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ABSTRACT: Long short-term memory (LSTM) networks are used to build single models that predict river discharge
across many catchments. These models offer greater accuracy than models trained on each catchment independently, if the
same variables are used as inputs for each catchment. However, the same data are rarely available for all catchments. This
prevents the use of variables available only in some catchments, such as historic river discharge or upstream discharge. The
only existing method that allows for optional variables requires all variables to be in the initial training of the model, limit-
ing its transferability to new catchments. To address this limitation, we develop the Hydra-LSTM. The Hydra-LSTM is
able to use some variables across all catchments to make predictions and use further variables in other catchments where
they are helpful and available. This allows general training and the use of catchment-specific data. The bulk of the model
can be shared across catchments, maintaining the benefits of multicatchment models to generalize while also benefiting
from using bespoke data. We apply this methodology to 2-day-ahead river discharge prediction in the western United
States, a small enough time step to expect our models to be skillful and difficult enough to expect differences between models.
We obtain more accurate quantile predictions than multicatchment and single-catchment LSTMs while allowing forecasters
to introduce and remove variables from their prediction set. We test the ability of the Hydra-LSTM to incorporate
catchment-specific data, introducing historical river discharge as a catchment-specific input, outperforming other commonly
used models.

KEYWORDS: Hydrology; Probability forecasts/models/distribution; Short-range prediction; Hydrologic models;
Artificial intelligence

1. The need for hydrological models dealing with
variable input data

Accurate river discharge forecasts are vital for catchment
managers to decide how much water to extract for agricultural
usage, the production of hydroelectricity, or any actions to
take to maintain the river’s biodiversity. The needs of catch-
ment managers and the relevant variables for forecasts can
vary greatly between catchments (Li and Razavi 2024; Clerc-
Schwarzenbach et al. 2024), making it vital that models are
readily adaptable and expandable in a low-cost way to take
advantage of local domain expertise (Fleming and Goodbody
2019; Fleming et al. 2021). In the current state of machine
learning for river discharge forecasting, if a variable is essen-
tial in a catchment but not in the list of variables the model
was initially trained for, it cannot be used without retraining
the entire model. This creates a conflict in the training of ma-
chine learning models, as individual models perform better

when trained across a range of catchments (Kratzert et al.
2019, 2024).

This forces forecasters into a choice: Should they choose a
model that lets them benefit from knowledge gained from other
catchments, or should they choose a model tailored to their
catchment? The latter allows them to include information like
historical river discharge, local forecast predictions, additional
soil measurements, upstream observations, and other variables
that are important in many catchments but only available in
some. This underpins the need for a model that can take advan-
tage of increased exposure to catchment variability while pre-
serving the importance of bespoke catchment knowledge.

Numerous strides have been made using machine learning
in river discharge prediction, addressing problems with inputs
existing on multiple time scales (Gauch et al. 2021), limits of
predictability in discharge prediction (Liu et al. 2024), or
physics-guided machine learning models (Xie et al. 2021).
Work has also focused on transferring models to catchments
with no or very few river discharge observations (Yoon and
Ahn 2024; Fang et al. 2022). However, there has so far been
only one attempt to train a model with different data inputs
between locations, which we believe is an important step to-
ward uncompromised predictions at a global scale.

This method, proposed by Nearing et al. (2023), allows
variables to be input into a single general model alongside a
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corresponding flag variable that is 1 if the variable is available
and 0 if not. Missing variables are replaced by some default
value, with a 0 in the corresponding flag variable. This ap-
proach allows the same model to be used on different catch-
ments, even if they have other data available. However, it is
unusable for variables not already defined in the parameter
set or for variables particular to a single catchment, such as
information from an upstream gauge.

Here, we design a model that can combine the ability to
train on many catchments with the flexibility to use whatever
relevant hydrological information is available. We call this
model the Hydra-long short-term memory (LSTM) (Fig. 2).
The Hydra-LSTM uses an initial encoding LSTM, called the

Hydra Body, to use variables available across all catchments,
for example, globally available reanalysis datasets such as
ERA5 (Hersbach et al. 2020) The Hydra Body transforms
them into a set of variables that are more directly useful to
river discharge prediction. The Hydra Body outputs are then
combined with one of the Hydra Heads, each an LSTM itself,
being passed to either a Multi-Catchment Head trained across
all catchments or a Single-Catchment Head trained only for
the corresponding catchment that is capable of accepting
catchment-specific variables. The Single-Catchment Head can
take the outputs of the Body alongside a time series of recent
river discharge observations from that river gauge, and an up-
stream river gauge that the forecaster has decided is particularly

FIG. 2. Diagram of the Hydra Model Architecture. The leftmost box plots the time series data available at all
catchments, including historical data, forecast data, and static catchment attributes. An encoding LSTM processes
these, dubbed the Hydra Body, which produces a lower dimensional encoding of the information. If no further
data are available, this encoding is passed to the Multi-Catchment Head, an LSTM that transforms the encoding
to quantile discharge predictions. However, if further information is available for that catchment, it is passed to a
Single-Catchment Head alongside the additional time series data, which are then combined to produce quantile
discharge predictions. All model blocks, the Hydra Body and Hydra Heads, are LSTMs, whose parameters are
different and learned in training.

FIG. 1. Comparison of different LSTMs for hydrological modeling regarding their data requirements, usability across catchments, and
flexibility in adding new variables. The architectures include single-catchment LSTMs, multicatchment LSTM without river discharge,
multicatchment LSTMwith river discharge, Flag LSTM, andHydra-LSTM. The checkmarks indicate the presence of a feature, the crosses
indicate the absence of a feature, and the circles indicate partial usability.
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influential to the river flow at this river gauge. The Single-
Catchment Head would then predict the 2-day-ahead river dis-
charge at that river gauge, which has been tuned specifically to
that river gauge. Conversely, the Multi-Catchment Head would
only take the outputs of the Hydra Body to make its quantile
predictions for 2-day-ahead river discharge. The differences be-
tween the models discussed is summarized in Fig. 1, and the
range of catchments used in our study can be found in Fig. 3.

There are two requirements for theHydra-LSTM to be bene-
ficial. First, when the same data are available, it should perform
just as well as other state-of-the-art methods. The main benefit
of multicatchment models, such as the Hydra-LSTM, is their
ability to be used out of the box, so a forecaster should be able
to use the Hydra-LSTM in this setting without having to pay a
penalty compared to the skill they could have achieved if they
used another model. Second, the Hydra-LSTM should benefit
from including catchment-specific data in an additional Single-
Catchment Head. The unique advantage of the Hydra-LSTM
is in its ability to include additional data not considered in the
design of the Hydra Body and Multi-Catchment Head, and so
for the Hydra-LSTM to be beneficial, the Single-Catchment
Head should be a useful means of adding additional data in a
way that improves the model’s performance.

