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Abstract

Shallow cumulus clouds are precursors to deep convection, which can lead to extreme weather
events that are difficult to forecast. Therefore, to more accurately predict these events, the pre-
ceding environment must first be accurately forecast. Advances in computational power have
enabled numerical weather prediction models to run with kilometre and sub-kilometer scale
grids. Such models can only partially resolve the dominant turbulent structures within the flow,
and therefore the unresolved turbulence still needs to be parametrized. Traditional parametriza-
tion schemes for shallow cumulus convection are not valid at these grid scales, as they rely on
the assumption that all turbulent motions are entirely subgrid scale. This gives rise to the grey-
zone regime, which occurs when the scales of the dominant turbulent motions are comparable
to the grid length of the model. The aim of this work is to improve the model’s ability to capture
the effects, at coarse resolution, of the turbulent structures which transport heat, moisture, and
momentum to cumulus clouds, thereby mitigating the impact of the grey-zone.

The primary objective of this research is to develop a parametrization that enables the exten-
sion of large eddy simulation (LES) abilities to coarser grid scales, traditionally categorised
as grey-zone scales, while maintaining accuracy and low computational costs. The Met Of-
fice/NERC Cloud (MONC) LES model was used to produce high-resolution fields for three
case studies: an idealised dry convective boundary layer case, the Barbados Oceanographic
and Meteorological EXperiment (BOMEX) case, and the Atmospheric Radiation Measurement
(ARM) case. The dynamic Smagorinsky equations were applied to the resulting fields to pro-
duce flow-dependent Smagorinsky parameters. These parameters define the mixing length in
the model. By analysing their behaviour, significant variations in turbulent mixing have been
identified between the mixed layer, cloud-free environment, and in-cloud regions of the cloud-
topped boundary layer (CTBL). The findings reveal that the Smagorinsky parameters for mo-
mentum, heat, and moisture are significantly influenced by both the flow regime and filter scale.
These dependencies are not accounted for in the standard model. A scale-adaptive relationship
between height and the Smagorinsky parameters could then be derived for each variable.

A novel parametrization scheme has been developed using these relationships to serve as a grey-
zone adaption, enabling the model to capture the key flow dependencies without incurring high
computational expense. This aims to deliver the benefits of a dynamic Smagorinsky method but
negates the need to compute the parameters at each grid point and time step. The MONC model
was modified to include this parametrization in the subgrid scheme, and the resulting grey-zone
simulations demonstrated substantial improvements, particularly in terms of cloud initiation
time and cloud layer growth. Furthermore, the research underscores the importance of recog-
nizing the variations in turbulent mixing lengths, as the dynamics of the turbulent flow in the
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CTBL are inherently linked to the grid scale, stability, and flow regimes. This parametrization
addresses the limitations of using fixed parameter values when modelling convective turbulence
in a CTBL. This research presents a significant step forward in addressing the challenges posed
by the grey-zone in modelling shallow cumulus convection. Valuable insights into the dynamics
of turbulent mixing in the CTBL offer a promising framework for advancing the capabilities of
LES models in the grey-zone regime.
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1 Introduction

The objective of this project is to improve simulations of cloud-topped boundary layers (CTBL)
at grey-zone resolutions. In the grey-zone regime, the model cannot fully resolve the turbulent
eddies in the flow, causing the structures which transport momentum, heat, and moisture to be
only partially resolved. The grey-zone was first defined by Wyngaard (2004) as occurring when
the grid spacing of the model is of the same order as the length scales of the dominant coherent
structures in the flow. However, the effects of the grey-zone regime begin when grid spacings
are finer than the dominant scales of the flow. This is partly because dissipation of energy due
to the model dynamics exacerbates the grey-zone issue, and partially because the scales of mo-
tion vary with location and can have very small scales, particularly at boundaries, inversions,
and transitions. The overarching aim of this project is to impede excessive energy dissipation
at coarse resolution and delay the onset of the grey-zone by extending the capabilities of the
large eddy simulation (LES) method to larger grid spacings. A dynamic Smagorinsky method
is applied to high-resolution fields of CTBL data via the Germano identity. This enables the
computation of flow-dependent parameters, and is used to calculate fields of the Smagorinsky
parameter for momentum, heat, and moisture in the CTBL. These parameters govern the dis-
sipation of quantities in the simulation. It is hypothesised that, by analysing the dynamically
computed parameter fields, relationships between the flow and the Smagorinsky parameter can
be found and parametrized, thus allowing for the development of a model which more accu-
rately dissipates energy at grey-zone resolutions.

This study uses the Met Office/NERC Cloud (MONC) LES model to produce high-resolution
output fields of the CTBL. MONC uses the Smagorinsky subgrid scheme, which prevents a
buildup of energy at small scales by imposing an eddy viscosity on the flow. In the standard
Smagorinsky model this viscosity is a function of the Smagorinsky parameter, which is set to a
constant. In order to investigate if the viscosity being prescribed by the model is too large, and
thus compounding the energy dissipation problem in the grey-zone, flow and scale-dependent
parameters are calculated. Dynamic methods (outlined in Section 3) are used to calculate these
flow and scale-dependent parameters for momentum, heat, and moisture individually, unlike
the standard model which fixes all scalars to the same value parameter. The standard model
also forces the diffusion of scalar parameters to depend on their momentum counterpart. The
Smagorinsky parameter for scalars is determined using the equivalent momentum parameter
and a Prandtl number, which is used as the constant of proportionality (see Equation 3.28). One
aim of this project is to investigate if allowing parameters to be scalar-dependent is important,
rather than relying on the current approach of prescribing them with fixed values and momen-
tum dependencies. This project focuses on computing flow-dependent mixing lengths for not
only momentum, as in most of the previous literature, but also for the heat and total moisture
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scalars. The output fields of each of these mixing lengths are analysed, with particular focus on
values near and within clouds and thermals, as well as at cloud base, cloud top, and temperature
inversions.

The dominant scales of the overturning circulation in a CTBL are determined by the mixed layer
(ML) inversion height and cloud layer (CL) depth, with O(λML) ≈ O(λCL) ≈ 1 km. Three
well-studied cases of convection within the cloud-topped boundary layer have been studied, an
idealised dry convective boundary layer (CBL) case, the Barbados Oceanographic and Meteoro-
logical Experiment (BOMEX) case and the Atmospheric Radiation Measurement (ARM) case
(based in the Southern Great Plains, Oklahoma). The BOMEX case is of a marine boundary
layer (MBL), quasi-steady and driven by latent heat fluxes. In contrast, the ARM case is based
on a diurnal cycle over arid, flat land, driven by sensible heat fluxes and demonstrating many
transitions: from the shallow morning-time boundary layer, to a convective “dry” boundary
layer, to one with the onset of clouds, moving to a more rapid cloud development stage, and fi-
nally reaching a quasi-steady like stage in the evening. These cases allow for the effects of time
dependence, regime and stability dependence, filter scale dependence, and scalar dependence of
the Smagorinsky parameters to be investigated. The Smagorinsky parameter is strongly influ-
enced by features of the CBL such as stability changes (eg: at the mixed layer inversion height,
cloud top height), and position relative to clouds and thermals. The cloudy regions are further
partitioned into 3 subsets: in-cloud, cloud updraft, and cloud core (See Section 7 for definitions)
to investigate the effect that motions within the cloud can have on the Smagorinsky parameters.
The fields are filtered to various resolutions, with filter scales ranging from 2∆ to 128∆ being
analysed (See Section 4.4 for filter scale definitions), to investigate how these features interact
with the Smagorinsky parameter as resolution decreases toward grey-zone scales. The effects
of the CTBL features and changes in grid-scale on the Smagorinsky parameter values are quan-
tified, allowing relationships between the parameters and the flow/filter scale to be devised.

The relationships between the Smagorinsky parameters and (a) the flow regime, and (b) the
filter-scale of a model can then be used to devise a new parametrization scheme. In theory
this would allow the model to capture the effect that these features have on the flow, with-
out the computational expense associated with dynamically calculating the parameters. The
hope is that, with the new parametrization scheme, the model will be better able to adapt to
the challenges posed by the grey-zone regime. To test this hypothesis, the MONC model is
altered to include the new parametrization scheme. Multiple different configurations of the new
parametrization scheme will be used to run MONC simulations at coarse, grey-zone resolutions.
The outputs from the updated model can be compared to high-resolution LES fields from the
standard model. Furthermore, MONC simulations at grey-zone scales are also used as a com-
parison to determine the effect that the new parametrization scheme has on CTBL simulations.
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1.1 Aims of this Thesis

This project aims to answer the following research questions:

• Does the Smagorinsky scheme exhibit a specific filter shape that scales uniformly with
grid spacing, and can its filter scale be derived? How does the Smagorinsky filter compare
to the Gaussian filter? How can the Gaussian-filtered data be related back to a grid-based
scale?

• Do the Smagorinsky parameters exhibit systematic patterns based on flow regimes, and
if so, are there significant differences in the transport and diffusion characteristics of
momentum, heat, and moisture within each of these regimes?

• What is the impact of filter scale on the various Smagorinsky parameters within the three
flow regimes of interest?

• Can a scale-adaptive relationship be established between height and the Smagorinsky
parameters within each flow regime? Does this empirical parametrization improve LES
of CTBLs in the grey-zone?

1.2 Thesis Outline and Structure

Throughout this work, the dynamic Smagorinsky equations and the Germano method were em-
ployed to produce flow-dependent fields of mixing length parameters for CTBLs. This data has
been analysed and it has been demonstrated that the mixing length scales are different between
distinct parts of the flow. Furthermore, the value of these length scales have been found to
depend on the variable in question, be it momentum, heat, or moisture. The length scale pa-
rameters exhibit a strong dependency on the filter scale; Parameter values decrease, indicating
the model’s diminishing ability to resolve the flow, as the filter scale increases and resolution
coarsens. These dependencies have been amalgamated to derive a new parametrization for the
Smagorinsky parameter in the subgrid scheme. This parametrization has been implemented in
the MONC model, resulting in improvements in cloud initiation time, and overall evolution of
the cloud layer.

The work in this thesis is structured as follows. This thesis begins with Chapter 2 presenting an
overview of previous literature which is important for this work. This chapter provides foun-
dational knowledge of the atmospheric boundary layer theory, particularly in relation to shal-
low cumulus convection. Key concepts are introduced relating to transport, diffusion, and the
challenges posed by the grey-zone in turbulence modelling. Chapter 3 discusses the Smagorin-
sky subgrid scheme in detail, with the defining equations of this model being presented there.
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Chapter 4 focuses on the case studies and model set-up, used throughout this investigation.
The basics of the MONC model, the configurations for various test cases (e.g., the dry CBL,
BOMEX, ARM), and data post-processing methods are detailed in this chapter. The method of
filtering LES outputs is also explained, and the offline dynamic model which is used to compute
Smagorinsky parameters is introduced. Chapter 5 explores whether the Smagorinsky scheme
behaves as a filter, comparing its behaviour with Gaussian filters in spectral space. This chapter
provides a detailed comparison between the two filters. Chapter 6 investigates how turbulent
mixing differs between the distinct flow regimes within the CTBL. This chapter also examines
the effects of partitioning the high-resolution fields of the CTBL into the mixed layer, cloud-
free, and in cloud regions. Chapter 7 investigates the effect of filter scale on the Smagorinsky
parameter values. It evaluates the impact of filter scale on cloud cover and discusses trends
and responses of momentum and scalar parameters to these changes. Chapter 8 combines
all the work from the previous chapters to derive a new mixing length parametrization. This
parametrization allows the Smagorinsky parameter to account for systematic dependencies ob-
served in previous chapters. The variations in Smagorinsky parameters across different regions
are analysed, and experiments using different configurations of the model are used to test the
new parameterization. Finally, Chapter 9 concludes by summarizing key findings in this thesis,
discussing the broader implications of the research, addressing limitations, and offering direc-
tions for future work before closing with final remarks.
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2 Background Theory and Literature Review

2.1 The Boundary Layer

The shallow cumulus (ShCu) boundary layer consists of a convective cloud field of cumulus
cloud which forms on top of the CBL, a layer which is dominated by large convective updrafts
(Houze, 2014). While precipitation can be common in tradewind ShCu convection, the cloud-
topped boundary layers focused on in this study are limited to those with non-precipitating
cumulus. The CBL is a well mixed layer where the circulation is driven by convective thermal
updrafts that exist across the whole domain. These thermals originate at the surface and extend
in the vertical, until reaching the top of the mixed layer (Garratt, 1994). This turbulent circula-
tion is a very important transport process (Stull, 2009), with these thermals carrying momentum,
moisture, heat, and other quantities throughout the depth of the CBL. The largest thermals are
known as the dominant coherent structures of the flow, and these are the energy-containing ed-
dies which scale to the depth of the CBL zi.

CTBL commonly occur when both sensible and latent heat are provided to the system from the
surface, giving rise to a conditionally unstable layer. In such cases air rises until meeting the
lifting condensation level (LCL), at which point the ascending air parcel becomes saturated and
the moisture within the parcel begins to condense and release latent heat. The high levels of
condensation occurring at the cloud base are then balanced by turbulent mixing, which allows
the heat generated to be transported up throughout the cloud (Siebesma and Cuijpers, 1995).
Cumulus clouds are low level clouds, with Orlanski (1975) stating that their cloud base is usu-
ally located in the bottom 2 km of the atmosphere. ShCu are identified as individual clouds,
with both their vertical and horizontal scales of the order of 1 km (Houze, 2014). The majority
of these clouds stay this size for the entirety of their lifetime, provided they remain isolated
from one another. Though shallow cumuli are small in scale, they have a substantial impact on
the climate system due to their prevalence.

2.1.1 Marine Boundary Layer

Convective turbulence in the MBLs are mostly driven by latent heat fluxes, with fluxes of sensi-
ble heat being less influential. Often times MBLs are topped by a cloud layer, with a significant
portion of the surface evaporation driving the moisture flux near the cloud base (Garratt, 1994).
As the MBL top does not always coincide with a temperature inversion or cloud top, the MBL
is defined as the part of the atmosphere which is directly coupled to the ocean’s surface by tur-
bulent transfer of quantities such as moisture, momentum, and heat (Garratt, 1994). Due to the
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large heat capacity of the ocean, MBLs do not experience significant changes during the diur-
nal cycle and so are often considered as being in quasi-steady equilibrium. This is notable as
Siebesma and Cuijpers (1995) states that it is common for diagnostic cumulus parametrization
schemes to assume steady-state conditions.

Due to the typical atmospheric conditions over oceans, fields of small cumulus clouds are a com-
mon feature above MBLs. Johnson (1976) states that, across the tropics, shallow cumuli are the
most abundant cloud type, while in the sub-tropics Norris (1999) notes that ShCu convection
underlies and sustains a substantial amount of the stratocumulus fields. As a consequence of
their prevalence, ShCu clouds are of great importance to the global climate. These clouds have
a notable impact on the Earth’s radiative energy budget, both at the surface and at the top of the
cloud layer (Neggers et al., 2003; Bretherton et al., 2004). CTBLs are thought to have a large
influence over the exchange of latent and sensible heat at the the ocean–atmosphere boundary
(Neggers et al., 2003), and trade wind cumuli are known to supply this heat energy to the Hadley
circulation, thus intensifying the large scale global circulation (Siebesma and Cuijpers, 1995).
ShCu clouds also have an effect on key characteristics of the boundary layer. The boundary
layer depth, temperature, relative humidity, and winds are altered by this convection, as air is
vented from the mixed layer to the free troposphere (Bretherton et al., 2004). ShCu convection
thereby has a large influence over the vertical transport of momentum, heat, and moisture (Neg-
gers et al., 2003).

2.1.2 Shallow Cumulus Convection

CTBL occur in areas where both sensible and latent heat are input at the surface, as these con-
ditions give rise to a conditionally unstable layer. ShCu boundary layers (BL) consist of a CL,
which is comprised of a field of non-precipitating cumulus clouds that have formed on top of the
ML (Houze, 2014). The circulation in the BL is an important transport process as the thermals
carry momentum, moisture, heat, and other quantities throughout the depth of the CBL (Stull,
2009). The top of the mixed layer, zML, is defined as the height at which turbulence decouples
from the surface forcings. The case studies in this work show zML aligning with both the cloud
base height zcb, and the temperature inversion level zi. While these three levels are often close,
they do not always correspond to the same height levels. The height levels which are relevant
to the cases analysed in this work are discussed further in Section 6.2.1.

The cloud base in CBLs can be used as a proxy for the lifting condensation level (LCL). The
LCL is the point at which moisture in ascending air parcels begins to condense out and release
latent heat resulting in the formation of clouds. The height level at which this latent heat re-
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lease causes the parcel to be warmer than its surrounding environment, and therefore positively
buoyant, is known as the level of free convection (LFC). ShCu clouds usually form on top of
thermals as they supply heat, moisture, and energy to the growing cloud. Bretherton et al. (2004)
states that turbulent mixing processes in both the mixed layer and the near-cloud environment
can have a strong effect on cloud formation and growth. The large amount of condensation
occurring at the cloud base results in high levels of mixing, as the latent heat release drives the
circulation within the cloud, resulting in the transport of buoyant energy throughout the cloud
(Siebesma and Cuijpers, 1995). The main path taken by the positively buoyant ascending air
forms the cloud core region. Cloud cores often influence the surrounding air and drag it upwards
alongside the main channel of ascending air. This causes an area of positive vertical velocity,
despite not being positively buoyant, known as the cloud updraft. These upward motions con-
tinue rising until the moisture has condensed out or been detrained into the environment and the
parcel becomes the same temperature as the surrounding non-cloudy environment. The height
at which this occurs is known as the level of neutral buoyancy (LNB), and it can be used as a
proxy for the average cloud top height, zCT. Some rising air parcels will overshoot the LNB,
before becoming negatively buoyant and sinking. This overshooting serves to grow the cloud
layer by raising the average cloud top height, while also entraining warm, dry air from the over-
lying air into the CL, resulting in high levels of mixing at the cloud top.

Neggers et al. (2003) discuss how sensitivity studies have shown ShCu convection to have a
significant impact on the resolved climate in global climate models (GCM). Despite the pro-
nounced role of ShCu in global weather and climate, as well as their prevalence, ShCu convec-
tion is not well represented in numerical models (Siebesma and Cuijpers, 1995). The underlying
assumptions made for convection parametrizations in NWP models no longer hold when models
move to higher resolutions and into grey-zone regimes. This is because the energy-containing
convective structures become the same scale as the model grid, and as a result, these motions
are under-resolved and grid-scale dependent, rendering the closure methods used in conven-
tional parametrization schemes invalid (Sakradzija et al., 2016). Despite these known issues,
turbulence closures for conventional NWP schemes continue to be used for models in the grey-
zone due to the lack of alternative parametrization schemes. Neggers et al. (2003) comments
that problems still arise from using cumulus convection schemes in GCMs when representing
aspects of ShCu topped boundary layers. A schematic of the stages of the life cycle of shallow
cumuli from Cuijpers (1994) is presented in Figure 2.1. This schematic represents the growth
of cumulus clouds in a MBL over time, however the lifecycle of clouds over land during the
diurnal cycle is similar.
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Figure 2.1: Lifecycle of ShCu clouds in a MBL from Cuijpers (1994).

2.1.3 Climate Impacts of Shallow Cumulus Clouds

ShCu clouds typically form over MBLs, with this study focusing on non-precipitating ShCu.
These clouds play an influential role in the Earth’s climate system due to their spatial extent
across the globe. The radiative properties of ShCu, particularly their capacity to reflect incom-
ing shortwave radiation, causing a net cooling effect, mean that they have a large influence
on the surface energy budget. However, ShCu clouds remain a major source of uncertainty in
climate projections, largely due to the difficulty in representing their formation, evolution, and
radiative impact within GCMs. Work by Bony and Dufresne (2005) demonstrated that varia-
tions in low-cloud cover across climate models account for a significant portion of the spread in
equilibrium climate sensitivity, highlighting the importance of identifying and quantifying the
feedbacks associated with ShCu. This was one of the motivations for the EUREC4A campaign:
Elucidating the Role of Clouds–Circulation Coupling in Climate. Bony et al. (2017) states that
the aim of this field campaign was to quantify the physical properties of trade-wind ShCu, such
as the water content and cloud fraction as a function of the large-scale environment. If these
properties can be correctly accounted for in models, the hope is that it will improve the interac-
tion between ShCu and the large-scale system in GCMs.

Studies have increasingly focused on the dynamical coupling between ShCu and their surround-
ing environment. Nuijens et al. (2015) examined the sensitivities of trade-wind cumulus to
large-scale processes, comparing model data to observations from satellite and aircraft data.
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This study concluded that many models were unable to capture the processes which affect the
cloud fraction and lifetime of low-level clouds, thereby impairing the model’s ability to predict
future climate scenarios. Other work has been carried out to investigate the interaction between
ShCu convection and climate variability. Brient and Schneider (2016) investigated cloud feed-
back sensitivity to sea surface temperature anomalies and found that the vertical velocity of the
shallow convection, along with the relative humidity, influences the shortwave cloud radiative
effects. These are all mechanisms which are sensitive to climate change, and thus understand-
ing their influence and interaction on ShCu is important if it is to be captured correctly in GCMs.

In summary, the role of ShCu in the climate system remains a focal point in climate science due
to the sensitivity of ShCu to environmental changes, along with ShCu’s role in influencing the
Earth’s radiation budget. As the climate system continues to warm, reducing uncertainties as-
sociated with ShCu convection is essential for narrowing projections of future climate change.
While there have been advances in the understanding of cloud–circulation coupling and feed-
backs in recent years, persistent biases in the cloud representation within models highlights
the need for further research, improved high-resolution modelling, and new parametrization
schemes.

2.2 Transport and Diffusion in the Convective Boundary Layer

In atmospheric modelling, turbulent transport of heat and moisture plays a crucial role in rep-
resenting processes within the atmospheric boundary layer. LES models often impose similar
mechanisms of transport for heat and other scalars, such as moisture and pollutants, within the
turbulent flow despite differences in how they interact with the system. In such models, po-
tential temperature (θ) and water vapour (qv) are recognised as active scalars as they interact
with the modelled flow field by affecting the density field. Meanwhile, other scalars such as
pollutants are passive scalars as they do not have a direct feedback on the simulated flow. The
assumption that all of these scalars are being transported in the same way leads to the Schmidt
number, which defines the ratio of momentum diffusivity to mass diffusivity, being assumed
identical to the Prandtl number for heat in atmospheric models (Li, 2019). The Prandtl number
is similar to the Schmidt number in that it describes the ratio of momentum diffusivity to heat
diffusivity. Both of these quantities are discussed further in Section 2.2.2 below.

2.2.1 Transport of Heat

In terms of heat transport and diffusion, different forms of potential temperature can be em-
ployed to better capture various processes. The potential temperature θ, relates to the dry atmo-
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sphere, while virtual potential temperature (θv) recognises density differences between water
vapour and air, and is therefore a useful proxy for buoyancy. However both these thermody-
namic variables are not cloud conserved. The liquid water potential temperature (θL), intro-
duced by Betts (1973), accounts for the presence of liquid water in non-precipitating clouds.
The equivalent potential temperature (θe) represents the total energy, combining sensible heat,
latent heat, and moisture. The θL and θe quantities are conserved within clouds. The equations
for these variables are grouped according to their conservation properties in Table 2.1.

Non-conserved Heat Variables Conserved Heat Variables

Potential temperature: Equivalent potential temperature:

θ = T
Ä
p
p0

ä− Rd
cpd θe ≈

Ä
T Lv

cpd
rv
ä Ä

p
p0

ä− Rd
cpd

Virtual potential temperature: Liquid water potential temperature:
θv ≈ θ (1− 0.61rv − rL) θL ≈ θ −

Ä
Lv

Cpd

ä
rL

Table 2.1: Formulas to calculate the various heat variables, grouped according to their conservation
properties.

In Table 2.1, T is the temperature at the height level of interest, p is the pressure at this level,
while p0 is the reference pressure, usually p0 = 1000 hPa. The gas constant for dry air is given
by Rd = 287.04, while the specific heat capacity for dry air is cpd ≈ 1003.5. Lv is the latent
heat of vaporization, rv is the mixing ratio of water vapour in the air, while rL is the mixing
ratio of liquid water in the air.

Efstathiou et al. (2024) emphasized the role of heat transport in clouds, particularly during the
shallow cloud stage. This study shows significant positive fluxes in the cloud layer, indicating
strong counter-gradient heat transport. In their simulations, LES data with a grid spacing of
∆x = 50m suggests that turbulent Prandtl numbers tend to zero in clouds. This highlights the
failure of the Smagorinsky model as it is unable to account for upscale transport, and instead re-
sorts to shutting off heat dissipation. Similar findings by Shi et al. (2018) show that the subgrid
scale (SGS) fluxes of heat and moisture behave differently within cloud layers, necessitating
scalar-specific treatment for accurate representation of turbulent transport.

2.2.2 Prandtl and Schmidt Numbers

The Prandtl and Schmidt numbers vary within individual flows, suggesting that constant values
used in traditional models do not adequately capture the nuances of scalar transport. This is
particularly important when considering SGS scalar diffusivities. A study by Shi et al. (2018)

10



shows that dynamic models which compute independent SGS eddy diffusivities for scalar mix-
ing, perform better compared to models that rely on constant Prandtl and Schmidt numbers.
Specifically, this work indicates that moisture transport differs from heat transport, especially
near the cloud base, where the eddy diffusivity for heat shows a sharp transition, with large
values below the cloud and suppressed mixing within the cloud layer. However, the eddy dif-
fusivity for moisture does not show this tendency to reduce mixing in-cloud. The majority of
the CL exhibits values comparable to the ML, except near the cloud top, where a reduction in
moisture mixing is observed.

The Prandtl number is an intrinsic property of the fluid. It describes the ratio of kinematic eddy
viscosity νm to heat diffusivity νθ, essentially determining the degree of similarity between the
transport of heat and momentum (Li, 2019):

Pr =
νm
νθ

(2.1)

A small Prandtl number value of less than one means that the heat diffusivity dominates the
flow, with large thermal structures transporting heat and smaller structures transporting mo-
mentum. A Prandtl number of one suggests that the structures transporting heat are of the same
size as those transporting momentum, and there is identical diffusion between these two quan-
tities. Meanwhile, Prandtl number values larger than one indicate that momentum diffusivity
is the dominant behaviour within the flow. For scalars other than heat, this ratio can be made
more general by using the Prandtl number’s counterpart, the Schmidt number Sc. The Schmidt
number is the ratio of νm, the momentum diffusivity, to νψ, where νψ is the mass diffusivity of
a given scalar ψ in the flow.

Scψ =
νm
νψ

(2.2)

The Schmidt number for any scalar Scψ is a property of both the fluid and the scalar being dif-
fused, and it is of the order one in the atmospheric boundary layer (Gualtieri et al., 2017).

2.3 Modelling the Cloud-Topped Boundary Layer

Neggers et al. (2003) discuss how sensitivity studies have shown ShCu convection to have a
significant impact on the resolved climate in GCMs. Despite this, along with the prevalence of
ShCu clouds and their pronounced role in global weather and climate, ShCu convection is not
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well represented in numerical models (Siebesma and Cuijpers, 1995). The underlying assump-
tions made for convection parametrizations in numerical weather prediction (NWP) models no
longer hold as models move to higher resolutions and into grey-zone regimes. This is because
the energy containing convective structures that emerge on the model grid are under-resolved
and grid-scale dependent, rendering the closure methods used in conventional parametrization
schemes invalid (Sakradzija et al., 2016). Neggers et al. (2003) comments that problems still
arise from using cumulus convection schemes in GCMs when representing aspects of ShCu
topped boundary layers.

The grey-zone poses a significant problem when modelling ShCu convection. Coarse resolution
LES struggle to accurately resolve cloud size and initiation time. Analysis of LES outputs from
CBL simulations show that the length scales of the resolved flow vary widely in the grey-zone
regime (this is further discussed in Chapters 6 and 7). This is notable as the mixing length for
momentum and scalars is often set to a constant in LES models, meaning that the model does
not allow for variations in these length scales. The Smagorinsky scheme is a common subgrid
scheme used in LES models (further details given in Section 3). This scheme assumes that
scalars such as heat and moisture are being transported and dissipated in the same way within
the simulation, and so are set to the same mixing length value. This is an important feature,
as the dissipation of energy is controlled by the viscosity imposed on the flow by the subgrid
scheme, and this viscosity is a function of mixing length. The mixing length for momentum
ℓmix, is assumed proportional to the grid spacing. Meanwhile lψ, the mixing length for a scalar
ψ, is a simple function of ℓmix and the Prandtl number for that scalar Prψ. The Prandtl number
is a ratio between kinematic eddy viscosity νm to scalar diffusivity νψ, and it is often set to a
constant (typically using Prair ≈ 0.7) in models.

Many LES models rely on the assumption that energy production is balanced by dissipation.
As a result, these models assume that turbulence is isotropic at the scales where the viscosity
is causing the dissipation of energy to occur. It is therefore necessary for the model to resolve
turbulent motions down to scales which are well within the inertial subrange (ISR). However,
in the grey-zone regime, the dominant coherent structures are approximately the same scale as
the grid spacing. This means the dominant coherent structures, which are the energy-containing
eddies, are the smallest scale eddies being resolved/partially resolved. It is important to note
that in a CBL these dominant structures are driven by buoyancy and thus are not isotropic. As
a result, in grey-zone regimes, the simulation does not resolve down to the scales small enough
for turbulence to be considered isotropic, meaning that the dominant coherent structures experi-
ence unrealistic levels of energy dissipation. Therefore the current subgrid dissipation schemes
are not a sufficient treatment for turbulence in the grey-zone.
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In LES models that use the Smagorinsky SGS, the extent of turbulent mixing of momentum
is determined by the Smagorinsky parameter Cs and the model grid spacing ∆. As a result
the standard Smagorinsky models, which set Cs to a constant value, are less able to accurately
resolve turbulent fields in the presence of boundaries or transitioning flows. Both of these flow
regimes are prominent features of the boundary layer. The dynamic Smagorinsky model allows
simulations to be run with Cs being dynamically computed at each point based on the flow. Dy-
namic models show better agreement with direct numerical simulation (DNS) data, however,
this method requires substantial computational power.

The standard Smagorinsky model assumes that scalars such as moisture and heat are transported
in the same way, while also assuming that scalar parameters are determined by the Smagorinsky
parameter for momentum, Cs. This assumption is based on the premise that it is the same ther-
mals which are transporting these quantities. In the MONC model, scalar mixing is defined as
a function of momentum mixing and stability functions, which encompass the Prandtl number
(See Section 3.1.3 for equations).

2.3.1 Large Eddy Simulations

LES models are often used in the development and testing of parametrisation schemes for nu-
merical weather prediction and climate models. They can produce high resolution fields of the
turbulent motions, such as those associated with ShCu convection. Dairay et al. (2017) states
that the LES method is based on introducing a low-pass filtering to define the large-scale flow,
while the residual part of the flow is referred to as the SGS flow. LES uses grid spacings on the
order of tens to hundreds of metres, allowing boundary layer turbulence to be resolved to scales
well within the ISR. At these small scales, the flow is assumed to be in equilibrium, with energy
production in balance with dissipation (Germano et al., 1991).

LES models impose a filter on the modelled fields, with the filter scale being set by the grid-
spacing ∆ of the model. Motions in the flow that are larger than O(∆) are well resolved, while
motions with scales smaller than O(∆) are unresolved and referred to as being SGS. As such,
the term subfilter is more appropriate for these unresolved motions however, the term subgrid is
used in line with the current convention. The filtering of the flow by the grid, along with other
model dynamics gives rise to the term “effective resolution” of the model Reff, with values
usually ranging between 6∆ ≤ Reff ≤ 10∆. The effective resolution is model specific and
defined the length scale at which eddies of the same scale or larger can be well resolved. Any
motions smaller than the scale of Reff will either not be resolved well, or at all, and therefore
their effect on the flow must be accounted for by a subgrid scheme.
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LES models are often used to resolve high resolution fields of the turbulent motions associated
with ShCu convection. LES uses grid spacings on the order of tens to hundreds of metres to
resolve the Navier Stokes equations. This allows boundary layer turbulence to be resolved to
scales well within the ISR. The effect that small-scale motions have on the flow can therefore
be captured through the large-scale variable terms in the model using certain laws of statistics
(Emanuel, 1994). The transfer of energy from large to small scales is known as the turbulent
energy cascade. This can be seen in environmental flows when a large eddy disturbs the nearby
fluid and gives rise to smaller eddies, which propagate the same effect to even smaller scales
until molecular viscosity dominates and the kinetic energy is dissipated to thermal energy. The
scale at which molecular viscosity has an effect is known as the Kolmogorov scale.

2.4 The Grey-Zone

The grey-zone regime occurs when a model’s grid spacing ∆ is of the same scale as the largest
eddies in the flow. For a CBL, this regime occurs when ∆ is approximately equal to the height
of the capping inversion zi. This is because zi scales with the largest thermal structures in the
CBL. Previous findings outlined in Honnert et al. (2020) estimate that the transition to the grey-
zone regime for dry CBL simulations begins at grid spacings of approximately ∆ = 200 m. At
these grid scales, the dominant coherent structures cannot be fully resolved on the grid. Fur-
thermore, any partially resolved eddies will experience excessive dissipation of energy by the
subgrid scheme.

The assumptions behind the NWP parametrizations for convective turbulence no longer hold
in grey-zone regimes because the grid-scale dominant turbulent structures are already partially
resolved. The subgrid schemes used in LES models also encounter problems in the grey-zone as
the model is unable to resolve down to small enough scales, and so in the grey-zone, energy is
dissipated from the dominant structures. Further to this, LES assumes that the grid spacing lies
within the ISR. In the ISR the flow is isotropic and energy cascades downscale. A flow which
is not isotropic cannot be within the ISR and therefore the LES closure assumptions no longer
hold. When turbulence is isotropic, it is assumed that energy production balances dissipation,
but this is not the case for the dominant thermal structures in the CBL as they are buoyancy-
driven motions. Therefore, LES models will encounter grey-zone issues once the grid spacing
is of the same scale as these coherent structures. Wyngaard (2004) defined the grey-zone as
the regime which occurs when the length scale of the dominant turbulent structures, lturb, is
approximately equal to the grid spacing of the model ∆, so that:

lturb

∆
≈ 1 (2.3)
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The numerical dissipation of a model (or the dissipation imposed by a filter) strongly influences
the amount of turbulent kinetic energy (TKE) being resolved. The wavelength after which
the numerical dissipation dominates over the local downscale flux of energy is defined as the
dissipation length scale ld. Beare (2014) states that for simulations in the grey-zone, numerical
dissipation sources from both the advection scheme and the subgrid model are likely to be
significant, and discusses the existence of a similarity law between ld and the resolved TKE in
the grey-zone. A new definition of the grey-zone is thus determined, involving the inversion
height zi and dissipation length scale, and it is given by the following ratio:

zi
ld
< 0.7 (2.4)

It should be noted that the grey-zone is both a spatial and temporal problem. For example a
spatial grey-zone exists near boundaries where the length scale of turbulence decreases with
the proximity to the boundary, and turbulent motions inevitably become smaller than the grid
spacing. Meanwhile the diurnal cycle encounters a temporal grey-zone. In the early morning,
the flow transitions from a very shallow shear-driven night time boundary layer, to a deeper
buoyancy-driven CBL. The small scale turbulence of the night time layer would be subgrid
scale, and their transition to convective driven thermals would be in the grey-zone regime.

The Smagorinsky SGS used in LES models can also serve to amplify problems caused by the
grey-zone regime, as the scheme dissipates energy from the turbulent structures which already
lack energy due to the grey-zone effects. This is because LES models assume that the grid spac-
ing lies within the ISR, where the flow is isotropic and the energy cascade is downscale. Grid
spacings which are considered to be in the grey-zone are not within the scales of the ISR, and
therefore the LES closure assumptions no longer hold. Therefore, the LES model encounters
grey-zone issues once the grid spacing is of the same scale as these coherent structures. This
aligns with Wyngaard (2004) definition of the grey-zone occurring when the length scale of the
dominant turbulent structures, lturb, is approximately equal to the grid spacing of the model ∆.
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3 The Smagorinsky Subgrid Scheme

When LES is used to model the motions within a fluid flow, the data field is discretized with
respect to the grid spacing ∆. The flow cannot be well resolved unless ∆ lies within the ISR
scales. However, the eddies with scales close to the ∆ scale cannot be fully resolved, resulting
in a turbulent cascade of energy that no longer follows the slope defined by Kolmogorov (-5/3)
at wavelengths near the grid scale. The energy at these scales must still be dissipated to prevent
an energy build-up at the smallest resolved scales. This is where a subgrid scheme is required.
Subgrid schemes represent the interaction of the resolved flow with the small, unresolved scales.
This ensures adequate dissipation of energy from the resolved scales to the unresolved scales,
with the primary goal being to obtain the correct statistics of the energy-containing scales of
motion.

3.1 Model Overview

The Smagorinsky-Lilly Subgrid Scheme, commonly referred to as the Smagorinsky Scheme, is
a subgrid model used to represent the interaction between the resolved and unresolved scales in
the flow of an LES. This scheme is derived from work by Smagorinsky (1963) and altered by
Lilly (1962) to account for the effects of buoyancy. This subgrid scheme imitates the effect of
molecular viscosity by dissipating energy from the smallest scales of resolved motions in the
flow, and can be thought of as being similar to a DNS of flow but with a lower Reynolds number.
It imposes an eddy viscosity on the flow, which is dependent on a prescribed mixing length and
the stress at that given point in the flow. The eddy viscosity predominantly affects the smallest
resolvable scales, preventing a build-up of energy at small scales which would otherwise occur
due to the turbulent cascade of energy. The eddy viscosity thereby prevents the simulation from
becoming overly energetic. The dissipation of energy at the small scales also ensures that the
statistics for the dominant scales of motion are correct.

The Smagorinsky subgrid scheme assumes that energy is being resolved down to very small
scales in the flow, so that a clear ISR exists in the energy spectrum. Energy in the ISR is in
equilibrium, meaning that the dissipation of energy out of the system must balance with the flux
of energy into the system (Germano et al., 1991). Therefore the dissipation is dependent on the
energy containing eddies and the model can calculate dissipation using the rate of strain in the
large-scale flow (this is explained further in Section 3.1.2). In the model, dissipation accounts
for the downscale energy transfer that would occur between the resolved scales and unresolved
scales due to the turbulent energy cascade. In other words, this dissipation aims to allow the
power speactra to maintain the same slope in the ISR down as far as the partition between re-
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solved and unresolved motions by preventing a build-up of energy that would otherwise occur
at the smallest resolvable scales.

In environmental flows, the smallest scale possible where turbulent mixing can still occur before
viscosity dominates is referred to as the Kolmogorov scale. Scales smaller than this see the kine-
matic viscosity dominate, and as a result, the turbulent kinetic energy is dissipated to thermal
energy. A similar scale, referred to as the Batchelor scale, exists to describe the smallest length
scales of concentration fluctuations of a passive scalar before molecular diffusion dominates.
The Smagorinsky-Lilly scheme dissipates energy from resolved motions with wavelengths of
λ ≈ O(∆) through the use of the eddy viscosity, νm. The viscosity νm is dependent on a
scale-adaptive mixing length ℓmix, calculated using the grid spacing ∆ and the Smagorinsky
parameter Cs. The Cs parameter, when multiplied by the model grid spacing ∆, regulates the
ratio between resolved and subgrid scale (SGS) mixing.

3.1.1 The Defining Equations of the Smagorinsky Model

The Smagorinsky scheme is an eddy viscosity based subfilter-stress model which dissipates
excess energy at small scales using subgrid stress tensors. This model requires energy to be
resolved down to scales well within the ISR where turbulence is isotropic. The kinematic devi-
atoric stress τ dij and scalar flux hψ,j (for any scalar ψ) are determined by the following equations,
and this turbulence closure scheme is discussed further in 3.1.2.

τ dij = −2νmSij (3.1)

hψ,j = −νh
∂ψ

∂xj
(3.2)

where νm is the eddy viscosity, νh is the thermal diffusivity, Sij is the rate of strain tensor
(defined below), and the indices denote the use of Einstein summation notation.

Sij =
1

2

Å
∂ui
∂xj

+
∂uj
∂xi

ã
(3.3)

|S| =
√

2SijSij (3.4)

The eddy viscosity is calculated using a flow-dependent rate of strain tensor and a scale-
dependent mixing length. Due to the differentiation operator in the rate of strain tensor, the
eddy viscosity can focus energy dissipation at the small scales, thus preventing a build-up at
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that end of the spectrum without substantially affecting the energy at larger scales. The kine-
matic viscosity νm and scalar diffusivity νh are calculated locally via the following equations:

νm = ℓ2mix|S| (3.5)

νh = ℓ2ψ|S| (3.6)

with ℓmix, the mixing length for momentum, determined by a Smagorinsky Coefficient Cs and
the grid spacing ∆ of the model:

ℓmix = Cs∆ (3.7)

The mixing length for scalars is similar to that of momentum, but it has another dependency on
the Prandtl number Pr, which describes the ratio of momentum diffusivity to thermal diffusivity
(further details about Pr are given in Section 3.2.2).

