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Abstract: The coexistence of cloud and snow is very common in remote sensing images. It
presents persistent challenges for automated interpretation systems, primarily due to their
highly similar visible light spectral characteristic in optical remote sensing images. This
intrinsic spectral ambiguity significantly impedes accurate cloud and snow segmentation
tasks, particularly in delineating fine boundary features between cloud and snow regions.
Much research on cloud and snow segmentation based on deep learning models has been
conducted, but there are still deficiencies in the extraction of fine boundaries between cloud
and snow regions. In addition, existing segmentation models often misjudge the body of
clouds and snow with similar features. This work proposes a Multi-scale Feature Mixed
Attention Network (MFMANet). The framework integrates three key components: (1) a
Multi-scale Pooling Feature Perception Module to capture multi-level structural features,
(2) a Bilateral Feature Mixed Attention Module that enhances boundary detection through
spatial-channel attention, and (3) a Multi-scale Feature Convolution Fusion Module to
reduce edge blurring. We opted to test the model using a high-resolution cloud and snow
dataset based on WorldView2 (CSWV). This dataset contains high-resolution images of
cloud and snow, which can meet the training and testing requirements of cloud and snow
segmentation tasks. Based on this dataset, we compare MFMANet with other classical
deep learning segmentation algorithms. The experimental results show that the MFMANet
network has better segmentation accuracy and robustness. Specifically, the average MIoU of
the MFMANet network is 89.17%, and the accuracy is about 0.9% higher than CSDNet and
about 0.7% higher than UNet. Further verification on the HRC_WHU dataset shows that
the MIoU of the proposed model can reach 91.03%, and the performance is also superior to
other compared segmentation methods.

Keywords: remote sensing; segmentation; deep learning; attention mechanism

1. Introduction
The rapid development of remote sensing technology has significantly improved

people’s understanding of the Earth. In the large-scale snow depth estimation task, remote
sensing images play a pivotal role. Currently, researchers widely use multi-source remote
sensing data and auxiliary data for snow depth retrieval [1,2]. However, cloud and snow
exhibit highly similar spectral reflectance and color characteristics in optical remote sensing
images, leading to frequent misclassification and posing great challenges for accurate
snow depth estimation. Efficient and precise cloud/snow detection and segmentation are
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therefore critical for reducing misclassification errors and obtaining high-quality snow
cover information.

Early cloud/snow segmentation methods primarily relied on spectral features and
empirical rules. Threshold-based algorithms, such as the Normalized Difference Snow
Index (NDSI) and Cloud Index (CI), were developed to leverage reflectance differences in
the shortwave infrared (SWIR) and thermal infrared (TIR) bands [3–5]. The Fmask algo-
rithm [6], a classical benchmark method, integrates multiple thresholds to identify cloud,
snow, and shadows. However, although these methods are generally effective in ideal con-
ditions, most of them struggle in complex environments. If these methods meet thin cloud
and high-altitude snow-covered regions, they often lead to high misclassification rates due
to spectral confusion. Furthermore, such algorithms are heavily dependent on specific
sensor bands (e.g., Landsat’s SWIR channel), limiting their adaptability to high-resolution
imagery with limited spectral bands (e.g., WorldView-3). Additionally, the dynamic na-
ture of cloud cover and the seasonal stability of snow have fostered the development of
multi-temporal analysis methods, such as Tmask, which detects transient cloud cover
based on time-series reflectance variations. The multi-temporal analysis method of remote
sensing images can effectively detect dynamic changes in ground objects and improve the
accuracy of target recognition [7,8]. However, these approaches require dense temporal
image sequences, resulting in high data processing costs and poor adaptability to sudden
landscape changes (e.g., post-wildfire surface reflectance variations).

The introduction of machine learning marks a shift toward intelligent cloud/snow
segmentation. Researchers have employed Support Vector Machines (SVM) [9] and Ran-
dom Forests (RF) [10] with manually designed texture and shape features (e.g., gray-level
co-occurrence matrix contrast and entropy) to improve classification accuracy, achieving
approximately 15% higher accuracy than threshold-based methods in complex terrains.
The multi-granularity cascade forest (gcForest) [11] further enhances feature extraction,
reducing processing time by 30% in HJ-1A/1B imagery compared to traditional methods.
However, conventional machine learning approaches still remain limited by their depen-
dence on handcrafted features and model capacity. These methods often perform inconsis-
tently in complex scenarios, particularly in nonlinear spectral transitions at cloud/snow
boundaries and low signal-to-noise ratio shadow regions. When cloud/snow coexistence
exceeds 40%, or in heavily mixed cloud/snow regions (e.g., snowmelt transition zones),
classification accuracy drops below 75%, sometimes performing even worse than the Fmask
baseline, highlighting the limitations of traditional machine learning models.