2. Experimental design

We test the Hydra-LSTM for 1-day-ahead river discharge
prediction, as this is the foundation for prediction over longer

lead times, and a number of other LSTM-based models have
shown the potential of machine learning models at this lead
time (Kratzert et al. 2018; Hunt et al. 2022; Nearing et al.
2023). We focus on creating forecasts of the 10%, 50%, and
90% quantile thresholds of 2-day-ahead river discharge, as it
is useful for water resource managers to understand the range
of uncertainty in predictions (Wang et al. 2023). Quantile esti-
mation has been successfully applied in hydrological forecast-
ing previously (Jahangir et al. 2023; Koenker 2005). Other
papers have attempted to predict the continuous distribution
of uncertainty in river discharge (Klotz et al. 2022). However,
this requires assumptions to be made on the shape of dis-
charge uncertainty, and so instead, we opt to predict the quan-
tiles directly.

We perform two experiments. In the first experiment, we
evaluate the Hydra-LSTM Body and Multi-Catchment Head
in a setting where historical river discharge is not operation-
ally available and compare it to other state-of-the-art meth-
ods, described in section 3. In this experiment, none of the
models are given access to historical river discharge as a pre-
diction input; however, it is used for training the model. In the
second experiment, we provide all models with river discharge
as an input. We provide river discharge into theHydra-LSTM
as an additional data source in Single-Catchment Heads for
each catchment. If historic river discharge added this way can
be used just as well as if it were fed as an input in the multi-
catchment setting, then we expect the performance of the
Hydra-LSTM to be at least as good as the performance of the

FIG. 3. Plot of catchment sites evaluated in this study, and the mean annual temperature over
each catchment in Kelvin. All catchments are located in the western United States, and the plot
shows the western United States with an inset showing a map of United States as a whole.
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benchmarks. This would mean that we can add additional
data to our Hydra-LSTM without retraining the entire model.
This is not true for existing LSTMs used in river discharge
prediction, where adding additional data to any of the ma-
chine learning benchmarks would require retraining us to re-
train entire multicatchment model with that variable present.

Performance benchmarks

We compare our Hydra-LSTM with four different machine
learning approaches already used for predicting daily river
discharge, all LSTMs (Kratzert et al. 2018, 2019; Nearing et al.
2023). These models are the current best approaches to use a
machine learning model for river discharge prediction in
catchments and so are alternative models that might other-
wise be used by a forecaster that could use theHydra-LSTM.

The first of these modeling approaches is to use single-
catchment LSTMs, training separate LSTMs for each catch-
ment. The architecture is replicated as described in Kratzert
et al. (2018). This allows all available data in each catchment
to be used in training but means that each model is not
trained on more than one catchment. This means it is less ex-
posed to extremes, which can decrease its ability to extrapo-
late. This requires individual forecasters to set up the model
from scratch, adding additional complexity in usability and
means that the model has less training data to use, potentially
decreasing performance and generalizability to different hy-
drological conditions. This is an approach that is likely to be
used when a forecaster has some specific features they would
wish to use in their model that is not present in any out-of-
the-box multicatchment model and has enough data in their
own catchment to train a suitable model. We are interested
in seeing whether or not the Single-Catchment Head of the
Hydra-LSTM can offer results comparable to or even outper-
form these single-catchment LSTMs.

Second, we train two multicatchment LSTMs, one with
river discharge as a predictor and one without. The imple-
mentation follows the method described in Kratzert et al.
(2019). These LSTMs are trained across all catchments in our
dataset. The decision whether or not to use the multicatch-
ment LSTM and whether to use it with or without river dis-
charge usually depends on whether or not you have river
discharge available operationally as an input, as many catch-
ments will not. Multicatchment LSTM setups do not allow for
any differences in data availability between uses, either al-
ways requiring a variable or having no way of using it. It has
been shown that with enough data across catchments to train
on, these models can outperform single-catchment LSTMs and
are especially useful in cases when the gauge record is too short
to train a single-catchment LSTM. They are also useful when
no additional data would allow the forecaster to benefit from a
tailored approach. Here, we are interested in whether or not
the Hydra-LSTM can perform similarly to the multicatchment
LSTM trained without river discharge when it also does not use
river discharge, i.e., through the Multi-Catchment Head. We
also compare the performance of the Single-Catchment Head,
which has river discharge as an additional input, with that of the
multicatchment LSTM, which has river discharge as an input.

If it performs similarly in the setting where river discharge is
available, then we will have shown that there is no relevant
loss in skill by providing additional information through an
additional head instead of retraining an entirely separate multi-
catchment LSTM with river discharge as an input. This would
offer more flexibility in variable choice, allowing forecasters to
train Single-Catchment Heads onto the Hydra-LSTM using
just the data at their catchment instead of having to train a
multicatchment model.

The final model we compare against can tackle data dispar-
ity between catchments, which we call a Flag LSTM and is a
method used in Nearing et al. (2023). This model has different
variables as potential inputs and, for each of these variables, a
corresponding flag time series denoting whether the variable
is available for a given day. If the data are missing, the flag
time series contains a zero; otherwise, it contains a one. The
corresponding variable time series has some placeholder num-
bers for days when they are not available. In our tests, river
discharge is the additional variable that may be unavailable.
This model is able to make predictions both when river dis-
charge is and is not available, but it does not allow for any ad-
ditional variables to be introduced after the initial design of
the model without retraining the entire model. Our Hydra-
LSTM, on the other hand, has a Single-Catchment Head that
allows additional variables to be introduced by training only a
smaller new section of the model, and so it is far easier to in-
troduce new variables. We train the Flag LSTM, using a flag
to specify whether or not river discharge is available at a
catchment. In training, 50% of training examples are without
river discharge. When comparing with this model, we wish to
see how the method of adding additional data through an ad-
ditional model head compares to using a binary flag to intro-
duce potentially missing data. Even though the Hydra-LSTM
is more flexible, allowing additional data to be used even
when it is not considered at the model development stage, the
additional flexibility the Flag LSTM provides when compared
to the other benchmarks may be satisfactory in many cases if
it performs significantly better than theHydra-LSTM.

3. Hydra-LSTM architecture

TheHydraModel consists primarily of three blocks: theHydra
Body, the Multi-Catchment Head, and a Single-Catchment Head
for each catchment wishing to incorporate additional data. In our
experiments, each of these model blocks are LSTMs. LSTMs are
a form of recurrent neural network and often used when making
predictions with temporal inputs. However, this general architec-
ture could be adapted to use an array of different architectures.
As our implementation of the Hydra Model comprises LSTMs,
it takes in data as a vector of time series. Static catchment varia-
bles, such as soil type or rock type, are then passed to a model as
static time series.