ℓψ =
Cs∆√

Pr
(3.8)

The Smagorinsky scheme is scale-aware, as the mixing lengths depend on the grid spacing of
the model ∆. When using isotropic grids, the choice for ∆ in Equations 3.7 & 3.8 is trivial.
However, when running simulations on anisotropic grids, the choice of ∆ for these equations
is less clear. In conventional models the Smagorinsky scheme imposes an isotropic 3-D filter
on the simulated flow, however, the analysis method in this study permits the use of a 2D filter
which is applied to the data at each horizontal level (further details given in Sections 4.4 & 4.5).
Therefore, as this work focuses on deriving the coherency of the horizontal filter, the horizontal
grid spacing ∆x,y is used in Equations 3.7 & 3.8. The horizontal grid has been chosen as the pri-
mary focus when filtering the flow since modifications in this direction also impact the vertical
motions in the flow. Information in the vertical is lost when filtering is applied in the horizontal
direction; however, as long as the dominant structures can be resolved on the horizontal grid,
these structures can still be represented in the vertical.

In this study, the vertical grid spacing is held constant, as is common in work detailed in pre-
vious literature. Considering the vertical scale of key features in a CTBL - such as the surface
layer, inversion layers, and the boundary layer as a whole - the coherency of these features de-
grades more rapidly under vertical filtering than under horizontal filtering with the same filter
scale. Furthermore, at the coarsest resolutions investigated in this work, it is not possible to
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resolve the majority of the flow and therefore the vertical aspect does not have much influence
on the resolved flow as a whole. As a result the focus is placed on the horizontal resolutions
throughout this work.

3.1.2 Derivation of the Smagorinsky Scheme

The Navier-Stokes equations are used to describe the motion of fluids when modelling envi-
ronmental flows. While the MONC model allows for flows to be simulated using the anelastic
approximation, all three of the case studies investigated in this study use the Boussinesq ap-
proximation. Therefore a constant reference density is assumed for this derivation, resulting in
an incompressible continuity equation. The model grid can be thought of as imposing a filter
on the simulated flow, and quantities resolved on the grid (i.e. filtered quantities) are denoted
by the overbar. The filtered continuity and momentum equations then read as follows:

∂ui
∂xi

= 0 (3.9)

∂ui
∂t

+ uj
∂ui
∂xj

= νm
∂

∂xj

Å
∂ui
∂xj

+
∂uj
∂xi

ã
+
∂τ dij
∂xj

− 1

ρ

∂p∗

∂xi
(3.10)

Where ui describes the velocity component in the ith direction. τ dij is the deviatoric stress tensor,
defined by τ dij = Rij − 1

3
δijRii, where Rij is analogous to the Reynolds stress tensor, given by

Rij = uiuj − uiuj . The variable p∗ is the filtered pressure, including the isotropic residual
stress: p∗ = p+ 1

3
ρRij .

Following a similar method to Deardorff (1980), these equations make up the governing equa-
tions of the model. Taking the divergence of the momentum equation (3.10) gives a Poisson
equation, which is used along with the continuity equation (3.9) to solve for the pressure field
p (see Moeng (1984) for further details). However, solving for the velocity field u requires a
closure scheme for the residual SGS stress tensor. This is the point at which the Smagorinsky
subgrid scheme is applied. The Smagorinsky scheme can be derived from the conservation
equation for τij . Note that e is half the trace of the stress tensor τij , while the deviatoric stress
tensor τ dij has the trace removed:

e =
1

2
(uiui − uiui) =

1

2
u′2i (3.11)

τ dij = uiuj −
1

3
δiju2k (3.12)
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∂e

∂t
+ ui

∂e

∂xi
= −τ dij

Å
∂ui
∂xj

+
∂uj
∂xi

ã
+
g

θ
w′θ′ − ∂

∂xi
(uie)−

1

ρ

∂

∂xi
(uip)− ϵf (3.13)

The left hand side (LHS) of this equation accounts for the storage and advection of the SGS
TKE. On the right hand side (RHS) of the equation, term 1 is the mechanical shear production,
term 2 is the buoyancy, term 3 is the turbulent transport, term 4 is the pressure transport, and
term 5 is the dissipation in the filtered fields.

The Smagorinsky subgrid scheme is only applicable for simulations run at sufficiently high
resolution such that the model can resolve down to scales small enough to be well within the
ISR. It is assumed that the flow is in a steady state, therefore the LHS of Equation 3.13 is zero
as advection is balanced by the storage. Applying the Smagorinsky scheme at high resolution
allows for the assumption of local isotropy, meaning the turbulent transport and pressure trans-
port terms can be disregarded as there is no divergence at these small scales. The buoyancy
term can be neglected due to the assumption that energy dissipation only occurs in the ISR
where turbulence is isotropic. It should be noted however that, if buoyancy is included in the
derivation, the Smagorinsky model will also include the stability functions (discussed further in
Section 3.1.3). This allows the model to account for variations in mixing, and therefore dissi-
pation, within the flow due to gradients in potential temperature. When the filter scale is within
the ISR scales, the filtered velocity field then accounts for the majority of the TKE in the flow
(Pope, 2000), meaning that dissipation results from shear forces only, for length scales in the
ISR. These assumptions allow all the terms to be disregarded in Equation 3.13 apart from the
mechanical shear production and dissipation terms. The resulting equation now reads:

0 = −τ dij
Å
∂ui
∂xj

+
∂uj
∂xi

ã
+ ϵf (3.14)

This equation can be rewritten by first applying the first-order closure scheme for momentum
as detailed in Equation 3.1 and recalling the definition of the rate of strain tensor in Equation
3.3, yielding the following expression for the diffusion:

ϵf = −2νmS
2
ij (3.15)

This closure scheme can be derived from the Reynolds averaged momentum equation detailed
in Equation 3.10. A similar logic as was applied to the divergence of the momentum equation
(Equation 3.13) is also applied here to neglect terms:
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∂

∂xj

ï
νm

Å
∂ui
∂xj

+
∂uj
∂xi

ã
+ τ dij

ò
= 0 (3.17)

This aligns with Prandtl (1925), where it is argued that momentum is transported in the direction
of the velocity gradient, with energy moving from eddies with higher velocity to those with
lower velocity. Furthermore, the rate of strain tensor characterises the velocity gradient in each
direction. Therefore, when the Boussinesq approximation is used, the stress is proportional to
the velocity gradient, with the kinetic eddy viscosity νm denoting the constant of proportionality.
This gives the closure of momentum equation detailed in Equation 3.1, and similar arguments
can be used to derive the closure for the scalar transport equation.

=⇒ τ dij = −νm (2Sij) (3.18)

Returning now to deriving the expression for diffusion in the Smagorinsky model. Following
Kolmogorov’s arguments, it is assumed that when the flow is resolved down to scales well
within the ISR, the dissipation resulting from the filter removes resolved energy e from the
system at a dissipation timescale of td.

ϵf = −2e

td
(3.19)

Note that there is a factor of 2 in Equation 3.19 results from the definition of energy in the
system (see Equation 3.11). The Smagorinsky model relies on the assumption that that model
resolution is sufficiently high such that dissipation only occurs in the ISR. Within the ISR the
turbulent eddies are isotropic, allowing for their trajectory to be characterised by a length scale
alone due to their uniform shape. Prandtl (1925) termed this length scale “the mixing length”
ℓmix, describing it as be the distance travelled by a fluid parcel before its momentum is affected
by the environment. Furthermore, in the ISR, the energy spectrum has a universal scaling law
and as a result td depends only on ℓmix and the turbulent velocity scale, ut, of the eddies:

td =
ℓmix

u′
t

(3.20)

Furthermore, at high resolution the model is assumed to dissipate energy from isotropic eddies
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only, and an additional assumption of incompressibility allows the the subgrid kinetic energy e,
as defined in Equation 3.11, to be characterised by a velocity scale ut:

e =
1

2
u2

t (3.21)

The scaling arguments outlined in Equations 3.19, 3.20, & 3.21 are now applied to Equation
3.15:

ϵf ≡ − u3
t

ℓmix
= −2νmS

2
ij (3.22)

Therefore the eddy viscosity ν is involved in controlling the strength of diffusion ϵ, with Prandtl
(1925) stating that both these quantities have the same dimensions, being products of a length
and velocity:

νm = utℓmix (3.23)

Equation 3.23 can be rearranged to find an expression for ut, which can then be substituted into
Equation 3.22, yielding a formula for the viscosity:

νm = ℓ2mix

√
2SijSij = ℓ2mix|S| (3.24)

Note that Equation 3.4 was used in deriving Equation 3.24, which enables the viscosity to be
defined in terms of the characteristic scales of the SGS eddies.

3.1.3 The Stability Functions

Regardless of model resolution, grey-zone challenges remain unavoidable, especially near bound-
aries and temperature inversions. Mason and Brown (1999) notes that the buoyancy dependence
of the subgrid model is not significant within the flow interior, where the ISR of turbulence is
likely well-resolved. However, the effects of buoyancy are no longer negligible as the sur-
face is approached, and this poses an issue to the subgrid scheme. In these regions, stability
variations result in eddies which are no longer isotropic, thereby violating one of the key un-
derlying assumptions of the Smagorinsky model. The stability functions can be introduced to
the Smagorinsky scheme through the viscosity equations as a means of accounting for these
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buoyancy effects:

νm = ℓ2mix|S|fm(Ri) (3.25)

νh = ℓ2ψ|S|fh(Ri) (3.26)

where fm and fh, which are functions of the Richardson number Ri, denote the stability func-
tions for momentum and scalars respectively. The Richardson number describes the ratio of
buoyancy forces to shear forces, and is used as an indication of the stability conditions through-
out the flow. The locally calculated flux Richardson number is calculated pointwise and defined
as follows:

Ri =
g
θ0

∂θ

∂z
(3.27)

These stability functions allow the Smagorinsky scheme to account for the effects of buoyancy
when calculating the eddy viscosity. The formulation of the stability functions vary based on
the stability of the flow, with a critical Richardson number, Ric = 0.25, being used to determine
the point between stable and unstable flow regimes. When Ri < 0, the flow is unstable and
convective turbulence dominates. The onset of turbulence begins when the flow experiences
0 ≤ Ri < Ric. Regions of the flow where Ri ≥ Ric indicate a laminar flow where buoyancy
has little influence and shear dominates. The stability functions in the MONC model take the
standard form, as detailed in Hill et al. (2018) and Gray et al. (2004). The equations defining
these functions are given in Table 3.1 as follows:

Stability Function Ri < 0 0 ≤ Ri < Ric Ri ≥ Ric

fm (1− 16Ri)
1
2 (1− Ri

Ric
)4 0

fh (1− 40Ri)
1
2 (1− Ri

Ric
)4(1− 1.2Ri) 0

Table 3.1: The stability functions for momentum and scalars, depending on the Richardson number.

3.2 The Smagorinsky Parameter and Mixing Lengths

The Smagorinsky parameter is involved in determining the mixing, and therefore dissipation,
of energy in the model. It is a determining factor in the proportion of SGS motions compared
to those which are resolved. Other factors in this partition include the strain rate, along with the
model’s grid and advection scheme. The Smagorinsky parameter value varies between different
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flow regimes. In most models the Smagorinsky parameter for momentum Cs is set explic-
itly, usually to a constant value. However, there is no equivalent parameter for scalars in the
majority of Smagorinsky models. Instead, the Smagorinsky parameter for scalars is assumed
proportional to that of momentum, with the ratio fixed using the Prandtl number. In such mod-
els, scalars are also assumed to behave the same, and so their transport and diffusion are not
scalar specific.

3.2.1 The Momentum Parameter

The Smagorinsky parameter can be understood as the ratio between the length scale of the
Smagorinsky model and a measure of the numerical resolution, in this case the grid spacing
itself. This parameter partially controls the level of mixing and dissipation of momentum and
scalars within the flow. An optimal value of Cs has been derived using Kolmogorov theory, and
this is discussed in the following section. However in practice, when using the Smagorinsky
scheme in LES models, there is no one universal constant Cs value which can allow for fields
to be accurately resolved across all different turbulent regimes. In terms of shallow cumulus
simulations, this becomes a problem as the convective thermals in the interior of the flow have
different turbulent properties to the shear-dominant near-surface flow. However, it is generally
agreed that values for the Smagorinsky parameter which range between Cs = 0.1 (Deardorff,
1971) to Cs = 0.23 (Lilly, 1966) tend to produce realistic results.

Increasing the Cs value serves to increase the transfer of energy from the resolved scale to the
SGS. Therefore, setting the Cs value too large could imply inefficient use of computational
resources. This is because higher Cs values dissipate more kinetic energy and dampen the re-
solved structures. Conversely, lower Cs values do allow for faster spin-up, but if the Cs value
is too low the model fields may become noisy and discretization errors may occur. This noise
in the resolved field can also inhibit the development of coherent structures (Kealy et al., 2019;
Efstathiou and Beare, 2015). For this reason, it is important to have a realistic value for Cs in
the model.

Kolmogorov’s similarity hypothesis implies that there is a universal constant value which the
Smagorinsky parameter tends to when LES models are able to resolve eddies down to scales
well within the ISR. This argument leads to the theoretical optimal value of the Smagorinsky
Parameter, which describes the ratio between the mixing length (as in Equation 3.7) and the
filter scale corresponding to the Smagorinsky scheme. Lilly (1966) determined a Smagorinsky
parameter value of Cs = 0.185 using the known values of Kolmogorov’s constant in the ISR.
This “optimal”Cs value is universal and does not exhibit regime dependence. However, in prac-
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tice, it is difficult to find a constant value of Cs that works in each model under every regime
and flow type. This is because it is impossible to resolve the dominant scales of motion in each
region of the modelled flow using an LES model, due to both transitions in the flow regime,
and the presence of boundaries and temperature inversions, where the eddy scales tend toward
zero. This may indicate that regime dependence is a result of the grey-zone. Furthermore, it
is not just excessive dissipation due to the grey-zone that prevents a constant value of Cs from
working in each case. The Smagorinsky scheme is not the only cause of energy dissipation in
an LES model - the model may also be dissipative through its advection scheme and dynamics.
Therefore, any “practical” Cs values calculated using model data, rather than Lilly’s theoretical,
are assumed to be model-dependent. As a result, Mason and Callen (1986) states that, in this
context, Cs can be thought of as a measure of numerical accuracy.

In models using the standard Smagorinsky scheme, the coefficient Cs must be set to a constant
value. As a result, numerous studies have sought to determine the best practical value for Cs in
their specific model. While Lilly (1966) derived the optimal Cs theoretically, this study found
that in practice, it is necessary to increase the Cs value. This alteration was required in order
to account for the velocity differences across single grid intervals when calculating finite differ-
ences, and it was concluded that Cs = 0.23 is a more reasonable value to use in LES models.
(Deardorff, 1970) highlighted the importance of adapting “practical” Cs values based on the
flow regime, and derived suitable values using empirical fits between Smagorinsky data and
DNS data. McMillan et al. (1980) found that in a homogeneous flow, Cs values decrease as
strain rate increases. Experiments carried out by Mason (1994) showed that, in a neutral bound-
ary layer, reducing the value of the Smagorinsky parameter allows the resolution of smaller
scale structures. This study found setting Cs = 0.2 gave the most accurate results, and any fur-
ther reductions to the Cs parameter value caused notable finite-difference errors. Shear-driven
flows however, commonly have lower Cs values usually around 0.1 to 0.13 (Piomelli et al.,
1988; Deardorff, 1970, 1971), while convective flows tend to need higher Cs values of between
0.17 and 0.23 to give reasonable results (Lilly, 1966; Mason and Callen, 1986).

Choosing the correct Cs for the CTBL is difficult as it exhibits different regimes, depending
on position relative to the key features in the flow: shear-driven flows occur at boundaries
and inversions, while the rest of the flow in a CTBL is strongly buoyancy-driven, especially
within thermals and clouds. Within the cloud layer there is a substantial difference between the
in-cloud regions, which are extremely turbulent, and the non-cloudy surrounding environment
which is conditionally stable. The optimal value of Cs also varies widely during transitioning
flows, such as the transition experienced as the nocturnal boundary layer evolves into a CBL
during the morning and early afternoon. This is because, during the diurnal cycle, the BL pro-
gresses from a shallow shear-driven layer to a deeper convective-driven layer. This suggests the
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need for the Cs parameter to be able to adapt to the flow.

Recently, with the improvements in computational resources, there has been an increased focus
on adapting the Cs parameter to either the flow itself, or to key features within the flow. Kealy
et al. (2019) developed a functional relationship between the Cs parameter and the mixed layer
capping inversion height. This allows the model to adapt the diffusion according to the growth
of the dominant eddy scales as the CBL transitions from a stable early morning BL to the day-
time CBL. This method, when implemented in an LES model at grey-zone scales, produced a
similar spin-up time and a TKE field that closely matched the idealised TKE fields. These ide-
alised fields were produced by filtering high resolution reference data to the same scale as the
grey-zone data. However, this method only allowed Cs to vary in the vertical. Germano et al.
(1991) derived a dynamic model, which was improved upon by Lilly (1992) (further details are
discussed in Section 3.3) to account for variations in the flow across the entire domain. Ex-
periments conducted by Efstathiou and Plant (2019) found that a scale-dependent Lagrangian
averaged model with a dynamically calculated Cs produced more realistic levels of turbulence
earlier in the simulation than the standard Smagorinsky model at grey-zone resolutions. This
improvement was attributed to the adaptability of the dynamic Cs parameter, with the dynamic
model demonstrating less sensitivity to grey-zone resolutions than the standard model.

3.2.2 Scalar Mixing: The Prandtl Number and Schmidt Number

As previously discussed, the Cs parameter is used to set the mixing length for momentum,
which plays a role in determining the turbulent transfer of kinetic energy across the scales. In
the standard Smagorinsky model this parameter not only controls kinetic energy dissipation, but
also determines the diffusivity of scalars such as heat and moisture. This is because the turbu-
lent transfer of heat is assumed to be proportional to that of momentum, with the relationship
between the two set by a factor known as the Prandtl number, Pr (Mason and Brown, 1999).
The parameter which governs the dissipation of heat in LES models, referred to as Cθ in this
work, is determined by the following equation:

C2
θ =

C2
s

Pr
(3.28)

The governing equation for the Prandtl number, along with its properties in the CTBL are dis-
cussed in Section 2.2.2. In the neutral BL, de Roode et al. (2017) noted that while the Prandtl
number is close to unity, as convective turbulence takes over, observations suggest the Prandtl
number decreases, and the Prandtl number for dry air is Pr = 0.7. Lower Prandtl numbers
indicate that thermal diffusivity dominates over the diffusion of momentum.
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The CTBL demonstrates different flow regimes, both throughout its layers and during its growth
over time, causing the Prandtl number value to vary. Observational data shows that values for
the turbulent Prandtl number Prt can vary widely across a given stability range, with Grachev
et al. (2007) suggesting that a universal relationship between stability and Prt might not exist.
However, when modelling the CTBL, previous work by Li (2016) and Efstathiou (2023) has
demonstrated that Pr increases in the near-surface boundary region as the grid spacing is coars-
ened to grey-zone resolutions. Further to this, Efstathiou (2023) showed a significant increase
in Pr in the CL at coarser resolutions. This is in agreement with Shi et al. (2018), who found
that the mean profile of the Prandtl number is a relatively constant value of Pr ≈ 0.5 throughout
the ML, before increasing to an average value of Pr ≈ 10 in the cloud layer. This dramatic
increase in the Prandtl number indicates a reduction to near zero mixing of heat as the scale of
thermal structures shrinks in comparison to the momentum structures.

For scalars other than heat, the calculation of the dissipation parameter can be made more
general by using the Prandtl number’s counterpart, the Schmidt number Sc. Equation 3.29 can
then be rewritten in a form which expresses the Smagorinsky parameter for any scalar Cψ in
terms of the corresponding Schmidt number Scψ:

C2
ψ =

C2
s

Scψ
(3.29)

Note that the formula for Scψ is defined in Equation 2.2. Shi et al. (2018) found that the average
Schmidt number for total moisture, Scqt , throughout the depth of both the mixed layer and cloud
layer was Scqt ≈ 0.5, apart from a peak of Scqt ≈ 10 at the top of the cloud layer. This is in con-
trast to the Pr values in the CL which were discussed previously. The dissimilarity between the
turbulent mixing of heat and water vapour has been highlighted by Warhaft (1976), Goldberg
et al. (2010), and Katul et al. (2016), particularly when modelling flows with inversions and
unstable conditions, both of which are key features in the CTBL. Despite this, there are no op-
erational formulations to account for scalar dissimilarities being used in LES models (Li, 2019).

The mixing parameters in the standard Smagorinsky scheme are not scalar specific, and each
scalar is assumed to be dissipated at the same rate as that of heat. This assumption is based on
the premise that the same thermals are transporting the scalars, and it is assumed that all quan-
tities in a given thermal are being transported and diffused identically. As a result, these models
rely solely on the Prandtl number to determine the dissipation rate for every scalar, rather than
using scalar-specific Schmidt numbers. This forces the turbulent mixing of water to be the same
as that of heat. In contrast to this, Shi et al. (2018) found that Scqt changes independently from
Pr, with mean profiles for Pr and Scqt shown to be clearly distinct from each other within the
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cloud layer. When these differences between scalars are accounted for through the use of dy-
namic Cs, Prθ, and Scqt parameters, a clear match between the dynamic simulation of the cloud
field and field data is achieved (Shi et al., 2018). Furthermore, this study found that the stan-
dard Smagorinsky simulation produces an unrealistically thin cloud layer with lower values of
cloud liquid water content than were observed in the field campaign. Therefore it seems impor-
tant to account for the differences between water fluxes and heat fluxes when modelling CTBLs.

3.2.3 The Mixing Length

The mixing length can be thought of as the measure of the ability for mixing to occur in a
flow (Stull, 2009). In physical space, it is analogous to the length of the mean free path along
which a parcel can conserve its characteristics before beginning to mix into the surrounding
environment. The mixing length hypothesis was first introduced by Prandtl (1925) as a method
of describing the turbulent transfer of energy using an eddy viscosity. In the Smagorinsky
scheme, the mixing length describes the level of dissipation that the resolved flow experiences.
The basic mixing length scale ℓ0 is calculated using the grid scale ∆ and the Smagorinsky
parameter for momentum Cs:

ℓ0 = Cs∆ (3.30)

In the CBL, the Smagorinsky parameter usually takes a value of Cs ≈ 0.2. It should be noted
that the scale at which motions become unresolved begins at much larger scales than the mixing
length. Models can resolve motions with wavelengths larger than 6∆ to 8∆, with the smallest
wavelength possible to solve on the grid being 2∆. Therefore in LES models, the mixing length
does not represent the size of the unresolved eddies, but rather the viscous dissipation rate of
the turbulent flow. As discussed previously, it is well known that turbulent mixing and energy
dissipation are greatly reduced as boundaries are approached. The issue posed by the use of a
constant Smagorinsky parameter in the surface layer where shear dominates can be overcome
by accounting for the effect of the surface when calculating the mixing length ℓmix using the
formula derived by Blackadar (1962):

1

ℓ2mix
=

1

ℓ20
+

1

[k(z + z0)]2
(3.31)

where k = 0.4 is the von Karman constant, z is the height above the surface, and z0 is the
surface roughness length. This equation reduces the mixing length as the surface is approached,
allowing for a smooth transition from the mixing length in the flow’s interior to one which is a

28



function of distance from the surface (Gray et al., 2004). This ensures that the effect of the near-
surface shear, which reduces the turbulent mixing as discussed in Section 3.2.1, is accounted
for in the model. In the standard model, where the Smagorinsky parameters are set to constants,
a similar length scale for scalars ℓψ is employed by the model to account for the mixing and
dissipation of heat energy. The difference between fluxes of heat and momentum is accounted
for when calculating the basic mixing length for scalars using the Prandtl number Pr, with Cθ
from Equation 3.28 being substituted in for Cs into Equations 3.30 & 3.31. The same method
can be used for other scalars by using their corresponding Schmidt numbers, though as previ-
ously mentioned most standard models are not scalar-specific and so, are assumed to have the
same mixing length as that of heat.

3.3 The Standard Smagorinsky Model

There are different versions of the Smagorinsky subgrid scheme; the Smagorinsky-Lilly model
(Lilly, 1966) is the scheme used as the “standard model” throughout this study. The standard
Smagorinsky scheme does not allow the value of the Smagorinsky parameters to vary in the
flow. Instead, the Smagorinsky parameter controlling the dissipation of momentum, Cs, is fixed
to a constant value. In the MONC model, which uses the standard Smagorinsky scheme, the
scalar fluxes are defined as functions of the momentum flux and stability functions (see Section
3.1.3). These scalar fluxes differ from the momentum fluxes only by a factor; for example, the
Smagorinsky parameter for heat, Cθ, is governed by Cs and the Prandtl number Pr:

C2
θ =

Cs
Pr

(3.32)

This parameter sets the mixing length, and thus dissipation, for all scalars in the simulation.
Therefore, if stability functions are not included in the standard model, the mixing lengths for
momentum and scalars are fixed to constant values throughout the flow. While this can work
well in the interior of well-resolved flows, this method breaks down in regions near boundaries
and inversions. In these areas, the eddies become smaller and smaller as the boundary is ap-
proached, due to the shear that is acting upon the flow. This results in grey-zones forming in the
areas affected by this shear-dominant flow. Adaptions such as Blackadar’s formula (Equation
3.31) can be used here, as it forces the mixing length to tend towards zero in the near-surface
region. While many models using the standard Smagorinsky scheme employ Blackadar’s for-
mula to overcome the issues posed by using a constant Cs value in the surface layer, similar
adaptions are not taken for the free shear-layers found at the ML capping inversion zML or the
CL top zCT. Additionally, setting Cs to a constant value becomes significantly less effective as
the model’s resolution decreases and grey-zone effects begin to impact the entire flow.
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While it is clear that the Smagorinsky parameter Cs controls the turbulent momentum flux, it
also determines the heat fluxes and moisture fluxes in the standard Smagorinsky model. This
is because scalar fluxes are defined as a function of momentum fluxes and some constant of
proportionality in the standard scheme. In the case of thermal diffusivity, the Prandtl number Pr
is used to set this ratio. Recall from Section 3.2.2 that the Prandtl number describes the ratio of
the momentum diffusion to the thermal diffusion. The standard scheme sets the Prandtl number
to a constant value of Pr = 0.7 throughout the flow, as this is the Prandtl number for thermal
diffusion in air. This allows for the calculation of the Smagorinsky parameter for heat, Cθ.
Furthermore, the standard Smagorinsky model assumes that heat and moisture are transported
and diffused in the same way (Li, 2019). This essentially sets the Schmidt number Sc, which
describes the ratio of momentum diffusivity to mass diffusivity for any scalar, to be equal to its
counterpart the Prandtl number (Gualtieri et al., 2017). Therefore the scalar fluxes in the stan-
dard Smagorinsky model are not scalar-dependent, with the parameter for any scalar ψ being
set to the heat parameter: Cψ = Cθ. This is despite the fact that heat is an active scalar that can
alter the flow, whereas other scalars like moisture and pollution are passive scalars in this case.

In the standard Smagorinsky model, scale awareness is achieved by relating the mixing length to
the model grid spacing using the Smagorinsky parameter. However, as the Smagorinsky param-
eter does not change value as the grid spacing changes, the standard model is not scale-adaptive.
This can pose an issue when using LES in grey-zone regimes. The MONC model extends the
classic Smagorinsky approach by having the mixing length also account for distance from the
surface, as in Equation 3.31. This can be considered an adaptation for the near-surface grey-
zone due to the small-scale eddies present in that region of the flow.

3.4 The Dynamic Smagorinsky Model

The standard Smagorinsky scheme performs well for high-resolution LES, but it begins to break
down as grid spacing increases to grey-zone resolutions. However, adaptations to the Smagorin-
sky model can be made to tackle the issues posed by the grey-zone. At coarse resolutions which
would typically be considered grey-zone scales, having fixed values for the Smagorinsky pa-
rameter and Prandtl number may exacerbate the already excessive dissipation of energy. To
address the limitations of using a fixed viscosity coefficient, Germano et al. (1991) developed
the dynamic Smagorinsky model. This model was further optimised by Lilly (1992) to use a
least squares approach to minimise the error when calculating Cs. The dynamic method cal-
culates a value for Cs at each point in the domain according to the stress-strain relationship
between the smallest resolved scales in the flow. However, this method leads to an overdeter-
mined system, hence the use of the least mean squared error, and this is discussed further in
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Section 3.4.1. The dynamic model can also calculate dissipation coefficients for scalars without
relying on the momentum flux or the Prandtl number. Flow-dependent, scalar-specific diffusiv-
ity parameters Cψ can be calculated for each scalar ψ based on the scalar gradients in the field.
This enables the scalar fluxes to be included in the model individually, rather than assuming
that each scalar is transported and dissipated at the same rate as heat. The equations used for
dynamically calculating flow-dependent Smagorinsky parameters are detailed in Section 3.4.1.

These dynamic parameters can adjust to fluctuations in eddy length scales, which vary as a
result of position relative to boundaries, inversions, and/or clouds. The scale of eddies also
varies in time as eddies grow in size, either during model spin-up (when the turbulence reaches
a resolvable scale) or as the boundary layer transitions from a shallow layer to a deeper convec-
tive layer (Kealy et al., 2019). This spatial and temporal variation in the turbulence scale is a
contributing factor to the grey-zone problem (Mason and Callen, 1986), and therefore the use
of a dynamic model can help in overcoming these issues when modelling at coarse resolutions.
The use of a flow-dependent Smagorinsky parameter enables pointwise variations in the flow to
be accounted for when calculating the dissipation, yielding better results in grey-zone regimes
than the standard Smagorinsky scheme (Efstathiou, 2023). Dynamic models show better agree-
ment with DNS data and are better able to resolve flows in the grey-zone regime, however, they
require substantial computational power. This high computational cost is due to the pointwise
nature of the dynamic Cs calculations.

The dynamic model computes the difference in stress and strain between data at two different
effective grid spacings. Effective grid spacing describes the grid scale that a filtered dataset
corresponds to in physical space, given that a filter with a known filter scale has been applied to
the dataset in spectral space. The first scale used in the Germano dynamic model is the subgrid
scale (SGS), which is calculated by applying a filter with an effective grid spacing of ∆ to the
flow. Note that for many studies, this SGS filter is taken to be the filter imposed on a flow by
the grid of the LES model. The second scale used in the Germano method is the subtest scale
(STS), which was calculated by applying a filter with an effective grid spacing of “∆ to the SGS
data. The power speactra of the SGS and STS data will deviate from the Kolmogorov -5⁄3 slope
at different points, with the STS deviating at a larger wavelength than the SGS. By applying the
convolution theorem, the differences between these two power spectra can be computed, and a
“test window” is formed between the SGS and STS spectra, as illustrated in Figure 3.1.

The Germano approach to computing dynamic parameters assumes that Cs is scale invariant
between the ∆ and “∆ scales. This requires the test window to be within the ISR. However,
by definition, any model in the grey-zone regime will be unable to resolve down to scales in
the ISR. To address the limitation of the traditional dynamic model, which requires scale in-
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variance of Cs, Meneveau et al. (1996) investigated different methods to make the dynamic
model scale-dependent. The method that proved most promising utilised a second STS filter
to determine how the coefficient changes across scales, however, it required prior knowledge
on the scaling tendencies of Cs. Porté-Agel et al. (2000) developed a scale-dependent dynamic
model which also utilises a second STS filter to determine how the coefficient changes across
scales. However, this method requires making relatively weak assumptions in order to solve
the simultaneous equations needed to determine a scale-dependent Cs. To address this issue,
Bou-Zeid et al. (2005) employed a second STS filter and used an iterative method to determine
the Smagorinsky parameter, which differed from previous approaches. This method begins with
an initial assumption of scale invariance, after which a scale-dependent Cs can be computed.

Figure 3.1: The “test window” formed between data which has been filtered from a DNS base dataset

to data with a filter scale of ∆, and filtered a second time to a coarser dataset with filter scale “∆. For
simplicity the diagram shows the filtering that would result from a spectral wavenumber cutoff filter.

3.4.1 The Dynamic Smagorinsky Equations

The standard Smagorinsky model performs well for LES regimes, but begins to break down
if grid spacing increases to grey-zone resolutions. However, adaptations to the Smagorinsky
model can be made to tackle the issues posed by the grey-zone. One such adaptation is allow-
ing the values of Cs and Cθ to vary based on the flow. Such a model is known as the dynamic
Smagorinsky model. Another adjustment that can be made is allowing for the diffusivities of
heat and moisture to differ from each other, rather than having a single fixed scalar diffusivity
which depends on the Smagorinsky parameter for momentum and a prescribed Prandtl number.
Flow-dependent scalar diffusivities can be achieved by calculating the Cθ and Cqt parameters
based on their respective scalar gradients in the field.

Following the method outlined by Lilly (1992), the first step is to compute the differences
between stress and strain at two different filter scales, denoted by the overbar and hat symbols.
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The difference between these scales forms the test window, as in Figure 3.1. The equations that
define the Dynamic Smagorinsky model are then as follows:

Sij =
1

2

Å
∂ui
∂xj

+
∂uj
∂xi

ã
(3.33)

|S| =
»

2SklSkl (3.34)

Lij = “ui“uj −‘uiuj (3.35)

Mij =
“̄∆2|Ŝ|Ŝij − ∆̄2’|S|Sij (3.36)

where the overbar denotes the grid scale, and the hat symbol denotes the coarser test filter
scale. The Lij tensor evaluates the difference in stress between the STS and SGS, while the Mij

tensor is analogous to the difference in rates of strain between the STS and SGS. Following the
reasoning outlined in Lilly (1992), the differences in stress and strain within the test window
lead to the following equation:

Lij − δijLkk = 2C2
sMij (3.37)

As previously stated, this is an overdetermined system, and as a result, the least squares ap-
proach is employed to minimise the error E in order to determine an equation for Cs:

E2 = (Lij − δijLkk − 2C2
sMij)

2 (3.38)

Setting ∂E
∂(C2

s )
= 0 to find the minimum:

∂E
∂(C2

s )
= 2LijMij − 4CsM

2
ij = 0 (3.39)

The Smagorinsky parameter Cs can then be evaluated as:

C2
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(3.40)
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The dynamic Smagorinsky model can be altered further to allow for flow-dependent scalar
fluxes, for any scalar ψ:

Hj = ûjψ̂ − ûjψ (3.42)

Rj =
“̄∆2|Ŝ|”∂ψ

∂xj
− ∆̄2’|S| ∂ψ

∂xj
(3.43)

C2
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1

2

Å
HjRj

R2
k

ã
(3.44)

Cψ =

 
1

2

Å
max(0, HjRj)

R2
k

ã
(3.45)

Here the angle brackets denote the planar average for each height level in the domain. Note that
the “clipping” of negative C2

s and C2
ψ values by setting them to zero in Equations 3.41 and 3.45

is necessary as it removes the unrealistic negative values of viscosity. These negative values are
unusable in the Smagorinsky scheme as they would cause the model to crash. They are removed
from the averaging calculation and replaced with a zero, indicating a total lack of mixing at that
specific point, rather than the unrealistic “negative mixing” previously indicated by the negative
Cs and Cψ values.

3.4.2 A Scale-Dependent Dynamic Model

The method of calculating Cs and Cψ in the previous section assumes that the Smagorinsky
parameter is scale invariant. However, this requires ∆ to lie well within the ISR and as such,
the assumption of scale invariance does not hold in the grey-zone. To address this shortcoming
of the traditional dynamic model, Porté-Agel et al. (2000) developed a scale-dependent model,
which was further modified by Bou-Zeid et al. (2005). This model uses a second test filter to
determine the extent of the change in the Smagorinsky parameter across two distinct scales. This
method introduces the β parameter to quantify the degree of scale dependence demonstrated by
the Smagorinsky parameter. A value of β = 1 denotes scale invariance, while values where
β → 0 correspond to severe scale dependence. The β parameter via the following equation:

β = max
Å⟨C2

s4∆⟩
⟨C2

s2∆⟩
, 0.125

ã
(3.46)

where the angle brackets denote any averaging operation applied to the Smagorinsky parameter.
Note that, as the Cs parameter is determined using the least square minimisation method, it is
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clear from Equation 3.39 that the numerator and denominator of the defining equation for Cs
must be averaged individually:

⟨C2
s ⟩ =

1

2

Å⟨max(0, LijMij)⟩
⟨M2

kl⟩

ã
(3.47)

The β clipping at 0.125 is to avoid numerical instabilities which would otherwise occur at
points where the Cs4∆ −→ 0 when Cs2∆ −̸→ 0. Following Bou-Zeid et al. (2005), the cut-
off value of 0.125 is used as it corresponds to half the theoretical average minimum value.
The mixing length, defined by ℓmix = C2

s∆
2, is typically at its smallest value as the surface

is approached, and in this near-surface region the mixing length scales with distance from the
boundary. Assuming an isotropic grid, the smallest eddies occur within the first grid space from
the surface. Therefore, by rearranging the mixing length equation, the ratio in Equation 3.46
can be rewritten to find the minimum possible theoretical value.

βmin =

(
ℓmix
4∆

)2(
ℓmix
2∆

)2 =
1

4
(3.48)

This theoretical minimum value is then halved in order to ensure that the clipping limit is sig-
nificantly less than the physically expected limiting behaviours (Bou-Zeid et al., 2005). Clip-
ping the β parameter at this value ensures that scale dependence within the theoretical limits
is accounted for, while also preventing the simulation from violating local viscous stability
conditions. The β profile that results can then be used to calculate a scale dependent Csβ .

C2
s∆ ≡ C2

sβ =
C2
s2∆

β
(3.49)

In the tests of atmospheric boundary layer flow over homogeneous surfaces performed in Porté-
Agel et al. (2000), the scale-dependent dynamic model was implemented using planar averag-
ing, i.e., the averages required to enforce the Germano identity were evaluated over horizontal
planes parallel to the ground. This was appropriate for the simple geometries envisioned in
those tests, where horizontal planes correspond to directions of statistical homogeneity of the
turbulence. This method can be extended further, allowing scale-dependent Cs and Cψ to be
calculated for any grid spacing ∆ by modifying the calculation of the Mij and Rij tensors. Mij

becomes:

Mij = β“̄∆2|Ŝ|Ŝij − ∆̄2’|S|Sij (3.50)
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similarly Rj becomes

Rj = β“̄∆2|Ŝ|”∂ψ
∂xj

− ∆̄2’|S| ∂ψ
∂xj

(3.51)

3.4.3 Stability Dependence in the Dynamic Smagorinsky Model

Stability functions can also be included in the dynamic Smagorinsky equations to account for
buoyancy effects in regions of the flow where eddies may not be fully resolved. This is due
to the reasons previously discussed in Section 3.1.3. Note that, in this study, the following
stability functions are not included when applying the dynamic equations to data. The stability-
dependent dynamic Smagorinsky equations are presented here solely for completeness, in ac-
cordance with the methodology outlined by Efstathiou et al. (2018). The stability functions fm

and fh, for heat and scalars respectively, remain the same as those detailed in Table 3.1. The
stability dependency appears in the Mij and Rj equations in the dynamic model:

Mij =
“̄∆2|Ŝ|Ŝij f̂m(Ri)− ∆̄2¤�|S|Sijfm(Ri) (3.52)

and similarly Rj becomes

Rj =
“̄∆2|Ŝ|”∂ψ

∂xj
f̂h(Ri)− ∆̄2¤�|S| ∂ψ

∂xj
fh(Ri) (3.53)

These equations can also be made scale dependent through the use of the β parameter, similar
to the Equations 3.50 and 3.51. This would enable the dynamic Smagorinsky model to be both
scale-dependent and stability-dependent.
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4 Case Studies and Model Set-up

4.1 The MONC Model

The LES model used to conduct this study is the Met Office/NERC Cloud Model (MONC),
which is a rewrite of the Met Office Large Eddy Model (LEM). The LEM is an older model
which is unable to scale beyond 512 cores, whereas the MONC model has been designed to run
on HPC systems with high CPU core counts (Brown et al., 2014). MONC applies the quasi-
Boussinesq anelastic approximation to the 3D Navier Stokes equations, employing a height-
dependent hydrostatic reference state for temperature, pressure and density (Hill et al., 2018;
Efstathiou, 2023). These equations are resolved on an Arakawa-C grid. An energy-conserving
centred difference scheme (Piacsek and Williams, 1970) is used for the advection of momen-
tum, while a positivity-preserving total variation diminishing (TVD) scheme is used for scalars
(Leonard et al., 1993). The model grid acts as a low pass filter to the flow, partitioning it into
resolved and unresolved (subgrid) scales. The energy transfer resulting from the turbulent cas-
cade of energy from resolved to unresolved scales is governed by the Smagorinsky scheme, as
described in Section 3. This energy transfer is controlled by the Smagorinsky parameter, which
the standard MONC configuration fixes to a constant value of Cs = 0.23. The viscosity, which
controls the dissipation of energy from resolved to SGS (recall Equation 3.15), is calculated us-
ing Cs, the rate of strain, and an additional stability function. This study uses the standard form
of the stability functions, as detailed in Section 3.1.3, to determine the subgrid contribution to
the flow. These functions assess whether turbulence should be occurring in a specific stability
regime through the use of a critical Richardson number and, for scalars the Prandtl number is
also used as an additional factor.

