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A B S T R A C T

Because it allows a rigorous separation between reversible and irreversible processes, the concept of available
potential energy (APE) has become central to the study of turbulent stratified fluids. In ocean modelling, it
is fundamental to the parameterisation of meso-scale ocean eddies and of the turbulent mixing of heat and
salt. However, how to apply APE theory consistently to local or regional subdomains has been a longstanding
source of confusion due to the globally defined Lorenz reference state entering the definition of APE and of
buoyancy forces being generally thought to be meaningless in those cases. In practice, this is often remedied by
introducing heuristic ‘localised’ forms of APE density depending uniquely on region-specific reference states,
possibly diverging significantly from the global Lorenz reference state. In this paper, we argue that across-scale
energy transfers can only be consistently described if localised forms of APE density are defined as the eddy APE
component of an exact mean/eddy decomposition of the APE density, for which a new physically more intuitive
and mathematically simpler framework is proposed. The eddy APE density thus defined exhibits a much weaker
dependency on the global Lorenz reference state than the mean APE, in agreement with physical intuition,
but with a different structure than that of existing heuristic localised APE forms. Our framework establishes a
rigorous physical basis for linking parameterised energy transfers to molecular viscous and diffusive dissipation
rates. We illustrate its potential usefulness by discussing the energetics implications of standard advective and
diffusive parameterisations of the turbulent density flux, which reveals potential new sources of numerical
instability in ocean models.
1. Introduction

Turbulent stratified flows exhibit a complex interplay between re-
versible and irreversible processes, each providing crucial insights into
the other. Reversible aspects are typically associated with adiabatic
stirring, which deforms isopycnal surfaces, increases their areas, and
magnifies irreversible effects by enhancing tracer gradients. This pro-
cess leads to the dissipation of mechanical energy and tracer variances
at increasingly smaller scales through molecular and diffusive pro-
cesses (Eckart, 1948). The concept of available potential energy (APE),
originally formulated by Margules (1903) and Lorenz (1955) and later
adapted to the study of turbulent stratified mixing by Winters et al.
(1995), serves as a key tool for distinguishing between reversible and
irreversible processes. APE theory posits that the potential energy (PE)
of any stratified fluid can be partitioned into a component (the APE)
available for reversible conversions with kinetic energy (KE), and a
component (the background potential energy, BPE) that is not. In

∗ Corresponding author.
E-mail address: r.g.j.tailleux@reading.ac.uk (R. Tailleux).

Lorenz’s approach, the BPE is defined as the PE of a flattened state
of minimum potential energy obtainable from the actual state through
an adiabatic rearrangement of mass (Lorenz, 1955). Consequently, APE
theory provides a natural framework for assigning distinct energetic
signatures to reversible and irreversible processes (Butler et al., 2013).
Reversible processes affect the APE of the fluid while leaving the BPE
unaffected, whereas irreversible processes entail an energy transfer
between the APE and BPE. In most cases, the net transfer occurs from
the APE to the BPE; however, the reverse conversion is occasionally
possible, as observed in double-diffusive instabilities (e.g., Middleton
and Taylor, 2020; Middleton et al., 2021; Tailleux, 2024). In the local
theory of APE, the conversion rate between APE and BPE is generally
referred to as the APE dissipation rate, denoted as 𝜀𝑝. Although initially
introduced in the context of Boussinesq fluids, the nature of 𝜀𝑝 in
the fully compressible Navier–Stokes equations has been discussed
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by Tailleux (2009, 2013c) and Tailleux (2024). In the global APE frame-
work of Winters et al. (1995), the volume-integrated APE dissipation
rate is represented by the term 𝛷𝑑 − 𝛷𝑖. Together with the viscous
dissipation rate 𝜀𝑘, the sum 𝜀𝑘 + 𝜀𝑝 represents the total dissipation of
mechanical energy, defined as the sum of KE and APE.

While recent discussions of APE have primarily been framed within
the global APE framework of Winters et al. (1995), the concept’s im-
portance and utility were first recognised by Oakey (1982) and Gargett
and Holloway (1984) through the derivation of a local APE budget for
a quadratic, non-negative APE density. This was achieved by rescaling
the budget of temperature variance and linking it to the mechanical
energy budget. This result was significant for connecting turbulent
mixing to the mechanical energy budget, as it introduced a conversion
term with kinetic energy and related the APE dissipation rate 𝜀𝑝 to the
dissipation of temperature variance:

𝜀𝑝 =
𝑔𝛼𝜅𝑇 |∇𝜃′|

2

𝑑𝜃∕𝑑𝑧
. (1)

In (1), 𝑔 represents the acceleration due to gravity, 𝛼 is the thermal ex-
pansion coefficient, 𝜅𝑇 is the thermal diffusivity, and 𝜃 is the potential
temperature with mean 𝜃 and perturbation 𝜃′. The relative importance
of diffusive and viscous effects in dissipating mechanical energy can
be quantified using the dissipation ratio 𝛤 = 𝜀𝑝∕𝜀𝑘, a commonly
used measure of mixing efficiency, often considered to be close to 0.2.
Both 𝜀𝑝 and 𝜀𝑘 can be used to define the turbulent diapycnal mixing
according to the formula

𝐾𝜌 =
𝜀𝑝

𝑁
2
=

𝛤𝜀𝑘

𝑁
2
, (2)

(e.g., Lindborg, 2006). Over the past three decades, the somewhat
ad-hoc approach to APE developed by Oakey (1982) and Gargett
and Holloway (1984) has been superseded by the exact global APE
framework of Winters et al. (1995) and the exact finite-amplitude
local APE framework first developed by Andrews (1981) and Holliday
and McIntyre (1981), and subsequently extended by Shepherd (1993),
Scotti et al. (2006), Roullet and Klein (2009), Tailleux (2013b), Scotti
and White (2014), Zemskova et al. (2015), and Tailleux (2018), among
others.

Reversible and irreversible effects can also be described in terms of
energy transfers between different scales of motion. In the atmosphere,
there has been extensive discussion about the physical explanation
for the turbulent energy cascade affecting both kinetic and potential
energy. Lindborg (2006) developed a theory suggesting a forward
energy cascade with energy spectra given by

𝐸𝐾ℎ
= 𝐶1𝜀

2∕3
𝐾 𝑘−5∕3ℎ , 𝐸𝑃ℎ = 𝐶2𝜀𝑝𝑘

−5∕3
ℎ 𝜀−1∕3𝐾 (3)

with 𝐶1 ≈ 𝐶2. Interestingly, this theory predicts that the ratio of
potential energy to kinetic energy spectra at all scales is
𝐸𝑃ℎ
𝐸𝐾ℎ

≈
𝜀𝑝
𝜀𝐾

= 𝛤 , (4)

thus suggesting that the constraint imposed by the dissipation ratio
𝛤 extends to significantly larger scales than the dissipation scales.
Intriguingly, the ratio 𝐺𝐴∕𝐺𝐾 of the APE production rate 𝐺𝐴 by surface
buoyancy fluxes to the wind power input into geostrophic motions
𝐺𝐾 also appears to be close to the dissipation ratio 𝛤 . Indeed, based
on Zemskova et al. (2015), 𝐺𝐴 ≈ 0.5TW, and 𝐺𝐾 ≈ 2−3TW, yielding a
ratio 𝐺𝐴∕𝐺𝐾 ≈ 0.17−0.25. Strong constraints on the relative importance
of the KE and APE energy spectra and energy transfers therefore appear
to exist over a wide range of scales. Understanding the nature of such
constraints and exploiting them to constrain the parameterisations of
subgridscale processes controlling the unresolved KE and APE energy
cascades forms the basis for the development of energetically consistent
numerical ocean models.

Lorenz introduced the global APE framework to explain how the at-
mospheric circulation is maintained against dissipation. He introduced
2

the Lorenz Energy Cycle (LEC) as a means to achieve this, partitioning
the KE and APE reservoirs into mean and eddy components. However,
because the integrand defining the APE is not positive definite, Lorenz
had to rely on various manipulations and integrations by parts to
rewrite the volume-integrated APE as the volume integral of a positive
definite quadratic quantity that could then be split into mean and
eddy components. Setting aside compressible effects, the local APE
framework defines the APE density of a fluid parcel in terms of the work
against buoyancy forces relative to the reference density profile 𝜌0(𝑧),
characterising the globally defined Lorenz reference state of minimum
potential energy. However, this reference state is rarely considered
relevant for understanding the energetics of much smaller subdomains.
Rather, it is generally implicitly assumed that buoyancy forces should
be defined relative to some locally defined averaged density field
characteristic of the local environment. To continue using APE theory
in such cases, most existing approaches appear to be based on some
heuristic ‘localisation’ of the local or global APE frameworks. A typical
example of such localisation is the definition of eddy APE by Roullet
et al. (2014), which physically modifies the exact form of local APE
density

𝐸𝑒𝑥𝑎𝑐𝑡
𝑎 =

𝑔
𝜌⋆ ∫

𝑧

𝑧0(𝜌)
[𝜌 − 𝜌0(�̃�)] d�̃� (5)

into the following ‘localised’ form:

𝐸𝑅14
𝑎 =

𝑔
𝜌⋆ ∫

𝑧

𝑧𝑚
[𝜌 − 𝜌𝑚(𝑥, 𝑦, �̃�)] d�̃�, (6)

with 𝜌𝑚(𝑥, 𝑦, 𝑧) representing some locally defined mean density field,
and 𝑧𝑚 the level of neutral buoyancy satisfying 𝜌𝑚(𝑥, 𝑦, 𝑧𝑚) = 𝜌, while
𝑧0(𝜌) is such that 𝜌0(𝑧0(𝜌)) = 𝜌. While plausible and physically appeal-
ing, (6) is the source of much confusion in the literature about turbulent
stratified mixing, as it no longer provides clarity on how to compute the
reference state associated with the exact formula (5). Several studies
have discussed the issue (e.g., Arthur et al., 2017; Wykes et al., 2015;
Dewar and McWilliams, 2019) and found that different choices of
reference states often lead to significantly different conclusions about
the properties of mixing. To help visualise the nature of the problem,
the left panel of Fig. 1 illustrates the differences between the exact
(black) and heuristic (orange) APE densities predicted by (5) and (6) in
a particular example for which 𝜌𝑚 and 𝜌0 differ from each other, as is
normally the case. The right panel anticipates the results of this paper,
comparing the exact form of instantaneous eddy APE density resulting
from an exact mean/eddy decomposition (black) with the heuristic APE
density (orange, same as in left panel), associated with fluctuations
around the mean density 𝜌𝑚. This schematic shows that while both
approaches are associated with the same density anomalies 𝜌′, they are
associated with different displacement anomalies 𝜁 ′, potentially leading
to significant differences.

