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Abstract— This paper explores the need for new systems to
detect and monitor cyberattacks in Connected Vehicles (CVs).
Sensor health in CVs is vital, as prediction errors and com-
munication issues can weaken the sensor network. Intrusion
Detection Systems (IDS) for CVs must be continuously updated
to meet changing needs and be robust against adversarial
attacks. We developed a new Label Flipping system against
Deep learning-based IDS (LFD-IDS) to help cloud operators
understand unusual vehicle sensor data. LFD-IDS specifically
targets detecting and explaining sensor data manipulation from
poisoning attacks. We proposed two label-flipping attacks based
on Bootstrapping and Bagging and a defensive strategy using a
multi-layer deep neural network. Our LFD-IDS achieves at least
90% accuracy in identifying cyberattacks.

Index Terms— Connected vehicle, machine learning, adversar-
ial attacks, cyberattack, intrusion detection systems (IDS).

I. INTRODUCTION

MPLEMENTING vehicular networks within the Intelligent

Transportation Systems (ITS) framework enhances connec-
tivity, safety, and convenience for road users. ITS facilitates
the advancement of Connected Vehicles (CVs) and provides
system administrators with improved traffic management capa-
bilities [1]. However, the increasing autonomy of vehicles,
integration of various wireless communication technologies,
and shift towards network virtualization and cloud computing
have raised significant concerns about potential cyber-attacks
in the pursuit of connected and autonomous vehicles [2]. Con-
nected and autonomous vehicles are viewed as vital systems
for preserving human life. Therefore, strong security measures
must be implemented to protect CVs from cyber attacks and
ensure the safety of drivers, passengers, other road users, and
the environment.

An intrusion detection system (IDS) shows significant
promise in securing networks, as it monitors traffic entering
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and exiting network components to detect any malicious
activity. Various types of IDS exist, each distinguished by its
approach to identifying potential intrusions. One type, known
as anomaly-based detection, employs a predefined model to
characterize normal behavior and then compares incoming
traffic against this standard. Any deviations from normal
behavior are marked as potential attacks [3]. Despite extensive
research, traditional IDS methods face significant challenges in
identifying new and previously unseen attacks. Traditional IDS
often needs to be improved to provide the necessary level of
detection effectiveness, particularly within the highly dynamic
environment of vehicular networks. Consequently, there has
been significant interest from both academia and industry in
adopting cloud-based solutions to align with the advancements
in 5G technology. Recent studies [4] indicate that integrating
Machine Learning (ML) capabilities into IDS can substantially
enhance their accuracy in detecting threats.

ML methods are adept at accurately predicting patterns in
data, but they can be vulnerable when the data comes from
unreliable or uncertain sources. Attackers can exploit this
vulnerability through Adversarial Machine Learning (AML)
attacks. One specific type of AML attack is a Poisoning attack
where adversaries inject malicious perturbations into datasets
that can lead to erroneous results in offline learning models
and real-time decision-making systems [5]. A form of data
poisoning, known as Label-flipping, involves attackers altering
the labels assigned to training samples, which can significantly
degrade the system’s performance.

In [6], AML techniques concentrate on two primary aspects:
i) Attack Complexity, which aims to simplify the process of
creating a malicious attack, and ii) Attacker’s Knowledge,
which refers to the attacker’s understanding of the system’s
architecture, algorithms, and training examples to gain insights
into the detector. A white-box attack occurs when the attacker
has detailed knowledge of the training data, features extracted
from applications, or the system’s architecture, as described
in approaches like [7]. Conversely, if the attacker has limited
knowledge, the attack is termed a black-box attack [8].

The concept of adversarial attack specificity can be
approached in either a fargeted or non-targeted manner. In a
targeted attack, the attacker aims to deceive a classifier in
detection systems by causing all adversarial samples to be
predicted as a specific class, thereby increasing the chances
of achieving a specific adversarial objective. Conversely, non-
targeted attackers arbitrarily target a class by conducting
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various targeted attacks and selecting the one that causes
the least disruption or minimizes the likelihood of correctly
classifying the sample [9].

Many studies have focused on detecting and mitigating
poisoning attacks. For example, an algorithmic technique
evaluates the impact of each training sample on the learning
algorithm’s efficiency [10]. While this method can be effective
in specific scenarios, it is only sometimes applicable to large
datasets. Other defensive strategies, like outlier detection, are
used to identify and remove suspicious samples. However, the
effectiveness of this method is limited, especially in terms
of accuracy when dealing with label-flipping attacks [11].
Another area of research focuses on creating strategies for
learning that can be applied to label flipping. Solutions to
this problem fall into two main categories. The first approach
involves obtaining information directly from the inverted
labels, while the second approach emphasizes using clean
data. In the initial method, the label-flipping component
detects accurately labeled data [12], [13] and modifies the
label alterations to harmonize the data terms within the loss
function. The efficacy of this approach largely hinges on the
precision of label cleaning and the accuracy of identifying
flipped instances. The second method employs an extra set
of adversarial data to direct the learning process in managing
flipped data [14]. While showing encouraging outcomes, both
approaches have shared limitations. They aim to rectify flipped
labels or modify the weights of data samples, potentially
resulting in inaccuracies for specific data points.

