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Abstract
Variational bias correction (VarBC), by correcting for significant biases in satel-
lite radiances, is a key component of many modern numerical weather predic-
tion (NWP) systems. However, there is a risk that VarBC may be contaminated
by biases present in the assimilating model, inducing a bias in the analysis and in
turn reducing forecast skill. Due to the limited reliability of metrics for assessing
the value of anchor observations in NWP, this article instead takes the approach
of developing and exemplifying new theory to understand how to optimise the
impact of anchor observations (assimilated observations with negligible bias) to
minimise the contamination of model bias in VarBC. This is important because
the number and variety of satellite radiances assimilated is expected to increase
in the future. Therefore, the new theory presented can guide how the anchor
observation network should also be developed. The new insight may also be cru-
cial in optimising the anchoring effect of historically sparse observations in the
context of reanalyses. We present this new theory and theory-driven examples
to show that the timing of the anchor observations can impact the accuracy of
VarBC substantially. Anchor observations towards the end of the assimilation
window provide more information about the accumulated model bias and offer
a stronger constraint on VarBC, as such VarBC is more successful at quantifying
and correcting the radiance biases only. However, precise anchor observations
at the end of the window can increase the contamination of the initial state anal-
ysis by model bias. The interaction between the model bias contamination of
VarBC and the initial state analysis is studied in idealised cycled data assimi-
lation experiments using the Lorenz 96 model, highlighting the importance of
VarBC for an accurate analysis of the state.

K E Y W O R D S

4DVar, NWP model bias correction, observation network design, satellite radiances, theory of
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1 INTRODUCTION

The assimilation of satellite radiances has been demon-
strated to have the greatest impact of all observation types
on global numerical weather prediction (NWP) skill, due
to their unique coverage of key meteorological variables
(Cardinali, 2009; Eyre et al., 2022). However, satellite
radiances often exhibit significant biases that need to
be corrected for them to be beneficial to NWP. Many
operational meteorological centres use variational bias
correction (VarBC) to correct for biases in the satellite
radiances as part of the data assimilation system (Auligné
et al., 2007; Dee, 2005; Derber & Wu, 1998). By estimating
and correcting for these biases within the data assimi-
lation system, VarBC can make use of both the model
and other uncorrected observations as a reference of the
unbiased “true” state. However, if the model is also biased
and the model bias is uncorrected, then this can contami-
nate the estimate of the radiance bias. Thus, the corrected
radiance observations will be ineffective in counteracting
the model bias and unable to draw the analysis towards
the truth. Therefore, to ensure that VarBC identifies radi-
ance bias and not model bias, it is known that a good
network of observations with negligible bias is important
(Eyre, 2016). These are referred to as anchor observations
to emphasise the role they play in providing an unbiased
anchoring reference for the assimilation system.

The most important anchor observations identified are
radiosonde and Global Navigation Satellite System–Radio
Occultation (GNSS-RO) observations (Radnóti
et al., 2012). The horizontal sampling of radiosonde profile
data is relatively sparse in time and space and is mostly
confined to populated regions. However, these observa-
tions provide a good vertical resolution of information
about the temperature, pressure, humidity, and winds up
to a height of approximately 20 hPa (Ingleby et al., 2016).
They also have the benefit of providing a long record,
having been used in NWP for over seven decades (Sun
et al., 2013). GNSS-RO observations, introduced in signifi-
cant numbers in 2006, on the other hand, give good global
coverage of temperature information in the stratosphere
and upper to mid-lower troposphere, and humidity in the
lower troposphere (Buontempo et al., 2008; Cardinali &
Healy, 2014). GNSS-RO observations have proven to be
particularly beneficial for constraining the large strato-
spheric temperature biases present in the European
Centre for Medium-Range Weather Forecasts (ECMWF)
Integrated Forecasting System (IFS: Poli et al., 2010;
Laloyaux et al., 2020b). However, in the context of reanal-
ysis pre-2006, the lack of GNSS-RO data means that the
anchoring role of radiosonde data is more important
(Hersbach et al., 2020). It should be noted that radiosondes
may also have biases, which are usually corrected offline

(Haimberger et al., 2012). GNSS-RO also has small biases
when assimilated as refractive index or accumulated delay.

Going forward, the observing network is evolving
quickly, with the number of satellites and the spectral
resolution of the instruments increasing. The variety of
information on variables that can be inferred from satel-
lite instruments is also increasing (World Meteorological
Organization, 2020). Therefore, as the proportion and vari-
ety of satellite radiances assimilated is expected to grow,
it is important to understand the requirements of the net-
work of anchor observations that should also be developed.

The development of the observing network is influ-
enced by evidence of the current value of its observations
in NWP (e.g., Bouttier & Kelly, 2001; Kull et al., 2021;
WMO, 2024). A very useful metric of the value of
the observations is known as the forecast sensitivity to
observation-based impact (FSOI), which uses the model
adjoint to quantify the sensitivity of the forecast skill to the
assimilated observations (Langland & Baker, 2004). When
a model adjoint is unavailable, the FSOI can be modified
to use sensitivity information derived from an ensem-
ble, referred to as the ensemble FSOI (EFSOI: Kalnay
et al., 2012). However, the reliability of the FSOI/EFSOI,
as well as other metrics for assessing the value of anchor
observations, is limited (Candy et al., 2021). This arti-
cle therefore aims to develop theory to understand what
influences the value of anchor observations in NWP.

We present theory-driven examples to show how
anchor observations can be used to control the contam-
ination of model bias when the model bias itself is not
corrected. We focus on the 4D implementation of VarBC,
that is, the observations are distributed in both time and
space. The results demonstrate the importance of the pre-
cision (defined in terms of error variance), relative timing,
and position of the anchor observations. This builds on the
previously published work of Francis et al. (2023), in which
the role of anchor observations was studied in 3D (i.e.,
the observations are distributed in space only) VarBC and
hence the timing of the anchor observations was not con-
sidered. This current work also highlights how the timing
of the anchor observations will impact the contamination
of the model bias in the analysis of the state variables and
VarBC in different ways.

In Section 2 we present new theory on how model
bias can contaminate the estimate of the radiance
bias-correction coefficients in 4D VarBC. In Section 3
we then consider three simplified observing strategies
to highlight the importance of the timing of the anchor
observations. In Section 4 we illustrate how these the-
oretical results extend to a cycled assimilation system
using numerical experiments with the Lorenz 96 model
(Lorenz, 1995) and demonstrate that the FSOI does not
quantify the value of the anchor observations reliably
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in the presence of uncorrected model bias. Finally, in
Sections 5 and 6 we summarise the results and discuss
the implications for the development of the network of
anchor observations.

Within this current work, we do not consider the
case in which the model bias is also explicitly corrected
for, for example, using weak-constraint 4DVar (Laloyaux
et al., 2020a; Trémolet, 2006) or an ensemble framework
(e.g., Li et al., 2009). This is primarily because very few
centres have been able to apply this approach successfully,
due to the complexity of the model biases, which makes it
extremely difficult to provide a prior probability. We will
return to this point in the discussion section.

2 VARIATIONAL BIAS
CORRECTION IN THE PRESENCE OF
MODEL BIAS

VarBC allows for the online correction of radiance biases
by augmenting the state vector, x0 ∈ Rn (the model
state at the beginning of the assimilation window), in
4DVar with bias-correction coefficients, 𝜷 ∈ Rr (Auligné
et al., 2007). For an introduction to 4DVar, see, for example,
Rabier (2005). As in Francis et al. (2023) (hereafter referred
to as F23), we define the augmented state vector as v =
(xT

0 , 𝜷
T)T.

The analysis of v is then found by minimising the 4D
VarBC cost function, which finds the best fit to a prior
estimate of v and the available observations:

J(v) =1
2
(
v − vb)TB−1

v
(
v − vb)

+
pT∑

t=1

(
yt−ht(m0→t(x0), 𝜷)

)TR−1
t
(
yt−ht(m0→t(x0), 𝜷)

)
,

(1)

where vb is the background (first-guess/prior) estimate of
the augmented state vector. The background estimate for
x0 is typically given by a forecast initialised by the previous
analysis, whereas the background estimate for 𝜷 assumes
the persistence of the radiance bias from the previous
analysis.

yt are the observations at time t, with pT observation
times throughout the window. Rt and

Bv =

(
Bx 0
0 B𝛽

)

are the observation and background-error covariances,
respectively; that is, it is assumed that the error in the
background estimate of the state and 𝜷 are uncorrelated.

To compare the augmented state with the observations,
the state variables at the initial time are first propagated to
the time of the observations using the dynamical model,
m0→t. ht is then the mapping from the state variables given
at time t and 𝜷 to the observation variables at time t. If the
kth observation is to be bias-corrected, ht will include an
additive correction term of the form

ck(xb, 𝜷) = sk +
rk∑

i=1
𝛽k,i𝜌k,i(xb), (2)

where sk is a constant, 𝜌k,i are the rk predictors, and 𝛽k,i
are the corresponding bias-correction coefficients, which
are to be updated at each cycle (Cameron & Bell, 2018).
The choice of predictors depends on the sensor and
channel to be corrected. These may be as simple as a
fixed global correction to remove scan-dependent biases
or may involve multiple air-mass-dependent predictors
to characterise and remove more complex bias patterns
(Cameron & Bell, 2018). The sensitivity of the update of
the bias-correction coefficients during each cycle depends
on the choice of B𝛽 . At the Met Office, B𝛽 is diagonal and
a function of a pre-defined “bias-halving time” parameter
(Cameron & Bell, 2018).

An analytical expression for the analysis of the state
and 𝜷 that minimises Equation (1) can be found by lin-
earising the observation operator around the best estimate
of the augmented state:

va = vb + Kv(ŷ − ĥ(vb)), (3)

where the hat overbars indicate that the observations and
observation operator are four-dimensional, so that we can
drop the summation over time notation used in Equation
(1) (see Lorenc, 1986).