The Hydra Body takes as inputs time series data that are
available across all catchments, such as ERA5 reanalysis pre-
cipitation or catchment area, and transforms these into
smaller and more informative time series of summary varia-
bles, known as encodings. These encodings are transforma-
tions of the initial variables learned by the Hydra Body in
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training. If a water resource manager does not wish to use a
bespoke Single-Catchment Head for their catchment, the
time series of encodings is passed as inputs to the Multi-
Catchment Head. The Multi-Catchment Head then returns a
set of three predictions, predicting the 10%, 50%, and 90%
quantile thresholds of the 2-day-ahead river discharge.

If a water resource manager does wish to use a Single-
Catchment Head, however, then the outputted time series
from the Hydra Body can be concatenated with additional
catchment data and then be passed onto their catchment
Single-Catchment Head. The Single-Catchment Head then
outputs predictions of the 10%, 50%, and 90% quantile
thresholds of the 2-day-ahead river discharge, just as the
Multi-Catchment Head would. In our experiments, we as-
sume that river discharge is not always operationally available
and so does not include it as inputs into the Hydra Body. We
also train a different Single-Catchment Head for each catch-
ment, with river discharge as an additional input that is
concatenated to the outputs of the Hydra Body. River dis-
charge is important for predicting future river discharge.
However, in many catchments, river discharge observations
do not exist or are only available with a large time delay. We
further analyze prediction quality at the Green River below
Howard A Hanson Dam gauge.

4. Data

The Water Supply Forecast Rodeo was a competition held
by the U.S. Bureau of Reclamation in 2023 focused on pre-
dicting river discharge across 27 catchments in the western
United States for primarily agricultural and hydro-electrical
purposes (DrivenData 2024). Because this work focuses on
forecasting daily river discharge, we focus on 18 of those
catchments for which daily river discharge observations are
available. These catchments cover a wide range of different
climatological conditions (Table 1) and static physical charac-
teristics (Table 2).

Historical observations from the U.S. Geological Survey
and reanalysis data from the fifth generation ECMWF atmo-
spheric reanalysis land (ERA5-Land) are used as input to the
models with 25 variables used in total Hersbach et al. (2020)
(Table 1). Daily river discharge observations are extracted
from the U.S. Geological Survey (2024). ERA5-Land forcing
data are taken for the study region from October to July from
2001 to 2023 in hourly and 6-hourly intervals at a spatial reso-
lution of 9 km. Historical daily river discharge observations
were only used in some catchments to test how introducing
river discharge in a Single-Catchment Head in the Hydra-
LSTM compares to introducing it in the benchmark models.
Catchment attributes are taken as static for the purpose of
this study and are taken from the BasinAtlas dataset (Linke
et al. 2019).

5. Training

To train a single model to create predictions, ŷ of different
quantile thresholds t of 2-day-ahead river discharge, we need
a loss function that is minimized when the model predicts
the correct thresholds. The quantile loss, Eq. (1), is an ideal

function for this Koenker (2005). A generalization of the
mean absolute error (MAE), the tth quantile loss Lt, can be
proven to be minimized only by predicting the tth quantile
of the distribution associated with the predictand, condi-
tional on the available predictors. This means that applying
the 10% quantile loss to the model’s prediction for the 10%
quantile threshold ŷ10 results in the loss being minimized if
and only if it consistently predicts the value of river dis-
charge yt that has a 10% chance of being exceeded given the
data available to the model. The loss is shown in Eq. (1), where
y is the observed river discharge for the day the model is trying
to make a prediction for and the ŷ is the models’ corresponding
prediction:

TABLE 1. Summary statistics of each variable used in training
and their range across catchments. (a) Time series variables,
averaged along each catchment. The table shows the minimum,
median, and maximum catchment averages of various forcing
variables. All variables other than river discharge are derived
from ERA5-Land (Hersbach et al. 2020). River discharge is derived
from the USGS (2024). Catchment boundaries were provided by the
Bureau of Reclamation (DrivenData 2024). (b) Static catchment
attributes. The table shows the minimum, median, and maximum
values found across the catchments used in this study, averaged
along each catchment when necessary. Gauge elevation and area are
provided by the U.S. Bureau of Reclamation (DrivenData 2024),
and all other variables are derived from the BasinAtlas dataset
(Linke et al. 2019).

Variable Minimum Median Maximum

(a)
Precipitation (mm yr21) 375.95 781.1 1708
Evaporation (mm yr21) 317.55 438 547.5
2-m mean annual temperature (8C) 20.85 4.25 11.35
Snow depth water equivalent (m) 0.0127 0.0891 0.573
Soil water volume (m3) 0.14 0.30 0.35
River discharge (m3 s21) 0.0955 1.3696 21.372
10-m U component of wind

(m s21)
20.09 0.67 2.14

10-m V component of wind
(m s21)

20.25 0.39 1.11

Surface net solar radiation
(W m22)

130 162 220

Surface net thermal radiation
(W m22)

2102 277.5 249.8

(b)
Gauge elevation (m) 1700 3700 4300
Area (km2) 420 3580 38 010
Average slope (8) 36 144 276
Mean annual air temperature 8C 21.95 2.75 8.85
Climate moisture index 270 218 65
Inundation extent (%) 0.0 1.5 83.0
Wetland extent (%) 0.0 2.5 19.5
Permafrost extent (%) 0.0 0.5 16.6
Snow-cover extent (%) 16.7 42.6 54.5
Degree of regulation 0.0 48.3 817.5
Lake area (%) 0.0 5.9 31.6
Grassland (%) 0.0 0.4 24.6
Forest (%) 0.0 7.6 86.9
Cropland (%) 8.7 82.7 100.0
Shrubland (%) 0.00 2.1 15.6
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Lt(y, ŷ) 5
(t 2 1)(y 2 ŷt), if y , ŷt,

t(y 2 ŷt), if y $ ŷt
:

{
(1)

We calculate the loss using our model’s corresponding
quantile loss function for each threshold prediction. We then
sum these losses to get a total loss for the set of quantiles,
Ltot, in Eq. (2). This equally weights each of the thresholds in
the loss, which is also the weighting chosen in the Water Sup-
ply Forecast Rodeo DrivenData (2024):

Ltot(y, ŷ) 5
1
3
[L0:1(y, ŷ0:1) 1 L0:5(y, ŷ0:5) 1 L0:9(y, ŷ0:9)]:

(2)