Part of the difficulty or confusion surrounding this issue seems to
arise from the insistence on discussing the energetics of individual
mixing events independently of the energetics of the global ocean in
which they are embedded. However, in a statistically steady state, the
total KE+APE dissipation must balance the work done by the surface
wind stress plus the APE production by the surface buoyancy fluxes.
Considering that the APE production by surface buoyancy fluxes is
always based on the exact APE density using the Lorenz reference
density profile 𝜌0(𝑧), it seems evident that if the APE dissipation rate
based on (6) is sensitive to the choice of 𝜌𝑚, then there must be only
one consistent way to define 𝜌𝑚 that can achieve the desired balance.
The question addressed in this paper is: which one is it?

To ensure consistency between APE production at large scales and
APE dissipation at molecular scales, the solution discussed in this paper
is to define localised eddy APE densities in terms of the eddy compo-
nent of an exact mean/eddy decomposition of the local APE density. As
shown in this paper, this is especially important and necessary where
the actual state departs significantly from the Lorenz reference state



Ocean Modelling 197 (2025) 102579R. Tailleux and G. Roullet
Fig. 1. (a) Schematic illustrating the differences between the exact APE density (black) versus heuristic APE density (orange) as area under the curves, for a parcel with density
𝜌 at depth 𝑧; (b) Same as for left panel but for the instantaneous exact eddy APE density (black) versus heuristic APE density (orange) associated with density anomalies centred
around the mean density 𝜌𝑚(𝑧) at depth 𝑧. Note that the black and orange areas can both be approximated as 𝜌′𝜁 ′∕2 in terms of the same density anomaly 𝜌′ but different
displacement anomaly 𝜁 ′.
and hence where the standard QG approximation becomes inaccurate.
So far, a general theory for how to do so has been lacking, as existing
results have been limited to a Boussinesq fluid with a linear equation of
state (Scotti and White, 2014) or a dry atmosphere (Novak and Tailleux,
2018), using methods too specialised to be easily generalisable. It
follows that to apply existing theory to a realistic ocean (e.g., Zemskova
et al. (2015) or MacCready and Giddings (2016)), several approxima-
tions need to be made to circumvent the difficulties arising from the
two-component nature of the equation of state and its thermobaric
nonlinearity, thus diminishing its benefits. Perhaps because of this,
most studies of the Lorenz energy cycle – while often acknowledging
the existence of Scotti and White (2014) – still continue to rely on
the standard QG approximation used by von Storch et al. (2012) and
others.

In this paper, we revisit Scotti and White (2014)’s approach by
making it more physically intuitive, mathematically simpler, and more
easily generalisable to more complex fluids. To that end, we adopt as
our starting point the local budget of APE density developed by Tailleux
(2024), which more naturally generalises to two-component fluids. To
summarise, our approach defines the mean APE density 𝐸𝑎(𝜌, 𝑧) as the
APE density of the mean density field 𝜌, the eddy APE density as the
residual 𝐸𝑡

𝑎 = 𝐸𝑎 − 𝐸𝑎(𝜌, 𝑧), and proves the positive definite character
of 𝐸𝑡

𝑎 by linking it to the convexity of 𝐸𝑎(𝜌, 𝑧) with respect to 𝜌. The
generality of such results suggests that for a realistic thermobaric ocean,
the mean APE density should be defined as 𝐸𝑚

𝑎 = 𝐸𝑎(𝑆, 𝜃, 𝑧) and hence
the eddy APE density as the residual 𝐸𝑡

𝑎 = 𝐸𝑎 − 𝐸𝑎(𝑆, 𝜃, 𝑧), which is
quite different from Zemskova et al. (2015) or MacCready and Giddings
(2016), thus paving the way for improving the description of the Lorenz
energy cycle in ocean models, as will be developed and discussed in
subsequent work.

By interpreting the mean and eddy fields as the resolved and unre-
solved components of a numerical ocean model, we use our framework
to discuss and understand the energetic implications of different possi-
ble parameterisations of the turbulent fluxes affecting the across-scale
KE and APE energy transfers, similarly to the energetically consistent
modelling approach of Carsten Eden (Eden et al., 2014; Eden, 2015,
2016) (note, though, that in the latter studies, potential energy is par-
titioned into dynamic and potential enthalpy rather than into APE and
BPE). Our main focus is on advective and diffusive parameterisations
of the turbulent density flux, which in the oceanic case pertain to
meso-scale and small scales, but which in our framework cannot be
distinguished. Our discussion reveals that some conclusions about the
impact of turbulent parameterisations depend on whether the exact or
QG approximation is used; it also suggests that such parameterisations
can occasionally convert unresolved APE into resolved APE, potentially
3

revealing a new type of numerical diffusive instability. We also find that
if the energy transfers associated with the APE cascade are assumed to
scale proportionally to the KE cascade, aspects of the parameterisations
of vertical momentum transfer discussed by Greatbatch and Lamb
(1990) can be recovered.

In line with classical discussions of the Lorenz energy cycle, our
exact mean/eddy decomposition framework relies on conventional Eu-
lerian Reynolds averaging. However, we acknowledge that there is
increasing interest in understanding the energetics for the thickness-
weighted averaged equations in isentropic or isopycnic coordinates
(e.g., Bleck, 1985; Aiki et al., 2016; Loose et al., 2023). How to extend
our results to this case is left to future work.

This paper is organised as follows. Section 2 highlights the convexity
of the local APE density as the fundamental property underlying the
construction of the concept of eddy APE in the most general case. The
convexity property of the local APE density was only briefly mentioned
by Scotti and White (2014) but arguably warrants a more thorough
discussion and exploitation. This section also clarifies the links between
exact and heuristic forms of local APE density. Section 3 revisits and
simplifies the derivation of the local budgets of mean and eddy APE
previously obtained by Scotti and White (2014). Section 4 discusses the
constraints on mixing parameterisations derived from the consideration
of the eddy APE and KE budgets, a key issue for the development of
energetically consistent numerical ocean models, which do not appear
to have been considered before. Section 5 provides a summary and
discussion of the results.

2. Convexity and eddy APE density

2.1. Boussinesq model equations

In this study, we analyse the energetics of rotating stratified flows
using the standard Boussinesq approximation. We define the system’s
state relative to the Lorenz reference state, which represents the config-
uration of minimum potential energy achievable through an adiabatic
rearrangement of fluid parcels. This reference state is characterised by
the pressure and density profiles, 𝑝0(𝑧) and 𝜌0(𝑧) = −𝑔−1𝑑𝑝0∕𝑑𝑧, respec-
tively. With these assumptions, the governing equations of motion may
be written as
𝐷𝐯
𝐷𝑡

+ 2𝜴 × 𝐯 + 1
𝜌⋆

∇𝑝𝓁 = 𝑏𝓁𝐤 + 𝜈∇2𝐯 (7)

∇ ⋅ 𝐯 = 0 (8)

𝐷𝜌
= −∇ ⋅ 𝐉 , 𝐉 = −𝜅∇𝜌. (9)
𝐷𝑡 𝜌 𝜌
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where 𝑝𝓁 = 𝑝 − 𝑝0(𝑧) is the pressure anomaly relative to the reference
pressure, 𝐯 = (𝑢, 𝑣,𝑤) is the three-dimensional velocity field, 𝜴 is the
rotation vector, 𝑝 is the pressure, 𝜌 is the density, 𝜅 is the molecular
diffusivity, 𝜈 is the kinematic viscosity, 𝜌⋆ is the constant reference
Boussinesq density, and 𝑔 is the acceleration of gravity.

The buoyancy term in (7) is defined as

𝑏𝓁 = −
𝑔(𝜌 − 𝜌0(𝑧))

𝜌⋆
. (10)

This buoyancy 𝑏𝓁 differs from the standard buoyancy 𝑏𝑏𝑜𝑢 = −𝑔(𝜌 −
𝜌⋆)∕𝜌⋆ as it is measured relative to the variable reference density 𝜌0(𝑧)
rather than a constant Boussinesq density 𝜌⋆. For the purpose of this
analysis, we assume that the overall domain, analogous to oceanic
conditions, is sufficiently large that the reference density profile 𝜌0(𝑧)
can be considered time-independent. This assumption is supported by
climatological observations of temperature and salinity over a century
(not shown), which indicate that below the mixed layer, the Lorenz
reference state appears to remain stable over time.

