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Abstract

Plant diseases impair the yield and quality of crops and threaten the health of natural plant communities. Epidemiological models can predict disease
and inform management. However, data are scarce, because traditional methods to measure plant diseases are resource intensive, which often limits
model performance. Optical sensing offers a methodology to acquire detailed data on plant diseases across various spatial and temporal scales. Key
technologies include multispectral, hyperspectral, and thermal imaging, as well as light detection and ranging; the associated sensors can be installed
on ground-based platforms, uncrewed aerial vehicles, airplanes, and satellites. However, despite enormous potential for synergy, optical sensing and
epidemiological modeling have rarely been integrated. To address this gap, we first review the state of the art to develop a common language accessible
to both research communities. We then explore the opportunities and challenges in combining optical sensing with epidemiological modeling. We
discuss how optical sensing can inform epidemiological modeling by improving model selection and parameterization and providing accurate maps of
host plants. Epidemiological modeling can inform optical sensing by boosting measurement accuracy, improving data interpretation, and optimizing
sensor deployment. We consider outstanding challenges in (A) identifying particular diseases; (B) data availability, quality, and resolution; (C) linking
optical sensing and epidemiological modeling; and (D) emerging diseases. We conclude with recommendations to motivate and shape research and
practice in both fields. Among other suggestions, we propose standardizing methods and protocols for optical sensing of plant health and developing
open access databases including both optical sensing data and epidemiological models to foster cross-disciplinary work.

Keywords: artificial intelligence, data capture standards, data fusion, disease identifiability, disease surveillance, error propagation, machine learning,

model parametrization, remote sensing, spectral signature

Plant diseases affect the yield, quality, and profitability of crops
and forestry products. Estimated impacts vary, making it difficult
to unambiguously quantify losses (Acuiia et al. 2023; Oerke 2006;
Savary et al. 2019). However, the consequences of disease can be
substantial and can even impact food security (Strange and Scott
2005). Analogous impacts on ecosystem services are caused by
pathogens of natural vegetation (Boyd et al. 2013). Some pathogens
are endemic, routinely causing disease in locations within which
they are well established, at least in the absence of management.
Other pathogens are emerging, that is, increasing in incidence, ge-
ographic range, or host range (Ristaino et al. 2021). Outbreaks of
emerging pathogens are increasingly well documented (Fielder et al.
2024; Jeger et al. 2023; Rosace et al. 2023), and rates of invasion
are escalating (Ristaino et al. 2021).

Plant disease epidemics develop across multiple spatial and tem-
poral scales. Models tracking the dynamics of disease in time and
space, as well as the epidemiological mechanisms causing these
dynamics, have been improved and have become increasingly pop-
ular over the past few decades (Gilligan 2008; Madden et al. 2007).
The current state of the art (see below) often involves complex
spatiotemporal epidemic models fitted using advanced Bayesian
techniques (Godding et al. 2023; Pleydell et al. 2018; Soubeyrand
et al. 2009). Modeling provides a rational basis for integrating what
is known with what is unknown, but can reasonably be inferred, to
predict the future epidemic dynamics. Predictions from such mod-
els can then be used to design surveillance and control strategies
(Cunniffe and Gilligan 2020; Parnell et al. 2017). However, to make
concrete predictions for a specific pathosystem, models must be fit-
ted to and validated using experimental or observational data, and
a lack of suitable data is often a significant limiting factor.

In part, this data limitation is because traditional methods for the
detection and quantification of plant diseases are time and resource

intensive, largely because they involve human observers (Bock et al.
2020). Proximal and remote sensing—which can be distinguished
from each other in terms of the distance separating sensor and target
(Oerke 2020)—have great potential in this context. Many pathogens
cause changes in plant health that can be detected not only in the vis-
ible spectral range but also beyond that range (Mahlein et al. 2024).
Among many examples are tan spot on wheat leaves (caused by the
fungus Drechslera tritici-repentis) that results in a characteristic
reduction in reflectance in the near-infrared plateau (Bohnenkamp
etal. 2021) and latent infections by Venturia inaequalis (apple scab)
that were detected as spots of lower temperature by capturing light
in the thermal infrared range (Oerke et al. 2011). Use of optical sens-
ing to measure these signals is thus particularly attractive. Here, we
use “optical sensing” as acommon term to describe a range of prox-
imal and remote sensing techniques making use of electromagnetic
radiation across a potentially wide spectral domain, including ul-
traviolet (UV; a list of acronyms used is given in Table 1, and a
glossary is provided in the Supplementary Material), visible, and
infrared (IR).

Optical sensing technologies and platforms have advanced in the
past decades, meaning that cheap uncrewed aerial vehicles (UAVs),
standard piloted aircraft carrying affordable imaging sensors, and
spaceborne systems collecting ever higher-resolution (spatial and
spectral) imagery have become available (X. Jin et al. 2021). As a
result, a portfolio of digital systems can now deliver optical sensing
data at unprecedented spatial, spectral, and temporal resolutions and
scales. Optical sensing of vegetation is now a leading focus in re-
mote sensing science, allowing us to use nested data that span a wide
range of spatial scales (Gamon et al. 2019). Further developments,
including hyperspectral satellite imagery at high temporal and spa-
tial resolutions, will accelerate the use of remote sensing data to
detect and map disease and inform epidemiological modeling.

Vol. 115, No. 10, 2025 1261



Phytopathology

Inplant disease research, there is a significant focus on epidemiol-
ogy and modeling. However, it is hitherto uncommon for modelers
to use optical sensing-derived measurements of plant diseases. Al-
though there are some exceptions in which optical sensing is used
to inform summaries such as logistic or Gompertz disease progress
curves (Gongora-Canul et al. 2020; Zhang et al. 2023), only few
papers make meaningful links between optical sensing and the state-
of-the-art approaches in epidemiological modeling (Camino et al.
2021; Leclerc et al. 2023). Indeed, in part due to deficiencies in cur-
rent training programs and a lack of training focusing on applied
data science, most individuals interested in sensing technologies for
plant disease do not have a background in epidemiological model-
ing. On the other hand, disease modelers, who can often be skilled
data scientists, generally lack understanding of the opportunities
and challenges involved in processing and interpreting remotely
sensed information. Significant links between the optical sensing
community and disease modelers remain absent, despite the logical
benefits of such collaboration (Heim et al. 2019).

Excited by the possibilities of building such links, a subset of
the authors of this paper organized a Satellite Meeting of the
2023 International Congress of Plant Pathology in Lyon: “How
to combine remote sensing with epidemiological modelling to
improve plant disease management?” By assigning all attendees
preparatory work focusing on identifying challenges in linking
the fields, and by making time for didactic talks in the meet-
ing’s program (archive: https://reseau-modstatsap.mathnum.inrae.
fr/episense), attendees from backgrounds predominantly in remote
sensing or epidemiological modeling were able to engage and dis-
cuss. By working collaboratively, we came to a consensus view on
the opportunities—and challenges—in linking the two fields and al-

TABLE 1
List of acronyms
Acronym Full form
uv Ultraviolet
IR Infrared
UAVs Uncrewed aerial vehicles
RGB Red-green-blue
CIR Colorinfrared
HSI Hyperspectral imaging
NIR Nearinfrared
SWIR Shortwave infrared
TIR Thermal infrared
LiDAR Light detection and ranging
VNIR Visible and nearinfrared
MSI Multispectral imaging
BRDF Bidirectional reflectance distribution
function
RTM Radiative transfer models
ML Machine learning
0QDbS Olive quick decline syndrome
CLS Cercospora leaf spot
CNN Convolutional neural networks
PLSR Partial least squares regression
SSL Self-supervised learning
DA Data assimilation
PPV Positive predictive value
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lowing epidemiological modeling to inform work in optical sensing,
and vice versa.

This paper is the output of this work. We review the opportunities
and challenges in combining optical sensing with epidemiological
modeling. We start by describing the state of the art in each field.
Although thorough reviews of both fields are available (Bock et al.
2020; Cunniffe and Gilligan 2020; Fabre et al. 2021; Gilligan and
van den Bosch 2008; Mahlein et al. 2024; Oerke 2020), in part, we
wanted to use this paper to develop acommon language accessible to
both research communities. This requires a more detailed explana-
tion. To illustrate what might be possible, we highlight opportunities
for optical sensing to contribute to epidemiological modeling, and
vice versa. We then review the outstanding challenges and cate-
gorize them into those associated with (A) identifying particular
diseases; (B) data availability, quality, and resolution; (C) linking
optical sensing and epidemiological models; and (D) emerging dis-
eases. We conclude with a set of recommendations to provide a
road map to motivate and shape future research and practice in both
fields.

Current State of the Art

Optical sensing of plant diseases

Sensors. The most commonly used sensors are standard red-
green-blue (RGB) and color-infrared (CIR) cameras. These are
affordable, portable, and capable of millimeter-scale spatial res-
olution when used in proximal sensing settings (Anderegg et al.
2024; Barbedo 2016; Bock et al. 2020). However, such sensors
only capture images in three spectral bands, reducing the number
of spectral characteristics that can be monitored. Despite their fine
spatial resolution and low prices, RGB and CIR cameras are opti-
mized to reflect human vision and thus do not provide quantitative
measurements of light reflection and absorption.

Multispectral imaging systems, in contrast, operate across multi-
ple discrete spectral bands and are often designed to quantitatively
measure the intensity of electromagnetic radiation. Because the
spectral bands tend to be narrower than those used in RGB and
CIR sensors, this enables more precise estimation of changes in
specific absorption features. They also often cover spectral regions
beyond the visible, enabling characterization of pigments or struc-
tural plant traits (Blasch et al. 2023; Xie et al. 2008). Hyperspectral
imaging (HSI or imaging spectroscopy) captures light across a much
wider spectral range in narrow contiguous bands, including UV
(250- to 400-nm wavelength), visible (400 to 700 nm), near-infrared
(NIR; 700 to 1,300 nm), and shortwave infrared (SWIR; 1,300 to
2,500 nm), and has a high spectral resolution (Brugger et al. 2023;
Fiorani et al. 2012; Mahlein et al. 2019; Mishra et al. 2017; Rayhana
et al. 2023; Sari¢ et al. 2022).

Very generally, plant and fungal pigments (e.g., chlorophyll, an-
thocyanins, carotenoids, melanins) affect reflectance spectra in the
UV and visible ranges (Bohnenkamp et al. 2019b; Brugger et al.
2023; Gay et al. 2008). Reflectance in the visible and NIR/SWIR
ranges carries information about foliar plant traits relevant to dis-
ease, including nutrient and water content, photosynthetic capacity,
pigment, and phenolic compound concentration, as well as other
physiological and morphological properties of plants, including
leaf area index (Delalieux et al. 2008; Garrett et al. 2022; Gold
et al. 2020b, c; Mahlein et al. 2019; Mishra et al. 2017; Singh et al.
2023; Vanbrabant et al. 2019). Reflectance in the red edge area
(680 to 750 nm) is sensitive to plant stress because it is affected
by chlorophyll absorption (Horler et al. 1983). HSI has been ex-
tended to retrieve passive solar-induced fluorescence in the field
and with airborne hyperspectral sensors (Mohammed et al. 2019),
in contrast to classical chlorophyll fluorescence, which is mainly
limited to controlled environments (Ajigboye et al. 2016). This
makes HSI more useful for disease measurement (Calderén et al.
2013; Mahlein et al. 2018; Zarco-Tejada et al. 2018) and monitoring
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(Porcar-Castell etal. 2021). HSI can quantify subtle changes in plant
constituents, and the rich information content of hyperspectral data
is promising for disease detection and quantification.

Recent publications have established scalable detection of mul-
tiple economically important diseases caused by bacterial (Schoofs
et al. 2020; Zarco-Tejada et al. 2018), fungal (Sapes et al. 2022),
oomycete (Hornero et al. 2021), and viral (Galvan et al. 2023)
pathogens asymptomatically with visible SWIR hyperspectral im-
agery collected via aircraft. Once the most discriminatory wave-
lengths are identified, hyperspectral sensors may be replaced with
cheaper multispectral sensors that capture fewer spectral bands
located at the most informative spectral regions sensitive to the
biotic-induced physiological changes (Bohnenkamp et al. 2019b;
Poblete et al. 2020).