4.2 Background of Case Studies Used

The MONC model, with a standard Smagorinsky subgrid scheme, was used to produce high-
resolution simulations of three different case studies: a dry CBL, the BOMEX case, and the
ARM case. The dry CBL case was used as a simple initial test case to ensure that the MONC
model was set up correctly and producing the expected results. The main focus when analysing
results from this case was determining the sensitivity of the model to grid spacing. There is
no vapour or liquid water content in the simulation and the boundary layer cap was maintained
at an approximate height of 1 km through the use of a steep temperature inversion. There is a
constant positive heat flux at the surface, giving rise to a strong convective thermal circulation.
This produces an idealised case of the eddy overturning which occurs in the daytime convective
boundary layer. Further details on this case study are given in Section 4.3.1.
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The Barbados Oceanographic and Meteorological Experiment (BOMEX) is a standard case of
marine shallow cumulus convection. Analysis from the initial field campaign is detailed in Hol-
land and Rasmusson (1973), while the set up of the LES model for this case was designed by
Siebesma and Cuijpers (1995). This study uses data from Phase 3 of the BOMEX case, focus-
ing on a five day period of settled conditions from the 22nd to the 26th of June 1969. During
this period, conditions were remarkably undisturbed, such that the system can be classified as
being in a quasi-steady state. Siebesma et al. (2003) notes that the trade wind cumulus clouds
that formed did not precipitate or interact with mesoscale circulations. A large-scale downward
motion dominates during this time (Nitta and Esbensen, 1974), limiting the cloud layer to lie
between the 500 m to 1500 m levels (Siebesma et al., 2003). During this period, 15 rawinsonde
soundings were launched per day, as per the program detailed by Davidson (1968). This data
was used to produce large-scale profiles of temperature, humidity, wind speed and direction
across the BOMEX domain, as shown in Figure 4.1. Further details on this case study are given
in Section 4.3.2.

Figure 4.1: The ship array during Phase 3 of the BOMEX Observation period (Nitta and Esbensen,
1974).

The Atmospheric Radiation Measurement (ARM) case is an idealisation of measurements taken
on the 21st June 1997 at the Southern Great Plains (SGP) site near Lamont, Oklahoma (Chlond
et al., 2014). This is a well-studied diurnal cycle of shallow cumuli over arid, flat land driven
by sensible heat fluxes. This case has been intensively studied by Browning et al. (1993) as part
of the 6th Global Energy and Water Cycle Experiment (GEWEX) Cloud System study (GCSS),
which tested numerous LES models’ abilities to simulate the development of shallow cumulus
over land. The model set-up for ARM used in this study was originally employed as a test
bed for an LES intercomparison study by Brown et al. (2002). The ARM Program has been
acknowledged by Ahlgrimm et al. (2016) as a case which has played a key role in the develop-
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ment of the parametrizations of subgrid processes for cloud, precipitation, and radiation in the
ECMWF models.

The ARM case shows a field of non-precipitating cumulus clouds developing over an initially
clear convective boundary layer on the day in question. During the diurnal cycle, this case
transitions between five key stages: from the shallow morning-time boundary layer, to a dry
convective boundary layer, to one with the onset of passive clouds, moving to a more rapid
cloud development stage, and finally reaching a quasi-steady like stage in the evening (Efs-
tathiou, 2023). The exact timings of these transitions, both for the local time and equivalent
UTC (for ease of comparison to other literature based on the ARM case) are illustrated in Fig-
ure 4.2. Further details on this case study are given in Section 4.3.3.
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Figure 4.2: A visualisation of the time stamps of interest during the diurnal cycle from the ARM case.
The time samples used in the analysis are marked in black boxes. The local time (L) is used as convention
throughout this thesis, however, other studies on the ARM case have used UTC, so this was included for
ease of comparison.
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4.3 LES Model Set-up

The MONC model, with a standard Smagorinsky subgrid scheme set-up, was used to produce
LES for the three distinct cases. MONC employed an adaptive time step, governed by the
Courant–Friedrichs–Lewy (CFL) criterion. The pressure field was computed using an iterative
solver, which was subsequently incorporated into the momentum equation. The initial condi-
tions specific to each case were then included in the model, resulting in the generation of LES
for each scenario. The model set-up specific to each case is detailed in the following sections.

4.3.1 Set-Up for the Dry CBL

The dry CBL was initialised with no water content, and a mean wind speed of u =1 m s−1,
aligned along the x axis. A constant positive heat flux of 241 W m−2 was input at the surface,
resulting in a well-mixed BL. A constant potential temperature profile was initialised in the
lower layer of the domain, while a strong temperature gradient formed a capping inversion in
the upper layer. Details of the initial potential temperature profile are given in Table 4.1.

z (m) θ (K)
0 300

950 300
1050 308
2000 310.85

Table 4.1: Summary of initial profile for θ in the dry CBL case. Values at intermediate heights can be
found by linear interpolation.

This case was run at multiple different grid spacings, in order to ascertain the effect of resolution
on the model’s ability to produce accurate CBL fields. The high resolution LES of the dry CBL
are produced on a 4.8 km× 4.8 km horizontal domain, with a vertical depth of 2 km. However,
to ensure there were enough grid points to resolve motions in the flow, the very coarsest reso-
lution simulations required the horizontal domain to be expanded. The exact details of the grid
length and domain size for each simulation are given in Table 4.2.

∆x,y (m) Horizontal Domain ∆z (m) Vertical Depth
20 4.8 km× 4.8 km 20 2 km
25 4.8 km× 4.8 km 20 2 km
50 4.8 km× 4.8 km 20 2 km

100 4.8 km× 4.8 km 20 2 km
200 9.6 km× 9.6 km 20 2 km
400 9.6 km× 9.6 km 20 2 km
800 19.2 km× 19.2 km 20 2 km

Table 4.2: The domain size and grid spacings used for each of the dry CBL simulations.
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The MONC model generated 4 hours of data for each resolution of the dry CBL simulation,
with the data analysis consistently focusing on the 3 hour and 40 minute timestamp.

4.3.2 Set-Up for the BOMEX case

The MONC model was initialised using a set of conditions to mimic the BOMEX field observa-
tions. The resulting simulation is considered to be in quasi-steady state. The BOMEX simula-
tion was run with a 16 km× 16 km horizontal domain using a grid spacing of ∆x = ∆y = 20m
with periodic boundary conditions imposed on the lateral boundaries. In the vertical, the grid
spacing is set to ∆z = 20m and the domain extended to 3 km above the surface. The surface
pressure p0 was initialised to 1,000 hPa.

Initial conditions for both the potential temperature θ and water vapour qv consist of a well-
mixed layer extending from the surface to z= 520 m. Above this is the cloud layer, a con-
ditionally unstable region initially set to lie between 520 m and 1500 m. The cloud layer is
capped by a statically stable layer, defined by a temperature inversion extending from 1500 m
to 2000 m. Above z= 2000 m the statically stable “free atmosphere” extends up to the domain
lid at 3000 m. Unidirectional Easterly winds are initialised by setting u to negative values and
v to zero throughout the column. In the lowest layer (0 m to 700 m), the wind speed is set to a
constant value of u = −8.75m s−1, and above this, the winds decrease linearly with height to
the geostrophic wind, with a value of u = −4.61m s−1 at z= 3000m. The initial surface latent
heat flux was set to 130.052 W m−2, while the sensible heat flux was initialised to 8.04 W m−2.
These initial profiles are summarised in Table 4.3, where a dashed line indicates that, at that
height, a value was not prescribed for that variable, but can instead be calculated by linearly
interpolating between the variable values above and below this height.

Height (m) θ (K) qvapour (g kg−1) u (m s−1) v (m s−1)
0 298.7 17.0 -8.75 0

520 298.7 16.3 -8.75 0
700 - - -8.75 0

1500 302.4 10.7 - 0
2000 308.2 4.2 - 0
3000 311.85 3.0 -4.61 0

Table 4.3: Summary of initial variable profiles for the BOMEX case.

The MONC model was run for 4 hours for the BOMEX case. However, as this case is in
quasi-steady state, much of the data has the same statistical properties once model spin-up is
complete. Data from the 4 hour time stamp was chosen to be the focus of this analysis.
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4.3.3 Set-Up for the ARM Case

The MONC model was used to produce a 14 hour simulation of the ARM case, beginning
shortly after sunrise at 05:30 local time (corresponding to 11:30 UTC), and ending at 19:30
local time. The domain was set to have a grid spacing of ∆x = ∆y = 25m in the horizon-
tal and ∆z = 10m grid spacing in the vertical. This simulation spans a horizontal domain of
19.2 km× 19.2 km with a vertical depth of 4.4 km. The model was initialised following the
set-up detailed in Brown et al. (2002), based on the ARM data recorded at the Southern Great
Plains (SGP) field site on the 21st June 1997.

The surface pressure was set to p0 = 970 hPa and random temperature perturbations were im-
posed at each grid point in the lowest 200 m to initiate turbulence. It should be noted that
Brown et al. (2002) suggested some minor modifications to the initial temperature profile due
to a mismatch in data between the central facility observations and the diagnosed large-scale
forcings. This was believed to be due to the forcings representing averages across the entire
365 km× 300 km SGP site, rather than being specific to the particular area under analysis. The
potential temperature profiles were further modified by increasing the gradient in the inversion
layer which overlies the cloud layer (z ≥ 2500m) to prevent clouds from nearing the domain
top (Brown et al., 2002). Details of the initial profiles are given in Table 4.4 below.

z (m) θ (K) qv (g kg−1) u, v (m s−1)
0 299 15.2 10, 0

50 301.5 15.17 10, 0
350 302.5 14.98 10, 0
650 303.53 14.8 10, 0
700 303.7 14.7 10, 0

1300 307.13 13.5 10, 0
2500 314 3 10, 0
5500 343.2 3 10, 0

Table 4.4: Summary of initial mean profiles for each variable in the ARM case. At intermediate heights,
linear interpolation is used to obtain values for each quantity. Note that the set up of the ARM case
in MONC defines profiles up to z = 5, 500m, however this simulation set the top of the domain to be
z = 4, 400m, therefore interpolation was used to find the initial profile values at this height.

Prescribed time-dependent surface fluxes for sensible and latent heat, along with large-scale ad-
vective forcings, and radiative tendencies, drove the model to produce an idealised simulation
of the ARM case. The boundary conditions, which are also based on observations, are provided
to the model as simplified profiles (Chlond et al., 2014). A time series of the surface forcings is
detailed in Table 4.5.
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Local time Sensible Heat Flux (W m−2) Latent Heat Flux (W m−2)
05:30 -30 5
09:30 90 250
12:00 140 450
13:00 140 500
15:30 100 420
18:00 -10 180
20:00 -10 0

Table 4.5: Time series of the surface heat fluxes for the ARM case. At intermediate heights, the value of
the fluxes can be calculated using linear interpolation.

The model output fields for the ARM case are analysed with a focus on four time stamps:
10:30L, 12:30L, 14:30L, 16:30L, as illustrated in Figure 4.2. Each of these times corresponds
to a certain phase of interest from the diurnal cycle: the early morning dry CBL (DRY), the on-
set of passive clouds (ONS), the rapid cloud development stage (DEV), and the late afternoon
quasi-steady state (QSS).

4.4 Data Post-Processing Procedure

The fields of LES data from the MONC model must undergo a series of post-processing pro-
cedures before they can be used to calculate fields of flow-dependent Smagorinsky parameters.
Firstly, the reduction in resolved energy as a result of filtering by the Smagorinsky scheme must
be accounted for before any other filters can be applied to the MONC output fields. This is to
ensure that the correct filter scales are used when applying the Gaussian filter to the data. Fur-
thermore, although the shape of the Smagorinsky filter is similar to that of a Gaussian filter, it is
not an exact match. When calculating Lij andMij using Equations 3.35 and 3.36, the difference
between the two scales must only be a result of resolution, not filter shape. To ensure that the
difference is solely due to the difference in filter scale rather than differences in filter shape, the
raw MONC output data (with grid spacing ∆) must first be filtered using the Gaussian filter to
produce the SGS data set. The resulting SGS data has an effective grid spacing of ∆. These
Gaussian-filtered fields form the “first filter” dataset, and it is used as the base dataset for all
dynamic Smagorinsky calculations. This base dataset is then filtered again, using a Gaussian
filter, to an effective grid spacing of “∆, giving rise to the “second filter” dataset. The differences
in fluxes (see Equations 3.35 and 3.42) and gradients (see Equations 3.36 and 3.43) between the
SGS and the STS can then be calculated, and the dynamic Smagorinsky parameters computed.
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4.4.1 The Gaussian Filter

Data from an LES with a grid spacing ∆ can be filtered (smoothed) to a coarser resolution us-
ing a Gaussian filter applied to the data in Fourier space. The ̂ symbol is used to indicate data
which has been filtered. Filtered data has a corresponding “effective grid spacing”, “∆, which
describes the resolution that the filtered data corresponds to in physical space. Data filtered to“∆ is expected to be similar to a MONC data field with a grid length ∆ = “∆, provided it is in
the LES regime. Therefore “∆ is a measure of the equivalent “grid spacing” of the filtered data.
For MONC model runs, as the grid spacing ∆ increases, the simulation will begin to encounter
problems associated with the grey-zone and the model will be unable to resolve the correct
amount of energy. In contrast, the statistical properties of the filtered data remain unaffected by
the grey-zone, even at coarse resolutions, and can therefore be regarded as the “truth”, against
which lower resolution MONC simulations can be evaluated.

The filtered data in this study is calculated by applying a Gaussian filter to a high-resolution
LES dataset. The MONC output data is transformed to spectral space by a Fourier transform
operation. The Gaussian filter, G, is then applied to this data in spectral space (denoted by s)
and is defined as:

Gs = exp(−σ
2
f k

2

2
) (4.1)

Where k is the wavenumber, and σf is the filter scale. The σf variable sets the width of the
Gaussian filter, and is related to the effective grid scale by:“̄∆ = 2σf (4.2)

Note that this relation is derived and discussed further in Chapter 5. The Gaussian filter removes
energy from the power spectrum Ef(k) of a variable f to give Ef̂(k), the power spectrum of the
filtered variable f̂ in spectral space using the convolution theorem:

Ef̂(k) = (G ∗ Ef)
s = Gs ⊗ Esf = exp(−1

2
σ2k2)Ef (4.3)

As energy density in the inertial subrange is defined by Ef = αϵ2/3k−5/3 :

Ef̂(k) = exp(−σ2k2)αϵ2/3k−5/3 (4.4)
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It can be seen that this filter has very little effect on low wavenumbers within the ISR, therefore
allowing the Gaussian filter to limit the reduction of energy to the small scales, similar to that
of the Smagorinsky scheme. Note that, if multiple Gaussian filters are applied to a data set, the
Gaussian filter scales σi are combined, such that:

σf =

Ã
n∑
i=0

σ2
i ∀i (4.5)

4.4.2 Filter-Scale imposed by Smagorinsky Scheme

As previously mentioned in Section 3, the Smagorinsky scheme imposes a filter on the data.
This is because Smagorinsky acts to remove energy from the resolved flow, with a particular
focus on the smallest scales, similar to the effect that viscous dissipation has on physical flows.
Data from an idealised power spectrum, one with no deviation from the -5/3 Kolmogorov slope
in the inertial sub-range, is taken and filtered by a Gaussian filter with filter-scale σ = 1

2
∆.

Results presented in Chapter 5 show that the resulting power spectrum is very similar to the
power spectrum produced from the output of a MONC model with a grid spacing of ∆. The
exact reasoning behind this relation is discussed further in Section 5.4. This allows for the
approximation of the filter scale corresponding to the Smagorinsky subgrid scheme, σsmag.

σsmag =
1

2
∆ (4.6)

where ∆ is the LES model grid spacing. The grid spacings and corresponding Smagorinsky
filter scales for each case study are given in Table 4.8 below.

Case Study ∆x, y (m) ∆z (m) σsmag (m)

Dry CBL 20 20 10
BOMEX 20 20 10
ARM 25 10 12.5

Table 4.6: The grid spacings and corresponding Smagorinsky filter scale for each case study.
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4.4.3 Filtering the LES Output Fields (First Filter)

In order to remove any artefacts that the Smagorinsky filter shape might have imposed on the
dataset, a Gaussian filter is applied to the raw MONC output fields. Adhering to convention,
the data is filtered to coarser effective grid spacings (∆) by multiplying the grid spacing (∆) by
powers of 2. Note that this spectral filter is only applied to the data at each level of the horizontal
planes; data is not filtered in the vertical. The data is coarsened to ∆ = 2∆, 4∆, 8∆, 16∆, 32∆,

and 64∆, which encompasses effective grid scales ranging from typical LES regimes to grey-
zone resolutions. To achieve the desired effective grid spacings while also taking the Smagorin-
sky filter into account, Equation 4.5 can be applied. This allows σf1, the filter scale for the
“first filter” data, to be computed using the first Gaussian filter scale σ1 and the approximate
Smagorinsky filter scale σsmag.

σf1 =
»
σ2
1 + σ2

smag (4.7)

Recall from Equation 4.2, for any given Gaussian filter f , with filter scale σf, the corresponding
effective grid spacing ∆f is given by ∆f = 2σf. In order to find what σ1 to use when Gaussian
filtering the data to the desired scales, recall that the first filter data requires an effective filter
scale of ∆f = ∆ ≡ n∆ where n ∈ {21, 22, 23, 24, 25, 26}. Therefore, combining Equations 4.2
and 4.7 gives:

∆ = n∆ ≡ 2σf1 = 2
»
σ2
1 + σ2

smag

and so the required Gaussian filter scale σ1 can be computed:

σ1 =

…
n2

4
∆2 − σ2

smag ∀ n ∈ {21, 22, 23, 24, 25, 26} (4.8)

The σ1 values used to compute the first filter for the BOMEX and ARM cases are given in
Table 4.8, along with the corresponding effective grid-scale ∆. This “first filter” data forms
the base dataset from which the dynamic Smagorinsky parameters will be calculated. The base
data has an effective grid spacing of ∆ in physical space, where the overbar denotes the first
filter, and is no longer contaminated by the misalignment between the shape of the Gaussian and
Smagorinsky filters. To compute the Smagorinsky parameters, the base data must be filtered a
second time, which allows the differences between the two scales to be calculated following the
Germano-Lilly method, as described in Section 3.4.1).
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BOMEX ARM
∆ (m) σ1 (∆ = 20m) σ1 (∆ = 25m)

2∆ 17 22
4∆ 39 48
8∆ 79 99
16∆ 159 199
32∆ 320 400
64∆ 640 800

Table 4.7: The effective grid spacings and corresponding Gaussian filter scale used to calculate the
“first filter” base dataset for the BOMEX and ARM case studies.

4.4.4 Filtering the Filtered Fields (Second Filter)

Following the arguments presented by Germano et al. (1991) and Lilly (1992), when data is
resolved down to sufficiently small scales, the properties of turbulence scale with wavelength.
Therefore, it is assumed that the appropriate amount of mixing, and thus dissipation, can be de-
termined by looking at the difference between the base “first filtered” dataset (with an effective
grid spacing ∆, which resolves down to the SGS) and coarser “second filtered” dataset (with
an effective grid spacing “∆, which resolves down to the STS). The difference between the SGS
and STS is scale selective, meaning the test filter window remains the same width for all scales,
as depicted in Figure 4.3.

Figure 4.3: When calculating the scale-invariant Smagorinsky parameter, the filtering test window main-
tains the same ratio between the base data set and the coarser filtered set on a log axis. The choice of
base data depends on the desired scale for the filtered data. The scale of the test windows are shown for
data filtered from (a) a base dataset from the raw LES data, with filter scale ∆, which has been filtered
to a coarser dataset with filter scale ∆, and (b) a base dataset (from the filtered data) with a filter scale

∆, which has been filtered a second time to a coarser dataset with filter scale “∆.

The “first filter” data is filtered a second time, with the “second filter” operation denoted by
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a hat. For the scale-invariant method it is filtered to twice the effective grid spacing of the
“first filter” data (ie: four times the grid spacing of the raw MONC output data): “∆ = 2∆ =

4∆. When computing scale-dependent parameters using the method defined by Bou-Zeid et al.
(2005) (see Section 3.4.2) a coarser filter scale is applied to the base dataset and the data is
filtered to an effective grid spacing of “∆ = 4∆ = 8∆. Although this data is coarser, it has still
only been filtered twice, and so is still considered the result of a “second filter”. In more general
terms, data resulting from a “second filter” requires an effective filter scale of ∆f =

“∆ ≡ mi∆.
For the scale-invariant method of calculating the Smagorinsky parameter m1 = 22∆, while
m2 = 23∆ for the scale-dependent calculation of the Smagorinsky parameter. The correct σ
values required to compute the “second filter” data can be determined by using Equations 4.2
and 4.7: “∆ = mi∆ ≡ 2σf2 = 2

»
σ2
2 + σ2

1 + σ2
smag (4.9)

From Equation 4.8, it is clear that σ2
1 + σ2

smag =
n2
4
∆2 and so:

m2
i

4
∆2 =

n2

4
∆2 + σ2

2

The required Gaussian filter scale σ2 can then be computed:

σ2 =
∆

2

»
m2
i − n2 for m1 = 22 and m2 = 23 (4.10)

Note that this can be further simplified by recalling the relation between n and mi. For “∆ = 4∆

where mi = m1 = 2n, and so:

σ2 =

√
3

4
n∆ (4.11)

Meanwhile, for scale-dependent computations which require an even coarser scale, the effective
grid scale “∆ = 8∆ with mi = m2 = 4n, and so:

σ2 =

√
15

4
n∆ (4.12)

The σ2 values used to compute the second filter data for the BOMEX and ARM cases are given
in the following table, along with the corresponding effective grid-scale “∆:
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Base dataset used: Filtered to: BOMEX (∆ = 20m) ARM (∆ = 25m)

∆ (m) “∆ (m) σ1 σ2 σ1 σ2

2∆ 4∆ 17 35 22 43
2∆ 8∆ 17 77 22 97
4∆ 8∆ 39 69 48 87
8∆ 16∆ 79 139 99 173
16∆ 32∆ 159 277 199 346
32∆ 64∆ 320 554 400 693
64∆ 128∆ 640 1109 800 1386

Table 4.8: The effective grid spacings and corresponding Gaussian filter scale used to calculate the
“second filter” coarse dataset for the BOMEX and ARM case studies. The second row of data in maroon
shows the filter scales used to compute the “second filter” for the scale-dependent dynamic computations

where “∆ = 4∆. This is in contrast to all the other “second filter” computations, which were for the

scale-invariant method, and filtered data to “∆ = 2∆.

4.5 The Offline Dynamic Model

These “first” and “second” filter data sets can then be used to calculate flow-dependent Smagorin-
sky parameters using equations from the dynamic model (see Section 3.4.1). As the equations
are being applied during the post-processing procedure and not within the MONC model itself,
this is referred to as the “Offline Dynamic Model”. Note that in this study, the offline dy-
namic model does not include stability functions in the dynamic equations; however, the LES
fields that the offline model uses as input data have been produced using a standard Smagorin-
sky scheme which included stability functions, as detailed in Section 3.1.3. The equations in
Section 3.4.1 can also be included in the subgrid scheme of an LES model, meaning that calcu-
lations of the Smagorinsky parameters are performed by the model at each grid point for every
time step. This method is referred to as the “Online Dynamic Smagorinsky Model”. The online
model requires substantial computational power. This study uses the offline model as an analy-
sis tool, applying the dynamic Smagorinsky equations to velocity and scalar fields which have
already been output from an LES model and filtered to the required resolutions. Offline analysis
is used to diagnose relationships between the Smagorinsky parameters and key features of the
flow, such as the ML capping inversion or clouds. Identified relationships will be parametrized
and used to to run the MONC model at coarse resolutions in Chapter 8.
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4.5.1 Computing Flow Dependent Smagorinsky Parameters Offline

By applying the dynamic equations to the LES data, fields of flow-dependent Smagorinsky
parameters can be computed. However, the parameter value fields need additional processing
before the results can be utilised. Firstly, as seen in other studies such as Shi et al. (2018) and
Efstathiou (2023), the C2

s and C2
ψ parameters can be negative. Retaining these negative results

will contaminate the averages, as a negative Cs or Cψ yields a negative mixing length, which
is inherently unrealistic and indicates that the assumptions of the Smagorinsky scheme have
broken down locally. Recalling the equations for Cs and Cψ (see Equations 3.41 and 3.45), it is
evident that only the numerator can be negative. Therefore, these negative values are “clipped”,
meaning they are set to zero, to indicate a complete lack of subfilter mixing of the quantity
at that specific point. Then the numerator and denominators can be horizontally averaged, as
denoted by the angle brackets in the equations below, to produce profiles of Cs and Cψ:

⟨C2
s ⟩ =

1

2

Å⟨max(0, LijMij)⟩
⟨M2

kl⟩

ã
(4.13)

⟨C2
ψ⟩ =

1

2

Å⟨max(0, HjRj)⟩
⟨R2

k⟩

ã
(4.14)

The angle brackets denote the averaging operation, which can be conditional or across the en-
tire domain, and it is performed after the indices of the tensors are contracted. The averag-
ing operator used throughout this study is an average at each vertical level to produce profiles
of the Smagorinsky parameter. The averaging operations have been applied to the numerator
and denominator separately due to the use of the least squares approach when calculating the
Smagorinsky parameters, as previously discussed in Section 3.4.2.

Analysing fields from only a single time stamp may introduce noise into the profiles, due to in-
sufficient data for the averaging operation. To mitigate this, data from neighbouring time stamps
can also be included in the averaging process. If the additional output time stamp is close to the
original, particularly when the system is in or near a quasi-steady state, the additional data from
the new output time stamp can be considered an extension of the original domain. As a result,
the number of points being averaged over in both the numerator and denominator of the Cs or
Cψ calculation increases, leading to less noisy, and more reliable profiles.

This time-averaging was applied to both the BOMEX and ARM data. Both cases had instan-
taneous data output every 10 minutes. As the BOMEX case is in quasi-steady state, three time
steps were used to produce the time-averaged profiles for Cs and Cψ, for each scalar ψ. How-
ever as ARM is an evolving case, only two timesteps were used to produce the time-averaged
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profiles for the Smagorinsky parameters.

The flow can be partitioned into different regions, and for each region, the average values of the
Smagorinsky parameter at each level can be calculated. One regions of interest is the non-cloudy
environment, which is made up of the ML and the non-cloudy areas of the CL. The in-cloud
averages at each height level are another region of interest, which can also be further sub di-
vided into the cloud updraft and cloud core regions. In-cloud areas are defined as points where
qcl ≥ 10−7 kg kg−1, the cloud updraft region is defined as points where qcl ≥ 10−7 kg kg−1 and
w′ ≥ 0.5m s−1, while the cloud core partition is defined as points where qcl ≥ 10−7 kg kg−1,
w′ ≥ 0.5m s−1, and θ′v ≥ 0K. To compute the profiles for each partition, Equations 4.13
and 4.14 are again applied, but only using LijMij , M2

ij , HjRj , and R2
j values from points in the

flow within these regions; i.e. points which fulfil the specific partition’s criteria.

The conditional averages for a partition can also be computed; for example, the average value
of the Smagorinsky parameter at each height level in-cloud, or the average value at each level
of the ML. For this computation, the profile of a Smagorinsky parameter in a certain region r:
⟨Cs⟩r or ⟨Cψ⟩r, can be calculated by following the averaging procedure in Equations 4.13 and
4.14, ensuring the numerator and denominator are averaged separately, while only using points
within the region in question. However, to avoid boundary effects, the lowest 10% of height
levels and the highest 10% of height levels are excluded from this calculation. This gives the
average parameter value throughout the entire depth of a distinct layer. This calculation can be
performed for the parameters at each filter scale, and the overall trend of average Cs and Cψ
versus filter scale “̄∆ can be determined.

While theCψ parameter is being used as the standard measurement of scalar dissipation through-
out this work, the convention in the literature is to use a Prandtl number Pr for heat variables,
and a Schmidt number Scψ for any other scalar ψ. Multiple variables are considered, including
conserved variables such as θL, θe, and qt, along with other non-conserved variables such as θ
and θv. In order to calculate the corresponding Prandtl and Schmidt numbers to enable direct
comparison to previous literature, the following formulas were applied to the Smagorinsky pa-
rameters which had been calculated by the offline dynamic analysis:

Pr =
C2
s

C2
θ

(4.15)

Scψ =
C2
s

C2
ψ

(4.16)
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Any averages that are required to produce profiles of the Prandtl or Schmidt numbers are com-
puted by inputting the corresponding ⟨Cs⟩ and ⟨Cψ⟩ average values, rather than applying the
averaging operation to a field of Pr or Sc values.
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5 Does Smagorinsky Behave as a Filter?

The Smagorinsky subgrid scheme is often regarded as a filtering operation, which is applied to
LES data as it is being resolved (Mason and Brown, 1999). This is because the scheme dissi-
pates energy from motions with length scales comparable to the grid scale. As a result, it has
become common practice to use the terms “subgrid” and “subfilter” interchangeably, based on
the assumption that they scale similarly.

Throughout this work, it is assumed that the Gaussian filter behaves similarly to the Smagorin-
sky scheme. Gaussian-filtered data is used as a proxy for the expected output of an LES model,
which uses the Smagorinsky subgrid scheme, run with a coarser grid spacing. In cases where
this scale falls within the grey-zone, the Gaussian-filtered data is considered the idealised out-
come that the LES would have produced, had it been unaffected by grey-zone limitations.
Therefore it is important to determine the corresponding “effective grid scale” (“̄∆) of the fil-
tered data in the grid-based domain after applying a Gaussian filter with filter scale σ to the data
in Fourier space. This enables both the comparison of LES output data with filtered data, and
the calculation of dynamic Smagorinsky parameter fields using the method outlined in Section
3.4.1.

This chapter will examine whether the Smagorinsky scheme truly operates as a filter, and if so
how its behaviour compares to that of a Gaussian filter, by addressing the following research
questions:

• Does the Smagorinsky scheme demonstrate a specific filter shape in spectral space that
maintains the same shape consistently for every grid spacing and case study? If so, does
this filter shape scale uniformly with grid spacing?

• If the Smagorinsky scheme functions as a filter, how closely does its filter shape corre-
spond to that of a Gaussian filter in spectral space?

• How can the Gaussian filtered data be related back to grid-based domain?

To address these questions, the data must first be transformed into Fourier space to evaluate the
behaviour of its spectra. The work in this section builds upon work carried out by Moeng and
Wyngaard (1988) to find the filter shape of the Smagorinsky subgrid scheme.
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5.1 Method of Computing Dimensional Spectra

Two-dimensional spectra of the vertical wind velocity and the vertical kinematic eddy heat flux
were computed at various levels of interest in the boundary layer using the method outlined in
Durran et al. (2017). These spectra plots have a normalisation factor, N, given by:

N =
∆x∆y min(∆kx,∆ky)

8π2nxny
, (5.1)

where ∆kxi =
2π

∆xi
nxi

for xi ∈ (x, y). The number of points in the x and y direction is given
by nx and ny respectively, and the grid spacing in the x and y direction denoted by ∆x and ∆y.
This method was employed to compute spectra using both LES output fields and filtered data,
and the results of this are discussed in the following sections.

5.2 Shape of Smagorinsky Filter in Spectral Space

Spectra for the vertical velocity, Sw, have been computed using data from the mid-CBL height
level of the dry CBL simulations at various grid spacings (∆). The results are plotted in Figure
5.1, along with an idealised spectrum of what data from an unfiltered CTBL should look like,
used as a reference.

Figure 5.1: Power spectrum of w from the middle of the CBL plotted against wavenumber k (k = 2π/λ),
and an additional axis showing wave length λ. The “truth” spectrum is shown by the black line.

The w spectra for the higher resolution LES runs show peaks at wavelength values just over
λ = 1000m, and a clearly defined inertial subrange is evident with the turbulent cascade of
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energy following the -5/3 Kolmogorov law. The slopes of the high-resolution spectra (when
∆ ≥ 100m) are not strongly impacted by the grey-zone. Therefore their ISR follows a -5/3
slope before deviating to a steeper slope as the model fails to resolve the energy accurately
at the smallest scales in the simulation. This deviation defines the effective resolution of the
model, Reff. Any scales of motion within the flow which are smaller than Reff cannot be fully
resolved. Figure 5.1 demonstrates a steep decrease in the spectral slope after the 2∆ mark as
energy cannot be resolved past this point. The 2∆ point demonstrates the Nyquist frequency,
where the model cannot resolve motions using less than 2 grid spaces.

Meanwhile, the coarser resolution LES runs, where the model is in a grey-zone regime, show
peaks occurring at higher wavelengths with no clear inertial subrange evident. In the case of
the coarser resolution MONC simulations of the dry CBL, the dominant scales of motion begin
to have the same scale as the Reff. Therefore the model is unable to fully resolve these motions,
resulting in the model being unable to resolve scales in ISR, instead the spectra show the steeper
slope which is related to the Smagorinsky scheme and model dynamics immediately after the
spectral peak. At the very coarse resolutions, such as ∆ = 800m, it is obvious that the model
is no longer able to fully resolve the energy-containing scales. This is evident from the decrease
in the energy value reached at the peak, and the width of the peak itself. Therefore, at these grid
spacings, the grey-zone has truly begun to impact the resolvable scales.

The spectra were then scaled by an idealised ISR slope following Kolmogorov’s -5/3 law. This
more clearly presents when each spectrum deviates from the idealised truth, i.e. at which wave-
length each run begins to under-resolve energy. The result is presented in Figure 5.2 a, while
Figure 5.2 b depicts the result while scaling the wavenumber by the grid spacing.

Figure 5.2: Power spectra of w at the mid-CBL level from MONC simulations with different grid spac-
ings ∆, scaled by the idealised -5/3 ISR slope plotted against (a) wavenumber k (k = 2π/λ), with an
additional axis for wavelength λ, and (b) k scaled by ∆, with an additional axis for λ/∆. The black line
shows the total idealised energy, as determined by the ISR slope, to serve as a reference.
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Figure 5.2 a shows the ratio of resolved energy to the idealised energy amount plotted against
wave number. This plot clearly shows when this ratio deviates from unity: ie. when the re-
solved energy in the model is less than the reference. Figure 5.2 a demonstrates that the MONC
model has an effective resolution Reff ≈ 8∆, where the spectral slope deviates from unity
until reaching the 2∆ mark, after which it falls at a much steeper rate as energy cannot be re-
solved past this point. The slope between Reff and 2∆ is a result of the model dynamics and
the Smagorinsky scheme. The lengthscale corresponding to Reff can be expressed as the dis-
sipation length scale, which is discussed further in Section 5.3.3. Figure 5.2 b demonstrates
that, by scaling the wavelength by the grid spacing relative to each spectrum, all the spectra
collapse along the same slope after their corresponding Reff point, which is observed occurring
at λ/∆ ≈ 8, as expected. Furthermore Figure 5.2 b clearly shows the rapid decrease in energy
when λ/∆ ≤ 2, corresponding to the Nyquist frequency. This plot explicitly illustrates that the
standard Smagorinsky subgrid scheme has a universal filter shape, valid at every grid spacing,
whether in the grey-zone regime or not.

Sw, the power spectrum of w, can be related to w′2 variance values via the following equation:

w′2 =

∫ ∞

−∞
Sw dk = 2

∫ ∞

0

Sw dk (5.2)

=⇒ w′2 ≈ 2

∫ kmax

kmin

Sw dk (5.3)

Each spectrum was integrated up to the wavenumber corresponding to 2∆, and the result was
scaled by the integral of the truth spectrum (also up to 2∆). This results in the ratio of resolved
energy to idealised total energy, which was then plotted against 2∆ scaled by the inversion
height, zi = 1080m. Note that in Figure 5.3 the ∆ = 200 m, 400 m and 800 m runs have larger
domains, resulting in an artificial increase in the resolved energy for the LES of the dry CBL at
these grid spacings.

Figure 5.3 shows the amount of energy being resolved by each MONC run. As each energy is
then scaled by an equivalent truth value for the energy, simulations that are not in the grey-zone
are seen to have an energy ratio of around 0.9. This demonstrates that in the LES regime, the
MONC model is able to resolve approximately 90% of the total energy. Note that the ∆= 5 m
run shows less energy being resolved than the ∆ = 20 m, 25 m, and 50 m runs. This is due to the
use of an FFT solver for the ∆= 5 m run, whereas all other simulations use an iterative solver. It
was necessary to use the FFT solver for the ∆= 5 m run as, at the time of implementation, there
was a bug in the MONC model which prevented very high resolutions from running with the
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iterative solver, and once this bug was resolved, the simulation was not re-run with an iterative
solver due to the computational expense of a simulation with ∆= 5 m run. The ∆= 20 m, 25 m,
and 50 m runs are clustered together showing they are resolving about the expected amount of
energy for their given resolution, indicating these simulations are not heavily impacted by any
grey-zone issues. However, the ∆= 100 m shows a slight deviation from the higher resolution
data, indicating the onset of the grey-zone. Meanwhile, the ∆= 200 m run is resolving more
energy than the other MONC simulations, though this is probably due to the compensating ef-
fect of a larger domain. The MONC runs with ∆ ≥ 400m clearly show a decrease in resolved
energy, demonstrating the transition to the grey-zone.

Figure 5.3: Integral of the power spectra of w scaled by the “true spectrum”, plotted against 2∆/zi.

5.3 The Gaussian Filter in Spectral Space

The defining equation of the Gaussian filter allows it to reduce energy mostly at the small scales
(Equation 4.1 demonstrates that this filter primarily affects large wavenumbers), similar to that
of the Smagorinsky scheme. The extent of this similarity will be investigated throughout this
section. To compare the Gaussian filter, with its filter scale defined by σ in Fourier space, to the
Smagorinsky filter, which has its filter scale defined by ∆ in physical space, the relationship be-
tween σ and the effective grid scale ∆eff must first be derived. Note that the effective grid scales
focused on in this study correspond to data which has been filtered twice using the Gaussian
filter, and thus ∆eff = “̄∆ in this case. Before this relation is deduced, the effect of applying a
Gaussian filter to LES data will be analysed.
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5.3.1 Gaussian Filtered Spectra

The spectra of w and cospectra of the vertical heat flux from the LES output data with a grid
spacing of ∆ = 5m are plotted in Figures 5.4 a & b respectively. This ∆ = 5m dry CBL
data was filtered to various resolutions using the Gaussian filter with multiple different σ val-
ues, and the spectra and cospectra for these filtered fields are also plotted in these figures. It
is evident that, as the filter scale increases and the resolution becomes coarser, the dissipation
of energy from the data increases on a scale proportional to the filter scale. This results in the
filtered spectra appearing to move to the left as the filter scale σ increases. Lower values of
σ show the corresponding spectra in Figure 5.4 a maintaining their k−5/3 Kolmogorov slope in
the ISR. Spectra in the dry CBL have been observed to follow this law, with numerous studies
showing this behaviour, including those by Wyngaard and Coté (1971), Kaimal et al. (1972),
and Honnert et al. (2020). Meanwhile, Figure 5.4 b shows the cospectra of vertical heat flux
maintaining a -7/3 power law when σ is small, similar to cospectra of vertical heat flux from
Moraes et al. (2008) and Kaimal and Finnigan (1994). However, when large filter scales are
applied to the data, the Gaussian filter begins to heavily affect the energy-containing scales at
the spectral peak, and scales in the ISR are no longer resolved fully meaning the Kolmogorov
law no longer holds. At very large filter scale values, the Gaussian filter begins to dissipate
energy excessively from the large scale motions and the spectral peak sees a reduction in both
height and width.

Figure 5.4: (a) Spectra of the w values from the middle of the dry CBL, filtered by the Gaussian filter to
various resolutions and scaled by w∗. (b) Cospectra of the vertical heat flux values from the middle of
the CBL, scaled by Q∗. Both plots have wavenumber k (k = 1/λ) on the x-axis, and an additional axis
showing wave length λ. Various power laws are shown by the black lines.

The spectra have been scaled by w∗, the free-convection scaling velocity, while the cospectra
have been scaled by Q∗, the constant surface buoyancy flux, given by:
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w∗ =

ï
gzt
θs

Q∗
ò1/3

(5.4)

Q∗ =
H
ρ0cp

= 0.24 K m s−1 (5.5)

Where g = 9.81m s−1 is the acceleration due to gravity, θs is the temperature at the surface,
H= 241 W m−2 is the heat flux at the surface, ρair ≈ 1 kg m3 is the density of air, and
cp = 1004 J kg−1 K−1 is the specific heat of air at constant pressure.

The Gaussian filter primarily dissipates energy from the smallest scales. After a point known as
the dissipation length scale, this enhanced dissipation from the filter results in a change from the
k−5/3 Kolmogorov law (for spectra) or a k−7/3 law (for cospectra) to a steeper power law that
can be approximated by k−11/2 for low σ values. However this is not an exact power law, and
the k−11/2 approximation does not hold true for all sigma values, because the Gaussian filter is
not linear. The exact effect of this filter on the power spectra is calculated in Section 5.3.4.