Motivated by the aforementioned considerations, this study
introduces Label Flipping against Deep learning-based IDS
(LFD-IDS) architecture to help cloud operators understand
unusual vehicle sensor data. The paper outlines a fleet-based
scenario where vehicle sensor data, such as tyre pressure,
temperature, and location, is collected and transmitted to a
cloud server via a 5G cellular network. The scenario assumes
the attacker has minimal capabilities and lacks knowledge of
the loss function and learning algorithm, but at the same time
has access to training data and can do a white-box attack.
The study demonstrates that better results can be obtained
when the system detects and retrains incorrect labels using the
proposed training method. Consequently, the solution focuses
on correcting mislabeled data points to improve the accuracy
of the classification method. This approach requires accurate
labels for a small portion of the training set while disregarding
the returned labels associated with the rest of the data. This
is followed by training a multi-layer neural network using
this selectively chosen data in a semi-supervised manner.
To summarize, the main contributions of this study are:

« Our main emphasis is on effectively detecting intrusions
within CV systems. To achieve this, we developed a new
architecture called LFD-IDS, which facilitates handling
flipped data.

o In LFD-IDS architecture, we propose two adver-
sarial attacks employing Bootstrapping and Bagging
as label-flipping to disrupt deep learning-based CV
detection.

« We introduce a defence mechanism to counter
label-flipping attacks in CV systems, utilizing K-means
clustering to predict new labels for the training set.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

« We conduct experiments using a real-world dataset from
CV systems featuring four different types of attributes.
These experiments encompass two attack scenarios and
are benchmarked against a non-attack approach. We pro-
vide an in-depth analysis of the resulting trade-offs.

This paper is structured as follows: Section II provides an
in-depth discussion of the problem definition and architecture.
In Section III, we describe the attack model, which is inspired
by AML methods, and the defence strategy designed to
counter these attacks. The experimental results are presented
in Section IV. Finally, Section VI concludes the paper by sum-
marizing the findings and outlining future research directions.

II. SYSTEM MODEL AND PROPOSED ARCHITECTURE

This section outlines the problem definition and proposed
architecture for LFD-IDS.

A. Problem Definition

Let’s analyze the dataset as follows.

S=i,y) e, i=1,...,N (1)

In this context, N represents the number of samples. If x;
includes the j,, feature, then x;; is equal to I; otherwise,
x;j is set to 0. Here, X denotes a subset of a k-dimensional
space, where it comprises elements from the set {0, 1}*. The
samples are assigned labels represented by y; values, which
belong to the set {0, 1}. The distribution of S over X x )
is unspecified. The training set is assumed to be defined as
follows:

L=&Xm,ym), m=1,...1t )

where £ denotes the set of features and labels.

Definition 1: The particular type of poisoning attack is
known as a Label Flipping Attack (LFA). In this attack, the
adversary seeks to alter feature labels using specific algo-
rithms, thereby changing the range of each sample within a
cluster.

The LFA aims to identify a set, denoted as Q, consisting of
samples from L. The attacker seeks to minimize the desired
target by flipping the labels by the following equation:

y =[1-yl 3)

For simplicity, we assume that the attacker seeks to maximize
the loss function, defined as L(w, (x;, y})), where w shows
the ML model.

B. Proposed Architecture

Our proposed architecture for LFD-IDS is specifically
designed to counter adversarial manipulations in CV systems.
This sub-section details the architecture and elaborates on the
capabilities of potential attackers as well as the methods used
to inject malicious data into the dataset.

Fig. 1 illustrates the real-time LFD-IDS architecture. This
architecture centres around monitoring and analyzing sensor
data from CVs, which includes temperature, pressure, and
location data collected from each vehicle’s on-board sensors.
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Fig. 1. Architecture of real-time LFD-IDS in CVs environment; Temp:=
Temperature; Press:= Pressure.

We assume that each vehicle is equipped with sensors that col-
lect data. Then, data is transmitted to a cloud-based server via a
secure 5G/4G connection, where it is processed and analyzed
for potential intrusions and the final model is disseminated
back to the vehicles for deployment. The IDS is implemented
in the cloud. This setup allows for comprehensive data analysis
and management of sensor data from multiple vehicles simul-
taneously, leveraging cloud computing’s extensive processing
power and storage capabilities. The central component of
our architecture is a multi-layer neural network designed to
detect anomalies and classify data points as either benign or
malicious based on learned patterns of sensor behavior. The
final trained model will be shared with all vehicles, and they
can use it.