Kv is referred to as the Kalman gain matrix and is
given as a function of the background-error covariance
matrix and the four-dimensional observation-error covari-
ance matrix R̂:

Kv = BvĤ
T
v (ĤvBvĤ

T
v + R̂)−1, (4)

where Ĥv is the Jacobian of the four-dimensional observa-
tion operator.

The 4D observation operators, ĥ, include the model
used to assimilate the data, m. This may include a signif-
icant bias. In this work, we define the error in the model
over timestep i as

𝜼i+1 = mi→i+1(xi) − m†
i→i+1(xi), (5)

where m†
i→i+1 is the true discretised model propagating the

state at time i forward one model timestep. The model bias
is given by the expectation ⟨𝜼i⟩.
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In Appendix A, the error in the analysis is derived
for the augmented state, v. The analysis error for the
bias-correction coefficient only, 𝝐a

𝛽
, is then isolated (see

Section A.1). To understand how the bias-corrected (BC)
observations (i.e., the radiances) and anchor observations
contribute to the analysis error, we then separate out the
terms associated with each. The resulting expression for
the analysis error for the bias-correction coefficient is then

𝝐a
𝛽
= 𝝐b

𝛽
+ K𝛽,BC

(
𝝐̂BC − 𝜼̂BC − Ĉ𝛽𝝐

b
𝛽
− ĤBCD(𝝐̂ − 𝜼̂ )

−ĤBC(In − DĤ )𝝐b
x

)
(6)

(Equation A.6 in Section A.1), where

• 𝝐b
𝛽
∈ Rr is the error in the background estimate of the

bias-correction coefficient,
• 𝝐̂BC ∈ RpBC and 𝝐̂ ∈ Rp are the 4D instrument errors

for the pBC bias-corrected and p anchor observations,
respectively (including the effect of the bias correction),

• 𝜼̂BC ∈ RpBC and 𝜼̂ ∈ Rp are the model errors “seen”
by the BC and anchor observations, respectively (see
Section A.3 for definition), and

• 𝝐b
x ∈ Rn is the background error in the state.

ĤBC ∈ RpBC×n and Ĥ ∈ Rp ×n are the Jacobians of the
4D observation operators with respect to the state for the
BC and anchor observations, respectively. Ĉ𝛽 ∈ RpBC×r is
the Jacobian of the bias-correction term with respect to
the bias-correction coefficients. This has the hat overbar to
represent the correction made to the 4D BC observations.

D in Equation (6) depends on the error covariance of
the anchor observations relative to that of the background
state in the space of the anchor observations:

D = BxĤT (Ĥ BxĤT + R̂ )−1. (7)

K𝛽,BC in Equation (6) is the block of the Kalman gain
matrix, Equation (4), describing the sensitivity of the anal-
ysis of 𝜷 to the BC observations:

K𝛽,BC = B𝛽 Ĉ𝛽

[
(ĤvBvĤT

v + R̂)−1
]

BC,BC

= B𝛽 Ĉ𝛽

⎡⎢⎢⎣
(

ĤBCBxĤT
BC + Ĉ𝛽B𝛽 ĈT

𝛽 + R̂BC ĤBCBxĤT

Ĥ BxĤT
BC Ĥ BxĤT + R̂

)−1⎤⎥⎥⎦BC,BC

.

(8)

Note that in Equation (8) we assume that the observation
vector, ŷ, is partitioned as (ŷT

BC, ŷ
T )T.

From Equation (8) we see how K𝛽,BC depends on the
full observing system and the information the observations
provide about the state, as well as 𝜷. This is illustrated in
Figure 1 for the case in which x and 𝜷 are scalars and
one BC and one anchor observation are assimilated, with

the observation operator for each equal to 1 and the bias
correction, c(𝛽), equal to 𝜷. For this scalar example, we
therefore have

Ĥv =

(
ĤBC Ĉ𝛽

Ĥ 0

)
=

(
1 1
1 0

)
,

resulting in

K𝛽,BC =
B𝛽(Bx + R )

(Bx + B𝛽 + RBC)(Bx + R ) − B2
x

=
B𝛽(Bx + R )

BxR + (Bx + R )(B𝛽 + RBC)
.

In the first panel, we see, as expected, that the sensitiv-
ity of the analysis of 𝜷 to the BC observations (quantified
by K𝛽,BC) is a balance between the information in the
BC observations and the background estimate of 𝜷. That
is, K𝛽,BC increases as the BC observations become more
precise (RBC reduces) and the background bias-correction
coefficient becomes less precise (B𝛽 increases).

In the second two panels, we see that, when RBC is
small, K𝛽,BC also increases as the anchor observation and
background state become more precise (R and Bx reduce).
This is due to their role as a reference state for estimat-
ing the bias-correction coefficients. Therefore, the more
precise either the anchor observation or background state
is, the more information the BC observations can provide
about 𝜷. In fact, in this simple scalar experiment, one
can see that the last two panels are identical, as the two
references are treated identically by VarBC.

This is different from the behaviour that we would
expect for Kx,BC (the sensitivity of the analysis of the state
to the BC observations), which increases as the BC obser-
vations become more precise (RBC reduces) but reduces
as the anchor observation and background state become
more precise (R and Bx reduce). This is because, unlike
the bias-correction coefficients, the state becomes less con-
strained by the BC observations when there is more infor-
mation in the background estimate of the state and the
anchor observations (as controlled by the relative magni-
tudes of RBC, R , and Bx).

The different sensitivity of the analysis of state and
bias-correction coefficients to the BC observations can
be illuminated further by comparing the equations for
their error covariances. In Appendix B.1, the analysis-error
covariance of the bias-correction coefficient is derived
to be

A𝛽 = (Ir − K𝛽,BCĈ𝛽)B𝛽 (9)

(Equation B.1 in Section B.1). Note that this relationship
assumes that the model error is a bias with no random
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F I G U R E 1 Scalar example of how the sensitivity of the analysis of the bias coefficients to bias-corrected observations, K𝛽,BC

(Equation 8), depends on the standard deviation of the errors in the BC observations (x-axis in each panel) and the standard deviation of the
errors in the (a) background bias-correction coefficient, (b) anchor observations, and (c) background state. The values of the fixed parameters
are given in the title of each plot. Note that panels (b) and (c) are identical, because, in this scalar example, the two references for computing
the bias (the anchor observations and the background state) are interchangeable. [Colour figure can be viewed at wileyonlinelibrary.com]

component. A derivation of A𝛽 modified for the case
in which the model error has a covariance can also be
found in Section B.1. This can be compared with the
analysis-error covariances of the state (also derived in
Section B.1):

Ax = (In − Kx,BCĤBC)(In − DĤ )Bx. (10)

In Equation (9), we see that the greater the sensitivity of
the analysis of 𝜷 to the BC observations (i.e., the larger the
magnitude of the terms in K𝛽,BC), the greater the reduction
in the trace of A𝛽 compared with the trace of B𝛽 . However,
this relationship between A𝛽 and K𝛽,BC in Equation (9) is
not mirrored in the relationship between Kx,BC and Ax in
Equation (10).

Studying the terms of K illustrates what influences the
weighting of the different sources of information when
analysing the state and 𝜷. However, in the presence of
unaccounted-for model bias, the assumptions on which
the data assimilation algorithms are based break down.
In this case, the information will not necessarily be used
in the correct way. In the following, we are interested
in how the anchor observations can mitigate the anal-
ysed bias-correction coefficients, 𝜷a, from becoming con-
taminated with the bias in the background state and
model (⟨𝝐b

x⟩ and ⟨𝜼⟩ respectively). We therefore derive the
expected error in the analysed bias-correction coefficient
by assuming that VarBC was applied correctly in the pre-
vious cycle, so that the effect of the model and background
bias can be isolated in the current assimilation cycle (in
Section 4, we will relax this assumption in cycled numeri-
cal experiments). The assumption that VarBC was applied
correctly in the previous cycle translates to the following
assumptions:

• there is no bias, only random error, in the background
estimate of the bias-correction coefficient (⟨𝝐b

𝛽
⟩ = 0);

• there is no bias, only random error, in the bias-corrected
instrument error (⟨𝝐̂BC⟩ = 0), i.e. the bias correction is
performed accurately;

• by definition, there is no bias, only random error,
in the instrument error of the anchor observations
(⟨𝝐̂ ⟩ = 0).

This allows us then to derive from Equation (6) the fol-
lowing expression for the expected error in the analysed
bias-correction coefficient:

⟨𝝐a
𝛽
⟩ = −K𝛽,BC

(⟨𝜼̂BC⟩ − ĤBCD⟨𝜼̂ ⟩ + ĤBC(In − DĤ )⟨𝝐b
x⟩).
(11)

Equation (11) can be compared with eq. (24) of F23, in
which only the background bias was considered in a 3DVar
implementation; note the slight difference in the definition
of D.

In F23 it was shown how the position of the anchor
observations relative to the BC observations is important
for their ability to reduce the contamination of model
bias in VarBC. When the anchor and BC observations
observe different variables and locations, the information
that the anchor observation provides about the model
bias in VarBC depends on HBCBxHT (i.e., the strength of
the background-error correlations between the BC and
anchor observed variables) and the overlap in the back-
ground bias observed by the BC and anchor observations
(HBC⟨𝝐b

x⟩ and H ⟨𝝐b
x⟩, respectively). When HBCBxHT

contains strong correlations, the anchor observations will
have a large impact on VarBC. In this case, if the anchor
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and BC observations observe similar background bias
then the anchor observations can reduce the effect of the
background bias in VarBC. Alternatively, if the anchor
and BC observations observe different background biases,
then the anchor observations can act as a medium for the
background bias seen only by the anchor observations to
contaminate VarBC.