We normalize Ltot by dividing it by the corresponding loss
that would be obtained by a model that predicts the climato-
logical quantile thresholds at each catchment, Lclim, which is
analogous to the normalizing factor in the Nash–Sutcliffe effi-
ciency (NSE). This is done so that the loss does not consider
the size of the catchment in determining the magnitude of the
error but rather how much the model improves upon the simple
benchmark of climatology, in terms of the percentage reduction
of error. For each calendar day (e.g., 1 July), the climatology
model looks at all historical observations of river discharge
on that day across all years in the training data. It then calculates
specific quantiles from this distribution. For example, the
10% quantile prediction for 1 July represents the discharge
value that was exceeded by 10% of all 1 July measurements in
the historical record. We can then use this to define a cumula-
tive quantile efficiency score (CQES), as 12 (Ltot/Lclim). A
CQES value of 0 would respond to a model that is as skillful as
climatology, and a CQES value of 1 would respond to a model
that perfectly forecasts the observed values:

CQES(y, ŷ) 5 1 2
Ltot(y, ŷ)

Lclim(y, yclim)
: (3)

As we wish the Hydra-LSTM to be useful to operational
hydrologists, providing context into the methods by which
machine learning models are trained is useful. To train ma-
chine learning models, we perform many stochastic updates
to the model’s parameters to minimize the loss of the model’s
predictions over a subset, hereafter “batch” of the examples
in the training set. The gradient of the loss with respect to the
model parameters is used in a process called stochastic gradi-
ent descent. We use a variation of this method that considers
the gradients at previous batches, known as the Adam opti-
mizer (Kingma and Ba 2014). This is a form of parameter
optimization.

Each training example is defined by the date a forecast is
made and the catchment it is made for. In each batch, we ran-
domly decided which catchment to make predictions for
and randomly sampled potential forecast dates from which
the prediction was made without replacement, step 1 in
diagram 4. For these catchments and dates, the relevant data
are extracted in step 2 and fed into the model being trained
on, outputting predictions for the different quantile thresh-
olds in each training example in step 3. The predictions and
actual observed values are then input into the loss function
Lprop, step 4, and gradient descent is performed to update the
model parameters, step 5. An epoch is complete when all
forecast dates in the training set have been trained on, and we
compute the loss for each epoch on a validation set. An early
stopping check then takes the validation loss and decides
whether or not to end the training procedure stopping the
training loop if a new minimum validation loss has not been
reached in the last 20 epochs, step 6. The early stopper does

TABLE 2. Summary statistics of four key catchment attributes for each catchment in the study. All summaries are taken from the
ERA5 deterministic forecast from 2000 to 2023, with gauge elevation, drainage area, and catchment boundaries provided by the U.S.
Bureau of Reclamation metadata.

USGS id USGS name

Mean
precipitation
(mm yr21)

Mean
evaporation
(mm yr21)

Drainage
area
(km2)

Gauge
elevation

(m)

12362500 South Fork Flathead River nr Columbia Falls, Montana 908.85 434.35 4320 930
13037500 Snake River near Heise, Idaho 792.05 441.65 14 900 1530
6054500 Missouri River at Toston, Montana 605.9 467.20 37 920 1190
9361500 Animas River at Durango, Colorado 824.9 485.45 1820 1980
9251000 Yampa River near Maybell, Colorado 613.2 459.9 8760 1800
12301933 Kootenai River below Libby Dam, near Libby, Montana 795.7 394.2 23 310 640
12105900 Green River Below Howard A Hanson Dam, Washington 1708.2 514.65 570 300
9109000 Taylor River below Taylor Park Reservoir, Colorado 609.55 405.15 660 2800
9050700 Blue River below Dillon, Colorado 693.5 423.4 870 2670
10128500 Weber River near Oakley, Utah 704.45 521.95 420 2020
11251000 San Joaquin River below Friant, California 1157.05 507.35 4340 90
11266500 Merced River A Pohono Bridge near Yosemite, California 1069.45 430.70 830 1180
12409000 Colville River at Kettle Falls, Washington 638.75 478.15 2610 430
12451000 Stehekin River at Stehekin, Washington 1657.10 357.70 830 340
14181500 North Santiam River at Niagara, Oregon 1602.35 459.90 1170 330
9406000 Virgin River at Virgin, Utah 419.75 317.55 2480 1070
8378500 Pecos River Near Pecos, New Mexico 766.5 547.50 490 2290
13183000 Owyhee River below Owyhee Dam 375.95 321.2 28 900 710
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this depending on whether the maximum number of epochs
has been reached or if the validation loss has started to pla-
teau. If the early stopper does end the training run, the model
and its parameter weights are saved to be used later.

For each model, we train it on a subset of 19 years and
choose 2 years to validate. All multicatchment models are
trained on all catchments. The performance reported in the
results section is then computed on a final year withheld from
the training and validation set. We do this with 11 different
potential test years, a process known as 11-fold cross valida-
tion, or leave-one-out validation applied 11 times.

For the Hydra-LSTM in particular, the Hydra Body and
Multi-Catchment Head are trained in tandem, and then, the
Single-Catchment Heads are trained separately using the

trained Hydra Body. This is because in operational usage, we
expect aHydra Body and Head to be made initially, and then,
individual forecasters would train their own Single-Catchment
Heads to incorporate their own additional data. This means
that the Single-Catchment Head will have been trained sepa-
rately from the Multi-Catchment parts, and so we want to test
whether or not it will be able to satisfactorily combine the in-
formation from the Hydra Body with its additional data to
make its prediction. The training of the Hydra-LSTM is sum-
marized in Fig. 4.

For all models, there was a list of potential hyperpara-
meters that we could have chosen relating to the features
of each model architecture. To decide which were best, we
trained all possible sets of hyperparameters from the list,

FIG. 4. Training flowchart for Hydra-LSTM. The Multi-Catchment Head and Hydra Body are trained initially, and
then, the Single-Catchment Heads can be trained using the outputs from theHydra Body as some of its inputs.
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recorded the validation loss for the years 2020 and 2022, and
chose the hyperparameter set that optimized the validation of
the model for the rest of our analysis. Neither of these years is
used as test years when evaluating our models. The hyper-
parameters tested are summarized in Table 3.