Deep learning, as a data-driven approach, has the ability to learn complex nonlinear
relationships embedded within datasets through neural networks. It has been widely
applied in fields such as semantic segmentation [12,13] and change detection of optical
remote sensing images [14,15], achieving high-precision semantic segmentation. The de-
velopment of Convolutional Neural Networks (CNNs) has further boosted cloud/snow
segmentation accuracy. For example, the Fully Convolutional Networks (FCN) achieved
the first end-to-end pixel-level classification [16], and encoder-decoder architectures such
as U-Net [17], through skip connections, enabled multi-scale feature fusion, improving
the cloud/snow intersection-over-union (IoU) to 89% on Sentinel-2 imagery. CDNetV2,
developed by the Guo team, used an encoder-decoder structure to extract cloud regions
in satellite thumbnails but lacked adaptability for high-resolution data [18]. A multi-scale
feature fusion network proposed by H Du effectively mitigated cloud/snow confusion,
reducing misdetection rates to 8.7% on Landsat-8 data, but still not that robust under some
complex circumstances [19]. Due to the similarity in many attributes of cloud and snow,
cloud/snow detection in remote sensing images is inherently more difficult compared
to other tasks. While existing methods have reduced the interaction between cloud and
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snow to some extent, they still have limitations, especially in complex scenes, and cannot
guarantee robustness. To address this, Li Y proposed an improved cloud/snow detection
method based on the UNet3+ network, leveraging its advantage in feature fusion [20].
Fang Z developed a new deep learning model for high-resolution remote sensing images
from different latitudes. This method first extracts the texture and spectral information of
various objects, then processes these features, and finally generates the final cloud/snow
mask image [21]. Furthermore, Xi Wu introduced geographical information to address the
cloud/snow feature differences in different geographic locations, proposing a new neural
network model to improve the adaptability of cloud/snow detection. This method demon-
strated stronger robustness and broader applicability across various scenarios compared to
existing techniques [22]. In recent years, the development of the Transformer has injected
new momentum into semantic segmentation. The Vision Transformer (ViT) [23] utilized
self-attention mechanisms to model global contextual dependencies, achieving an IoU
greater than 91% in cloud/snow wide-distribution scenarios. However, pure Transformer
models still face some limitations due to their enormous data requirements for pretraining
(billions of samples) and high computational complexity, hindering practical applications.
As a result, researchers have shifted towards exploring CNN–Transformer hybrid archi-
tectures. PVT, developed by Wang, integrated a pyramid structure with a Transformer,
improving the mIoU to 44.8% on the ADE20K dataset [24]. Wu’s Convolutional Vision
Transformer (CVT) introduced local inductive biases while maintaining the advantages of
attention mechanisms, achieving an F1-score of 0.893 in cloud detection tasks. However,
the enormous parameter count (356M) limits practical application [25]. While these hybrid
models can significantly improve segmentation performance in complex scenes, they still
face issues with inflated parameter sizes and training costs.

Based on the above research, we find that the cloud-snow segmentation task has
achieved good accuracy, but multiple states of cloud are similar to the texture and color
attributes of snow, and it is challenging to achieve higher accuracy segmentation. Secondly,
the cloud and snow boundary information is still not well restored, and the blurring of
boundary information is the pain point of existing research, which has great limitations
in fine application scenarios. In order to solve these problems, this paper proposes a
Multi-scale Feature Mixed Attention Network (MFMANet). The main contributions are
as follows:

• Design of the Multi-scale Pooling Feature Perception (MPFP): This module integrates
multi-scale strip pooling operations with a self-attention mechanism to enhance global
context modeling. By capturing dependencies and structural characteristics of cloud
and snow across varying scales, it improve the identification accuracy and reduces
misclassification.

• Proposal of the Bilateral Feature Mixed Attention Module (BFMA): This module
combines spatial and channel attention to address the irregular morphology of cloud
and snow. In order to preserve the edge features and avoid the loss of edge features of
target classification caused by direct global pooling, Global Feature Channel Attention
(GFCA) sets two branches to use global average pooling and global maximum pooling
respectively, which can extract richer global features, and the Multi-Branch Spatial
Aggregation (MBSA) refines boundary details through multi-kernel convolutions. This
dual attention framework significantly enhances segmentation accuracy in regions
with spectral confusion and complex spatial distributions.

• Develop the Multi-scale Feature Convolution Fusion Module (MFCF): To mitigate
edge blurring caused by scale mismatches, this module employs directional strip
convolutions (e.g., 1 × 7, 7 × 1) to fuse multi-scale features. By leveraging elongated
kernels aligned with cloud/snow textures, it effectively restores fine-grained boundary
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details and improves segmentation robustness, thus getting superior performance
in recovering tortuous and irregular cloud/snow edges compared to conventional
square convolutions.

2. Methodology
The purpose of semantic segmentation is to assign a distinct class label to each pixel

in an image. However, cloud and snow remote sensing images often show characteristics
such as high background complexity, small inter-class variance, and large intra-class vari-
ance, posing great challenges for segmentation tasks. The primary difficulty in semantic
segmentation of cloud and snow lies in their diverse and complex forms. The segmenta-
tion boundaries of cloud and snow are usually tortuous and irregular, presenting various
shapes, colors, and textures, thereby making it hard for precise segmentation. Therefore,
deep neural network models designed for cloud and snow segmentation should not only
accurately identify these morphologically diverse subjects but also possess strong edge
perception capabilities. This enhanced capability is quite essential for better handling of
complex boundaries, preventing false positives or omissions, and ultimately achieving
more accurate segmentation outcomes.

2.1. Framework

To address the challenges mentioned above, this chapter introduces a novel Multi-scale
Feature Mixed Attention Network (MFMANet), as illustrated in Figure 1, which enhances
the accuracy of semantic segmentation for cloud and snow remote sensing images by
integrating the advantages of multiple network sub-modules.

Figure 1. The overall structure of the Multi-scale Feature Mixed Attention Network (MFMANet).

Firstly, MFMANet adopts ResNet50 as the backbone network to extract multi-level
deep features, enabling effective capture of the complex structures of cloud and snow
across various scales. Secondly, to further enhance the model’s capability in context
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modeling, a Multi-scale Pooling Feature Perception (MPFP) is designed. By employing
multi-scale pooling operations, MPFP aids the model in better understanding the structural
characteristics of cloud and snow at different scales. Subsequently, a Bilateral Feature
Mixed Attention (BFMA) is introduced. This module aggregates spatial and channel-wise
feature information, allowing for a detailed capture of boundary characteristics of cloud
and snow regions from multiple perspectives, thereby further improving segmentation
accuracy. Lastly, to recover edge information of cloud and snow and enhance the detail
representation of segmentation results, a Multi-scale Feature Convolution Fusion (MFCF) is
designed. Through multi-scale convolution operations, MFCF fuses features from various
levels, effectively mitigating problems related to edge blurring caused by scale differences.