Extending these results to a 4DVar implementation
means that we now need to include the effect of model bias
within the assimilation window. We also need to consider
the timing of the anchor observation, with the assimilation
model becoming another medium for the information in
the observations to be spread spatially from one timestep
to another.

The role of the anchor observations in mitigating the
analysed observation bias-correction coefficients, 𝜷a, from
becoming contaminated with the bias in the background
state and model can be revealed by looking at the limits
of Equation (11) as the anchor observations become more
precise (their error variance reduces). The more precise the
anchor observations, the greater the weight they will have
in the assimilation system. In an optimal system, better
(i.e., more accurate and precise) data will provide a bet-
ter analysis. However, this is not necessarily true when we
have unaccounted-for model bias. If the system is not opti-
mal, then attempting to fit strongly to precise observations
will highlight the sub-optimalities.

The theory presented up to this point is completely
general in terms of the meaning of the observation opera-
tors, the sampling of the observations, and the distribution
of the model bias. In the following subsections and in the
next section, we will analyse Equation (11) for a series of
different simplified/idealised observation configurations
to highlight cases when the anchor observations reduce
or increase the damaging effects of model bias. The obser-
vations can continue to be interpreted in a general way,
but we do not take explicitly into account the complex
operators of the radiances and anchor observations, such
as GNSS-RO.

The theory presented assumes that the anchor obser-
vations (i.e., those not bias-corrected) have negligible bias.
The validity of this assumption is questionable. When
biases are present in the “anchor” observations, an extra
bias term will appear in Equation (11). We will discuss the
implications of this further in Section 6.

2.1 Anchor and bias-corrected
observations completely overlap

Before focusing in on the timing of the anchor obser-
vations, let us first consider the extreme case when the

anchor and BC observations completely overlap. That
is, they are not only at the same times but also have the
same variables and are at the same location. In this case,
the observation operators for the anchor and BC observa-
tions will be the same, which we will denote by Ĥ, that
is, ĤBC = Ĥ = Ĥ. The model bias “seen” by the anchor
and BC observations will also be the same, which we will
denote by 𝜼̂, that is, 𝜼̂BC = 𝜼̂ = 𝜼̂.

In this case, Equation (11) then simplifies to

⟨𝝐a
𝛽
⟩ = −K𝛽,BC

(
(Ip − ĤD)⟨𝜼̂⟩ + (Ip − ĤD)Ĥ⟨𝝐b

x⟩), (12)

where p is the number of anchor (or equivalently BC)
observations.

From the definition of D (Equation 7), we see that, in
this case, as the anchor observations become more precise
(R̂ → 0), ĤD → Ip (assuming that ĤBxĤ

T
is invertible).

Therefore, in this special case, infinitely precise anchor
observations can eliminate the contamination of back-
ground and model bias in the analysis of 𝜷. However, in
this same case the bias in the analysis of the state (see
Section A.2, Equation A.10) will not be eliminated by
infinitely precise anchor observations.

2.2 Anchor and bias-corrected
observations have no overlap

We can also consider the other extreme case, where the
anchor and BC observation share no information. That
is, ĤBCBxĤ

T
= 0, in other words there is no correlation

between the background errors transformed to the space
of the BC observations and the background errors trans-
formed to the space of the anchor observations. In this
case, ĤBCD = 0 and so Equation (11) simplifies to

⟨𝝐a
𝛽
⟩ = −K𝛽,BC

(⟨𝜼̂BC⟩ + ĤBC⟨𝝐b
x⟩). (13)

In this case, the anchor observations play no role in
computing the analysis of𝜷. Therefore, from Equation (13)
we see that there is no contribution from the model bias
“seen” by the anchor observations to the expected value
of the error in the analysis of the bias-correction coeffi-
cients. We also see that, compared with the case when we
had complete overlap, there is now no route for the anchor
observations to control the contamination of the back-
ground bias and the model bias “seen” by the BC obser-
vations in the expected value of the error in the analysis
of the bias-correction coefficients. As K𝛽,BC (Equation 8)
has no dependence on the anchor observations, the anchor
observations will also not reduce the error variance of the
analysis of the bias-correction coefficients.
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FOWLER et al. 7 of 21

3 THE IMPORTANCE OF THE
TIMING OF ANCHOR
OBSERVATIONS

To understand the importance of the timing of the anchor
observations, in the following we will study Equation
(11) for three different simplified observation configura-
tions: (i) anchor and BC observations at the same times
(Section 3.1), (ii) anchor observations after the BC obser-
vations (Section 3.2), and (iii) anchor observations before
the BC observations (Section 3.3). These examples fall in
between the two extreme cases presented in Sections 2.1
and 2.2.

3.1 Case I: Anchor and bias-corrected
observations at the same time

Let us assume that both the BC and anchor observations
are at the same time, 𝑗, but do not necessarily observe
the same state variables. In this case, the 4D observa-
tion operator Jacobians become ĤBC = HBCM0→𝑗 and
Ĥ = H M0→𝑗 , where M0→𝑗 is the Jacobian of the dynam-
ical model propagating the state from time 0 to time 𝑗

and HBC and H are the Jacobians of the observation
operators mapping from the state at time 𝑗 to the BC
observations and anchor observations at the same time,
respectively. The model bias “seen” by the BC and anchor
observations becomes ⟨𝜼̂BC⟩ = HBC

∑𝑗

k=1Mk→𝑗⟨𝜼k⟩and⟨𝜼̂ ⟩ = H
∑𝑗

k=1Mk→𝑗⟨𝜼k⟩.
Substituting these expressions into Equation (11) and

letting the accumulated model bias up to time 𝑗 be repre-
sented by ⟨𝝃0→𝑗⟩ = ∑𝑗

k=1Mk→𝑗⟨𝜼k⟩, we obtain

⟨𝝐a
𝛽
⟩ = −K𝛽,BCHBC

(
(In − M0→𝑗DH )⟨𝝃0→𝑗⟩

+(In − M0→𝑗DH )M0→𝑗⟨𝝐b
x⟩). (14)

As illustrated in Sections 2.1 and 2.2, the ability of
precise anchor observations to reduce the effect of the
model and background bias depends on the overlap in the
observations described by ĤBCBxĤ

T
, which in this case

is HBCM0→𝑗BxMT
0→𝑗HT . This is analogous to the 3D case

studied in F23, in which the importance of correlations in
Bx was discussed. The difference compared with the 3D
case is that now the model can also advect information and
so it is the structure of the evolved error covariance matrix,
M0→𝑗BxMT

0→𝑗 , that is important for spreading information
about the model and background biases provided by the
anchor observations.

3.2 Case II: Anchor observations after
bias-corrected observations

In the second example, we consider the case in which the
anchor observations are made at one time, 𝑗, that is later
than the BC observations made at time i (i < 𝑗). In this
case, the 4D observation operator Jacobians become ĤBC =
HBCM0→i and Ĥ = H M0→𝑗 . The model bias “seen” by
the BC observations becomes

⟨𝜼̂BC⟩ = HBC

i∑
k=1

Mk→i⟨𝜼k⟩ = HBC⟨𝝃0→i⟩. (15)

Because the anchor observations are at a later time, they
will see the model bias accumulated up to the timestep
of the BC observations (propagated up to the time of the
anchor observations), but also additional model bias not
seen by the BC observations:

⟨𝜼̂ ⟩ = H
𝑗∑

k=1
Mk→𝑗⟨𝜼k⟩

= H

(
Mi+1→𝑗⟨𝝃0→i⟩ + 𝑗∑

k=i+1
Mk→𝑗⟨𝜼k⟩)

= H
(
Mi+1→𝑗⟨𝝃0→i⟩ + ⟨𝝃i+1→𝑗⟩). (16)

Substituting these expressions into Equation (11), we
obtain

⟨𝝐a
𝛽
⟩ = −K𝛽,BC

(
HBC⟨𝝃0→i⟩ − HBCM0→iDH (Mi+1→𝑗⟨𝝃0→i⟩

+⟨𝝃i+1→𝑗⟩))+HBCM0→i(In − DH M0→𝑗)⟨𝝐b
x⟩)

= −K𝛽,BCHBC
((

In − M0→iDH Mi+1→𝑗

)
×
(⟨𝝃0→i⟩ + M0→i⟨𝝐b

x⟩) − M0→iDH ⟨𝝃i+1→𝑗⟩).
(17)

In this case, the overlap in the observations is described
by HBCM0→iBxMT

0→𝑗HT . Therefore, the temporal error
correlations in the propagated background errors between
times i and 𝑗 are now important. This overlap appears at
the beginning of the HBCM0→iD term (see definition of D,
Equation 7) and is therefore important for reducing the
effect of ⟨𝝃0→i⟩ (the model bias seen by both the anchor
and BC obs) and the effect of ⟨𝝐b

x⟩. However, unlike the
previous case, the fact that the anchor observations will
see more accumulated model bias than the BC observa-
tions is also important. This can be shown by assuming
that the anchor observations measure the same variables
as the BC observations, such that HBC = H = H, and the
model propagating the biases from the time of the BC
observations to the time of the anchor observations is the
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8 of 21 FOWLER et al.

identity (Mi+1→𝑗 = In). In this case, we have perfect over-
lap in ĤBCB1∕2

x and Ĥ B1∕2
x , as Ĥ = ĤBC. However, the

additional model bias seen by the anchor observations is
still ⟨𝝃i+1→𝑗⟩ and

⟨𝝐a
𝛽
⟩ = −K𝛽,BC

(
(Ip − HM0→iD)H(⟨𝝃0→i⟩ + M0→i⟨𝝐b

x⟩)
−HM0→iDH⟨𝝃i+1→𝑗⟩). (18)

In this special case, the terms multiplying ⟨𝝃0→i⟩ and⟨𝝐b
x⟩will tend to 0 as the anchor observations become more

precise (R̂ → 0 and HM0→iD → Ip). However, the addi-
tional model error seen only by the anchor observations⟨𝝃i+1→𝑗⟩will not be eliminated and HM0→iDH⟨𝝃i+1→𝑗⟩will
tend to an upper limit of H⟨𝝃i+1→𝑗⟩ as R̂ → 0.