Thermal infrared (TIR) imaging (aka thermography) captures
radiation in the long-infrared, thermal range (8- to 14-pum wave-
length), providing information complementary to HSI. Typical out-
puts include maps of canopy or leaf temperature normalized by air
temperature (Still et al. 2019), thermal-based indices such as the
crop water stress index (Jackson et al. 1981) and the index of stom-
atal conductance (Jones 1999). For foliar diseases, plant—pathogen
interactions can disrupt stomatal function, leading to changes in
temperature within affected leaf areas (Bassanezi et al. 2002;
Hellebrand et al. 2006; Smith et al. 1986). Vascular pathogens
can block plant vessels, which reduces transpiration rates, and
this can also be quantified by TIR imaging (Calderén et al. 2015;
Zarco-Tejada et al. 2018). TIR imaging in controlled environments
has achieved presymptomatic detection in several pathosystems
(Chaerle et al. 2004; Oerke et al. 2011), although reliable signals
of presymptomatic disease appear absent for others (Pineda et al.
2021). In the field, higher severities of Dothistroma needle blight
in pine trees and Septoria tritici blotch in wheat have been associ-
ated with increased canopy temperatures via TIR imaging (Smigaj
et al. 2019; Wang et al. 2019). TIR imaging is potentially a pow-
erful tool for detecting plant stress (Messina and Modica 2020).
However, its outputs are not pathosystem specific and can be con-
founded with abiotic stress (Kuska et al. 2022; Pineda et al. 2021),
and even without stress, temperature distributions in field canopies
vary in space and time. Hence, TIR imaging is expected to be most
useful in combination with other sensing technologies (Berger et al.
2022).

Light detection and ranging (LiDAR) is an optical sensing tech-
nology that uses reflected laser pulses to measure distances (Wang
and Menenti 2021), generating dense 3D point clouds to map an
environment. The technology is increasingly used to measure the
structural characteristics of plants (Omasa et al. 2007), especially
crops (S. Jin et al. 2021; Rivera et al. 2023). Applications include
detecting individual plants, classifying them according to species
(Fassnacht et al. 2016), and estimating plant height, leaf area index
(Wang and Fang 2020), canopy density and volume, dry matter,
and yield. Because structural and geometric plant traits captured by
LiDAR can be affected by pathogens, in principle, LIDAR can also
be used to measure plant diseases, although examples are rare (see,
for example, Husin et al. 2020). More often, LIDAR has been used in
conjunction with other sensing techniques, such as for Dothistroma
needle blight (Smigaj et al. 2019) or wilt disease (Yu et al. 2021)
and for vascular wilt (“Blackleg”) disease in potato (Franceschini
et al. 2024), because LiDAR provides information complementary
to other sensing methods.

Platforms and spatiotemporal scales. Several platforms have
been developed to gather proximal and remote sensing measure-
ments (X. Jin et al. 2021). Some platforms are stationary, fixed
in place by poles (Parmentier et al. 2021), cable suspension
(Kirchgessner et al. 2016), or rails (Virlet et al. 2017). Others are
mobile, ranging from handheld (Behmann et al. 2018; Cerovic et al.
2012) to those mounted on human-driven (Buelvas et al. 2023)
and/or robotic vehicles (Cubero et al. 2020; Pearson et al. 2022;
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Underwood et al. 2017), UAVs (Aasen et al. 2018; Kim et al. 2019;
Kouadio et al. 2023; Sankaran et al. 2015), piloted aircraft (Kampe
et al. 2010; Wang et al. 2020), high-altitude balloons (Hobbs et al.
2023), and satellites (Paek et al. 2020; Qian 2021; Rast and Painter
2019).

The features of the sensor-platform combination determine the
spectral, temporal, and spatial characteristics of the observations
and typically trade off detail (resolution), scale (extent), and fidelity
(precision and accuracy) (we discuss these trade-offs in more detail
in Challenge Biii). We note that, because the sensors and platforms
are undergoing rapid development, these trade-offs are continuously
changing. Mass production of UAV components makes it possible
to relatively cheaply and regularly collect spatially detailed plot or
landscape-scale images that until recently required piloted aircraft.
Thanks to the miniaturization of sensors, both piloted aircraft and
UAVs can carry sensors chosen for their sensitivity to specific veg-
etation traits of interest to an epidemiological problem (X. Jin et al.
2021).

New and forthcoming imaging spectroscopy satellites include the
German Aerospace Center’s Environmental Mapping and Analy-
sis Program (EnMAP) (Chabrillat et al. 2024; Storch et al. 2023),
NASA'’s Surface Biology and Geology (SBG) (Cawse-Nicholson
et al. 2021), the Italian Space Agency’s PRecursore IperSpettrale
della Missione Applicativa (PRISMA) (Tagliabue et al. 2022), and
ESA’s Copernicus Hyperspectral Imaging Mission for the Envi-
ronment (CHIME) (Celesti et al. 2022). These will provide vast
open datasets that can be used for plant disease measurement, with
smaller missions such as CSIMBA-IPERLITE (a non-commercial
in-orbit demonstration mission of the European Union) adding
hyperspectral capacity at a higher spatial resolution (20 m)
(Livens et al. 2024). These systems provide high spectral and
temporal resolutions (sub-monthly) but intermediate spatial res-
olutions (30 m). Current thermal imaging satellites, such as
NASA’s ECOSTRESS, have insufficient spatial resolution for ef-
fective plant disease monitoring (>100 m). However, upcoming
high-resolution TIR satellite sensors, such as NASA’s Landsat Next
and ESA’s Land Surface Temperature Monitoring (LSTM), will of-
fer improved revisit intervals (3 to 6 days) and spatial resolution
(50 to 60 m).

These advances promise to improve the characterization of plant
diseases, but the relatively coarse spatial resolution remains a chal-
lenge. The commercial satellite industry has sought to fill this gap.
Recent developments in satellite design have improved the spatial-
temporal resolution and scalability of spaceborne sensing platforms,
making them more suitable for disease detection (Kanaley et al.
2024; Poblete et al. 2023; Raza et al. 2020). Largely, this has be-
come possible thanks to developing satellite constellations, groups
of satellites working together, often designed to complement each
other in terms of coverage, revisit time, or other functions. For
example, Planet Lab’s cube multispectral satellite constellations
provide global imagery with high spatial resolution and frequent
revisit times. Planet’s SuperDoves collect eight-band images at a
3-m resolution with a 24-h revisit time (Tu et al. 2022), and the
SkySat C constellation captures four-band images with a 0.5-m res-
olution at revisit intervals set by tasking contracts (Planet 2023).
In contrast, MAXAR’s 16+ band Worldview-3 has a more tradi-
tional satellite design that offers a spatial resolution of 0.3 m for
panchromatic imagery, 1.24 m for visible and NIR imagery, and
3.7 m for SWIR imagery (Longbotham et al. 2015). Other emerging
systems offer moderate spatial resolution, but in the hyperspectral
domain, including Planet Tanager (30 m, 420 bands; Planet 2024),
Kuvaspace Hyperfield-1 (25 m, 150 bands; Kuvaspace 2024),
PIXXEL (5 to 10 m, 250 bands; Petropoulos et al. 2024), and Or-
bital Sidekick GHOSt (8 m, 500 bands; Sanders et al. 2024). In the
thermal domain, Hydrosat’s 16 constellation promises TIR imagery
targeted for agricultural use at a 30-m spatial resolution (Lalli et al.
2022).
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Data preprocessing and analysis. To measure plant diseases
using optical sensing, the data require preprocessing (Aasen et al.
2018; Bioucas-Dias et al. 2013) and extraction of disease measures
(Behmann et al. 2015; Verrelst et al. 2019). The raw signal acquired
by a sensor must be converted to a meaningful biophysical quan-
tity, such as surface reflectance (for multispectral imaging and HSI;
Daniels et al. 2023) or temperature (for TIR; Messina and Modica
2020), via radiometric calibration (Sterckx and Wolters 2019;
Sterckx et al. 2020). To convert hyperspectral imagery into sur-
face reflectance, it is essential to measure irradiance (the amount
of incoming sunlight) at the time of image capture. To achieve
this, irradiance should be recorded simultaneously with the im-
agery. This signal conversion should incorporate corrections for
both the sensor and the local environmental conditions. Further-
more, plant canopies can have different patterns of sunlit versus
shaded, depending on solar and view geometries. This can con-
found analyses when multiple images captured at different times are
stitched together (mosaicking; Ghosh and Kaabouch 2016; Gémez-
Reyes et al. 2022) or compared, although bidirectional reflectance
distribution function (BRDF) approaches can correct for these ef-
fects (Collings et al. 2010; Queally et al. 2022). Terrain slopes may
also distort the images, in which case topographic corrections are
needed (Soenen et al. 2005; Vreys et al. 2016a, b). Open-source
packages are available that implement BRDF and topographic cor-
rections (Chlus et al. 2023). For high-altitude platforms, light travels
large distances, making atmospheric correction essential (Bioucas-
Dias et al. 2013; Sterckx et al. 2016). This can be done by inverting
radiative transfer models (Verhoef and Bach 2003). In HSI, single
pixels can contain spectra from different “pure materials,” or end-
members (e.g., soil, vegetation, and shadow; Galvan et al. 2023),
and spectral unmixing can tease out the spectra of individual end-
members for each pixel (Bioucas-Dias et al. 2013; Gu et al. 2023).
Each pixel also needs to be attributed to a spatial location by geo-
referencing (Aasen et al. 2018), which may require ground control
points, inertial measurement units, global positioning systems, or
a combination of these (Bryson et al. 2010; Turner et al. 2014).
When multiple sensors are used, their spatial co-registration is de-
sirable (Scheffler et al. 2017). Several studies offer examples of
standardization and assessment of reliability of the data acquired
using multispectral and hyperspectral sensors in controlled environ-
ments (Paulus and Mahlein 2020) via ground-based measurements
(Detring et al. 2024) and on-board UAV platforms (Aasen et al.
2018).

After data preprocessing, meaningful disease measures must be
extracted, such as disease presence/absence, incidence, or severity.
To capture disease presence/absence or distinct qualitative classes
of disease intensity (nominal scales; Bock et al. 2020), classifi-
cation methods need to be used, whereas to capture quantitative
measures of disease (e.g., incidence or severity), regression meth-
ods are more suitable. This can be done using parametric regression,
machine learning (ML), radiative transfer modeling (RTM) (see
Challenge Ai below), or a combination of these methods (Verrelst
et al. 2019). A range of ML approaches have gained particular
prominence because of their capacity to handle complex, high-
dimensional datasets (Behmann et al. 2015), including penalized
linear regression (e.g., partial least squares regression; Geladi and
Kowalski 1986), kernel-based methods (e.g., support vector ma-
chine; Tuia et al. 2011), decision trees (e.g., random forest; Belgiu
and Drdgut 2016), and artificial neural networks (especially deep
learning; Ispizua Yamati et al. 2024; Osco et al. 2021; Yuan et al.
2020). Each of the ML approaches mentioned above can be for-
mulated as a classification or a regression method. Furthermore,
in ML-based image analysis, we can train ML models to detect
objects of certain types within images (e.g., diseased plants or fun-
gal fruiting bodies) or perform image segmentation, in which we
subdivide an image into multiple regions, according to certain cri-
teria (e.g., to separate diseased leaf areas from healthy leaf areas).
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We mainly focus on supervised ML, which requires reference mea-
surements of disease to be used as training and testing datasets, but
we consider self-supervised ML, which requires minimal reference
measurements in Challenge Bi below.

