing the short τ

values that are observed for the fastest CMEs, it greatly overestimates the ICME speed at 1 AU.
5. The interplanetary acceleration of CMEs between 0.1 and 1 AU shows significant disagreement with ob-

servations for very wide spheroidal CMEs.

We note that the results obtained in this study are based on a one‐dimensional, reduced physics solar‐wind model
(HUXt). The expectation is that the same trends would be present regardless of solar‐wind model used, as they are
arise from purely geometric properties of cone CMEs. But future work will verify this.

While this study has focussed on speed perturbations to approximate CMEs, combined speed and density per-
turbations are also sometimes used (e.g., Odstrcil, Riley, & Zhao, 2004). This is unlikely to greatly affect the
trends presented here, as both fast and slow CMEs become more resistant to acceleration by the ambient solar
wind. These same issues will also be present in more sophisticated representations of CMEs, such as magnetic
flux‐ropes (Verbeke et al., 2019), if they are also approximated as spheroidal in shape. Evolving flux‐rope ap-
proaches have been developed (Shiota & Kataoka, 2016), which can potentially alleviate these issues. However,
for routine operational space‐weather forecasting, these approaches are not practical, and the simple speed
perturbations investigated here still need to be employed.

As an alternative to spheroidal CMEs we outlined a simple approach in which Δt is fixed, regardless of CME
angular width or speed. This produces CMEs with r0 that increases linearly with CME speed. This is in better
agreement with the available observations both presented here, and with previous studies of ICME expansion at 1
AU (Owens et al., 2005). Using solar‐wind modeling, we have shown that the fixed‐Δt CME approach produces
arrival times, arrival speeds and interplanetary accelerations that are in far better agreement with the available
observations.

A somewhat arbitrary value of Δt = 8 hrs was used for demonstration purposes in this study. However, this value
needs careful calibration against a large data set of combined CME (e.g., Kay & Palmerio, 2024) and ICME
observations (e.g., Richardson & Cane, 2010), in order to find both the optimum value and its uncertainty range.
The latter is required for accurate use in ensemble CME and solar‐wind modeling (e.g., Edward‐Inatimi
et al., 2024; Mays et al., 2015; Owens & Riley, 2017). It may be possible that some speed or angular‐width
dependence of the Δt value is required, rather than being completely fixed. But these initial results suggest
that any relation is likely to be small, and certainly significantly weaker than is introduced by the spheroidal CME
approximation.

It will also be necessary to fully account for the uncertainty in the CME observations. The cone model parameters
estimated from coronagraph observations are primarily estimated based on observations within 0.1 AU. The
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speed and timing of the CME at 0.1 AU is then determined by simple ballistic extrapolation. As fast CMEs will
decelerate most rapidly close to the Sun, owing to the slower ambient solar‐wind speeds, this may introduce
significant error into the initial CME conditions used in the solar‐wind models.

The fixed‐Δt CME approach presented here mimics CME expansion in terms of the duration of the CME
perturbation at the inner boundary of the solar‐wind model. But, as with spheroidal CMEs, the solar‐wind speed is
held constant at the coronagraph‐derived speed, VCME, as the CME passes through the inner boundary. That is, the
time profile of the speed perturbation does not account for the expansion of the CME as it passes through the inner
boundary, which would decline from the CME leading edge to the CME trailing edge. The effect on CME dy-
namics of introducing CMEs into solar‐wind models with a declining speed profile, to be more consistent with
expansion, will be investigated in a future study. However, quantifying CME expansion from observations is
difficult, due to limited observations inside 1 AU and high event‐to‐event variability (Agarwal & Mishra, 2024;
Savani et al., 2009). The simplicity of the cone‐CME approach, in particular the lack of internal magnetic field
structure, means that interpreting our results in terms of the physics of real CMEs is difficult. If these results are
replicated in CME simulations using an internal flux‐rope magnetic field (Verbeke et al., 2019), then we may be
able to learn more about the dynamics of CMEs, particularly their radial expansion, close to the Sun.

Data Availability Statement
All code and data is available at Owens and Barnard (2025).
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