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Abstract 

 

This study applied stochastic metafrontier whilst correcting for non-exposure and selection 

bias to assess the adoption of improved rice varieties on output and technical efficiency of 

Ghanaian households. Varietal awareness was estimated to account for non-exposure bias 

and adoption using treatment effect. The exposure and adoption rates of improved rice 

varieties were 82.5% and 67.2%. Adoption was influenced by rice projects, agricultural 

extension, higher yield motive, and irrigated production. Application of herbicides, fertilizer, 

seed, labour and farm size raised rice output amongst adopters. The difference in metafrontier 

technical efficiency of adopters (42.7%) and non-adopters (44.5%) was statistically 

insignificant, albeit adopters had higher metatechnology ratio (0.909) compared with non-

adopters (0.785). Therefore, adopters applied the best production technology than non-

adopters. Weeding twice with herbicides, managing plot water levels and agricultural 

extension raised the technical efficiency amongst adopters. This study recommends cultivation 

of improved rice varieties whilst improving technical efficiency. 

Key words: Adoption, Ghana, Non-exposure bias, Rice, Stochastic Metafrontier.  

Jel Codes: D24, O33, Q12, Q16  

 

1. Introduction  

 

Agriculture in Ghana accounts for more than 19% of GDP (MoFA, 2021) and three-

quarters of export earnings. Nonetheless, Ghana’s self-sufficiency in rice production has been 

in decline as domestic production is able to meet less than 50% of demand (Amanor-Boadu, 

2012; Bruce et al., 2014; MoFA, 2018 & 2021). Meanwhile, rice consumption per capita has 

more than tripled from 13.3kg to 51.6kg between 1990-2020 (MoFA, 2016 & 2021). Currently, 

average rice yield (4mt/ha) is below achievable yield of 6–8mt/ha (MoFA, 2019; Ragasa et 

al., 2013).  
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Against this background, Ghana’s Rice Development Strategy (MoFA, 2009) aims to raise 

domestic output by 10% annually. For this reason, improved rice varieties have been released 

for cultivation in Ghana with desirable traits such as high yield, early maturity, disease 

resistance, aromatic and parboiling qualities. However, these improved rice varieties have not 

been widely disseminated and commercialised (Tripp & Mensah-Bonsu, 2013) to convince 

farmers of profitable returns from cultivating them. Ragasa et al. (2013) conducted a 

descriptive analysis of cultivation of improved rice varieties in Ghana. This study expands the 

scope by assessing improved rice varietal exposure and adoption, and the effect on output, 

whilst disaggregating production technology gap from technical inefficiency by estimating a 

stochastic metafrontier.  

 

2. Materials and Methods 

 

2.1 Description of Study Area and Sampling Approach  

 

This study uses data provided by the International Food Policy Research Institute Ghana 

office. The survey collected data on rice and maize production from 576 households during 

the 2012/2013 cropping season in the Northern, Upper East, Upper West, Ashanti, Greater 

Accra, Volta, Western, and Eastern Regions. The eight regions constitute 79.29% of Ghana’s 

total land area (MoFA, 2016). Proportional probability sampling was used that gave more 

weight1 to districts with higher rice output whereas random sampling was used in final 

selection of districts, communities and households. 

 

2.2 Treatment Effect of Improved Rice Varietal Adoption with Correction for Exposure 

 

Following Diagne & Demont (2007), exposure is defined as a household being aware that 

improved rice varieties exist. Exposure precedes adoption, and households unaware cannot 

make adoption decisions regarding improved rice varieties (Diagne, 2006). Therefore, 

estimating adoption without first estimating exposure produces results of joint probability of 

exposure and adoption, JEA [𝑃(𝜔𝑦 = 1)  = 𝑃(𝜔 = 1, 𝑦 = 1)]  and not adoption alone. The 

JEA is the average adoption rate under partial exposure because it contains both exposed and 

non-exposed households. Following Diagne (2006), the probability of exposure is estimated 

using a probit model as:  

 

𝜔𝑖
∗ = 𝑘𝑖

, 𝛽 + 𝑢𝑖                      (1)

        

   𝜔𝑖
∗ is a latent continuous variable related to the observed binary variable, 𝜔𝑖: 𝜔𝑖 =

{
1  𝑖𝑓  𝜔𝑖

∗ < 0

0  𝑖𝑓 𝜔𝑖
∗ ≥ 0

  that determines treatment, 𝑘𝑖 comprises the vector of covariates that determine 

exposure, 𝛽 is vector of unknown parameters, 𝑢𝑖 is a disturbance term which is 

𝑢𝑖~𝐼𝐼𝑁𝐷(0, 𝜎2) and  𝑦 is adoption status (0,1). 

 

Employing the average treatment effect [𝐴𝑇𝐸(𝑥)]  proposed by Wooldridge (2002) and 

Diagne & Demont (2007) based on the conditional independence assumption (Rosenbaum & 

Rubin, 1983), that exposure treatment status 𝜔 is independent of subsequent adoption 

outcomes once the observed set of covariates that determine exposure are controlled. 𝐴𝑇𝐸(𝑥) 

is estimated conditional on exposure (Diagne, 2006; Diagne & Demont, 2007), and is written 

as: 

 𝐴𝑇𝐸 (𝑥) = 𝐸( 𝑦/𝑧 , 𝜔 = 1) = 𝑔(𝑧, 𝛽)     (2) 
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Adoption is estimated using the exposed households only, and the average of 𝑔(𝑧; �̂�) is 

obtained for the ATE, and respective subsamples for the adopters (ATE1) and non-adopters 

(ATE0). The ATE measures the adoption outcome of a rice farming household randomly 

drawn from the population when every rice farming household is exposed to the improved rice 

varieties.  