6. Results

a. Models without river discharge available as input

The multicatchment LSTM trained without river discharge
as an input performs nearly identically to the Hydra-LSTM
with a Multi-Catchment Head, both having a CQES of 0.12
and having empirical 10% and 90% quantile thresholds within
1% of each other. The scores can be found in Table 4 and Fig. 5.
This is expected, as the Hydra Body is trained only to minimize
the results from the Multi-Catchment Head, and so using the
Multi-Catchment Head is akin to using a multicatchment LSTM
without river discharge. The Flag LSTM performs slightly worse
than the other models in the ungauged setting, with a CQES
of 0.09, and its 90% quantile threshold prediction being ex-
ceeded only 85% of the time compared to 87% and 88% of
the time for the multicatchment LSTM and Hydra-LSTM.
The distribution of CQES scores (Fig. 5) shows that the dis-
tribution of scores for all the models where river discharge is
assumed to be unavailable is very similar, with all three
curves mostly overlapping. Between a CQES of 20.5 and 0.0,
we see the performance of the Flag LSTM being worse than

that of the other models, with the curve lying left of the other
models.

b. Models with river discharge available as an input

When river discharge is available as an input to each of
these models, introduced into the Hydra-LSTM through the
use of Single-Catchment Heads, the average skill of each
model is drastically increased, with the minimum CQES now
being 0.61 compared to a previous maximum of 0.12. The
scores in this setting can be found in Table 5 and cumulative
CQES distribution plot can be found in Fig. 6. The Hydra-
LSTM with Single-Catchment Heads has the highest CQES,
and the Flag LSTM still has the worst score in the context
where river discharge is a usable input. The single-catchment
LSTMs produce an 80% confidence interval that is too nar-
row on average, with its 10% quantile threshold in actuality
being exceeded 15% of the time and its 90% quantile thresh-
old only being exceeded 84% of the time. All other models
have empirical quantiles within 3% of their target. Overall,
we find that the Hydra-LSTM with Single-Catchment Heads
performs the best of all the models trained with river dis-
charge as an available output. The distribution of average
CQES scores for the Hydra-LSTM with Single-Catchment
Head is the highest compared to all the other models, being
the rightmost curve with a lowest CQES score of 0.5 com-
pared to the next best lowest score of below 0.4 for the single-
catchment LSTM. The Hydra-LSTM with Single-Catchment

TABLE 3. Hyperparameters tested for each model architecture. The hyperparameters that were found to minimize the quantile
loss in the validation dataset are in bold. The hidden size relates to the number of parameters in each layer of the LSTM, while the
number of layers determines the number of processing steps required to transform the inputs into a satisfactory prediction. The
learning rate is a determiner of how much to calibrate the parameters of the model given a particular set of training examples.
Bidirectionality determines whether or not the model can use information on what happens in subsequent days to inform its
representation of a previous day and can be useful in some complex problems. Finally, dropout is a process by which parameters in
the model are randomly turned off and can often prevent an overreliance on particular features. Models are color coded throughout
the figures as follows: Single-catchment LSTMs (light blue), multicatchment LSTM without river discharge (pink), multicatchment
LSTM with river discharge (purple), Flag LSTM (orange), and Hydra-LSTM (yellow).

Model Hidden size Number of layers Learning rate Bidirectional Dropout

Single catchment [16, 64, 128] [1, 2, 3] [1 3 1023, 1 3 1025] [No, Yes] [0, 0.1, 0.4]
Multicatchment: without river discharge [64, 128, 256] [1, 2, 3] [1 3 1023, 1 3 1023] [No, Yes] [0, 0.2, 0.4]
Multicatchment: with river discharge [64, 128, 256] [1, 2, 3] [1 3 1023, 1 3 1025] [No, Yes] [0, 0.2, 0.4]
Flag LSTM [64, 128, 256] [1, 2, 3] [1 3 1023, 1 3 1025] [No, Yes] [0, 0.2, 0.4]
Hydra-LSTM Body: [64, 128, 256]

Head: [16, 32, 64]
Body: [1, 2, 3]
Head: [1, 2]

[1 3 1023, 1 3 1025] [No, Yes] [0, 0.2, 0.4]

TABLE 4. Comparison of models without river discharge as an available input. The best scores for each metric are shown in bold.
Models are color coded throughout the figures as follows: Single-catchment LSTMs (light blue), multicatchment LSTM without river
discharge (pink), Flag LSTM (orange), and Hydra-LSTM (yellow). Metrics shown are the CQES, the proportion of observations
exceeding the models’ predicted 10% quantile threshold, and the proportion of observations exceeding the models’ predicted
90% quantile threshold.

Model CQES

Proportion of observations
exceeding predicted

10% quantile threshold

Proportion of observations
exceeding predicted

90% quantile threshold

Multicatchment: without river discharge 0.12 0.13 0.87
Flag 0.09 0.13 0.85
Hydra-LSTM: Multi-Catchment Head 0.12 0.12 0.88
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Heads has an average CQES of 0.73 compared to 0.71 for the
single-catchment LSTM; all other models score lower. The
Hydra-LSTM with Single Catchment Heads also had the joint
most accurate 10% quantile threshold estimate, alongside the
Flag LSTM, as can be seen in Table 5.

c. Case study: Green river 2001

In order for hydrologists to be able to reliably use a model,
they require assurances that the model will not behave poorly
in unseen, or out-of-distribution, conditions. In physical models,
this can come from much of the physics being prescribed in
model development, which is not true in purely statistical or
machine learning models. Instead, to test the ability of our
models to create skillful predictions in unseen conditions, we
further analyze the January–July river flow in Green River,
U.S. Geological Survey (USGS) ID 12105900, for 2001 (Fig. 7).
Green River saw particularly low flow in 2001, with a peak
flow roughly 3 times less than the average flow in other years.
The Hydra-LSTM was best able to capture the potential for

high flow being much lower than in other years, with the pre-
dicted 90% quantile thresholds being much lower than in other
years. In comparison, the other models still had relatively high
90% quantile thresholds. The multicatchment LSTM trained
without river discharge performed the worst at this catchment,
with its 90% quantile threshold remaining much closer to the
usual flow seen in that catchment in other years, of approximately
6000 cfs as opposed to the 2000 ft per second seen in that year.

The Hydra-LSTM with Single-Catchment Heads also had
the best CQES score in the gauged setting for this scenario, as
seen in the right column of Fig. 7. Again the Flag LSTM and
multicatchment LSTM overestimated the 10% quantile thresh-
old, and this is confirmed when looking at the proportion
of 10% quantile thresholds that were exceeded in Table 5. The
single-catchment LSTM, on the other hand, had an overly con-
strained 10% quantile threshold prediction, being exceeded
15% of the time. The corresponding hydrograph shows a high
degree of stochasticity in its daily predictions, significantly less
smooth than the true observations.

FIG. 5. Cumulative distribution plot showing the range of CQES 3, for each model trained without
river discharge as an input. Each individual score is for a single year in a single basin.

TABLE 5. Comparison of models with river discharge as an available input. The best scores for each metric are shown in bold.
Models are color coded throughout the figures as follows: single-catchment LSTMs (light blue), multicatchment LSTM with river
discharge (purple), Flag LSTM (orange), and Hydra-LSTM (yellow). Metrics shown are the CQES, the proportion of observations
exceeding the models’ predicted 10% quantile threshold, and the proportion of observations exceeding the models’ predicted 90%
quantile threshold.