2.2. Local APE theory

The local APE theory, which builds upon the global APE theory by
Lorenz (1955), was initially developed by Andrews (1981) and Hol-
liday and McIntyre (1981), and later rooted in Hamiltonian theory
by Shepherd (1993). This theory has been further extended and refined
by Scotti et al. (2006), Roullet and Klein (2009), Scotti and White
(2014), Zemskova et al. (2015) and Tailleux (2013b, 2018) among oth-
ers. For a comprehensive review, see Tailleux (2013a). Unlike Lorenz’s
global APE theory, the local APE theory defines APE as a local, non-
negative quantity, expressed through an APE density function whose
precise form depends on the equation of state and the approximations
used.

In this paper, we specifically consider a standard Boussinesq fluid
with a linear equation of state. The expression for the APE density,
derived from Holliday and McIntyre (1981) and subsequently utilised
by Roullet and Klein (2009) and Tailleux (2013b), is:

𝐸𝑎(𝜌, 𝑧) =
𝑔
𝜌⋆ ∫

𝑧

𝑧0(𝜌)
[𝜌 − 𝜌0(�̃�)] d�̃� = −∫

𝑧

𝑧0(𝜌)
𝑏𝓁(𝜌, �̃�) d�̃� (11)

where 𝑧0(𝜌) is the Level of Neutral Buoyancy (LNB) at which the density
of a fluid parcel equals that of the reference density:

𝜌 = 𝜌0(𝑧0(𝜌)). (12)

Note that in Eq. (11), 𝜌−𝜌0(�̃�) should be interpreted as 𝜌(𝑥, 𝑦, 𝑧, 𝑡)−𝜌0(�̃�),
with 𝜌 held constant during the integration. The APE density, like
other forms of exergy (Marquet, 1991; Kucharski, 1997, 2001), is an
extrinsic state function, dependent on both the fluid parcel’s state and
its environmental context.

The APE density can also be expressed in terms of 𝜌:

𝐸𝑎(𝜌, 𝑧) = ∫

𝜌

𝜌‡(𝑧)

𝜕𝐸𝑎
𝜕𝜌

(�̃�, 𝑧) d�̃� =
𝑔
𝜌⋆ ∫

𝜌

𝜌‡(𝑧)
[𝑧 − 𝑧0(�̃�)] d�̃�, (13)

where 𝜌‡ is defined such that 𝑧0(𝜌‡) = 𝑧. Eq. (13) is the starting point
of the mean/eddy decomposition obtained by Scotti and White (2014)
and is often favoured over (11) in the literature. In this study, Eq. (11)
is preferred over (13), as it aligns more closely with the APE density
for a multi-component compressible fluid, e.g., Tailleux (2013b, 2018).

Given that 𝜌 is a function of position and time, 𝐸𝑎(𝜌, 𝑧) can also
be viewed as a function of (𝑥, 𝑦, 𝑧, 𝑡). To differentiate between vertical
derivatives calculated at constant (𝑥, 𝑦, 𝑡) versus at constant 𝜌, we
introduce the two separate notations:
𝜕
𝜕𝑧

= 𝜕
𝜕𝑧

|

|

|

|𝑥,𝑦,𝑡
versus 𝜕

𝜕𝑍
= 𝜕

𝜕𝑧
|

|

|

|𝜌
. (14)

The partial derivatives of 𝐸𝑎 with respect to density and height are:
𝜕𝐸𝑎 =

𝑔(𝑧 − 𝑧0(𝜌)) =
𝑔𝜁

= 𝛶 (15)
4

𝜕𝜌 𝜌⋆ 𝜌⋆
𝜕𝐸𝑎
𝜕𝑍

=
𝑔(𝜌 − 𝜌0(𝑧))

𝜌⋆
= −𝑏𝓁 . (16)

Here, 𝜁 represents the displacement from the reference depth 𝑧0(𝜌),
and 𝛶 denotes a thermodynamic efficiency factor, indicating how
diabatic heating influences APE density versus background potential
energy (BPE). This concept aligns with the thermodynamic efficiency
in compressible fluids, as discussed by Tailleux (2024).

The functional dependence of 𝐸𝑎 on 𝜌 and 𝑧 leads to the following
identity

∇𝐸𝑎 =
𝜕𝐸𝑎
𝜕𝜌

∇𝜌 +
𝜕𝐸𝑎
𝜕𝑍

∇𝑧 = 𝐏𝑎 − 𝑏𝓁𝐤 (17)

in which

𝐏𝑎 =
𝜕𝐸𝑎
𝜕𝜌

∇𝜌 = 𝛶∇𝜌. (18)

This equality represents a particular instance of the Crocco–Vazsonyi
theorem (Crocco, 1937; Vazsonyi, 1945), which is crucial for devel-
oping energetically consistent sound-proof approximations, as recently
explored by Tailleux and Dubos (2024). Here, 𝐏𝑎 denotes an APE-
based modification of the P-vector originally introduced by Nycander
(2011) and recently showed by Tailleux and Wolf (2023) to relate to
the directions of lateral stirring in the oceans.

2.3. ‘Heuristic’ eddy APE

In most studies, buoyancy forces are often introduced in an ad-hoc
manner, reliant on an arbitrary selection of a reference state (Thorpe
et al., 1989; Smith et al., 2005). These forces, while useful, typically
lack intrinsic physical significance. However, the work done against
the buoyancy forces defined relative to the Lorenz reference density
profile represents the energy required to achieve the stratification of
the actual state from the Lorenz reference state through an adiabatic
rearrangement of fluid parcels. This process has intrinsic dynamical sig-
nificance since it is inherently tied to the system’s physical properties.
The associated squared buoyancy frequency profile for such forces is

𝑁2
0 (𝑧) = −

𝑔
𝜌⋆

𝑑𝜌0
𝑑𝑧

(𝑧). (19)

However, it is generally considered that this definition of buoyancy
forces pertains primarily to the energetics of the large-scale flows, with
less relevance to local turbulent mixing events. For the latter, it is
generally assumed that the relevant buoyancy forces are those defined
in terms of the buoyancy anomaly:

𝑏′ = −
𝑔
𝜌⋆

(𝜌 − 𝜌(𝑥, 𝑦, 𝑧)) = −
𝑔𝜌′

𝜌⋆
. (20)

Based on this, an intuitive extension of the APE density to measure
the work against these small-scale forces consists in adapting (11) as
follows:

𝐸ℎ𝑒𝑢
𝑎 =

𝑔
𝜌⋆ ∫

𝑧

𝑧𝑚(𝑥,𝑦,𝜌)
[𝜌 − 𝜌(𝑥, 𝑦, �̃�)] d�̃�, (21)

Here, 𝜌 replaces 𝜌0(𝑧), and 𝑧𝑚 = 𝑧𝑚(𝑥, 𝑦, 𝜌) is the height at which a fluid
has zero buoyancy relative to 𝜌, solving

𝜌[𝑥, 𝑦, 𝑧𝑚(𝑥, 𝑦, 𝜌)] = 𝜌. (22)

This heuristic APE density underpins the work of Roullet et al. (2014)
on mesoscale eddy APE from ARGO float data, and Luecke et al.
(2017)’s comparison of simulated and observed eddy APE. At leading
order, this can be approximated by

𝐸ℎ𝑒𝑢
𝑎 ≈ −1

2
𝑏′𝜁 ′ ≈

𝑔2

𝜌2⋆𝑁
2
𝜌′2

2
= 1

2
𝑏′2

𝑁
2

(23)

where 𝜁 ′ = 𝑧 − 𝑧𝑚(𝑥, 𝑦, 𝜌) and 𝑁
2
is the local mean squared buoyancy

frequency

𝑁
2
= −

𝑔 𝜕𝜌
(𝑥, 𝑦, 𝑧𝑚). (24)
𝜌⋆ 𝜕𝑧
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However, defining the APE density of small or mesoscale motions
as per (21) has issues:

Energy budget consistency: the evolution equation for 𝐸ℎ𝑒𝑢
𝑎 includes

energy conversion terms (such as one proportional to the horizontal
density gradient ∇ℎ𝜌 for instance) with no counterpart in the eddy
kinetic energy equation, complicating its energetics description.

Link to large-scale APE Physically, the APE dissipation by small scale
mixing must ultimately balance, if only partially, the large-scale sources
of APE imparted at the boundaries of the domain (Zemskova et al.,
2015). Since (21) does not depend on 𝜌0(𝑧), it is challenging to link
small-scale turbulent dissipation to large scale APE sources.

In this paper, we argue that in order to retain a connection with
both 𝑏′ and 𝜌0(𝑧), the eddy APE density needs to be defined as part
of an exact mean/eddy decomposition of the APE density. At leading
order, this exact eddy APE density is also equal to −1∕2𝑏′𝜁 ′, but with
the displacement 𝜁 ′ defined as 𝜁 ′ = 𝑧0(𝜌)−𝑧0(𝜌). Importantly, our exact
eddy APE density is valid for arbitrarily large deviations from Lorenz
reference state. As established further in the text, this theory modifies
the classical relationship between turbulent diapycnal diffusivity and
eddy APE dissipation 𝜀𝑡𝑝:

𝐾𝜌 =
𝜀𝑡𝑝

𝑁
2

(𝑜𝑙𝑑) ⟹ 𝐾𝜌 =
1

𝛬(1 + |𝐒|2)

𝜀𝑡𝑝

𝑁
2

(𝑛𝑒𝑤) (25)

Here, 𝛬 and 𝐒 are parameters defined by

𝛬 =
𝜕𝜌
𝜕𝑧

𝜕𝑧0
𝜕𝜌

(𝜌) = 𝑁
2

𝑁
2
0

, 𝐒 = −
(

𝜕𝜌
𝜕𝑧

)−1
∇ℎ𝜌 (26)

where 𝑁
2
0 = 𝑁2

0 (𝑧0(𝜌)). The two parameters 𝛬 and 𝐒 measure deviations
from Lorenz reference state in different ways and play a crucial role
in this paper, as clarified further in the text. Neglecting |𝐒| in the ex-
pression for 𝐾𝜌 is equivalent to making the small slope approximation.
Physically, 𝛬 is expected to differ significantly from unity where the
local squared buoyancy differs significantly from its value in Lorenz
reference state; in the oceans, this is primarily the case in the polar
oceans (Saenz et al., 2015; Tailleux, 2016; Tailleux and Wolf, 2023).