The estimates of JEA and ATE are used to calculate the non-exposure bias (NEB), the 

potential additional adoption by the population hampered by incomplete diffusion as: 

 

 𝑁�̂�𝐵 =  𝐽�̂�𝐴 − 𝐴�̂�𝐸        (3) 

 

Lastly, population selection bias, PSB (Diagne & Demont, 2007) is due to over-estimation 

of the ATE1 because of likely targeting and self-selection in varietal exposure is given as: 

 𝑃�̂�𝐵 =  𝐴�̂�𝐸1 − 𝐴�̂�𝐸        

 (4) 

  2.3 Correcting for Sample Selection in Stochastic Frontier Analysis 

This study applies Greene (2010) who attributes selectivity bias to the correlation of 

unobserved factors in the noise component, 𝑣𝑖 of the stochastic frontier with the error term of 

the selection equation (𝑤𝑖)  as: 

 

Probit sample selection:  𝑑𝑖 = 1[𝛼′𝑧𝑖 + 𝑤𝑖 > 0]                    (5) 

Stochastic production frontier:  𝑦𝑖 = 𝛽′𝑥𝑖 + 𝑣𝑖 − 𝑢𝑖                     (6) 

 𝐸[ 𝑦𝑖|𝑥𝑖 , 𝑑𝑖 = 1 ] = 𝛽′𝑥𝑖 + 𝐸[𝜀𝑖|𝑑𝑖 = 1] = 𝛽′𝑥𝑖 +
𝜌𝜎𝜀𝜙(𝛼′𝑧𝑖)

Φ(𝛼′𝑧𝑖)
= 𝛽′𝑥𝑖 + 𝜃𝜆𝑖                (7) 

where, 𝜀𝑖 = 𝑣𝑖 − 𝑢𝑖   

 

 𝑢𝑖 follows a half-normal distribution:  𝑢𝑖~|𝑁(0, 𝜎2
𝑢)|,  (𝑤𝑖  , 𝑣𝑖) have a bivariate normal 

distribution: (𝑤𝑖  , 𝑣𝑖)~𝑁2[(0,1), (1, 𝜌𝜎𝑣 , 𝜎𝑣
2)],  and a maximum simulated likelihood is used 

to integrate out the unobserved random variable using halton draws since there is no closed 

form (Greene, 2010).  

Observable bias can be controlled using propensity score matching [PSM] (Bravo-Ureta et 

al., 2012). The PSM matches farmers of improved rice varieties with the counterfactual non-

adopters based on similar observable characteristics using propensity scores. Correcting for 

observable and unobservable bias produces consistent and unbiased results of the determinants 

of rice output and technical efficiency (Kumbhakar et al., 2009; Greene, 2010). Separate 

stochastic production functions are estimated for adopters and non-adopters conditional on 

adoption decision, 𝑑𝑖 (0,1) as: 

 

  𝑑𝑖 = 𝛼0 + ∑ 𝛼𝑗𝑍𝑗𝑖
15
𝑗=1 + 𝑤𝑖                                       (8) 

𝑙𝑛𝑌𝑖 = 𝛽0 + ∑ 𝛽𝑘
5
𝑘=1 𝑙𝑛𝑋𝑖𝑘 + 1

2⁄ ∑ ∑ 𝛽𝑘𝑗
5
𝑗=1

5
𝑘=1 𝑙𝑛𝑋𝑖𝑘  𝑙𝑛𝑋𝑖𝑗 + 𝐷𝑖 + 𝑣𝑖 + 𝑢𝑖                   (9) 

 

where 𝑍𝑖 is the vector of observable characteristics of adopters and non-adopters of 

improved rice varieties; α is the estimated parameter; 𝑙𝑛 represents logarithm to base 𝒆; Y is 

rice output;  𝑋𝑖  represents the five inputs for the translog model. Following Battese (1997), a 

dummy variable (𝐷𝑖) is introduced to account for zero quantities of fertilizer because natural 

logarithm of fertilizer is taken only when it is positive. Households that planted any of these 

improved rice varieties (FARO 15, GR varieties [GR 17 to GR 22], GRUG7, Digang, NERICA 

varieties, Jasmine 85, Togo Marshall, WITA 7, Jet 3, Aromatic Short, Sikamo, Bumbaz, Bodia, 

IR20, Sakai) in 2012/2013 season were regarded as adopters whereas those who cultivated any 

of these traditional varieties (Mandii, Mr. Moore, Mr. Harry, Anyofula, Paul/Adongadonga, 
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Salma saa, Muikpong, Wariwari) were treated as non-adopters. The estimations are performed 

using Limdep 11.  

Technical efficiency, TE is measured as a ratio of actual to potential output as: 

 

𝑇𝐸 =
𝑦𝑖

∗

𝑦𝑖
=  

𝑓(𝑥𝑖𝛽)exp (𝑣𝑖−𝑢𝑖 )

𝑓(𝑥𝑖𝛽)exp (𝑣𝑖 )
= exp(−𝑢𝑖)                                            (10) 

 

Technical inefficiency occurs when a given set of inputs produces less output than what is 

possible given the available production technology. The determinants of technical inefficiency 

are estimated using Jondrow et al. (1982) conditional expectation procedure where 𝑢 is 

𝐸[𝑢|(𝜀 − 𝑢)] with a distribution of 𝑁(𝜇∗, 𝜎∗
2) as follows: 

 

 𝑢𝑖 = 𝑀𝑖𝛿 + 𝑤𝑖                                  (11) 

 

 where 𝑀𝑖  are socioeconomic, institutional and farm-specific variables in Table 1 that 

explain technical inefficiency, 𝛿 includes parameters to be estimated, 𝑤𝑖  is  an unobservable 

random variable. 

 

Table 1. Summary Definition of Variables 

Variable Notation  Description 

Exposure model    

Community involvement in rice 

projects  
𝐾1 Dummy; 1, community participated in rice project, 0, 

otherwise 

Presence of agro-input shop in 

community 
𝐾2 Dummy; 1, agricultural input shop exists in 

community, 0, otherwise 

Model farmer 𝐾3 Dummy; 1, household has been a model farmer, 0, 

otherwise 

Block farming 𝐾4 Dummy; 1, household participated in block farming, 

0, otherwise 

Membership of farmer-based 

organization 
𝐾5 Dummy; 1, household belongs to a farmer-based 

organization, 0, otherwise 

Agricultural extension services 𝐾6 Dummy; 1, household accesses agricultural extension 

services, 0, otherwise 

Adoption model   

Adoption  𝑑𝑖 Dummy; 1, household cultivated improved rice 

variety, 0, otherwise  

Community involvement in rice 

projects 
𝑍1 Dummy; 1, yes, 0, otherwise 

Presence of agro-input shop in 

community 
𝑍2 Dummy; 1, yes, 0, otherwise 

Model farmer  𝑍3 Dummy; 1, yes, 0, otherwise 

Block farming  𝑍4 Dummy; 1, household participated in block farming, 

0, otherwise 

Agricultural extension services 𝑍5 Dummy; 1, yes, 0, otherwise 

Sex of household head 𝑍6 Dummy; 1, household head is female, 0, male 

Forest zone  𝑍7 Dummy; 1, agro-ecological area of rice farm is forest, 

0, coastal zone  

Guinea savannah zone   𝑍8 Dummy; 1, agro-ecological area of rice farm is guinea 

savannah, 0, coastal zone 
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Lowland rain-fed   𝑍9 Dummy; 1, rice cultivation is lowland rain-fed, 0, 

upland rain-fed   

Irrigated production    𝑍10 Dummy; 1, rice cultivation by irrigation, 0, upland 

rain-fed   

Higher yield   𝑍11 Dummy; 1, farmer seeking higher rice yield, 0, 

otherwise    

Market demand   𝑍12 Dummy; 1, farmer producing rice to sell, 0, 

otherwise.  