3.3 Case III: Anchor observations
before bias-corrected observations

In the third and final example, we consider the case
in which the anchor observations are made at one
time i, which is earlier than the BC observations
made at one time 𝑗 (𝑗 > i). In this case, the 4D obser-
vation operator Jacobians become ĤBC = HBCM0→𝑗

and Ĥ = H M0→i. The model bias “seen” by
the BC and anchor observations becomes ⟨𝜼̂BC⟩ =
HBC

∑𝑗

k=1Mk→𝑗⟨𝜼k⟩ = HBC(Mi+1→𝑗⟨𝝃0→i⟩ + ⟨𝝃i+1→𝑗⟩) and⟨𝜼̂ ⟩ = H
∑i

k=1Mk→i⟨𝜼k⟩ = H ⟨𝝃0→i⟩.
Substituting these expressions into Equation (11), we

obtain

⟨𝝐a
𝛽
⟩ = −K𝛽,BC

(
HBC(Mi+1→𝑗⟨𝝃0→i⟩ + ⟨𝝃i+1→𝑗⟩)

−HBCM0→𝑗DH ⟨𝝃0→i⟩
+HBCM0→𝑗(In − DH M0→i)⟨𝝐b

x⟩),
= −K𝛽,BCHBC

(
(Mi+1→𝑗 − M0→𝑗DH )⟨𝝃0→i⟩

+⟨𝝃i+1→𝑗⟩ + M0→𝑗(In − DH M0→i)⟨𝝐b
x⟩)

= −K𝛽,BCHBC
(
(Mi+1→𝑗 − Mi+1→𝑗M0→iDH )⟨𝝃0→i⟩

+⟨𝝃i+1→𝑗⟩ + Mi+1→𝑗M0→i(In − DH M0→i)⟨𝝐b
x⟩)

= −K𝛽,BCHBC
(
Mi+1→𝑗(In − M0→iDH )

(⟨𝝃0→i⟩
+M0→i⟨𝝐b

x⟩) + ⟨𝝃i+1→𝑗⟩). (19)

In this case, the overlap in the observations is described
by HBCM0→𝑗BxMT

0→iH
T and so the temporal error cor-

relations in the propagated background errors between
time i and 𝑗 are still important. However, in this case the
additional model error only seen by the BC observations⟨𝝃i+1→𝑗⟩ can only be controlled by the precision of the
anchor observations through K𝛽,BC. In Section 2 we saw
that K𝛽,BC increases as the anchor observations become
more precise. Therefore, more precise anchor observations

will exacerbate the contamination of VarBC by the model
bias seen only by the BC observations.

3.4 Scalar illustration

To illustrate the contributions of the different bias sources
to the total expected error in the analysis of𝜷 (Equation 11)
for the different observation configuration cases, we set up
a simple scalar experiment. In each case, we assume we
have an assimilation window of 10 timesteps and one each
of BC and anchor observations is made during the window
observing the state variable directly.

• Case I: both the anchor and BC observation are at the
end of the window.

• Case II: the anchor observation is at the end of the win-
dow and the BC observation is halfway through the
window.

• Case III: the anchor observation is halfway through the
window and the BC observation is at the end of the
window.

As in the reference values for Figure 1, Bx = RBC = 1,
B𝛽 = 0.5, and R is allowed to vary. Unlike in Figure 1,
we now consider an assimilation window. The scalar
model is given by m = 1.025, chosen so that, in the spe-
cial case when R = 1 and the observations are available
at the beginning of the window, the assimilation system
is static (the contraction of the uncertainty by the assim-
ilation is balanced by the growth in uncertainty due to
the model). The model bias at each timestep is set to a
constant such that ⟨𝜂⟩ = 0.01. The background bias is set
to be the accumulation of the evolved model bias over
the previous assimilation window; this gives a value of⟨𝝐b

x⟩ = ∑9
i=0mi⟨𝜂⟩ = 0.112, where mi is the ith power of

m. Note that these exact values are not too important,
as we only wish to understand the qualitative difference
between the different terms in Equation (11). However,
the relative magnitudes of the two biases (⟨𝝐b

x⟩∕⟨𝜂⟩ ≈ 11)
and the fact that they are the same sign are based on rea-
sonable assumptions and will have implications for the
interpretation of these results. The true value of 𝛽 does not
appear in Equation (11) and does therefore not need to be
defined here.

The total value of ⟨𝝐a
𝛽
⟩ is plotted as a function of R for

the three observation configuration cases with black solid
lines in Figure 2. The contribution due to the background
bias (−K𝛽,BCĤBC(In − DĤ )⟨𝝐b

x⟩ from Equation 11) is plot-
ted with red triangles, the contribution due to the model
bias seen by both the BC and anchor observations is plot-
ted with yellow circles, and the contribution due to model
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F I G U R E 2 Scalar illustration of Equation (11), the contribution of the different bias terms to the total expected error in the analysis of
𝜷 (black solid line) as a function of the anchor observation-error variance (Ranc): background bias term (red triangles), model bias seen by
both anchor and BC observations (yellow circles), and model bias seen by only the anchor observations or BC observations in Cases II and III
respectively (purple stars). For comparison, the expected error in the analysis of x at the beginning of the window (Equation A.10: black
dashed line) and at the end of the window (Equation A.11: black dash–dotted line) as a function of Ranc is also plotted. Each panel gives
results for the different observing configurations described in Section 3.4. [Colour figure can be viewed at wileyonlinelibrary.com]

bias seen by only one of the observations is plotted with
purple stars.

For the three cases, we see that, as the precision of
the anchor observations increases (R → 0), the contri-
bution of the background bias and the model bias seen
by both anchor and BC observations tends to zero. How-
ever, the magnitude of the contribution of the model bias
seen by only one observation type increases as the preci-
sion of the anchor observations increases. Therefore it is
only in Case I that infinitely precise anchor observations
can provide an unbiased analysis of the bias-correction
coefficients; this is consistent with the theory presented in
Sections 3.1–3.3.

In Case II, the contribution of the model bias seen by
only the anchor observation has a different sign from the
other terms (see the last term in Equation 17) and so the
total value of ⟨𝝐a

𝛽
⟩ for the range of R plotted is smaller than

the value of ⟨𝝐a
𝛽
⟩ in Case I. ⟨𝝐a

𝛽
⟩ can also be zero despite the

different terms being non-zero, as the different sources of
bias compensate one another.

In Case III, the contribution of the model bias seen by
only the BC observation has the same sign as the other
terms (see Equation 19). Therefore, the total value of ⟨𝝐a

𝛽
⟩

is never zero and always greater than the value of ⟨𝝐a
𝛽
⟩ in

Case I.
Also plotted in Figure 2 is the total bias in the analy-

sis of the state derived in Appendix A.2 (Equation A.10).

In each case, we see that the magnitude of ⟨𝝐a
x⟩ increases

as the anchor observations become more precise, with
the largest analysis bias when precise anchor observations
are at the end of the window (Cases I and II). This is
because, to fit these observations, the assimilation system
compensates for the positive model bias by introducing a
negative bias at the initial time (the time of the state anal-
ysis: Howes et al., 2017). This can be seen from the bias
in the analysis at the end of the window (Equation A.11,
dash–dotted line), which is zero when we have infinitely
precise anchor observations at the end of the window. Note
that the bias at the end of the window is only plotted for
the given ranges. The bias in the analysis at the end of the
window will be the background bias for the next window.
It is interesting to note that, for Case II, when the value
of R is large we get a positive bias in the analysis of the
state, due to the background bias becoming the dominant
source.

In the left-hand panel of Figure 3, the error variance
of the analysis bias correction coefficient (Equation 9) is
plotted as a function of the precision of the anchor obser-
vations for the three scalar cases, assuming that the model
error is not random. In Appendix B.2 it is shown that,
as R̂ → 0, A𝛽 → B𝛽 R̂BC∕(B𝛽 + R̂BC). For our parameter
choices, this gives a lower limit for A𝛽 of 1/3 for all cases.
As R̂ increases, we see that, as shown in Equation B.2,
the analysis of 𝛽 is most precise when the BC observations
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F I G U R E 3 The analysis-error variance for (left) bias
coefficients 𝜷 and (right) the state as a function of the anchor
observation-error variance for the three scalar observing
configurations described in Section 3.4.

are earlier than the anchor observations (Case II). This is
explained partly by the fact that the background evolved to
the earlier BC observations will be able to provide a more
precise reference from which the bias-correction coeffi-
cients can be estimated (because the model will increase
the uncertainty the more the background is evolved).
Comparing Cases I and III, when the BC observations are
both at the end of the window, we see that we can have
a more precise analysis of 𝜷 when the anchor observa-
tions are at the same time as the BC observations (Case
I). Again, this is because, in this case, the anchor obser-
vations provide a more precise reference, as there is no
need for model propagation to project the information
from the anchor observations forward to the time of the BC
observations.

For comparison, in the right-hand panel of Figure 3
the error variance of the analysis state (Equation 10) is
plotted as a function of the precision of the anchor obser-
vations for the three scalar cases, again assuming that the
model error is not random. The analysis of the state is more
precise if both observations are at the end of the window
(Case I). When R < RBC = 1, Ax is more sensitive to the
precision of the anchor observations when they are in the
middle of the window (Case III) and, when R > RBC = 1,
Ax is more sensitive to the precision of the anchor obser-
vations when they are at the end of the window (Case
II). This is consistent with previous studies (e.g., Gauthier
et al., 2007; McNally, 2019). In each case as R → 0, Ax →
0. This can be seen from Equation (10), as R → 0 ⇒
Kx,BC → 0, as the greater weight given to the anchor obser-
vations means that the analysis of the state is less sensitive
to the BC observations. Additionally, R → 0 ⇒ D → 1
from Equation (7).