Model CQES

Proportion of observations
exceeding predicted

10% quantile threshold

Proportion of observations
exceeding predicted

90% quantile threshold

Single catchment 0.71 0.15 0.84
Multicatchment: with river discharge 0.66 0.07 0.91
Flag 0.61 0.09 0.92
Hydra-LSTM: Single-Catchment Heads 0.73 0.11 0.88
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7. Comparison between models

a. Hydra-LSTM Multi-Catchment Head at least as skillful
as other state-of-the-art machine learning models

This paper develops a probabilistic model to match existing
state-of-the-art architectures while allowing individual fore-
casters to introduce new inputs after the initial development
of the model. We did this by developing a model with three
key components: a Hydra Body to transform data available
across all catchments into something more directly useful for
river discharge prediction, a Multi-Catchment Hydra Head to
take the transformations from the Hydra Body and make
quantile predictions for river discharge when additional data
are not available, and a suite of Single-Catchment Hydra
Heads to take in additional data available only at select catch-
ments and process these alongside the transforms produced
by the Hydra Body to make more informed predictions when
possible.

In the first setting, when no additional data are available,
and only the Hydra Body and Multi-Catchment Hydra head
are used, the performance of the Hydra-LSTM is on par
with other state-of-the-art machine learning models used in
river discharge prediction, namely, the multicatchment
LSTM (Kratzert et al. 2019) and the Flag LSTM (Nearing
et al. 2023). Not only does it have the best cumulative score,
as defined in Eq. (3) and shown in Table 4 and Fig. 5, but it
also has the most accurate quantile thresholds. The Hydra-
LSTM in this setting is expected to have results nearly iden-
tical to the multicatchment LSTM, as the Hydra Body is
trained only to minimize the loss from the Multi-Catchment
Hydra Head. This means that the combination is the same

as a two-layer LSTM with a different hidden size for each
layer. It may also be expected that the Flag LSTM would
perform slightly worse, as it attempts to create predictions
both when historic river discharge is available as an input
and when it is not, without having an auxiliary head as the
Hydra-LSTM can have.

b. Hydra-LSTM Single-Catchment Heads at least as
skillful and effective at using additional variables as if
it were introduced in the initial set

The training of the Hydra-LSTM Single-Catchment Heads
is very efficient, as it needs only to be a single-layer LSTM, us-
ing the transformations learned by the Hydra Body as the
main set of inputs. Using parallel processes on an A100
graphics processing unit (GPU), we could train 11 different
folds of each of the models in under 2 h and train 11 different
Single-Catchment Heads in under an hour. Because of its
efficiency, we do not see the required resources to train an
additional Single-Catchment Hydra Head as a significant
computational burden for most users. The efficacy of the
Single-Catchment Hydra Head is also evident from our re-
sults, with the distribution of scores lying strongly to the right,
meaning higher scores than that of the other models, Fig. 6. It
had a significantly higher CQES score of 0.73 than the Flag
LSTM, which had the lowest score of 0.61 of all the models,
and its quantile thresholds were within exceeded 2% of their
intended values as seen in Table 5. We believe that the signifi-
cant improvements compared to the Flag LSTM, which is the
only other model that can be used with variable data avail-
able, show that it may be a better alternative in many cases,
for example, when the additional data available are only

FIG. 6. Cumulative distribution plot showing the range of CQES 3, for each model trained
with river discharge as an input. Each individual score is for a single year in a single basin. The
CQES scores for theHydra-LSTM are significantly higher than that of the other models (p5 0.005).
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available for a single catchment. This is because the Flag
LSTM and the multicatchment LSTM with river discharge
were trained with river discharge across all catchments and so
were trained on more data than might be available for an-
other variable we might wish to introduce, such as radar
measurements were taken only at a single catchment or up-
stream information for a particular catchment. It may be that
changing the proportion of training devoted to a variable be-
ing available as an input and not available as an input might
have improved the Flag LSTM; however, this is an additional
complexity decreasing the usability of the Flag LSTM. Train-
ing a Flag LSTM or multicatchment would also require the
forecaster to have access to and train the model on all the

relevant data for all the catchments the model was trained on,
whereas to train an additional Single-Catchment Head in the
Hydra-LSTM, the forecaster would only need to train on the
data for their own catchments, as the Hydra Body does not
need to be retrained on each catchment.

We recalculated the CQES for each of these models during
the high flow period exclusively (April–July) and found that
there was no difference in the ordering of the performance of
each of the models. The CQES was slightly increased by an
average of 0.07 for the models with river discharge as an in-
put, which we expect is because river discharge is an espe-
cially more useful input for prediction when in a high flow
period.

FIG. 7. Comparison of the hydrographs of all models for Green River Howard A Hanson Dam, USGS ID
12105900, in 2001. Not all models are usable with all potential datasets, and in this case, “invalid configuration” is written
on the graph. (left) Each model performs without river discharge as a potential input, and (right) the models with
river discharge as a potential input.
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c. Hydra-LSTM Single-Catchment Heads offer better
performance than training a new single-catchment LSTM

Not only does theHydra-LSTM outperform the other models
that are trained across multiple catchments, but we have also
shown that it, on average, outperforms the use of different
LSTMs at each catchment. Table 5 shows that the single-
catchment LSTM, while having the second highest average
CQES, tends to underestimate the uncertainty in its forecasts,
with an average interval between its 10% and 90% quantile
thresholds of 69%, compared to one of 77% for the Hydra-
LSTM. The hydrographs in Fig. 7 suggest that single-catchment
LSTMs may overrely on persistence. Its predictions for the
10% quantile threshold also seemed to be particularly erratic,
having a high daily variability that was much more than seen in
other models or in the actual flow in the catchment that is more
than is seen in this catchment. This may suggest an inability to
fully appreciate some of the underlying hydrological behavior,
having been trained on the data on only one catchment as
opposed to being driven by a model trained over many catch-
ments, as theHydra Body is.

Overall, this suggests that the Hydra-LSTM is just as skill-
ful a method as the other models when there are no additional
data available that a local forecaster would wish to add as a
predictor for their catchment, and that if desired, a forecaster
can introduce additional data in a Single-Catchment Head in
a way that is just as effective as retraining a multicatchment
LSTM.

d. Aspects for future work

Our results have shown the ability of the Hydra-LSTM to
introduce catchment-specific data, even when relatively few
catchments are used in training. Kratzert et al. (2024) have
shown that the performance of traditional LSTMs improves
as more catchments are used, even when trained on hundreds
of catchments globally, and in the future, we plan to test
whether or not these benefits apply to the Hydra-LSTM too.
One can also assess how much historical data are needed for
the Single-Catchment Heads to learn from. The Hydra Body
represents the bulk of the model parameters, and so it may al-
low for additional skill to be gained from additional data by
the Single-Catchment Head that has too short a historical re-
cord to be used by a single-catchment LSTM.