2.4. Convexity of APE density and eddy APE

We now separate variables into mean and eddy components using
standard Reynolds averaging so that 𝐯 = 𝐯 + 𝐯′, 𝜌 = 𝜌 + 𝜌′, and so on,
such that for any variable 𝑓 , 𝑓 = 𝑓 and 𝑓 ′ = 0. As is well known,
such an approach yields to the following mean/eddy partition of the
Reynolds averaged kinetic energy

𝐯2
2

= 𝐯2

2
+ 𝐯′2

2
= 𝐸𝑚

𝑘 + 𝐸𝑡
𝑘. (27)

Importantly, the mean kinetic energy 𝐸𝑚
𝑘 appears as the kinetic energy

of the mean velocity field 𝐯. The corresponding problem for the APE
density is to achieve the following mean/eddy decomposition of the
Reynolds averaged APE density

𝐸𝑎 = 𝐸𝑚
𝑎 + 𝐸𝑡

𝑎. (28)

Ideally, one would like to define the mean APE density as 𝐸𝑚
𝑎 = 𝐸𝑎(𝜌, 𝑧),

that is, as the APE density of the mean density 𝜌, since the latter is the
quantity that appears in the Reynolds averaged momentum equations,
and therefore define the eddy APE as the residual 𝐸𝑡

𝑎 = 𝐸𝑎 − 𝐸𝑎(𝜌, 𝑧).
That such an approach leads to a non-negative 𝐸𝑡

𝑎 was established
by Scotti and White (2014), who linked the result to the convexity
of APE density with respect to buoyancy but without elaborating on
it. However, given its fundamental importance in available energy
theories, the convexity property warrants more emphasis.
5

Mathematically, a function 𝑓 (𝑥) is said to be convex at some point 𝑥0
if its curve lies above its tangent line at that point, hence if the quantity
𝑓𝑒(𝑥; 𝑥0) = 𝑓 (𝑥) − 𝑓 (𝑥0) − 𝑓 ′(𝑥0)(𝑥 − 𝑥0) ≥ 0 is non-negative. To clarify
what properties of 𝑓 determine its convexity, it is useful to rewrite 𝑓𝑒
in the form

𝑓𝑒 = ∫

𝑥

𝑥0
[𝑓 ′(�̃�) − 𝑓 ′(𝑥0)] d�̃� = ∫

𝑥

𝑥0
∫

�̃�

𝑥0
𝑓 ′′(�̂�) d�̂�d�̃�. (29)

Eq. (29) is an important identity as it shows that 𝑓 is convex at the
point 𝑥0 if its second derivative 𝑓 ′′ is non-negative (assuming 𝑓 to
be twice differentiable). Of course, convexity extends to functions of
several variables. For instance, for a function 𝑓 (𝑥, 𝑦), convexity requires
that the quantity 𝑓𝑒(𝑥, 𝑦; 𝑥0, 𝑦0) = 𝑓 (𝑥, 𝑦)−𝑓 (𝑥0, 𝑦0)−𝜕𝑥𝑓 (𝑥0, 𝑦0)(𝑥−𝑥0)−
𝜕𝑦𝑓 (𝑥0, 𝑦0)(𝑦 − 𝑦0) ≥ 0 be non-negative. Convexity plays a key role in
thermodynamics. For instance, it can be shown that the possibility to
convert heat into work, the central object of thermodynamics, hinges
on internal energy being a convex function of its canonical variables,
specific entropy and specific volume, which is key to defining the con-
cept of exergy, e.g., Tailleux (2013a). Arguably, it is the convexity of
kinetic energy that is implicitly responsible for the non-negative char-
acter of eddy kinetic energy. For quadratic expressions, however, there
is no need to invoke convexity as this is not required to prove the non-
negative character of the eddy component. Convexity is needed here,
however, because the APE density includes higher-order non-quadratic
terms, called anharmonic by Roullet and Klein (2009).

As it turns out, the APE density (11) is convex with respect to both
density and 𝑧, which can be verified by differentiating (15) and (16)
with respect to 𝜌 and 𝑧 respectively, which leads to

𝜕2𝐸𝑎

𝜕𝜌2
= −

𝑔
𝜌⋆

𝑑𝑧0
𝑑𝜌

(𝜌), (30)

𝜕2𝐸𝑎

𝜕𝑍2
= −

𝑔
𝜌⋆

𝑑𝜌0
𝑑𝑧

(𝑧) = 𝑁2
0 (𝑧). (31)

Physically, the non-negative character of 𝑁2
0 in Eq. (16) follows from

Lorenz reference state being a state of minimum potential energy,
hence statically stable by construction, which establishes convexity
with respect to 𝑧. To prove the non-negative character of (15) and
hence the convexity with respect to density, simply differentiate the
LNB Eq. (12) with respect to 𝜌, thus leading to

𝑑𝜌0
𝑑𝑧

(𝑧0(𝜌))
𝑑𝑧0
𝑑𝜌

(𝜌) = 1. (32)

Now, since 𝑑𝜌0∕𝑑𝑧 ≤ 0, (32) implies that 𝑑𝑧0∕𝑑𝜌 ≤ 0, which proves our
proposition.

Having established the convexity of 𝐸𝑎 with respect to both den-
sity and 𝑧, let us define the instantaneous eddy APE as the non-
negative nonlinear term 𝐴𝑒 in perturbation density in the following
series expansion of 𝐸𝑎 around 𝜌

𝐸𝑎(𝜌, 𝑧) = 𝐸𝑎(𝜌, 𝑧) +
𝜕𝐸𝑎
𝜕𝜌

(𝜌, 𝑧)(𝜌 − 𝜌) + 𝐴𝑒. (33)

Upon Reynolds averaging, the term proportional to 𝜌′ = 𝜌− 𝜌 vanishes,
leading the mean/eddy decomposition:

𝐸𝑎 = 𝐸𝑚
𝑎 + 𝐸𝑡

𝑎, (34)

with

𝐸𝑚
𝑎 = 𝐸𝑎(𝜌, 𝑧), 𝐸𝑡

𝑎 = 𝐴𝑒. (35)

Physically, the instantaneous eddy APE 𝐴𝑒 is the counterpart of the
instantaneous value of eddy kinetic energy 𝐯′2∕2. To facilitate the



Ocean Modelling 197 (2025) 102579R. Tailleux and G. Roullet
comparison of 𝐴𝑒 with the heuristic APE density discussed earlier, it
is useful to rewrite 𝐴𝑒 in the following more revealing form

𝐴𝑒 =𝐸𝑎(𝜌, 𝑧) − 𝐸𝑎(𝜌, 𝑧) −
𝜕𝐸𝑎
𝜕𝜌

(𝜌, 𝑧)(𝜌 − 𝜌)

=∫

𝜌

𝜌

[

𝜕𝐸𝑎
𝜕𝜌

(�̃�, 𝑧) −
𝜕𝐸𝑎
𝜕𝜌

(𝜌, 𝑧)
]

d�̃� = −
𝑔
𝜌⋆ ∫

𝜌

𝜌
[𝑧0(�̃�) − 𝑧0(𝜌)] d�̃�

(36)

where the passage from the penultimate to last equation made use of
(15). Alternatively, 𝐴𝑒 may be rewritten as an integral of the work
against buoyancy forces by introducing the change of variable �̃� = 𝜌0(�̃�)
so that 𝑑�̃� = 𝜌′0(�̃�) d�̃�, and

𝐴𝑒 = −
𝑔
𝜌⋆ ∫

𝑧0(𝜌)

𝑧0(𝜌)
[𝜌 − 𝜌0(�̃�)] d�̃� (37)

Importantly, note that (36) and (37) reveal that 𝐴𝑒 = 𝐴𝑒(𝜌, 𝜌)
no longer depends on height 𝑧, being solely a function of 𝜌 and 𝜌
only. In both cases, the expression for the transient eddy APE may be
approximated as

𝐴𝑒 ≈ −1
2
𝑏′𝜁 ′ ⇒ 𝐸𝑡

𝑎 ≈ −1
2
𝑏′𝜁 ′ (38)

with

𝑏′ = −
𝑔(𝜌 − 𝜌)

𝜌⋆
, 𝜁 ′ = 𝑧0(𝜌) − 𝑧0(𝜌) (39)

The approximation (38) is identical to the expression used by Roullet
et al. (2014). However, while the buoyancy anomaly 𝑏′ is the same as
in Roullet’s approach, the displacement 𝜁 ′ is defined quite differently
in terms of the instantaneous and mean reference positions 𝑧0(𝜌) and
𝑧0(𝜌) respectively, that is, in terms of the equilibrium positions of 𝜌 and
𝜌 in Lorenz reference state. These differences are clearly illustrated in
the right panel of Fig. 1 introduced earlier.