Current state of the art in optical sensing of plant diseases.
Several studies have reported plant disease measurements using
various combinations of platforms and sensors across a range of
spatial and temporal scales. For example, ground-based hyperspec-
tral radiometers were used to detect and quantify Septoria tritici
blotch in diverse wheat cultivars (Anderegg et al. 2019; Yu et al.
2018). Further examples include detection and quantification of
yellow (stripe) rust in wheat using UAV-based multispectral (Su
et al. 2018, 2019) and HSI (Guo et al. 2021) and HSI using both a
ground-based vehicle and UAVs (Bohnenkamp et al. 2019a). Wheat
blast has been quantified using UAV-based multispectral imaging
(Gongora-Canul et al. 2020). Several UAV-based studies reported
quantification of potato late blight using RGB imaging (Sugiura
et al. 2016), multispectral imaging focusing on quantifying low
severities (Franceschini et al. 2019), and detection of the disease
using HSI (Shi et al. 2022). Tar spot disease in corn has been quan-
tified with the help of ground-based RGB imaging (Lee et al. 2021,
2025), UAV multispectral imaging (Oh et al. 2021; Zhang et al.
2023), and a combination of multispectral and thermal imaging
(Loladze et al. 2019). Ground robotics and rovers that automate
side and lower canopy disease data acquisition offer a promising
complement to aerial imaging (Liu et al. 2022a, b, 2023).

For some pathogens at certain spatial scales, it is now firmly
established that visible to SWIR imaging spectrometers mounted
on piloted aircraft (e.g., AVIRIS-NG; Chapman et al. 2019) are
capable of pre- and post-symptomatic disease detection (Galvan
etal. 2023; Hornero etal. 2021; Sapes et al. 2022; Zarco-Tejada et al.
2018, 2021). Satellite data have been used to map and monitor host
plants across large areas (e.g., citrus in China; Xu et al. 2021) and to
detect both systemic (e.g., Huanglongbing in citrus; Li et al. 2015)
and localized (e.g., foliar grapevine downy mildew; Kanaley et al.
2024) diseases. More recently, optical satellite data have been used
to track the spread of rice blast, and ground-based hyperspectral
reflectance was used to verify the satellite-derived predictions (Tian
et al. 2023).

We highlight two research programs that have achieved encourag-
ing success in sensor-based disease detection and/or measurements
in two contrasting pathosystems (systemic versus localized): Xylella
fastidiosa in olives (Box 1; a xylem-limited bacterial pathogen of
a woody perennial crop) and Cercospora beticola in sugar beet
(Box 2; a foliar fungal pathogen of an annual field crop). We note
that the set of examples we have identified above is far from being
complete. Many studies have achieved high accuracies of disease
detection/quantification. However, with a few exceptions (Box 1),
investigations have been conducted for a single disease in the ab-
sence of abiotic stress, and often in a single location. It is not clear
whether the sensing signatures derived from these studies would
be robust with respect to presence of other biotic and/or abiotic
stresses (Challenge Aii) and to what extent the outcomes would be
transferable to other host genotypes or other geographic locations
(Challenge Aiii).

Epidemiological modeling

Data- versus process-based models. In categorizing model
structure, a key distinction is between data- and process-based mod-
els (Madden 2006). Data-based models (aka empirical or correlative
or statistical models; Gonzalez-Dominguez et al. 2023) are driven
entirely by data and do not attempt to capture or track the biologi-
cal mechanisms underpinning disease or disease risk. This class of
model has a long history, with mathematical and statistical methods
becoming increasingly complex. Current work often emphasizes
models including complex nonlinear responses and/or multiple pre-
dictor variables (Shah et al. 2019), as well as statistically sound
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treatments of different types of measurements and their associated
error structures (Garrett et al. 2004; Madden et al. 2007). Promising
recent developments echo trends in epidemiology more broadly (Li
et al. 2017) to develop techniques for combining multiple predic-

BOX 1

Aerial avengers: Remote sensing of Xylella fastidiosa
on olives

The vectorborne, xylem-limited bacterium X. fastidiosa causes
serious diseases in a range of cultivated and wild plants, including
Pierce’s disease in grapevines and variegated chlorosis in citrus
(EFSA et al. 2022). In 2013, the first report of X. fastidiosa in
the European Union came from Italy (EFSA 2013), where the
pathogen was recognized to cause olive quick decline syndrome
(OQDS; Martelli et al. 2016). OQDS has subsequently killed
millions of olive trees in southern Europe (Bajocco et al. 2023),
with reports now coming from several European Union countries.
Nevertheless, remote sensing of OQDS represents an inspiring
success.

Substantial reference datasets have been collected for OQDS
by quantitative polymerase chain reaction (QPCR; Harper et al.
2010) assays and in situ inspections and linked to aircraft (Zarco-
Tejada et al. 2018, 2021) and satellite (Hornero et al. 2020) remote
sensing measurements. Combining results from visible to near
infrared hyperspectral imaging (HIS) and thermal infrared (TIR)
imaging sensors onboard piloted aircraft, Zarco-Tejada et al. (2018)
detected OQDS symptoms in individual olive trees, often before
they were visible to the naked eye. Camino et al. (2021) extended
this approach with images in the shortwave infrared region and
showed how linking to dispersal processes from an epidemio-
logical model could improve detection accuracy of X. fastidiosa
in almonds at a pre-visual stage. Nevertheless, the confound-
ing physiological effects caused by vascular pathogens and water
stress in olive and almond required further work to reduce the
detection of false positives. The evaluation of a wide range of
spectral plant traits quantified from airborne hyperspectral and
thermal images across host species (olive versus almond) and
across vascular plant pathogens (X. fastidiosa versus Verticillium
dahliae, a soilborne pathogen that causes analogous symptoms)
demonstrated that there are specific spectral-based traits for each
plant species and pathogen (Poblete et al. 2021; Zarco-Tejada
et al. 2021). Accounting for distinct spectral plant traits associ-
ated with the dynamics of waterinduced stress improved early
and presymptomatic disease detection (Zarco-Tejada et al. 2021).
Although detection of middle and advanced stages of OQDS de-
velopment was reasonably successful using high-resolution mul-
tispectral satellite imagery, a critical conclusion is that the early
(i.e., pre-visual) detection of X. fastidiosa- and V. dahliae-induced
symptoms required a combination of HSI and TIR imaging from
aircraft or uncrewed aerial vehicles at high spatial resolutions (40
to 60 cm) to capture pure tree crowns (Poblete et al. 2023).

However, the transferability of spectral signatures of OQDS
to other olive-growing regions, and to other host species (e.g.,
coffee, citrus, and grapevines), is an outstanding challenge. Re-
mote sensing may be particularly suited to the slower dynamics
of vascular wilt disease progression in trees compared with an-
nual crops. Trees are larger and persist for longer than annual crop
plants in a fixed spatial location, making the multitemporal moni-
toring of orchards at the required resolution and frequency tech-
nologically and operationally feasible. This means higher temporal
resolutions and quicker turnaround processing times are required
to achieve similar success in optical sensing measurements of
annual crop diseases.
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tions from ensembles of models (Shah et al. 2021) and to account
for and weigh different sources of evidence using Bayesian analysis
and decision theory (Hughes 2017).

Data availability is often a limiting factor for data-based models
(Madden 2006). This makes linking with optical sensing attrac-
tive, as it increases the volume, range, and scope of data available
for model parameterization and validation. In turn, these expanded
datasets enable the direct application of recent developments in ML
to disease prediction. Although some recent studies have shown
the potential of ML for plant disease prediction (Hamer et al.
2020; Martinetti and Soubeyrand 2019; Skelsey 2021; Xu et al.
2018), applications have so far been predominantly focused on
data analysis for disease detection (Gobalakrishnan et al. 2020;
Xie et al. 2022) and/or quantification (Anderegg et al. 2019;

BOX 2

Fifteen years of optical sensing of Cercospora leaf spot
(CLS) in sugar beet

CLS, caused by the ascomycete Cercospora beticola (Sacc.), is
a serious threat to sugar beet production worldwide (Rangel et al.
2020; Weiland and Koch 2004). This hemibiotrophic pathogen
causes characteristic leaf spots with a reddish brown border and
a necrotic center. Under favorable conditions, entire leaves be-
come necrotic, causing reductions in the photosynthetically ac-
tive canopy. Yield losses can reach 50% in regions with high
disease pressure (Shane and Teng 1992).

Thanks to intensive research during the last 15 years, clearly de-
fined symptoms, and the dicotyledonous growth with flat leaves
of the host plant, C. beticolais now established as a model organ-
ism for plant disease detection using spectral sensors (Ruwona
and Scherm 2022). Diverse studies have characterized and de-
tected CLS at different scales, from the microscopic (Leucker
et al. 2016, 2017) to the tissue (Arens et al. 2016; Mahlein et al.
2012), leaf (Mahlein et al. 2010), and single-plant scales (Glinder
et al. 2022). Hyperspectral imaging with high spectral and spa-
tial resolution in the visible, nearinfrared, and shortwave infrared
ranges provided high-quality datasets of reflectance and transmit-
tance complemented with reference data from visual monitoring
or analytics. Studies under controlled conditions provide basic
knowledge on the spectral characteristics of the disease (Mahlein
et al. 2010), offer insights into sporulation and lesion phenotyp-
ing (Leucker et al. 2016, 2017), have linked disease etiology to
biochemical and structural processes (Arens et al. 2016; Mahlein
et al. 2012), and have permitted early detection before visible
symptoms (Arens et al. 2016; Rumpf et al. 2010). Early studies
addressed the differentiation of CLS from other foliar diseases,
such as sugar beet rust or powdery mildew, and, for the first
time, disease-specific spectral vegetation indices were devel-
oped (Mahlein et al. 2013). Due to recent innovations in robotics
and the increasing availability of uncrewed aerial vehicles (UAVs)
and spatially highly resolved red-green-blue or multispectral cam-
eras, these studies are now complemented by field-scale studies
on monitoring and detection of CLS (Barreto et al. 2023; Ispizua
Yamati et al. 2022). Remote sensing using UAVs was successfully
used for phenotyping of tolerant and resistant varieties (Gorlich
et al. 2021; Ispizua Yamati et al. 2022) and for extracting disease
incidence and severity for decision-making in integrated pest
management.

The progress and knowledge gained in detecting CLS are likely
to be useful for other host pathogen systems, because similar ex-
perimental approaches and data analysis pipelines are expected
to work for a range of foliar fungal pathogens of field crops.
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Barreto et al. 2023; Leclerc et al. 2023; Lee et al. 2025; Oh et al.
2021; Zhang et al. 2023).

Process-based models. Process-based (or mechanistic) models
instead aim to represent the biological basis of disease epidemics,
focusing on the dynamics of disease in time and perhaps space
(Madden 2006). The dominant paradigm is compartmental model-
ing, an approach also widely adopted for diseases of animals and
humans (Keeling and Rohani 2008). Compartmental models divide
a host population into mutually exclusive classes based on disease
status. Levels of complexity vary, but the most common formulation
distinguishes healthy and infected tissue, with a further partitioning
of infected tissue into pre-infectious, infectious, and post-infectious.
In plant disease modeling, this is often referred to as the H-L-I-R
(Healthy-Latent-Infected-Removed) model (Madden et al. 2007),
which—perhaps unhelpfully—obscures links with work on S-E-I-R
(Susceptible-Exposed-Infected-Removed) models for pathogens of
other host taxa (Keeling and Rohani 2008). For plant diseases, the
unit of interest tracked by a compartmental model is often the indi-
vidual host plant, although host tissue can be tracked at smaller (e.g.,
organs such as roots or leaves, or infectible sites) or larger scales
(e.g., entire fields or farms, or even counties/states), depending on
the scale at which predictions are required.