There are also many other promising techniques and find-
ings in machine learning hydrological forecasting that can be
used alongside the Hydra-LSTM frameworks. These include
focusing on the diversity of catchments used in training (Fang
et al. 2022), looking at residual errors (Li et al. 2021) and
other model changes such as using multistate vectors or self-
training (Yin et al. 2021; Yoon and Ahn 2024). Now that we
have provided evidence on the usefulness of Hydra-LSTM it-
self, exploring how we can combine it with other advances
could prove beneficial to increasing the skill and usability of
river discharge models. For example, for longer lead times, it
may be useful to introduce predictions from atmospheric fore-
cast models such as the ECMWF IFS (Persson and Grazzini
2007). This addition can be introduced into the Hydra-LSTM

architecture, by using the hindcast–forecast LSTM developed
by Nearing et al. (2023) as the model blocks.

It is also possible to use flag indicators in the Hydra-LSTM
if variables might be best introduced in the Hydra Body with
a flag indicator instead of as a separate head. Future research
may wish to explore how these two means of introducing data
optionally can be used together and when it is worth rebuild-
ing the Hydra Body instead of introducing additional data in
the Single-Catchment Head. Flags have the unique advantage
of allowing us to use them still when data are only intermit-
tently available. In contrast, the Single-Catchment Heads
have the advantage of being able to introduce new variables
without having to retrain the entire model. Testing the feasi-
bility of adding flag time series into the Hydra Model would
allow us to take full advantage of different data types at each
catchment.

Another strength of the Hydra-LSTM that future work
should explore is that it can have multiple, partially special-
ized, Multi-Catchment Heads. It is possible, for instance, to
train one other Multi-Catchment Head that combined the
outputs from the Hydra Body with historic river discharge
and was trained over all catchments that had river discharge.
Or one could train a different Multi-Catchment Head for
each country, using the respective met-office models from
each country as additional inputs. This may be worth doing
when not all the catchments we want our models to be useful
at have a particular variable available, but enough do that it is
worth creating an alternate head and training it on all relevant
data across catchments.

8. Conclusions

Before this paper, no method existed that allowed for the
easy introduction of new variables outside of an initial set. In
this paper, we have developed the Hydra-LSTM, a new ma-
chine learning architecture for predicting river discharge in a
multicatchment setting. This method allows organizations to
create large-scale models to make predictions across multiple
catchments without restricting them to any particular subset
of data to be used as predictors. The Hydra-LSTM is equiva-
lent in skill to other state-of-the-art architectures when a
catchment manager does not need to introduce their own var-
iables, and the Single-Catchment Heads of the Hydra-LSTM
can introduce new variables into the predictor set in a way
that is more effective than introducing in the base set of pre-
dictands in other models. The Single-Catchment Heads being
a more effective means of introducing additional variables is a
bonus; it is the only realistic option for a local forecaster to
add their own variables into a model. We encourage future
work to test the Hydra-LSTM to introduce new variables that
are specific to individual regions, to increase the number of
catchments the Hydra-LSTM is trained on to assess its scaling
properties, and to test in cases for which available data are
limited.
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Data availability statement. All data and code required to
reproduce the figures in this manuscript can be found in the
following GitHub branch: https://github.com/KarRups/Hydra_
Code/tree/Paper_Submission. Catchment averages of ERA5
reanalysis from Hersbach et al. (2020) are computed using
the shapefiles provided by the U.S. Bureau of Reclamation
DrivenData (2024), with the gridded data stored on the
ECMWF’s HPC systems and available upon request, or can
be gathered using the Copernicus Climate Data Stores (CDS).
Catchment attributes are acquired from the BasinAtlas dataset
(Linke et al. 2019).

REFERENCES

Clerc-Schwarzenbach, F., G. Selleri, M. Neri, E. Toth, I. van Meerveld,
and J. Seibert, 2024: Large-sample hydrology}A few camels
or a whole caravan? Hydrol. Earth Syst. Sci., 28, 4219–4237,
https://doi.org/10.5194/hess-28-4219-2024.

DrivenData, 2024: Reclamation water supply forecast challenge.
Accessed 4 September 2024, https://www.drivendata.org/
competitions/254/reclamation-water-supply-forecast-dev/.

Fang, K., D. Kifer, K. Lawson, D. Feng, and C. Shen, 2022: The
data synergy effects of time-series deep learning models in
hydrology. Water Resour. Res., 58, e2021WR029583, https://
doi.org/10.1029/2021WR029583.

Fleming, S. W., and A. G. Goodbody, 2019: A machine learning
metasystem for robust probabilistic nonlinear regression-
based forecasting of seasonal water availability in the US
west. IEEE Access, 7, 119 943–119 964, https://doi.org/10.1109/
ACCESS.2019.2936989.

Gauch, M., F. Kratzert, D. Klotz, G. Nearing, J. Lin, and S.
Hochreiter, 2021: Rainfall–runoff prediction at multiple time-
scales with a single long short-term memory network. Hydrol.
Earth Syst. Sci., 25, 2045–2062, https://doi.org/10.5194/hess-25-
2045-2021.

Fleming, S. W., D. C. Garen, A. G. Goodbody, C. S. McCarthy,
and L. C. Landers, 2021: Assessing the new Natural Resour-
ces Conservation Service water supply forecast model for the
American West: A challenging test of explainable, auto-
mated, ensemble artificial intelligence. J. Hydrol., 602,
126782, https://doi.org/10.1016/j.jhydrol.2021.126782.

Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis.
Quart. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.
1002/qj.3803.

Hunt, K. M., G. R. Matthews, F. Pappenberger, and C. Prudhomme,
2022: Using a Long Short-Term Memory (LSTM) neural net-
work to boost river streamflow forecasts over the Western
United States. Hydrol. Earth Syst. Sci., 26, 5449–5472, https://doi.
org/10.5194/hess-26-5449-2022.

Jahangir, M. S., J. You, and J. Quilty, 2023: A quantile-based
encoder-decoder framework for multi-step ahead runoff fore-
casting. J. Hydrol., 619, 129269, https://doi.org/10.1016/j.jhydrol.
2023.129269.

Kingma, D. P., and J. Ba, 2014: Adam: A method for stochastic
optimization. arXiv, 1412.6980v9, https://doi.org/10.48550/arXiv.
1412.6980.