By combining these network sub-modules, MFMANet can more accurately restore
complex boundary information and precisely segment morphologically diverse cloud
and snow subjects in segmentation tasks. The following sections will provide a detailed
explanation of the design principles of each specific module within the MFMANet model,
highlighting its advantages in the semantic segmentation task of cloud and snow.

2.2. Backbone

In our model, we have adopted ResNet50 as the backbone network. ResNet50 is widely
used in the field of computer vision as a backbone network due to its numerous advantages.
Firstly, compared to earlier networks like VGG, ResNet50 features a deeper architecture
capable of extracting richer features. Moreover, it mitigates the vanishing gradient problem
encountered during the training of deep networks through residual connections. Addition-
ally, while offering lower computational costs than deeper architectures such as ResNet101
and ResNet152, ResNet50 strikes an excellent balance between computational efficiency
and performance, making it particularly suitable for resource-constrained environments.

Furthermore, ResNet50 benefits from pretraining on large-scale datasets, making its
pretrained weights with robust transfer learning capabilities. Many advanced object de-
tection and semantic segmentation networks often choose ResNet50 as their foundational
backbone network, making use of its efficient feature extraction capabilities. Therefore,
ResNet50 not only ensures strong feature learning ability but also takes into account compu-
tational efficiency, feasibility, and transferability. Considering factors such as computational
power and memory, we eventually opted for ResNet50 as our backbone network.

The expression for a residual block can be formulated as Equations (1) and (2):

x′i = Conv3×3(σConv1×1(xi)) (1)

xi+1 = xi + ReLU
(
Conv1×1

{
σ(x′i)

})
(2)

where xi is the input to the residual block, x′i is the output of the intermediate block, and
xi+1 is the output of the residual block. Convk denotes convolution operations with a
kernel size of k, and σ represents the BatchNorm normalization algorithm followed by the
ReLU activation function.

We made two improvements on the backbone network: first, we introduced dilated
convolutions in the L3 and L4 layers of the backbone network, which are designed to
increase the receptive field for better capture of global semantic information, extract multi-
scale features while retaining spatial resolution, and reduce computational cost to some
extent. Second, we removed the last average pooling layer and fully connected layer of
ResNet. The structure of the backbone network is shown in Table 1.
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Table 1. Backbone network structure.

Layer Structure Feature Map Size

Stem 7× 7 conv, stride 2 1/2

3×3 Max pool stride 2 1/4

L1

 1× 1, 64
3× 3, 64 ×3
3× 3, 64

1/4

L2

 1× 1, 128
3× 3, 128 ×4
3× 3, 512

1/8

L3

(Dilated conv)

 1× 1, 256
3× 3, 256 ×6
3× 3, 1024

1/16

L4

(Dilated conv)

 1× 1, 512
3× 3, 512 ×3
3× 3, 2048

1/32

2.3. Multi-Scale Pooling Feature Perception Module (MPFP)

In the architecture of deep neural networks, shallower layers tend to extract local,
low-level edge and texture features, whereas deeper layers are capable of capturing abstract
and more discriminative semantic features. For tasks such as cloud and snow segmen-
tation, effectively utilizing these deep semantic features is very important. Long-range
dependencies within images play a significant role in accurate segmentation. Traditional
convolutional neural networks struggle with learning correlations between long-range
features due to their reliance on limited receptive fields.

To address this challenge, the self-attention mechanism has been introduced [26]. This
mechanism exhibits position-invariance in the field of visual image processing, enabling the
capture of dependencies between distant pixels, thus emphasizing the recognition of global
features. Moreover, the global dependencies provided by the self-attention mechanism
effectively expand the receptive field, aiding in the detection of thin cloud more efficiently.

Based on this principle, we propose Multi-scale Pooling Feature Perception (MPFP),
and embed it in the deepest layer of the backbone network. The design of the MPFP module
aims at effectively perceiving global features, thereby guiding the network to perform cloud
and snow target segmentation more accurately. The structure is shown in Figure 2.

As shown in Figure 2, we use multiple groups of 1×N kernel-sized (e.g., N = 1, 3,
5, 7) horizontal and vertical stripe average pooling layers to process the input high-level
semantic information. Horizontal stripe convolutions are dedicated to learning some
horizontal features of cloud and snow in images, while vertical stripe convolutions focus
on capturing longitudinal features of cloud and snow. The use of multiple groups of stripe
average pooling facilitates better multi-scale global information correlation.

In addition to these, we employ a group of global average pooling (GAP) and global
max pooling (GMP) to extract global features. After obtaining multiple sets of feature
maps through pooling operations, they are concatenated and then passed through a 1 × 1
convolution layer to adjust the number of channels, which is subsequently divided into two
branches. One branch serves as the self-attention branch aimed at fully exploring global
contextual information, while the other branch undergoes a 3 × 3 convolution to enhance
local feature information.
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Figure 2. The structure of the Multi-scale Pooling Feature Perception (MPFP).

In the self-attention branch, depthwise separable convolutions with a 3 × 3 kernel size
are used to map the input feature maps into three distinct representation vectors (query
vector Q, key vector K, value vector V). Following this, Q and K are rearranged, and their
dot product interaction generates a transposed attention map. This attention map is then
dotted with the rearranged V to form a weight map for each pixel. Finally, the weight
map from the attention branch is multiplied with the feature map from the other branch to
produce the output of the MPFP module.
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2.4. Bilateral Feature Mixed Attention Module (BFMA)

Within the realm of computer vision, attention mechanisms have garnered increasingly
widespread application. Channel attention and spatial attention are two critical branches of
attention mechanisms. The core idea is to dynamically adjust the model’s focus on various
parts of the input data, thereby enhancing its feature extraction capability.