5.3.2 Effective Grid Scale of the Gaussian Filter

The filter scale of the Gaussian filter is determined by the σ value, with larger σ values producing
smoother, coarser resolution fields. In order to compare the filtered data to the LES runs, the
σ parameter must be related back to a corresponding grid-based scale, and so an appropriate
relation must be derived. This scale is defined as the “effective grid spacing”, and is denoted by
∆eff. The “̄∆ scales, which correspond to specific σ values, can be determined by examining
the Gaussian equation in Fourier space. The Gaussian filter reduces energy by a factor of
exp(−σ2k2) where wavenumber k = (2π)/λ. It is desirable to have the Gaussian filter acting
on the smallest scale where very little energy is contained, chosen here to be less than 1.8% of
the energy for ease of computation. Therefore, if we assume that only 1.8% of the total energy
in the filtered spectrum is contained at scales affected by the Gaussian filter, this corresponds to
the filter acting upon scales with a wavenumber of k ≥ 2/σ or greater:

e−σ
2k2 = e−σ

2(2/σ)2 = e−4 = 1.8% (5.6)

The value of 1.8% was chosen as it leads to a simple equation for kmax while upholding the
condition that kmax marks the wavenumber where it is assumed that the majority of energy,
in this case 98.8%, is well-resolved. Therefore, the grid scale which corresponds to this kmax

defines the scale that this filtered data would have in a physical grid space.
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As very little energy is being resolved when k = 2/σ, this point in the filtered spectra can be
assumed approximately analogous to the Nyquist frequency in the spectrum of grid-discretised
data. Therefore, it is assumed that the k corresponding to the wavelength where the Nyquist
frequency occurs, that is λmin = 2∆, can be related to the kmax where just 1.8% of the total
energy in a Gaussian filtered spectrum remains. Recalling the relationship between wavelength
λ and wavenumber k:

λ =
2π

kmax
(5.7)

=⇒ 2∆eff = λmin =
2π

kmax
(5.8)

By relating the kmax of the LES data in discretised space to the kmax of the Gaussian filtered data
in Fourier space, using the finding from Equation 5.6:

kmax =
2

σ
(5.9)

Then from Equation 5.8 and 5.9

=⇒ ∆eff =
π

2
σ ≈ 2σ (5.10)

Therefore, by assuming that the smallest scales in the model contain only 1.8% of the energy,
the effective grid spacing of each filter scale σ value can be estimated. This relationship between
the Gaussian filter scale and the effective grid-scale ∆eff = “̄∆ is supported by experiments car-
ried out in Section 5.4 to verify this formula. These experiments compared the energy spectra
of filtered data, defined by an effective grid spacing of “̄∆, with those of LES data on a grid with
spacing ∆, under the condition that “̄∆ = ∆. At sufficiently high resolution, where both filtered
and LES datasets resolve the dominant turbulent scales, the resulting spectra show strong agree-
ment as illustrated in Figure 5.6. These findings support the validity of using Equation 5.10 to
relate the Gaussian filtered fields to their equivalent grid-based representation.

5.3.3 Dissipation Length Scale

From the spectra in Figures 5.1 and 5.4, an increase in the dissipation of energy is seen occur-
ring at lower wavenumbers as the resolution is coarsened. This corresponds to a “dissipation
lengthscale”, below which the numerical dissipation results in the spectra falling faster than the
k−5/3 Kolmogorov law. Beare (2014) defined a dissipation length scale, ℓd, which is calculated
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using the second moment of the turbulent kinetic energy spectrum, Se:

kd =

Ã∫ k1
k0
k2Sedk∫ k1

k0
Sedk

(5.11)

ℓd =
kd
2π

(5.12)

where k0 is the smallest wavenumber, corresponding to the largest length scale, here k0 = λmax,
and k1 is the largest wavenumber. The dissipation length scale corresponds to the wavelength
in the power spectrum where excessive dissipation begins to take over. It can be used as an
indication of the grey-zone: if ℓd is of the same order as the dominant coherent structures in
the flow, then these eddies are not being well resolved. The dissipation length scale has been
calculated for each filter scale of the Gaussian filtered dry CBL data, and the resulting plot is
presented in Figure 5.5.

Figure 5.5: Filter scale, given by σ, versus the dissipation length scale ℓd for the power spectrum of the
w values in the middle of the dry CBL.

Figure 5.5 outlines how, at lower value filter scales σ, the dissipation lengthscale is observed to
increase rapidly as σ increases. However, as the filter scale goes to large values, approximately
σ ≥ 200, the increase in dissipation length scale, ℓd, slows. At these larger filter scales ℓd in-
creases much more gradually, at a more linear rate. From Section 5.3.2, it is clear that σ = 200

corresponds to an effective grid scale of “̄∆ = 400m. As previously discussed, this scale is
fully within the grey-zone regime, and the change in the slope of ℓd with respect to σ at this
scale is likely due to the transition from the LES regime to the grey-zone. This hypothesis is

61



further supported by Figures 5.4 a & b, which show that both the spectra and cospectra begin to
deviate from the common peak only when σ ≥ 200m.

5.3.4 Slope of the Gaussian-Filtered Spectra

The slope that the spectrum follows past the point that corresponds to ℓd can also be calculated.
The equation for the power spectrum of Gaussian filtered data, from Equation 4.4 (see Section
4.4.1 for further details), is defined as.

Ef̂(k) = exp(−σ2k2)αϵ2/3k−5/3 (5.13)

When the filtered energy density Ef̂ is plotted against wavenumber k on a logarithmic graph,
for wavenumbers greater than kd the slope can be determined by:

log(e−σ
2k2k−5/3) = −σ2k2 − 5

3
log(k)

=⇒ [−σ2k2(log(k))−1 − 5
3
] log(k) (5.14)

Therefore, the slope of the filtered spectra to the right of the dissipation length scale no longer
follows an exact power law, and this slope gets steeper as the filter scale (determined by σ)
increases. This is further confirmed by Figure 5.2, which shows that the Gaussian filter not only
dissipates energy at the small scales, but also reduces energy at large wavelengths, especially
for large σ values.

5.4 Comparison of Smagorinsky to the Gaussian Filter in Spectral Space

LES data from the dry CBL case with a grid spacing of ∆ = 25m has been filtered using
the Gaussian filter with various different values for σ, as listed in the legend of Figure 5.6.
The spectra from both LES and filtered data can be compared using the effective grid spacing
relation derived in Section 5.3.2. Plotting the spectra of both datasets enables testing of this
relationship, as the spectra of LES data should resemble the spectra of the filtered data when
∆ = “̄∆. This test is carried out using data from the mid-CBL of the dry CBL case and the
resulting plot is presented in Figure 5.6.

The dissipation scheme used in the MONC LES is the Smagorinsky scheme, and from this
spectral analysis in Figure 5.6, it is clear that the Smagorinsky scheme behaves similarly to a

62



Gaussian filter. When both the LES and filtered spectra are at reasonably high resolution, such
as ∆ = 50m and σ = 25m (“̄∆ = 2σ = 50m), their spectra are very similar. This similarity
holds for both high and low wavelengths, though the Gaussian filter maintains a smooth slope
throughout, while the Smagorinsky spectra show a discontinuity at λ = 2∆, corresponding to
the Nyquist frequency. Beyond this point, the Smagorinsky filter exhibits a steeper slope than
the Gaussian filter. However, this has minimal impact on the total energy shown by the spectra,
as this difference occurs at small wavelengths where very little energy is present.
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Figure 5.6: Spectra of the mid-ML level of the w data from the dry CBL case. The LES data is plotted in
the solid line, while the dashed lines denote the spectra from the filtered data. The x-axes are the same
as Figure 5.4, while an idealised Kolmogorov law is indicated by the black line. The filter scales can be
related back to the grid-based space using “̄∆ = 2σ.

A large difference in energy between the corresponding LES and filtered spectra is evident at
very coarse resolutions. It appears that when σ is large, the Gaussian filter affects the large-scale
features. This is clear by the reduction in the height of the spectral peak for the σ = 200m,
and especially clear in the σ = 400m data where an order of a magnitude difference is seen
between the peak of the LES and filtered spectra. While both the Smagorinsky scheme and
Gaussian-filtered data are affected by grey-zone issues at coarse scales, the Gaussian filter al-
lows the grey-zone to influence larger scales more readily. Recalling the argument in Section
5.3.2, the filtering of large-scale structures results from the kmax wavenumber tending toward the
wavenumber value corresponding to these dominant structures, ki. Therefore, the assumption
that only a negligible amount of energy resides at wavenumbers greater than or equal to kmax

63



becomes invalid, and the Gaussian filter primarily acts on motions with wavelengths kmax ≈ ki

or greater, therefore impacting the large-scale components of the flow as well as the smaller
scale eddies. It is important to note that, in this example, the Smagorinsky scheme is applied
to data computed on a domain four times larger than that used for the Gaussian-filtered data
(see Table 4.2). Therefore, this larger domain may enhance the Smagorinsky scheme’s ability
to retain energy at larger scales, a benefit which is not afforded to the Gaussian-filtered data.

The spectra of the filtered data can also be used to verify that the properties of the Gaussian
filter are consistent within the framework employed to compute the spectra. The commutative
property of the filter scales can be assessed by applying two of the same filters, separately in
different orders, to the same data and then plotting the resulting spectra. Data from the ARM
case is used to produce Figure 5.7 to ensure similar behaviour of spectra exists across the case
studies.
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Figure 5.7: Spectra of w from the mid-CBL of the ARM case at 14:30L, plotted against wavenumber.
The solid lines show the unfiltered LES output with grid spacings. The dashed lines show the spectra
resulting from filtering the ∆ = 25m to coarser scales by imposing a Gaussian filter on the data with
filter scale σ. The dash-dot and dotted lines show spectra which has been filtered a second time.

Firstly, it is evident from Figure 5.7 that the spectra from the ARM case follows similar trends as
those from the dry CBL case (Figure 5.6); at large wave lengths, the spectra from the ∆ = 50m
LES output for the ARM case shows similar values as the spectra from the filtered data with
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σ = 25m (with a corresponding effective grid scale of “̄∆ = 2σ = 50m). This indicates that,
at large wavelengths, the Smagorinsky filter exhibits a similar behaviour to that of a Gaussian
filter, but differing by a factor of approximately two. A more detailed discussion is provided in
Section 5.4.1 It should be noted that the BOMEX case was also found to produce similar spectra
plots, though these results are not presented here. Secondly, the commutative properties of the
Gaussian filter are evident in Figure 5.7, with the spectra from the σ = 25m, σ = 50m data
being completely overlaid by the σ = 50m, σ = 25m data. This results in the beige coloured
spectra just to the left of the σ = 50m data. A similar result is observed for the σ = 50m,
σ = 100m data and σ = 100m, σ = 50m data shown by the blue-grey spectra to the left
of the σ = 100m spectra. Therefore, the property of commutativity holds when applying two
different Gaussian filters to a dataset.

5.4.1 Estimating the Smagorinsky Filter Scale

The Smagorinsky scheme also acts as a filter, removing energy at small scales. Therefore
Smagorinsky has an associated filter scale σsmag, and this should be accounted for when calcu-
lating the effective grid spacing. By likening the Smagorinsky scheme’s behaviour to that of
a Gaussian filter, a similar method as that used in Section 5.3.2 can be employed to calculate
the filter scale imposed on the LES run by the Smagorinsky subgrid scheme. Using a similar
method as that employed throughout Section 5.3.2, assuming that Smagorinsky only effects the
smallest scales where less that 1.8% of the energy is contained, and recalling Equation 5.6, it
can be assumed that:

e−σ
2
smagk

2

= e−4

=⇒ −σ2
smagk

2 = −σ2
smag

Å
2π

λ

ã2

= −σ2
smag

Å
2π

2∆

ã2

= −4

=⇒ σsmag =
2

π
∆ ≈ 1

2
∆ (5.15)

This estimation of the Smagorinsky filter scale relies on the assumption that it is similar to the
Gaussian filter, and therefore the Gaussian equations can be used to approximate Smagorin-
sky behaviour. From the spectra in Figure 5.6, it was confirmed that at high resolution, the
Smagorinsky filters behaved very similarly to the Gaussian filters in Spectral space, therefore
this approximation of the Smagorinsky filter scale is presumed to be valid.
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5.5 Summary and Discussion

The findings from this chapter indicate that the Smagorinsky subgrid scheme functions as a grid-
scale-based filter. Throughout this chapter, the filter scale, along with the filter shape in spectral
space, for the Smagorinsky subgrid scheme has been identified. Furthermore, the Smagorinsky
filter was found to exhibit similar behaviours as the Gaussian filter. The Gaussian filter, mean-
while, has been linked to the grid-based domain through a relationship between the filter scale
σ and the corresponding effective grid-scale ∆eff which in the case of the data analysed in this
work, which has been filtered by two separate Gaussian filters, ∆eff ≡ “̄∆. The work carried
out in this chapter provided answers to the previously posed research questions.

5.5.1 Responses to the Research Questions

(1) Does the Smagorinsky scheme demonstrate a specific filter shape in spectral space that
maintains the same shape consistently for every grid spacing and case study? If so, does
this filter shape scale uniformly with grid spacing?

The Smagorinsky scheme shows a distinct shape in spectral space, between the length scale
corresponding to effective resolution Reff ≈ 8∆, and the scale corresponding to the Nyquist
frequency 2∆. The filter maintains the same shape across all data analysed, regardless of the
grid scale. Furthermore, the Smagorinsky filter appears to scale linearly with grid spacing.

(2) If the Smagorinsky scheme functions as a filter, how closely does its filter shape corre-
spond to that of a Gaussian filter in spectral space?

The shape of the Smagorinsky filter was found to closely resemble that of the Gaussian filter
in spectral space. The greatest similarities were observed at high resolutions, while the resem-
blances diminished slightly as the resolution decreased to grey-zone scales. Nonetheless, the
similarities between the two filters enabled the estimation of a filter scale for the Smagorinsky
scheme. Furthermore, the resemblance between the two filters at corresponding scales con-
firmed that the relationship between σ and ∆, which had been derived from approximations,
was indeed valid.

(3) How can the Gaussian filtered data be related back to grid-based domain?

The Gaussian filter scale can be related back to the grid-based domain by the following relation:
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“̄∆ = 2σ

This relationship was derived based on assumptions regarding the energy distribution at the
smallest scales of the flow, and was found to effectively associate the Smagorinsky filter to the
Gaussian filter. When comparing the spectra of both filters, a high degree of agreement was
observed when this function was applied to relate their respective scales.
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6 How Turbulent Mixing Differs Across Distinct Flow Regimes

Turbulent mixing in LES models governs the rate of energy dissipation from the resolved scale
to the SGS (unresolved) scale. The mixing length is determined by the grid spacing and the
Smagorinsky parameter. In standard models, the Smagorinsky parameters are set to fixed con-
stants. This approach does not allow the Smagorinsky parameter to adapt in order to account
for the well-known fact that turbulent mixing varies within different parts of the flow. For in-
stance, mixing in-cloud is expected to be much more intense than mixing in the non-cloudy
environment of the cloud layer. Additionally, in these models, the Smagorinsky parameter for
all scalars depends on the momentum parameter Cs, using the Prandtl number as a constant of
proportionality. Consequently, turbulent mixing is forced to depend on fixed constants rather
than the scalar-specific behaviour within the flow.

In contrast, the dynamic model allows the Smagorinsky parameters to adapt to changes in the
flow regime. The dynamic model also has the benefit of enabling variable-dependent parameters
to be calculated. The Germano identity and equations from the dynamic model can be applied
to high-resolution LES of CTBLs to investigate if key dependencies of the Smagorinsky param-
eters, and thus the turbulent mixing, can be identified. Using high-resolution data allows for the
identification of these relationships when the flow is well-resolved. These relationships can then
be adapted and scaled to coarser grid spacings which are traditionally considered grey-zone res-
olutions, with the aim of improving the accuracy of coarse, grey-zone resolution LES of CTBLs.

This chapter will analyse the behaviours of the Smagorinsky parameters for the variables of
interest which are transported and diffused in the flow. Fields of independent Smagorinsky
parameter values are calculated for each variable, and their responses to different flow regimes
are assessed. The research questions focused on in this chapter are as follows:

• Does the Smagorinsky parameter exhibit different systematic behaviours, depending on
the flow regime? Can these behaviours be quantified into general relationships between
the regime and the parameter value?

• Are there significant differences between the Smagorinsky parameters for momentum,
heat, and moisture in the CTBL?

• Considering that the conservation properties of a scalar affect its corresponding Smagorin-
sky parameter value, which thermodynamic variable would be most appropriate for the
new Smagorinsky based parametrization?

To begin addressing these questions, the dynamic Smagorinsky equations were applied to high-
resolution LES of the BOMEX and ARM case studies. Cross-sections of the resulting fields of
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C2 values are presented in the following section. Although the dry CBL case was also anal-
ysed, its results are not presented here as the behaviour of Cs and Cθ is very similar to what is
observed in the ML of the BOMEX and ARM cases. Additionally, numerous previous studies
have already examined LES of dry CBLs at grey-zone resolutions (Efstathiou and Beare, 2015;
Shin and Hong, 2015; Zhou et al., 2014; Ito et al., 2015; Kealy et al., 2019; Honnert et al., 2011)
and the results from the dry CBL are in keeping with the findings in these studies. Since the
primary goal of this work is to develop a parametrization scheme for CTBLs, the focus will now
shift to the cases with shallow cumulus clouds present.

6.1 High-Resolution Fields of Dynamic Smagorinsky Parameters

The first step in developing a new parametrization scheme for the mixing length is to determine
the flow-dependent fields of Smagorinsky parameters. This is achieved by applying equations
from the dynamic model, as outlined in Section 3.4.1, to filtered LES of the BOMEX and ARM
cases. The C2 fields, i.e. fields of the square of the Smagorinsky parameters for momentum,
heat, and moisture, were calculated using Equations 3.40 and 3.44. Vertical cross-sections
through subsets of the C2 domains are plotted in Figures 6.1 and 6.2. Corresponding vertical
cross-sections through the C fields are presented in Figures 6.3 and 6.4. While the plots in this
Section only depict a single snapshot of the fields at a specific time, they have been confirmed
to be representative of the entire dataset through visual inspection of multiple snapshots with
coordinates varying in both space and time.

6.1.1 Fields of Dynamic C2 Values

Both the BOMEX (Figure 6.1 a) and ARM (Figure 6.2 a) cases reveal that the C2
s fields expe-

rience numerous small areas of interchanging positive and negative values throughout both the
ML and CL. Meanwhile, the Cθ (Figures 6.1 b & 6.2 b) and Cqt (Figures 6.1 c & 6.2 c) fields
show larger and more coherent areas of alternating positive and negative areas compared to the
Cs fields. The positive areas of the Cθ and Cqt fields are more abundant than negative areas in
all regions apart from the in-cloud (IC) regions of the Cθ field. This suggests that the structures
transporting, mixing, and dissipating heat and moisture are larger than the structures for mo-
mentum. The majority of non-zero values in the Smagorinsky parameter fields for scalars are
confined to occur in the ML thermals, IC, and near the cloud edges in the cloud-free environ-
ment (CFE). The majority of the areas outside the clouds in the CL depict near-zero values for
scalars, however this is not the case for Cs. The Cs field exhibits non-zero values throughout
the ML and CL.
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A substantial number of areas have negative C2 values in both the BOMEX (Figure 6.1) and
ARM (Figure 6.2) cases, though to different extents depending on the variable in question.
Negative values occur in areas of counter-gradient transport, and the dynamic model produces
negative parameters in an attempt to represent the corresponding upscale transport of energy
in these regions. However, using negative C2 values in the Smagorinsky model would yield
negative mixing lengths, which is both unrealistic and impractical. These values are therefore
“clipped” to zero, though their locations relative to other CTBL features are noteworthy.

Figure 6.1: Vertical cross sections through fields from the BOMEX case of the dynamically computed
Smagorinsky parameters squared, (a) C2

s , (b) C2
θ , and (c) C2

qt, before negative values are removed. These

fields have been calculated using data that has been filtered to “∆ = 4∆. Solid black contours denote
the presence of clouds (areas where the liquid water content qcl ≥ 10−7 kg kg−1), the dashed black
lines show the θv levels, and the grey contours outline areas where vertical velocity w′ ≥ 0.1m s−1 and
w′ ≥ 0.5m s−1.
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Focusing first on the C2
s fields, both the BOMEX and ARM cases portray this as quite a noisy

field. However, this field is not without structure, as the extreme C2
s values appear to system-

atically align with the vertical velocity (w′) contours in cross-sections from both cases. This
is consistent with the theory, as regions with significant wind speed gradients are expected to
experience elevated levels of shear, stress, and strain. Since the dynamic Smagorinsky param-
eters are functions of stress and strain, higher values of these variables correspond to larger
Smagorinsky parameter values. Figures 6.1 a and 6.2 a depict noisy C2

s fields, however the MLs
(the layer below z/zML = 1) are primarily positive. In cloud, there are also large consistent
areas of positive parameter values, with both cases showing high values focused at the edges of
the cloud updraft (as indicated by the w′ contours) and at the cloud top. Furthermore, Figure
6.1 a highlights that the region of elevated C2

s values at the top of the actively growing cloud,
located at the centre of the BOMEX cross-section, corresponds to a parcel of higher θv that
has been entrained into the cloud from the overlying warm, dry layer. This is expected, as the
entrainment of high thermal energy air would enhance turbulent mixing in that area.

In the CFE of the CL, C2
s values are lower, with small sporadic positive and negative patches

mainly concentrated near the cloud edges. This is particularly evident in the BOMEX case,
which has a mean wind of u = 8.75m s−1, with Figure 6.1 a depicting higher C2

s values on
the windward (right-hand) side of the active cumulus cloud. Meanwhile, the ARM case was
initialised with a mean wind of u = 10m s−1 However, there are large coherent areas of posi-
tive C2

s values in the near-surface areas of the thermals, as evident in the lower left-hand side of
Figure 6.2 a. This is likely due to the large sensible heat flux input at the surface, which gives
rise to large-scale mixing in these thermals.

Focusing now on the C2
θ and C2

qt fields presented in Figures 6.1 b & c (BOMEX) and 6.2 b&c
(ARM). Negative values of the Smagorinsky parameter for both heat and moisture appear to
occur at the cloud base of older, dissipating clouds in the ARM case, as seen in the central,
passive cloud in Figure 6.2 b & c. This area of negative C2

θ and C2
qt aligns with the incursion of

the higher θv = 312K layer, which brings warmer, drier air down from the overlying environ-
ment. These negative values can be seen extending downward from the passive, central cloud
in the cross-section of the ARM case. This is in contrast to the cloud top of the actively grow-
ing cumulus in the BOMEX case, which shows elevated C2

s and C2
qt values (Figures 6.3 a & c

respectively). Here, a bubble of higher value θv has been entrained into this cloud top, resulting
in large, positive values of C2

s and C2
qt parameters in this region, as the entrainment causes an

increase in the levels of scalar mixing.

71



Figure 6.2: Same as figure 6.1, but for ARM data at 14:30 L, filtered to “∆ = 4∆.

While the field of momentum parameters C2
s (Figures 6.1 a & 6.2 a) shows numerous small ar-

eas of negative values, the moisture parameter C2
qt displays only a few such regions, with these

negative values also being less pronounced (see Figures 6.1 c & 6.2 c). The potential tempera-
ture fields from both the BOMEX (Figure 6.1 b) and ARM (Figure 6.2 b) cases reveal that the
majority of negative C2

θ values are concentrated in the centre of the clouds, or the “cloud core”
region. In contrast to this, the moisture field shows mostly positive C2

qt values in-cloud, particu-
larly in actively growing cumulus clouds. The surrounding CFE of the CL has near-zero values
for both the Cθ and Cqt parameters, however this same behaviour is not evident in the CFE of
the C2

s parameter field. The ML of both the BOMEX and ARM cases show similar behaviours
for all Smagorinsky parameters, with regions of negative values aligning, and similar alignment
of the positive value areas. This is especially evident in the ML of the Cθ and Cqt parameter
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fields, with Figures 6.3 b & c and 6.2 b & c showing similar features throughout the MLs.

The large, actively growing clouds show thermals feeding these clouds, evident from the w′ ≥
0.5m s−1 contours. Examples of this include the central cloud in the BOMEX domain (Figure
6.3) and the clouds on the left and right-hand sides of the ARM domain (Figure 6.2). These
thermal updrafts transport heat and moisture from the ML into the CL, enabling the formation
and growth of the cumulus clouds. This upward motion can be seen extending from the sur-
face and being pushed to the left in the BOMEX plots, following the direction of the prevailing
easterlies, until it reaches the cloud base. On the right-hand side (RHS) of the active BOMEX
cloud, Figure 6.3 b & c show positive C2

θ and C2
qt values just outside the cloud on the windward

side. This is likely due to the mixing of heat and moisture into the non-cloudy environment by
smaller eddies that form as they detach from the main overturning circulation due to wind shear.
Meanwhile, the leeward side of this cloud shows no such trend, with Smagorinsky parameter
values being near-zero here.

6.1.2 Dynamic Smagorinsky Parameter Fields

While negative values are useful for highlighting differences between the parameter fields, such
results are unrealistic and the Smagorinsky model would be unable to deal with negative mix-
ing length values. Therefore, negative C2 values are set to zero, completely inhibiting turbulent
mixing and dissipation from occurring in the region. The more conventional Smagorinsky pa-
rameter C can then be computed for each variable of interest using Equations 3.41 and 3.45 and
the resulting fields can be analysed.

The coloured contours in Figures 6.3 and 6.4 highlight regions in the CTBL with high levels of
mixing, which leads to greater dissipation of energy from the resolved scale to the subgrid scale
(SGS). Figure 6.3 a depicts the largest values of Cs occurring at the top of the actively growing
cumulus clouds in the BOMEX case (between x = 1.5 km and 2 km at z ≈ 1.75 km). High Cs
values are also observed within the same large BOMEX cloud at mid-cloud levels, particularly
along the periphery of the updraft, as indicated by the positive w′ contours. In contrast, Figure
6.2 a shows that the ARM case does not exhibit similarly extensive regions of elevatedCs values
near the cloud top. However, areas near the edges of the cloud core still provide clear evidence
of significant momentum mixing.
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(a)

(b)

(c)

Figure 6.3: Vertical cross sections through fields of the dynamically computed Smagorinsky parameters

for the BOMEX case, (a) Cs, (b) Cθ, and (c) Cqt, calculated using data that has been filtered to “∆ = 4∆.
The same contours as in Figure 6.1 are used here.

The scalar fields do not show this alignment of enhanced mixing along thermal edges. Fur-
ther to this, each parameter shows different behaviours in the cloudy regions, depending on
its corresponding scalar. While this highlights the difference between the mixing of heat and
moisture, the discrepancy is primarily due to differences in the conservation properties of θ
(unconserved) and qt (conserved) when water condenses in the cumulus clouds. The Cθ pa-
rameter exhibits minimal to no mixing within the clouds (see Figures 6.3 b and 6.4 b), though
this is assumed to be an artefact of θ being non-conserved within the clouds. Meanwhile, the
Cqt parameter shows the highest levels of mixing occurring within the cloudy areas (as shown
in Figures 6.3c and 6.4 c). In the ML, the fluxes driving the thermals appear to influence the
scalar-specific Smagorinsky parameters. The BOMEX case in Figure 6.3 c, with its high latent
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heat fluxes, shows similar fields in the ML for both Cqt and Cθ. The BOMEX case also shows
higher Cqt values in-cloud compared to the in-cloud values of the ARM case in Figure 6.4 c.
This discrepancy between the two cases is likely due to ARM’s significantly lower latent heat
fluxes compared to BOMEX, as ARM is primarily driven by sensible heat fluxes. This is also
apparent in the ML of the ARM case, with Figure 6.4 c demonstrating lower in-thermal values
of Cqt compared to the Cθ field, as depicted in Figure 6.4 b. This is further evidenced by the
higher Cθ values for the ARM case (Figure 6.4 b) compared to the BOMEX case (Figure 6.3 b)
when looking in the thermals of the lower level ML.

(a)

(b)

(c)

Figure 6.4: Vertical cross sections through fields of the dynamically computed Smagorinsky parameters

for the ARM case, (a) Cs, (b) Cθ, and (c) Cqt, calculated using data that has been filtered to “∆ = 4∆.
Solid black contours denote the presence of clouds, the dashed black lines show the θv levels, and the
grey contours outline the areas where w′ ≥ 0.1m s−1 and w′ ≥ 0.5m s−1.
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6.2 Partitioning the CTBL Flow into Distinct Regions

The analysis detailed in Section 6.1 clearly demonstrates that the Smagorinsky parameters for
each variable exhibit distinct behaviours depending on the flow regime. The flow within the
CTBL will now be partitioned into distinct regions, each defined by specific characteristics.

6.2.1 Distinct Layers Within the CTBL

The first and most intuitive division of the CTBL is into the ML and the CL. Clear differences
are observed between these two layers, with the mean profiles of various diagnostics exhibiting
distinct behaviours depending on the layer. In particular, the profiles for the heat flux (w′θ) and
the cloud cover display characteristic features that make them especially useful for identifying
the boundaries of each layer. Figures 6.5 and 6.6 show the main profiles of diagnostics focused
on throughout this work. Each profile has been scaled by the corresponding mixed layer cap-
ping inversion height, zML. The exact height of this inversion was calculated by finding the
height at which the planar-averaged heat flux was at a minimum. In all cases (BOMEX and the
four ARM timestamps) except one, the cloud base aligns with the top of the ML. The exception
is the early morning ARM profile (t = 10:30L), where the cloud base is located a few metres
above the ML top. This minor discrepancy is disregarded, and the boundary between the ML
and the CL is defined at the height of the ML capping inversion, zML.

(a) (b) (c)

Figure 6.5: Profiles showing (a) the average value of the vertical eddy heat flux w′θ′ with height, (b) the
maximum vertical velocity at each height level, (c) the mean potential temperature profile and (d) the
percentage of cloud cover with height for the BOMEX case at t = 4 hours.

The effect of the capping inversion is apparent not only in the mean heat flux (Figures 6.5 a
and 6.6 a) and cloud cover profiles (Figures 6.5 d and 6.6 d) but also in the average potential
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temperature profile (Figures 6.5 c and 6.6 c). The θ profiles show each case demonstrating a
well-mixed layer extending from the surface level up to the capping inversion, while the heat
input at the surface is evident by the spike in θ values at the lowest levels. This is also apparent
in the heat flux values, which experience a distinct maximum value at the surface of the ARM
case (Figure 6.6 b). Meanwhile, the BOMEX case shows a much lower value peak in w′θ val-
ues at the surface, reaching values similar to those in the CL (Figure 6.5 a). This is most likely
due to the lack of sensible heat fluxes at the surface, as BOMEX is primarily driven by latent
heat fluxes. This also causes the maximum vertical wind speeds in the ML to be much lower in
the BOMEX case, with w′

max = 2.5m s−1, compared to w′
max = 5m s−1 in the ARM case (see

Figures 6.5 b and 6.6 b respectively).

(a) (c)

Figure 6.6: Same as Figure 6.5, but for four different times during the diurnal cycle of the ARM case.

Above the ML inversion, the θ profiles show all cases exhibiting a conditionally unstable layer,
which is overlaid by a statically stable layer. It is in this conditionally unstable layer that the
cumulus clouds form. The highest values of maximum upward velocities occur in these clouds,
with ARM experiencing maximum speeds of w′

max ≈ 12m s−1 at the cloud tops during the rapid
cloud development stage (see the profile corresponding to 14:30L in Figure 6.6 b). BOMEX
reaches comparable maximum w′ speeds at the cloud top (Figure 6.5 b), underscoring the role
of latent heat release in compensating for the lower velocities of thermals in the BOMEX ML.
Another notable difference between the CLs in the ARM and BOMEX cases is the extent of
cloud cover. Figure 6.5 d illustrates that clouds cover just over 5.5% of the BOMEX domain,
while Figure 6.6,d shows the cloud cover in ARM increases from 3% to 15% over a 6-hour
period. It is important to note that, because BOMEX is in a quasi-steady state, its cloud cover
remains relatively constant over time.
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6.2.2 Different Flow Regimes Within the Cloud Layer

The flow within a CTBL has now been separated into two main layers: the ML and the CL.
However, the analysis of the Smagorinsky parameter (C) fields conducted in Section 6.1 sug-
gests that it would be beneficial to split the CL up into areas with similar characteristics. The
CL can be divided into the CFE and the IC regions, the latter defined as areas where the cloud
liquid water content qcl ≥ 1 × 10−7 kg kg−1. While distinguishing between cloudy and non-
cloudy points in the CL is important, Figures 6.3 and 6.4 also suggest that position within the
cloud itself may have an important influence on the Smagorinsky parameter value. Therefore,
to investigate this further the IC region can be further subdivided into the cloud updraft (CU),
defined as points where qcl ≥ 10−7 kg kg−1 & w′ ≥ 0.5m s−1, and the cloud core (CC), de-
fined as points where qcl ≥ 10−7 kg kg−1, w′ ≥ 0.5m s−1, & θ′v ≥ 0K. These conditions are
summarised in Table 6.2.2 below.

Mixed Layer Cloud Layer
Non - Cloudy Areas In-Cloud

ML CFE IC CU CC
Criteria 0 ≤ z ≤ zML z > zML qcl ≥ 1× 10−7 kg kg−1

qcl < 10−7 kg kg−1 w′ ≥ 0.5 m s−1

θ′v ≥ 0K

Table 6.1: Summary of the flow regimes into which the CTBL has been categorized, their corresponding
positions within the CTBL, and the criteria required for classification as each specific regime.

To illustrate the areas where these conditions are fulfilled in the CTBL, Figure 6.7 shows fields
of (a) TKE, (b) w′, and (c) w′θ′ taken from the rapid cloud development stage (14:30L) of the
ARM diurnal cycle. Areas with the highest values of Cs, as set by the 98th percentile, are shown
by the grey contours in these plots. These contours often align with large values of TKE, w′,
and/or w′θ′, demonstrating the effect that these fields have on the mixing length. The w′ field
shows the upward (red) and downward (blue) motion of the fluid in the CTBL, highlighting the
position of thermals in the ML and the CU within active cumulus clouds. The w′θ′v flux field
can be taken as a proxy for buoyancy. Further to this, in the centre of clouds, where it is certain
that w′ is positive, the w′θ′v field can also be used to highlight the location of the CC.

When comparing the fields in Figure 6.7 with the square of the Smagorinsky parameter fields
in 6.2, it is evident that the regions with the most extreme C2 values are concentrated within
the thermals and cloudy areas. The concentration of the significant C2 values IC, in upward
motions, and in positively buoyant regions of the fluid is particularly pronounced in the fields
of Smagorinsky parameters for scalars. Figure 6.2 b shows that the C2

θ values are at their most
extreme in the ML thermals (see Figure 6.7 b), with C2

θ values predominantly positive in this
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region. Meanwhile, in the CL, Figure 6.7 c portrays the most extreme C2
θ values occurring IC,

where they are mostly negative. While the C2
qt parameter (6.2 c) exhibits similar behaviour to

C2
θ in the ML and CFE, it demonstrates a completely different behaviour IC. ExtremeC2

qt values
do not show a strong preference for occurring only in the CU or CC, but instead show large,
positive values throughout the majority of the IC region.

The general behaviours of the individual Smagorinsky parameters for momentum, heat, and
moisture appear self-consistent within each flow regime. It is therefore reasonable to partition
the CTBL flow into distinct regions and compute horizontal averages within these areas to fa-
cilitate further analysis of these extensive data sets.

(a)

(b)

(c)

Figure 6.7: Cs contours outline areas where Cs values are greater than or equal to the 98th percentile
of values.
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6.3 Height Dependencies of the Smagorinsky Parameters in the CTBL

Horizontal averaging was imposed across the entire domain (DA), as well as the following dis-
tinct flow regimes: the areas with no cloud (NC: encompassing the ML and the CFE within
the CL), the IC areas, the CU, and the CC. The definitions of each area are the same as those
described in Table 6.2.2. The Smagorinsky parameter fields have been taken and conditionally
averaged at each height level within these partitions, following the method detailed in Equations
4.13 and 4.14. The resulting profiles will be analysed and discussed throughout the following
section.

6.3.1 Impact of Conservation Properties of Thermodynamic Variables on Cθ

The focus in Section 6.1 was on analysing the fields of the Smagorinsky parameter for heat
based only on potential temperature (θ) data. However, Smagorinsky parameters for other ther-
modynamic variables have also been examined to evaluate the impact that conservation prop-
erties have on the parameter. The objective of this comparison study is to determine the most
appropriate thermodynamic variable for the new Smagorinsky parametrization. Smagorinsky
parameters were calculated for the following thermodynamic variables:

• Potential temperature θ

• Virtual potential temperature θv

• Equivalent potential temperature θe

• Liquid-water potential temperature θL

Fields of C2
θ , C2

θL
, C2

θv
, and C2

θe
were computed using high-resolution “̄∆ = 4∆ data from the

ARM and BOMEX cases. These fields were horizontally averaged across each flow regime,
with this averaging operation being denoted by angle brackets. The resulting plots are shown
for the BOMEX case in Figure 6.8 and the ARM case in Figure 6.9. The C2 profiles condi-
tioned to lie within the IC, CU, and CC regions exhibited a high degree of similarity in shape.
Consequently, only the IC profiles are presented. However, it is important to note that the mean
C2 values were marginally higher in the CU region and increased further in the CC region. The
Cθe parameter was not calculated for the ARM case as the required data was unavailable. In the
diurnal CTBL, Cθe profiles are expected to behave similarly to CθL due to their shared conser-
vation properties, along with the observed similarity between them in the BOMEX case.
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The domain average (DA) of the Smagorinsky parameter was computed for each thermody-
namic variable. The resulting plot for the DA in the BOMEX data is shown in Figure 6.8 a,
while the DA for the ARM case at each time step is shown in the top panel (plots a-d) of Figure
6.9. The ARM case shows very similar values for the horizontal averages ⟨C2

θ ⟩, ⟨C2
θL
⟩, ⟨C2

θv
⟩ in

the ML. In contrast to this, the BOMEX case shows ⟨C2
θ ⟩ and ⟨C2

θL
⟩ behaving similarly in the

ML, with peak values evident at the surface. This peak is thought to be a result of the mismatch
between the inclusion of stability functions in the raw data, in contrast to the lack of stability
functions in the equations of the offline dynamic model (see Section 4.5 for further details).
Artefacts from stability functions are thought to have been present in the raw MONC output
fields, which were then unaccounted for when used as input data to the offline dynamic model.
These stability functions would have a pronounced effect on the θ and θL scalars. Meanwhile,
the ⟨C2

θv
⟩ profile shows a higher value peak at the surface than ⟨C2

θ ⟩ and ⟨C2
θL
⟩, followed by a

steep decrease in value with increasing distance from the surface. The final thermodynamic pa-
rameter which was analysed in the BOMEX case is ⟨C2

θe
⟩, whose profile exhibits a well-defined

parabolic shape within the mixed layer. The varying range of behaviours of the thermodynamic
parameters in the BOMEX case is presumably due to moisture’s significant influence in the
BOMEX case compared to ARM. Differences in the treatment of moisture when accounting for
its contributions to the thermodynamics in the ML are evidently significant enough to cause the
observed differences in profiles when moisture is present in substantial quantities.

(a) (b) (c)

Figure 6.8: Horizontally averaged C2 values for each of the heat variables from the BOMEX case,
calculated by averaging across (a) the entire domain, (b) areas with no cloud, (c) areas in-cloud.

In the cloud layer, the differences between the conservation properties of the various thermody-
namic variables are even more apparent. In the BOMEX case, the cloud layer ranges between
1 ≤ z/zML ≤ 5. In the ARM case the CL begins at a height of z/zML = 1 with the cloud
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top reaching (a) z/zML = 1.5, (b) z/zML = 2.3, (c) z/zML = 2.6 and (d) z/zML = 2.4 at
each stage of the diurnal cycle respectively. Note that the height of the ML inversion grows
with time, and its exact height is recorded on the y-axis of the plots in Figure 6.9. The DA
profiles for ⟨C2

θ ⟩ and ⟨C2
θv
⟩ can be seen veering to negative values in the CL for both the

BOMEX and ARM cases (Figures 6.8 a and 6.9 b - d). This is consistent with the extensive
areas of negative C2

θ values seen in the CC regions of the cross-sections shown in Figures 6.1
& 6.2. Due to the non-conservative nature of both the θ and θv scalars, it is reasonable for
their Smagorinsky parameter profiles to behave similarly in the CL, where moisture begins to
actively condense. Conversely, the DA Smagorinsky profiles of the conserved thermodynamic
variables do not tend toward negative values within the CL. This is evident in the BOMEX case,
with Figure 6.8 a showing both ⟨C2

θe
⟩ and ⟨C2

θL
⟩ averaging to slightly larger values in the CL

(⟨C2
θ ⟩ ≈ ⟨C2

θL
⟩ ≈ 0.04) than in the ML (⟨C2

θ ⟩ ≈ 0.035 and ⟨C2
θL
⟩ ≈ 0.025). In the ARM

case however, the maximum ⟨C2
θL
⟩ = 0.03 value in the CL remains less than or equal to the

peak ML value of ⟨C2
θL
⟩ = 0.035.

Since condensation, and therefore issues with conservation, only occur within the clouds, it is
useful to partition the CL into IC and CFE regions. The profiles resulting from this decomposi-
tion are shown in Figures 6.8 and 6.9. The horizontal averages in the CFE for both the BOMEX
case (Figure 6.8 b) and the ARM case (Figures 6.9 e - h) all show the ⟨C2⟩ profiles from each
thermodynamic variable collapsing along the same profile. This supports the argument that
differences in the DA ⟨C2⟩ profiles in the CL can be attributed to inconsistencies in the conser-
vation properties between parameters, which becomes apparent when water condenses in the
clouds. This is further confirmed in the distinction between the ⟨C2

θe
⟩ & ⟨C2

θL
⟩ IC profiles, and

the IC profiles for ⟨C2
θ ⟩ & ⟨C2

θv
⟩ (with θe present in the BOMEX plots only). The BOMEX

case (Figure 6.8 c) shows the non-conservative thermodynamic variables, C2
θe

and C2
θL

going to
values as negative as -0.04 in the MBL. Meanwhile the ARM case in Figure 6.9 c depicts these
parameter values reaching values as negative as -0.02 throughout the rapid cloud development
stage (14:30L) and the quasi-stead state (16:30L). These figures also show that the IC averages
of ⟨C2

θL
⟩ and ⟨C2

θe
⟩ reach values of 0.06 in the BOMEX case, while ⟨C2

θL
⟩ attains values of 0.04

in the ARM case.