Own consumption  𝑍13 Dummy; 1, farmer producing rice for household 

consumption, 0, otherwise    

Use of farm saved seed   𝑍14 Number of years current rice variety has been 

continuously cultivated.  

Size of farm  𝑍15 Total of hectares (ha) of cultivated rice 

Stochastic Frontier   

Rice output  𝑌 Rice output (in kg) 

Farm size   𝑋1 Hectares of rice plot 

Rice seed   𝑋2 Quantity of rice seed (in kg) planted 

Fertilizer   𝑋3 Quantity of fertilizer used (in kg) 

Farm labour   𝑋4 Farm labour (person-days) used 

Herbicides   𝑋5 Herbicides (in litres) used on plot 

Fertilizer application  𝐷𝑖 Dummy; 1, household applied fertilizer on rice farm, 

0, otherwise 

Technical Inefficiency    

Sex of household head 𝑀1 Dummy; 1, household head is female, 0, male 

Age  𝑀2 Total years of household head 

Agricultural extension services 𝑀3 Dummy; 1, household has agricultural extension 

access, 0, otherwise 

Educational Status  𝑀4 Total years of formal education of household head 

Rice seed priming 𝑀5 Dummy; 1, practising seed priming, 0, otherwise  

Row planting  𝑀6 Dummy; 1, practising row planting, broadcasting, 0 

Seedling transplanting 𝑀7 Dummy; 1, seedling transplanting, direct sowing, 0 

Sawah system  𝑀8 Dummy; 1, practise sawah system, 0, otherwise 

Land preparation with 

herbicides 
𝑀9 Dummy; 1, land preparation using herbicides, 0, 

otherwise 

Weeding using herbicides 𝑀10 Dummy; 1, used herbicides for weed control, 0, hand 

hoe weeding 

Weeding frequency 𝑀11 Number of times rice plot was weeded 

Actyva fertilizer use 𝑀12 Dummy, 1, applied on rice farm, 0, otherwise 

Ammonia fertilizer use 𝑀13 Dummy; 1, applied on rice farm, 0, otherwise 

Fertilizer rate  𝑀14 Dummy; 1 if recommended rate of at least 350kg/ha 

is applied, 0, otherwise  

Rice harvesting method 𝑀15 Dummy; 1, combine harvester, 0, sickle 

Land preparation  𝑀16 Dummy; 1, herbicide applied, 0, otherwise  

Pesticide use  𝑀17 Dummy; 1, pesticide applied, 0, otherwise 

Source: Author’s construction based on survey data set. 
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2.5 The Stochastic Metafrontier 

 

The stochastic metafrontier is used to estimate and compare the technical efficiency scores 

of non-adopters and adopters of improved rice varieties. The metafrontier envelopes the group 

frontiers (adopters and non-adopters) and estimates the technology gap between the 

metafrontier and the group frontiers facing different production possibilities. Following 

Amsler, O’Donnell, & Schmidt (2017), the stochastic metafrontier is given as: 

 

  𝑓𝑖 = max [𝑓𝑖1, … . 𝑓𝑖𝑆  ]  𝑠 = 1, . . 𝑆                          (12)  

Subject to 𝑓𝑖𝑑𝑖 ≤ 𝑓𝑖 

It is stochastic metafrontier because the group frontiers  𝑓𝑖𝑠 = 𝑥𝑖
′𝛽𝑠 + 𝑣𝑖𝑠  are stochastic. 

𝑓𝑖𝑑𝑖  is the vector of inputs for each group, 𝑑𝑖  ; 𝛽𝑠  and 𝛽∗ are the vectors of group and 

metafrontier coefficients to be estimated. The metatechnology ratio (MTR) is estimated as: 

 𝑀𝑇𝑅𝑖 =
𝑒𝑥𝑝 (𝑥𝑖

′𝛽𝑑𝑖
)  

𝑒𝑥𝑝 (𝑥𝑖
′𝛽𝑠 )

×  
𝑒𝑥𝑝 (𝑣𝑖𝑑𝑖)

𝑒𝑥𝑝 (𝑣𝑖𝑠)
                 (13) 

The MTR measures the closeness of the group frontier to the metafrontier and it depends 

on the group frontier’s input-output combination (Battese et al., 2004). A higher MTR implies 

a lower gap between the group frontier and the metafrontier. The metafrontier, 𝑇𝐸𝑖
∗ is: 

   𝑇𝐸𝑖
∗ =  𝑇𝐸𝑖  ×  𝑀𝑇𝑅𝑖                  (14) 

The metafrontier is estimated using R econometric software following Amsler et al. (2017). 

 

3. Results and Discussion 

 

3.1 Exposure Rate, Adoption Rate, and Joint Exposure and Adoption Rate 

 

The results in Table 2 are predictions from estimation of determinants of exposure to 

improved rice varieties, the 𝐴𝑇𝐸(𝑥) adoption model and joint exposure and adoption 

explained in section 2.2. The exposure rate of 0.833 implies widespread diffusion of the 

improved rice varieties amongst the population. Exposure was enhanced by involvement of 

communities in rice projects and presence of community agricultural input shops. 

 

Table 2. Predicted Estimates of Improved Rice Varietal Exposure and Adoption  

Name of estimate Estimate  Standard error  

Predicted exposure rate  0.833*** 0.015 

Predicted joint exposure and adoption rate (JEA) within 

non-exposed subpopulation 

0.559*** 0.017 

Predicted population potential adoption rate (ATE) 0.672*** 0.017 

Predicted potential adoption rate within exposed 

subpopulation (ATE1) 

0.797*** 0.014 

Predicted potential adoption rate for exposed non-adopters 

(ATE0) 

0.416*** 0.027 

Estimated population adoption gap:   

Non-exposure bias,  𝑁�̂�𝐵 =  𝐽�̂�𝐴 − 𝐴�̂�𝐸   -0.113*** 0.003 

Population selection bias, 𝑃�̂�𝐵 =  𝐴�̂�𝐸1 − 𝐴�̂�𝐸   0.125*** 0.010 

Notes: *** indicate values statistically significant at 1%. Standard errors are calculated using 

the delta method (Wooldridge, 2002, p. 44). 