Channel attention primarily captures dependencies between channels through global
pooling, enhancing the model’s sensitivity to significant channels. A prominent example
is the Squeeze-and-Excitation Network (SENet) [27], which boosts model performance by
compressing channel dimensions and reallocating weights. Channel attention has shown
remarkable effectiveness in image classification and object recognition tasks, aiding models
in better capturing features relevant to target categories.

Spatial attention focuses on the spatial information within feature maps, typically
using local pooling to capture the importance rate of different regions within an image. This
mechanism enhances target regions while suppressing non-target areas, thus improving the
model’s sensitivity to classification features. In semantic segmentation tasks, introducing
spatial attention helps models more accurately locate target classifications and significantly
enhance boundary features of objects, thereby increasing segmentation accuracy. Recently,
scholars have increasingly combined spatial and channel attention, creating hybrid mecha-
nisms that leverage the strengths of both for feature extraction, effectively capturing both
global and local information from feature maps. A notable example is the Convolutional
Block Attention Module (CBAM) [28], which uses convolution to acquire channel and
spatial information from feature maps to improve object recognition capabilities. However,
CBAM’s reliance on convolution limits its ability to fully understand global contextual
features due to the inherently local nature of convolution operations.

Given the distinct physical properties and uncertain morphologies of cloud and snow,
cloud and snow segmentation networks must not only correctly identify cloud and snow
bodies but also precisely recover boundary information. To address these challenges, we
designed the Bilateral Feature Mixed Attention (BFMA), comprising the Global Feature
Channel Attention (GFCA) and the Multi-Branch Spatial Aggregation (MBSA), as illustrated
in Figure 3.

Figure 3. The structure of the Bilateral Feature Mixed Attention (BFMA).

In Figure 3, the inputs to the BFMA module are high-level features F2 and low-level
features F1. For the low-level feature branch, we enhance the features using a set of
convolution kernels with sizes 1× 1, 3× 3, 5× 5, and 7× 7. These enhanced features
are then fed into the MBSA module as one of its inputs. Unlike traditional single-size
convolution kernels, employing a diverse set of kernel sizes avoids information loss caused
by a single convolution kernel and effectively extracts multi-scale features. For the high-
level feature branch, given its complex channel information, these features are processed
through the GFCA module. This process enhances significant channels while suppressing
others, reducing the interference from noisy features. The output is then upsampled on
the channel axis to match the scale required for the MBSA module’s input. Through
the computations performed in the MBSA module, the features in the target regions of
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the feature maps are amplified, while irrelevant region features are suppressed, thereby
enhancing the model’s capability to identify cloud and snow bodies. Finally, to further
refine the boundary information of cloud and snow, a set of stripe convolutions with sizes
1× 7 and 7× 1 are used to extract boundary features, improving the model’s ability to
recognize edge details. The resulting features undergo channel adjustment via a 1× 1
convolution operation to produce the final output feature map F′.

2.4.1. GFCA Module

Inspired by channel attention mechanisms such as SENet, FCANet [29], and
ECANet [30], we designed the GFCA within the BFMA module, as shown in Figure 4.
To preserve edge features and avoid the loss of boundary features caused by direct global
pooling, the GFCA module is structured with two branches. These branches respectively
use global average pooling and global max pooling to extract global features from the
feature maps, enabling the capture of richer global information.

Figure 4. The structure of the Global Feature Channel Attention (GFCA) module.

Then each branch processes the features through a 1 × 1 convolution to alter the
channel dimensions, enhancing interactions between different channels. The results from
the two branches are then activated using the Gaussian Error Linear Unit (GeLU) activation
function before being concatenated. Next, a 1× 1 convolution is applied to adaptively
focus on the target classification regions, capturing cloud and snow feature information
while suppressing noise from non-target areas.

Finally, the output is weighted by applying the Sigmoid activation function to the
original features, producing the final output features. The computation process can be
summarized by the following formulas:

xmax = µ(Conv(gmax(xi))) (3)
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xavg = µ(Conv(gavg(xi))) (4)

xi+1 = xi + σ(xmax + xavg) (5)

where Gmax and Gavg respectively represent the global max pooling operation and the global
average pooling operation. Conv denotes the 1× 1 convolution operation. Cat represents
the concatenation operation, and σ indicates the non-linear activation function Sigmoid.

2.4.2. MBSA Module

The detection and recognition of cloud and snow bodies are very important in cloud
and snow segmentation. The introduction of spatial attention can better achieve target
body discrimination, reducing missed and incorrect predictions. As shown in Figure 5, we
designed a MBSA within the BFMA, aiming to better learn and identify the main features
of cloud and snow.

Figure 5. The structure of the Multi-Branch Spatial Aggregation (MBSA) module.

The MBSA takes as input the upsampled features U1 from the channel attention
module and the enhanced low-level features U2. The MBSA is roughly divided into three
branches: two input features each form one branch, and the sum of the two input features
forms the intermediate branch. Each branch adaptively enhances the spatial features of
the feature maps through a 1× 1 convolution, followed by a 3× 3 convolution to extract
contextual information, capturing the main features of cloud and snow. This enhances the
network’s ability to recognize cloud and snow, effectively reducing misclassification and
missed detection rates.
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The enhanced features from each branch are passed through the Sigmoid activation
function to obtain three spatial feature weights: Ul , Um, and Ur. The spatial feature weight
Um of the intermediate branch is then pixel-wise multiplied with the spatial feature weights
Ul and Ur of the two input branches. The resulting weight matrices are element-wise
multiplied with the original input features to produce feature maps U′1 and U′2 with cloud
and snow target attention attributes.