Figures 2 and 3 highlight the differing observational
needs of the analysis of the state and bias-correction coef-
ficients:

• to reduce the contamination of the model bias in the
analysis of the bias coefficients, we require precise
anchor observations at the end of the window;

• precise observations at the end of the assimilation win-
dow increase the contamination of the model bias in the
analysis of the state.

In practice, analyses of the state and the bias coeffi-
cients are not isolated from one another and the accuracy
of each will impact the accuracy of the other. The inter-
action of the analysis of the state and the bias-correction
coefficients is explored in the next section, in which we
perform cycled DA experiments.

4 NUMERICAL EXPERIMENTS
USING THE LORENZ 96 MODEL

In the theory developed so far, we have studied only a
single cycle, assuming that, in the previous cycle, VarBC
was applied optimally for the chosen predictors. However,
an inaccurate analysis of the bias-correction coefficient
caused by the model bias will then result in a bias in the
background estimate of 𝜷 used in the next assimilation
cycle. This in turn will mean that the bias in BC observa-
tions will not be completely removed and additional terms
will appear in Equation (11).

We have also illustrated in the scalar example that the
observing system providing the most accurate (smallest
bias) and precise (smallest error variance) analysis of 𝜷

will not necessarily provide the most accurate and pre-
cise analysis of x. However, in a cycled system these two
terms will interact and so both will need to perform well
simultaneously.

Within this section, we perform cycled 4DVar assimi-
lation experiments following a similar methodology to F23
using the Lorenz 96 model (Lorenz, 1995). The Lorenz
96 model is a system of coupled ordinary differential
equations, which describe the evolution of a quantity via
advection, dissipation, and external forcing. We use the
standard setup, where a periodic circular domain is dis-
cretized into 40 grid points (x ∈ R40). The evolution of the
variable xk at the kth grid point is described by

dxk

dt
= −xk−2xk−1 + xk−1xk+1 − xk + F, (20)

where F, the forcing parameter, is independent of k
(Lorenz, 1995). This system is solved numerically using the
fourth-order Runge–Kutta scheme with timestep equal to
0.0125.

The true model trajectory is given by propagating the
true initial conditions using a forcing of F = 8. In these
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FOWLER et al. 11 of 21

experiments, the true initial conditions are made to be
consistent with the attractor of the Lorenz 96 model by
spinning up from a sine wave for 1000 timesteps. Model
bias is then generated by using a forcing value of F =
12 to assimilate the observations. The resulting model
bias is very large, to emphasise the effect it has on data
assimilation. The model error generated in this way is not
random but systematic, so it is consistent with the theory.
The accumulated model bias over the assimilation win-
dow can be estimated by initialising the biased model with
the truth subsampled every 10 timesteps (the length of
the assimilation window). Because the model is nonlinear,
the accumulated model bias depends on the initialisation
state. On average (over 50 assimilation windows and 40
state variables), the accumulated model bias is 0.337.

The observations at model timestep i observe all state
variables directly at time i. Hence they are simulated
from the truth at time i with added random error, yi =
m†

0→i(x
†
0) + 𝜖o, where 𝜖o ∼ N(b,R). Herem b is the spec-

ified observation bias (zero for the anchor observations
and 0.5 for the BC observations) and R is the specified
observation-error covariance matrix. This is I40 for the
BC observation. Two different experiments are performed
with R = 4I40 and R = 0.25I40 to illustrate the role of
the anchor observations. In practice, the BC and anchor
observations only partially observe the state and the vari-
ables observed are not expected to coincide. The effect of
more realistic observation operators can be considered by
returning to Equation (11) and combining it with the the-
ory developed in F23. The aim here is instead to focus on
the timing of the anchor observations relative to the BC
observations and the assimilation window.

In implementing VarBC, we correct the observation
operator for each BC observation of the form c(𝛽) = 𝛽. So in
this case the true bias-correction coefficient to be retrieved
is 𝛽† = 0.5.

The background-error covariance matrix, Bx is gener-
ated in the same way as in F23 (see appendix E therein)
to ensure that it is consistent with the model dynamics.
The derived B matrix has an error standard deviation of
approximately 0.5 for each variable and a sharp drop in
covariance, so that variables separated by more than two
grid points are uncorrelated. At the initial time, the back-
ground is sampled from N(0, B), such that the background
is initially unbiased but a bias in the background accu-
mulates as the assimilation is cycled. The observations
are assimilated using 4DVar with a window length of 10
timesteps for 10 assimilation cycles. This window length is
short enough to be consistent with the assumption of lin-
ear propagation of errors that is at the heart of 4DVar and
our developed theory.

For the first cycle, the background value 𝜷 is given by
the true value plus a random error drawn from N(0,B𝛽),
where B𝛽 = 0.5. Therefore, the results should be consis-
tent with the theory in which we assumed ⟨𝝐b

𝛽
⟩ = 0. As

the system continues to cycle, this assumption will no
longer hold.

4.1 Comparison of different observing
strategies

Following Section 3, we consider three cases in which the
BC and anchor observations are made at different times
within the assimilation window. In each case, the BC and

F I G U R E 4 (Top row) Mean error, (middle row) error standard deviation, and (bottom row) the ratio of the two for analysis of (left) the
bias coefficients and (right) the state averaged over 500 realisations for a cycled Lorenz 96 assimilation system. The error variance for the BC
observations is 1 and that for the anchor observations is 4 (R = 4I40).
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12 of 21 FOWLER et al.

anchor observations are provided every 10 timesteps and
observe every grid point.

• Case I: both the BC and anchor observations are at the
end of assimilation window.

• Case II: the anchor observations are at the end of the
window and the BC observations are halfway through
the window.

• Case III: the anchor observations are halfway through
the window and the BC observations are at the end of
the window.

In Figures 4 and 5, the mean error and error standard
deviation of the analysis of 𝜷 (left) and x (right) are plotted
for the three different observation configurations as a func-
tion of assimilation cycle. The statistics are averaged over
500 realisations of the random errors in the initial back-
ground and observations, and those for the analysis of the
state are also averaged over the 40 variables.

In Figure 4, results are shown for the case in which the
anchor observations are less precise than the BC observa-
tions. Consistent with the scalar illustrations and theory,
we see that the smallest bias in the analysis of 𝜷 occurs
when the anchor observations are at the end of the window
and the BC observations are halfway through the window
(Case II). The largest bias in the analysis of 𝜷 is when
the BC observations are at the end of the window and
the anchor observations are halfway through the window
(Case III). As the assimilation is cycled, we see in each case
that the magnitude of the bias in the analysis of 𝜷 grows,
and at the third cycle the bias drops below −0.5 for Case
III. Recall that the true bias was 0.5, so an average error in

𝜷a equal to −0.5 will result in no correction on average and
an average error in 𝜷a smaller than −0.5 will correct the
observations in a direction away from the truth on average.
However, in each case the standard deviation of the error
for 𝜷a is larger than 0.5, so for each case there is a high
probability that a single realisation of 𝜷a will correct the
observations in a direction away from the truth.

For the early cycles, Case II provides the most precise
analysis of 𝜷 (see middle left panel). Again this is consis-
tent with the scalar illustration. However, as the system is
cycled and the biases in the analyses of 𝜷 are propagated,
we see that the consistency with the scalar illustration
based on an initial cycle breaks down.

In the right-hand panels of Figure 4, we see that there
is less sensitivity in the bias in the analysis of the state
to the observing configuration. From the scalar example
in Figure 2, we would have expected Case III to give the
most accurate analysis of x. However, as the DA system is
cycled, Case III results in the largest bias in xa. This can
be explained by the inaccurate analysis of 𝜷, which in this
case is contaminated by model bias, and the accumulative
effect of this inaccurate analysis of 𝜷 as the DA system is
cycled.

In Figure 5, results are shown for when the anchor
observations are more precise than the BC observations.
With more precise anchor observations, there is now a
clearer separation between the three observing configura-
tions for all of the statistics plotted. There is also less of
an increase in the biases for 𝜷a and xa as the assimilation
system is cycled.

As in Figure 4, we again see the smallest bias in the
analysis of𝜷 in Case II and the largest bias in the analysis of

F I G U R E 5 As in Figure 4 but with R = 0.25I40.
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FOWLER et al. 13 of 21

𝜷 in Case III. With more precise anchor observations, how-
ever, we now see that the bias in the analysis of 𝜷 initially
has a different sign in Case II compared with Cases I and
III, which again is consistent with the scalar example, and
can be explained by the contribution of the model bias only
seen by the anchor observations having a different sign in
this case (see Equation (17) and Figure 2).

With very precise anchor observations, we now see that
Case III gives the smallest bias in the analysis state. Again,
this is consistent with the scalar example and explained by
the fact that the model bias can be expected to have a big-
ger impact on the analysis at the beginning of the window
when trying to fit precise observations at the end of the
window. The change in sign of the analysis bias for Cases I
and II demonstrates that the analysis compensates for the
positive model bias when fitting to the precise observations
at the end of the window.

In each of the examples shown, we see that the ratio
of the bias to the error standard deviation (plotted in the
lower panels) in the analysis of 𝜷 is generally larger than
for the analysis of x. This suggests that the potential biases
in 𝜷a are more significant than those in xa and the benefits
of controlling them with the choice of observing configu-
ration are greater.