This suggests that it would be sensible to use a conserved thermodynamic variable in the new
parametrization, and as such, the parameter based on liquid water potential temperature θL will
be analysed further. However, since potential temperature is commonly used in dynamic LES
analysis, parameters based on the θ variable will also be examined.
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(a) (b) (c) (d)

(i)

Figure 6.9: Horizontally averaged values for the various heat parameters squared from the ARM case at
four different times throughout the diurnal cycle, calculated by averaging across (a) the entire domain,
(b) the areas with no cloud, (c) the areas in-cloud.

6.3.2 Variable-Dependent Smagorinsky Parameters

The dynamic analysis focuses on the following variables from this point onward: momentum,
potential temperature θ, liquid water potential temperature θL, and total moisture qt. Any signif-
icant differences between the behaviour of the Smagorinsky parameters for each variable will
be identified relative to the flow regime they are in. Again the conditional horizontal average,
specific to each distinct region in the CTBL, is used to identify general trends in the behaviour
of each C parameter. The parameter profiles for each partition are presented in the plots below.
Figure 6.10 illustrates the profiles based on the BOMEX case, while Figure 6.11 shows the
profiles derived from the ARM dataset.
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The horizontally averaged profiles show that in the CL, differentiating between IC, CU, and CC
does not have a significant impact on the majority of the Smagorinsky parameter values anal-
ysed across all datasets. This is logical because only theCθ parameter showed a clear distinction
between the IC, CU, and CC regions (recall Figures 6.1 b & 6.2 b). However, as this distinction
was based on negative Cθ values in the CC, which have since been clipped and set to zero, the
resulting IC ⟨Cθ⟩ profile’s ability to differentiate between the IC regions has been diminished.
This suggests that position in-cloud (ie: relative to updrafts and the cloud core) does not seem
to have a large effect on the planar averaged Smagorinsky parameters for a quasi-steady marine
CTBL.

Figure 6.10: From left to right, profiles of (a) ⟨Cs⟩, (b) ⟨Cθ⟩, (c) ⟨CθL⟩, (d) ⟨Cqt⟩ for the BOMEX case,

4 hours after spin-up, with a filter width of “∆ = 4∆. These profiles were calculated by planar averaging
points that satisfy the conditions specific to each flow regime, as previously outlined (see Table 6.2.2).

The BOMEX case as illustrated in Figure 6.10 a, shows the average DA values largely in agree-
ment with the IC, CU, and CC values for ⟨Cs⟩. Profiles from the ARM case presented in the
top panel of Figure 6.11 show that, while the DA ⟨Cs⟩ values do tend toward the IC, CU, and
CC values after cloud has developed, there is a clear distinction between the DA ⟨Cs⟩ profile
and the profiles from IC regions in the early morning as the cloud field initiates. This is due to
the lack of cloud in the early morning, resulting in the DA value being strongly influenced by
Smagorinsky parameter values in the CFE. Additionally, the DA ⟨Cs⟩ profiles in the CL remain
approximately 0.02 lower than the IC/CU/CC profiles for all times after 12:30L in the ARM
case, while BOMEX only shows a 0.01 difference between the DA and IC/CU/CC.

The behaviour of the Smagorinsky parameters for scalars in the CL is heavily influenced by
the conservation properties of each scalar. Recall from Section 6.1 that scalars which are not
conserved generate negative C2 values in the clouds, which must be clipped and set to zero
before any averaging procedures can be performed. As expected, data from the BOMEX case
presented in Figure 6.10 shows the ⟨Cθ⟩ profiles averaging to zero for all the flow regimes in-

84



cloud. This induces the secondary effect of forcing the DA for ⟨Cθ⟩ in the CL to zero also.
Interestingly, the ARM case does not show the same behaviour for the ⟨Cθ⟩ profiles. The most
marked difference is apparent in the morning, when cumulus clouds are just beginning to de-
velop. Figure 6.11 e demonstrates that the DA of ⟨Cθ⟩ ≈ 0.5 in the ARM case at 13:30L
is approximately equivalent to ⟨Cθ⟩ in the CFE at the same time. Furthermore, the IC and
CU show similar non-zero values of ⟨Cθ⟩ ≈ 0.14 at 10:30L in the ARM case, while there
is a striking increase in the CC average, with values reaching over ⟨Cθ⟩ 0.25 in this region at
this time. This is significant as no other parameter shows a notable difference between the CU
and CC average values at any other stage of the diurnal cycle, nor is it seen in the BOMEX case.

As the CTBL develops throughout the day, Figures 6.11 f - h show average ⟨Cθ⟩ values fixed at
zero in the lower half of the CL. However, in the upper half of the CL the ⟨Cθ⟩ values can be
seen oscillating between near-zero values, up to ML ⟨Cθ⟩ values for the corresponding time.
The high ⟨Cθ⟩ values are most likely due to the high levels of mixing occurring at cloud tops
where warmer air is being entrained from above. The large ⟨Cθ⟩ parameter values may also be a
result of the gravity waves forming due to disturbances in the overlying layer resulting from the
overshooting cloud tops. Figure 6.10 b shows the top layer in BOMEX experiencing increases
in ⟨Cθ⟩ from 0 to maximum values of 0.25 in some flow regimes near the CL top. However, the
maximum values of ⟨Cθ⟩ occur in the CU region and not in the CC areas of the cloud top. with
⟨Cθ⟩ ≈ 0.25 being the peak value reached. This again aligns with the theory of high amounts
of entrainment occurring and/or the effects of gravity waves in the region.

The conserved variables, θL and qt, display similar profiles for the Smagorinsky parameter, both
in the ML and throughout the CL. This similarity persists across all four stages of the diurnal
cycle in the ARM case, as shown by Figures 6.11 i - p, as well as in the quasi-steady marine BL,
as shown by Figures 6.10 c & d. The IC profiles of ⟨CθL⟩ and ⟨Cqt⟩ are very similar to the CU
and CC profiles in the BOMEX case (Figures 6.10 c & d), and are near identical after 14:30L
in the ARM case (Figures 6.10 k, l, o, & p). Note that the CC profile almost perfectly overlays
the CU profile, making it difficult to see in most plots. In the BOMEX case ⟨CθL⟩ and ⟨Cqt⟩
values in the cloudy regions are approximately 0.24, while in the ARM case the parameters
grow from morning time values of 0.16 to 0.2. The only exception to the alignment of ⟨CθL⟩
and ⟨Cqt⟩ profiles for the in-cloud regimes occurs during the early stages of the diurnal cycle, at
10:30L and 12:30L in the ARM case. This is illustrated in Figures 6.11 i & m where the IC has
lower values of ⟨CθL⟩ ≈ ⟨Cqt⟩ ≈ 0.14 at 10:30L compared to the CU and CC values of 0.16.
The early afternoon also depicts the profiles for the θL and qt Smagorinsky parameters aligning,
with the 12:30L profiles in 6.11 j & n showing IC values of ⟨CθL⟩ ≈ ⟨Cqt⟩ ≈ 0.16 when the
CU and CC values reach 0.2. This suggests that accounting for different scalar mixing lengths
between IC and CU/CC may be important during the cloud initiation and onset stages of the

85



shallow cumulus development. However, this factor does not seem as significant after the initial
development phase.

Figure 6.11: Profiles of planar averaged Smagorinsky parameters in each distinct flow regime in the

ARM case, using data with a filter width of “∆ = 4∆. From left to right the 4 different timestamps can
be seen, while the top panel shows ⟨Cs⟩, 2nd panel from the top is ⟨Cθ⟩, 3rd panel from the top is ⟨CθL⟩,
and the bottom panel details the ⟨Cqt⟩ profiles.
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The CFE of the CL show similar behaviours and values across all parameters, suggesting that
this flow regime may not be variable-specific. In the BOMEX case, Figure 6.10 depicts the
profiles for the CFE regimes averaging to values of ⟨C⟩ ≈ 0.1. This is in contrast to the
average values in the ML area of the non-cloudy (NC) profiles, which show different values
depending on the variable in question. For instance the ⟨Cs⟩ ≈ 0.14 in the ML, while the
⟨CθL⟩ ≈ ⟨CθL⟩ ≈ 0.16, and the ⟨Cqt⟩ ≈ 0.185 in the ML. Therefore, although scalar de-
pendence appears unimportant in the CFE of the CL, it appears to play a significant role in the
ML of the marine CTBL. Examining the CFE averages in the ARM case, the trend of having
⟨C⟩ ≈ 0.1 for all parameters also holds true once the cloud field has developed, specifically
for times after 14:30L. However, for earlier times, while ⟨C⟩ remains unaffected by variable
choice, it takes smaller values in the CFE of the CL. This suggests that ⟨C⟩ in the CFE is af-
fected by the eddy size. Figures 6.11 a, e, i, m illustrate this, with the morning time (10:30L)
profiles having values of 0.05 in the CFE of the CL. Later on in the day, at 12:30L the top half
of the CFE profile (1.5 ≤ z/zML ≤ 2.4 in Figures 6.11 b, f, j, n) the parameter profiles main-
tain the ⟨C⟩ ≈ 0.05, however in the lower levels of the CL (1 ≤ z/zML ≤ 1.5 in the same
figures) the profile increases in value as it approaches the ML capping inversion. This indicates
that, as shallow cumulus clouds develop, they promote mixing in the surrounding non-cloudy
environment. This behaviour is consistent with the high levels of mixing observed in the CFE
near the cloud edge of actively growing cumulus clouds, as seen in Figure 6.3.

6.3.3 Mean Profiles of the Prandtl and Schmidt Numbers

The profiles for the Prandtl and Schmidt numbers were calculated for each variable using Equa-
tions 4.15 and 4.16, recalling that the horizontal averages in each flow regime are calculated
using the corresponding ⟨Cs⟩ and ⟨Cψ⟩ values for each scalar ψ. The profiles from the BOMEX
data are shown in Figure 6.12, while the data from the ARM case are given in Figure 6.13.
The resulting profiles from these two case studies are compared and contrasted in the following
section.

Firstly, the ML values of the Pr and Sc profiles from the ARM case are analysed. Figure 6.13
shows the average values for all Pr and Sc numbers collapsing along the same profile in the ML.
The average ML value in the ARM case can be seen increasing gradually from 0.5 at 10:30L
in Figure 6.13 a to 0.6 by 16:30 in Figure 6.13 d. However, not one of the parameters sees their
profile reach a value of 0.7 in the mixed layer of the ARM case. This is significant as the stan-
dard Smagorinsky scheme in the MONC model assumes that Pr = 0.7 (shown by the dashed
vertical line in each of the plots), and this number sets the ratio of scalar to momentum mixing
for each scalar being modelled. On the other hand, the BOMEX case does show the Prandtl
number for θ and θL following the 0.7 vertical line in the middle of the ML (Figure 6.12 a).
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The profiles of Prθv , Prθe , and Scqt are more similar to those seen in the ARM case, with these
parameters taking average values of 0.5 in the ML also.

Above the ML, the DA of the non-conservative scalars, θ and θv go to unrealistically large
values due to the issues posed by condensation of moisture in the CL, and therefore these pa-
rameters are overlooked. At the capping inversion (z/zML = 1), the divide between the ML
and the CL, Figure 6.12 a shows the DA of both Prθe and Scqt peaking at unity in the BOMEX
case, indicating that the average mixing of θe, qt, and momentum are identical at this bound-
ary between flow regimes. Interestingly, this case shows the Prandtl number for θL peaking at
PrθL ≈ 1.2, indicating that θL has smaller structures and therefore undergoes less mixing than
momentum at the ML capping inversion. This is contrary to the common assumption that the
structures mixing thermodynamic scalars in the CTBL are larger, therefore resulting in their
corresponding Prandtl numbers being less than one (conventionally 0.5 ≤ Pr ≤ 1). The ARM
data in Figure 6.13a - d also demonstrates that the DA of PrθL consistently takes larger values
than the DA of Scqt at the capping inversion, with the exact values taken by each parameter
varying in time. The morning BL shows these parameters peaking at much larger values of
PrθL ≈ 1.9 and Scqt ≈ 1.4 at the ML capping inversion. However, as the cloud layer develops
the DA values at the capping inversion demonstrate a reduction to PrθL ≈ 1 and Scqt ≈ 0.85

from 12:30L onward. This difference between PrθL and Scqt at the ML capping inversion im-
plies that the mixing length may benefit from being scalar-specific at this particular interface in
the CTBL flow.

(a) (b) (c)

Figure 6.12: Vertical profiles of the Prθ, PrθL , Prθv , Prθe , and Scqt from the BOMEX case, 4 hours after
initiation. The plots show the profiles for the horizontal average across the (a) total domain, (b) areas
with no cloud, and (c) regions in-cloud, and scaled by the height of the mixed layer: zML = 480m. The
black dashed vertical line shows where Pr = Prair = 0.7.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6.13: Vertical profiles of the Prθ, PrθL , Prθv , and Scqt from the ARM case, at four different time
steps throughout the diurnal cycle. The plots show the profiles for the horizontal average across the (top)
total domain, (middle) areas with no cloud, and (bottom) regions in-cloud, and scaled by the height of
the mixed layer

When looking at the CL above this capping inversion, it is more productive to decompose the
layer into its IC and CFE counterparts before conducting any analysis. In the CFE, both the
BOMEX data (Figure 6.12 b) and the ARM data (Figures 6.13 e - h) show the averages of all the
Prandtl and Schmidt numbers following similar trajectories. However, in the CFE just above the
capping inversion, Figures 6.13 e & f outline how, compared to the other scalars, lower average
values of Scqt ≈ 1.3 at 10:30L and Scqt ≈ 0.9 at 12:30L are experienced in the earlier stages
of the diurnal cycle. Meanwhile, the average Prandtl number for all other scalars in the CFE is
Pr≈ 1.5 at 10:30L and Pr≈ 1.2 at 12:30L. The BOMEX case also shows a difference between
profiles just above the capping inversion, however it is the Prandtl numbers corresponding to
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the non-conserved variables θ and θv which show larger Pr values, while those relating to the
conserved variables exhibit similar values of Prθe ≈ Prθl ≈ Scqt ≈ 0.8. As we ascend in
the CL, average Pr and Sc values in the CFE increase, as shown by the BOMEX case in Figure
6.12 b, and across all times in the ARM case, as presented in Figures 6.13 e - h. This indicates
a strong discrepancy between the size of momentum structures and heat/moisture structures in
the CFE which only increases with height.

The IC regions exhibit the opposite behaviour, with Figure 6.12 c illustrating the Prandtl and
Schmidt numbers of the conserved variables taking nearly identical profiles. These IC profiles
have lowest values of 0.3 in the lower levels of the CL, which gradually increase to 0.5 in the
mid-to-upper level, and reach 0.8 at the cloud top. This indicates that within the marine cumu-
lus clouds, the qt moisture structures and θL & θe heat structures are, on average, the same size,
while the momentum structures in these clouds are much smaller. Figures 6.13 i - l demonstrate
how the ratio of momentum structures to scalar structures evolves in-cloud throughout the diur-
nal cycle. In the morning-time BL, Figure 6.13 i reveals how the average in-cloud Prandtl and
Schmidt numbers are only slightly smaller than the CFE averages for the same time. However
by 12:30 Figure 6.13 j shows that the conserved scalars have near-identical profiles IC, with av-
erage values having reduced to Prθl ≈ Scqt ≈ 0.7. Once the active cumulus clouds have fully
developed (see Figures 6.13 k & l) the average in-cloud values stabilise at Prθl ≈ Scqt ≈ 0.5.
This indicates that as a boundary layer transitions from a CTBL with rapidly developing cumuli
to a quasi-steady state, the heat and moisture structures within the cumulus clouds grow to twice
the size of the IC momentum structures.

6.4 Summary of Variable-Dependent Parameter Responses to the Flow
Regime

Throughout this chapter, the effect that various flow regimes have on the Smagorinsky param-
eter value is assessed. The conditionally averaged profiles of Smagorinsky parameters suggest
that differentiating between the cloud, cloud updraft, and cloud core regions does not appear to
have a significant influence on the dynamic parameter value. It was found that decomposing the
CTBL into a ML, CFE, and CL gave the best results, with all Smagorinsky parameters showing
distinct and systematic behaviours within these three regimes.

In the ML regime, the Smagorinsky parameters for each variable behave similarly, with fields
of alternating positive and negative parameter squared values. However, the C2

s fields exhibit
smaller, more sporadic patches of alternating positive and negative value regions than the C2

θ

and C2
qt fields. The average profiles demonstrate how Cs, on average, also has lower values
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than the Cθ and Cqt parameters in the ML. This is further emphasized by the low values of the
Prandtl and Schmidt numbers in the ML, with the majority of scalars having Pr≈ Sc ≈ 0.5.
This value is notably lower than the current value of Pr= 0.7 which is prescribed to the flow in
the MONC model, suggesting that the current model underestimates the scale of the heat and
moisture structures. This is also evidenced in the C2

θ and C2
qt fields, which show similar patterns

as C2
s , but the patches for the scalar parameters are larger and more consistent than those for

momentum. This indicates that the same turbulence is present across the fields, but it is impact-
ing coherent structures of different scales, with heat and moisture having larger structures than
momentum.

The C2
s fields demonstrate that the noise in the momentum field persists into the CL. This is

evident in the IC areas of the C2
s which still show alternating patches of positive and negative

values, though the positive values here are slightly larger IC than in the ML, and this is con-
firmed by the conditional profiles. In contrast to this, the C2

θ and Cqt fields show much more
consistency within the IC regions. The C2

θ fields show extensive areas of negative values within
the CU/CC, indicating counter-gradient transport occurring in these areas, with near-zero val-
ues outside this specific region of the cloud, signalling a lack of mixing in these areas. In sharp
contrast to this, the C2

qt fields show predominantly large, positive values of C2
qt throughout the

IC regions. This is confirmed by the large values of the Cqt profile conditioned on the IC region,
with the Scqt indicating that the moisture structures within the cumulus clouds are over twice
the size of the momentum structures in the same region.

The noisy patchwork of positive and negative C2
s values continues to persist in the CFE, how-

ever, the values appear smaller and slightly more areas show near-zero values. The suspected
lower values of Cs in the CFE are confirmed by the conditional profiles, which show the CFE as
having the lowest average values compared to all other regimes in the CTBL. In the parameter
fields for the scalars, a much clearer distinction is evident between the CFE and the rest of the
CTBL, with the C2

θ and C2
qt values near zero throughout almost the entirety of the CFE. This is

confirmed by the very large values of the Prandtl and Schmidt numbers presented in the con-
ditional profile plots. These profiles show values of 1 ≤ Pr,Sc ≤ 2 in the CFE, with larger
values higher up in the CL. This implies that the heat and moisture structures are the same size
as the momentum structures in the lower and middle of the CL, but diminish in size to scales
half that of the momentum structures near the top of the cloud layer.

Focusing on the scalar parameters which were analysed, it is clear that the conservation prop-
erties of the scalars have a large influence on the Smagorinsky parameter value. Unconserved
variables experience counter-gradient transport in regions where the water vapour condenses,
causing the dynamic Smagorinsky equations to generate negative value parameters. This typ-
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ically occurs in the IC regions as the Smagorinsky model attempts to account for the upscale
transport of energy. However, negative mixing lengths are unrealistic and unusable in the model
and therefore are clipped to zero, shutting off mixing completely in these areas. The main dif-
ferences between the conserved variables are now examined. If the scalars are conserved, their
associated Smagorinsky parameters and Prandtl/Schmidt numbers exhibit similar behaviour re-
gardless of the flow regime, suggesting that scalar-specific parameters may not be necessary as
long as the properties of the scalar align. The Prandtl and Schmidt number profiles suggest that
the only substantial difference between conserved variables, that is consistent across both the
BOMEX and ARM cases, occurs in the layers above and below the ML capping inversion. In
this region, the profile indicates that PrθL ≥ Scqt , implying that the moisture structures are big-
ger than the heat structures. This is consistent with findings from previous studies (see Section
2.2 for details). The analysis also underscores that setting Pr = 0.7 in the standard model fails
to capture the variation in scales of the coherent structures for momentum, heat, and moisture
across the different flow regimes.

6.4.1 Responses to the Research Questions

(1) Does the Smagorinsky parameter exhibit different systematic behaviours, depending
on the flow regime? Can these behaviours be quantified into general relationships between
the regime and the parameter value?

Yes, the Smagorinsky parameters for all variables are observed to take on key characteristics
when in a given flow regime in the CTBL. In the ML, each parameter yields profiles that take
on a slightly parabolic shape for all parameters. The largest C values occur in the middle of
the mixed layer, with a marked decrease in value as the surface and ML capping inversions are
approached. Meanwhile, the IC Smagorinsky parameter values for all conserved variables are
notably larger than the parameters in the ML and CFE, with the IC profiles being relatively con-
stant with height. In contrast to this, the unconserved variables experience the IC Smagorinsky
values being set to zero. This is because the Smagorinsky model is not equipped to handle the
counter-gradient transport of non-conserved variables that occurs IC as the moisture condenses.
In the CFE there is a marked decrease in mixing for all variables, with the Prandtl and Schmidt
number profiles suggesting that the heat and moisture structures are the same scale as the mo-
mentum structures, and even become smaller than the momentum structures near the CL top.

(2) Are there significant differences between the transport and diffusion of momentum,
heat, and moisture in the CTBL?

The momentum parameter exhibits the most anomalous behaviour, characterised by noisy fields
of alternating positive and negative values that lack the degree of organisation and structure ob-
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served in the heat and moisture parameter fields. The Cs fields also lack a clear overall distinc-
tion between the ML, IC, and CFE as the noise camouflages any differences. Meanwhile, the
heat and moisture parameters show clear variations between these three regimes. Furthermore
the heat and moisture fields also both show a higher degree of structure than the momentum
field. While the structure within the ML and CFE of the Cθ and Cqt is very similar, the IC
regions are where these parameters show a high degree of difference. The extreme values of C2

θ

demonstrate a clear preference for the CU/CC region, whereas the C2
qt field sees its extreme val-

ues occurring throughout the entirety of the cloud. Further to this the IC C2
θ values are entirely

negative, whereas the C2
qt values are mostly positive throughout the cloud. The differences be-

tween conserved variables, such as θL and qt are less apparent. The main distinctions between
these parameters occur in the area above and below the ML capping inversion. Here the mois-
ture structures are observed to be larger than the heat structures. Therefore, to a certain extent,
each variable exhibits its own unique characteristics.

(3) Considering that the conservation properties of a scalar affect its corresponding Smagorin-
sky parameter value, which thermodynamic variable is most appropriate for the new
parametrization?

Ideally, a conserved variable would be used as the basis for heat mixing and dissipation in
any new parametrization for the Smagorinsky scheme. However, the majority of LES models,
MONC included, are built using θ as the basis for the mixing length of heat. Switching to a
conserved thermodynamic variable would require significant restructuring of the LES frame-
work, which is impractical. As a result, the θ parameter remains in use. Despite this, it is
preferable to base the Smagorinsky subgrid parametrization on a conserved variable, as non-
conserved variables like θ encounter counter-gradient transport IC. This presents a challenge
for the Smagorinsky scheme, which cannot handle transporting energy upscale. Therefore, the
behaviour of the CθL parameter is still analysed, with the intention of testing if the parametriza-
tion can be improved by imposing the characteristics of a conserved thermodynamic variable
on the unconserved θ fields being modelled. That being said, further testing is needed to de-
termine whether θ or θL provides a more suitable basis for the new Smagorinsky coefficient
parametrization.
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7 The Effect of Filter Scale on the Smagorinsky Parameters

This chapter focuses on determining the local filter scale dependencies of the flow. In the pre-
vious chapter, the effect of certain flow regimes on the values of the Smagorinsky parameter
was investigated. However, this analysis focused on filtered LES with an effective grid spacing
of “̄∆ = 4∆, the highest resolution dynamic data available. Therefore, the next step in this
investigation is to assess the impacts of the grey-zone on each flow regime as the filter scale
increases. Note that in this chapter, the terms filter scale and effective grid spacing are used
interchangeably. This is because, in this analysis, the effective grid spacing “̄∆ of a filtered
field is directly determined by the Gaussian filter scale σ which was applied to the field. While
the standard Smagorinsky model has a scale-aware mixing length, as demonstrated in Equation
3.30, it is clear that this alone is insufficient for accurately handling dissipation when in the
grey-zone regime. Recall that the mixing length benefits from the use of the Blackadar for-
mula (see Equation 8.1) as a limiting function in the near-surface region, decreasing the mixing
length in response to the reduction in eddy size as the surface is approached. This can be con-
sidered as a grey-zone adaption, prompting the question of whether additional modifications
can be incorporated into the Smagorinsky model to address the challenges encountered in the
grey-zone regime. This chapter aims to evaluate and quantify the impact that filter scale has on
LES of CTBLs as resolution coarsens to grey-zone scales. The objective of this is to identify
relationships between the filter scale and the Smagorinsky parameter value, which can then be
used in grey-zone parametrization schemes.

This chapter presents the findings from the analysis of LES of the ARM and BOMEX cases,
representing an evolving case and an equilibrium case respectively. The primary objective of
this chapter is to investigate the scale dependencies of the Smagorinsky parameter, focusing on
the distributions and central tendencies of its values. However, before conducting this analysis,
it is necessary to address the negative parameter values that arise during the dynamic analysis.
The key research questions guiding the work in this section are as follows:

• To what extent does the filter scale systematically influence the prevalence of negative C2

values across the different flow regimes in the CTBL?

• How does the variability of the Smagorinsky parameters change with scale in each distinct
flow regime?

• What are the key scale dependencies of the Smagorinsky parameters in each of the flow
regimes?
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7.1 The Prevalence of Negative C2 Values at Different Scales

The dynamic method is known to produce negative Smagorinsky parameter values, primarily
due to the inability of the Smagorinsky scheme to capture up-gradient transport. Understanding
how coarsening the filter scale influences the prevalence of these negative values is important,
as it has the potential to cause issues when the model operates within the grey-zone regime.
As we move to coarser resolutions the model reaches a point where the grid spacing is of the
same order as the energy-producing scales of the flow. This means that the model is no longer
resolving and dissipating energy at scales in the ISR, but rather at the large scales. Therefore
the problem presented by upscale transport is expected to be much more common at coarser
resolutions. To test this, the frequencies of negative-valued Smagorinsky parameters at various
effective grid spacings have been analysed. The flow was decomposed into the IC areas and
the NC regions (which is made up of the ML and the CFE), and the proportion of negative C2

values in each distinct region were counted at each height level. Figures 7.1 and 7.2 present the
findings from the BOMEX and ARM cases, respectively. Therefore these profiles show the rel-
ative frequency of negative points as a percentage of the entire horizontal domain, categorised
by whether they were identified as being IC or in the CFE.

(a) (b) (c) (d)

Figure 7.1: Profiles showing the percentage of the domain which takes negative C2 values in the BOMEX
case. The solid lines indicate data from the NC environment, while the dashed lines indicate the IC data.
The profiles from both these flow regimes have been scaled by the total number of points at each level.

The sole similarity observed across all cases, parameters, and resolutions is that, in the free
troposphere (FT) above the cloud top (CT), the NC profiles indicate that approximately 55% of
the C2 values are negative. However, this area is not the focus of this study; rather, the other
regions of the CTBL are of primary interest for the new Smagorinsky parametrization. These
areas, the ML, CFE, and IC areas of the CTBL show various dependencies on regime, variable,
and scale. The percentage of negative C2

s values is consistent with height throughout the ML,
with approximately 40% of these parameters identified as being negative when “̄∆ = 4∆ in
both the BOMEX case (Figure 7.1 a) and during all times during the ARM case (Figures 7.2 a -
d). The BOMEX case then shows that the percentage of negative C2

s points in the ML decreases
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as the effective grid spacing (“̄∆) increases. However, the opposite occurs in ARM, where the
percentage of negative C2

s values increases as “̄∆ increases. The difference in the number of
negative values between scales reduces as time progresses, with the morning time ML (Figure
7.2 a) showing “̄∆ = 64∆ having approximately 10% more negative C2

s values than “̄∆ = 4∆,
but by late afternoon (Figure 7.2 d) the ML shows only 5% difference between the scales.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 7.2: Same as in Figure 7.1, but instead showing the ARM data at 4 different times. The rows
show the profiles for a certain parameter, while the columns show each of the time stamps.
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The percentage of negative scalar parameters in the ML shows a clear scalar dependence as the
grey-zone is approached. Both the BOMEX and ARM cases demonstrate that at “̄∆ = 4∆,
for every scalar ψ, approximately 30% of the scalar flux coefficients C2

ψ take negative val-
ues throughout the ML. However, the scale-dependent behaviour of each of the C2

ψ parameters
varies significantly depending on the specific scalar quantity, ψ, being considered. As conden-
sation does not readily occur in the ML, the C2

θ and C2
θL

parameters behave the same in this
flow regime as conservation does not become an issue. In the BOMEX case, the percentage of
negative C2

θ and C2
θL

values in the ML increases from 30%, to 45%, to 70% as “̄∆ coarsens from
4∆, to 16∆, to 64∆ respectively (Figures 7.1 b & c). Similar percentages of negative parameters
are observed in the ML during the later stages of the diurnal cycle for C2

θ (Figures 7.2g & h) and
C2
θL

(Figures 7.2k&l). However, earlier in the day, Figures 7.2 e, f, i & j show the percentage of
negative C2

θ and C2
θL

increase to just below 90% in the ML.

The scaling trends set by the C2
θ and C2

θL
parameters in the ML are in complete contrast to the

trends seen in the C2
qt parameter values in the same region. In the ML of the BOMEX case,

Figure 7.1 d illustrates the percentage of negative C2
qt in the ML decreasing from 30% to 20%,

and eventually to less than 5% as “̄∆ increases from 4∆, to 16∆, to 64∆. The ARM case how-
ever shows a similar percentage of negative C2

qt values in the ML when “̄∆ = 4∆ as “̄∆ = 16∆

(Figure 7.2 m - p). The similarity between these two scales becomes more pronounced as the
CTBL evolves throughout the day, with the 16:30L data showing near identical percentages of
negative values occurring in the ML, as evident in Figure 7.2 p. However, this similarity does
not hold as the effective grid spacing is pushed further into the grey-zone, with the “̄∆ = 64∆

ARM data showing negative C2
qt values occurring in only 5% to 10% of the ML.

There is a distinct decrease in the number of negative C2 values for all variables evident in the
levels above and below the ML capping inversion zML for every “̄∆. This indicates that at the in-
version the dynamic method does not detect many instances of counter-gradient transport in the
levels about the inversion. Above this capping inversion, the flow in the CL has been partitioned
into two distinct regions: the IC areas and the CFE. Note that the IC profiles depict the number
of negative values in-cloud as a percentage of the entire horizontal domain at that level, and
the same for the CFE profiles. Therefore the impact of changes to the percentage of total cloud
cover with scale is not accounted for in these profiles. However, the growth in cloud cover with
increasing “̄∆ is driven artificially by the filtering procedure (see Section 7.1.1 for more details),
by factors which are not expected to occur in LES models. Therefore the following plots display
the frequency of negative values as a percentage of the entire horizontal domain, rather than as
a percentage of the area of each specific flow regime. Additionally, representing the negative
values as a percentage of the total domain makes the distinction between scales more evident.
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In Figures 7.1 a - d the BOMEX data, with an effective grid spacing of “̄∆ = 4∆, indicates
that the CFE exhibits approximately 5% more negative values than the ML for each of the
Smagorinsky parameters. As the effective grid spacing increases in size, both the BOMEX and
ARM cases show the percentage of negative C2 values identified in the CFE decreasing. This is
evident in the slight decrease between 4∆ and 16∆, however, by the time that 64∆ is reached,
the percentage of negative C2 parameters occurring in the CFE has dropped significantly to near
zero. This decrease in the quantity of negative C2 values as “̄∆ increases is seen in the ARM
case also. However, this trend likely arises from the increase in the number of points classified
as being in-cloud as resolution decreases. This results in fewer points being classed as being in
the CFE, artificially causing a reduction in points with a negative C2 value from occurring in
the CFE. The impact of “̄∆ on cloud cover, and the knock-on effects of this on the percentage of
negative C values is further discussed in Section 7.1.1.

The percentage of negative C2 values detected in the CFE gradually increases with height. This
trend is less pronounced in the BOMEX case; however, it is clearly evident during the rapid de-
velopment stages of the cumulus clouds in the ARM case, as illustrated in Figures 7.2 c, g, k & o.
The difference between the percentage of negative C2 values near the CB and at the CT of the
CFE becomes more evident as the effect grid spacing increases in size.

As anticipated, the percentage of negative C2 values in the CL increases in the cloudy regions
as “̄∆ increases. This phenomenon is again believed to be a direct result of the growing num-
ber of points classified as being in-cloud with the increasing filter scale. At high resolution,
the percentage of negative C2 values identified in-cloud is very low, with Figures 7.1 a, c & d
indicating that less than 5% of the negative C2

s , C2
θL

, and C2
qt values occur IC. Meanwhile, ap-

proximately 10% of the negative C2
θ values occur in-cloud in the BOMEX case, as presented in

Figure 7.1 b. A similar percentage of negative C2 values are detected in-cloud in the BOMEX
case as in the ARM case at each resolution once the diurnal CTBL reaches a quasi-steady state
(QSS), as evidenced in Figures 7.2 d, h, l & p. However, during the developmental stages of the
cumulus clouds (12:30 L and 14:30), a higher percentage of negative C2 points are classified
as being IC, rather than in the CFE, as indicated in Figures 7.2 a, b, e, f, i, j, m & n. During the
onset of clouds at 12:30L, the “̄∆ = 4∆ data reveals that approximately 10% of the negative
C2
s , C2

θL
and C2

qt points are IC, as indicated in Figures 7.2 c, k & o). Meanwhile, at “̄∆ = 4∆,
the C2

θ parameter indicates that 20% of the negative CL values are classified being IC during
the onset of cumulus convection in the ARM case (see Figures 7.2f).

At high resolutions, when the system is in QSS (as in Figures 7.1 and 7.2 d, h, l & p), the pro-
portion of negative C2 values determined to be in-cloud are relatively constant with height,
although a slight decrease in percentage with height is evident, particularly at coarser scales

98



such as “̄∆ = 16∆. However, at the coarsest scale analysed (“̄∆ = 64∆), data from cases in
QSS show that the proportion of negative IC C2 values occurring follows a trend with height
which differs from that observed in the high-resolution data. The IC profiles at this coarse reso-
lution instead exhibit a similar trend to that of the CFE profiles, with the percentage of negative
C2 values increasing with height, as shown in Figures 7.2 d, h, l & p. The percentage of negative
C2 values identified as being in-cloud is also much higher in the “̄∆ = 64∆ data, compared to
the higher resolution data for all cases. The coarsest resolutions see the percentage of negative
C2 values reaching counts of between 40% to 60% in-cloud, depending on the case and param-
eter.

In contrast to the QSS data, the ARM case demonstrates a different behaviour occurring in-cloud
during the developmental stages of the cumulus clouds. During these times, the percentage of
negative IC C2 values IC peaks in the low-to-mid levels of the CL. The coarse “̄∆ = 64∆ data
shows these peaks appearing to increase in height with time until, by the time the system has
reached a QSS, the peak in percentage of negative values classified as being IC occurs at the
CT level.

7.1.1 The Impact of Effective Grid Scale on Cloud Cover

As mentioned in previous sections, the number of points being classified as in-cloud increases
with scale. This affects the proportion of negative values identified as either IC or part of the
CFE, as the ratio of IC points to CFE points changes with scale. Consequently, this section
explores the influence of scale on cloud cover. The way this dependency is addressed impacts
how the number of negative values in a regime is interpreted. Two methods of presenting this
information are examined: (1) the ratio of negative to positive C2 values within a given flow
regime, and (2) negative values expressed as a percentage of the entire horizontal domain (this
is the method employed in the previous section). This section highlights the differences in cloud
cover as the filter scale varies and examines how these changes affect the two methods of data
presentation.

Figure 7.3 a shows the percentage of the CL that is classified as being IC for each case study
at various effective grid spacings. At an effective grid spacing of “̄∆ = 4∆ the BOMEX case,
along with ARM at 10:30L and 16:30L show approximately 12% of the CL being cloudy. At
the same resolution the ARM case at 14:30L shows 19% cloud cover, while 35% of the cloud
layer is considered IC at 12:30L. As the “̄∆ values increase, the percentage of cloud cover also
increases. This is because, as the filter is applied to the cloud field, the qcl content is dispersed
from the clouds to the surrounding area, effectively enlarging the clouds but diluting their water
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content. This continues as the filter scale increases until the entire cloud layer has some positive
value of qcl ≥ 1 × 10−7 at each point. As a result, in the majority of cases, 100% of the CL
is classified as being IC by the time “̄∆ = 128∆. The cases which have a higher percentage
of cloud cover at “̄∆ = 4∆ show the CL reaching 100% cloud cover at smaller filter scales
than the other cases. For example, the 12:30L ARM case shows the entire CL domain being
classed as IC at “̄∆ = 32∆. However, the analysis of the coarse resolution data conducted so
far focuses on the “̄∆ = 64∆ scale. At this effective grid scale, the majority of cases show near
100% cloud cover, but still show some signatures of the typical behaviour of a Smagorinsky
parameter within a CTBL.
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Figure 7.3: (a) The percentage of the total CL domain that is classified as IC at each “̄∆ for every case.
(b) Profiles of the percentage of each distinct region of the CTBL that show negative C2

s values. The
number of negative C2

s values occurring IC, as a percentage of the total number of IC points at each
height level, are shown by the dashed lines. The solid lines shows the equivalent for the NC areas.

The variation in cloud cover between scales can be accounted for when plotting the number of
negative C2 values. This adjustment can be achieved by displaying the C2 data as a ratio of
negative to positive values in each specific regime, rather than as a percentage of the entire CL.
The plots resulting from this method show very similar percentages of negative values occurring
IC as in the CFE for each scale analysed. The percentage of negative C2

s values in each flow
regime of the BOMEX case is given in Figure 7.3 b as an example. There is a 2% to 7% dif-
ference between the percentage of IC values that are negative and the percentage of CFE values
that are negative, when noise in the CFE at coarser resolutions is ignored. The high resolution“̄∆ = 4∆ data shows approximately 45% of points IC and in the CFE experiencing negative
C2
s values. This increases to approximately 60% for “̄∆ = 16∆ and “̄∆ = 64∆, however the“̄∆ = 64∆ data shows a high level of noise.

It was found that the majority of profiles, both for different parameters and different cases, dis-
played the same tendencies in the CL when the number of negative C2 values were plotted as a
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percentage of the specific regions. However, the exception to this trend is, as expected, in theC2
θ

IC data shown in Figure 7.3 c. At high resolution, the number of negative C2
θ values in-cloud

are approximately 25% higher than those in the CFE. As a result, the “̄∆ = 4∆ data showed
that 35% of the CFE regions experienced negative C2

θ values, while over 60% of the in-cloud
areas displayed negative values. However, by the time the effective grid scale had coarsened to“̄∆ = 16∆ there was very little difference between the percentage of negative C2

θ values and
the percentage in the CFE. This similarity between the two regions at coarse resolution is most
likely a result of the dilution of cloudy areas and dispersion of the qcl into the CFE. Figure 7.3 a
confirms that, at “̄∆ = 16∆, 45% of the CL is classified as being IC. Therefore it would be
expected for these two regions to begin to show shared characteristics at this filter scale. This
remains true as the scale is coarsened further to “̄∆ = 64∆, though noise was once again present
in the CFE at this resolution. This noise is a result of the lack of points remaining which are
still classified as being in the CFE.

7.2 Distributions of C Values at Various Filter Scales

The values taken by the Smagorinsky parameters for each variable across the model domain
will now be analyzed in this section. The negative C2 values in the field were clipped and
set to zero, allowing for the calculation of the C fields. The distributions of values taken
by each of the Smagorinsky parameters can then be plotted and analysed. These histograms
of the C values have been produced at three different effective grid spacings for each case:“̄∆ = 4∆, 16∆, 64∆. The histograms shown here are specific to the following flow regimes:
ML, IC, and CFE. The frequencies have been normalized by the total number of points within
each regime, meaning that the distributions represent the percentage of points in a given region
that correspond to a specific C value. Note that all of the histograms presented in the following
plots show a bimodal distribution, with one of the peaks occurring at zero. This peak is ignored
throughout this analysis as it is an artefact of the clipping process applied to the negative C2

values.