Inspired by residual connections, we concatenate the two feature maps and add them
to the original feature map. The result is adjusted via a 1× 1 convolution to align the
channels, producing the output O of the MBSA module. The mathematical expressions
involved in this module are as follows:

Ul = σ(Conv3×3(Conv1×1(U1))) (6)

Ur = σ(Conv3×3(Conv1×1(U2))) (7)

Um = σ(Conv3×3(Conv1×1(U3))) (8)

U f = Ul + Ur + Um (9)

Uout = ReLU(Conv1×1(U f )) (10)

Xi+1 = Xi + Uout (11)

where σ represents the non-linear activation function sigmoid, Cat denotes the concate-
nation operation, and × represents element-wise multiplication. Conv1×1 denotes the
convolution operation with a 1× 1 kernel, and Conv3×3 denotes the convolution operation
with a 3× 3 kernel.

2.5. Multi-Scale Feature Convolution Fusion Module (MFCF)

After extracting the aforementioned multi-scale features, addressing the fusion of fea-
tures across different scales is crucial for achieving accurate cloud and snow segmentation.
Simple methods such as broadcasting mechanisms or straightforward concatenation and
combination of features at different scales struggle to recover the edge details of cloud
and snow. Therefore, to effectively integrate information from different scales, we propose
the MFCF.

As shown in Figure 6, the inputs to the module are two feature maps at different
scales, U1 and U2. For the U1 branch, after upsampling, the feature map is split into two
sub-branches for convolution operations. One sub-branch consists of stripe convolutions
with kernel sizes 1× 3 and 3× 1, while the other sub-branch consists of stripe convolutions
with kernel sizes 1× 5 and 5× 1. The results from these two sub-branches are then added
element-wise.

The U2 branch is similar, but since the input feature map has a larger scale, the kernel
sizes of the stripe convolutions are set to 5 and 7, respectively, producing U′1 and U′2. After
upsampling U′1, it is concatenated with U′2. The concatenated features are then split and
passed through a 1× 1 convolution followed by the Sigmoid activation function. The
outputs are multiplied element-wise, and after a series of convolution operations, the final
output feature map O is obtained.

To prevent the addition of this module from significantly increasing the network’s
parameters, we adopt depthwise separable convolutions within the module, following the
approach of Chollet [31], to reduce the number of parameters.

It is worth mentioning that, considering the characteristics of the cloud and snow
segmentation task, in addition to achieving precise segmentation and classification of the
two main recognition targets (cloud and snow), accurately identifying the edges of cloud
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and snow is also crucial. Better recognition and learning of edge features could significantly
contribute to the accuracy of cloud and snow segmentation. Through observations of large
cloud and snow datasets, we found that the edges of both cloud and snow tend to be
narrow and elongated, with texture distributions with certain directional patterns.

Figure 6. The structure of the Multi-scale Feature Convolution Fusion (MFCF).

Considering the features mentioned above, in the MFCF module, we extensively uti-
lize stripe convolutions. These stripe convolutions can extract features along the directional
patterns of these shapes, effectively recovering texture and edge details of cloud and snow
in specific directions. Compared to traditional square convolution kernels, which may
introduce irrelevant information that interferes with cloud and snow segmentation, stripe
convolutions are more targeted in extracting boundary features. This approach focuses
more on extracting and fusing cloud and snow features, thereby enhancing segmenta-
tion accuracy.

Furthermore, stripe convolutions can process features at multiple scales by combining
kernels of varying lengths and orientations, enabling effective fusion of multi-scale features.
The corresponding expressions are as follows:

U11 = Conv3×1(Conv1×3(U1)) (12)

U12 = Conv5×1(Conv1×5(U1)) (13)

U13 = Conv7×1(Conv1×7(U1)) (14)
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U1 f = U11 + U12 + U13 (15)

U1out = ReLU(Conv1×1(U1 f )) (16)

Xi+1 = Xi + U1out (17)

Among them, U1 represents high-level features, U2 represents low-level features,
Conv denotes depthwise separable convolution operations, and the subscripts indicate
the size of the convolution kernels. Up denotes upsampling operations, σ represents the
sigmoid activation function, and U′s is the element-wise product result after the convolution
operations of branches Us1 and Us2.

3. Experiments
3.1. Dataset

Deep learning is a data-driven approach that relies on training with large datasets.
The dataset forms the foundation for completing deep learning experiments. In this study
of cloud and snow segmentation, we experiment on remote sensing images from the CSWV
and HRC_WHU datasets.

3.1.1. The CSWV Dataset

The CSWV dataset was constructed from WorldView-2 satellite imagery acquired
between 2014–2016 over the North American Cordillera region. It offers a benchmark
for cloud-snow segmentation research. Comprising 27 multispectral images spanning
resolutions from 0.5 to 10 m, the dataset includes diverse environments such as glaciers,
forests, towns, and deserts. After preprocessing (cropping and resizing to 256 × 256 pixels),
it provided 9594 samples addressing challenges posed by spectral ambiguities between
cloud (e.g., cumulus, cirrus) and snow (permanent, unstable, discontinuous), as well as
melting-phase surface conditions. The dataset is also divided into two subsets—CSWV_S6
(6 sub-meter resolution images) and CSWV_M21 (21-m interpolated images)—to study
resolution-dependent feature identifiability. The pixel-level annotations are used to clas-
sify pixels into three categories: cloud (purple), snow (white), and background (black,
encompassing vegetation and bare ground). Some samples are shown in Figure 7.

Figure 7. Sample images and their labels from the CSWV dataset.