S. Abdulai, S. C. Chittur and R. B. Tranter 

165 
 

The predicted adoption within the non-exposed population in Table 2 was 0.429. This 

estimate was calculated using the non-exposed subsample from the JEA estimation. This 

means the adoption rate for the non-exposed would have been 42.9% if those households knew 

about these improved rice varieties. The JEA adoption rate of 55.9% was predicted using the 

JEA results obtained under partial improved rice varietal awareness. This JEA exceeds the 4% 

reported by Diagne & Dermont (2007) on Nerica rice adoption in Ivory Coast involving 1,500 

rice farmers. The higher JEA rate was partly a result of widespread varietal diffusion (83.3% 

exposure rate) in the study area. The JEA treats the non-exposed as non-adopters although, 

they have the potential to adopt when exposed and thus produces biased results by under-

estimating the adoption rate.  

The consistent and unbiased average treatment effect (ATE) of improved rice varietal 

adoption was 67.2%. This estimate is higher than the 37% adoption rate in Diagne & Dermont 

(2007) study on improved rice variety adoption in Ivory Coast. The predicted ATE obtained 

from the 𝐴𝑇𝐸(𝑥) adoption estimation measures the adoption outcome of a rice farming 

household randomly drawn from the population assuming every rice farmer is aware of the 

improved varieties. Therefore, under complete diffusion, the average adoption rate (ATE) 

would be 67.2%, and not the JEA adoption rate of 55.9% under partial exposure. This produces 

a non-exposure bias [ 𝑁�̂�𝐵 =  𝐽�̂�𝐴 − 𝐴�̂�𝐸] of -11.3%, which implies a gap in adoption 

because of partial diffusion of the improved rice varieties. As more households are exposed, 

the adoption gap narrows. The predicted average treatment effect on the treated (ATE1) of 

79.7% is the adoption rate amongst the exposed that actually cultivated improved rice varieties. 

This is higher than the 37% adoption rate by rice farmers in Ivory Coast (Diagne & Demont, 

2007). The predicted average treatment effect for non-adopting households (ATE0) despite 

being aware of the improved varieties was 41.6%. This means constraints other than exposure 

influenced their non-adoption decisions. The population selection bias, PSB (𝐴�̂�𝐸1 − 𝐴�̂�𝐸) 

was 12.5%. It stems from over-estimation of the true population adoption rate because of 

potential self-selection and targeting bias in improved rice variety exposure. This PSB is lower 

than the 18% reported by Diagne & Demont (2007) for Nerica rice adoption in Ivory Coast.  

 

3.2 Controlling Observable Bias in Stochastic Production Frontier Estimation  

 

Adoption was estimated using probit model for households with knowledge about 

improved rice varieties from which propensity scores were predicted. Imposing a common 

support condition (Leuven & Sianesi, 2003), the propensity scores were matched using nearest 

neighbour with replacement (Cameron & Trivedi, 2005) of up to 4 matches per adopter to the 

counterfactual non-adopter within a caliper distance of 0.0252 to control observable bias 

(Dehejia & Wahba, 2002). Matching with replacement improves the quality of matches by 

allowing a given non-adopter counterfactual to be matched to more than one adopter which 

further reduces observable bias by avoiding bad matches (Smith & Todd, 2005). In Figure 1, 

the region of common support of the propensity scores ranged from 0.015 to 0.948. The 

propensity scores of adopters outside the common support interval were excluded from the 

matching procedure (Leuven & Sianesi, 2003). The standardized mean difference (Rosenbaum 

& Rubin, 1985) in Table 3 reveals significant observable bias in the covariates of adopters and 

non-adopters before matching. 

The bias was eliminated after matching, producing an appropriate counterfactual (Lee, 

2008) within the common support region (Leuven & Sianesi, 2003; Caliendo & Kopeinig, 

2008). Moreover, joint significance of the regressors after matching was rejected. The lower 

pseudo R2 after matching means all systematic differences in the covariates between adopters 

and non-adopters of improved rice varieties was eliminated (Faltermeier & Abdulai, 2009).  
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Figure 1. Distribution of Propensity Scores and Region of Common Support 

 

 

Table 3. Standardized Mean Difference of Covariates Between Non-Adopters and 

Adopters Before and After Matching 

  Sample mean % bias  (Total) %  
|bias |  
reduction  

t-test  

 t value 

V(T)/V(

C) Variable  

Unmatched (U) 

Matched (M) 

Adopters  Non-

adopters 

Community 

involvement in rice 

projects 

U 0.291 0.049 68.0 

91.1 

6.44*** - 

M 0.168 0.189 -6.0 -0.51 
- 

Presence of agro-input 

shop in community 

U 0.393 0.251 30.6 
56.7 

3.14** - 

M 0.287 0.349 -13.3 -1.20 - 

Model farmer 
U 0.246 0.037 62.9 

94.3 
5.92*** - 

M 0.120 0.108 3.6 0.34 - 

Block farming 
U 0.129 0.018 43.3 

97.3 
4.05*** - 

M 0.072 0.069 1.2 0.11 - 

FBO membership 
U 0.480 0.423 11.5 

59.0 
1.20 - 

M 0.461 0.485 -4.7 -0.43 - 

Forest agro-ecological 

zone 

U 0.195 0.135 16.2 
66.0 

1.66* - 

M 0.204 0.183 5.5 0.47 - 

Guinea savannah 

agro-ecological zone 

U 0.456 0.804 -76.9 
83.9 

-7.76*** - 

M 0.645 0.703 -12.4 -1.09 - 

Lowland rain-fed 

production system 

U 0.541 0.859 -73.9 
77.0 

-7.31*** - 

M 0.719 0.645 17.0 1.44 - 

0 .2 .4 .6 .8 1 
Propensity Score 

Untreated Treated: On support 

Treated: Off support 
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Irrigated production 