In the ML at “̄∆ = 4∆, all four of the Smagorinsky parameters show an approximately sym-
metric distribution with a high standard deviation about a mean value of C ≈ 0.13 (as depicted
in Figures 7.4 a, d, g & j). In the ML, the BOMEX case is observed to have a flatter distribution
than the ARM distributions for all parameters. This suggests that BOMEX has a higher variance
of C values, despite BOMEX and ARM having similar mean values in the ML at “̄∆ = 4∆. As
the effective grid spacing increases toward grey-zone regimes, the distributions exhibit a right-
ward skew. This clearly demonstrates the reduction in the mean and mode of the Smagorinsky
parameter values as the grid scale increases in size. When the effective grid scale is coarsened
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to “̄∆ = 64∆, the ML Smagorinsky parameters for scalars θ, θL, and qt exhibit not only a
pronounced rightward skew, but also significantly higher leptokurtosis, particularly during the
earlier stages of the diurnal cycle in ARM, compared to the higher-resolution distributions (see
Figures 7.4 f, i & l). These distributions indicate that, at very coarse resolutions, the scalar pa-
rameters Cψ experience a very high percentage of points in the ML tending towards zero, as
shown in Figures 7.4 f, i & l. The momentum parameter however, shows a slightly weaker ten-
dency toward zero at this scale. This is evidenced in Figure 7.4 c, which reveals that, while the
distribution of Cs in the ML of the “̄∆ = 64∆ data is also heavily skewed to the right, the mode
is non-zero. This is especially evident when comparing the Cs distributions to the distributions
for Cθ, CθL and Cqt in the ML for the same resolution.

The analysis now shifts to examining the distributions of the Smagorinsky parameter values
within the CL. This layer has again been decomposed into two distinct flow regimes: the IC
areas (Figures 7.6) and the CFE (Figures 7.5). It should be noted that, in the CL, the distri-
butions of C values at coarse resolutions exhibit significantly lower densities, particularly for
scalar parameters. This can be attributed to the fact that most C values in the CL are zero when“̄∆ ≥ 64∆. Evidence of this trend is seen in the profiles detailing the percentage of negative
values with height in Figures 7.1 and 7.2. These figures outline that a high proportion of nega-
tive values occur in the CL, with approximately 60% of the CL being negative at this scale, and
these values are subsequently clipped to zero. Additional evidence supporting the prevalence
of zero values is provided in the next section, where Smagorinsky parameter profiles indicate
that the mean values of ⟨C⟩ approach zero at “̄∆ ≥ 64∆ in both the IC regions and the CFE
(Figures 7.7, 7.8 and 7.9).

The majority of the CL is made up of the homogeneous, near-laminar CFE. When the Gaussian
filter is applied to the cloud field it spreads the properties of the CFE into the neighbouring
small, but very turbulent cloudy areas, diminishing the in-cloud turbulence. Meanwhile, the qCL

content, which is used to define cloud boundaries, is dispersed over large areas which may not
exhibit the typical properties of in-cloud regions. As a result of the combined effect of these
processes, the areas identified as IC exhibit a near-laminar flow, causing the corresponding C
parameters to approach zero as resolution decreases. In contrast, the ML is characterised by
a highly turbulent and homogeneous flow across the entire domain. Therefore, while filtering
will laminarize the ML flow somewhat, it is not to the same extent as observed in the CL. Con-
sequently, the ML retains a near-normal distribution of non-zero C values (Figure 7.4), while
the CFE (Figure 7.5) and IC (Figure 7.6) distributions of the Smagorinsky parameters exhibit a
right skewness, even at higher resolutions.
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(c)(b)(a)

Figure 7.4: The distributions of values of the Smagorinsky parameters in the ML for data filtered to
effective grid spacings of 4∆, 16∆, and 64∆. The rows show the distributions of the Smagorinsky
parameters for Cs, Cθ, CθL , Cqt respectively. The frequency is shown as a percentage of the total ML.
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Figure 7.5: Same as in Figure 7.4, but for C values in the CFE.
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(c)(b)(a)

Figure 7.6: Same as in Figure 7.4, but for C values IC.

Firstly, Figure 7.5 demonstrates that in the CFE, all of the parameters at each filter scale show
a right-skewed distribution, though this skew is least severe in the high resolution Cs data. The
momentum parameter in the CFE shows a mode of Cs ≈ 0.08 at “̄∆ = 4∆, reducing by half
each time the effective grid spacing is raised to the power of two (see Figures 7.5 a, b, & c).
This drives the CFE Smagorinsky parameters toward zero as the effective grid spacing is in-
creased. The distributions for Cs in the majority of cases demonstrate a high variance, with
Figure 7.5 a showing some extreme values reaching Cs ≈ 0.3 in the CFE when “̄∆ = 4∆.
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Meanwhile, the distributions of the scalar parameters Cψ, for ψ = θ, θL, & qt, exhibit a much
more severe tendency to skew to the right, as presented in Figures 7.5 d, g, & j. All cases also
show the distributions of the scalar parameter values as more leptokurtic, peaking at a modal
value of Cψ ≈ 0.05. The tendency of the scalar parameters to show right-skewed distributions
indicates that, while the majority of Cψ values are near zero in the CFE, some points experience
high Smagorinsky parameter values. Analysis conducted in Section 6.1 suggests that in the
CFE, large Cψ values are expected to occur near the cloud edges, where detrainment of heat
and moisture from the cumulus cloud causes excess mixing and dissipation of these scalars in
this region. Comparing the high resolution distributions of Cs to Cψ demonstrates that, while
the momentum structures persist in the CFE (evidenced by the higher mode and right-skewed
tail in Figure 7.5 a), the heat and moisture structures do not persist in the CFE to the same extent
(as demonstrated by the near-zero values of Cψ, even at high resolution). Therefore the mixing
and dissipation of heat and moisture is at a minimum in the CFE.

Secondly, the distributions of Smagorinsky parameter values from the cloudy regions of the CL
are examined. It is evident that as “̄∆ increases and approaches the grey-zone, the Smagorin-
sky parameter values in-cloud again tend toward zero, particularly for the Cθ parameter (Figure
7.6 f). The distributions also become more skewed to the right when “̄∆ is large, with the majority
of C parameters taking near-zero values as the resolution decreases. This behaviour is consis-
tent with the previously discussed trends observed in the CFE, and occurs for the same reasons.
Figure 7.6 a shows a strong agreement in the frequency of IC Cs values across all cases when
compared to other flow regimes, which can display significant discrepancies in the Cs distribu-
tions between cases. This indicates that the mixing and dissipation of momentum is consistent
within all shallow cumuli at high resolutions, rather than being case-dependent. The high reso-
lution IC Cs values are approximately normally distributed about a mean of Cs ≈ 0.135 with
a large variance, as indicated by the long tails on the distribution, as seen in Figure 7.6 a. The
exception to this is the 10:30L ARM case, which shows a distribution that is skewed slightly
to the right, rather than being symmetric. This is likely due to the limited presence of clouds
in the domain, as they are just beginning to form at this time. Consequently, the mixing and
dissipation occurring in areas designated to be IC is relatively low.

The distributions of the Cψ parameters in-cloud demonstrate the scalar dependence of the
Smagorinsky parameter value. As resolution decreases, Figure 7.6 d e & f show that the Cθ
values are decreasing toward zero slightly more rapidly than the other scalars. This reduction
in non-zero values directly results from the lack of conservation of potential temperature θ in-
cloud, giving rise to counter-gradient transport of θ within the clouds and causing the Cθ values
to be forced toward zero in these regions. At high resolution the Cθ distribution is slightly
skewed to the right while the CθL and Cqt parameters show flat, normal distributions of values
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in-cloud. This is similar to that of the IC Cs values, although the morning-time ARM CθL and
Cqt values again show a right-skewed distribution. The distributions of CθL and Cqt are centred
around 0.15, and both distributions are platykurtic (signifying a large variance). Meanwhile
the Cθ distribution, while skewed to the right, shows a much shorter tail compared to the other
scalar parameters. This is a result of the Cθ parameter tending to zero due to its lack of conser-
vation in-cloud; in contrast the distributions of CθL and Cqt show longer tails to the right as the
conservation properties of these scalars enable the Smagorinsky parameter to remain non-zero
for longer as resolution is decreased.

Overall, it is evident that the Smagorinsky parameters depend strongly on the flow regime. The
distributions analysed above also highlight the effect that resolution has on the parameter val-
ues, particularly in the IC and CFE areas of the CL. The role of scalar dependencies for the
Smagorinsky parameters appears to be limited to the IC regions of the CTBL. The majority of
the high-resolution Smagorinsky parameter data yields symmetric distributions, indicating that
using the mean as a representative value within the different flow regimes is a reasonable choice
for well-resolved data. Therefore the following section will focus on the mean values of C in
the different regions of the CTBL flow and at different scales.

7.3 The Effect of Filter Scale on the Smagorinsky Parameter Profiles

The conditional averages of Smagorinsky parameter values in each flow regime have been cal-
culated. Parameter values across multiple resolutions are analysed, using filtered data from the
BOMEX and ARM test cases. The relationship between the Smagorinsky parameter value and
filter scale as the system moves deeper into the grey-zone regime is investigated in this section.
Additionally, this chapter introduces results from the scale-dependent dynamic Smagorinsky
parameter calculation method, described in detail in Section 3.4.2. The resulting profile cal-
culated using this approach is denoted with a subscript β, referring to the β parameter which
measures the degree of scale dependence. Since the focus is on the relationship between C and“̄∆ within the distinct flow regimes, the DA plots are not presented here. However, the DA plots
showed a similar general trend as the other flow regimes, with average C values decreasing
fractionally when the effective grid spacing increases.The CU and CC profiles exhibit the same
trends as the IC profiles, and because there is minimal distinction between the CU/CC areas and
the overall IC average, these profiles are also not included. The IC and NC (encompassing the
ML and CFE regions) profiles are presented in Figure 7.7 for the BOMEX case, and Figures
7.8 and 7.9 for the ARM case (NC and IC respectively).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7.7: Vertical profiles from the BOMEX case calculated by conditionally averaging over the (top
panel) NC regions for (a) Cs, (b) Cθ, (c) CθL , (d) Cqt and (bottom panel) IC areas for the same variables.
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Figure 7.8: Same as in Figure 7.7 but vertical profiles are from the ARM case at 4 different timestamps,
conditionally averaged over the NC regions (the ML and the CFE of the CL).
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Figure 7.9: Same as in Figure 7.8 but with profiles from the ARM data which have been averaged over
the in-cloud areas.
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7.3.1 The Response of the Momentum Parameter to Changes in Filter Scale

The behaviour of the horizontally-averaged Smagorinsky parameter for momentum, ⟨Cs⟩, across
multiple filter scales is examined first. In the ML, the ⟨Cs⟩ profiles exhibit a peak at the sur-
face, which is clearly evident at all filter scales in the BOMEX (Figure 7.7 a) and ARM cases
(Figures 7.8 a - d), becoming more apparent as the resolution coarsens. Above this surface-level
peak, the higher resolution ⟨Cs⟩ profiles for each case exhibit a relatively constant value with
height throughout the ML at high resolutions. At the effective grid spacings of “̄∆ = 16∆ both
cases display a local minimum occurring in the ⟨Cs⟩ profile at the mid-ML level, which is exac-
erbated as the resolution coarsens further. The highest resolution profile, “̄∆β = 2∆, computed
using the scale-dependent method (and therefore depending on both the 4∆ and 8∆ profiles)
shows the average ML value of Cs ≈ 0.185 for both the BOMEX and ARM profiles. The
profiles within the ML exhibit incremental differences between scales, with the profile shifting
to the left, indicating a decrease in the average value as “̄∆ increases. The increments between
resolutions are reasonably consistent across both scales and cases. However, when the resolu-
tion reaches 32∆, the dynamic Smagorinsky method begins to fail, particularly in the mid-ML,
where ⟨Cs⟩ collapses to zero. This is expected, as such filter scales are within the scales typi-
cally considered to be in the grey-zone regime for a CTBL.

The ML shows a distinct reduction in ⟨Cs⟩ with height as the capping inversion is approached,
above which, the profiles reduce to lower values in the CFE. Both the BOMEX case (see Figure
7.7 a) and the ARM case during the later times of 14:30L and 16:30L (Figures 7.8 c & d) show
the high-resolution values of ⟨Cs⟩ remaining uniform with height in the CFE, at consistently
lower values than their corresponding ⟨Cs⟩ in the ML. However, at coarser resolutions, the
BOMEX case and the early stages of the diurnal cycle in the ARM case (10:30L and 12:30L)
show the Cs profile in the CFE collapsing to zero in the mid-CL (z/zML ≈ 2.5 in the BOMEX
case and z/zML ≈ 1.5 in the ARM cases) at “̄∆ ≥ 8∆ (see Figures 7.7 a and 7.8 a & b). The
same behaviour emerges in the Cs profiles at the mid-CL of the ARM case during the later
times, but for data with “̄∆ ≥ 16∆. Therefore all cases exhibit the dynamic method break-
ing down in the CFE at higher resolutions than is observed in the ML, indicating that the CFE
is more sensitive to grey-zone issues than the ML. Furthermore, the difference between ⟨Cs⟩
values at each scale is not uniform in the CFE, as it was in the ML. Instead, in the CFE the
difference in ⟨Cs⟩ values between scales compounds as the effective grid spacing is increased.

The IC values of ⟨Cs⟩ from the ARM case (see Figures 7.9 a - d) show much more consistent in-
crements between scales than the CFE profiles from the same case. The IC profiles are observed
decreasing in value from ⟨Cs⟩ ≈ 0.2 at 16:30L (Figure 7.9 d) to zero as the corresponding “̄∆
increases to 128∆. Despite the systematic and regular intervals at which the ⟨Cs⟩ value de-
creases with increasing scale, the dynamic method still begins to fail in the mid-CL at coarser
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resolutions. This is evident in the IC profiles of ⟨Cs⟩, which indicate that the latest three times
during the ARM case (Figures 7.9 b - d) experience ⟨Cs⟩ → 0 at the height level corresponding
to z/zML ≈ 1.7 when “̄∆ ≥ 16∆. The BOMEX data experiences the failings of the dynamic
method at higher resolutions than ARM, with the “̄∆ = 8∆ case showing the ⟨Cs⟩ profile os-
cillating between zero and values near 0.09. This also aligns with the resolution at which the
dynamic method failed in the BOMEX CFE. Subsequently, the calculation of ”̄∆β = 2∆ for
the BOMEX case is affected (see Equation 3.49), making this profile noisy and inconsistent in
value with height. At each effective grid scale, the IC ⟨Cs⟩ values are higher than the corre-
sponding CFE values, by about 0.03 for BOMEX and 0.04 for ARM.

7.3.2 The Effect of Filter Scale on the Scalar Parameters

The behaviours of the Smagorinsky parameters for scalars are analysed here, both for cloud-
conserved (θL and qt) and non-conserved (θ) variables. Firstly, looking at the behaviour of the
planar averaged Smagorinsky profiles in the ML of the BOMEX case: Figures 7.7 b - d show
that each of the scalar profiles have a distinctive parabolic shape in the ML, which is particu-
larly evident in the ⟨Cqt⟩ profile. The profiles of ⟨Cψ⟩, for each scalar ψ, experience maximum
values in the mid-ML, while minimum values occur at the surface and ML capping inversion.
Furthermore, the ⟨Cθ⟩ and ⟨CθL⟩ profiles demonstrate a peak in values at the surface in both the
BOMEX and ARM cases. Above the surface, the ARM case demonstrates a more constant pro-
file with height than BOMEX for the higher resolutions (see Figures 7.8 e - p). As the effective
grid spacing increases in size, these profiles decrease in value and shift to the left toward zero.

At the coarser resolutions, when “̄∆ ≥ 32∆, the parameter profiles of the θ and θL scalars (Fig-
ures 7.7 b & c) show the average values in the mid-levels of the ML collapsing to zero. This is
a key signature of the dynamic method failing in the mid-ML for the thermodynamic variables
and is evident at this resolution in the ARM case also (Figures 7.8 e - l). However, early signs of
breakdown are observed at “̄∆ = 16∆ in the mid-ML of both cases, with the profile approaching
zero at these scales. If the dynamic method had not failed for ⟨Cθ⟩ and ⟨CθL⟩ in the mid-ML,
values from the other levels in the ML suggest that ⟨Cψ⟩ would not have decreased to zero in
the ML until “̄∆ = 128∆ in the BOMEX case, while in the ARM case it would have remained
non-zero throughout the ML for all resolutions analysed. The dynamic method does not fail in
the ML when calculating the Cqt parameter, suggesting that the failure might result from the
averaging data with a peak in values at the surface. The reduction in ⟨Cθ⟩ and ⟨CθL⟩ values
above the surface peak appears to amplify as “̄∆ increases, until the mid-ML value reduces to
zero. Therefore, the peak in values at the surface might be the cause of the dynamic method
failure in the mid-ML.
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At the top of the ML, both the BOMEX (Figures 7.7 b - d) and ARM (Figures 7.8 e - p) cases
show the scalar parameters decreasing rapidly in value to their CFE values. The difference
between the average ⟨Cψ⟩ values between the CFE and ML becomes more pronounced as “̄∆
increases. This suggests that the ML and CFE respond at different rates to changes in the fil-
ter scale. Above the ML capping inversion, the CFE profile is roughly constant with height.
However, the difference between the ⟨Cψ⟩ profiles at each scale in the CFE grows as resolution
increases toward “̄∆β = 2∆. All the cases show that, for data with an effective grid spacing of“̄∆ ≥ 16∆, the corresponding profiles are at or very near zero. This collapse to zero occurs at
a higher resolution in the CFE than in the ML, further supporting the hypothesis that the ML
and CFE have different scale dependencies. The spikes in value at the top of the CL which
are evident in the CFE scalar parameter profiles are possibly due to the entrainment of warmer,
drier air at certain points from the overlying statically stable layer. The high values reached
by these spikes in the “̄∆β = 2∆ profile are artificial, and are disregarded in this analysis as a
result. The spikes result from the misalignment of areas where the “̄∆ = 8∆ has collapsed to
(zero due to the dynamic method failing) when the “̄∆ = 4∆ has not, therefore forcing the ratio
of these two parameters to tend to infinity.

The IC profiles reveal a pronounced difference between conserved and non-conserved variables
for both the BOMEX data (Figure 7.7 f - h) and ARM data (Figures 7.9 e - p). In the mid-CL
region, the non-conserved θ variable produces IC profiles of ⟨Cθ⟩ which are forced to zero at all
scales. This is evident in each case, apart from the earliest stage of the diurnal cycle where the
clouds are just initiating (see Figure 7.9 e). During the morning, the cloud is just forming and
the IC ⟨Cθ⟩ maintains its value from the ML thermal which is feeding the developing cumulus
cloud. This is because the Cθ has not had a chance to respond to the developing counter-
gradient transport of θ in the newly formed cloud. Once the cumulus clouds have developed,
from 12:30L onwards, the ARM case agrees with the BOMEX case, and shows an IC profile of
⟨Cθ⟩ = 0 in the mid-CL. However, at the levels just above the capping inversion zML and just
below the cloud top (CT), non-zero values of ⟨Cθ⟩ are observed in the IC profile. At the cloud
base (CB), which occurs just above the zML, the IC profile of ⟨Cθ⟩ ≈ 0.1 for all high-resolution
cases. This level experiences a non-zero ⟨Cθ⟩ in-cloud as the overshooting thermals transport
air from the ML, which has not yet experienced condensation, into the cloud. Therefore, in
the region where the thermal retains its essential characteristics (near the cloud base), the heat
fluxes of θ are not yet counter-gradient. This results in the corresponding Smagorinsky param-
eter remaining positive and non-zero in this area.

The IC profiles in the area below the CT also show non-negative ⟨Cθ⟩ values, however, these
values near the CT are much higher than those just above zML. The ⟨Cθ⟩ values in-cloud reach
approximately the same value as the IC profiles of ⟨Cψc⟩ for the conserved scalars ψc, when both

113



profiles have the same “̄∆. This is because the positive IC ⟨Cθ⟩ values result from the entrain-
ment of warm air from the statically stable overlying layer. In the BOMEX case, the overlying
stable layers were initialised at z = 2000m, while the positive ⟨Cθ⟩ values occur between
1720m ≤ z ≤ 2064m. Similarly in the ARM case the statically stable layer was initialised at
z = 2500m, while the positive ⟨Cθ⟩ values occur between z/zML ≈ 1800 and z/zML ≈ 2850,
depending on the time during the diurnal cycle. This signifies that the overshooting tops of
the cumulus clouds encroach into the statically stable air, and in doing so entrain warm, dry
air downwards into the upper levels of the cumulus clouds. Similar to what was observed just
above the zML, this warm, entrained air maintains its characteristics near the cloud top. As con-
densation has not yet occurred in these entrained air parcels, the ⟨Cθ⟩ profile is positive in these
regions. The ⟨Cθ⟩ profile at CT reaches higher values compared to those at CB, due to the signif-
icant heat content of the overlying air which is entrained at CT. The resulting IC value ⟨Cθ⟩ have
approximately the same value as the ⟨Cψc⟩ at the corresponding “̄∆. When noise is disregarded,
these IC profiles at the CT show the expected trends of a decrease in ⟨Cθ⟩ values as “̄∆ increases.

The conserved variables (ψc) show IC profiles of ⟨CθL⟩ and ⟨Cqt⟩ taking distinctive shapes,
depending on the stage of cloud development, as evident from the diurnal cycle depicted in
Figures 7.9 i - p. The morning (10:30L) IC profiles of ⟨CθL⟩ and ⟨Cqt⟩ (Figures 7.9 i & m) show
the highest values at CB, presumably as this is where the heat and moisture are being injected
into the developing cumulus clouds. The IC Cψc profiles show a peak in value near the CT dur-
ing the morning, while in the mid-CL, values are approximately equal to their corresponding
ML values for a given “̄∆. As the cloud layer develops during the diurnal cycle, passive clouds
form and the ARM data at 12:30L reveal that the IC profiles of ⟨CθL⟩ and ⟨Cqt⟩ take a slightly
parabolic shape, as presented in Figure 7.9 j & n. At this time, a minimum is evident in mid-CL
levels of the CθL and Cqt IC profiles, while the maximum values occur at the CT and CB. By
the rapid cloud development stage, the ARM data from 14:30L in Figure 7.9 k & o indicates
that the IC ⟨CθL⟩ and ⟨Cqt⟩ profiles are near-constant with height. As the system reaches a
quasi-steady state at 16:30L, the ARM data reveals the ⟨CθL⟩ and ⟨Cqt⟩ IC profiles once again
take on a parabolic shape. However, the parabola is the inverse of the one observed at 12:30L,
with the mid-CL now experiences the maximum parameter values, while the minimum values
occur at CB and CT. This aligns with the BOMEX data, which is also in a quasi-steady state,
and shows a similar shaped profile for these parameters when IC. These distinct shapes taken
by the IC profiles during each specific phase of the diurnal cycle hold true for every “̄∆ until the
profile collapses to zero, which occurs at “̄∆ = 128∆ for the majority of cases.
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7.3.3 Trends in the Smagorinsky Parameter’s Response to Filter Scale

The focus of this section is to investigate the impact of the effective grid scale on the average
parameter values for every variable in each of the flow regimes. The average value of the
profile within each flow regime is calculated and plotted against the corresponding “̄∆. The
layer used for computing the profile average excludes any extreme values near the top and
bottom boundaries of each regime. This ensures that the average for each regime accurately
reflects the typical values throughout the majority of the layer, without being contaminated by
boundary effects or overshooting/entraining motions from other layers. The resulting averages
for each parameter calculated using the BOMEX data are presented in Figure 7.10, while Figure
7.11 depicts the averages as calculated using the ARM data.

(a) (b) (c) (d)

Figure 7.10: Mean values of the planar averaged Smagorinsky parameters for each variable of interest
in the BOMEX case. The averages are conditioned on being in the flow regimes, the criteria of which
have been described previously.

In the ML, the relationship between the average values of each of the Smagorinsky parameters
and the effective grid spacings are presented by the solid black line in Figures 7.10 (BOMEX)
and 7.11 (ARM). The averageCs parameter value in the BOMEX case shows a gradual decrease
in value as “̄∆ increases, as evident in Figure 7.10 a. The ARM case however, experiences a more
rapid decrease in Cs value as “̄∆ increases during the morning time (10:30L) as shown in Figure
7.11 a. As time progresses and the CTBL develops, the slope of Cs versus “̄∆ becomes less steep
and trends from the ARM case at 12:30L, 14:30L, and 16:30L show much better agreement with
the BOMEX data for this parameter. The Smagorinsky parameters for the other scalars in the
ARM case also show this trend of having a steeper slope during the morning phase when plotted
against “̄∆, compared to the slopes of the same parameter versus scale during the later phases
of the diurnal cycle. This suggests that the Smagorinsky parameter experiences a greater sen-
sitivity to scale during the morning, which is consistent with the expectation that eddies in the
CTBL are smaller in scale at this time. As a result, these small-scale eddies are more likely to
be influenced by the grey-zone compared to larger-scale motions.
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Figure 7.11: Same as in Figure 7.10, however using data from four different times during the diurnal
cycle of the ARM case study. Each row contains data from a distinct time step, while each column
illustrates the scale dependence trend of a specific parameter.

The average Smagorinsky parameter values in the ML for both the thermodynamic variables
show very similar trends as “̄∆ is increased for both the BOMEX data (Figures 7.10 b & c) and
the ARM data at each timestep analysed (Figures 7.10 b, c, f, g, j, k, n & o). This is in line with
the theory, as the difference in conservation properties does not affect the θ and θL variables
in the ML due to the lack of condensation occurring here, therefore their behaviour should be
identical in this flow regime. Meanwhile, the relationship between Cqt and scale is distinct from
the thermodynamic variables in the ML. Figure 7.10d and Figures 7.11 d, h, l & p show the ML
of both BOMEX and ARM recording larger Cqt values than Cθ values for the same “̄∆. This
is demonstrated by the gradual slope of the solid black line (ML average) in the Cqt versus “̄∆
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plots at higher resolutions, indicating a weaker scale dependence for the Cqt averages when“̄∆ ≥ 16∆. In contrast, coarser resolutions exhibit a slightly stronger scale dependence. This
suggests that the moisture structures in the ML are larger than the heat structures, and therefore
the moisture diffusion parameter is less affected by filter scale than the heat parameters, up until
the point where the grey-zone begins to impact the qt circulation, at approximately “̄∆ ≈ 16∆.

The average values of Cs in the CFE exhibit similar trends with filter scale across all cases apart
from the morning time ARM case, as shown by the dotted orange line in Figure 7.11 a. The
value of Cs → 0 at “̄∆β = 2∆ at 10:30L in the ARM case is an erroneous point resulting
from the scale-dependent calculation using β. This method relies on the “̄∆ = 8∆ data, which
experienced a failure of the dynamic method when calculating Cs in the CFE, and therefore
contaminated the “̄∆β = 2∆ calculation. As a result, this data point is disregarded, and all other
cases show the average Cs values in the CFE exhibiting the same trend with scale: Figures
7.10 a and 7.11 e, i & m show that the Cs in the CFE decreases from 0.15 (in the BOMEX case)
at “̄∆β = 2∆ to zero when “̄∆ = 16∆. The effective grid-scale at which this plateau occurs
aligns with where the grey-zone was observed impacting the Cqt parameter. The behaviour of
the Smagorinsky parameter for scalars in the CFE is the same for θ, θL, and qt in each of the
cases as “̄∆ increases (see Figures 7.10 b - d for the BOMEX case and Figures 7.11 b - d, f - h,
j - l, and n - p for the ARM case). The Cs parameter in the CFE exhibits a gradual decrease in
value with scale, plateauing at Cs = 0 when “̄∆ = 16∆. Meanwhile, the Cψ demonstrates a
more rapid decrease in value with scale at high resolutions, but slows to a gradual decrease at
coarse resolutions. The steeper slope between “̄∆ and Cs in the CFE confirms that in this region
Cs values are, on average, more scale-dependent than those in the ML.

The average values of the in-cloud Smagorinsky parameter for momentum, Cs, also show a
stronger scale dependence than the ML averages in the BOMEX case (Figure 7.10 a) and the
ARM case during the morning phase of the diurnal cycle (Figure 7.11 a). In these cases the IC
values of Cs decrease rapidly with increasing filter, and scale when “̄∆ ≥ 16∆. The later times
in the ARM case show the average IC Cs values having similar values to the ML Cs values for
the same “̄∆, as presented in Figures 7.11 e, i & m. All cases, except the 10:30L ARM data, show
average IC values of Cθ = 0 for all “̄∆. This result was expected, as the non-conservation of
θ IC is known to force the corresponding Smagorinsky parameter to zero. The morning time
ARM data shows that before the θ parameter has been affected by lack of conservation issues,
the Cθ IC values follow a similar trend as the other scalars, decreasing in value as “̄∆ increases.

The BOMEX case shows the in-cloud parameter averages for the conserved scalars sharing
behaviours, as presented in Figures 7.10 c & d. The IC averages for CθL and Cqt reach higher
values than the corresponding ML values, and these parameters also show a different scale de-
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pendence in-cloud than the ML averages. This scale dependence is observed to become more
severe when “̄∆ ≥ 16∆, as CθL and Cqt values decrease with scale at a much more rapid rate
past this point. The later times in the ARM case, corresponding to the stages of rapid cloud
development and the quasi-steady state, also show CθL following these same trends in-cloud as
the Cqt parameter (see Figures 7.11 k, l, o & p). However, the earlier times in the diurnal cycle
demonstrate very different trends, with the CθL parameter showing similar average IC values
as the ML averages of CθL (Figures 7.11 c & g). Meanwhile, the moisture parameter exhibits
completely different behaviour, with the IC averages of Cqt decreasing much more rapidly with
increasing “̄∆ than the ML averages of Cqt for the earlier times in the diurnal cycle (see Fig-
ures 7.11 d & h). This implies that the IC Cqt parameter is severely sensitive to scale during the
early stages of the ARM case. It might also suggest that distinctions can be made between the
Smagorinsky parameter values for scalars, depending on which scalar fluxes are the primary
drivers of convection during the cloud initiation and growth stages of the diurnal cycle.

Note that the trend of average values versus scale in the CU and CC regions has also been
included in these plots. As these regions often give the same average values, the trend lines
completely overlap and only one trend line is visible in the majority of the plots. Once the
effective grid spacing is greater than 16∆, the CU and CC structures can no longer be distin-
guished within the clouds. This aligns with what would be expected in a grey-zone scale LES,
as the CU and CC structures exist on scales that can not be resolved at coarse resolution. This is
in line with the overall trend that is evident for many of the Smagorinsky parameters across all
the different cases. The impact of the grey-zone takes effect at “̄∆ ≈ 16∆ for all flow regimes
and Smagorinsky parameters in both the BOMEX and ARM cases.

7.4 Summary of the Parameter Responses to Filter Scale

The overarching result from analysis conducted throughout this chapter is that the impact of
filter scale on the value of a Smagorinsky parameter is both regime-dependent and variable-
dependent. In the ML, the Smagorinsky parameters for each variable demonstrate similar be-
haviours at each scale. Negative value C2 parameters make up approximately 30% to 40% of
the ML depending on the case and the filter scale. The distribution of C values in the ML is also
reasonably consistent across the range of Smagorinsky parameters at each scale. An increase
in filter scale sees a corresponding decrease in the average Smagorinsky parameter value in the
ML. This is highlighted by the linear decrease evident in the C versus “̄∆ trend graphs. Overall
the behaviour of the Smagorinsky parameters for each variable with scale are reasonably con-
sistent within the ML.
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However, the effect of scale on the Smagorinsky parameter values in the CFE and IC regions is
much less consistent than in the ML. The percentage of negative C2 values relative to the total
area of a specific flow regime show similar values for the IC regions and CFE (if the Cθ data
is omitted), with about 45% of both the IC and CFE areas encountering negative C2 values at
high resolution. At coarser resolutions, up to 60% of the IC and CFE areas experience negative
C values. The IC and CFE distributions of C are also heavily impacted by changes in filter
scale, and are observed to exhibit a stronger scalar dependence compared to the ML values.
This scale dependency is evident in the regime-specific profiles of the C parameters. These
profiles demonstrate that the average Smagorinsky parameter values in the IC regions and CFE
decline to zero significantly faster than those in the ML. Moreover, this decrease in ⟨C⟩ does
not occur at consistent intervals with increasing filter scale, which is again in contrast to the
behaviour observed in the ML data. This rapid decline to zero which is observed in the CL
parameter profiles is again highlighted in the C versus “̄∆ trend graphs. These plots illustrate
the IC parameters undergo a steep decline when plotted against the effective grid-scale, leading
to a much faster reduction of the C parameters to zero as the filter scale increases compared to
the ML parameters.

7.4.1 Responses to the Research Questions

(1) To what extent does the filter scale systematically influence the prevalence of negative
C2 values across the different flow regimes in the CTBL?

Filter scale has a systematic effect on the percentage of the ML experiencing negative Smagorin-
sky parameter values. As the effective grid spacing increased, the proportion of the ML exhibit-
ing negative C2 values decreased steadily at reasonably regular intervals, corresponding to the
changes in filter scale. However, as filter scale increased the percentage of negative C2 values in
the IC areas and CFE did not show a specific trend. Instead, the change in filter scale primarily
affected the cloud cover in the field, with the percentage of cloud increasing with scale. This
contaminated the data, as an increasing number of points were classified as IC, which is not the
expected outcome for an LES model operating even at coarse scales. This is a limitation of the
filtering method when employed in the cloud field. Therefore a systematic effect of the filter
scale on the percentage of negative Smagorinsky parameters is evident only in the ML of the
CTBL.

(2) How does the variability of the Smagorinsky parameters change with scale in each
distinct flow regime?

The effect that filter scale has on the variability of the Smagorinsky parameters is entirely
regime-dependent. The ML shows the least scale dependency, though the parameter values
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still show a clear decrease in variability as filter scale increases. The majority of C values in the
ML cluster around the mode at coarse resolutions. However, the distribution becomes severely
asymmetric at coarse filter scales as the mode is near-zero and negative values are not permit-
ted. In the IC regions and CFE the variability of Smagorinsky parameters also decreases as filter
scale increases, though the primary reason for this seems to be due to the lack of non-zero C2

values at coarse resolutions. Therefore the overall effect of increasing the effective grid scale is
to lower the variability of the Smagorinsky parameters.

(3) What are the key scale dependencies of the Smagorinsky parameters in each of the
flow regimes?

The Smagorinsky parameter values in the ML show a consistent decrease in value for all vari-
ables as the filter scale increases. However, the Smagorinsky parameters IC and in the CFE
show case and variable dependencies, as well as a scale dependency. As filter scale increases,
the majority of cases show the Cs parameter decreasing in value more rapidly in-cloud than in
the ML. In contrast, most cases show the IC values of CθL and Cqt with higher average values
than the IC Cs values. Additionally, the decline in value of these scalar parameters as the filter
scale increases is less pronounced compared to the trends observed for both IC Cs and all the
parameters in the ML. The Smagorinsky parameter values in the CFE follow a different trend
to those IC. The Cs values in the CFE exhibit a trend of decreasing linearly with increasing
filter scale that is similar to that observed in the ML values, but at consistently lower magni-
tudes. However the CFE values of CθL and Cqt show an exponential decrease with increasing
filter scale. These findings suggest that incorporating scale dependencies into a new Smagorin-
sky parametrization would also require considering regime-specific dependencies, in order to
ensure its effectiveness.
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8 Accounting for Systematic Dependencies in a New Mixing
Length Parametrization

Flow regime and scale have been observed to have a substantial impact on the average Smagorin-
sky parameter value in the CTBL. These dependencies are as of yet unaccounted for in the stan-
dard Smagorinsky models. The work conducted in this chapter aims to derive a parametrization
that can account for the key dependencies seen across all cases. The goal is to capture the gen-
eral behaviour of the flow, without employing the computationally expensive dynamic model.

To achieve this, work from previous chapters has been synthesised to produce the new parametriza-
tion. Analysis carried out in Chapter 6 suggests that the planar averaged Smagorinsky parame-
ter values for momentum, heat, and moisture each follow distinct, near-universal mean profiles
within specific flow regimes. Within the NC regions (encompassing both the IC areas and
CFE) the C values demonstrate a clear height dependency in the CTBL. These profiles follow
a distinct shape, which arises as a result of differences in stability regimes between the mixed
layer, the capping inversion and cloud base, the cloud layer, and the cloud top. Meanwhile,
work detailed in Chapter 7 demonstrates that the Smagorinsky parameter profiles at different
resolutions have similar profile shapes, but that these profiles are shifted to lower values as the
resolution decreases. Therefore, the values of each Smagorinsky parameter are not only depen-
dent on height but are also strongly dependent on the filter scale of the simulation. Smagorinsky
parameter values corresponding to coarser resolutions are consistently lower than those corre-
sponding to higher resolutions. This is also evident in Figures 7.10 and 7.11, which show the
average parameter value, for different regions in the flow, decreasing as the filter scale increases.
The functional relationships derived between the Smagorinsky parameters and (a) height and
(b) scale across different regions of the CTBL are incorporated into the MONC model. The
updated model is then tested using the BOMEX and ARM case studies, and the output is com-
pared to the previous simulations produced using the standard Smagorinsky scheme.

This chapter aims to identify the primary dependencies of the Smagorinsky parameters for
momentum, heat, and moisture within the CTBL. The overarching aim of this work is to address
the following research questions:

• What systematic relationships can be established between the Smagorinsky parameters
and height within each flow regime of the CTBL? Can scale dependence be accounted for
in these functional relationships?

• What effect does this empirical parametrization have on the modelled fields?

In order to investigate these questions, results from the previous chapters are compiled to pro-
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duce the necessary universal relations, outlined in Section 8.1 and 8.1.1. The various relations
are applied in the model in different configurations, as detailed in Section 8.3. This enables
the evaluation of both the individual effects of each relationship and the interactions that occur
when multiple relationships are incorporated into the model. The analysis of the outputs from
the altered MONC model is contained in section 8.4.

8.1 Variations in the Smagorinsky Parameters Between Distinct Regions
in the CTBL

It is important to highlight that partitioning the flow into its distinct flow regimes was considered
necessary prior to deriving a new parametrization. This step was required because attempts to
establish a relationship between height and the domain-averaged (DA) values of the Smagorin-
sky parameters, particularly the Cθ parameter, failed in the CL. This is because the majority of
the CL is made up of the conditionally stable non-cloudy air, which experiences very low levels
of turbulence. This is in sharp contrast to the IC regions, which exhibit significantly enhanced
levels of turbulence. Therefore the mixing and dissipation of quantities in these areas are very
different, and as such would benefit from distinct parametrization schemes.

The flow within a CTBL can be partitioned into regions with distinct characteristics: the ML,
CL, NC, IC, CU, CC. Furthermore, height dependency and scale dependency seem highly in-
fluential on the value of a given Smagorinsky parameter in a CTBL simulation. These findings
can be used to develop and test various parametrizations. At high resolutions the differences
between values in the IC, CU, and CC regions are minimal, as shown in Figures 7.10 and 7.11.
It is evident that, at coarser resolutions, a disparity emerges between the average IC values and
the average CU and CC values. However, very few grid points would resolve CU or CC regions
at such coarse resolutions. Therefore, the new parametrization partitions the flow into just two
regions: the cloudy regions, where the Smagorinsky parameters are denoted as CIC, and non-
cloudy environment, which includes the ML and the CFE, with the corresponding parameters
referred to as Cenv.

The behaviours of the Smagorinsky parameters in these specific regions are now assessed using
the BOMEX and ARM data. The Cenv profiles were constructed upon the conditional aver-
ages over the NC environment, scaled by each case’s ML capping inversion height. The CIC

parametrization was derived from the profiles of conditional averages within the IC areas, scaled
by the corresponding CL depth for each case. This allows the height and stability dependencies
of the Smagorinsky parameter values for momentum, heat (both θ and θL), and moisture to be
parametrized in these flow regimes.
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(a) (b) (c) (d)

Figure 8.1: Horizontally averaged profiles of the Smagorinsky parameter for (a) momentum, (b) poten-
tial temperature, (c) liquid water potential temperature, and (d) moisture for the BOMEX and ARM case
studies. Solid lines show the Smagorinsky parameter profiles in the non-cloudy environment for each
case, scaled by the corresponding inversion height. The dashed lines show the profile of the average
in-cloud Smagorinsky parameter values for each case, again scaled by inversion height.

Figure 8.1 shows profiles of the Smagorinsky parameter for momentum, heat, and moisture
for both the in-cloud (dashed lines) and non-cloudy (solid lines) areas of the CTBL. The ML
values for all the parameters (see plots in Figure 8.1 a - d) show the BOMEX and ARM profiles
collapsing along a universal profile, once height has been scaled by the relative mixed layer cap-
ping inversions zML. For each case, the capping inversion height was calculated by finding the
z level where the planar averaged vertical eddy heat flux w′θ′ is at a minimum. In the ML the
Cs parameter averages to approximately 0.137, while the Cψ experiences consistently higher
values for all scalars ψ. The thermodynamic parameters show a peak value at the surface of
Cθ ≈ CθL ≈ 0.19, while above this peak, Cθ ≈ CθL ≈ 0.17. The profiles of the moisture
parameter Cqt also demonstrate a peak at the surface, though it is less extreme in magnitude.
Similar to the heat parameter, at the surface the ARM profiles show Cqt ≈ 0.19, however above
this the moisture parameter maintains a larger value than heat, with Cqt ≈ 0.18. This indicates
that the moisture structures are slightly larger than the heat and momentum structures in the
CTBL, which aligns with the results discussed in previous chapters. Furthermore, the BOMEX
case shows higher Cqt values than the ARM case, presumably due to the slightly higher ratio
of latent heating to sensible heating occurring in the marine (BOMEX) CBL compared to the
CBL over land (ARM).