3.1.2. The HRC_WHU Dataset

The HRC_WHU dataset has made great contributions to cloud detection research
and the academic community, serving as a high-resolution public cloud detection dataset



Remote Sens. 2025, 17, 1872 14 of 23

that meets the training and testing needs of deep learning models. It includes 150 high-
resolution images with RGB channels, featuring resolutions ranging from 0.5 to 15 m,
covering different regions globally. These images are sourced from Google Earth, inte-
grating satellite imagery, aerial photography, and Geographic Information System (GIS)
data. The associated reference cloud masks were digitized by experts in remote sensing
image interpretation at Wuhan University. Using the HRC_WHU dataset could facilitate
performance benchmarking for deep learning models in image classification tasks. In
Figure 8, we display some images from the dataset. The first row shows the original color
images, while the second row presents the corresponding classification label maps for the
remote sensing images. In these label maps, white areas represent snow cover, and black
areas denote the background, as shown in Figure 8.

Figure 8. Sample images and their labels from the HRC_WHU dataset.

3.2. Experimental Parameter Setting

All experiments in this paper were conducted using the PyTorch 2.3. The computing
environment was set up on a computer with the Windows 10 operating system, equipped
with an Intel Core i5-12400F CPU and an Nvidia GeForce RTX 4070 Ti GPU. The optimizer
we use is Adaptive Moment Estimation (Adam), and the learning rate scheduling strategy
follows the “ploy” method, which is defined by the following formula:

lr = lrbase ×
(

1− e
em

)p
(18)

In this equation, lr is the updated learning rate; lrbase is the base learning rate; e
is the current iteration count; em is the maximum number of iterations; and p controls
the shape of the curve. In all experiments in this work, lrbase was set to 0.001, em was
set to 250, and p was set to 0.9. This is the optimal combination obtained after we try a
variety of hyper-parameter combinations such as lr of 0.0005 and 0.0015, em of 200 and 300.
During the training process, we did not use pre-trained parameters. Due to computational
power and memory size limitations, in the cloud and snow semantic segmentation task,
the batch size was set to 16. To prevent model overfitting, we adopted multiple methods
including data augmentation, dropout, and normalization. The loss function used in the
cloud and snow semantic segmentation study was Binary Cross Entropy with Logits Loss
(BCEWithLogitsLoss).

3.3. Metrics

Our experiments adopted a K× K confusion matrix to evaluate pixel-level classifica-
tion performance in semantic segmentation tasks. As shown in Table 2, in the cloud and
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snow semantic segmentation task, TP (True Positive) represents samples where both the
true class and the model’s prediction are cloud (or snow), FN (False Negative) represents
samples where the true class is cloud (or snow) but the model’s prediction is incorrect,
FP (False Positive) represents samples where the true class is not cloud (or snow) but the
model’s prediction is cloud (or snow), and TN (True Negative) represents samples where
both the true class and the model’s prediction are not cloud (or snow).

Table 2. Confusion matrix structure.

Confusion Matrix
Predicted Value

Positive Negative

True Value Positive TP (True Positive) FN (False Negative)
Negative FP (False Positive) TN (True Negative)

We use Precision (P), Recall (R), F1 Score, Pixel Accuracy (PA), Mean Pixel Accuracy
(MPA), Intersection over Union (IoU), and Mean Intersection over Union (MIoU) as the
evaluation metrics for this experiment. Their mathematical formulas are as follows:

P =
TP

TP + FP
(19)

R =
TP

TP + FN
(20)

F1 = 2× P× R
P + R

(21)

PA =
∑k

i=0 ρi,j

∑k
i=0 ∑k

j=0 ρi,j
(22)

MPA =
1
k

k

∑
i=0

ρi,j

∑k
j=0 ρi,j

(23)

IoU =
TP

TP + FP + FN
(24)

MIoU =
1

k + 1

k

∑
i=0

ρi,j

∑k
j=0 ρi,j + ∑k

j=0 ρj,i − ρi,i
(25)

Here, k represents the object segmentation categories (excluding background), ρi,i

represents the true class, and ρi,j represents the number of pixels belonging to class i but
predicted as class j.

3.4. Ablation Studies

To quantify the contribution of each module in the model, this section conducts
ablation studies by integrating each of the modules designed in this chapter (MPFP, BFMA,
MFCF) into the backbone network one by one, with experiments performed on the CSWV
dataset. As shown in Table 3, we use the MIoU value as the evaluation metric to assess
the effectiveness of each module. According to the ablation study results, it is evident
that all the proposed modules are effective and contribute to achieving precise cloud and
snow segmentation.



Remote Sens. 2025, 17, 1872 16 of 23

Table 3. Ablation study of MFMANet modules.

Method MIoU (%)

Backbone 87.69
Backbone + MPFP 88.32 (0.63 ↑)
Backbone + MPFP + BFMA 88.78 (0.46 ↑)
Backbone + MPFP + BFMA + MFCF 89.17 (0.39 ↑)

Bold indicates the best result, ↑ indicates that the accuracy improved.

In ablation studies, heatmaps are often introduced to visualize the effects of integrating
various modules. We selected two high-resolution remote sensing images from the CSWV
dataset and applied our network to cloud and snow recognition under both thick cloud
and thin cloud meteorological conditions, then utilized the best parameters obtained from
model training to generate heatmaps for different module combinations. As shown in
Figure 9, each remote sensing image corresponds to two rows of heatmaps: the first row
represents the attention heatmap for cloud, and the second row represents the attention
heatmap for snow. The heatmaps visually display feature importance, with regions of
higher model attention appearing in red, followed by yellow-green, and then blue. The
intensity of the red color indicates the level of attention given to key areas. It is evident
from the figures that as modules are progressively integrated, the performance of our cloud
and snow classification network improves. After each module is added, the red areas in the
heatmaps become darker, the yellow-green areas gradually turn blue, and the boundaries
between cloud, snow, and other surface features become clearer. This verifies that the
modules we designed enhance the network’s focus on cloud and snow, achieving better
cloud and snow segmentation.