Much work using compartmental models is theoretical, aiming
to develop strategic understanding, and therefore not explicitly tied
to a single system. The focus is on understanding broad princi-
ples relevant to a class of pathosystems without detailed reference
to any single pathosystem. Often, the key output is an improved
understanding of epidemiological factors promoting the invasion
and persistence of pathogens (Gilligan and van den Bosch 2008).
Much work has also focused on how crop diversification affects dis-
ease dynamics, particularly for cultivar mixtures (Clin et al. 2022;
Mikaberidze et al. 2015) and intercropping (Allen-Perkins and
Estrada 2019; Levionnois et al. 2023). Other theoretical work fo-
cuses on the evolution and/or dynamics of adapted pathogen strains
for fungicide resistance (Corkley et al. 2025a, b; Mikaberidze
et al. 2014, 2017; Taylor and Cunniffe 2023a, b; van den Bosch
et al. 2014), resistance-breaking pathogens (Rimbaud et al. 2021;
Watkinson-Powell et al. 2020; Zaffaroni et al. 2024a, b), or both
simultaneously (Carolan et al. 2017; Taylor and Cunniffe 2023b).
Yet other work has concentrated on complex interactions, such as in
the context of climate change (Jiranek et al. 2023), interactions be-
tween different pathogens (Allen et al. 2019; Hamelin et al. 2019),
between pathogens and their biological control agents (Cunniffe
and Gilligan 2011; Jeger et al. 2009), and between pathogens and
their vectors (Donnelly et al. 2019; Falla and Cunniffe 2024). The
socioeconomic implications of epidemics are explored by linking
economic analyses or game theory with simpler models of expo-
nential growth of disease (van den Bosch et al. 2018, 2023) or with
full compartmental models (Hilker et al. 2024; Mikaberidze et al.
2025; Murray-Watson and Cunniffe 2022, 2023; Murray-Watson
et al. 2022). Several studies have incorporated plant physiological
processes into epidemiological models (Précigout et al. 2017). A fi-
nal theme is the use of compartmental models to understand factors
promoting disease detection (Lovell-Read et al. 2023; Parnell et al.
2015, 2017) and control (Bussell et al. 2019; Russell and Cunniffe
2025). Because underpinning compartmental models can easily be
cast in stochastic as well as deterministic forms, work of this type
often now also explicitly considers the risk of disease outbreaks (or,
equivalently, the risk of failure of control) (Thompson et al. 2020).

Using process-based models to make predictions and/or as-
sess disease management. Process-based models can also be used
to make predictions—in time and in space—for a given disease
(Cunniffe and Gilligan 2020). Similarly to data-based models, many
process-based models target a single location—or set of distinct lo-
cations, with no consideration of the flow of the inoculum between
them—focusing on how aspects of the abiotic environment drive
rates of epidemiological processes (see Gonzalez-Dominguez et al.
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2023 for a recent review). Note that, despite the commonality of ap-
proach with compartmental models, in plant pathology, such models
are—arguably unhelpfully—often framed as “simulation models”
(Savary and Willocquet 2014) and presented in terms of visual sys-
tems dynamics modeling languages (Costanza and Voinov 2001),
although we should note that these models can be readily translated
into differential equations or discrete maps (Willocquet et al. 2020).
Other process-based models, particularly when applied to emerg-
ing or invading pathogens, make predictions of the spatial spread
of a particular named pathogen across a region through a landscape
of hosts susceptible to disease, considering the effects of particular
disease detection and control strategies (see Cunniffe and Gilligan
2020 for a review).

For applications to spatial spread, underpinning models must con-
sider the flow of the inoculum and, thus, the disease transmission
between locations. Although network approaches have been pro-
moted (Garrett et al. 2018; Jeger et al. 2007; Shaw and Pautasso
2014), the large number of parameters that would need to be fitted
means that full network-based models of dispersal tend not to be
explicitly linked to data. Detailed spatial predictions instead tend to
use the abstraction of the dispersal kernel, an idea used very widely
in ecology more broadly (Nathan et al. 2012), to capture spatial
dependencies via a parameterized functional form (reviewed in the
context of plant disease epidemiology by Fabre et al. 2021). The
challenge is then to parameterize dispersal kernels and infection
rates from (often very restricted) disease spread data at different
spatial scales. Broadly speaking, three distinct approaches are used
to characterize dispersal kernels: (i) measurements of empirical
disease gradients (Madden et al. 2007) in an experimental set-
ting, using fungicide or other treatment to ensure there is only a
single round of dispersal; (ii) using a separate detailed model of
dispersal parameterized to capture the underlying mechanism of
spread; or (iii) inferring the likely dispersal kernel from within a
range of possibilities in process-based models using statistical ap-
proaches based on successive spatial snapshots of the pattern of
disease (Cunniffe and Gilligan 2020). Several studies have esti-
mated dispersal kernels from disease gradients but only at distinct
geographic locations and often within individual crop fields (Karisto
et al. 2022, 2023; Mikaberidze et al. 2016; Rieux et al. 2014). Ex-
plicit models of the dispersal process tend to be applied over large
spatial scales, most often via computationally demanding spore tra-
jectory simulations for windborne spread (Gilligan 2024; Meyer
et al. 2017; Schmale and Ross 2015). Process-based models can
be fitted using various statistical methodologies, ranging from sim-
ple least-squares or maximum likelihood techniques (Cunniffe and
Gilligan 2020) to more complex Bayesian methodologies based
on likelihood functions and data augmentation (Gibson and Austin
1996; Papaix et al. 2022). For successful examples of doing so, see,
for example, Soubeyrand et al. (2008), Cunniffe et al. (2014), Neri
et al. (2014), Parry et al. (2014), Adrakey et al. (2017, 2023), or
Nguyen et al. (2023). Some studies explicitly couple process-based
and data-based approaches in the framework of state-space model-
ing or mechanistic-statistical modeling by defining a model of the
observation process conditional on the model of the epidemiological
dynamics and deducing from this construction a Bayesian inference
scheme (Abboud et al. 2023; Papaix et al. 2022; Pleydell et al. 2018;
Saubin et al. 2024; Soubeyrand et al. 2009). When likelihoods are
intractable or very complex, as can often be the case when fitting
stochastic models at the landscape scale, the current vogue relies
on approximate Bayesian computation via repeated simulation and
the use of a distance between summary statistics computed from the
observed and simulated data sets as a proxy for a formal likelihood
function (Godding et al. 2023; Minter and Retkute 2019).

The current state of the art in epidemiological modeling often
involves use of parameterized stochastic compartmental models to
predict how epidemics will spread in time and space. Although
some work focuses on spread within fields (Karisto et al. 2022,
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2023; Mikaberidze et al. 2016) or relatively small production sites
(Craig et al. 2018; Cunniffe et al. 2014; Parry et al. 2014), recent
applications of these models tend to focus on large spatial scales and
link spread modeling to optimization of disease detection (Mastin
et al. 2020 for citrus greening and Martinetti and Soubeyrand 2019
for X. fastidiosa) or disease control (Cunniffe et al. 2016 for sudden
oak death in California, Ellis et al. 2025 and Nguyen et al. 2023
for citrus greening, and Godding et al. 2023 for cassava viruses in
sub Saharan Africa). The huge increase in availability of spatial
data on sets of locations infected over time promised by optical
sensing is incredibly attractive for predictive use of process-based
models.

Opportunities in Linking Epidemiological Modeling
and Optical Sensing for Plant Disease

How can optical sensing inform epidemiological modeling?

The vast amounts of data generated by sensing will greatly
benefit the quality of models. The predictive power of any epi-
demiological model is limited by the amount and quality of data
used for parameterization. Similarly, our confidence in model
robustness depends on the range of data used for validation
(Challenges Bi to Biii). Traditional methods to acquire plant disease
data, whether in controlled environments or under field conditions,
can be costly and often require expert assessors. Optical sensing
promises to generate disease data at hitherto impossible spatiotem-
poral scales and resolutions while allowing for a much wider range
of environmental conditions and locations to be sampled, includ-
ing locations that are inaccessible from the ground. Increased data
availability enhances the reliability and usefulness of any data-based
disease model, meaning less extrapolation is required for model use
in real-world settings (Madden 2006).

Optical sensing also has the potential to improve the param-
eterization of process-based models. More finely resolved spa-
tiotemporal data then lead to more accurate parameter estimation
and/or better prospects for (practical) identifiability of parameters
(Cunniffe et al. 2024). Similarly, model selection (and model aver-
aging) is often expected to become more powerful with an increased
amount of data (Kuparinen et al. 2007). High revisit frequencies
allow for the amount or spatial pattern of disease to be assessed
repeatedly, leading to an improved understanding of disease dy-
namics over time. Focusing on spatial dynamics in particular, optical
sensing would enable disease measurements over much denser and
larger grids of locations (e.g., as disease gradients) with higher num-
bers of treatments and replicate experimental plots than is feasible
by conventional visual assessments (Sackett and Mundt 2005). This
would dramatically improve our capacity to quantify pathogen dis-
persal and reproduction via estimation of dispersal kernels (Farber
et al. 2019; Karisto et al. 2022, 2023; Soubeyrand et al. 2007) to-
gether with strengths of infected source areas producing spores or
other infectious propagules (Bousset et al. 2015) and basic repro-
duction numbers (Mikaberidze et al. 2016; Segarra et al. 2001; van
den Bosch et al. 2024). Conducting such experiments character-
izing disease gradients across diverse geographic locations would
provide (in conjunction with weather data) detailed knowledge of
how pathogen dispersal and reproduction depend on the three as-
pects of the disease triangle (i.e., the genotypes of the host and the
pathogen as controlled by the experimental design and the environ-
mental variables; Madden et al. 2007). This improved knowledge
concerning dispersal and reproduction can then feed into spatially
explicit process-based models, increasing their power to predict
epidemics and evaluate disease management approaches.

Nondestructive and objective disease quantification by opti-
cal sensing will overcome difficulties and bias in human scouting
and rating. However, optical sensing can do more than simply in-
crease the volume of data. Certain diseases have symptoms that are
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difficult to recognize or distinguish from other diseases, or from
more general signs of abiotic/biotic stress (Challenges Ai and Aii).
It can also be quite difficult and time consuming even for trained
assessors to unambiguously assess severity, that is, to measure the
level of disease within a single host or group of hosts. These fac-
tors introduce subjectivity and bias into human scouting and rating
(Bock et al. 2020; Nita et al. 2003; Nutter et al. 2006), in turn affect-
ing the reliability of epidemiological models using these types of
data for their parameterization, albeit in a way that is seldom, if ever,
accounted for in the analysis (Challenge Ciii). Although lab-based
molecular diagnosis is recognized for its sensitivity, accuracy, and
reliability (Venbrux et al. 2023), it is typically destructive, requiring
plant tissue to be removed for assessment, and may not be cost-
effective (Mastin et al. 2020). Nondestructive, objective disease
quantification—as would be generated by methods based on optical
sensing—is therefore very valuable, even when sensors are not de-
ployed over large spatiotemporal scales and resolutions, provided
that the sensing and analytical approaches allow for correct disease
diagnosis and quantification (Oh et al. 2021; Zhang et al. 2023).

Host maps and comprehensive environmental characteri-
zation provided by optical sensing will improve landscape-
scale models. For landscape-scale spatial process-based models
(Cunniffe and Gilligan 2020; Fabre et al. 2021), remote sensing
also offers various classes of data that might be used directly as
a model input, rather than as a source of data for model fitting.
An important example is information on the location of susceptible
hosts. Although maps have been produced for certain major crops
(IFPRI 2024), location data are often either unavailable or are only
available at a low spatial resolution. Sometimes only data relating
to related host species are readily available. In all cases, host maps
used as model inputs tend to be based on statistical inference (Ellis
etal. 2025; Meentemeyer et al. 2011), losing small-grained but rele-
vant features such as sizes and relative locations of individual fields
or orchards. Because remote sensing can now reliably distinguish
between different plant species (Ashourloo et al. 2022; Fassnacht
et al. 2016; Kordi and Yousefi 2022) and in some cases even be-
tween different subspecies/varieties/cultivars (Lyu et al. 2024; Rauf
et al. 2022), the level of biological realism in host maps could
be increased. In the context of landscape epidemiology, locations
of potential inoculum reservoirs might be particularly important
(Plantegenest et al. 2007), such as populations of the same host
species and/or of cultivated/wild alternative hosts (Emery et al.
2021; Morris et al. 2022), or crop residues from previous grow-
ing seasons (e.g., piles of potentially infectious tubers for potato
late blight or pathogen-harboring standing stubble from previous
host crops). Such reservoirs force epidemics, as well as poten-
tially providing refugia for pathogens to persist between growing
seasons/years. However, the potential for proliferation of species-
specific parameters in epidemiological models would need to be
carefully considered (Cunniffe et al. 2015). Models could also better
reflect spatial variation in host plant density for a given growing sea-
son if they used real-time information from optical sensing, rather
than—as at present—resorting to use of historical data or simple
functions to parameterize growth over time. This would also allow
for time-dependent ecophysiological information on plant status to
inform epidemiological models.