Physically, the approximation (38) is obtained from a simple trape-
zoidal approximation of the integrals (36) or (37), and are likely to
be the most accurate approximation of 𝐴𝑒. Nevertheless, using the
approximation

𝜁 ′ = 𝑧0(𝜌) − 𝑧0(𝜌) ≈
𝜕𝑧0
𝜕𝜌

(𝜌)𝜌′ (40)

it is also possible to approximate 𝐴𝑒 in terms of the following quadratic
expressions:

𝐴𝑒 ≈ −
𝑔
𝜌⋆

𝑑𝑧0
𝑑𝜌

(𝜌)
𝜌′2

2
=

𝑔2

𝜌2⋆𝑁
2
0

𝜌′2

2
= 1

2
𝑏′2

𝑁
2
0

(41)

with

𝑁
2
0 = 𝑁

2
0(𝑥, 𝑦, 𝑧) = −

𝑔
𝜌⋆

𝑑𝜌0
𝑑𝑧

(𝑧0(𝜌)). (42)

Note that 𝑁
2
0, unlike 𝑁

2
0 (𝑧), is a function of all three spatial dimensions

(𝑥, 𝑦, 𝑧). Its spatial gradient is easily verified to be

∇𝑁
2
0 = −

𝑔
𝜌⋆

𝑑2𝜌0
𝑑𝑧2

𝜕𝑧0
𝜕𝜌

∇𝜌 (43)

so appears to be proportional to the mean density gradient ∇𝜌, the
proportionality factor being controlled by the curvature of 𝜌0(𝑧). Com-
parison with the heuristic localised APE density 𝐸ℎ𝑒𝑢

𝑎 and 𝐴𝑒 is easily
verified to be

𝐴𝑒

𝐸ℎ𝑒𝑢 ≈ 𝑁
2

2
= 𝛬, (44)
6

𝑎 𝑁0
where 𝛬 is the same parameter introduced previously. This establishes
that the validity and accuracy of the heuristic localised APE density
depend on the proximity of the actual state to Lorenz reference state,
as expected.

3. Local budgets of available potential energy

3.1. Non-averaged local APE budgets

Before deriving local budget equations for the mean and APE den-
sities 𝐸𝑚

𝑎 and 𝐸𝑡
𝑎, we first clarify the local budget equation satisfied by

the non-averaged APE density 𝐸𝑎. This can be obtained by taking the
Lagrangian derivative of 𝐸𝑎, yielding
𝐷𝐸𝑎
𝐷𝑡

=
(

𝜕𝐸𝑎
𝜕𝜌

𝐷𝜌
𝐷𝑡

+
𝜕𝐸𝑎
𝜕𝑍

𝐷𝑧
𝐷𝑡

)

= 𝛶
𝐷𝜌
𝐷𝑡

− 𝑏𝓁𝑤. (45)

By making use of the density Eq. (9), it is easily checked that (45) may
be rewritten in the form

𝐷𝐸𝑎
𝐷𝑡

= −𝑏𝓁𝑤 − ∇ ⋅ 𝐉𝑎 − 𝜀𝑝 (46)

in which 𝐉𝑎 and 𝜀𝑝 are the diffusive flux of APE density and APE
dissipation rate, respectively, given by

𝐉𝑎 = 𝛶 𝐉𝜌 = −𝛶𝜅∇𝜌, (47)

𝜀𝑝 = −𝐉𝜌 ⋅ ∇𝛶 = 𝜅∇𝜌 ⋅ ∇𝛶 (48)

The normal component of 𝐉𝑎 at the ocean surface determines the
APE production rate by surface buoyancy fluxes, see Zemskova et al.
(2015) for a discussion within the present framework. Our evolution
equation for the APE density (46), although mathematically equiva-
lent, is much simpler in form that the one previously derived (Scotti
and White, 2014) due to not imposing 𝐉𝑎 to be downgradient in 𝐸𝑎.
Physically, the form (46) is to be preferred because it is the one that
most naturally generalise to double diffusive multi-component com-
pressible stratified fluids, unlike Scotti and White (2014)’s approach,
e.g. see Tailleux (2024) for details. Using the expression (15) for 𝛶 , 𝜀𝑝
may also be expressed in the more familiar form

𝜀𝑝 =
𝑔𝜅
𝜌⋆

∇𝜌 ⋅
[

𝐤 −
𝑑𝑧0
𝑑𝜌

∇𝜌
]

=
𝑔𝜅
𝜌⋆

[

𝜕𝜌
𝜕𝑧

−
𝑑𝑧0
𝑑𝜌

|∇𝜌|2
]

(49)

How the APE density budget Eq. (46) relates to that of a fully
compressible fluid as well as to the global evolution equations derived
by Winters et al. (1995), is extensively discussed by Tailleux (2024), to
which the reader is referred to for details. For the reader more familiar
with the global APE approach of Winters et al. (1995), it may be useful
to point out that the volume integral of (49) coincides with the term
𝛷𝑑 −𝛷𝑖 of Winters et al. (1995).

3.2. Mean APE budget

As established previously, the mean APE density 𝐸𝑚
𝑎 = 𝐸𝑎(𝜌, 𝑧) is

naturally defined as the APE density of the mean density 𝜌 and 𝑧, at
least when approached from the viewpoint of standard Eulerian aver-
aging. An evolution equation for it can therefore be derived essentially
as that for the non-averaged density 𝐸𝑎(𝜌, 𝑡), with 𝐷𝜌∕𝐷𝑡 replaced by
𝐷𝑚𝜌∕𝐷𝑡, the Lagrangian derivative of 𝜌 defined in terms of the mean
velocity 𝐯, which leads to
𝐷𝑚𝐸𝑚

𝑎 =
𝜕𝐸𝑚

𝑎 𝐷𝑚𝜌 +
𝜕𝐸𝑚

𝑎 𝐷𝑚𝑧 = 𝛶𝑚
𝐷𝑚𝜌 − 𝑏𝓁𝑤, (50)
𝐷𝑡 𝜕𝜌 𝜕𝑡 𝜕𝑍 𝐷𝑡 𝐷𝑡
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in which 𝛶𝑚 and 𝑏𝓁 are defined by

𝛶𝑚 =
𝜕𝐸𝑎
𝜕𝜌

(𝜌, 𝑧) =
𝑔(𝑧 − 𝑧0(𝜌))

𝜌⋆
. (51)

𝑏𝓁 =
𝜕𝐸𝑎
𝜕𝑍

(𝜌, 𝑧) =
𝑔(𝜌 − 𝜌0(𝑧))

𝜌⋆
. (52)

It is important to note here that the mean quantity 𝛶𝑚 differs from the
Reynolds averaged 𝛶 , i.e., 𝛶𝑚 ≠ 𝛶 , because 𝑧0(𝜌) ≠ 𝑧0(𝜌) in general.
Using the evolution equation for the mean density 𝜌, viz.,
𝐷𝑚𝜌
𝐷𝑡

= −∇ ⋅ [𝜌′𝐯′ − 𝜅∇𝜌] = −∇ ⋅ 𝐉𝑚𝜌 , (53)

in which 𝐉𝑚𝜌 = 𝜌′𝐯′ − 𝜅∇𝜌 is the total density flux including both
turbulent and molecular diffusive contributions, it is straightforward
to show that (50) may be rewritten as
𝐷𝑚𝐸𝑚

𝑎
𝐷𝑡

= −𝑏𝓁𝑤 − ∇ ⋅ 𝐉𝑚𝑎 + 𝐉𝑚𝜌 ⋅ ∇𝛶𝑚 (54)

where 𝐉𝑚𝑎 is the total ‘diffusive’ flux of mean APE density including both
turbulent and molecular contributions, given by

𝐉𝑚𝑎 = 𝛶𝑚𝐉𝑚𝜌 = 𝛶𝑚(𝜌′𝐯′ − 𝜅∇𝜌) (55)

Note that the last term in (54) may be further expanded in the form

𝐉𝑚𝜌 ⋅ ∇𝛶𝑚 = 𝜌′𝐯′ ⋅ ∇𝛶𝑚 − 𝜅∇𝜌 ⋅ ∇𝛶𝑚 = 𝜌′𝐯′ ⋅ ∇𝛶𝑚 − 𝜀𝑚𝑝 (56)

where

𝜀𝑚𝑝 = 𝜅∇𝜌 ⋅ ∇𝛶𝑚 (57)

represents the ‘mean’ APE dissipation rate. As a result, (54) may
ultimately be rewritten in the following final form:

𝐷𝑚𝐸𝑚
𝑎

𝐷𝑡
= −𝑏𝓁𝑤 + 𝜌′𝐯′ ⋅ ∇𝛶𝑚 − ∇ ⋅ 𝐉𝑚𝑎 − 𝜀𝑚𝑝 (58)

Physically, the terms appearing in the r.h.s. of (58) represent: (1)
the conversion between mean APE and mean KE; (2) the conversion
between mean APE and eddy APE; (3) the diffusive flux of mean APE by
means of turbulent and molecular processes; (4) the mean dissipation
rate of APE by molecular processes.

3.3. Eddy APE budget and turbulent APE dissipation

We now turn to the problem of deriving an evolution equation for
the eddy APE 𝐸𝑡

𝑎 = 𝐴𝑒. There are two main routes. The first route is
via deriving an evolution equation for 𝐴𝑒 and Reynolds averaging the
result. In the second route, which is much simpler and the only one
pursued here, the evolution equation for 𝐸𝑡

𝑎 = 𝐸𝑎 − 𝐸𝑚
𝑎 is obtained as

the residual between the evolution equations for 𝐸𝑎 and 𝐸𝑚
𝑎 .