Notably, when only the MFPF module is added, the main bodies of large-area cloud
and snow can be well identified and focused on, but there are still issues of misclassification
and missed detection. With the addition of BFMA, which introduces spatial attention and
channel attention, it is clear that the model’s ability to recognize the main bodies of cloud
and snow significantly improves, and the boundaries of cloud and snow become more dis-
tinct. After integrating the MFCF module into the model, the boundaries of cloud and snow
become even clearer. Meanwhile, from the heatmaps, we can identify the shortcomings of
our model in cloud and snow segmentation. Under thin cloud meteorological conditions,
there are still some inaccuracies in determining cloud and snow boundaries, and similar
regions are prone to confusion.

• MPFP Module: According to the experimental results, after integrating the MPFP mod-
ule into the deepest layer of the model, the segmentation metric MIoU improved by
0.63%. The experimental results demonstrate that the effective extraction of semantic
information from the deepest layer guided the network in making a preliminary judg-
ment on cloud and snow, as can be seen from the heatmap (C). However, as the deep
semantic information is mixed with a significant amount of noise interference, there
are some misclassifications and missed detections of cloud and snow. More modules
need to be introduced into the network to improve the discrimination of details;

• BFMA Module: We introduced Multi-Branch Spatial Aggregation (MBSA) and Global
Feature Channel Attention (GFCA) through the BFMA module. After integrating the
BFMA module, the MIoU improved by 0.46%. From the heatmaps, it is evident that
from (C) to (B), the misclassifications and missed detections of the main cloud and
snow areas were significantly reduced, and the interference from noisy elements was
suppressed. This allows for better detection of cloud and snow, effectively verifying
that this module can fuse bilateral features and focus better on cloud and snow targets
in the spatial domain;
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• MFCF Module: The experimental results intuitively show that after integrating the
MFCF module into the network, the model’s MIoU improved by 0.39%. It can be seen
that compared to simple feature concatenation, MFCF can effectively fuse multi-scale
features. From the heatmaps, it is also evident that from (B) to (A), with the addition
of the MFCF module, the boundaries of cloud and snow became clearer and more
distinct. This effectively restores the edge details of cloud and snow, verifying that strip
convolution is highly sensitive to linear and edge features and can effectively extract
the boundary features of cloud and snow, resulting in more accurate segmentation.
Therefore, adding the MFCF module is effective for the cloud and snow segmentation
task. It not only fuses multi-scale features effectively but also restores the edge
information of classification targets well.

Figure 9. Heatmaps of cloud and snow under different module combinations. (a) Test image;
(b) MPFP + BFMA + MFCF; (c) MPFP + BFMA; (d) MPFP.

3.5. Comparative Experiments

Through ablation experiments, we have verified the effectiveness of each module in
our model. Next, maintaining consistency in experimental settings, we selected several
classical semantic segmentation deep learning models for comparative experiments on
the CSWV dataset. The evaluation metrics used include Pixel Accuracy (PA), F1 Score,
Mean Pixel Accuracy (MPA), and Mean Intersection over Union (MIoU). The compared
models include ACFNet [32], BiSeNetV2 [33], CvT, CSDNet [34], SegNet [35], HRNet [36],
DeepLabV3Plus [37], DABNet [38], DFN [39], FCN8s, U-Net, PSPNet [40], PAN [41], among
others. We evaluated the performance of these models using both visual segmentation
results and quantitative metrics, accordingly gave the parameters (Params), computational
complexity(FLOPs) to consider our model.
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Table 4 shows the segmentation metrics for all models on the CSWV dataset. Our
MFMANet achieved the best results across all four evaluation metrics. To visually compare
the segmentation performance, we selected seven high-resolution cloud and snow images
from the test set. These images represent various forms of cloud and snow. Figure 10
presents the segmentation results of each model on these seven test images. Overall, our
network accurately identifies the main bodies of cloud and snow with low misclassification
rates. In detail, our model effectively recovers the boundaries of cloud and snow. Compared
to other models, which often misclassify shallow snow and cloud and are less sensitive to
boundary information, our MFMANet demonstrates superior performance, confirming its
effectiveness and broad application prospects in cloud and snow segmentation.

Table 4. Evaluation results of different models on CSWV dataset.

Method PA (%) MPA (%) F1 (%) MIoU (%) Params (M) FLOPs (G)

CvT 89.92 88.47 88.27 78.87 0.82 5.73
DeepLabV3Plus 91.47 90.36 89.93 81.93 7.83 6.03
HRNet 91.63 90.58 90.51 82.82 65.85 23.31
SegNet 91.76 91.41 90.85 83.32 29.48 42.52
BiSeNetV2 91.88 91.53 90.93 84.83 3.62 3.20
DABNet 91.91 91.68 90.77 85.47 0.752 1.27
FCN8s 92.07 91.72 91.55 86.55 18.64 20.06
ACFNet 92.54 92.27 91.73 86.53 89.97 99.32
PSPNet 92.71 92.57 91.86 87.46 49.07 46.07
PAN 92.82 93.93 92.67 87.67 23.65 5.37
DFN 93.52 93.86 92.79 87.49 42.53 10.51
CSDNet 93.66 93.33 93.28 88.28 8.66 21.90
UNet 93.98 94.35 93.61 88.44 13.41 30.94
MFMANet 95.12 94.69 94.34 89.17 25.39 34.78

Figure 10. Visualization of segmentation performance on the CSWV dataset. (a) Test image;
(b) Ground truth; (c) MFMANet; (d) U-Net; (e) CSDNet; (f) DFNNet; (g) PAN; (h) PSPNet;
(i) ACFNet; (j) DeepLabV3+. In this figure, pink represents cloud, black represents background, and
white represents snow.
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Our model has achieved very good experimental results on the CSWV dataset, espe-
cially with good detail segmentation ability for cloud/snow images. In order to demon-
strate the advantages of our algorithm more clearly, as shown in the Figure 11, it is evident
that our model exhibits strong perception ability for cloud boundaries and can effectively
segment both in areas where cloud and snow coexist.