Other biotic/abiotic factors affecting disease can be character-
ized by optical sensing (Dlamini et al. 2019) and so, in turn, could
be included in disease models. This includes information on land-
scape topography, soil structure, and water availability, as well as
the phenology of the host crop. An example of integrating phe-
nological information with modeling is a regional-scale S-E-I-R
model of Fusarium head blight (Xiao et al. 2022). There is also
real-time information that can be remotely sensed and contribute
to prediction when epidemiological models are used predictively
for short-term forecasting (Gilligan 2024). Exciting examples in-
clude sets of currently infected locations (Allen-Sader et al. 2019),
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definitive confirmation of whether previously scheduled control by
host removal has in fact occurred (Carnegie et al. 2023), and real-
time information on meteorological driving variables as sensed by
Global Navigation Satellite Systems (Bianchi et al. 2016).

How can epidemiological modeling inform optical sensing?

Model outputs will help to improve disease classification and
interpretation of optical sensing data. Arguably most impor-
tantly, epidemiological modeling offers a mechanism to improve the
accuracy of disease measurement via optical sensing. Optical sens-
ing of plant disease often has a classification task at its core, in which
a binary decision is made about whether a given location (i.e., a po-
sition in an image) is diseased or not. Outputs of epidemiological
models could improve this classification by providing the classifier
with additional relevant information. For example, positive confir-
mation from simple weather data-based models to estimate the risk
of disease at a given location could provide greater confidence that
an ambiguous signal from optical sensing in fact corresponds to
disease.

There is also useful information in the spatial and spatiotemporal
pattern of disease that can be used in interpreting optical sensing
data. It is well known that plant diseases are clustered at a range
of scales: accordingly, much statistical modeling work in plant dis-
ease epidemiology concentrates on quantifying these relationships
(Madden et al. 2007, 2018). The corollary is that any location is
more likely to be infected if its neighbors are also infected. This
idea is at the core of the methodology used by Camino et al. (2021)
for X. fastidiosa in almond orchards (Box 1) in which predictions
from a static probabilistic model of disease risk (Parnell et al. 2011)
were used to ascribe a probability of infection to different trees via
a model based on an exponential dispersal kernel. These predic-
tions were then combined with remote sensing results to come to
an overall prediction of infection status on a tree-by-tree basis. Also,
more complex, dynamic epidemiological models could be used in
this framework, closely coupling interpretation of optical sensing
data to the explicitly probabilistic predictions in space and time
made by a process-based epidemic model. Similar improvement
may be achieved by using convolutional neural networks to extract
disease information from optical sensing data: convolutional neu-
ral networks use convolutional kernels with combination pooling to
extract local features, potentially allowing the spatial topology and
geometry of optical sensing data to be incorporated into predictions.
However, in contrast to process-based models, the parameters of
convolutional neural networks lack biological interpretation, and,
hence, this approach would not provide as much insight into the
processes driving epidemics.

Models will help to decide where, when, and how to deploy
sensors, including guiding flight routes in near real time for
surveillance. The other way in which epidemiological modeling
might be useful for optical sensing is in establishing where, when,
and how sensors should be deployed (Mahlein et al. 2024). Op-
tical sensing is particularly promising for early detection, a key
constraint in the “controllability” of an infectious disease outbreak
(Fraser et al. 2004). The possibilities here range from being able
to detect pathogens in near real time over hitherto unimaginable
spatial scales (Challenge Aiii) to “anomaly detection,” that is, char-
acterizing spectral signatures associated with healthy plants and
using any deviation from this to trigger ground scouting or other
disease management (Challenge D). Real-time information could
also be used to better guide disease surveillance, such as incorpo-
rating epidemiological models into automated flight route planning
for UAVs or planning satellite surveillance patterns. In principle,
each successive sample could then be taken from areas in which
knowledge is weakest and so from which confirmation of disease
positives (or negatives) would be most useful (see Cook et al. 2008
and Parisey et al. 2022 for examples of this broad idea). Of course,
reliably detecting disease is only the first step in disease manage-
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ment, and many disease controls are applied reactively in response
to detections of disease. Much modeling work focuses on how
optimal patterns of reactive control can be identified based on ob-
servation patterns of disease until a given time (Bussell et al. 2019;
Hyatt-Twynam et al. 2017). This raises the possibility of a moveable
platform that combines optical sensing with disease control, such
as arobotic ground-based vehicle that operates within a greenhouse
or in the field (Oberti et al. 2016). This has obvious applications in
precision agriculture (Yang 2020) and would echo well-publicized
parallel developments for automatic weed detection and destruction
mounted on tractors and other cultivation equipment (Zhang et al.
2022).

We summarize the opportunities presented above in Table 2.
There, we list the relevant plant traits and features that could be es-
timated via optical sensing and indicate how this estimation could
aid epidemiological modeling and how epidemiological modeling
could aid the estimation.

Challenges in identifying a particular disease from optical sensing
data (Challenge A)

Immature understanding of disease mechanisms underpin-
ning spectral responses (Challenge Ai). Understanding spectral
plant traits associated with disease is clearly important (Mahlein
et al. 2012; Zarco-Tejada et al. 2018, 2021; Zhang et al. 2012).
However, and with some exceptions, we lack knowledge of the
mechanisms by which disease-induced alterations in plant physiol-
ogy and biochemistry translate into detectable variations in spectral
signatures (Oerke 2020). Additionally, the degree of conservation
of spectral responses across plant genotypes and/or environments
is unclear (Terentev et al. 2022). Other domains of spectral biol-
ogy suggest that the more highly conserved the underlying pro-
cesses are, the more likely their associated spectral features will
be too, as shown for hyperspectral reflectance of healthy leaves
across 544 plant species (Meireles et al. 2020). Divergent spec-
tral pathways associated with shared physiological symptoms have
been disentangled recently between major fungal foliar diseases
of wheat (Bohnenkamp et al. 2021) and sugar beet (Brugger et al.
2023; Mabhlein et al. 2012) in controlled environments and in other
pathosystems in the field (Fallon et al. 2020; Gold et al. 2020a, b, c;
Zarco-Tejada et al. 2021). Studying differences and similarities in
spectral responses for pathogens affecting plant health via different
underlying mechanisms is therefore essential.

A promising methodology to distinguish plant disease from other
stress responses is based on plant functional traits, which has
emerged as a unifying framework to understand natural and stress-
induced variation in vegetation (Ustin et al. 2004; Wright et al.
2004). Plant pathogens damage, impair, and/or alter plant func-
tion, and their impacts on plant traits can be sensed both before
and after disease symptoms appear. Methods to quantify functional
traits from optical sensing data can be based on either statistical
modeling (e.g., partial least squares regression, random forests, or
Gaussian process regression) or RTM. RTM allows leaf and canopy
traits linked to plant physiological processes to be retrieved from
spectra (Essery et al. 2008; Kattenborn and Schmidtlein 2019),
whereas partial least squares regression iteratively transforms pre-
dictor (spectra) and response variables (traits) to create predictive
models (Serbin and Townsend 2020). Compared with empirical
approaches based on single-band or vegetation indices, quantify-
ing spectral traits linked to stress-induced biological mechanisms
improves model accuracy and transferability (Camino et al. 2021;
Hornero et al. 2021; Poblete et al. 2021; Zarco-Tejada et al. 2018).
ML further allows for robust extraction of these traits from complex
spectral data even under diverse conditions (Serbin and Townsend
2020; Verrelst et al. 2019). Combining partial least squares re-
gression/RTM and ML should improve our ability to scale from
controlled studies to the field (Challenge Aiii) and from foliar to
spaceborne scales (Poblete et al. 2023; Zarco-Tejada et al. 2021).
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Spectral signatures are inherently variable and unknown
for some pathogens (Challenge Aii). Many spectral signatures of
plant diseases have been reported. However, a given plant pathogen
inanidentical environment can very often show different symptoms.
For instance, symptoms caused by Phytophthora spp. on citrus de-
pend on the tissue affected (i.e., root rot, fruit brown rot, gummosis
of bark, or twig desiccation) (Cacciola et al. 2007). Identifying
specific signatures of presymptomatic infection remains particu-
larly challenging (Gold et al. 2020c; Rumpf et al. 2010), requiring
deep knowledge of the plant—pathogen interaction to determine
physiological parameters that could be affected early in disease
development. Diseases can also manifest differently depending on
location (Calderén et al. 2014), pathovar (Gold et al. 2020c), and
host genotype (Gold et al. 2020b; Surano et al. 2022), or depend-
ing on interactions between pathogen isolates and host genotypes
(Kader et al. 2022), as well as when plant hosts experience abi-
otic stresses, such as nutrient deficiencies (Abdulridha et al. 2019)
and water stress (Zarco-Tejada et al. 2021). Biotic stresses can also
be confounding factors (Gold et al. 2020a; Poblete et al. 2021),
particularly in cases of co-infection by distinct pathogen species
(Bohnenkamp et al. 2019b). Differentiating between aboveground
symptoms of abiotic stresses and diseases is particularly challeng-
ing for soilborne pathogens (Hillnhiitter et al. 2011). Ontogenic
resistance, as well as other effects of leaf age on spectral responses,
may also play a confounding role (Chavana-Bryant et al. 2019).
Anthropomorphic factors, such as mechanical damage and pes-
ticides/fertilizers, may further mask spectral responses (Gambhir
et al. 2024). Additional variation stems from interactions between
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these factors, as well as simply from the natural variability of agro-
and natural ecosystems (Oerke 2020).

Even setting aside significant but unavoidable complications
caused by variability, the optical spectral signatures of many
pathosystems remain to be characterized. Of course, finding signa-
tures may be intrinsically challenging for certain pathosystems. For
example, shorter plant and pathogen life cycles may allow less time
to characterize disease-associated signatures than for diseases in
longer lived pathosystems, although in some pathogens with fast life
cycles, this might be easier due to a lack of significant asymptomatic
infection. Other aspects of any given pathosystem, such as whether
symptoms are exhibited on foliar or woody tissue, as well as the
size/pigmentation of affected plant organs, also clearly play a role.

Spectral libraries cataloging signatures across scales, diverse en-
vironments, conditions, host ages and species, stages of infection,
and damage mechanisms (Boote et al. 1983) are sorely needed
(Bohnenkamp et al. 2021; Zhu et al. 2023). This would allow us
to investigate the transferability of spectral signatures given these
potentially confounding factors.