system 

U 0.426 0.049 98.7 
78.2 

9.30*** - 

M 0.222 0.304 -21.5 -1.71* - 

Seeking higher rice 

yield 

U 0.688 0.479 43.3 
61.4 

4.59*** - 

M 0.587 0.668 -16.7 -1.53 - 

Producing rice to meet 

market demand 

U 0.559 0.282 58.2 
91.5 

5.99*** - 

M 0.437 0.414 4.9 0.43 - 

Producing rice for 

own consumption 

U 0.237 0.196 9.9 
67.1 

1.03 - 

M 0.252 0.265 -3.3 -0.28 - 

Use of farmer saved 

seed  

U 3.961 5.282 -31.4 
55.4 

-3.53*** 0.45* 

M 4.255 4.844 -14.0 -1.49 0.78 

Agricultural extension 

access 

U 0.372 0.123 60.3 
97.5 

5.94*** - 

M 0.236 0..242 -1.5 -0.13 - 

Sex of respondent 
U 0.216 0.184 8.0 

90.3 
0.83 - 

M 0.205 0.202 0.8 0.07 - 

Education (years) 
U 5.592 3.239 45.1 

67.7 
4.73*** 0.97 

M 4.435 3.673 14.6 1.37 1.13 

Farm size (ha) 
U 3.812 5.697 -31.9 

99.5 
-3.62*** 0.39* 

M 4.182 4.191 -0.2 -0.02 1.80* 

Seed quantity (kg) 
U 313.670 584.060 -39.6 

68.6 
-4.62*** 0.28* 

M 349.690 434.690 -12.5 -1.39 1.30 

Fertilizer quantity 

(kg) 

U 612.530 265.690 88.1 
96.6 

8.62*** 2.39* 

M 386.860 375.120 3.0 0.32 0.84 

Farm labour (person-

days) 

U 1171.6 592.13 4.8 
85.7 

0.44 44.87* 

M 239.14 322.25 -0.7 -0.62 0.28* 

Herbicides use (litres) 
U 6.860 5.244 25.0 

18.0 
2.60** 1.06 

M 6.118 7.444 -20.5 -1.51 0.72 

Rice output (kg) 
U 9538.50 6919.20 17.3 

54.4 
1.64 4.70* 

M 6122.70 7317.10 -7.9 -1.28 2.28* 

Fertilizer rate use 
U 0.267 0.043 65.1 

99.5 
6.15*** - 

M 0.081 0.080 0.3 0.03 - 

Actyva fertilizer use 
U 0.024 0.018 3.9 

44.7 
0.40 - 

M 0.031 0.028 2.2 0.16 - 

Ammonia fertilizer 

use 

U 0.712 0.429 59.4 
79.1 

6.31*** - 

M 0.615 0.556 12.4 1.07 - 

Rice harvesting 

method 

U 0.075 0.006 35.4 
93.2 

3.26** - 

M 0.006 0.002 2.4 0.67 - 

Land clearing 

herbicide 

U 0.655 0.270 39.8 
90.2 

4.20*** - 

M 0.534 0.515 3.9 0.34 - 

Weed control 

herbicide 

U 0.667 0.521 29.8 
52.9 

3.12** - 

M 0.584 0.652 -14.0 -1.26 - 

Weeding times 
U 2.084 1.957 16.0 

38.8 
1.66* 1.12 

M 1.919 1.997 -9.8 -0.93 1.05 

Pesticide use 
U 0.489 0.135 82.6 

91.2 
8.15*** - 

M 0.286 0.317 -7.2 -0.61 - 

Rice seed priming 

U

U 

0.438 0.110 78.9 

83.7 

7.70*** 
- 

M

M 

0.335 0.389 -12.8 -0.99 
- 

Seedling transplanting 
U

U 

0.360 0.080 71.9 
79.5 

6.93*** 
- 
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M

M 

0.255 0.312 -14.7 -1.14 
- 

Row planting 

U

U 

0.228 
0.098 

35.7 

79.3 

3.54*** 
- 

M

M 

0.174 0.147 7.4  0.66 
- 

    

Sample  Pseudo R2 LR chi2 p value 

Unmatched   0.435 273.36 0.000*** 

Matched  0.088 40.82 0.196 

Notes: ***, **, *, indicate statistically significant at 1%, 5% and 10% respectively.  

 

3.3 Determinants of Adoption of Improved Rice Varieties  

 

Following Bravo-Ureta et al. (2012), a stochastic production frontier that corrects 

unobservable bias was estimated after the PSM. The chi-squared test statistics in Table 4 were 

statistically significant implying the joint significance of the parameters in determining 

adoption decisions. Community involvement in rice projects implementation influenced 

households’ adoption of improved rice varieties at 10% significance level. Over 20 rice related 

projects have been implemented across the country in nearly two decades (Ragasa et al., 2013). 

These projects created improved rice varietal awareness and encouraged their cultivation. 

Moreover, being a model farmer positively and statistically influenced adoption. The rice 

project implementers worked with farmers, some of whom participated in varietal trials and 

demonstrations that influenced their adoption. Access to agricultural extension service had 

positive influence on cultivation of improved rice at 1% level of significance. Doss and Morris 

(2001) explained that farmers’ contact with agricultural extension officers facilitated adoption 

of new technologies. 

Similarly, irrigated rice cultivation statistically influenced adoption of improved rice 

varieties at 1% level of significance. In comparison with upland rice cultivation, adoption was 

higher amongst irrigated rice producers. Irrigated rice production gives the highest yield of 

4.5mt/ha (CARD, 2010), and accounts for 16% of national output (MoFA, 2009). Meanwhile, 

Ghana has not fully exploited its irrigation potential, with irrigated land representing 3.4% of 

total land area under cultivation (MoFA, 2016). 

 

Table 4: Results of the adoption selection model for the stochastic frontier 

Variable  

Unmatched sample Matched sample 

Coefficient  Coefficient  

Constant  0.225 

(0.381) 

0.029 

(0.405) 

Community involvement in 

rice projects 

0.509* 

(0.264) 

0.535* 

(0.296) 

Presence of agrochemical 

shop in community 

0.136 

(0.169) 

0.024 

(0.184) 

Model farmer       0.822*** 

(0.278) 

0.594* 

(0.316) 

Block farming  0.638* 

(0.354) 

0.513 

(0.406) 

Agricultural extension 0.662*** 

(0.194) 

0.565*** 

(0.212) 

Sex of respondent 0.060 0.110 
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(0.194) (0.202) 

Forest zone -0.619** 

(0.256) 

-0.372 

(0.334) 

Guinea savannah zone  -0.908*** 

(0.255) 

-0.571** 

(0.291) 

Lowland rain-fed production 

0.335 

(0.280) 

0.266 

(0.283) 

Irrigated production   1.154*** 

(0.336) 

1.142*** 

(0.363) 

Higher rice yield  0.391** 

(0.179) 

0.296 

(0.188) 

Rice market demand  0.089 

(0.179) 

0.096 

(0.190) 

Own consumption of rice 0.084 

(0.189) 

0.108 

(0.199) 

Rice seed recycling   -0.06*** 

(0.019) 

-0.059*** 

(0.020) 

Farm size -0.025** 

(0.013) 

-0.023* 

(0.014) 

Log-likelihood function -204.556 -190.897 

Chi-squared test statistic   219.025*** 75.634*** 

No. of rice plots 496 330 

Notes: ***, **, *, indicate statistically significant at 1%, 5% and 10%. Figures in brackets 

represent the standard errors. 