The in-cloud averages for the Smagorinsky parameters show values oscillating around near-
constant values with height, though most cases show a slight decrease in the Smagorinsky pa-
rameter value with height for the conserved scalar parameters. The noise observed in the IC
profiles arises from the limited number of parameter values to sample from in the IC region,
as cumulus clouds constitute less than 10% of the CL. The oscillations in the IC profile at the
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cloud top (CT) reflect the very limited number of cloudy points at the highest levels of the CL.
It might also indicate the presence of gravity waves caused by disturbances from the overshoot-
ing CTs. In contrast, while the profiles in the CFE exhibit fluctuations around a near-constant
value with height, these oscillations have a significantly smaller amplitude compared to those in
the IC profiles. This is attributed to the substantially larger number of points in the CFE avail-
able to average over. It is believed that if more time-averaging had been possible (currently the
BOMEX case has been averaged over 3 time stamps, while the ARM case has been averaged
over 2 time stamps), these oscillations would reduce significantly. Therefore, the deviations
from the near-constant value are treated as noise and disregarded, resulting in fixed values be-
ing proposed for all three different Smagorinsky parameters in the CFE. Above the CL values
oscillate around zero. It is believed that the Smagorinsky values only deviate from zero due to
the formation of gravity waves.

The values taken by the Cs parameter IC are slightly larger than in the ML, with all cases in
this flow regime showing a Cs ≈ 0.15. However, the values of the Smagorinsky parameter
for scalars in the CL, both IC and in the CFE, depict a clear case dependency, whereas their
corresponding ML profiles did not. Firstly, looking at the CFE profiles, it is evident from Fig-
ures 8.1 b - d that not only do these profiles experience a case dependence, but a slight scalar
dependence is also evident in the BOMEX profiles. The CFE profiles from the BOMEX case
depict higher CθL and Cqt values just above the zML level compared to the Cθ values at this
height. This highlights the role that the increased latent heat release plays in this region, com-
pared to the ARM case which is primarily driven by sensible heat fluxes (recall that BOMEX
is mostly driven by latent heat fluxes). The case dependency of the Cψ parameters within the
CFE is clearly evident by the range of values taken by each profile. The earlier times of 10:30L
and 12:30L during the ARM diurnal cycle show lower values of Cψ for all scalars in the CFE.
However, once the CL has developed, the later times of 14:30L and 16:30L show Cψ taking
the same value of approximately 0.1 in the CFE. The BOMEX case also takes this value in the
Cθ profiles. However, as previously mentioned, the conserved parameters show slightly higher
values of CθL ≈ Cqt ≈ 0.11.

BOMEX ARM 10:30L ARM 12:30L ARM 14:30L ARM 16:30L
zML 430 m 795 m 955 m 1095 m 1255 m
zCT 1960 m 1070 m 2200 m 2840 m 3000 m

Table 8.1: The height levels at which the ML capping inversion (zML) and cloud top height (zCT) occur
for each of the different cases.

The differences in heights between the cases suggest that a different scaling variable is needed
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in this layer. While it is not possible to scale the CFE by a different parameter in the current
set-up, as it is a part of the NC profile which is already scaled by zML, it is possible to scale the
IC profiles by a length scale which is more appropriate to the CL layer. The heights of the ML
capping inversion and CT heights for each case are listed in Table 8.1.

(a) (b) (c) (d)

Figure 8.2: Horizontally averaged profiles of the in-cloud values for (a) ⟨Cs⟩, (b) ⟨Cθ⟩, (c) ⟨CθL⟩ and
(d) ⟨Cqt⟩ for the BOMEX and ARM cases. The profiles for each case are scaled by zcd, the cloud layer
depth, and re-positioned so that the cloud base is at 0 on the z-axis.

The horizontally averaged values of the in-cloud parameters for each variable are now anal-
ysed. When the IC profiles of these parameters are scaled by their respective CL depths, they
demonstrate similar features between the cases. The most notable similarity is observed in the
profiles of the ⟨Cs⟩ parameter in Figure 8.2 a, which reveals that the average values across all
cases remain constant with height at a value of ⟨Cs⟩ ≈ 0.15. In most cases, the ⟨Cθ⟩ profiles
converge to zero in the lower levels of the CL, as expected due to the counter-gradient transport
of θ occurring in this region. The exception to this behaviour is the morning-time ARM case,
which likely deviates because the cloud has only just initiated. As a result, at 10:30L in the
ARM case the ⟨Cθ⟩ parameter retains the value associated with the thermal feeding the devel-
oping cloud (⟨Cθ⟩ ≈ 0.13), as the parameter has not yet adjusted to the counter-gradient heat
transport emerging in the cloudy region. However, in the upper levels of the CL, all the other
cases show the ⟨Cθ⟩ profiles transitioning from zero toward ⟨Cθ⟩,≈, 0.13, which is the con-
sistent value observed across the entire height for the 10:30L ARM profile. This is likely due
to significant entrainment in the CT region, which introduces large amounts of heat from the
warm, dry, and statically stable FT, which overlies the CL. This process enhances the mixing of
θ in the CT area, leading to an increase in the ⟨Cθ⟩ value at this level.

In cloudy areas, the Smagorinsky parameters for conserved scalars (θL and qt) exhibit differ-
ent behaviours compared to the momentum parameters. Figures 8.2 c & d depict the IC ⟨CθL⟩
and ⟨Cqt⟩ profiles increasing in average value with time, with this trend being particularly ev-
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ident in the lowest 60% of the CL. However, Figure 8.2 c shows the three ARM IC profiles
for times between 12:30L and 16:30L converging to ⟨CθL⟩ ≈ 0.2 in the top 60% to 80% of
the CL. Meanwhile, the BOMEX case consistently shows slightly higher ⟨CθL⟩ values IC than
the ARM cases. In the 10:30L ARM case, the IC ⟨CθL⟩ profile remains steady with height at
approximately 0.15, with the ⟨Cqt⟩ IC parameter exhibiting a similar profile at this time as well.
Figure 8.2 d depicts the ⟨Cqt⟩ profiles following a similar trend to ⟨CθL⟩, however, this figure
also shows the BOMEX converging to ⟨Cqt⟩ ≈ 0.2 in the upper 60% to 80% of the CL.

The simple linear relationship of each IC C parameter with height, combined with the limited
case dependency, indicates that it is sufficient, as a first approximation, to specify a constant
value for the IC Smagorinsky parameters. However, the NC areas of the CTBL did not show
such simple dependencies, and therefore a parametrization for these regimes must now be de-
fined.

8.1.1 Parametrization of Systematic Behaviours Resulting from Regime Variations with
Height.

In the mixed layer of every case study, Figure 8.1 shows that the Cs, Cθ, CθL , and Cqt profiles
decrease rapidly to zero as the surface is approached. This behaviour is captured in MONC
model by employing Blackadar’s method, given in Equation 8.1, when calculating the mixing
length value for a given height level z in the LES.

1

ℓ2mix
=

1

(C∆)2
+

1

(kz)2
(8.1)

This equation sets the mixing length as a function of the Smagorinsky parameter C, grid spac-
ing ∆, height z, and the von Karman constant k = 0.4. The new altered model will still use
this equation when determining the mixing length. However, the previous “standard Smagorin-
sky” method of fixing C to a set value will be replaced with a new parametrization for Cenv,
which is derived in the following section. Therefore, the reduction in mixing at the surface does
not need to be included in the newC parametrization as it will be accounted for by Equation 8.1.

Above the surface layer, Figure 8.1 shows that for all cases, every parameter remains at a con-
stant value throughout the depth of the mixed layer. At the top of the mixed layer, the capping
inversion causes the Cenv values for all four quantities to reduce. At the ML capping inver-
sion height zML, most cases for all three parameters show Cenv rapidly reducing to the value of
the Smagorinsky parameter in the CFE, CCFE. The only exception to this is the Cqt parameter
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which in the CFE shows its average value decreasing with height. This is in contrast with the
behaviour of all other parameters, which show a near-constant value with height in the CFE.
The Smagorinsky parameter profiles near the CT exhibit a gradual decrease, approaching zero
as they reach the level above the CL. The typical shape of the Smagorinsky parameter profile,
as it decreases from the ML values to the CFE values, can be captured using the following func-
tion, based upon similar reasoning to Blackadar’s formula to decrease the mixing length near
the surface:

f = f(z, z∗ML) =

Ä
z
z∗ML

äγfÄ
1− z

z∗ML

ä2 (8.2)

z∗ML = αfzML (8.3)

The decrease in the Smagorinsky parameter profiles at the top of the CL, zCT, can be described
by a similar equation:

g = g(z, z∗CT) =

Ä
z
z∗CT

äγgÄ
1− z

z∗CT

ä2 (8.4)

z∗CT = αgzCT (8.5)

where z is the height level, and αf is a constant used to set the point at which the capping
inversion zML begins to affect turbulence in the levels below it. Similarly, αg sets the point
where the inversion at the CT level, zCT, begins to affect turbulence in the levels below it. The
γf variable is also set to a constant (which must be a positive integer, typically of order O(10))
used to set the steepness of the slope between the CML and CCFE values. Meanwhile, γg sets
the steepness between the Smagorinsky parameters in the CFE and the FT. The exact values
of these variables, specific to each parameter, are detailed in Table 8.2 below. This “shape
function” can then be used to define a parametrization for Cenv, which is the generalised profile
of a Smagorinsky parameter in the cloud-free environment of a CTBL.

Cenv = (CML − CCFE − CFT)

ï
1

(f + 1)

ò
+ (CCFE − CFT)

ï
1

(g + 1)

ò
+ CFT (8.6)

where CML is the average value of the Smagorinsky parameter in the mixed layer, CCFE is the
average value of the Smagorinsky parameter in the cloud-free environment of the cloud layer,
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and CFT is the average value of the Smagorinsky parameter in the FT above the cloud layer.
Equation 8.6 can be rewritten in the form of a weighted function which more clearly represents
the transition between the Smagorinsky values in the ML and those in the CFE:

Cenv = w1CML + (w2 − w1)CCFE + (1− w1 − w2)CFT (8.7)

where the weights, w1 and w2 are defined as:

w1 =
1

f + 1
(8.8)

w2 =
1

g + 1
(8.9)

This height dependency based parametrization of Cenv is a function of z, zML, αf , αg, γf , γg,

CML, CCFE, and CFT. Increasing the value of z∗ML shifts the transition between CML and CCFE

upward to higher z levels. Therefore, when approaching the ML capping inversion from the
bottom up, the decrease in the Cenv value begins at a higher z level when z∗ML > zML than would
occur if z∗ML = zML. As the slope between the ML and CFE does not change, a change in z∗ML

merely changes the height at which the transition occurs. Therefore the converse also holds
true: when approaching the inversion from the top down, the Cenv values begin to increase at a
higher z level when z∗ML > zML compared to if z∗ML = zML. The αg parameter follows the same
principles, but influences the behaviour of the Cenv profile at the transition zone between the
CFE and the OL. Meanwhile, the range of height levels over which this transition zone between
CML and CCFE occurs is governed by the value of the γf variable. This is because, when the ratio
set out by Equation 8.2 is near unity, the corresponding z levels will have Cenv values between
CCFE and CML, as per Equation 8.6. Therefore γf determines the range of z levels where the
numerator and denominator of Equation 8.2 are of the same order of magnitude, with higher
powers of γf decreasing the number of height levels involved in the transition and therefore
steepening the slope of the Cenv profile at the inversion. Once again, the γg variable follows the
same principles, but for the transition between the CFE and the overlying OL.

To fit this new parametrization of Cenv to the case study data, trial and error was used to find
suitable values for the input variables. The best-fit values that were assigned to the input vari-
ables for Equation 8.6 are detailed in Table 8.2 below and the resulting parametrized profiles of
Cenv for momentum, heat, and moisture are plotted in Figure 8.3 below.
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Cs, env Cθ, env Cqt, env

αf 1.4 1.6 1.45

γf 16 3 6

αg 1.2 1.45 1.3

γg 16 4 6

CML 0.137 0.175 0.175

CCFE 0.095 0.09 0.1

CFT 0 0 0

Table 8.2: Values taken by the various variables input to the Cenv function in order to parametrize
the Smagorinsky profiles for momentum Cs, env, heat Cθ, env (note that CθL, env uses the same values as
Cθ, env), and moisture Cqt, env in the non-cloudy environment of a CTBL simulation.

When these values are substituted into Equation 8.7, the resulting generalised function effec-
tively captures the key influences that the variation in flow regime and stability with height have
on the Smagorinsky parameter. These functions, specific to each Smagorinsky parameter fo-
cused on in this study, are presented in the following Figures (8.3 a - d).

(a) (b) (c) (d)

Figure 8.3: Smagorinsky parameter profiles in the non-cloudy environment for each case in this study,
scaled by the corresponding inversion height. The black line shows the parametrization found to account
for the effect of height on the value of the Smagorinsky parameter in the non-cloudy environment.

The Cenv parametrization follows the BOMEX profile in this example, but the only difference
between the BOMEX and ARM profiles here is the ratio of CL depth relative to the ML depth,
as the profile has been scaled by zML. The behaviour of the Cenv profiles at the CL top remains
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the same regardless of ML depth, and thus the same parametrization can be applied to both
cases, ensuring that the case-specific CT height is accounted for. The other difference evident
between the ARM and BOMEX cases in the CFE profiles is the level of noise present in the
ARM case. This is a direct result of the averaging process being applied to each case. The
BOMEX case data plotted in Figure 8.3 features 3 separate timestamps, 10 minutes apart dur-
ing this QSS, being used to increase the number of points over which the horizontal averaging
procedure is applied, resulting in smoother profiles. The ARM case however is an evolving
case, which shows clear differences in fields which are just 10 minutes apart. Since the avail-
able data only includes timestamps spaced 10 minutes apart, the horizontal averaging process
was only applied to fields from two different time stamps. Consequently, the noise observed
in the ARM NC profiles results from the dissimilarity between the timestamps and the limited
number of spatial points used in the averaging procedure. This indicates that the noise does not
stem from a systematic source, and can therefore be disregarded.

This parametrization is only applied to the CFE. Another parametrization is required for the
cloudy regions, as the Smagorinsky parameters in this regime exhibit substantially different
behaviour compared to those in the ML. From Figure 8.2, it is evident that the IC values of
C remain approximately constant with height. Therefore it was decided to set CIC to a con-
stant value, which was specific to each parameter. The momentum parameter was fixed to
Cs,IC = 0.15. The scalar parameters show different behaviours, depending on the conserva-
tion property of the quantity being modelled. Figure 8.2 b shows the mid-CL regions, away
from the effects of entrainment at the CB and CT, showing CθL = 0 IC. Meanwhile, the IC
parameter values for the conserved scalars show very similar behaviour in Figures 8.2 c & d,
and therefore the scalar parameters are set to Cθ,IC = Cqt,IC = 0.2.

8.2 Scale Dependencies of the Smagorinsky Parameters

The parametrization for C described previously in Section 8.1.1 effectively captures the height
dependencies. However the scale dependencies are not yet accounted for in this parametrization,
as theCML, CCFE, andCIC are fixed to values based on the “̄∆ = 4∆ data. Note thatCFT does not
vary with scale as it is consistently set to zero. The effect of grid spacing on the C parameters
in the other regions can be included in the parametrization by making CML, CCFE, and CIC

functions of the grid spacing, ∆. The resulting parametrization function following on from
Equation 8.7 now reads:

Cenv(∆) = w1CML(∆) + [w2 − w1]CCFE(∆) + [1− w1 − w2]CFT(∆) (8.10)
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The trends that the C parameter value follows for each case in the ML, CFE, and NC flow
regimes are presented in Figures 8.4, 8.5, 8.6 respectively. The ML data has been scaled by the
ML depth, while the CFE and IC data have been scaled by the height of the CT. The heights at
which these occur for each case are listed in Table 8.1.

(a) (b) (c) (d)

Figure 8.4: Mean values of the planar averaged Smagorinsky parameter in the mixed layer for the
BOMEX and ARM cases, plotted against filter scale “̄∆ scaled by the mixed layer inversion height zML.

For momentum and heat (both θ and θL), Figures 8.4 a, b & c show a log-linear relationship be-
tween the Smagorinsky parameter values for these variables and the filter scale. However theCθ
and CθL parameters show larger values at high resolution, and decrease to zero more rapidly as
the data follows a steeper logarithmic slope than the Cs values. Meanwhile the Cqt values show
a similar decrease as Cs at high resolution, however a crest in Cqt values exists at moderate-to-
coarse resolutions. This suggests that the grey-zone has a less severe impact on the moisture
structures at these scales, and consequently, Cqt declines less rapidly at moderate scales in com-
parison to the other parameters. This suggests that the CML values for each variable should be
set separately when using Equation 8.10 to parametrize the Smagorinsky parameter behaviour
at various scales.

(a) (b) (c) (d)

Figure 8.5: Same as Figure 8.4 but for the C values in the CFE, with the effective grid spacing scaled
by cloud top height zCT, specific to each case.
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(a) (b) (c) (d)

Figure 8.6: Same as Figure 8.4 but for the C values in the IC, with the effective grid spacing scaled by
cloud top height zCT, specific to each case

Figures 8.5 b & c portray the CFE C values for the thermodynamic parameters experiencing a
linear decrease as filter scale increases. The momentum parameters however, show a logarith-
mic decrease in CFE Cs with “̄∆, more rapid than that observed in the ML. The Cs values in all
cases reach zero at higher resolutions than in the ML also. Recall that the highest resolution
(2∆) Cs data shows a zero value due to contamination from the 8∆ data in the scale-dependent
calculation. The moisture parameter is shown in Figure 8.5 d to decrease exponentially to zero
in the later stages of ARM cases, similar to what is observed in the Cs trends in the CFE. How-
ever the BOMEX and earlier stages of the ARM case depict a more linear decrease to zero,
similar to the Cθ trends in the CFE. This highlights not only a scalar dependency, but also a
case dependency for the Smagorinsky parameter value trends with filter scale within the CFE.

It is in the cloudy regions where the differences between Smagorinsky parameter trends are most
clearly seen. Figure 8.6 a shows an exponential decrease in the Cs parameter with increasing
scale, though to different extents depending on the case. This illustrates the case dependency
of the momentum parameter values when IC, suggesting that the Cs parametrization might
benefit from another dependency in this region. This would allow the stability effects, which
are the main differences between the cases, to be captured in the parametrization. The Cθ
parameter shows all but the 10:30L ARM case showing zero values at all filter scales in-cloud,
as expected. The behaviour of theCθL andCqt parameters is near-identical IC. This is in contrast
to in the ML, where these parameters showed clear differences in trends, and in the CFE where
differences were present but less pronounced. The CθL and Cqt parameters show a decrease
in value as filter scale increases, though at the moderate filter scales a clear crest is observed,
particularly in the BOMEX case and in the ARM at the last two times analysed during the
diurnal cycle. This indicates that once the CL is fully developed, the conserved moisture and
heat structures in-cloud do not succumb to grey-zone effects as rapidly as in other flow regimes.
This highlights the need for the IC parameters to have distinct scaling relationships for each
variable being mixed and diffused, independent from parameters in other regions of the CTBL.
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8.3 Set-Up of Experiments to Test the New Smagorinsky Parametrization

To test the effects of the parametrizations derived in the previous sections, the MONC model
was altered to include the functional relationships. Multiple different configurations were tested
during this phase of the investigation. The BOMEX cases, denoted by the subscript “B”, were
run at two different grid spacings ∆B = 160m and ∆B = 320m These grid spacings corre-
spond to the filtered BOMEX data at “̄∆ = 8∆ and “̄∆ = 16∆ respectively. The ARM cases,
denoted by the subscript “A” were run at two different grid spacings for each model config-
uration: ∆A = 200m and ∆A = 400m, which again correspond to the filtered ARM data
at “̄∆ = 8∆ and “̄∆ = 16∆ respectively. Results presented in Chapter 7 indicate that a grid
spacing of between ∆ = 160m and 200m is at the scale where grey-zone impacts begin to
take effect. Meanwhile, a grid spacing from ∆ = 320m to 400m is well within the traditional
grey-zone regime. Some parametrization configurations were also run using the ARM case and
a ∆A = 100m grid spacing. This is because the scale invariant values presented in Table 8.2
for the C values in each regime were based on the highest resolution filtered data available,
which correspond to ∆A = 100m for the ARM case. Each combination of modifications to the
Smagorinsky method is listed in Table 8.3 below, and further details are given in the following
sections.

Name ∆B, ∆A Description
Smag 0.23 80 m, 100 m Cs = 0.23, Pr= 0.7 throughout entire CTBL flow, as per the convention

160 m, 200 m when running LES of CTBL in MONC. Scale invariant.
320 m, 400 m

Smag 0.137 160 m, 200 m Cs = 0.137, Pr= 0.7 throughout entire CTBL flow, using the value
320 m, 400 m determined by the dynamic method at high resolution in the ML. Scale invariant.

Smag 0.11 160 m, 200 m Cs is set according to the values determined by the dynamic method in the ML
Smag 0.075 320 m, 400 m for the particular grid spacing, Pr= 0.5. scale-adaptive.
Cs prof 80 m, 100 m* Cs = Cenv in the CFE, Cs = CIC IC. Pr= 0.7 used to determine the scalar

160 m, 200 m parameters. The C values in each flow regime are set according to the high
320 m, 400 m resolution dynamic data listed in Table 8.2. Scale invariant.

CsCθL prof 160 m, 200 m Same as Cs prof, however rather than determining the scalar parameter Cψ
320 m, 400 m using a Prandtl number, a separate profile is calculated for Cψ, based upon the

high resolution θL data in Table 8.2. Scale invariant.
SA Cs prof 80 m, 100 m* Same as Cs prof, however the values of Cs in each flow regime now uses scale

160 m, 200 m dependent values, depending on ∆, as listed in Table 8.4. Scalar parameters
320 m, 400 m are still determined using Pr= 0.7. scale-adaptive.

SA CsCθL prof 160 m, 200 m Same as CsCθL prof, however the values of Cs and Cψ are determined based
320 m, 400 m on the grid spacing in use, according to the values listed in Table 8.4.

scale-adaptive.

Table 8.3: Summary of the various parametrization set-ups used in this study. Note that the configura-
tions where the ∆ is marked with an asterisk symbol * are equivalent set-ups.

133



8.3.1 The Control: The Standard Smagorinsky Model

The standard Smagorinsky model, with a fixed Cs and Pr, was used to produce simulations
of the BOMEX case and ARM case with grid spacings of ∆B = 80 m, 160 m & 320 m and
∆A = 100 m, 200 m & 400 m respectively. In this model, the Prandtl number was fixed to
Pr= 0.7, and this defined the ratio between momentum dissipation and the diffusion of all
scalars, not just heat diffusion. The Smagorinsky parameter was set to Cs = 0.23 for both
of these resolutions, following the convention previously applied in the high-resolution LES
runs that were used to generate the filtered data. These MONC simulations are denoted as the
“Smag 0.23” model runs. In order to test the effect of theCenv profile in the altered Smagorinsky
model (see Equation 8.7), the standard Smagorinsky model was run with Cs = 0.137, for both
BOMEX and ARM using the same three grid spacings as before. The Cs parameter was fixed
to this value as it is the value assumed by Cs,ML in the altered model, as listed in Table 8.2. This
model set up is labelled as the “Smag 0.137” simulation.

Constant-Smagorinsky simulations were also performed to facilitate comparisons with the “scale
adaptive” simulations. Suitable comparisons were obtained by using the standard model to pro-
duce simulations by fixingCs to the same value as in the “scale-adaptive” altered model. The re-
sulting fields can be used as controls to compare the altered model which used the scale-adaptive
Cs profile parametrizations. LES of BOMEX and ARM were produced, but the Cs parameter
was fixed to the “scale dependent” values that occur in the ML, while the Prandtl number re-
mained as Pr= 0.7. The Smagorinsky parameter in the ∆B = 160m and ∆A = 200m
simulations was set to Cs = 0.11, and as such was termed the “Smag 0.11” model set-up. Sim-
ilarly, the simulation with a grid spacing of ∆B = 320m and ∆A = 400m set Cs = 0.075

and was labelled the “Smag 0.075” set-up.

8.3.2 Implementing the Cs Profile into the Parametrization

The Smagorinsky scheme was altered to include a scale-invariant parametrization for the Cs
parameter. The flow was first partitioned into IC and NC areas. The cloudy areas had the
Smagorinsky parameter for momentum fixed to Cs = 0.15, following Figure 8.2. Meanwhile,
theCenv function applied to determine theCs parameter value in the NC environment (see Equa-
tion 8.7). The variables in this equation were set to the values found using the high-resolution
data for Cs, as listed in Table 8.2. The values of the Smagorinsky parameters for scalars were
found by computing the ratio of Prandtl number to Cs at each height level, with a dependency
on if the point is IC or in the CFE. The Prandtl number remains fixed to Pr= 0.7 in this model
set up. This configuration was used to produce LES of BOMEX and ARM with the same grid
spacings as in the control (see Section 8.3.1). This version of the altered Smagorinsky model,
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with the scale invariant Cs parametrization and fixed value Pr, is referred to as the “Cs prof”
MONC set-up.

8.3.3 A Parametrization with Independent Profiles for Cs and Cψ

The MONC model was then further altered to include a scale-invariant profile for the Smagorin-
sky parameter for scalars that is completely independent from that for momentum. The MONC
model set up is very similar to that which is described in Section 8.3.2, with a Cs = 0.15 IC
and the Cenv parametrization used to determine a profile for Cs in the NC areas. However, rather
than using a fixed Prandtl number to determine the Smagorinsky parameter for scalars, a sepa-
rate profile is derived for Cψ, for all scalars ψ. As it is difficult to separate the diffusion of each
parameter in the MONC model, the same parametrization is applied to all scalars. Equation
8.7 is again used to determine the Cψ profile for the NC areas, but the variables in the function
are now set according to the θL specific values from high resolution data, as listed in Table 8.2.
Meanwhile, the cloudy areas have their Smagorinsky parameter fixed to Cψ = 0.2, based on
high resolution data presented in Figure 8.2 for CθL . The θL variable was chosen as it is similar
to Cqt in both the IC areas and CFE, while it is nearly equivalent to Cθ in the ML and CFE.
Furthermore, theory suggests that it should be valid to use diffusion based on CθL for the θ
variables as:

νh∇θL = νh

Å
∇θ − L

cpΠ
∇ql
ã

(8.11)

where νh is the heat diffusivity, L is the latent heat of vaporization, cp is the specific heat of
air at constant pressure, and Π is the Exner function defined as Π = T/θ with T being the
temperature. However, it should be noted that analysis of the data from the dynamic model has
clearly exhibited that Cθ → 0 IC. However, CIC = 0 was not used in the parametrization as
it would force the mixing and dissipation of moisture to zero IC also, as there is not currently
a way of isolating this behaviour to just the θ variable in MONC. This scale-invariant model
configuration is referred to as the “CsCθL profs” set-up. This specific parametrization was used
to produce LES of both the BOMEX and ARM case studies at the same grid spacings as the
control (see section 8.3.1).

8.3.4 Incorporating Scale Dependence into the New Smagorinsky Parametrization

Note that the values of α and γ for both the f and g functions remain set to the same values
as used in the previous parametrizations for Cenv, with the exact values detailed in 8.2. The
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scale-dependency affects only the values of the CML, CCFE, and CIC in this parametrization (see
Equation 8.10). There are two different scale-adaptive parametrizations which are tested in this
study. The first is similar to the Cs prof parametrization which was described in Section 8.3.2.
In the scale-adaptive model configurations, the flow is decomposed into the IC and NC regions,
however the Smagorinsky parameters which are assigned to these areas are allowed to vary not
only with height, but also with grid spacing. The values taken by theCs parameter in each of the
flow regimes at various scales are detailed in Table 8.4. This model configuration sets the value
of the Smagorinsky parameter for scalars according to the ratio of Pr= 0.7 to Cs at each point.
This model configuration is labelled the “SA Cs prof” set-up, where SA stands for Scale Aware.
LES of both the BOMEX and ARM case studies were produced using this version of the altered
Smagorinsky scheme. Grid spacings of ∆B = 160 m & 320 m and ∆A = 200 m & 400 m were
used, with the values of Cs,ML, Cs,CFE, and Cs,IC varying according to scale.

Following on from this, an additional function can be introduced into the previously described
model setup to ensure that the scalar parameters are entirely independent from the momentum
parameter. As before in the CsCθL profs configuration, a separate relation between Cψ and
height/flow regime can be included in the Smagorinsky scheme, based upon Equation 8.10 and
using the CθL specific values outlined in Table 8.4 for each grid scale of interest. A separate
scale-adaptive IC Cψ is also set according to the θL values in Table 8.4. The MONC model with
a subgrid scheme which was altered to include this new parametrization scheme was used to
produce LES of both the BOMEX and ARM case studies. The same grid spacings as before are
used, and the values of CML, CCFE, and CIC were set based on each grid spacing for both the Cs
and Cψ parameters (for all scalars ψ, where the value of Cψ is determined using the θL data in
this study). This parametrization set-up is called the “SA CsCθL profs” configuration.

∆BOMEX = 80m ∆BOMEX = 160m ∆BOMEX = 320m
∆ARM = 100m ∆ARM = 200m ∆ARM = 400m

Cs: CML 0.137 0.11 0.075
CCFE 0.095 0.05 0.015
CIC 0.15 0.12 0.09
CFT 0.0 0.0 0.0

CθL: CML 0.175 0.13 0.08
CCFE 0.09 0.05 0.015
CIC 0.2 0.17 0.13
CFT 0.0 0.0 0.0

Cqt: CML 0.165 0.15 0.13
CCFE 0.1 0.05 0.01
CIC 0.2 0.165 0.14
CFT 0.0 0.0 0.0

Table 8.4: Values taken by the various variables input to the Cenv function in order to parametrize the
Smagorinsky profiles for momentum Cs, env, heat CθL, env, and moisture Cqt, env for a CTBL simulation.
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Table 8.4 includes values specific to the Cqt parameter as the intention was to modify MONC
to allow for scalars to be treated individually by the subgrid dissipation scheme. Although this
could not be achieved in the remaining time, the specific values are listed here as a reference for
any future work that might benefit from this information. The values relating to the Cθ parame-
ter are exactly identical to the CθL values in every flow regime apart from IC, where Cθ,IC = 0

for every ∆. The naming convention for each parametrization configuration, along with a brief
description of the model has previously been summarised in Table 8.3.

8.4 Analysing the Effect of the New Parametrization on MONC Simula-
tions

The outputs from each of the LES using different parametrization configurations are now com-
pared and contrasted in the following sections. The ARM data is focused on in this section for
brevity, as the BOMEX data was observed to exhibit similar results to the ARM case when the
CTBL is in QSS at 16:30L. The ARM case also has the added benefit of evolving through time,
allowing for the assessment of the parametrizations designed to mitigate grey-zone effects, par-
ticularly during transitional periods when these effects are most pronounced.

8.4.1 Cloud Layer Growth

The first step is to investigate the impact of the different parametrization configurations on the
developing cloud field in the ARM case. The results of using the Cs prof set-up are analysed
first, and compared to the output from the Smag 0.23 model configuration, which is used as a
control. The outcome of this comparison is presented in Figure 8.7. Note that high-resolution
LES data of the ARM cloud layer growth produced using the Standard Smagorinsky model with
a grid spacing of ∆ = 25m was also plotted for comparison, and is used as the “truth” for this
analysis.

Including the Cs prof parametrization in the model, rather than setting Cs to a fixed value of
0.23, yields better results for the initiation and growth of the cloud layer, as observed in Figure
8.7. The Cs prof data with ∆ = 100m can be seen initiating at the same time as the LES at
∆ = 25m. However, the CT is observed growing to higher elevations past 11:00L. The Smag
0.23 configuration with ∆ = 100m initiates cloud formation approximately 20 minutes later
than the ∆ = 25m LES reference. However, the CT height remains relatively accurate until
after 12:00L, at which point the model begins to predict the CT at altitudes higher than those
observed in the LES truth. That being said, a similar cloud layer development as the reference
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simulation can be achieved at four times the grid spacing if the Cs prof parametrization is em-
ployed in the MONC model. Further to this, the cloud layer growth pattern from the Cs prof
configuration at ∆ = 200m is of similar quality to the ∆ = 100m Smag 0.23 control run.
The ∆ = 400m Cs prof data shows similarities with the ∆ = 200m Smag 0.23 data, though
this resemblance is less pronounced compared to the previously discussed comparisons. That
being said the Cs prof with ∆ = 400m initiates cloud formation an hour and a half earlier
than the Smag 0.23 data at the same resolution. Additionally, the ∆ = 400m Cs prof output
also reaches the correct CT height around 12:30L, whereas the equivalent Smag 0.23 cloud
field never attains the correct CT height. This indicates that while the Cs prof parametrization
significantly improves the timing of cloud development and CL depth, it remains affected by
grey-zone dynamics.
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Figure 8.7: Time series of the development of the ARM CL for simulations at 3 different grid spacings
produced using two different MONC model set-ups: (1) the altered model with the Cs prof parametriza-
tion (solid lines), and (2) the standard Smagorinsky model with a fixed Cs = 0.23 (dotted lines).

The addition of scale dependency to the parametrization is observed to greatly improve the
cloud initiation time at coarse resolution. Figure 8.8 shows the output from the ∆ = 400m SA
Cs prof parametrization (dashed green line) with cloud initiating over an hour earlier than the
scale-invariant equivalent (solid green line). The parametrization set-up also produces a CT that
most closely follows the true CT height as determined by the ∆ = 25m LES. The ∆ = 400m
SA Cs prof is very similar to both the ∆ = 200m cloud layers outlined in this plot, with
∆ = 400m SA Cs prof data showing cloud initiating just 20 mins after the ∆ = 200m data.
The similarity between both the parametrization set-ups at ∆ = 200m indicates that not as
much benefit can be achieved from scale dependency alone at higher resolutions. Recall that
the Cs prof is the same as SA Cs prof at ∆ = 100m as the C values in each regime are based
partly on the ∆ = 100m ARM data.
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It is clear that the Cs prof parametrization set-up improves the ARM simulations at each grid
spacing investigated. However, the Cs prof configuration does not account for variations in
scale experienced by the Smagorinsky parameter. Therefore the SA Cs prof parametrization is
used to test the effect of allowing the Cs parameter to vary based on scale. The resulting cloud
growth time series is presented in Figure 8.8.
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Figure 8.8: Similar to Figure 8.7, however the two parametrization configurations being compared are
as follows: (1) the Cs prof parametrization, shown by the solid line, and (2) the SA Cs prof, with a
scale-adaptive Cs profile, shown by the dotted line.

To investigate the effect that grid spacing ∆ has on a given parametrization’s ability to predict
the cloud initiation time, as well as CT and CB heights, the time series is plotted for each of
the parametrization configurations after being applied to the ARM case with grid spacings of
∆ = 200m and ∆ = 400m in Figures 8.9 a & b respectively.

In Figure 8.9 a, the ∆ = 200m data suggests that any subgrid scheme which accounts for
scale and/or the variation of C with height/flow regime, is much better able to produce accurate
cloud initiation times along with more reliable CL depths. This is evident from the clustering of
the vertical lines just after 10:00L, illustrating that subgrid schemes with these considerations
can initialise cloud earlier than subgrid schemes without these considerations (the Smag 0.23
set-up, for example). The cloud fields resulting from these parametrization configurations when
∆ = 200m also produce accurate CT heights from the moment of the cloud fields inception.
Only Smag 0.23 does not trigger cloud development at 10:00, instead taking until after 11:00L
to initiate cloud. The CL depth is not as accurate with this set-up either; the CT does not reach
the correct height until after 13:30L in the Smag 0.23 set-up at ∆ = 200m.
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(a)

(b)

Figure 8.9: Time series of the CT and CB heights simulated by the MONC model with various different
parametrization set-ups for the subgrid scheme, as listed in the legend and described in Table 8.3. The
vertical lines show the time at which a continuously growing CL is initiated.

The time series of the CT and CB for the various parametrization configurations are now
grouped into similar set-ups and plotted according to these categories. It is clear from Fig-
ure 8.10 a that a subgrid scheme which uses a profile parametrization to determine Cs (the Cs
prof set-up), performs better than a subgrid scheme which fixes Cs to a constant (Smag 0.137)
when both schemes are scale invariant and have a grid spacing of ∆ = 400m. This is in spite
of Smag 0.137 using the same Cs value as the Cs prof set-up applies to the ML. The Cs prof
configuration yields a cloud field which develops earlier, around 11:15L compared to Smag
0.137 which begins to develop at 11:45L. The Cs prof subgrid scheme also produces clouds
with more accurate CT heights earlier on in the day than the Smag 0.137 configuration. How-
ever the growth of this cloud field is still poor compared to other parametrization set-ups with
∆ = 400m, as presented in Figure 8.9 b. From this plot, it is clear that accounting for scale
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dependency in the model greatly improves the resolved cloud field’s depth formation.

(a)

(b)

Figure 8.10: Similar to Figure 8.9 b but with results from certain parameterizations only. The top figure
(a) shows the Cs prof data, along with the Smag 0.137 data, which is equivalent to Cs prof, just without
a profile function included, as it fixes Cs to the same value as in the ML of the Cs prof set-up. The cloud
evolution in the true LES data and Smag 0.23 data are also plotted for comparison. The bottom figure
(b) shows the scale-adaptive versions of the parametrizations which were presented in (a), again with
the LES data and Smag 0.23 data being plotted as references.

Figure 8.10 b presents the effect of accounting for the scale dependencies which are evident in
the Cs parameter when parametrizing their values in the subgrid scheme. The findings depicted
in this figure confirm that scale dependence greatly improves both CL depth and the time of ini-
tial cloud formation. There is very little difference in the timing of the first clouds developing
between the Smag 0.075 and SA Cs subgrid configurations. This demonstrates that, when the
appropriate C value is applied relative to the model grid scale, the timing of cloud initiation will
be accurate, irrespective of whether a C profile parametrization is incorporated into the subgrid
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scheme. However, as observed in Figure 8.10 a, if a C value is used which is incompatible with
the scale of the grid spacing, then the C profile parametrization can improve cloud initiation
time greatly. The use of a parametrized profile for Cs can be seen to benefit the model later
on in the diurnal cycle. In Figure 8.10 b it becomes apparent that the use of the CIC and Cenv

functions enables the CT height to be accurately resolved throughout the majority of the diurnal
cycle. Meanwhile, the Smag 0.075 set-up overestimates the height at which the CTs reach later
on in the day. Therefore, the scale dependence of Cs appears to be the most significant factor
in the subgrid scheme to enable accurate LES of the cloud layer formation and development.
However, introducing the regime-specific, height-based functions seems to positively impact
the model’s ability to determine the CT height more accurately, especially at later times during
the diurnal cycle.

So far the effect of varying the Cs parameter values has been investigated, but the results pre-
sented in Figures 8.10 a & b force the Cψ parameter to depend on Cs and Pr, for all scalars ψ.
The next phase of this investigation will evaluate the effects of allowing the scalar parameter to
vary independently from the Cs parameter in each flow region. The scale invariant and scale
aware versions of the subgrid scheme parametrizations with (1) the Cs profile, and (2) the Cs &
CθL profiles are used to produce the cloud fields from the ARM case. The resulting evolution of
these CT and CB heights with time is plotted in Figure 8.11. These simulations were produced
using a grid spacing of ∆ = 400m as this scale was found to show the most sensitivity to
changes in parametrizations.
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Figure 8.11: Time series of the CT and CB heights for the ARM case produced using the MONC model
with grid spacing ∆ = 400m and various different subgrid parametrization schemes, as listed in the
figure legend.
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Figure 8.11 highlights that ARM simulations produced with a grid spacing of ∆ = 400m have
the most accurate CT heights when using scale-adaptive parametrizations for C. The cloud
formation times for the scale invariant parametrizations are later in the day: The CsCθL prof
parametrization begins to form cloud at 11:00L, while Cs prof parametrization triggers cloud
development from 11:15L. However the Cs prof set-up begins to resolve the CT height ac-
curately from between 12:30L and 13:00L, meanwhile the CsCθL prof configuration does not
accurately determine the CT height until after 13:30L. Both the Cs prof and CsCθL profs set-ups
struggle to reach the correct CT height, with CT level being underestimated for the first half of
the day in these simulations when ∆ = 400m. This is because the C parameters are scale-
invariant in these configurations, and thus are not being set to the best-fit C values relative to
the coarse grid scale. The late stage at which the CsCθL prof parametrization reaches the correct
CT height suggests that the CθL profile seems to hinder the height that the CTs can reach. This
may be a result of setting the CIC value to CθL = 0.2 rather than Cθ = 0, and therefore causing
an excessive amount of heat diffusion to occur.

However, the additional independent CθL profile in the subgrid parametrization appears to help
with the initial formation of cloud in the CsCθL prof case when the set-up is scale invariant. The
same cannot be said of the SA CsCθL prof, which shows cloud developing and persisting after
10:30L, whereas the SA Cs prof set-up shows cloud developing earlier, before 10:15L. This
suggests that the C parameter values might require more fine-tuning. However, a small, very
shallow layer of cloud is observed forming and dissipating over the course of approximately
5 mins in SA CsCΘL

prof model (outlined in grey), evident just before the brown vertical line
at about 10:15L in Figure 8.11. This further suggests that the dissipation IC, or at least in the
CL, might be too high in the CsCθL prof set-ups, both for the scale-invariant and scale-adaptive
configurations. It is hypothesized that if Cψ was based on the θ data rather than the θL data,
then the first parcel of cloudy air in the that CsCθL prof set-up might have persisted, or even
have been formed earlier.