To proceed, we first take the Reynolds average of (46) after sepa-
rating each variable into mean and eddy components, which leads to

𝐷𝑚𝐸𝑎
𝐷𝑡

+ ∇ ⋅ (𝐸′
𝑎𝐯′) = −𝑏𝓁𝑤 − 𝑏′𝓁𝑤

′ − ∇ ⋅ 𝐉𝑎 − 𝜀𝑝 (59)

The sought-for evolution equation for 𝐸𝑡
𝑎 is then simply obtained by

subtracting the 𝐸𝑚
𝑎 Eq. (58) from (59), which yields

𝐷𝑚𝐸𝑡
𝑎

𝐷𝑡
= −𝑏′𝓁𝑤

′ − 𝜌′𝐯′ ⋅ ∇𝛶𝑚 − ∇ ⋅ 𝐉𝑡𝑎 − 𝜀𝑡𝑝 (60)

in which 𝐉𝑡𝑎 and 𝜀𝑡𝑝 are the total flux of eddy APE density and eddy APE
dissipation rate respectively, whose expressions are

𝐉𝑡𝑎 = 𝐉𝑎 − 𝐉𝑚𝑎 + 𝐸′
𝑎𝐯′ (61)

𝜀𝑡 = 𝜀 − 𝜀𝑚 (62)
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𝑝 𝑝 𝑝
Using the fact that 𝐉𝑚𝑎 = −𝛶𝑚𝜅∇𝜌, 𝜀𝑚𝑝 = 𝜅∇𝜌 ⋅∇𝛶𝑚, and 𝜀𝑝 = 𝜅∇𝜌 ⋅∇𝛶 +
𝜅∇𝜌′ ⋅ ∇𝛶 ′, these can be more explicitly written as

𝐉𝑡𝑎 = −𝜅𝛶 ′∇𝜌′ − (𝛶 − 𝛶𝑚)𝜅∇𝜌 + 𝐸′
𝑎𝐯′ (63)

𝜀𝑡𝑝 = 𝜀𝑝 − 𝜀𝑚𝑝 = 𝜅∇𝜌 ⋅ ∇(𝛶 − 𝛶 𝑚) + 𝜅∇𝜌′ ⋅ ∇𝛶 ′ (64)

These expressions show that the turbulent diffusive flux of APE and
APE dissipation rate both depend on the mean quantity 𝛶 − 𝛶𝑚, whose
leading order expression can be showed to be

𝛶 − 𝛶𝑚 =
𝑔
𝜌⋆

(

𝑧0(𝜌) − 𝑧0(𝜌)
)

≈
𝑔
𝜌⋆

𝜕2𝑧0
𝜕𝜌2

(𝜌)
𝜌′2

2
(65)

The above expressions also depends on 𝛶 ′, which can be shown to be
given at leading order

𝛶 ′ =
𝑔
𝜌⋆

(

𝑧0(𝜌) − 𝑧0(𝜌)
)

≈ −
𝑔
𝜌⋆

𝜕𝑧0
𝜕𝜌

(𝜌)𝜌′ +
𝑔
𝜌⋆

𝜕2𝑧0
𝜕𝜌2

(𝜌)

(

𝜌′2

2
−

𝜌′2

2

)

(66)

As a result, it follows that

𝜅∇𝜌 ⋅ ∇(𝛶 − 𝛶𝑚) ≈
𝑔
𝜌⋆

𝜕2𝑧0
𝜕𝜌2

(𝜌)𝜅∇𝜌 ⋅ ∇
𝜌′2

2
+

𝑔
𝜌⋆

𝜌′2

2
𝜕3𝑧0
𝜕𝜌3

(𝜌)𝜅|∇𝜌|2 (67)

𝜅∇𝜌′ ⋅ ∇𝛶 ′ ≈ −
𝑔
𝜌⋆

𝜕𝑧0
𝜕𝜌

(𝜌)𝜅|∇𝜌′|2 −
𝑔
𝜌⋆

𝜕2𝑧0
𝜕𝜌2

(𝜌)𝜅∇𝜌 ⋅ ∇
𝜌′2

2
(68)

Summing up these two results, retaining only the terms up to sec-
ond order in density perturbation, gets rid of the term proportional
to 𝜕2𝑧0∕𝜕𝜌2 and yields the following equation for the turbulent APE
dissipation rate

𝜀𝑡𝑝 ≈ −
𝑔
𝜌⋆

𝜕𝑧0
𝜕𝜌

(𝜌)𝜅|∇𝜌′|2+
𝑔
𝜌⋆

𝜌′2

2
𝜕3𝑧0
𝜕𝜌3

(𝜌)𝜅|∇𝜌|2 (69)

Of the two terms appearing in the right-hand side of (69), only the
first one can be ascertained to be non-negative and directly compa-
rable to the expression for the APE dissipation rate proportional to
the turbulent dissipation rate of density variance previously derived
by Oakey (1982) and Gargett and Holloway (1984). The second term,
however, can be of any sign, but is expected to be much smaller than
the first term in general and therefore unlikely to be important in
practice, although this remains to be checked more systematically in
direct numerical simulations of turbulent stratified mixing. This is left
for future work. Scotti and White (2014) only retained the first term in
the right-hand side of (69) in their paper.

4. Application to energetically consistent numerical ocean mod-
elling

Our framework provides a rigorous theoretical foundation for link-
ing parameterised energy transfers to observable KE and APE dissi-
pation rates. In numerical ocean models, the main energy transfers
of interest are those associated with the ocean meso-scale, which
are responsible for transferring mean APE to turbulent or eddy ki-
netic energy (which is subsequently dissipated through irreversible
viscous processes), and those associated with small-scale turbulent
stratified mixing, which transfer turbulent kinetic energy into turbulent
APE, later dissipated by irreversible diffusive processes, giving rise to
turbulent diapycnal mixing. The following aims to illustrate these ideas.

4.1. Energetically consistent modelling

Parameterisations of subgridscale processes control the energy
transfers between the resolved and unresolved scales of motion im-
plicated in the turbulent forward KE and APE energy cascades. Upon
reaching molecular scales, mechanical energy can be dissipated quasi-
adiabatically as KE at the viscous dissipation rate 𝜀𝑡 , or diabatically
𝑘
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as APE at the diffusive dissipation rate 𝜀𝑡𝑝. In most numerical ocean
models, subgrid-scale process parameterisations have traditionally been
developed without explicit consideration of their implications for the
KE and APE cascades or for the KE and APE dissipation rates. However,
this changed when Munk and Wunsch (1998) noted that the intensity of
mixing depends on the intensity of the mechanical sources of stirring.
In particular, they raised the issue of whether tuning the value of the
turbulent diapycnal or vertical mixing coefficients 𝐾𝜌 or 𝐾𝑣 to minimise
mismatch with observed temperature and salinity fields was neces-
sarily consistent with our understanding of how turbulent mixing is
mechanically sustained. To that end, they considered the gravitational
potential energy (GPE) budget, assuming a balance between the rate
of GPE increase due to mixing at the rate 𝐾𝑣𝑁2 and the rate of GPE
loss due to high-latitude cooling (neglecting the role of nonlinearities in
the equation of state). To link 𝐾𝑣 to the mechanical sources of stirring,
they used the relation 𝐾𝑣𝑁2 = 𝛤𝜀𝐾 with 𝛤 = 0.2, and balanced
the total viscous dissipation rate with the power input due to winds
and tides, dismissing the role of surface buoyancy fluxes (see Tailleux
(2010) for a discussion). The work of Munk and Wunsch (1998) proved
very influential, prompting the development of ‘energetically consistent
modelling’ pioneered by Carsten Eden and his group (Eden et al., 2014;
Eden, 2015, 2016), whose aim is to link the intensity of mixing to
the sources of stirring by exploiting empirical knowledge about the
dissipation ratio 𝛤 = 𝜀𝑝∕𝜀𝑘. In our view, this aim can be more generally
defined as seeking to exploit existing and developing knowledge about
the inter-relations between the KE and APE budgets, for instance by
developing and using a turbulent APE budget in addition to the widely
used turbulent KE budget.

In practice, the prevailing approach has primarily relied on using a
turbulent kinetic energy (TKE) equation to predict the turbulent viscous
dissipation 𝜀𝑡𝑘, from which the APE dissipation rate 𝜀𝑡𝑝 and turbulent
vertical mixing coefficient 𝐾𝜌 = 𝜀𝑡𝑝∕𝑁

2 can be inferred, provided that
the value of the dissipation ratio 𝛤 can also be predicted in some way.
For a review of our current understanding of 𝛤 , see Gregg (2021). An
alternative, yet to be developed in oceanography, would be to predict
𝜀𝑡𝑝 directly from a turbulent APE equation, as proposed in the context of
atmospheric boundary layer research by Zilitinkevich and collaborators
(e.g., Zilitinkevich et al. (2013)). An important advantage of the eddy
APE budget is that it constrains the full turbulent density flux 𝜌′𝐯′,
whereas the TKE budget depends only on the vertical component 𝜌′𝑤′,
which is why we think it should receive more attention.