 

The coefficient of rice farm located in the guinea savannah agro-ecological zone was 

negative. This means adoption was lower in the guinea savannah zone relative to the coastal 

zone. Although the guinea savannah zone produces 53% of national output (MoFA, 2016), 

many farmers still cultivate traditional varieties. Meanwhile, farm size had an inverse 

relationship with adoption of improved rice varieties. This implies adoption was higher 

amongst households with smaller plot sizes. The mean farm size in this study for adopters was 

about 4.0 ha. This is consistent with Faltermeier & Abdulai (2009) that rice cultivation in 

Ghana is mainly by smallholders. The longer a particular rice variety was continuously 

planted, the less willing was a household to cultivate a new variety. Households continuously 

cultivated a particular variety for at least 4 years. Indeed, 73.5% of plots were planted with 

farmer saved seeds from previous harvest. It is recommended that farmers renew their seeds 

at least once every three years (Ragasa et al., 2013).  

 

3.4 Determinants of Rice Output 

 

The statistical significance of the correlation coefficient [𝜌(𝑤, 𝑣)] between the error term 

of the adoption model and the stochastic frontier in both adopters and non-adopters in Table 

5, indicate the presence of selection bias due to unobservable characteristics. Therefore, the 

stochastic production frontier with sample selection correction in columns 5 and 6 of Table 5 

are discussed.  

The coefficients of farm size and fertilizer had positive and statistically significant effect 

on the rice output of non-adopters. Farm size had the highest partial production elasticity of 

0.805 on output, followed by 0.463 for fertilizer. The first term coefficients of the translog 

stochastic frontier for adopters were all positive and statistically significant in fulfilment of the 

monotonicity condition (Sauer et al., 2006). For example, the coefficient of 0.043 for seed, 
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implies a 100% increase in quantity of seed ceteris paribus, leads to a 4.3% increase in rice 

output. Similar interpretation applies to labour, herbicides and fertilizer with coefficients of 

0.038, 0.195 and 0.057 respectively. 

 

Table 5. Results of the Stochastic Production Frontier for The Matched Sample 

 Conventional SPF Sample selection SPF  

Variable  Pooled  Adopters  Non-adopters  Adopters  Non-

adopters  

Constant  8.885*** 

(0.075) 

9.078*** 

(0.094) 

8.814*** 

(0.100) 

9.452*** 

(0.016) 

8.685*** 

(0.110) 

Farm size (ha) 0.653*** 

(0.072) 

0.757*** 

(0.081) 

0.691*** 

(0.130) 

0.803*** 

(0.016) 

0.805*** 

(0.127) 

Seed (kg) 0.127** 

(0.059) 

0.105* 

(0.063) 

0.098 

(0.109) 

0.043*** 

(0.012) 

0.088 

(0.107) 

Fertilizer (kg) 0.227** 

(0.099) 

0.127 

(0.123) 

0.505*** 

(0.166) 

0.057*** 

(0.020) 

0.463** 

(0.199) 

Labour (person days) 0.009 

(0.044) 

0.020 

(0.054) 

-0.018 

(0.069) 

0.038*** 

(0.010) 

-0.023 

(0.070) 

Herbicides (litres) 0.149*** 

(0.049) 

0.118** 

(0.057) 

0.302*** 

(0.095) 

0.195*** 

(0.013) 

0.206 

(0.126) 

Farm size squared  -0.263* 

(0.148) 

-0.423** 

(0.207) 

-0.204 

(0.253) 

-0.839*** 

 (0.043) 

0.027 

(0.279) 

Seed squared  0.150*** 

(0.049) 

0.068 

(0.155) 

0.164** 

(0.064) 

-0.142*** 

(0.024) 

0.133 

(0.096) 

Fertilizer squared  -0.002 

(0.150) 

-0.327 

(0.199) 

0.353 

(0.250) 

-0.481*** 

(0.043) 

0.431 

(0.290) 

Labour squared  -0.080*** 

(0.030) 

-0.130* 

(0.074) 

-0.030 

(0.052) 

-0.112*** 

(0.018) 

-0.014 

(0.074) 

Herbicides squared  0.100 

(0.069) 

0.079 

(0.086) 

-0.024 

(0.149) 

0.056** 

(0.028) 

0.016 

(0.152) 

Farm size*seed  0.026 

(0.068) 

0.123 

(0.152) 

-0.012 

(0.113) 

0.478*** 

(0.019) 

-0.034 

(0.153) 

Farm size*fertilizer  -0.043 

(0.112) 

0.414** 

(0.165) 

-0.119 

(0.169) 

0.437*** 

(0.049) 

0.112 

(0.239) 

Farm size*labour  0.140** 

(0.057) 

0.158 

(0.113) 

0.123 

(0.087) 

0.027 

(0.018) 

0.006 

(0.101) 

Farm size*herbicides  -0.048 

(0.087) 

-0.240** 

(0.104) 

0.043 

(0.177) 

-0.525*** 

(0.027) 

0.270 

(0.212) 

Seed* fertilizer  -0.033 

(0.086) 

-0.138 

(0.136) 

-0.094 

(0.122) 

-0.221*** 

(0.037) 

-0.192 

(0.188) 

Seed* labour  -0.026 

(0.031) 

-0.083 

(0.113) 

0.009 

(0.042) 

-0.062*** 

(0.020) 

-0.010 

(0.068) 

Seed* herbicides  0.047 

(0.068) 

0.036 

(0.088) 

-0.087 

(0.101) 

0.368*** 

(0.023) 

-0.114 

(0.160) 

Fertilizer*labour  0.171** 

(0.076) 

0.156* 

(0.091) 

0.094 

(0.132) 

0.180*** 

(0.023) 

0.005 

(0.142) 
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Fertilizer*herbicides  0.037 

(0.113) 

0.104 

(0.118) 

0.079 

(0.176) 

-0.133*** 

(0.036) 