8.4.2 Mean Profiles of Cloud Cover

The mean profiles depict the total cloud fraction from both the scale-invariant and scale-adaptive
set-ups of the Cs prof parametrizations. Analysing these profiles ensures that the identified CT
and CB in Figures 8.7 - 8.11 correspond to a well-resolved cloud field, rather than being the
outcome of a limited number of spurious cloud formations within an otherwise predominantly
cloud-free layer. Cross sections of the cloud field from the modified MONC model were also
examined, and while the results appeared reasonable, no obvious systematic differences in the
size/structure of the largest clouds were observed. Therefore, the cross-sections are not pre-
sented here. The profiles from all analysed time stamps, apart from the very earliest time stamp
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where the cloud has not yet properly formed, exhibit reasonable cloud fraction profiles consis-
tent with those observed in the LES reference. In regards to the difference between the Cs prof
and SA Cs prof model configurations, the largest difference is observed when the grid spacing
is ∆ = 400m. This is expected as the disparity between the scale-dependent C values and the
values assigned to C in the scale-invariant set-up is exacerbated as grid scale increases.

(a) (b) (c) (d)

Figure 8.12: Mean Profiles of the cloud fraction across the four time steps of interest in the ARM case.
The dotted lines show results from the Cs prof set-up, while the dashed lines show results from the SA Cs
set-up. The black line shows the “truth” from the high-resolution LES. The height axis has been scaled
by the CT height.

At the 12:30 timestamp during the early cloud development phase, Figure 8.12 b shows the
coarse grid spacing LES exhibiting the highest percentage of cloud, while the fine grid spacing
LES shows the lowest percentage. This could be attributed to the all-or-nothing cloud scheme
used in MONC, where each grid cell is classified as either containing cloud or not, depending
on if the liquid water content of the grid box exceeds a certain set threshold. This threshold is
determined by the saturation vapour pressure in an all-or-nothing scheme. If a similar number
of grid cells are classed as cloud for each resolution LES, the LES with larger grid spacing
will have a larger area being classed as cloudy compared to the LES with smaller grid spacing.
Since the domain size remains constant for each resolution, the result would be a higher cloud
formation for coarse resolutions. This behaviour is likely to occur during the initial stages of
cloud formation when clouds are still small-scale, and the smallest area that can be classed as
a cloud is limited to the size of the grid box. However, as the day progresses and clouds grow
larger than the grid spacing, the scheme should converge toward a more accurate cloud field,
and therefore cloud fraction, across all resolutions.

The profiles at all other times exhibit the anticipated results for resolved cloud fraction profiles,
in relation to the profile’s corresponding grid spacing. Figure 8.12 a shows the highest resolu-
tion data (∆ = 100m) resolves the cloud fraction most accurately, when the LES reference
data is defined as the truth. The ∆ = 100m data exhibit a high degree of similarity between
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the two parametrization configurations. However, the ∆ = 400m data shows the SA Cs prof
configuration beginning to resolve cloud, while the Cs prof remains unable to resolve cloud at
this early time in the diurnal cycle. Throughout the time stamps presented here, the Cs pro-
file configuration consistently produces a cloud fraction profile furthest from the LES for all
the parametrization set-ups analysed in Figure 8.12. All other configurations show the cloud
fraction being reasonably captured compared to the reference data. This demonstrates that in-
cluding a scale-dependent flow regime based profile parametrization for the Cs parameter can
yield accurate simulations of a shallow cumulus cloud field, even when a coarser grid spacing,
typically associated with the grey-zone regime, is used.

8.4.3 Computational Efficiency

The new parametrization for C allows the altered model to make use of a larger time step com-
pared to the standard model, while also achieving a higher level of accuracy in the results. This
is because the MONC model has adaptive time-stepping, which uses the CFL criteria to deter-
mine the largest possible timestep, dt, given the state of the flow. Therefore the lower levels
of diffusion in the Cs prof and CsCθL prof parametrizations allow for a larger time step to be
used. This is especially apparent in the scale-adaptive versions of the parametrization, which
exhibited the fastest model runs and, when compared to the ∆ = 25 m LES reference data,
generally produced the most accurate fields of all the parametrization configurations.

The CPU performance of the MONC model when using different subgrid scheme configura-
tions can be investigated. The BOMEX case can be used as a test case for this analysis, by
setting the grids to be uniform between the two configurations: a domain of 16×16 km2×
3 km, a horizontal grid spacing of ∆ = 320m, and a vertical grid spacing of 10 m. The stan-
dard Smag 0.23 configuration requires approximately 56,009 time steps, with a processing time
of 42 hours 37 mins to complete the LES run for 4 hours of simulated data. Meanwhile, the
model with the SA CsCθL prof parametrization for the subgrid scheme produces the LES of
BOMEX using 15 hours 25 mins of processing time, using 41,290 time steps to simulate the
same case. The Cs prof parametrization behaves similarly to the CsCθL prof parametrization
in terms of computational efficiency. This highlights the efficiency of the Cs prof and CsCθL
prof parametrizations, as they allow the LES model to run faster and use less computational re-
sources, while also producing simulations with more accurate cloud initiation and development.
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8.5 Summary of Findings on the NewC Parametrization for the Smagorin-
sky Scheme

A new parametrization has been developed to account for systematic variations in the Smagorin-
sky parameter values with height across different flow regimes. In the non-cloudy areas of the
CTBL, this parametrization builds on the Blackadar mixing length formulation, allowing for
a smooth transition between C values in the ML, CFE, and OL. Meanwhile, in the cloudy
regimes, the C values are fixed to a constant. The new parametrization can be applied to Cs
alone, forcing Cψ to depend on Cs via a fixed Prandtl number Pr, or it can be applied to both Cs
and Cψ for any scalar variable, ψ. In addition to height and variable dependency, the scheme
also incorporates grid scale dependency. This scale dependency was found to significantly im-
prove model efficiency, while also improving the formation time and evolution of the simulated
cloud fields. The greatest benefit arising from including regime-dependent and/or scale-adaptive
C variables in the model is observed at coarse grid scales. Therefore, this parametrization is
particularly useful for modulating the onset of the grey-zone in LES of shallow cumulus CTBL.

In conclusion, the newly introduced parametrization for C significantly enhances the perfor-
mance of the MONC model by enabling the use of larger time steps compared to the standard
model, while resolving the CTBL fields to a higher level of accuracy. The greatest improve-
ment in accuracy was observed at coarse resolutions, where the new parametrization schemes
enabled the model to more precisely capture the evolution of the diurnal cloud field. This was
particularly evident when the scale-adaptive version of the parametrization was used. The new
parametrization for C improves the MONC model by allowing larger time steps and greater ac-
curacy. The scale-adaptive versions demonstrated the quickest run times, as well as the highest
accuracy when compared to the ∆ = 25 m LES reference data. The Cs prof and CsCθL prof
parametrizations significantly reduced both time steps and run time, enhancing computational
efficiency while maintaining accurate cloud simulations. Therefore the new parametrizations
which have been devised in this chapter enable the model to run quicker while demanding less
computational resources and producing more accurate representations of cloud initiation and
development at grey-zone resolutions.

8.5.1 Responses to the Research Questions

(1) What systematic relationships can be established between the Smagorinsky parameters
and height within each flow regime of the CTBL? Can scale dependence be accounted for
in these functional relationships?

By decomposing the CTBL into three main flow regimes, the ML, CFE, and IC regions a
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height-dependent relationship, based upon a modified Blackadar formula, has been established
between the two cloud-free regimes (ML and CFE). Meanwhile, the Smagorinsky parameters
in-cloud have their C value fixed to a constant. This parametrization can capture the key effects
that height and stability have on the Smagorinsky parameter values in the CTBL.

Scale dependence can easily be added to this scheme by varying the values of CML, CCFE, and
CIC within the defining equations of the parametrization. Accounting for variations in the C
value with grid-scale results in marked improvements in the accuracy of the modelled CTBL
fields.

(2) What effect does this empirical parametrization have on the modelled fields?

The parametrization which has been derived and tested throughout this chapter has been found
to greatly improve the MONC model’s ability to resolve cumulus clouds earlier on in the sim-
ulated diurnal cycle, improving the accuracy of the timing for the initial cloud formation. Fur-
thermore, the subgrid schemes which included the profile-based parametrizations for Cs and/or
Cψ were found to improve the model’s ability to accurately resolve the CT height. These im-
provements were most pronounced at coarser resolutions, indicating that this parametrization
effectively delays the scale at which the grey-zone begins to impact cloud formation and de-
velopment. Additionally, this parametrization resulted in a more than two-fold increase in the
speed of the model during Convective Turbulent Boundary Layer (CTBL) simulations. This
increase in computational efficiency was achieved without compromising accuracy; the modi-
fied models not only maintained accuracy, but instead demonstrated significant improvements.
Therefore this parametrization has a profoundly positive impact on both the accuracy and com-
putational efficiency of the model when producing LES of CTBLs at scales typically considered
to be in the grey-zone regime.

147



9 Conclusions and Discussion

Weather and climate models have had significant improvements in their accuracy in the past
few years, particularly through the use of higher-resolution grids that better capture motions in
the atmosphere. However, challenges remain when the grid spacing of the model is of the same
scale as the dominant coherent structures in the flow that is being modelled. This gives rise
to the grey-zone regime, where these turbulent motions are only partially resolved. Effectively
capturing the contribution that turbulence has to the overall flow in this regime is crucial for im-
proving the reliability of severe weather forecasts and long-term climate projections. The work
detailed in this thesis focuses on the grey-zone of the shallow cumulus topped CBL. However,
it is expected that the principle of the main findings can be generalised and applied to other
scenarios, such as the importance of including scale adaptivity and flow regime dependence in
any subsequent grey-zone parametrizations.

LES has long since been used as a tool, alongside observations, to analyse the behaviour of
mixing lengths within the CBL. However, the majority of previous studies focus on the physics
and dynamics within either dry CBL’s, or the ML of CTBLs. Throughout this thesis, it has been
proven that the CL demonstrates a clear distinction in the behaviours of momentum, heat, and
moisture fluxes compared to those within the ML. In addition to this, when investigating the
key traits of the mixing lengths for each parameter in the CL, distinguishing between the IC and
CFE was found to be important for the analysis. Past research in the field has also commonly
assumed that heat and moisture fluxes within CTBLs are not only equal to one another, but can
also be approximated by depending solely on the momentum flux and a constant Prandtl num-
ber. This approach was found to be insufficient for the CTBLs analysed throughout this study.
As a result, a new parametrization scheme has been developed to address the current limita-
tions in the existing Smagorinsky scheme. Despite the limitations encountered in this study, the
proposed parametrization demonstrates substantial improvements in the model’s ability to ac-
curately resolve cloud fields at grey-zone scales, whilst also reducing computational costs. This
strongly suggests that further advancements in LES models are possible through additional in-
vestigations into the behaviour of fluxes and diffusion within the CL.

9.1 Summary of the Key Findings

This thesis examined the behaviours of the Smagorinsky subgrid scheme, with a focus on the
values taken by the Smagorinsky parameters for momentum, heat, and moisture in LES of
three different CBL test cases. The overall aim was to identify systematic behaviours of the
Smagorinsky parameter values in order to derive a parametrization which would offset the ef-
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fects of the grey-zone at coarse resolutions. The Smagorinsky subgrid scheme was found to
behave as a filter, with characteristics very similar to that of the Gaussian filter. This enabled
the Gaussian filter to be employed, along with the offline dynamic Smagorinsky model to calcu-
late fields of flow-dependent Smagorinsky parameter values specific to each variable of interest.
These fields have been analysed and an explicit link has been established between the mixing
length scale and flow regime within the CTBL, with a scale dependency also clearly evident
in the parameter values. A new parametrization scheme was proposed to address limitations
in the existing Smagorinsky model, focusing on variable-specific parameters, while accounting
for the systematic dependencies observed across specific flow regimes and grid scales. The in-
vestigation that led to the identification of this parametrization was divided into four parts, each
addressing different research questions and forming a foundation for the subsequent chapters.
The major findings from this research are summarized according to chapter in the following
sections.

9.1.1 The Smagorinsky Scheme as a Filter

The investigation into the behaviour of the Smagorinsky scheme in spectral space provides sig-
nificant insights into the functionality of the Smagorinsky subgrid scheme, and establishing it
as a grid-scale-based filter within LES models. Following this, the filter scale and filter shape in
spectral space were established for the Smagorinsky scheme. This filter was found to maintain
a distinct shape across various grid spacings, while also demonstrating a linear scaling with grid
spacing. The Smagorinsky filter shape is observed between the scales corresponding to effec-
tive resolution Reff and the Nyquist frequency. Between these scales, the Smagorinsky scheme
dissipates energy, causing the data to follow a distinct slope. The value of this slope has been
approximated by likening the Smagorinsky filter to that of a Gaussian.

The Smagorinsky filter was found to closely resemble the Gaussian filter in spectral space, par-
ticularly at high resolutions. This similarity enables the estimation of the filter scale and slope
of the Smagorinsky scheme. Furthermore, it confirms the validity of the established relationship
between the filter scale σ and the effective grid scale “̄∆. This relationship was derived to relate
the Gaussian-filtered data back to a grid-based domain, with it being established as “̄∆ = 2σ.
This relationship was derived by analysing the energy distribution at the smallest scales. Over-
all, this work provides the basis for understanding the Smagorinsky subgrid scheme and its role
as a filter in LES. This establishes a foundation for subsequent investigations into the impact
of the grey-zone on the Smagorinsky and Gaussian filters, as well as potential strategies for
mitigating these effects.
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9.1.2 Flow Regime Dependence of the Smagorinsky Parameter

This section of research is aimed at identifying variations in Smagorinsky parameter values
and behaviours across different flow regimes within the CTBL, with a particular focus on the
ML, CFE, and IC regions. The IC areas can be further subdivided into the CU and CC regions.
While these CU/CC flow regimes do exhibit some differences in C values compared to the more
general IC region, no significant or consistent variations were identified across all parameters,
scales, or test cases. The main difference observed between the IC and CU/CC regions were in
the CθL and Cqt parameters at scales between 8∆ ≤ “̄∆ ≤ 16∆. At these coarse scales, it re-
mains undetermined if these discrepancies observed in the data are due to differences in regime,
or if it is a result of the expansion of areas being identified as “cloudy” when the resolution
of the filtered fields coarsens (this will be discussed further in Section 9.3.1). At coarse grid
scales, the LES model is not expected to be able to resolve the small-scale cloud updrafts and
cores. Furthermore, even at higher resolutions (where less difference was evident between the
IC and CU/CC values was observed), it would be computationally expensive to further divide
the cloudy regions into the updraft and core components in the LES model. It would involve
imposing conditional checks on the upward velocity and buoyancy fields at each grid point and
time step to determine each C value. Therefore, the sub-division of IC areas into CU and CC
regions was disregarded, and the focus remained instead on the IC, ML, and CFE.

The ML showed consistent behaviour across the profiles of Smagorinsky parameters for every
variable (momentum and scalars), with parameter values at their local maximum in the centre
of the ML, while distinct decreases in value are evident at the top and bottom boundaries. The
CFE, in contrast, showed more variability across the different Smagorinsky parameters, with
momentum parameters continuing to show higher values in certain areas, whereas the scalar
parameters took near-zero values across nearly the entire CFE. Each parameter agreed that a
reduction in C values occurred as the capping inversion was crossed in the upward direction,
with the CFE experiencing lower C values for all parameters than their corresponding values in
the ML. This is due to the weakened turbulence in the CFE, as it is a mostly stable layer outside
of the cloudy areas. The clear height-dependence in the non-cloudy areas of the CTBL would
enable a height-based parametrization scheme for the NC regions in subsequent work.

While a clear distinction exists between the ML and CFE, it is the IC regions where the most
pronounced differences are observed. Within the IC regions, the scalar variables (Cθ, CθL , and
Cqt) exhibited marked differences from the momentum parameter Cs, highlighting the distinct
nature of scalar transport within clouds. Furthermore, the θ variable is not conserved IC, which
results in the cloudy areas being characterized by counter-gradient fluxes of θ, leading to a
high prevalence of negative IC C2

θ values. This suggests that using a conserved thermodynamic
variable, such as θL, in the parametrization would be a more suitable approach to reduce the

150



number of negative Smagorinsky coefficients. The Prandtl and Schmidt numbers derived from
the scalar parameters indicate that the heat and moisture structures are consistently larger than
the momentum structures, particularly IC. The parameters for qt and θL generally exhibited
strong agreement in-cloud. A notable characteristic observed across all IC parameters was a
near-constant C value maintained throughout the entire depth of the CL.

These regime-dependent trends demonstrate the limitations of using a single, fixed Smagorinsky
coefficient for the entire CTBL. For this reason, when running LES in the grey-zone regime, the
standard Smagorinsky scheme fails to capture the variations in mixing and dissipation across
the different regions of the CTBL. Therefore, the findings detailed in Chapter 6 set the stage
for the development of a parametrization scheme that captures the effect of various regimes on
the Smagorinsky parameter. This forms one of the core motivations for the work presented in
Chapter 8.

9.1.3 Scale-Dependence of the Smagorinsky Parameter

Building on the regime-dependent analysis, Chapter 7 explored the influence of the filter scale
on the Smagorinsky parameters within each flow regime. This was necessary to understand
how turbulence modelling in LES is affected by varying grid scales, particularly in the transi-
tion from fine to coarse resolutions.

The response of Smagorinsky parameters to changes in filter scale is regime-dependent. This
underscores the necessity for LES models to be both scale-adaptive and equipped with regime-
specific parameters. In the ML, all parameters exhibit a log decrease in magnitude with in-
creasing grid scale, maintaining consistency across all variables. In contrast, the momentum
parameter in the CFE shows a rapidly decreasing collapse to zero, while the scalar parameters
in the CFE demonstrate a linear decrease in response to increasing filter scale. The response
to filter scale changes shown by the IC parameters meanwhile, were observed to be highly de-
pendent on their corresponding variable. Furthermore, a higher proportion of negative IC C

values (for all parameters) occurs as the filter scale increases. While this increase in negative
C values is not entirely an artificial outcome, it is significantly driven by the substantial rise in
regions being identified as IC, rather than solely reflecting the response of the IC Smagorinsky
parameters to the filter scale. This strongly suggests that additional research is required into the
impact of the grey-zone on the behaviour of fluxes within shallow cumulus clouds. The variabil-
ity of the Smagorinsky parameter values throughout entire regimes declined significantly with
increasing filter scale, implying that the model’s capability to distinguish between different flow
structures diminishes as the resolution becomes coarser. The largest improvement which was
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observed across all cases, parametrization configurations, and scales (particularly coarse scales)
resulted from including scale-adaptivity in the parametrization. This implies that allowing the
C parameters to adapt to the grid scale is key in offsetting the grey-zone impacts at coarse scales.

The findings throughout this chapter directly complement those from Chapter 6 by demonstrat-
ing that the regime-dependent behaviours observed in Smagorinsky parameters are not only a
function of height and thermodynamic properties but are also significantly influenced by grid
scale. This reinforces the need for a parametrization scheme that is both regime-dependent and
scale-adaptive, providing further motivation for the new parametrization which has been de-
rived in Chapter 8.

9.1.4 Variable-Dependence of the Smagorinsky Parameter

Chapters 6 consistently highlighted a fundamental characteristic: the Smagorinsky parameter
exhibited a strong dependence on the underlying variables. While certain key behaviours were
consistently observed across all Smagorinsky parameters, such as decreases in the C value at
the ML capping inversion, cloud top, and surface, other characteristics of the Smagorinsky pa-
rameters were distinctly linked to specific variables. Furthermore, the Smagorinsky parameters
for scalars displayed more variation and nuance depending on the flow regime and filter scale.
This strongly suggests that subgrid schemes should allow the scalar parameters to vary inde-
pendently from the momentum parameter.

The most pronounced variable dependency was observed in the Smagorinsky parameter for non-
conserved variables, such as θ and θv. Since these thermodynamic variables are not conserved
in cloudy regions due to their inability to account for the effects of condensation, counter-
gradient transport began to occur IC. As a result, the dynamic Smagorinsky scheme attempted
to represent the upscale energy transfer associated with these negative gradients in IC by setting
C2
θ ≤ 0, indicating energy transfer in the opposite direction of dissipation. However, since the

Smagorinsky scheme does not account for backscatter or upscale energy transport, the model
can only clip these negative values to Cθ = 0 in IC. This effectively halts the mixing and dissi-
pation of θ in the clouds. The behaviour of Cθ in IC, which shows a high percentage of negative
C2 values, leading to ⟨Cθ⟩ = 0 in IC, is consistent with the findings from the online dynamic
Smagorinsky model, as noted in Shi et al. (2018) and Efstathiou et al. (2024).

The other key difference in the behaviour of the scalar parameters was observed in the ML val-
ues of Cqt . While the ML Cqt parameter did show a decrease in value with filter scale, much
like the other parameters, this decrease was much more gradual than all other variables anal-
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ysed throughout this work. Despite Cqt having similar values to the other scalar parameters at
high resolutions, such as CθL , as the filter scale increases the Cqt values decrease at a much
slower rate in the ML than the other Smagorinsky parameters. Furthermore, C2

qt was the only
parameter in the ML observed to show a decline in the number of negative values as filter scale
increased, indicating that the number of points experiencing counter-gradient transport of qt
decreases as resolution is coarsened. This suggests that the ML qt structures are consistently
larger and persist to coarser scales than both the heat and momentum structures, and therefore
are not as heavily impacted by the grey-zone regime.

9.1.5 A New Parametrization for the Smagorinsky Subgrid Scheme

Chapter 8 culminated in the development of a new Smagorinsky parametrization that addresses
some of the limitations of the standard Smagorinsky scheme which have been identified in pre-
vious chapters. This parametrization integrates flow regime and grid-scale dependencies in a
height-based function to provide a more accurate representation of the behaviour of turbulence
within the CTBL.

The systematic responses of the Smagorinsky parameters to flow regime and filter scale was
used to derive a new height-base, regime-dependent parametrization for the Smagorinsky pa-
rameters. The functional relation with height was derived using a modified Blackadar for-
mula in cloud-free regimes, while a fixed value approach was deemed sufficient to capture the
behaviour of parameters IC. This parametrization was further adapted to be scale-dependent,
which resulted in a marked improvement in the model’s performance and ability to resolve CT-
BLs across a range of resolutions, particularly in the grey-zone of LES. The empirically derived
parametrization scheme was tested by including the relation into the model and simulating the
marine CBL BOMEX case and the diurnally evolving ARM case. The parametrization for C
was shown to improve both computational efficiency and accuracy in resolving cloud fields,
especially at coarser resolutions.

The development of the new parametrization in Chapter 8 is a direct response to the regime-
dependent and scale-dependent challenges identified in Chapters 6 and 7, respectively. By in-
corporating height and scale dependencies, the new scheme effectively extends the LES regime
to coarser grid scales, providing a computationally effective approach to modelling CTBL in
the grey-zone regime.
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9.2 Responses to the Overarching Research Questions

(1) Does the Smagorinsky scheme exhibit a specific filter shape that scales uniformly with
grid spacing, and can its filter scale be derived? How does the Smagorinsky filter compare to
the Gaussian filter? How can the Gaussian-filtered data be related back to a grid-based scale?

The findings from Chapter 5 provide significant insights into the behaviour of the Smagorinsky
subgrid scheme. The Smagorinsky scheme has been observed behaving as a grid-scale based
filter, demonstrating a distinct and consistent shape in spectral space that scales linearly with
grid spacing. This subgrid scheme was found to closely resemble the Gaussian filter in spectral
space, particularly at high resolutions. This similarity enables the estimation of filter scales for
the Smagorinsky scheme. Meanwhile, the Gaussian filter scale can be related back to a grid-
based scale, defined as the effective grid spacing “̄∆, using the relationship “̄∆ = 2σ. This allows
for the direct comparison between the Smagorinsky-filtered and Gaussian-filtered datasets.

Overall, this chapter provides an understanding of the Smagorinsky subgrid scheme’s role as
a filtering mechanism in LES modelling, and the Gaussian filters behaviour relative to grid-
based domains. The work carried out in this chapter found critical insights into the behaviour
of these filters, which are essential for justifying the use of Gaussian filters as substitutes for
the Smagorinsky scheme in the offline dynamic model. The relationships established between
grid scale and filter scale provide a foundation for further investigations into the behaviour
of the Smagorinsky scheme at coarser, grey-zone grid-scales. Therefore, by addressing these
research questions, the work in this chapter lays the groundwork for further developments in
parametrization strategies which can be employed within the Smagorinsky subgrid scheme to
mitigate grey-zone effects.

(2) Do the Smagorinsky parameters exhibit systematic patterns based on flow regimes, and if
so, are there significant differences in the transport and diffusion characteristics of momen-
tum, heat, and moisture within each of these regimes?

The Smagorinsky parameters take on distinct characteristics depending on the flow regime that
they are in, namely the ML, CFE, and IC regions. The IC regime can be further subdivided into
CU and CC regions. With the exception of certain parameters showing slightly higher C values
in the CU/CC areas, there was little evidence of differing systematic behaviours between the
IC, CU, and CC regions. Therefore the main differences in systematic responses to the regime
were found to occur in the ML, CFE, and IC regions. The non-cloudy areas of the CTBL, that
is the ML and CFE regimes, follow predictable patterns with height decreasing from the ML C
value as the flow transitions across the inversion layer to the CFE. Therefore a height-dependent
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parametrization is employed to effectively capture this height-based regime dependence. Mean-
while, the IC parameters are roughly constant throughout the depth of the cloud layer, leading
to CIC being approximated by a fixed constant.

The ML Smagorinsky parameters showed consistent, parabolic-shaped profiles for all variables
in the ML, with max values occurring in the mid-ML levels and distinct decreases in value as the
boundaries are approached. Above the ML, the C values for each variable show a marked de-
crease within the CFE. In the CFE close to the ML capping inversion, both Prandtl and Schmidt
numbers for all the scalars are near unity, suggesting that the heat and moisture structures are of
the same scale as the momentum structures. However, as the top of the CL is approached, the
Pr and Sc values in the CFE increase above 1, indicating that the moisture and heat structures
are now smaller than the momentum structures — an unusual outcome for the CTBL. The IC
parameter values meanwhile, exhibit distinct differences between the scalar variables (Cθ, CθL ,
& Cqt) and the momentum parameter Cs, highlighting the distinct nature of scalar transport
within clouds. The average Cs values IC were approximately constant with height and only
slightly larger than in the ML. The parameters for conserved scalars, however, exhibited much
larger values than the ML, but also remained approximately constant throughout the CL depth.
Meanwhile, the Smagorinsky parameter for non-conserved θ scalar collapsed to zero IC.

Regarding the variations between the Smagorinsky parameters themselves, independent of flow
regime, the following traits were noted. The momentum field experienced high levels of noise,
and lacked a clear structure. Differences in the mean Cs values between regions were evident,
albeit minimal. Meanwhile, the parameter fields for conserved variables exhibited much less
noise and a higher degree of structure was evident in each of the flow regimes. There was
also clear distinctions between each flow regime in the average Smagorinsky parameter values
for these conserved variables. The non-conserved variables were observed to behave much the
same as the conserved variables in all flow regimes but one - the IC region. In this regime, the
non-conserved scalars experience counter gradient transport resulting in unrealistic C2 values
which are clipped to zero. Consequently, it was concluded that it is important to allow the
parametrization to distinguish between both the variables and the flow regime.

(3) What is the impact of filter scale on the various Smagorinsky parameters across the three
flow regimes of interest?

The impact of filter scale on the value of a Smagorinsky parameter is both regime-dependent
and variable-dependent. The results show that the Smagorinsky parameter values across all flow
regimes generally decrease as filter scale increases, albeit at different rates. In the ML, the C
values decrease logarithmically as filter scale increases, indicating that turbulence in this region
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remains well-represented even as the grid scale increases. The distribution of C values also
remains normal for all variables as filter scale increases. In contrast to this, the effect that filter
scale has on the Smagorinsky parameters IC and in the CFE is much less consistent than what
was observed in the ML. Both of these CL regimes exhibit a more rapid decrease in parameter
values with increasing filter scale, particularly for scalar variables. In addition to this, the de-
crease does not follow a consistent response to changes in filter scale between each parameter,
rather it behaves more erratically than trends observed in the ML C values. The distributions
of C for all variables also demonstrate a strong scale dependence, becoming more and more
skewed as the mode shifts to near zero when the filter scale increases. In the ML, the param-
eters demonstrate a regular decline with increased grid scale, while the IC and CFE regions
show less consistent behaviour, most likely due to changes in cloud coverage and the model’s
representation of turbulence at coarser scales. This distinct difference between the behaviour
of C in the ML compared to IC and in the CFE, suggests it might be a result of the limitations
of filtering the CL to very coarse scales. This will be discussed further in Section 9.3.1. If this
is the underlying cause, then it can be assumed that the behaviour of C IC determined at high
resolution remains valid, though further investigation is necessary to understand its behaviour
at coarser scales.

(4) Can a scale-adaptive relationship be established between height and the Smagorinsky
parameters within each flow regime? Does this empirical parametrization improve LES of
CTBLs in the grey-zone?

If the CTBL is partitioned into three distinct flow regimes consisting of the ML, the IC re-
gions, and the CFE, then it is possible to derive a parametrization which captures the height and
scale dependencies of the Smagorinsky parameters. The height-based component of this new
parametrization is based upon a similar function to the Blackadar mixing length formulation. It
is applied to the non-cloudy areas of the CTBL, enabling a smooth transition in Smagorinsky
values across the ML, CFE, and OL. Fixing the various IC C parameters to a constant value
throughout the entire depth of the CL was found to be a sufficient representation of the typical
Smagorinsky parameter behaviour. Additionally, the parametrization incorporates grid scale
dependency by adjusting the Smagorinsky values as a function of the filter scale. This adaptive
approach ensures that the model retains high levels of accuracy across a range of resolutions,
particularly in the grey-zone of LES. This new parametrization can be applied selectively to spe-
cific Smagorinsky parameters. If applied to Cs only, then the scalar parameters remain reliant
on the Prandtl number along with the momentum parameter. This parametrization can also be
applied to both Cs and Cψ, using different variable-specific dependencies, for any scalar ψ. The
flexibility of this parametrization allows it to perform effectively across a range of scenarios.
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The proposed parametrization was implemented and tested in the MONC model using vari-
ous different configurations. This allowed for the contributions from the addition of the height
(regime) dependency, scale dependency, and variable dependency to be analysed. All parametriza-
tion configurations showed substantial improvements in both accuracy at grey-zone scales and
computational efficiency compared to both the standard and dynamic Smagorinsky models. At
coarse resolutions, the height-based element of the parametrization scheme was noted to delay
the onset of the grey-zone by better capturing the dynamics of cloud formation and develop-
ment. This led to more accurate simulations of the diurnal cloud cycle, particularly in terms
of timing and vertical structure. Furthermore, the addition of the profile in the Smagorinsky
parametrization resulted in quicker run times with fewer time steps required, compared to the
standard model for the same test case.

The inclusion of scale-adaptive Smagorinsky values further improved both model accuracy and
computational efficiency. By employing scale-adaptive parameters, the model was able to use
larger time steps without sacrificing stability, leading to faster simulations. A two-fold increase
in computational efficiency was achieved when the height-dependent, scale-aware parametriza-
tion scheme was implemented in MONC, compared to the standard model. This gain in effi-
ciency did not compromise accuracy, as substantial improvements in the simulation of cloud
field formation and evolution were observed at grey-zone resolutions when the parametrization
was implemented. The most notable improvements in accuracy occurred at the coarsest scales,
indicating that this parametrization is particularly advantageous at grey-zone resolutions. This
implies that this parametrization for the Smagorinsky subgrid scheme, is particularly beneficial
at grey-zone resolutions. The combined benefits of increased computational efficiency and im-
proved accuracy make this new parametrization a valuable tool for future LES studies of CTBL.

9.3 Wider Implications, Limitations, and Future Work

The results presented in this thesis highlight the benefits of including a parametrization scheme
for C in LES subgrid models. The parametrization which has been developed allows the C
values to adapt to the grid scale of the model, as well as to the various flow regimes within
the CTBL. This is achieved by integrating both height and scale dependencies, providing a
straightforward and computationally efficient approach to mitigating the impacts of the grey-
zone. By using a regime-dependent, height-based approach, the parametrization better captures
the unique turbulence structures associated with cloud formation, leading to more accurate sim-
ulations of cloud fields. The scale-adaptive nature of the new parametrization allows for larger
time steps, reducing computational costs while maintaining accuracy. When this scheme was
employed in the MONC model a clear improvement was evident in the representation of cloud
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initiation and development in LES models. Therefore, this parametrization improves simula-
tions of CTBLs at coarse resolutions, without incurring the computational expense of an online
dynamic scheme which needs to continuously update the Cs value at each grid point and time
step.

The research conducted in this thesis demonstrates that this novel approach to parametrizing
C, using relatively simple modifications to the existing Smagorinsky subgrid scheme, can yield
significant improvements in the simulation of CTBL. These improvements in both model ac-
curacy and computational efficiency, are applicable across a range of grid scales, however, it
is simulations in the grey-zone which experience the most substantial improvements from this
parametrization. The simplicity and versatility of the new scale-adaptive, regime-dependent
parametrization makes it suitable for incorporation into other models. With minimal tuning of
the α and γ parameters in Equations 8.2, 8.3, 8.4, and 8.5, it is reasonable to expect that the
parametrization (Equations 8.7 and/or 8.10) could be adopted by the broader modelling com-
munity and deliver immediate benefits.

One of the key contributions of this work is the clear demonstration that the modified Smagorin-
sky scheme provides a computationally efficient alternative to the more resource-intensive dy-
namic models. It is well known that the online dynamic model can improve results through
flow-dependent adjustments of the Smagorinsky parameter at each grid point and time step.
However, the analysis and testing carried out during this study pinpoint which aspects of the
dynamic treatment of C lead to better outcomes. It was found that by introducing a height-
dependent, scale-aware Smagorinsky parametrization, the benefits of improved accuracy and
stability are achieved without the substantial computational cost associated with running dy-
namic models online. Furthermore, the new parametrization not only outperforms the standard
Smagorinsky model in computational efficiency, but also provides more accurate timings of ini-
tial cloud formation along with improved representation of the cloud layer evolution, especially
at grey-zone resolutions. This balance of efficiency and precision makes it a valuable tool for
use in LES modelling of CTBLs.

An important outcome of this work is its potential to shape future research within the ParaChute
project. ParaChute is a four year collaboration project between the UK Met Office and NERC
funded researchers at multiple different universities. The main objective of this project is to
improve the representation of turbulence in kilometre and sub-kilometre scale models, with
the aim of improving the accuracy of forecasts for extreme weather events. The insights gained
from the findings presented throughout this thesis are expected to inform decisions made during
the ParaChute project and potentially influence the design of this ongoing research. Therefore,
this PhD research will contribute both to the theoretical understanding of turbulence modelling
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at grey-zone scales and to practical advancements in the field.

9.3.1 Constraints and Limitations of this Study

While this study offers valuable insights into turbulence behaviour and parametrization methods
within the grey-zone of the CTBL, certain limitations must be acknowledged. Firstly, the anal-
ysis primarily focuses on two case studies, BOMEX and ARM, which represent a quasi-steady
marine CTBL and an evolving diurnal CTBL over land, respectively. Although these cases
capture different boundary layer dynamics, they may not fully reflect the full range of complex-
ities found in real-world CTBLs. Additionally, the filtering of cloud fields to coarse resolutions
presents a challenge. It is well known that at coarse filter scales, the qcl content becomes widely
dispersed, causing the entire cloud layer to be identified as IC. This raises concerns about the
validity of conclusions drawn about turbulent behaviour in the CL at the coarsest resolutions.
However, trends from higher resolutions were extrapolated by eye for comparison and generally
yielded consistent results with the coarse resolution data.

The framework of the MONC model posed a further limitation, as it assumes uniform diffusion
for all scalars, based solely on heat diffusivity. Therefore, significant alterations to the model
code would have been required to allow independent variation of scalar diffusivities. Conse-
quently, the scalar-dependent parametrization was based on one parameter only. Following the
analysis of multiple thermodynamic variables, the CθL parameter was chosen, rather than Cθ,
despite MONC using θ as the basis of scalar diffusivity. This is because the non-conserved
nature of θ in-cloud leads to counter-gradient fluxes of θ in these regions, resulting in the diffu-
sivity being set to zero. Therefore, if the parametrization had used a diffusion based on Cθ, then
the in-cloud diffusion would have been set to zero for all parameters, due to the non-conserved
nature of θ IC, resulting in counter gradient θ fluxes. In contrast, the cloud-conserved variables
CθL and qt demonstrated similar values that were consistently non-zero IC, making CθL a more
appropriate and general choice for the diffusion parameter. Further to this, it is valid to diffuse θ
with a CθL , as discussed in Section 8.3.3, therefore CθL was chosen as the diffusion parameter.
Despite these limitations, the study’s approach is valid, however, future work should aim to
expand its scope and validate the findings across a broader range of CTBLs.

9.3.2 Future Research Directions

Further Testing and Optimization: The parametrization scheme should be tested in a broader
range of convective cases to identify its limitations and potential for optimization. This includes
applications to different shallow cloud types, such as stratocumulus, to assess the model’s ability
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to adapt to different cloud regimes. Tests can be carried out to investigate if improvements can
be achieved when simulating deep convection, by using this parametrization when simulating
the preceding shallow cumulus environment in the lead-up to deep convection. The LBA case,
based on observations from 23rd February 1999 over the Amazon, serves as a well-studied ex-
ample detailing convective development and a transition from shallow to deep convection over
land (Grabowski et al., 2006). This case could be used as a test case for this investigation, as
it transitions through the same phases as the ARM case, before continuing to develop to a deep
convection state. The fields obtained from running the LES model with the new parametriza-
tion at grey-zone resolutions could then be compared to high-resolution fields of the same case,
following the methodology used for other cases in this thesis. Adapting and testing the new
scheme within other LES models could demonstrate its potential as a standardized approach for
parametrizing Smagorinsky coefficients in CTBL simulations.

Scalar Dependence: Analyses conducted in this thesis provides evidence that different values
of Smagorinsky parameters might be beneficial for individual scalars in the cloudy regions of
CTBLs. A significant area for advancement is the development of a new routine within the
MONC model that differentiates between the variables being transported and diffused, such as
heat and moisture. This would enable the model to assign scalar-specific Smagorinsky param-
eters, with the intention of improving the representation of each variable’s distinct turbulent
characteristics. Furthermore, it is recommended to carry out a test to evaluate a parametrization
configuration where the IC Cθ = 0, to assess whether this adjustment would improve cloud
simulations, as suggested by the findings in this thesis. Extending this approach, another pos-
sible avenue to investigate would be to apply the dynamic Smagorinsky analysis to a passive
tracer. The results could be insightful, as it would allow for a comparison between the diffusion
of a non-interactive variable and that of heat and moisture. This comparison would yield deeper
insights into the scalar-specific transport and diffusion processes within the CTBL. Overall, this
work would further investigate if employing individual Smagorinsky parameters for each vari-
able is beneficial, or if certain parameters have a more pronounced influence than others.

Time Dependence: Future research should focus on incorporating the time-dependent aspects
of C into the parametrization. The CθL and Cqt parameters demonstrate their IC values in-
creasing with time as the diurnal cycle progresses (see Figure 8.2). This remains, as of yet,
unaccounted for in the proposed parametrization scheme. Additionally, the development of
thermals as the ML evolves from a nocturnal shear-driven layer to a daytime convective layer
warrants further investigation. Analyzing the developing ML during the early stages of the diur-
nal cycle may reveal significant time-dependent behaviour in ML C values until the convective
circulation is fully established. Understanding how this transition influences the Smagorinsky
parameters could provide valuable insights. Further to this, previous analyses in Section 6.1,
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indicates that the Smagorinsky parameters for scalars display their most extreme ML values
within the thermals. To this end, the ML region could be further partitioned into thermals and
their surrounding environments, to determine if this decomposition affects the averageC values.
It is hypothesized that diffusion within thermals in the ML may exhibit a temporal behaviours
similar to that observed in-cloud during the development stages of the cloud. Specifically, we
would expect the scalar Smagorinsky parameter values within the thermals to increase as the
thermal circulation strengthens, ultimately reaching the critical threshold. By accounting for
these temporal variations in the parametrization, it is anticipated that the model might better
simulate the initial growth of the ML, which in turn may improve the initiation and growth of
clouds.

9.4 Concluding Remarks

This thesis has made significant progress in advancing the understanding of turbulent length
scale behaviour within CTBL simulations. The analysis has highlighted that Smagorinsky pa-
rameters, which determine these length scales, exhibit strong sensitivity to various factors such
as flow regime, filter scale, and the conservation properties of the variables being mixed and dis-
sipated. A new parametrization scheme has been proposed to account for these dependencies
within the Smagorinsky model, and it has been found to improve both model performance and
accuracy. Furthermore, this work has laid the foundation for addressing some of the key chal-
lenges associated with the grey-zone problem in LES modelling of turbulent boundary layers,
where turbulent processes fall between resolved and unresolved scales. The findings suggest
that by refining how sub-grid turbulence is handled, particularly through scalar-specific treat-
ment of diffusion, we can achieve more reliable predictions in grey-zone simulations. The new
parametrization scheme marks an important step forward, offering a pathway for future research
to build upon. This work paves the way for future advancements in LES modelling of turbulent
boundary layers, bringing the community closer to mitigating the grey-zone problem in CTBL
simulations.
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