To analyse across-scale energy transfers, a filtering approach is
needed to isolate the different scales of interest. In the context of
large-scale ocean modelling, Eden (2015) proposed that the subgrid-
scale energy should be divided into subreservoirs for meso-scale eddies,
internal gravity waves, and turbulent incoherent motions. Here, we
only consider a subdivision of energy into mean (resolved) and eddy
(unresolved) scales due to the inherent limitations of standard Reynolds
averaging. With this in mind, we return to the eddy APE budget (46),
which we rewrite as
𝜕𝐸𝑡

𝑎
𝜕𝑡

+ ∇ ⋅
(

𝐯𝐸𝑡
𝑎 + 𝐉𝑡𝑎

)

= 𝐶(𝐸𝑡
𝑘, 𝐸

𝑡
𝑎) + 𝐶(𝐸𝑚

𝑎 , 𝐸
𝑡
𝑎) − 𝜀𝑡𝑝 (70)

where 𝐶(𝐸𝑡
𝑘, 𝐸

𝑡
𝑎) and 𝐶(𝐸𝑚

𝑎 , 𝐸
𝑡
𝑎) are the conversions of turbulent kinetic

energy and mean APE into eddy APE, respectively, with

𝐶(𝐸𝑡
𝑘, 𝐸

𝑡
𝑎) = −𝑏′𝓁𝑤

′ =
𝑔
𝜌⋆

𝜌′𝑤′, (71)

𝐶(𝐸𝑚
𝑎 , 𝐸

𝑡
𝑎) = −𝜌′𝐯′ ⋅ ∇𝛶𝑚 = −

𝑔
𝜌⋆

𝜌′𝑤′ +
𝑔
𝜌⋆

𝜕𝑧0
𝜕𝜌

(𝜌)𝜌′𝐯′ ⋅ ∇𝜌 (72)

Under the classical assumptions of stationarity and homogeneity, the
terms on the left-hand side of (70) can be neglected, and the eddy
APE budget reduces to a balance between production of eddy APE
due to conversions with mean APE and eddy KE, and turbulent APE
dissipation, viz.,

𝐶(𝐸𝑡 , 𝐸𝑡 ) + 𝐶(𝐸𝑚, 𝐸𝑡 ) ≈ 𝜀𝑡 (73)
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𝑘 𝑎 𝑎 𝑎 𝑝
which, from (71) and (72), may be written as
𝑔
𝜌⋆

𝜕𝑧0
𝜕𝜌

(𝜌)𝜌′𝐯′ ⋅ ∇𝜌 ≈ 𝜀𝑡𝑝. (74)

Eq. (74) can be understood as a constraint on the diapycnal component
of the turbulent density flux across the mean isopycnal surfaces 𝜌 =
constant, controlled by the turbulent APE dissipation rate 𝜀𝑡𝑝. When
the resolved flow pertains to large scales, the turbulent density flux is
generally assumed to contain at least two components:

𝜌′𝐯′ = 𝜌′𝐯′𝑚𝑒𝑠𝑜 + 𝜌′𝐯′𝑠𝑚𝑎𝑙𝑙 (75)

pertaining to the effects of meso-scale eddies and small-scale turbulent
mixing, respectively, and are taken to be perpendicular and parallel to
∇𝜌 according to

𝜌′𝐯′𝑚𝑒𝑠𝑜 = 𝜳 × ∇𝜌, 𝜌′𝐯′𝑚𝑖𝑥 = −𝐾𝜌∇𝜌. (76)

(e.g., Griffies, 1998; Griffies et al., 1998). Of particular interest is the
vertical component

𝜌′𝑤′
𝑚𝑖𝑥 = −𝐾𝜌

𝜕𝜌
𝜕𝑧

(77)

which will be later contrasted with the vertical component of the skew
diffusive flux.

4.2. Energetics of downgradient diffusion

In the literature, the turbulent diffusivity 𝐾𝜌 entering the turbulent
mixing parameterisation for the diffusive part of the turbulent density
flux is traditionally predicted by

𝐾𝜌 ≈
𝜀𝑡𝑝

𝑁
2
=

𝛤𝜀𝑡𝑘

𝑁
2

(78)

(e.g., Lindborg and Brethouwer, 2008), where 𝛤 is the dissipation
ratio (Oakey, 1982). However, according to the eddy APE budget (76),
a more accurate expression is

−
𝑔
𝜌⋆

𝜕𝑧0
𝜕𝜌

(𝜌)𝐾𝜌|∇𝜌|
2 ≈ 𝜀𝑡𝑝 (79)

which may be rearranged as

𝐾𝜌 ≈
1

𝛬(1 + |𝐒|2)

𝜀𝑡𝑝

𝑁
2
≠

𝜀𝑡𝑝

𝑁
2

(80)

where 𝛬 and 𝐒 are defined as before by (26). As stated earlier, Eq. (80)
shows that the standard expression (78) implicitly depends on two
assumptions that are rarely, if ever, acknowledged: (1) that the local
stratification as measured by 𝑁

2
is approximately equal to 𝑁2

0 ; and
(2) the small slope approximation |𝐒| ≪ 1, often made in the context
of rotated Redi diffusion (Redi, 1982), for instance. Moreover, if we
neglect the higher order terms in the definition of the eddy APE
dissipation rate so that

𝜀𝑡𝑝 ≈ −
𝑔
𝜌⋆

𝜕𝑧0
𝜕𝜌

(𝜌)𝜅|∇𝜌′|2 (81)

it is easily verified that the eddy APE budget also implies

𝐾𝜌|∇𝜌|
2 ≈ 𝜅|∇𝜌′|2. (82)

Physically, Eq. (82) states that the resolved dissipation of the mean
density field must ultimately be balanced by the dissipation of eddy
density variance at molecular scales. Note, however, that when ap-
proached from the eddy APE budget viewpoint, (82) requires neglecting
the higher order terms in the eddy APE dissipation rate. In the litera-
ture, (82) is more commonly obtained by equating the production of
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density variance by the turbulent density flux with the dissipation of
density variance, as in the Osborn-Cox model (Osborn and Cox, 1972).
Note that Eq. (82) cannot give rise to upgradient (negative) diffusion,
while (80) can potentially allow it in some circumstances.

To synthesise the results, the energy conversions affected by the
downgradient part of the turbulent density flux are therefore given by

{

𝐶(𝐸𝑚
𝑎 , 𝐸

𝑡
𝑎)
}

𝑚𝑖𝑥 =
(

(1 + |𝐒|2)𝛬 − 1
)

𝐾𝜌𝑁
2

(83)

{

𝐶(𝐸𝑡
𝑘, 𝐸

𝑡
𝑎)
}

𝑚𝑖𝑥 = 𝐾𝜌𝑁
2
. (84)

In the literature, the mean to eddy APE conversion has been exclu-
sively discussed in the context of the quasi-geostrophic (QG) approxi-
mation (e.g., von Storch et al., 2012), which is equivalent to assuming
𝛬 ≈ 1 in (83), in which case it reduces to

{𝐶(𝐸𝑚
𝑎 , 𝐸

𝑡
𝑎)}𝑞𝑔,𝑚𝑖𝑥 ≈ |𝐒|2𝐾𝜌𝑁

2
≥ 0, (85)

and always acts as a downscale transfer of energy from mean APE
to eddy APE. The exact finite-amplitude mean APE to eddy APE con-
version may occasionally behave quite differently, as Eq. (83) shows
that the sign of the conversion is no longer necessarily non-negative.
Energy transfer can be either upscale or downscale, depending on the
relative values of 𝛬 and the slope parameter |𝐒|. Because the value of
𝛬 is controlled by the distance from the Lorenz reference state, which
itself depends on the steepness of isopycnal slopes, we assume that the
condition for upscale transfer from eddy APE to mean APE imposes a
constraint on 𝛬 (rather than on |𝐒|), namely

𝛬 < 1
1 + |𝐒|2

. (86)

In that case, downgradient diffusion can, at least in principle,
backscatter unresolved energy into resolved energy, thus potentially
acting as a source of instability for the resolved flow. Although the
associated upscale energy transfer will be counteracted by the down-
scale energy transfer associated with skew diffusion, it is not necessarily
obvious that this can actually suppress the diffusive instability, because
downgradient diffusion and skew diffusion a priori operate differently.

4.3. Energetics of skew diffusion and TKE budget

Physically, skew diffusion can be interpreted as an eddy-induced
advection by subgrid-scale processes, as follows from the relation

∇ ⋅ (𝜳 × ∇𝜌) = (∇ × 𝜳 ) ⋅ ∇𝜌 = 𝐯𝑒𝑑𝑑𝑦 ⋅ ∇𝜌. (87)

As a result, the evolution equation for the mean density 𝜌 may be
written as
𝜕𝜌
𝜕𝑡

+ 𝐯𝑟𝑒𝑠 ⋅ ∇𝜌 = ∇ ⋅ [(𝐾𝜌 + 𝜅)∇𝜌] (88)

with 𝐯𝑟𝑒𝑠 = 𝐯 + 𝐯𝑒𝑑𝑑𝑦 being the residual velocity and 𝐯𝑒𝑑𝑑𝑦 = ∇ × 𝜳
the eddy-induced velocity. By construction, the eddy-induced velocity
is divergenceless, ∇ ⋅ 𝐯𝑒𝑑𝑑𝑦 = 0. In oceanography, the most commonly
used parameterisation for 𝜳 is

𝜳 = 𝜳 𝑔𝑚 = 𝐤 × 𝜅𝑔𝑚𝐒, (89)

as originally proposed by Gent and McWilliams (1990), Gent et al.
(1995), where 𝐒 is the slope vector previously introduced. For the GM
parameterisation, the skew-diffusion part of the turbulent density flux
becomes

𝜌′𝐯′𝑠𝑘𝑒𝑤 = (𝐤 × 𝜅𝑔𝑚𝐒) × ∇𝜌 = 𝜅𝑔𝑚
𝜕𝜌
𝜕𝑧

𝐒 + 𝜅𝑔𝑚|𝐒|2
𝜕𝜌
𝜕𝑧

𝐤. (90)