Scaling from controlled to field conditions and from proxi-
mal to remote sensing (Challenge Aiii). Spectral signatures also
depend on choices of sensors, platforms, and spatial/spectral resolu-
tions, as well as lighting and exposure times, even under controlled
conditions (see Current state of the art). Scaling to field conditions is
therefore expected to be challenging. Additionally, signatures that
are specific at the foliar scale are not necessarily most useful at the
canopy scale (Bohnenkamp et al. 2019b, 2021; Calderén et al. 2013,
2014, 2015; Herrmann et al. 2018). If effective detection depends

TABLE 2

Plant traits and features that, once estimated via optical sensing, could aid in epidemiological modeling, and vice versa

Plant trait/feature (estimated via optical
sensing)

How optical sensing aids epidemiological
modeling

How epidemiological modeling aids optical
sensing

Disease onset, incidence, and severity

Improves model parameterization and
validation with objective, standardized,
high-resolution data

Improves classification by incorporating risk
estimates derived from models

Spatiotemporal patterns of infection

Enhances understanding of disease dynamics
and spread (i.e., data for model fitting)

Informs contextual interpretation based on
expected and/or modeled spatial clustering

Pathogen dispersal gradients

Improves estimation of dispersal kernels by
providing additional data

Helps validate sensing-derived assessment of
pathogen dispersal with models accounting
for underpinning mechanism of pathogen
spread

Real-time infection status or anomalies

Triggers surveillance or action based on
spectral anomalies (underpinned by tests in
models)

Optimizes sensor deployment (e.g., uncrewed
aerial vehicle routes) to maximize information
content in data

Host plant identity (species, cultivar)

Increases biological realism in host maps used
in models

Informs whether there is a need for
species-level resolution in host plant sensing

Host density and spatial distribution

Enables dynamic modeling of disease risk
based on real host distributions in space

Focuses sensing efforts where areas of higher
host density are expected to be most
epidemiologically relevant

Host phenology and growth stage

Allows time-sensitive modeling of host
susceptibility and epidemic timing

Highlights critical phenological windows (and
spatial locations) for data collection using
optical sensing

Environmental conditions (e.g., topography,
water availability)

Adds environmental realism to models,
potentially improving predictive accuracy

Identifies which environmental variables are
most relevant to measure (i.e., have the
largest effects on disease risk)

Presence of inoculum reservoirs or alternative
hosts

Informs model structure by allowing models to
account for hidden reservoirs

Suggests where to search for reservoirs based
on persistence/spillover inferred with models

Confirmation of control implementation (e.g.,
host removal)

Improves tracking and evaluation of
management interventions, then informing
models

Targets verification efforts on areas of
predicted but uncertain control (e.g., due to
lack of stakeholder compliance)
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on expensive sensors (e.g., with high detection sensitivity across
narrow bands in the SWIR), lack of access to such sensors may hin-
der scaling to the field. Using openly available Earth observations
from space agencies is appealing, with particular success for detect-
ing defoliating insects (Dalponte et al. 2022), but other applications
may be hindered by limited spectral and/or spatial resolution of the
currently available satellite data.

In low to medium spatial resolution imagery (where the pixel
size exceeds the size of the plant or plant unit of interest), it can be
difficult to separate vegetation spectra from mixed signals of soil
background, shadows, and understory vegetation (Hornero et al.
2020), although spectral unmixing techniques can disentangle spec-
tral diversity at sub-pixel levels (Galvan et al. 2023). Nadir (straight-
down) view systems are valuable for capturing visible symptoms
on upper canopies but are less useful for diseases developing pri-
marily in the lower canopy (Abdulridha et al. 2020; Carlier et al.
2023; Kanaley et al. 2024). Spectral signatures can become distorted
when scaling the measurements from the leaf scale to the canopy
scale, and systematic investigation of these changes is challenging
(e.g., comparison of leaf versus canopy reflectance for cereals in
the red edge region; Li et al. 2017). Although high-spatial reso-
lution and multi-angular remote sensing enhance disease detection
across canopy layers, operational challenges arise for regional-scale
monitoring (He et al. 2021; Zhang et al. 2023). Various factors can
introduce uncertainties, including canopy complexity, atmospheric
conditions, sensor calibration inaccuracies, and radiometric correc-
tion (Daniels et al. 2023; Delalieux et al. 2009; Tanner et al. 2022).
In particular, bidirectional reflectance effects, influenced by solar
illumination and viewing geometry changes, pose difficulties with
data collected at different times of day, under varying lighting condi-
tions, and across different canopy structures. However, as described
above, BRDF (Collings et al. 2010; Queally et al. 2022) and RTM
approaches (Hornero et al. 2021; Zarco-Tejada et al. 2018) may be
able to correct for these effects.

Challenges associated with data availability, quality, and resolution
in optical sensing of plant diseases (Challenge B)

Insufficient reference data (Challenge Bi). Optical sensing re-
quires accurate reference measurements of disease for training, test-
ing, and validation (depending on the field, reference measurements
are sometimes called “annotated data,” “labeled data,” or “ground
truth”). However, as described in Opportunities above, such data
are scarce, because they tend to be time- and resource-consuming
to acquire. Visual assessments in the field can be cost-effective and,
under certain conditions, can have high throughput but yet require
skilled evaluators and can also be prone to error, most often due
to inherent variability (Bock et al. 2022; Nutter et al. 2006). At-
tention needs to be paid to training of assessors, standardization of
measurement protocols, data verification, normalization and cali-
bration, and assessment of measurement uncertainties (Bock et al.
2022).

Crowd source annotation (e.g., Pl@ntNet; Joly et al. 2016), in
which data labeling or classification is outsourced to a large group
of people, could become a valuable additional source of reference
data but also requires careful validation. Even with enhancements,
visual assessment may overlook indicators not immediately appar-
ent to the naked eye. Ideally, visual assessment should be confirmed
by molecular laboratory analyses (Donoso and Valenzuela 2018;
Martinelli et al. 2015). This can be especially important for
pathogens not easily recognized in the field, or when multiple
pathogens cause similar symptoms (Abdullah et al. 2018) (Chal-
lenges Ai and Aii).

RGB imaging provides a potential source of reference measure-
ments (Anderegg et al. 2019). The methodology has been developed
to measure foliar diseases in major crops, such as Septoria tritici
blotch on wheat (Karisto et al. 2018; Stewart et al. 2016) and tar spot
on corn (Lee et al. 2021, 2025), as well as bean angular leaf spot,
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rice brown spot, wheat tan spot, and soybean rust (Olivoto et al.
2022). However, with some exceptions, such as a recent study on
red needle cast of pine (Fraser et al. 2022), acquiring RGB images
of sufficient quality has thus far required destructive sampling and
manual processing (Karisto et al. 2018; Lee et al. 2021; Zenkl et al.
2024) or noninvasive in-field imaging (Anderegg et al. 2024; Lee
et al. 2025) of individual diseased leaves. This tends to be more
resource consuming than visual assessments. A higher throughput
will be achieved by capturing close-range images from within en-
tire canopies, but several challenges need to be overcome, including
variable lighting, blur due to canopy movement (for example, from
wind or UAV downdraft), and extraction of relevant image parts
(Zenkl et al. 2024). Most existing RGB imaging methods are yet to
be used to produce reference data for optical sensing. Calibration
and optimization for this specific purpose are therefore required.

Self-supervised learning (SSL) or foundation models may over-
come insufficient labeled data in a different way (Culman et al.
2023; Moor et al. 2023; Y. Wang et al. 2022). SSL models can be
formulated as convolution neural networks or vision transformers
(Khan et al. 2023). First, an SSL model is “pretrained” on a large,
unlabeled dataset, ideally capturing a wide range of conditions, ac-
cording to automatically generated objectives rather than annotated
data, as in conventional ML (Zhao et al. 2023). In this way, SSL
models can extract useful, abstract, and generic high-level represen-
tations from unlabeled data (e.g., visual representations; Doersch
et al. 2015). Next, the SSL models are trained for a specific task
(i.e., “fine-tuned”) using a limited amount of labeled data (Bengar
et al. 2021). Similarly, foundation models can be trained on broad
sets of unlabeled data and apply information about one situation
to another (Moor et al. 2023). Both approaches can therefore learn
from large volumes of unlabeled data, and this promises to improve
model generalizability to unseen domains (J. Wang et al. 2023).
However, it will be important to evaluate the outcomes to ensure
accuracy.

Repurposing data originally collected for other purposes
(Challenge Bii). Data potentially valuable as reference data could
be sourced from growers, agronomists, or diagnostic clinics. How-
ever, disease severity is often not available, and geolocation is often
absent. There can also be questions around reliability, as well as
the willingness of stakeholders to engage and share data in a stan-
dardized format (Biihrdel et al. 2020). As described in Challenge
Bi above, severity is difficult to assess even for experts (Bock
et al. 2022), and certain diseases can be challenging to distinguish
from each other (Abdullah et al. 2018; Barbedo 2016), as well as
from other stressors, especially when they occur together. However,
apps for disease identification/detection (Siddiqua et al. 2022)—
deployed on smartphones and so automatically geolocated—are
promising, as are phone surveys (Allen-Sader et al. 2019). How-
ever, the potential for bias in citizen science observations in which
public volunteers help to collect data (Baker et al. 2019) cannot be
ignored. Another ever-growing source of data is social media/online
news (Tateosian et al. 2023), the potential of which is highlighted
by a system integrating internet media scraping into a predictive
early warning system for wheat stem rust in South Asia (Smith
et al. 2024).

At larger scales, global searchable repositories, including CABI
(2023) and EPPO (2023), collate presence-absence data for plant
diseases. However, spatial scales are far too coarse, and tempo-
ral resolutions too low, for epidemiological modeling applications.
Despite this, large-scale crop health assessments have been used
with Earth observation data, such as CIMMYT’s multi-seasonal
survey of wheat rusts (Pryzant et al. 2017). Data from long-
term forest biosecurity and health surveys have also been used
to validate identifying Phytophthora pluvialis from satellite im-
agery in New Zealand forests (Watt et al. 2024). For pathogens
of crops, data from regulatory surveys of disease are sometimes
becoming available (Turner et al. 2021 for cereal diseases in the
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United Kingdom), and large-scale participatory surveillance efforts
involving growers/agronomists are also appearing (Bregaglio et al.
2022 for grapevine downy mildew in Italy). However, potentially
highly valuable field trial data collected by breeding/agrochemical
companies tend to remain siloed for commercial reasons. Other po-
tentially useful regional-scale data sources include daily disease risk
maps (Shah et al. 2014), particularly when informed by real-time
spore trapping data (Fall et al. 2015), although methods to integrate
probabilistic disease predictions with optical sensing are needed (as
discussed in Opportunities above).

Resolution and scales in time and space (Challenge Biii).
Clearly, measurements should capture relevant scales in time and
space to quantify traits of interest, which informs the choice of
sensor-platform setups. As part of this decision-making process,
host units of infection (e.g., individual plant organs such as leaves or
inflorescences, individual plants, or groups of plants) must be iden-
tified based on the pathosystem in question. However, this raises
trade-offs. Ground-based platforms and UAVs can capture images
down to millimeter-scale resolutions (Bohnenkamp et al. 2019a),
but only across a limited area. In contrast, measurements via aircraft
and satellite platforms capture scales up to entire regions (Galvan
et al. 2023; Poblete et al. 2023) or even continents (Kampe et al.
2010), but with lower resolution. A similar trade-off affects tempo-
ral resolution. With a fixed budget, any sensing platform can only be
deployed a fixed number of times, requiring decisions over whether
to sample densely over a limited time interval or more sparsely over
a longer time (Mateu and Miiller 2012). Commercial satellites now
capture near-daily images of the entire globe with spatial resolution
of ~3 m (e.g., Planet; Y. Liu et al. 2022). Governmental satellites
Landsat-8, Sentinel-2A, and Sentinel-2B together provide a global
median average revisit time of 2.9 days (Li and Roy 2017), with a
spatial resolution of 10 to 30 m for the multispectral sensors. On
the other hand, currently operational hyperspectral satellites (e.g.,
EnMAP) can provide high spectral resolution (224 contiguous nar-
row bands) over a wider spectral range (420 to 2,450 nm) with
a spatial resolution similar to that of Landsat-8, although the re-
visit time is coarser, at 4 days for off-nadir capture, and longer in
nadir view mode (Chabrillat et al. 2024). Plant disease measurement
projects need to adapt to these specific revisit times and other pa-
rameters of satellite imagery. However, the long-term, large-extent
sets of satellite images will allow for modeling of long-term trends
in disease dynamics, which would simply not be available using
other data collection methods.