In addition to the experiments shown here, we also per-
formed experiments more consistent with a real observing
system, in which the state was partially observed by the
anchor observations, indirectly observed by the BC obser-
vations, and either the anchor or BC observations are
available at more than one time throughout the window.
The results from these experiments (not shown) corrob-
orated the conclusions from these experiments and the
theory. That is, the most accurate estimate of 𝜷 is achieved
when anchor observations are available at the end of the
window and the BC observations are earlier in the win-
dow. However, having the anchor observations observe
different variables from the BC observations limits the
ability of the anchor observations to constrain VarBC, as
described in F23.

4.2 Challenges in quantifying the value
of anchor observations using the forecast
sensitivity to observation impact

In this final results section, we demonstrate the difficulty
in quantifying the value of the anchor observations in
data assimilation with standard metrics. A popular met-
ric that allows for the continual monitoring of the value
of observations within a data assimilation system is the
FSOI. The FSOI uses the adjoint of the forecast model to
find the contribution of different subsets of observations to
the change in forecast error due to the assimilation of all

observations. A more thorough description of the method
can be found in Langland and Baker (2004) and Lorenc and
Marriott (2014).

Ideally, we would like the FSOI to be consistent
with the impact of reducing a subset of observations as
measured by data-denial experiments (DDEs: Eyre, 2021).
DDEs allow for a direct assessment of the effect of
changes to the observing system, such as reducing
anchor observations, to quantify the importance of the
removed observations. DDEs can be considered as a sub-
set of observing-system experiments (OSEs), in which the
impact of observations can be compared with a baseline
in which observations are either added or removed. How-
ever, DDEs have a significant cost and hence only a limited
number of experiments can be performed. This is why the
FSOI has proven to be so popular in assessing the current
observing network. Clearly, the FSOI and DDE measure
different things and have been shown to have different
sensitivities to model error and inconsistencies in the spec-
ification of the background and observation-error covari-
ances (Daescu & Langland, 2022; Daescu & Todling, 2010;
Eyre, 2024; Lupu et al., 2015). Nevertheless, we would
hope that we could still use the FSOI to assess the relative
importance of different subsets of observations.

We show the results for two metrics of observation
impact, computed in the Lorenz 96 model described at
the beginning of this section for a forecast of length 20
timesteps. In generating the forecasts, we have used the
biased model with F = 12. We define the forecast-error
norm used to compute the two metrics as

e = 1
40

40∑
i=1

(xf
i − xv

i )
2,

where xf
i is the forecast for the ith variable and xv is a

validation state.
The first metric is the FSOI computed change in e

attributed to assimilation of either the anchor observa-
tions, 𝛿ef(y ), or BC observations, 𝛿ef(yBC), as a percentage
of the total change in forecast error due to the assimilation
of all observations, 𝛿ef(allobs):

%FSOI(y ) ≡ 100
𝛿ef(y )

𝛿ef(allobs)
and

%FSOI(yBC) ≡ 100
𝛿ef(yBC)
𝛿ef(allobs)

. (21)

The second metric is the increase in e when either the
anchor or BC observations are thinned so that only every
other grid point is observed (ef(y thinned) − ef(allobs) and
ef(yBCthinned) − ef(allobs), respectively) as a percentage
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14 of 21 FOWLER et al.

of the total forecast error, ef(allobs), when both types of
observations observe every grid point:

%DDE(y ) ≡ 100
ef(y thinned) − ef(allobs)

ef(allobs)
and

%DDE(yBC) ≡ 100
ef(yBCthinned) − ef(allobs)

ef(allobs)
. (22)

We have defined the DDE in terms of halving the obser-
vations rather than completely removing one type, so
that VarBC is still applicable when the observations
are reduced and so that the assimilation systems are
not dramatically changed in the DDE. Note that dou-
bling %DDE(y ) and %DDE(yBC) and then adding does
not equal 100%, due to the nonlinearity of the DDE
(Ishibashi, 2011), whereas the sum of %FSOI(y ) and
%FSOI(yBC) does equal 100% by definition.

For both metrics, the statistics are averaged over 10,000
assimilation cycles. The forecasts are validated against

both the “truth” and the analysis valid at the time of the
forecast.

In Figures 6 and 7, the DDE and FSOI metrics
(Equations 21 and 22) are plotted against each other for
the three different observing configurations described in
Section 4.1. The solid markers indicate the case when
the forecast is validated against the truth and the empty
symbols that when the forecast is validated against the
analysis. In Figure 6, the results are for the case when the
anchor observations are less precise than the BC observa-
tions (consistent with Figure 4). In Figure 7, the results are
for the case when the anchor observations are more precise
than the BC observations (consistent with Figure 5).

We see a general lack of agreement between the two
metrics regarding the relative importance of the anchor
versus BC observations. The data-denial experiments
always quantify a larger degradation in the forecast error
when the anchor observations are reduced, compared with
reducing the BC observations. In some situations, halving

F I G U R E 6 Comparison of the percentage of the FSOI (Equation 21) versus the percentage increase of forecast error when the
observations are halved (Equation 22) for the anchor (circles) and BC (triangle) observations. The panels give results for the three different
observation configurations. Full symbols validate the forecast against the truth. Empty symbols validate against the analysis. The error
variance for the BC observations is 1 and that for the anchor observations is 4.

F I G U R E 7 As in Figure 6, but with the error variance for the anchor observations set to 0.25.
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the number of BC observations has a near-negligible
effect on the forecast error measured by DDE (e.g., Case
II in Figure 6). However, the FSOI sometimes assigns
more impact to the BC observations than the anchor
observations (e.g., Case III in Figure 6). The breakdown
between relative importance of the two observation types
in the metrics appears to be particularly large when model
bias contamination is greatest and VarBC performance is
at its worst, for example, Cases I and III when the anchor
observations are less precise (cf. Figures 6 and 4). In con-
trast, the better performance of VarBC achieved with more
precise anchor observations (cf. Figures 7 and 5) gives a
better agreement between the relative importance of the
anchor and BC observations as measured by the FSOI and
DDE metrics. This is consistent with the conclusions of
Eyre (2024), in which it was shown that FSOI gives erro-
neous results when the observation-error variances are
misspecified.

The use of the truth or analysis for validation seems
to have the biggest impact on the DDE results for the
anchor observations. Validating against the analysis diag-
noses a smaller increase in forecast error when halving
the anchor observations than validating against the truth,
especially when the anchor observations are more precise
(see Figure 7).

The inability of the FSOI to capture the relative value
of the anchor observations as measured by DDE could
be anticipated. By its construction, the FSOI is unable to
account for the cumulative effect of the anchoring observa-
tions, which is represented by DDE. However, in practice,
this means that the FSOI is often dominated by radiance
data (Candy et al., 2021), leaving it open for the FSOI
results to be misinterpreted and the anchor observations
to be undervalued when different types of observations are
ranked by their contribution to reducing forecast errors.
Without the anchor observations, VarBC would not be able
to correct the radiance data successfully and so the large
FSOI scores for radiance data should in part be attributed
to the anchor observations. For both the FSOI and DDE
(as we defined it in Equation 22), it is difficult to separate
the anchoring effect of the observations. One approach is
to look directly at the contributions of the different obser-
vation types to the bias-correction coefficients, as proposed
in Ishibashi (2011).

5 SUMMARY OF RESULTS

To maximise the positive impact of satellite radiances in
NWP assimilation, the correction of biases in these radi-
ances should be minimally contaminated with model bias.
A lack of theory has previously limited ability to assess the
effect of model and background bias on the precision and

accuracy of radiance bias corrections, 𝜷a. We have shown
that the accuracy of𝜷a (its bias in estimating the true value,
Equation 11) can be written as a sum of terms depending
on the background bias, the model bias seen by both the
anchor and BC observations, and the model bias seen by
only one observation type (depending on which is later in
the assimilation window).

We demonstrated that the anchor observations can
play a clear role in reducing the effect of the first two
bias sources (the background bias and the model bias seen
by both the anchor and BC observations). This depends
on the spreading of information from the anchor to the
BC observed variables as controlled by the strength of the
background-error correlations between the BC and anchor
observed variables (ĤBCBxĤ ). The strength of the corre-
lations described by ĤBCBxĤ will in part be determined
by the relative spatial and multivariate sampling of the
anchor and BC observations as investigated in F23. In
this current work, we concentrate on the temporal dis-
tribution of the observations and as such ĤBCBxĤ will
include the evolved temporal error correlations given by
M0→tBC BxMT

0→t .
If the BC observations see an additional model error,

then more precise anchor observations cannot reduce the
effect of this bias source but can increase the effect via
an increased sensitivity of the bias-correction coefficient
to the BC observations, K𝛽,BC (see Equation 19). If the
anchor observations see an additional model error, then,
because this term has a different sign from the other terms,
more precise anchor observations can potentially reduce
the overall bias in the analysis of the bias coefficients, 𝜷a

(see Equation 17).
The precision of 𝜷a (the error variance) was shown

to depend on the complementary role of the information
about 𝜷 in the BC observations and the references of the
background state and the anchor observations. It was
found that having the BC observations earlier in the win-
dow gave a more precise 𝜷a, because the uncertainty in the
background state propagated to the time of the BC obser-
vations is smaller. The precision of 𝜷a was also greater if
the anchor observations are later in the window, because
the information the anchor observations provide about 𝜷
would be increased when back-propagated to the time of
the BC observations. This was illustrated for a scalar case
in Section 3.4. This was derived assuming that the model
error is not random, but, if the model error were random
in addition to biased, then this would only enhance this
effect, because the growth in uncertainty with time would
be greater.

We illustrated how these results compare with the
impact of the anchor observations on the accuracy and
precision of the analysis of the state, xa, which is ulti-
mately the metric of interest, in the presence of model
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bias—a much more studied problem (Gauthier et al., 2007;
McNally, 2019). We demonstrated how precise anchor
observations at the end of the assimilation window,
although improving the accuracy of 𝜷a, can degrade the
accuracy of xa.