Klotz, D., F. Kratzert, M. Gauch, A. Keefe Sampson, J. Brandstetter,
G. Klambauer, S. Hochreiter, and G. Nearing, 2022: Uncertainty
estimation with deep learning for rainfall–runoff modeling.

Hydrol. Earth Syst. Sci., 26, 1673–1693, https://doi.org/10.5194/
hess-26-1673-2022.

Koenker, R., 2005: Quantile Regression. Vol. 38. Cambridge
University Press, 376 pp.

Kratzert, F., D. Klotz, C. Brenner, K. Schulz, and M. Herrnegger,
2018: Rainfall–runoff modelling Using Long Short-Term
Memory (LSTM) networks. Hydrol. Earth Syst. Sci., 22,
6005–6022, https://doi.org/10.5194/hess-22-6005-2018.

}}, }}, M. Herrnegger, A. K. Sampson, S. Hochreiter, and
G. S. Nearing, 2019: Toward improved predictions in ungauged
basins: Exploiting the power of machine learning. Water Resour.
Res., 55, 11344–11354, https://doi.org/10.1029/2019WR026065.

}}, M. Gauch, D. Klotz, and G. Nearing, 2024: HESS opinions:
Never train a long short-term memory (LSTM) network on a
single basin. Hydrol. Earth Syst. Sci., 28, 4187–4201, https://
doi.org/10.5194/hess-28-4187-2024.

Li, D., L. Marshall, Z. Liang, A. Sharma, and Y. Zhou, 2021:
Characterizing distributed hydrological model residual errors
using a probabilistic long short-term memory network. J.
Hydrol., 603, 126888, https://doi.org/10.1016/j.jhydrol.2021.
126888.

Li, K, and S. Razavi, 2024: What controls hydrology? an assess-
ment across the contiguous united states through an inter-
pretable machine learning approach. J. Hydrol., 642, 131835,
https://doi.org/10.1016/j.jhydrol.2024.131835.

Linke, S., B. Lehner, C. Ouellet Dallaire, J. Ariwi, G. Grill,
M. Anand, and P. Beames, 2019: Global hydro-environmental
Sub-basin and river reach characteristics at high spatial resolu-
tion. Scientific Data, 6, 283–283.

Liu, J., Y. Bian, K. Lawson, and C. Shen, 2024: Probing the limit
of hydrologic predictability with the transformer network.
J. Hydrol., 637, 131389, https://doi.org/10.1016/j.jhydrol.2024.
131389.

Nearing, G., and Coauthors, 2023: AI increases global access to
reliable flood forecasts. arXiv, 2307.16104v4, https://doi.org/
10.48550/arXiv.2307.16104.

Persson, A., and F. Grazzini, 2007: User guide to ECMWF fore-
cast products. Meteor. Bull. 3.2, 153 pp.

U.S. Geological Survey, 2024: National water information system
data available on the world wide web (water data for the
nation). Accessed 15 August 2024, https://waterdata.usgs.
gov/nwis/.

Wang, M., Yu. Zhang, Yan. Lu, Li. Gao, and L. Wang, 2023:
Attribution analysis of streamflow changes based on large-
scale hydrological modeling with uncertainties. Water Resour.
Manage., 37, 713–730, https://doi.org/10.1007/s11269-022-03396-7.

Xie, K., Pan. Liu, J. Zhang, D. Han, G. Wang, and C. Shen, 2021:
Physics-guided deep learning for rainfall-runoff modeling
by considering extreme events and monotonic relationships.
J. Hydrol., 603, 127043, https://doi.org/10.1016/j.jhydrol.2021.
127043.

Yin, H., X. Zhang, F. Wang, Y. Zhang, R. Xia, and J. Jin, 2021:
Rainfall-runoff modeling using LSTM-based multi-state-vector
sequence-to-sequence model. J. Hydrol., 598, 126378, https://
doi.org/10.1016/j.jhydrol.2021.126378.

Yoon, S., and K.-H. Ahn, 2024: Self-training approach to improve
the predictability of data-driven rainfall-runoff model in hydro-
logical data-sparse regions. J. Hydrol., 632, 130862, https://doi.
org/10.1016/j.jhydrol.2024.130862.

R U PARE L L E T A L . 13JULY 2025

Unauthenticated | Downloaded 10/23/25 12:59 PM UTC

https://github.com/KarRups/Hydra_Code/tree/Paper_Submission
https://github.com/KarRups/Hydra_Code/tree/Paper_Submission
https://doi.org/10.5194/hess-28-4219-2024
https://www.drivendata.org/competitions/254/reclamation-water-supply-forecast-dev/
https://www.drivendata.org/competitions/254/reclamation-water-supply-forecast-dev/
https://doi.org/10.1029/2021WR029583
https://doi.org/10.1029/2021WR029583
https://doi.org/10.1109/ACCESS.2019.2936989
https://doi.org/10.1109/ACCESS.2019.2936989
https://doi.org/10.5194/hess-25-2045-2021
https://doi.org/10.5194/hess-25-2045-2021
https://doi.org/10.1016/j.jhydrol.2021.126782
https://doi.org/10.1002/qj.3803
https://doi.org/10.1002/qj.3803
https://doi.org/10.5194/hess-26-5449-2022
https://doi.org/10.5194/hess-26-5449-2022
https://doi.org/10.1016/j.jhydrol.2023.129269
https://doi.org/10.1016/j.jhydrol.2023.129269
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.5194/hess-26-1673-2022
https://doi.org/10.5194/hess-26-1673-2022
https://doi.org/10.5194/hess-22-6005-2018
https://doi.org/10.1029/2019WR026065
https://doi.org/10.5194/hess-28-4187-2024
https://doi.org/10.5194/hess-28-4187-2024
https://doi.org/10.1016/j.jhydrol.2021.126888
https://doi.org/10.1016/j.jhydrol.2021.126888
https://doi.org/10.1016/j.jhydrol.2024.131835
https://doi.org/10.1016/j.jhydrol.2024.131389
https://doi.org/10.1016/j.jhydrol.2024.131389
https://doi.org/10.48550/arXiv.2307.16104
https://doi.org/10.48550/arXiv.2307.16104
https://waterdata.usgs.gov/nwis/
https://waterdata.usgs.gov/nwis/
https://doi.org/10.1007/s11269-022-03396-7
https://doi.org/10.1016/j.jhydrol.2021.127043
https://doi.org/10.1016/j.jhydrol.2021.127043
https://doi.org/10.1016/j.jhydrol.2021.126378
https://doi.org/10.1016/j.jhydrol.2021.126378
https://doi.org/10.1016/j.jhydrol.2024.130862
https://doi.org/10.1016/j.jhydrol.2024.130862