Combining datasets acquired using different sensing platforms
and technologies can help to overcome these limitations and trade-
offs in scales and resolutions (Berger et al. 2022), for example,
via spectral and spatial unmixing (Delalieux et al. 2014). Multi-
ple hyperspectral reflectance datasets acquired via both remote and
proximal sensing have been merged to improve characterization
of uncertainties and transferability of estimates of functional plant
traits (Cherif et al. 2023; Singh et al. 2023; Challenge Ai). Also,
results of small-scale proximal sensing confirmed via collection of
reference data at a small number of tightly monitored sites could be
combined with large-scale remote sensing, such as satellite imagery,
to lead to more expansive inferences (Camarretta et al. 2024).

However, integrating data from different sources can be com-
plex (Sisodiya et al. 2023; Y.M. Wang et al. 2023), particularly if
some data are missing (Ekeu-wei et al. 2018; Zhao et al. 2018).
Different datasets might not be aligned in space and/or time and
might use different formats. Data fusion, defined as “the process
of combining data from multiple sources to produce more accu-
rate, consistent, and concise information than that provided by any
individual data source” (Munir et al. 2021), is a potential solution
(Barbedo 2022; Ouhami et al. 2021). Data fusion techniques, some
applied to agricultural problems for almost three decades (Solberg
etal. 1994), include regression methods, spatial and temporal adap-
tive reflectance fusion model (STARFM)-like statistical methods,
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geostatistical tools, principal component analysis, Kalman filters,
and ML (Barbedo 2022). However, persistent challenges hinder
the widespread adoption of data fusion. These include data vari-
ability and representativeness, integration complexity, overfitting,
unrealistic assumptions, demand for high-performance computing,
economic and technological constraints, and sociopolitical factors
(Barbedo 2022). Data fusion should be used in conjunction with
comprehensive model-data integration approaches to address the
complexities and uncertainties inherent in plant systems data (Cui
et al. 2024; Kofidou et al. 2023). In this context, data fusion might
be developed in the framework of Bayesian hierarchical model-
ing (Bourgeois et al. 2012; Wang et al. 2018), allowing us to
couple multiple observation models—corresponding to different
types of optical sensing data—defined conditionally on a particular
epidemic model.

Socioeconomic constraints including regulatory barriers and
privacy concerns (Challenge Biv). A lack of access to data may
drive new power relations around data (Kos and Kloppenburg 2019).
Growers may lack the basic infrastructure required for measure-
ments (Garske et al. 2021), may perceive the monitoring of their
fields as revealing commercially sensitive data, or perhaps expe-
rience it as invasive in other ways (European Court of Auditors
2020), or may not trust the interpretation of the data (Purdy 2011).
In some contexts, there are also concerns that data may be used for
purposes other than those intended (Gardner et al. 2019; Kos and
Kloppenburg 2019). Privacy legislation varies by country
(Maniadaki et al. 2021), further challenging the application of the
technologies. To address these concerns, governments and interna-
tional organizations should focus on improving data regulation and
legislation, as well as digital literacy (Kos and Kloppenburg 2019).
Support by growers and other stakeholders might increase if ef-
forts were made to communicate, develop data sharing agreements,
and promote co-production approaches with them (Purdy 2011; van
Rees et al. 2022). Thanks to technological developments in sensors
and platforms, optical sensing data relevant to plant diseases can
now be acquired at a much lower cost than before. Also, data stor-
age and computing facilities for data processing have become more
affordable. All these factors promise to make commercial deploy-
ment of optical sensing more profitable (Weiss et al. 2020; Wolfert
et al. 2017).

Challenges in linking optical sensing and epidemiological modeling
(Challenge C)

Compatibility between optical sensing data and epidemiolog-
ical models (Challenge Ci). Optical sensing data may inform state
variables of epidemiological models (e.g., susceptible, infected, or
symptomatic states), particularly when models are spatially ex-
plicit. However, the spatial and temporal resolutions of the data
must then match the spatial and temporal resolutions tracked by the
model. Super-resolution methods can improve the spatial resolu-
tion of sensing data, at least to some extent (P. Wang et al. 2022),
and signal processing methods (Li and Revesz 2004; Yang and Hu
2018) can be used to interpolate sensing data to achieve desired
resolutions in space and time. However, handling high-resolution
data may become computationally demanding. Statistical down-
sampling can be used if coarser resolution is needed (Atkinson
2013). Optical sensors can be used to characterize aspects of plant
physiology (e.g., photosynthesis or water relations) (Zhang et al.
2021), whereas these aspects are omitted by most current epidemio-
logical models. However, integrating plant physiological processes
into epidemiological models is an active area of research (Précigout
et al. 2017), suggesting that physiologically designed sensors will
likely inform future epidemiological models. In general, statisti-
cal methods for spatiotemporal designs (Mateu and Miiller 2012)
could be used to efficiently design plant disease monitoring via
optical sensing for compatibility with epidemiological models, but
these may require heterogeneous data acquisition across different
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spatial scales, meaning data fusion becomes challenging (see also
Challenge Biii; Barbedo 2022; Berger et al. 2022).

Using data assimilation methods for model fitting (Challenge
Cii). A major opportunity for combining epidemiological models
and optical sensing data is to obtain estimates of epidemiological
parameters. This problem is referred to as parameter estimation or
identification, or in some cases as inverse problems. Several meth-
ods are available. As epidemiologists often already must tackle
sparse and noisy data, they routinely formulate suitable obser-
vation processes (e.g., zero-inflated) and methods (e.g., Markov
chain Monte Carlo, likelihood, or nonlinear least-squares optimiza-
tion) for inferring parameters when potentially useful information
is unavailable (Gibson 1997; Soubeyrand and Roques 2014), in
both frequentist and Bayesian statistical frameworks. Alternatively,
model parameters or states can be estimated using data assimilation
(Asch et al. 2016; Pandya et al. 2022). These methods may prove
particularly suitable for fitting epidemiological models to optical
sensing data because they have been adapted to handle image data
(Mang et al. 2020; Papadakis and Mémin 2008). Data assimilation
is broader than parameter estimation and is well suited for sequen-
tial data acquisition, meaning model parameters and predictions
could be automatically updated as new image data are acquired. Fi-
nally, we can draw inspiration from recent ML methods developed
to solve data assimilation problems in physics (physics-based deep
learning; Cheng et al. 2023; Thuerey et al. 2021), which are in-
creasingly used in epidemiology (Ye et al. 2025), to fit mechanistic
epidemiological models to optical sensing data.

Accounting for data uncertainty in epidemiological models
(Challenge Ciii). Although optical sensing data offers new oppor-
tunities for epidemiological modeling, additional uncertainties and
errors will also be introduced. For example, environmental con-
ditions (e.g., cloud cover, aerosol loading) can influence sensor
measurements (Daniels et al. 2023). The frequency of data acqui-
sition can also vary (Challenge Biii), meaning sensors may fail
to capture important events, such as early infections (Gold et al.
2020c; Rumpf et al. 2010). Similarly, spatial heterogeneity in host
topology and species/cultivar can only ever be partially captured by
optical sensing. Preprocessing techniques applied to raw data from
optical sensors (as described above in Current state of the art) may
introduce further uncertainties.

Following preprocessing and analysis, it is now established that
optical sensing data can be used to obtain point estimates of the spa-
tial distribution of infections (Boxes 1 and 2). However, predictions
have two main sources of uncertainties. First, prediction of dis-
ease occurrence and severity from remote sensed data is subject to
several, known and unknown, potential confusions between biotic
and abiotic causes (Challenge Aii). We note that the types of errors
in optical sensing data may be different from those in reference
measurements (e.g., human observations of symptoms, molecular
detection), and this will require specific treatment. Second, ML
algorithms used for processing optical sensing data themselves
make errors. This may make epidemiological parameters as inferred
from optical sensing data either potentially unreliable or difficult to
interpret (Leclerc et al. 2023). Furthermore, there are challenges
associated with intra-class variability (where it can be difficult
to establish a boundary between classes) and inter-class similar-
ity (where the inherent similarity between certain classes means
that the class of an individual pixel can be difficult to determine
unambiguously) (Bi et al. 2021; Qin and Liu 2022).

Both types of error should be considered for forward predictions
from epidemiological models. Promising methods have been devel-
oped in the environmental sciences, where spatial models are fitted
to remote sensing data (Chabot et al. 2015; Janji¢ et al. 2018), and
these could be co-opted to this use case. In principle, the Bayesian
statistical framework used in parameter inference in plant disease
epidemiology also provides a mechanism by which these types of
uncertainty can be propagated. However, despite some promising
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successes in related fields (Bauer-Marschallinger et al. 2022), meth-
ods to do this specifically for optical sensing data and plant disease
will require more research.

Particular challenges associated with emerging diseases
(Challenge D)

Reacting rapidly to invasion of a region hitherto unaffected by a
plant pathogen is important to give disease management the best
possible chance of success (Epanchin-Niell and Hastings 2010;
Fraser et al. 2004). However, because spread data only become
available as any outbreak unfolds (Thompson et al. 2018), pathogen
biology and transmission become more precisely characterized the
longer any epidemic has been spreading in the region of inter-
est (Neri et al. 2014). This unavoidable tension between when
models are most useful and when the data to drive them become
available leads to challenges characteristic of emerging plant dis-
ease epidemics, affecting both optical sensing and epidemiological
modeling.

A challenge is that reference data are almost always more lim-
ited for emerging than for established diseases. The probability a
disease will truly be present if detected—the “positive predictive
value” (PPV) (Bours 2021)—is likely to be low. Indeed, the PPV de-
pends on the prevalence of the disease (a priori low for an emerging
disease) and the sensitivity and specificity of the detection method.
With a sensitivity and specificity of 90%, the PPV is 0.083 for a
prevalence of 1%, meaning that the disease is truly present in only
8.3% of detections. This value drops to 0.89% for a prevalence of
0.1%. Nearly perfect sensors with 99% sensitivity/specificity are
necessary to reach a PPV of 50% (at prevalence 1%) and 9% (at
prevalence 0.1%). The levels of sensitivity and specificity of optical
sensing in the field depend on many factors, but values higher than
90 to 95% are currently unlikely (Terentev et al. 2022).

Arguably the larger challenge for optical sensing of emerging
pathogens is that spectral signatures are often not characterized. It
would, of course, be plausible to use signatures from geographic
regions where the pathogen of interest is well established and
well characterized (Gongora-Canul et al. 2020; Negrisoli et al.
2022; Zhang et al. 2023). However, this raises challenges around
the robustness/transferability of the signatures from different ge-
ographic areas. A second approach could be to use proximal
sensing and reference disease intensity data from controlled en-
vironment experiments. However, here, the related challenge is
the robustness/transferability between controlled environments and
epidemics in the field (see Challenge Aiii).

An approach that simultaneously targets a range of potential
invading pathogens while sidestepping the need to obtain disease-
specific spectral signatures in a novel environment is “anomaly
detection.” Spectral signatures associated with healthy plants are
characterized, and deviation from typical signatures then acts as a
trigger to initiate ground scouting or other efforts (Kanaley et al.
2024). It may be possible to derive robust and species-specific
spectral signatures of plant health based on foliar functional plant
traits (Reich et al. 1997; Wright et al. 2004). Some of these traits
(e.g., leaf mass per area, chlorophylls) may reflect overall plant
health, whereas others (e.g., lignins, carotenoids) hint at diseases.
Robust estimation of many of these traits via optical sensing has
been achieved (Cherif et al. 2023; Singh et al. 2023; Wang et al.
2019,2020; Zhang et al. 2021). Measuring abnormal plant mortality
(Wegmueller et al. 2024) and detecting abnormal changes in plant
traits (Fekete and Cserep 2021) via optical sensing combined with
novelty detection classification techniques (AlSuwaidi et al. 2018)
may provide valuable information about emerging diseases. These
approaches may become especially effective in nursery and green-
house production: a relatively small footprint and controlled growth
conditions make it easier to characterize and monitor spectral sig-
natures of healthy plants. However, going from characterization of
functional plant traits to a robust assessment of plant health requires
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anontrivial synthesis of existing knowledge/data and dedicated new
datasets.