-0.117 

(0.223) 

Labour*herbicides  0.043 

(0.054) 

0.214** 

(0.077) 

0.057 

(0.800) 

0.421*** 

(0.016) 

-0.011 

(0.083) 

Fertilizer Use (0,1) 0.267*** 

(0.086) 

0.322** 

(0.139) 

0.210* 

(0.118) 

0.158*** 

(0.009) 

0.285*** 

(0.116) 

Adoption  0.653** 

(0.064) 

    

Lambda (𝜆) 4.212*** 

(0.089) 

5.593*** 

(0.120) 

3.782*** 

(0.142) 

  

Variance (𝜎2) 1.056*** 

(0.112) 

1.050*** 

(0.149) 

0.979*** 

(0.159) 

  

Sigma-u    1.259*** 

(0.009) 

1.005*** 

(0.064) 

Sigma-v    0.030*** 

(0.006) 

0.279*** 

(0.061) 

Selectivity bias 𝜌(𝑤, 𝑣)    -0.749*** 

(0.243) 

0.997*** 

(0.031) 

Mean efficiency 0.551 0.579 0.582 0.467 0.518 

Returns to scale 1.165 1.127 1.578 1.136 1.360 

Log-likelihood function -283.182 -116.935 -133.288 -227.001 -236.215 

No. of observations 330 167 163 167 163 

Notes: ***, **, *, indicate values statistically significant at 1%, 5% and 10%. Figures in brackets 

denote standard errors. 

 

In keeping with regularity conditions (Sauer et al., 2006), coefficients of the square of seed, 

fertilizer, labour and farm size were negative and significant at 1%, fulfilling the diminishing 

marginal productivity condition for these inputs relative to the adopters. For example, the 

squared of seed, fertilizer, labour and farm size, were -0.142, -0.481, -0.112 and -0.839 

respectively. This implies that continuously increasing fertilizer by 100% would in the long 

run decrease output by 48.1%. The interaction terms of the inputs explain whether they were 

substitutes or complements in rice production. For instance, farm size and fertilizer with 

positive coefficient of 0.437 were complements whilst farm size and herbicides with negative 

coefficient of -0.525 were substitutes. There was increasing returns to scale in both adopters 

and non-adopters of improved rice varieties.  

 

3.6 Determinants of Technical Inefficiency in Rice Production 

 

The unbiased results in columns 6 and 7 of the matched sample in Table 6 are discussed.  

The results in the unmatched columns are biased as they have not been corrected for 

differences in observable characteristics likely to influence technical inefficiency. Variables 

with negative coefficients have negative relationship with technical inefficiency and vice 

versa.  

Access to agricultural extension services, practice of sawah system, weeding using 

herbicides, weeding frequency and sex of household head statistically influenced the technical 

inefficiency of adopters of improved rice. Male household heads amongst the adopters were 

less technically inefficient than females. Adopter households with access to agricultural 

extension services were technically efficient than households without access. Out of 216 

farmers that accessed agricultural extension services, 207 acted on the advice received. 
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Agricultural extension delivers improved production technologies to farmers (Gautam, 2000; 

Evenson, 2001). Adopters of improved rice varieties that practiced plot water management 

strategies known as sawah system (Buri et al., 2012; Abdulai et al., 2018) increased their 

technical efficiency than those that did not. Bam et al. (2010) reported increased yield by 

Ghanaian farmers that practiced the sawah system. 

Similarly, adopters that applied herbicides as opposed to weeding using hoes reduced their 

technical inefficiency. Nearly half (49.6%) of all rice plots applied herbicides, 20.1% practiced 

hand pulling of weeds and 17.3% weeded using hoes. The frequency of weeding had a negative 

coefficient, implying adopters who weeded their plots more than once within the season were 

technically efficient than those that weeded once. In this study, 22.5%, 48.1% and 24.3% of 

adopter plots were weeded once, twice and thrice. Herbicides are increasingly being applied 

in Ghana and requires farmer education on their correct application and safe use (Abdulai, 

2015). 

Regarding non-adopters, the determinants of technical inefficiency were application of 

sulphate of ammonia fertilizer and weeding frequency. The negative coefficient means the 

application of ammonia fertilizer reduced technical inefficiency for the non-adopters. About 

46% of farms applied ammonia fertilizer at the recommended 7-8 weeks after planting 

(Abdulai et al., 2018). The coefficient of weeding frequency was positive implying technical 

inefficiency was associated with increased weeding for the non-adopters. The recommended 

practice is weeding twice within the cultivation season (Ragasa et al., 2013). About 26.7%, 

49.7% and 19.6% of non-adopter plots were weeded once, twice and thrice within the season.  

 

Table 6. Results of determinants of technical inefficiency in rice production 

 
Unmatched sample Matched sample 

Variable  Pooled  Adopters  Non-

adopters 

Pooled  Adopters  Non-

adopters 

Constant  0.526 

(0.459) 

1.493** 

(0.763) 

-0.577 

(0.782) 

0.526 

(0.459) 

1.728** 

(0.716) 

-0.577 

(0.782) 

Sex of household 

head 

0.485** 

(0.240) 

0.821** 

(0.381) 

0.013 

(0.409) 

0.485** 

(0.240) 

0.633* 

(0.351) 

0.013 

(0.409) 

Age of household 

head 

0.001 

(0.008) 

0.005 

(0.013) 

9.561E-04 

(0.014) 

0.001 

(0.001) 

0.003 

(0.011) 

9.561E-04 

(0.014) 

Agricultural 

extension 

-0.307 

(0.257) 

-0.977** 

(0.508) 

0.237 

(0.466) 

-0.307 

(0.257) 

-1.011** 

(0.370) 

0.237 

(0.466) 

Household head 

level of education  

0.000 

(0.017) 

-0.022 

(0.033) 

-0.010 

(0.026) 

0.000 

(0.017) 

-0.020 

(0.031) 

-0.010 

 (0.026) 

Rice seed priming 0.229 

(0.289) 

-0.352 

 (0.421) 

-0.407 

 (0.675) 

0.229 

(0.289) 

-0.048 

(0.344) 

-0.407 

 (0.675) 

Seedling 

transplanting 

-0.392 

(0.328) 

-0.564 

  (0.462) 

-0.487 

 (1.091) 

-0.392 

(0.328) 

-0.041 

(0.397) 

-0.487 

 (1.091) 

Row planting 0.059 

(0.285) 

-0.254 

 (0.421) 

-0.577 

  (0.563) 

0.059 

(0.285) 