Figure 11. Detailed experimental results. (a) Test image; (b) Ground truth; (c) MFMANet; The area in
the green rectangle represents that MFMANet has good segmentation ability for cloud/snow details
and overlapping areas. In this figure, pink represents cloud, black represents background, and white
represents snow.

3.6. Generalization Experiments

The generalization experiment aims to evaluate the ability of our proposed MFMANet
to generalize to unseen datasets, assessing the model’s robustness and transferability while
also exploring its application potential. In this section, we conducted experiments using the
publicly available HRC_WHU dataset from Wuhan University, validating the superiority
of our network in cloud and snow segmentation through both visual comparisons of
segmentation results and evaluation metrics. During the experiment, we adhered to the
principle of controlling variables, maintaining consistent experimental environments and
parameter settings. As shown in Table 5 our model achieved 95.22%, 94.88%, 94.27%, and
91.03% on the four key metrics: PA, MPA, F1 Score, and MIoU, respectively. All these
results represent the best performance among all compared models.

Additionally, we know that the HRC_WHU dataset contains various backgrounds,
including snow, buildings, water bodies, and vegetation. Considering the specific focus of
our cloud and snow segmentation task, we selected five cloud images with snow as the
background from the test dataset for comparative experiments. As shown in Figure 12, our
model demonstrated wonderful segmentation performance on the test images. In contrast,
visualization results from other networks, such as DeepLabV3+ and DFN, exhibited no-
ticeable misclassifications for some pixels. On the other hand, our MFMANet achieved
low misclassification rates, accurately identifying cloud layers and effectively recovering
boundaries. Therefore, we conclude that MFMANet demonstrates strong robustness in
cloud and snow segmentation tasks and possesses certain transferability.
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Table 5. Evaluation results of different models on HRC_WHU dataset.

Method PA (%) MPA (%) F1 (%) MIoU (%)

CvT 93.50 93.36 92.27 87.47
FCN8s 94.27 94.21 93.53 89.83
HRNet 94.29 94.93 93.02 88.50
UNet 94.34 94.32 93.47 88.96
PAN 94.37 94.23 93.12 88.72
BiSeNetV2 94.45 94.29 93.27 89.03
DABNet 94.47 94.31 93.36 89.17
DeepLabV3Plus 94.50 94.68 93.45 89.51
ACFNet 94.52 94.70 93.52 89.53
PSPNet 94.55 94.77 93.57 89.46
SegNet 94.59 94.93 93.59 89.67
DFN 94.72 94.86 93.63 90.19
CSDNet 94.86 95.03 93.80 90.54
ACFNet 95.09 94.91 93.76 90.59
MFMANet 95.22 94.88 94.27 91.03

Figure 12. Comparison of segmentation results on the HRC_WHU dataset. (a) Test image; (b) Ground
truth; (c) MFMANet; (d) OCRNet; (e) ACFNet; (f) PSPNet; (g) DeepLabV3+; (h) DFN. In this figure,
black represents background, and white represents cloud.

4. Discussion
In addition to the above experiments, we have conducted additional validation using

more complex and diverse imagery scenarios, including mountainous terrain, urban areas,
bare soil, and vegetation. Shown as Figure 13, our experimental results demonstrate that
the proposed algorithm maintains consistent performance in distinguishing cloud and
snow, even when they exhibit similar spectral characteristics with urban environments.

Our work has achieved promising experimental results in the cloud and snow seg-
mentation task. However, we must acknowledge there are still some limitations. First,
cloud and snow exhibit highly similar morphologies and possess extremely complex and
challenging boundary characteristics. Although our proposed MFMANet can effectively
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distinguish large-scale cloud and snow regions, further improvements are needed to resolve
small-scale cloud and thin snow layers.

Looking ahead, with the continuous advancement of radar remote sensing and optical
remote sensing technologies, our method holds significant potential for future applications.
In terms of data selection, given the spatial heterogeneity of snow, we can explore the
use of remote sensing satellites or drone data with higher revisit frequencies and spatial
resolutions to acquire more precise cloud and snow images. Additionally, we can integrate
multi-source auxiliary data, such as temperature and elevation information. Regarding
model development, we can experiment with more mainstream deep learning architectures
or attention mechanisms, continuing to explore network structures tailored for cloud and
snow segmentation, enabling more accurate segmentation under more complex meteoro-
logical conditions.

Figure 13. Cloud and snow segmentation validation using more complex and diverse imagery sce-
narios. In this figure, pink represents cloud, black represents background, and white represents snow.

5. Conclusions
This paper addresses the segmentation problem of coexisting cloud and snow targets

in remote sensing images using deep learning approach. We propose a Multi-scale Feature
Mixed Attention Network (MFMANet) for cloud/snow segmentation tasks, which could
not only accurately identify the main bodies of cloud and snow but also effectively captures
their edge details, achieving an MIoU of 89.17% on the CSWV dataset. The various network
sub-modules proposed in this paper, such as MPFP, BFMA, and MFCF, could enable
more targeted attention to cloud and snow regions, facilitating precise delineation of snow-
covered areas. The method proposed in this paper can also provide cloud removal solutions
for preparing large-scale, high-resolution image datasets for snow depth estimation in
high-latitude cold regions around the world. This capability inspires further research
into snow depth estimation, which is very crucial for water resource management and
sustainable development in the future.
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