These analytical results were then used to explain the
behaviour of VarBC in cycled 4DVar experiments using
the Lorenz 96 model when model bias is generated using
an incorrect forcing parameter in the assimilation of the
data. In a cycled system, the analyses of 𝜷 and x will inter-
act, so we cannot focus on the accuracy of one and not
the other. The breakdown of some of the conclusions from
the analytical results as the assimilation system cycles
highlighted, in particular, the importance of VarBC for
reducing the bias in the analysis of the state.

Lastly, using the same Lorenz 96 model experimen-
tal setup, we demonstrated how the use of FSOI and
data-denial experiments, common metrics of observation
impact, can give misleading results regarding the role
of anchor observations. The breakdown in the relative
importance of the anchor and BC observations as mea-
sured by the FSOI and data-denial experiments was seen
to be greatest in the cases in which the contamination
from model bias was greatest.

6 DISCUSSION AND
CONCLUSIONS

The correction of biases in radiance data, via VarBC, is
essential for their successful assimilation and is funda-
mental to the skill of modern-day numerical weather
prediction. VarBC is formulated assuming that the numer-
ical model is unbiased. However, this assumption is often
known to be far from valid. In formulating VarBC, the bias
predictors used to model the characteristics of the radi-
ance biases are chosen to avoid predictors in which model
bias is expected, for example, those involving humidity,
instead focusing on variables where we can have the most
confidence that the model bias is small, for example,
large-scale averages of the background temperature field
(Eyre, 1992). Similarly, the performance of VarBC can also
be improved if the radiances used to compute the bias cor-
rections are limited to regions where the model bias is less
significant, for example, limiting the radiances to those
over the sea, where the surface skin temperature is more
accurately known compared with over land (Eyre, 1992),
or to those that are not affected by cloud, when all-sky
radiances are assimilated. However, these compromises
are not trivial to implement and VarBC still depends on
the availability of another reference for the true state.

Due to the limited reliability of metrics for assess-
ing the value of anchor observations in NWP, this article

instead took the approach of developing and exemplifying
new theory to understand how to optimise the impact
of anchor observations to minimise the contamination of
model bias in VarBC. This new theory explores this ques-
tion by looking at the sensitivity of the contamination
of VarBC by model bias to the weighting of the anchor
observations. In the theoretical results, the weighting was
controlled by changing the precision of the anchor obser-
vations, but, in practice, we could also consider the weight-
ing as a function of the number of anchor observations
(with similar precision) assimilated. In this way, we have
shown the importance of how much of the model bias
seen by the BC observations is also seen by the anchor
observations, concluding that, in general, it is better to
have anchor observations at the end of the assimilation
window so that they can see the maximum amount of
model bias and pass this information to VarBC. It is
also beneficial to have the observations that are to be
bias-corrected closer to the beginning of the window, so
that the background initial state provides a more useful
reference. These results are complementary to our previ-
ous work focused on the spatial distribution of the anchor
observations (F23).

Our work leads to several practical conclusions for
maximising the use of anchor observations. Firstly, in the
current observing system we have a good temporal cov-
erage of both the anchor and radiance observations for
temperature throughout the assimilation window. How-
ever, in applying VarBC to reanalysis there is a sudden
drop off in the number of anchor observations pre-2006
due to the lack of GNSS-RO observations. Therefore, the
theory presented here is crucial to understanding how
to maximise the benefit of a smaller number of anchor
observations and to help guide where efforts should be
made in the pre-processing of observations to increase
the historical anchor observation network: for example,
choosing the assimilation windows such that the avail-
able anchor observations are more likely to fall at the
end of the window. Secondly, looking to the future, the
number of instruments on board satellites is increasing.
With this, we can expect the proportion of satellite radi-
ances assimilated to increase, as well as a greater variety
in the variables to be estimated. Therefore, even with the
current GNSS-RO network, there should be a continued
effort to understand how the anchor observing network
should evolve.

Within the theory presented, we did not consider the
possibility that the anchor observations (i.e., any obser-
vations not bias-corrected) could themselves be biased.
The impact of this source of bias in VarBC can again
be expected to depend on the spreading of information
between the anchor and BC observations and the weight-
ing of the anchor observations. As could be anticipated,
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the more precise the anchor observations are (i.e., the
more weight they are given), the greater the impact of
their biases. Therefore, a clear route for the ongoing
improvement of VarBC is the correction of biases in each
observation type. For some observations, this may involve
extending VarBC if adaptive bias correction is needed
(e.g., for atmospheric motion vectors: Hoffman et al., 2022,
2024). However, to maintain a significant proportion of
anchor observations with good spatial coverage of the key
variables, it is also necessary to increase the network of
anchor observations through the better pre-processing of
observations with biases that can be corrected offline: for
example, aircraft observations (de Haan et al., 2022).

Some operational centres are moving towards online
bias correction of both the observations and the model
using weak-constraint methods. This is a promising
avenue for allowing a greater separability of model and
observation bias by formulating a well-constructed prior
for each term (Lorente-Plazas & Hacker, 2017). However,
the need for a network of anchor observations will persist.
Preliminary numerical results have shown that, even in
the case in which both the model and observation biases
are corrected, the conclusions from this article hold (Fran-
cis, 2023, ch. 8), that is, a more accurate estimate of both
biases can be obtained when the anchor observations are
later in the assimilation window and the observations to
be bias-corrected are earlier.

Model biases are a widespread concern at operational
centres. This work highlights how careful consideration
of the timing and coverage of anchoring observations can
help mitigate the negative impacts of model bias on fore-
cast skill.
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APPENDIX A. DERIVATION OF THE ERROR
IN THE ANALYSIS

The expression for the analysis given by Equation (3) can
be separated out according to the bias-corrected observa-
tions, ŷBC, and anchor observations ŷ (i.e., all obs that are
not corrected by VarBC):

va = vb + Kv

(
ŷBC − ĥBC(vb)
ŷ − ĥ (xb)

)
, (A.1)

where ĥBC is the 4D observation operator mapping the con-
trol vector to the BC observations (i.e., it includes a bias
correction) and ĥ is the 4D observation operator map-
ping the initial state to the anchor observations (i.e., it
does not include a bias correction and so is a function
of x only).

To derive the error in the analysis of the bias coeffi-
cients, we first define the following errors.

• Error in the background augmented state vector: 𝝐b
v =

vb − v†, where v† is the “true” control vector. This can
be separated in terms of the error in the background
state and the background bias-correction coefficients,
𝝐b

v = ((𝝐b
x)T, (𝝐b

𝛽
)T)T.

• Instrument error for the BC observations: 𝝐̂BC = ŷBC −
ĥ†

BC(v
†), where ĥ†

BC is the “true” observation operator for
the BC obs (i.e., it uses the correct model to propagate
the initial state and corrects for the true radiance bias).

• Instrument error for the anchor observations: 𝝐̂ =
ŷ − ĥ† (x†

0), where ĥ† is the “true” observation operator
for the anchor obs acting on the “true” state (x†).

• Model error as “seen” by the BC observations: 𝜼̂BC =
ĥBC(v†) − ĥ†

BC(v
†) (see Section A.3 for further explana-

tion).
• Model error as “seen” by the anchor observations:

𝜼̂ = ĥ (x†
0) − ĥ† (x†

0) (see Section A.3 for further
explanation).

The error in the analysis is then given by

𝝐a
v = va − v†

= vb − v† + Kv

⎛⎜⎜⎝
ŷBC − ĥ

†
BC(vt) + ĥ

†
BC(v†) − ĥBC(v†) + ĥBC(v†) − ĥBC(vb)

ŷ − ĥ
†
(x†) + ĥ

†
(x†) − ĥ (x†) + ĥ (x†) − ĥ (xb)

⎞⎟⎟⎠
= 𝝐b

v + Kv

⎛⎜⎜⎝
𝝐̂BC − 𝜼̂BC − ĤBC𝝐

b
x − Ĉ𝛽𝝐

b
𝛽

𝝐̂ − 𝜼̂ − Ĥ 𝝐b
x

⎞⎟⎟⎠,
(A.2)

where ĤBC and Ĥ are the Jacobians of the 4D observa-
tion operators with respect to the state for the BC and
anchor observations, respectively, and Ĉ𝛽 is the Jacobian of
the bias-correction term with respect to the bias-correction
coefficients.

Expressions for the error in the analysis of the
bias-correction coefficient and state can then be isolated
by separating out the Kalman gain matrix as

Kv =

(
Kx,BC Kx,anc

K𝛽,BC K𝛽,anc

)
. (A.3)

A.1 The error in the analysis of the bias coefficient
Substituting Equation (A.3) into Equation (A.2), we first
obtain an expression for the error in the analysis of the
bias-correction coefficient:

𝝐a
𝛽
= 𝝐b

𝛽
+ K𝛽,BC

(
𝝐̂BC − 𝜼̂BC − ĤBC𝝐

b
x − Ĉ𝛽𝝐

b
𝛽

)
+ K𝛽,anc

(
𝝐̂ − 𝜼̂ − Ĥ 𝝐b

x

)
. (A.4)

In F23 it was shown that

K𝛽,anc = −K𝛽,BCĤBCD, (A.5)
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where D = BxĤT (Ĥ BxĤT + R̂ )−1. This allows us to
rewrite and simplify (A.4) as

𝝐a
𝛽
= 𝝐b

𝛽
+ K𝛽,BC

(
𝝐̂BC − 𝜼̂BC − Ĉ𝛽𝝐

b
𝛽
− ĤBCD𝝐̂

+ ĤBCD𝜼̂ − ĤBC(I-DĤ )𝝐b
x

)
. (A.6)

A.2 The error in the analysis of the state
Following the same methodology as in Section A.1, we can
obtain an expression for the error in the analysis of the
state:

𝝐a
x = 𝝐b

x + Kx,BC

(
𝝐̂BC − 𝜼̂BC − ĤBC𝝐

b
x − Ĉ𝛽𝝐

b
𝛽

)
+ Kx,anc

(
𝝐̂ − 𝜼̂ − Ĥ 𝝐b

x

)
. (A.7)

From F23 we can also derive the relationship

Kx,anc = (In − Kx,BCĤBC)D, (A.8)

so that

𝝐a
x = 𝝐b

x + Kx,BC

(
𝝐̂BC − 𝜼̂BC − ĤBC𝝐

b
x − Ĉ𝛽𝝐

b
𝛽

)
+ (In − Kx,BCĤBC)D

(
𝝐̂ − 𝜼̂ − Ĥ 𝝐b

x

)
= Kx,BC

(
𝝐̂BC − 𝜼̂BC − Ĉ𝛽𝝐

b
𝛽

)
+ (In − Kx,BCĤBC)D

(
𝝐̂ − 𝜼̂

)
+
(

In − Kx,BCĤBC − (In − Kx,BCĤBC)DĤ
)
𝝐b

x

= Kx,BC

(
𝝐̂BC − 𝜼̂BC − Ĉ𝛽𝝐

b
𝛽

)
+ (In − Kx,BCĤBC)D

(
𝝐̂ − 𝜼̂

)
+ (I − Kx,BCĤBC)(In − DĤ )𝝐b

x

= Kx,BC

(
𝝐̂BC − 𝜼̂BC − Ĉ𝛽𝝐

b
𝛽

)
+ (In − Kx,BCĤBC)

(
D
(
𝝐̂ − 𝜼̂

)
+ (In − DĤ )𝝐b

x

)
.

(A.9)

The expected error in the analysis of the state can be
derived assuming that VarBC is applied correctly in the
previous cycle. As explained in Section 2, this is analo-
gous to assuming ⟨𝝐b

𝛽
⟩ = 0 and ⟨𝝐̂BC⟩ = 0. We also have,

by definition, ⟨𝝐̂ ⟩ = 0. Taking the expectation of Equation
(A.9) and substituting in these assumptions then gives

⟨𝝐a
x⟩ = (In − Kx,BCĤBC)

(
(In − DĤ )⟨𝝐b

x⟩ − D⟨𝜼̂ ⟩)
− Kx,BC⟨𝜼̂BC⟩. (A.10)

Equation (A.10) gives the bias in the state at the beginning
of the assimilation window, the time at which the analysis
is defined. This can be propogated forward to derive the

bias in the state at the end of the window, Tend:

⟨𝝐a
x⟩(Tend) = m0→Tend(⟨𝝐a

x⟩(T0)) +
Tend∑
k=1

m0→k(𝜼k). (A.11)

A.3 Derivation of model error “seen” by the
observations
The model error “seen” by the observations is defined as
the difference between the 4D observation operator used in
the assimilation and the true observation operator acting
on the true initial control vector. Assuming that the obser-
vation operator mapping the state at the same time as the
observations to observation space is perfect, then the error
in the 4D observation operator is due to model error only.
In Equation (5) we define the model error as additive at
each timestep, therefore if we have an observation at time i
in the assimilation window, the model error “seen” by that
observation will be

𝜼̂i = ĥi(x†
0) − ĥ†

i (x
†
0)

= hi(m0→i(x†
0)) − hi(m†

0→i(x
†
0))

= hi

(
m†

i→i−1

[
m†

i−1→i−2

(
…

[
m†

2→1

(
m†

1→0(x
†
0) + 𝜼1

)
+𝜼2

]
…

)
+ 𝜼i−1

]
+ 𝜼i

)
− hi

(
m†

i→i−1

[
m†

i−1→i−2

(
…

[
m†

2→1

×
(

m†
1→0(x

†
0)
)]

...
)])

.

Using the first-order Taylor expansion of hi and mi about
x†

i and x†
i−1, respectively, we can simplify this to become

𝜼̂i = Hi
(
Mi−1

[
Mi−2

(
...
[
M1

(
𝜼1
)
+ 𝜼2

]
...
)
+ 𝜼i−1

]
+ 𝜼i

)
= Hi

i∑
k=1

Mk→i𝜼k, (A.12)

where Mk→i = Mi−1Mi−2...Mk is the tangent linear (TL)
model propagating a perturbation to the state at time k
to time i, and Mi→i is the identity. Note that, because the
model error is assumed to be additive, the TLs of the true
and assimilation models are the same.

If we have multiple observations throughout the
assimilation window, then we can define P =

∑Typt
t=1 as

the total number of observations such that 𝜼̂ ∈ RP and
𝜼̂i ∈ Rpi :

𝜼̂ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝜼̂t1

⋮

𝜼̂ti

⋮

𝜼̂tTy

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (A.13)
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As we have assumed that the bias correction is perfect if
the true bias-correction coefficients are known, then the
model error “seen” by both the BC and anchor observa-
tions will have the same form as given in Equation (A.12).

APPENDIX B. THE SENSITIVITY OF THE
ANALYSIS OF THE BIAS- CORRECTION
COEFFICIENTS TO THE BIAS- CORRECTED
OBSERVATIONS, K𝜷,BC

The sensitivity of the analysis of the bias-correction coef-
ficients to the bias-corrected observations, K𝛽,BC, was
derived in Equation (8). Within this Appendix, we show
how K𝛽,BC relates to the analysis-error covariance matrix
in Section B.1. We also explore its limits for a scalar
example in Section B.2.

B.1 Relationship between the sensitivity of the
analysis to the observations and the analysis-error
covariance
The Kalman gain matrix is related to the analysis-error
covariance for an optimal system via the following
equation: Av = (In+r − KvĤv)Bv (Kalnay, 2003).

Av = (In+r − KvĤv)Bv

=

((
In O
O Ir

)
−

(
Kx,BC Kx,anc

K𝛽,BC K𝛽,anc

)(
ĤBC Ĉ𝛽

Ĥanc O

))(
Bx O
O B𝛽

)

=
⎛⎜⎜⎝
(

I − Kx,BCĤBC − Kx,ancĤanc

)
Bx −Kx,BCĈ𝛽B𝛽(

−K𝛽,BCĤBC − K𝛽,ancĤanc

)
Bx

(
Ir − K𝛽,BCĈ𝛽

)
B𝛽

⎞⎟⎟⎠.
Therefore, the analysis-error covariance for the state is

Ax =
(

I − Kx,BCĤBC − Kx,ancĤanc

)
Bx.

Using Equation (A.8), we can rewrite this as

Ax =
(

I − Kx,BCĤBC

)(
I − DĤanc

)
Bx.

Similarly, the analysis-error covariance for the
bias-correction coefficient is

A𝛽 =
(

Ir − K𝛽,BCĈ𝛽

)
B𝛽 . (B.1)

Here we have assumed that the model error is
deterministic. Alternatively, if the model error as seen
by the observations, defined by Equation (A.13), is ran-
dom with ⟨(𝜼̂ − ⟨𝜼̂⟩)(𝜼̂ − ⟨𝜼̂⟩)T⟩ = Q̂ ∈ RP×P, then this will
inflate the analysis-error covariance matrix. It can be
shown that a correction term of the form KvQ̂KT

v should

be added to Av:

KvQ̂KT
v

=

(
Kx,BC Kx,anc

K𝛽,BC K𝛽,anc

)(
Q̂BC Q̂BC,anc

Q̂
T
BC,anc Q̂anc

)(
Kx,BC Kx,anc

K𝛽,BC K𝛽,anc

)T

.

(B.2)

B.2 Scalar case with anchor and bias-corrected
observations at different times
Let us consider the scalar case when the anchor and
bias-corrected observations are at different times.
Let ĤBCBxĤ

T
BC = BBC

x , Ĥ BxĤ
T
= Banc

x , ĤBCBxĤ
T
=

Ĥ BxĤ
T
BC = BBC,anc

x , and Ĉ𝛽 = 1. From Equation (8)
we have

K𝛽,BC = B𝛽

⎡⎢⎢⎣
(

BBC
x + B𝛽 + R̂BC BBC,anc

x

BBC,anc
x Banc

x + R̂

)−1⎤⎥⎥⎦BC,BC

=
B𝛽(Banc

x + R̂ )

(BBC
x + B𝛽 + R̂BC)(Banc

x + R̂ ) − (BBC,anc
x )2

.

As BBC,anc
x increases (i.e., the background-error correla-

tions between the variables observed by the anchor and BC
observations increases), K𝛽,BC increases.

If the model is growing, then the background-error
covariances evolved to the time of the observations will be
greater for whichever observations are later. For example,
let ĤBC = 𝛼Ĥ , implying BBC

x = 𝛼2Banc
x and BBC,anc

x =
𝛼Banc

x . Substitute this into the above expression:

K𝛽,BC =
B𝛽(Banc

x + R̂ )

(𝛼2Banc
x + B𝛽 + R̂BC)(Banc

x + R̂ ) − (𝛼Banc
x )2

=
B𝛽(Banc

x + R̂ )

𝛼2Banc
x R̂ + (B𝛽 + R̂BC)(Banc

x + R̂ )
.

If 𝛼 > 1, that is, the BC are later than the anchor observa-
tions, then K𝛽,BC will be smaller than if 𝛼 < 1, that is, the
BC observations are earlier than the anchor observations.
From Equation (B.1), we can therefore conclude that the
analysis of the bias coefficients will be more precise when
BC observations are earlier in the window and anchor
observations are later in the window.

In the limit as R̂ → 0,

K𝛽,BC →
B𝛽

B𝛽 + R̂BC
.

This is an upper limit. From Equation (B.1), this implies a
lower limit for the analysis-error variance of A𝛽 of

(1 − K𝛽,BC)B𝛽 =
B𝛽 R̂BC

B𝛽 + R̂BC
.
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