0.115 

(0.392) 

-0.577 

  (0.563) 

Sawah system -0.436** 

(0.212) 

-0.920** 

 (0.371) 

-0.288 

 (0.408) 

-0.436** 

(0.012) 

-0.964** 

(0.318) 

-0.288 

 (0.408) 

Land preparation 

using herbicide  

-0.425** 

(0.208) 

-0.497 

 (0.343) 

0.057 

 (0.362) 

-0.425** 

(0.208) 

-0.397 

(0.311) 

 0.057 

(0.362) 

Weeding using 

herbicide  

-0.365* 

(0.206) 

-0.727** 

 (0.358) 

 -0.423 

 (0.335) 

-0.365* 

(0.026) 

-0.671** 

(0.306) 

 -0.423 

  (0.335) 
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Weeding 

frequency  

0.061 

(0.130) 

 -0.505** 

  (0.220) 

0.462* 

 (0.252) 

-0.061 

(0.130) 

-0.469** 

(0.182) 

0.462* 

 (0.252) 

Use of Actyva3  

fertilizer  

0.759 

(0.582) 

0.843 

(0.919) 

0.063 

 (1.173) 

0.759 

(0.582) 

0.637 

(0.791) 

0.063 

 (1.173) 

Use of ammonia 

fertilizer  

-0.384* 

(0.200) 

-0.152 

 (0.323) 

-1.006*** 

 (0.340) 

-0.384* 

(0.200) 

-0.095 

(0.301) 

-1.006*** 

 (0.340) 

Fertilizer rate  0.597 

(0.383) 

0.291 

(0.412) 

-0.303 

(0.685) 

0.597 

(0.383) 

0.754 

(0.563) 

-0.303 

(0.685) 

Method of rice 

Harvesting  

-2.993 

(3.096) 

-4.750 

(6.570) 

-24.695 

(1423.203) 

-2.993 

(3.096) 

0.254 

(1.607) 

-24.695 

(1423.203) 

Pesticide use  -0.012 

(0.254) 

-0.012 

(0.375) 

-0.105 

  (0.478) 

-0.012 

(0.254) 

0.025 

(0.334) 

-0.105 

  (0.478) 

No. of 

observations 

496 333 163 330 167 163 

Notes: ***, **, *, indicate values statistically significant at 1%, 5% and 10%. Figures in brackets are 

the standard errors. 

 

  Table 7. Estimates of group and metafrontier TEs and metatechnology ratios 

Category  Mean Standard 

deviation 

Maximum  Minimum  

Adopters matched sample 

Group TE-Conventional SPF 0.555 0.244 0.923  0.047 

Group TE-Sample selection 

SPF 

0.467 0.253 0.969 0.032 

Metatechnology ratio (MTR) 0.909 0.106 1.000 0.236 

TE relative to stochastic 

metafrontier  

0.427 0.224 0.929  0.031 

Non-adopters matched sample 

Group TE-Conventional SPF 0.581 0.218 0.992 0.079 

Group TE-Sample selection 

SPF 

0.518 0.232 0.927 0.063 

Metatechnology ratio (MTR) 0.785 0.166 1.000 0.150 

TE relative to stochastic 

metafrontier  

0.445 0.217 0.919 0.038 

Paired t-test of the mean stochastic metafrontier estimates 

 T statistic  Decision  

Metafrontier TE diff = mean 

(Adopters-Non-adopters) = 

0.018 

0.741 (1.96) Do not reject H0 

Metafrontier MTR diff = mean 

(Adopters-Non-adopters) = 

0.124 

8.107 (1.96) Reject H0: mean (diff) ≠ 0 

Notes: Critical value in brackets is at 5% significance level. Source: Author’s computation 

based on survey data. 
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3.7 Summary of Groups and Metafrontier Technical Efficiencies 

 

Consistent with theory, the metafrontier TEs of adopters and non-adopters in Table 7 were 

less than the group TEs from the sample selection SPF. The stochastic metafrontier allows 

direct comparison of the TEs of non-adopters with adopters of improved rice varieties. A t-test 

of the difference (0.018) in mean metafrontier TE between the adopters (0.427) and non-

adopters (0.445) was not statistically significant. 

Regarding the MTR, the null hypothesis [Ho: mean (diff) =0] was rejected in favour of the 

alternative [Ha: mean (diff) ≠ 0]. Therefore, the MTR for the adopters (0.909) and non-

adopters (0.785) were statistically different. An MTR of 1 implies there is no gap between the 

group frontier and the metafrontier. Over 60% of adopters and non-adopters respectively had 

metafrontier TEs of 50% or less. In the group sample selection SPF about 56% (adopters) and 

47% (non-adopters) had TEs below 50%. The lower TEs are attributed to differences in 

managerial practices, socioeconomic and environmental characteristics. Farmers can attain 

higher metafrontier TEs by learning from the best practice farmers. For instance, 7 adopters 

and 1 non-adopter had metafrontier TEs between 91-100%.   

 

4. Conclusion and Recommendations 

 

This study analysed the adoption of improved varieties and its effect on rice output and 

technical efficiency of 576 Ghanaian households for 2012/2013 using a stochastic production 

frontier that accounts for non-exposure and selection bias. Exposure to improved rice varieties 

was estimated to account for non-exposure bias, followed by the determinants of adoption for 

the exposed households using treatment effect. A metafrontier was estimated to separate 

production technology gaps from technical inefficiencies after correcting selectivity bias. 

Adoption under partial rice varietal exposure under-estimated the adoption rate as 55.9%, 

producing a non-exposure bias of 11.3%. The average exposure rate of the improved rice 

varieties was 82.5% whilst adoption rate was 67.2%.  Exposure was enhanced by rice projects 

and agricultural input shops in communities. Rice projects, being a model farmer, agricultural 

extension, seeking higher yield, and cultivating rice through irrigation influenced adoption.  

The metafrontier TE for non-adopters (44.5%) and adopters (42.7%) were not statistically 

different. Nonetheless, adopters produced closer to the metafrontier given their higher MTR 

(0.909) than the non-adopters’ MTR (0.785). Labour, herbicides, fertilizer, seed and farm size 

increased the output of adopters whilst farm size and fertilizer raised the output of non-

adopters. Agricultural extension, managing rice field water levels, and weeding twice with 

herbicides increased the technical efficiency of adopters. Relative to non-adopters, ammonia 

fertilizer application and weeding increased their technical efficiency. This study recommends 

the cultivation of improved varieties of rice and improving technical efficiency. 
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