Of particular interest is the vertical component, given by

𝜌′𝑤′ = 𝜅 |𝐒|2 𝜕𝜌 , (91)
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𝑠𝑘𝑒𝑤 𝑔𝑚 𝜕𝑧
which acts as an ‘upgradient’ flux.
The skew-diffusive part of the turbulent density flux is perpendicu-

lar to the mean density gradient ∇𝜌, and therefore does not have a net
contribution to the eddy APE budget. However, it is associated with net
energy conversions between mean and eddy APE, as well as between
eddy APE and eddy KE. From (71) and (91), it is easily verified that

{

𝐶(𝐸𝑚
𝑎 , 𝐸

𝑡
𝑎)
}

𝑠𝑘𝑒𝑤 = −𝜌′𝐯′𝑠𝑘𝑒𝑤 ⋅ ∇𝛶𝑚 = −
𝑔
𝜌⋆

𝜌′𝑤′
𝑠𝑘𝑒𝑤 = 𝜅𝑔𝑚|𝐒|2𝑁

2

(92)

{

𝐶(𝐸𝑡
𝑘, 𝐸

𝑡
𝑎)
}

𝑠𝑘𝑒𝑤 =
𝑔
𝜌⋆

𝜌′𝑤′
𝑠𝑘𝑒𝑤 = −𝜅𝑔𝑚|𝐒|2𝑁

2
(93)

Eq. (92) confirms that skew diffusion acts as a net sink of mean APE
whose magnitude is proportional to the slope squared |𝐒|2 and mean
squared buoyancy frequency 𝑁

2
e.g., Griffies (2004).

4.4. Remarks on the eddy (turbulent) kinetic energy budget

Since skew diffusion associated with the meso-scale eddy parame-
terisation acts as a net source of eddy KE rather than of eddy APE, it
is useful to conclude this section with some comments on the eddy KE
budget and how the KE and APE cascades may help constrain mixing
parameterisations. Under stationary and homogeneous conditions, the
main sources of eddy KE are:

1. the downscale energy transfer associated with the mixing of
momentum, primarily contributed by the vertical shear,

𝐶(𝐸𝑚
𝑘 , 𝐸

𝑡
𝑘) ≈ 𝐴𝑣

(

𝜕𝐮
𝜕𝑧

)2
, (94)

2. the downscale transfer associated with the meso-scale eddy pa-
rameterisation, which controls the conversion 𝐶(𝐸𝑚

𝑎 , 𝐸
𝑡
𝑘);

3. the loss of energy associated with diapycnal mixing, which
controls 𝐶(𝐸𝑡

𝑘, 𝐸
𝑡
𝑎);

4. the viscous dissipation rate, dissipating 𝐸𝑡
𝐾 into background

potential energy or ‘heat’.

Summing up all these contributions leads to the following balance:

𝐴𝑣

(

𝜕𝐮
𝜕𝑧

)2
+ 𝜅𝑔𝑚|𝐒|2𝑁

2
−𝐾𝜌𝑁

2
≈ 𝜀𝑡𝑘. (95)

To show the dependence of this balance on the Richardson number, it
is useful to divide this relation by 𝑁

2
, yielding

𝐴𝑣𝑅
−1
𝑖 + 𝜅𝑔𝑚|𝐒|2 ≈ 𝐾𝜌 +

𝜀𝑡𝑘

𝑁
2

(96)

where

𝑅𝑖 = 𝑁
2
(

𝜕𝐮
𝜕𝑧

)−2
(97)

is the Richardson number. This relation shows that the different turbu-
lent mixing parameters 𝐾𝑣, 𝜅𝑔𝑚, and 𝐾𝜌 are not independent from each
other. Notably, by using the relation 𝐾𝜌 ≈ 𝛤𝜀𝑡𝑘∕𝑁

2
, the above relation

can be written as

𝐴𝑣𝑅
−1
𝑖 + 𝜅𝑔𝑚|𝐒|2 ≈

(𝛤 + 1)𝜀𝑡𝑘

𝑁
2

(98)

and can be interpreted as a diagnostic energy balance potentially useful
for predicting the turbulent kinetic energy dissipation rate, which is a
crucial element of energetically consistent meso-scale eddy parameter-
isations such as in the GEOMETRIC framework (e.g., Marshall et al.,
2012; Mak et al., 2018; Torres et al., 2023) or in Jansen et al. (2015)
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and Jansen et al. (2019), for instance. In regions where the vertical
shear can be predicted by thermal wind balance,

𝜕𝐮
𝜕𝑧

≈ −
𝑔

𝜌⋆𝑓
𝐤 × ∇𝜌, (99)

the TKE budget may also be written as
(

𝐴𝑣
𝑁

2

𝑓 2
+ 𝜅𝑔𝑚

)

|𝐒|2𝑁
2
≈ (𝛤 + 1)𝜀𝑡𝑘. (100)

Eq. (100) shows that in this regime, the APE cascade converting mean
APE into eddy APE behaves analogously to the KE cascade converting
mean KE into eddy KE, similarly to Lindborg (2006)’s relations (3),
provided that

𝜅𝑔𝑚 ≈ 𝛤𝐴𝑣
𝑁

2

𝑓 2
(101)

which appears to be closely related to the case discussed by Greatbatch
and Lamb (1990). Determining to what extent the present results can
inform further developments of such parameterisations is beyond the
scope of this paper and will be addressed in a subsequent study.

5. Summary and discussion

In this study, we have revisited the mean/eddy decomposition
theory for local Available Potential Energy (APE) density, focusing
on its application to the characterisation of meso-scale eddies, small-
scale irreversible mixing, and their interaction with the large-scale
circulation. While irreversible mixing and eddy features occur at scales
much smaller than the planetary-scale circulation, these processes play
a crucial role in the global energy budget, necessitating careful consid-
eration to ensure that forcing and dissipation terms are computed in a
mutually consistent manner. Our approach addresses the consistency
issues associated with the definition of localised forms of local APE
density, which are often used to describe the energetics of these pro-
cesses. Our analysis demonstrates that a consistent formulation should
be based on partitioning the local APE density into mean and eddy
components. The resulting eddy APE density measures forces against
the local mean density profile, aligning with physical intuition. This
formulation differs from heuristic localised forms of APE density, which
ignore the dependence on the Lorenz reference state. Our exact eddy
APE density retains some dependence on the Lorenz reference state,
differing from the heuristic form by a factor of 𝛬 = 𝑁

2
∕𝑁2

0 . Previous
studies indicate that while fluid parcels are very close to their reference
position in most of the ocean interior, where 𝛬 ≈ 1, this is generally
not the case in the polar regions or the Gulf Stream area (e.g., Saenz
et al., 2015; Tailleux, 2016, 2013a) where our results should be of most
practical use.

Our approach is physically and conceptually simpler than that
of Scotti and White (2014), while being mathematically equivalent, as
discussed in detail by Tailleux (2024). The exact eddy APE budget is
easier to interpret, as its net conversion with mean APE and eddy KE
depends solely on the diapycnal component of the turbulent density
flux, in contrast to the quasi-geostrophic (QG) approximated version.
This formulation is valid for arbitrarily large departures from the
Lorenz reference state, characterised by the parameters 𝛬 and the norm
of the slope vector |𝐒|. A fundamental difference between the two
frameworks concerns the mean to eddy APE conversion, which can
only be positive in the QG approximation, but which can potentially
be also negative in the exact case. The exact eddy APE density behaves
similarly to the heuristic localised form, despite being defined by
different mathematical expressions. Both forms agree that the buoyancy
involved in local turbulent stirring/mixing is the buoyancy anomaly
defined relative to the mean density field, but they differ in how they
define the displacement, 𝜁 ′ = 𝑧 − 𝑧𝑚 versus 𝜁 ′ = 𝑧0(𝜌) − 𝑧0(𝜌). This
has important consequences for the study of meso-scale eddy APE and
turbulent stratified mixing where the two differ significantly, notably
10
regarding the theory for mixing efficiency and the determination of
turbulent vertical mixing diffusivity, as is expected to be the case in
the polar regions, for instance.

Our approach represents a significant step towards a more realistic
and accurate treatment of the APE budget, which is crucial for devel-
oping energetically consistent parameterisations and numerical ocean
models. Importantly, such progress can only be achieved by the local
theory of APE, highlighting the limitations of Winters et al. (1995)’s
global APE framework. To fully assess the implications for estimating
meso-scale eddy APE and the study of turbulent stratified mixing in the
oceans, future work will involve reformulating the present framework
using a Large Eddy Simulation (LES) spatial filter instead of Reynolds
averaging and accounting for the nonlinearities of the equation of state
for seawater. Preliminary results suggest that these nonlinearities can
occasionally cause a loss of convexity for the local APE density, poten-
tially corresponding to thermobarically unstable situations. The exact
mean/eddy decomposition of the APE density, while simple, provides
valuable insights into the turbulent APE cascade. Understanding how
to rigorously apply this decomposition to finite-amplitude APE density
is the first step towards a true multi-scale analysis, of which spectral
analysis is one example. Further research is needed to develop a joint
multi-scale analysis of APE density and kinetic energy (KE) that can
provide more insights into how information about the Lorenz reference
state affects different scales.

In conclusion, our study has clarified the relationship between
heuristic and exact forms of localised eddy APE density and has demon-
strated the importance of considering the dependence on the Lorenz
reference state for a consistent treatment of the APE budget. This
work lays the foundation for future research into the development
of energetically consistent ocean mixing parameterisations and the
multi-scale analysis of APE and KE in turbulent stratified flows.
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