Parameterized mathematical models will also tend not to be avail-
able when a pathogen is emerging and spreading in a new region. In-
deed, fully parameterized predictive models have often only become
available after control has ceased to be a viable proposition (e.g.,
sudden oak death in California; Cunniffe et al. 2016; Meentemeyer
et al. 2011). Similarly to the trade-offs for optical sensing above,
options for making models available before or during outbreaks
tend to require either significant assumptions on pathogen spread
(Hilker et al. 2017) or direct transfer of models originally parame-
terized for spread in other locations (Ellis et al. 2025). Both options
introduce uncertainties and potentially inaccuracies in spread pre-
dictions. Predictive models of emerging pathogens are therefore
particularly challenging to develop (Cunniffe and Gilligan 2020;
Cunniffe et al. 2015), and links with optical sensing must be alert
to this. Where possible, a combination approach—use of predictive
models along with anomaly detection, described above—may help
to improve timely detection of emerging diseases.

Finally, ethical considerations, including privacy and data shar-
ing concerns, can pose particular challenges for emerging diseases
(Challenge Biv). Emerging diseases tend to require interdisciplinary
collaboration between remote sensing specialists, epidemiologists,
and plant pathologists, sometimes under significant time pressure,
and this may not be easy. In many developing countries, limited
infrastructure and resources, a lack of experts in relevant fields, or
limited funding might reasonably be expected to lead to particularly
extreme challenges in this regard.

‘We summarize the opportunities and challenges presented above
in Figure 1.
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Recommendations

Establish standards

There is a critical need to standardize methods for optical sens-
ing in plant health monitoring to acquire data comparable across
sensors, sites, and dates. This includes developing common pro-
tocols for data acquisition, processing, and interpretation; ideally,
this should be led by experts in these fields. Assuming they are
widely adopted, consistent, reproducible, and reliable practices will
help minimize bias, improve accuracy, and enable comparability
across studies. This is critical for HSI due to the complexity of the
sensors’ operation, data acquisition, and processing (Aasen et al.
2018). To convert hyperspectral imagery into surface reflectance
(the proportion of incoming light reflected by a surface), it is es-
sential to measure irradiance (the amount of incoming sunlight)
at the time of image capture. This requires recording irradiance
data simultaneously with the other imagery captured by measure-
ment platforms. Radiometric calibration of the sensors and stan-
dard models (such as RTM; Verhoef and Bach 2003) need to be
optimized for local conditions to enable atmospheric correction
of the imagery. For UAV platforms, Chakhvashvili et al. (2024)
proposed a structured approach to multi-sensor campaigns encom-
passing mission planning, calibration, and spatial referencing and
using additional sensors to assess ambient environmental conditions
(e.g., weather stations, Internet of Things environmental sensors).
A recent positive development is the publication of a European
and Mediterranean Plant Protection Organization (EPPO) stan-
dard on “Adoption of digital technology for data generation for
the efficacy evaluation of plant protection products” (Anonymous
2024).

Opportunities and challenges in integrating optical sensing and epidemiological modeling

...but challenges with optical sensing (OS) data availability,
quality and resolution (e.g., insufficient reference
data; resolution and scales in time/space; regulatory

barriers/privacy concerns) [Challenges Bi-iv]

Models will help to decide
where, when and how deploy
sensors, including guiding
flight routes in real-time for
surveillance [Opportunity Ov]

The vast amounts of data
generated by OS will greatly
benefit the development of
epidemiological models
[Opportunity Oi]

...but challenges in linking optical
sensing and models (data
compatibility; need for data
assimilation; need to properly account
for data uncertainty) [Challenges Ci-iii]

FIGURE 1

Non destructive and objective disease quantification
will overcome difficulties and bias in human scouting
and rating [Opportunity Oii]

Model outputs (e.g.,

spatio temporal patterns of
disease) will improve
interpretation of OS data
[Opportunity Oiv]

Host maps and comprehensive
environmental characterisation
provided by OS will improve
landscape-scale models
[Opportunity Oiii]

...but challenges in identifying a particular
disease from spectral signatures (unknown
for some pathogens and for most
underlying mechanisms; difficulty of scaling
from controlled to field conditions)
[Challenges Ai-iii]

Summary of opportunities and challenges in integrating optical sensing and epidemiological modeling.
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Develop, maintain, and use open access databases

Open access, standardized databases including optical sensing
data, epidemiological models, and reference data would foster
cross-disciplinary work (Sparks et al. 2023). However, data privacy
and intellectual property implications would need attention (Kaur
et al. 2022), as would long-term funding to maintain such a system.
To achieve this, we can draw inspiration from genomics, where open
access data repositories are well established (e.g., GenBank of the
National Center for Biotechnology Information). Using openEO
(https://dataspace.copernicus.eu/analyse/apis/openeo-api) in re-
mote sensing of plant diseases would provide a standardized, scal-
able, and interoperable platform that simplifies access to diverse
Earth observation datasets (Schramm et al. 2021).

Develop awareness by working with stakeholders

To address socioeconomic constraints, governments and interna-
tional organizations should improve data regulation, legislation, and
digital literacy (Kos and Kloppenburg 2019). Our research commu-
nities need to work with social scientists and stakeholders to find
ways to reconcile data availability with respecting data privacy and
intellectual property (Everts et al. 2012; Kaur et al. 2022).

Routinely capture a range of conditions to improve generalizability
and transferability

Many studies report disease measurement via optical sensing, but
the outcomes may not be robust with respect to other biotic or abi-
otic stresses and may not be transferable to other host genotypes or
geographic locations. To address these challenges, comprehensive
ranges of conditions (related to host plant, pathogen, and the envi-
ronment) need to be captured in both reference and optical sensing
measurements, which need to be georeferenced. Possible abiotic
and biotic confounding factors also need to be assessed in the field.

Use crowdsourcing and gamification to improve annotation of data
when possible

Annotated reference data for model training is a key limiting
factor, and crowdsourcing may help to overcome this (Wazny
2017). However, despite the emergence of various paid-for plat-
forms, such as Amazon’s Mechanical Turk (Mason and Suri 2012),
and the possibility to use gamification to reduce costs (Khakpour
and Colomo-Palacios 2021), the necessary specialist knowledge re-
quired to annotate plant diseases might make this challenging (Bock
et al. 2020). However, these efforts would be of great educational
value and help to promote plant health to wider audiences.

Optimize optical sensing data collection both for use with models
and by using models

Spatial and temporal scales and resolutions and trade-offs be-
tween them need to be considered when combining optical sensing
and epidemiological modeling. Acquisition of optical sensing data
can be optimized using epidemiological modeling, but model devel-
opment needs to be informed by the characteristics of the available
optical sensing data.

Identify signatures of plant health beyond the one host-one
pathogen paradigm

Linking epidemiological models and optical sensing data is dif-
ficult because it is hard to identify a given disease, particularly
given the range of biotic and abiotic conditions that must be han-
dled (Challenge A). Focusing on anomaly detection is therefore
very attractive, although it requires us to overcome the significant
challenge of robustly assessing plant health from measured traits
(while accounting for multiple pathogens).

Ensure uncertainties are captured and propagated through analyses

Uncertainty can be introduced at various stages in analytic
pipelines, from uncertainty in measurements (e.g., due to cloud
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cover) to confusions caused by interactions with biotic and/or abi-
otic factors (Challenge Aii), errors or imprecision in ML methods
for processing data (Qin and Liu 2022), uncertainties in model pa-
rameters as fitted to data (Minter and Retkute 2019), and sampling
effects when using stochastic models predictively (Cunniffe and
Gilligan 2020). Sorely needed are methods to capture and propa-
gate these uncertainties forward, building on promising methods
from related fields.

Establish multidisciplinary collaborations

We need to foster multidisciplinary and interdisciplinary col-
laborations, bringing together optical sensing experts, computer
scientists, plant pathologists, plant physiologists, crop modelers,
and epidemiological modelers (Camino et al. 2021). Encourag-
ingly, a growing body of work in phytopathometry (Gongora-Canul
et al. 2020; Kanaley et al. 2024; Lee et al. 2021, 2025; Oh et al.
2021; Zhang et al. 2023) exemplifies this and shows how inte-
grated methodologies can enhance the reliability and scalability
of plant disease detection, quantification, and assessment under
field conditions. In going further and linking optical sensing with
epidemiological modeling, we should not reinvent the wheel but
instead draw inspiration from disciplines such as environmental
sciences (Liu 2015; Weng 2009) and meteorology (Bevis et al.
1992; Mittaz et al. 2019), which have long coupled optical data
with mathematical modeling. We can also reflect on other uses of
new sources of data in epidemiological modeling. Notable exam-
ples include phylogenetic data (Gougherty and Davies 2021; Pybus
and Rambaut 2009) and human mobility data from mobile phones
and social media (Grantz et al. 2020; Kostandova et al. 2024).

Teach basic sciences and modern data analysis in plant pathology
training

A major obstacle to integrating optical sensing and epidemio-
logical modeling is the inconsistent and often insufficient training
in basic sciences and modern data analysis at the bachelor’s and
master’s levels in agricultural and biological sciences. Although
addressing this requires systemic changes and broader discussions
across the academic community, there are practical steps we can
take to train the next generation of plant health researchers. These
include (i) designing and teaching courses on digital plant health,
incorporating necessary elements of basic sciences (mathemat-
ics, physics, chemistry, and biology), programming, data sciences,
and mathematical modeling; (ii) organizing summer schools on
interdisciplinary approaches to plant health; and (iii) organizing
informal study groups and other communities that bring together
students and researchers from different disciplines, perhaps lever-
aging internet technologies to do so. Ensuring accessibility to these
opportunities—particularly for researchers from the Global South
and underrepresented communities—should be a key priority. In
doing this, we can draw inspiration from similar discussions in re-
lated multidisciplinary fields such as bioinformatics (Mulder et al.
2018) and big data/artificial intelligence (Luan et al. 2020).

Promote opportunities to funding agencies, governments, plant
protection organizations, and technology companies
Interdisciplinary and transdisciplinary research in digital plant
health must be supported more strongly by funding agencies. Tra-
ditional 3-year funding periods are often too short to perform the
necessary field trials or observational studies, collect and ana-
lyze data, and publish the outcomes. More comprehensive support,
longer-term funding, and interdisciplinary projects are needed to
collect these datasets, transform them into meaningful interpreta-
tions, and publish them open access in accordance with the find-
able, accessible, interoperable, and reusable (FAIR) data principles
(Kumar et al. 2024). This approach is data intensive, and, therefore,
we need to establish the necessary infrastructure to develop sophisti-
cated artificial intelligence models (e.g., SSL or foundation models)
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Recommendations to support integration of optical sensing and epidemiological modeling

Policies and Frameworks

Promote opportunities to
funding agencies, governments,
plant protection organisations

and technology companies \

[Recommendation 11]
Epidemiological
modeling

L3

Technology and Infrastructure

e Establish standards for optical
sensing in plant health
monitoring
¢ Develop and maintain open
access databases
[Recommendations 1,2]

Data

e Routinely capture a range of
conditions to improve
‘ generalisability and transferability
* e Optimise optical sensing data
/ collection both for use with
models and by using models

Optical [Recommendations 4,6]
sensing

oS
e

@

Research and Development

e |dentify signatures of plant
health beyond the one host-one
pathogen paradigm
® Ensure uncertainties are
captured and propagated
through analyses
[Recommendations 7,8]

Human Expertise

¢ Develop awareness by working with stakeholders
e Establish multi-disciplinary collaborations
e Use crowd-sourcing and gamification to improve
annotation of data when possible
¢ Teach big data analysis in plant pathology training
[Recommendations 3,5,9,10]

FIGURE 2

Summary of recommendations to support integration of optical sensing and epidemiological modeling.

in cooperation with ML experts. Furthermore, we need to collabo-
rate with plant protection companies and technology companies to
make the applications rapidly accessible and to foster their adoption
by growers. A particular challenge is to communicate with political
decision-makers and convince them of the many possibilities and
necessary steps, as well as the commensurate need for investment.

We summarize the recommendations presented above in
Figure 2.
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