In details, each vehicle has temperature and pressure sensors
on every wheel, which monitor the internal pressure and
temperature. The Global Positioning System (GPS) receiver
also identifies each vehicle’s location. A 5G/4G base sta-
tion links the location, pressure, and temperature sensors,
gathering the data and sending sensor updates to a cloud-
based database. This sensory system measures temperature in
degrees Celsius, pressure in Pounds per Square Inch (PSI),
and location in degrees of Latitude and Longitude. In this
paper, we only focused on manipulating data (in any way),
but in real world these manipulations can cause the following
issues.

o Attacks on one vehicle can quickly spread to oth-
ers through Vehicle-to-vehicle (V2V) communications,
amplifying the impact of the attack. For example, send-
ing false safety messages could cause other vehicles to
take unnecessary evasive actions, potentially leading to
confusion or collisions.

« Attackers could passively collect data transmitted over
V2V to gather sensitive information, track vehicle move-
ments, or profile driver behavior.

We assume the vehicles can communicate in the LFD-IDS
system, and the incoming CV data stream is stored in a cloud-
based database.

1) Attacker Capabilities: In the scenario envisaged, attack-
ers have specific capabilities that allow them to manipulate
sensor data before it reaches the cloud server. These capabil-
ities include:

« Attackers can access training data used to train the IDS.
This access could be gained through breaches in data
storage or transmission systems. we assume that the
attacker only attacks the dataset and the IDS, which is
trained in the cloud, because there is essentially no other
training step for IDS in vehicles.

« While attackers do not have complete knowledge of the
underlying algorithms and loss functions, they possess
sufficient understanding to manipulate data effectively.
This includes knowledge of data formats, transmis-
sion protocols, and basic neural network architecture
employed by the LFD-IDS.

« We assume that attackers may have access to the training
data transmitted from each sensor to the cloud and may
perturb it. This access could be due to compromising
the communication and eavesdropping on it, and doing
a Man-in-the-Middle attack. The modification can be
perturbing sensor messages and sending them to the
cloud, or even generating fake messages by an attacker.
The added perturbations can adversely affect the model
training process, resulting in a model that fails to accu-
rately classify unseen samples. For example, the attack
may involve flipping the labels of data points in the
training set—mislabeling benign samples as malicious
and vice versa—thereby causing the model to learn from
incorrect data.

o The attacker can affect the labels assigned to collected
data through several methods, primarily targeting the data
before it reaches the cloud-based IDS. Here’s a detailed
explanation of how this could occur:

1) Attackers can intercept the data transmitted from the
vehicle sensors to the cloud. During this intercep-
tion, they can modify the data values and the labels
associated with them. For example, data indicating
normal operations could be altered to appear as
though they signify a cyberattack, or vice versa.

2) If any local preprocessing or labeling occurs in
the vehicle, attackers might compromise the soft-
ware responsible for this initial data handling.
By infecting these systems with malware or exploit-
ing vulnerabilities, they could manipulate the labels
assigned to the data before it is sent to the cloud.

« We assume that an attacker can only alter the data of the
vehicle they control and cannot affect the data of other
vehicles.

Additionally, it is assumed that an attacker might gain access
to some CV sensors, enabling them to alter data sent between
vehicles or the cloud. As a result, the data traffic from each
vehicle could include information from malicious vehicles,
depicted in the figure by devil symbols. Each vehicle produces
a unique feature vector with distinct labels indicating whether
the data is malicious or benign. The attackers aim to mislead
ML models and avoid detection by injecting perturbations
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Fig. 2. The used classification model.

into the data. As a result, within this architecture, adversaries
can infiltrate the dataset and modify the labels by adding
perturbations to the existing data. The final component of our
framework includes our proposed defense methods and an ML
model, which constitutes the detection system. This architec-
ture enhances the detection system’s robustness against LFA
attacks, improving classification accuracy between malicious
and benign entities.

III. PROPOSED ATTACK AND DEFENSIVE SOLUTIONS

This paper employs a sequential deep-learning model to
classify the samples. Fig. 2 depicts the proposed sequential
architecture for the classification method. The figure demon-
strates that the classification method uses three sequential
dense layers with 32, 16, and 8 units and activation functions
of tanh, relu, and tanh, respectively. Following these layers,
a dense layer with a Sigmoid activation function is used to
finalize the classification, resulting in the data being catego-
rized.

In this paper, we proposed two LFA attacks against deep
learning-based IDS and one defence method against attacks,
namely:

1- BOOTLFA: Bootstrapping-based Label Flipping Attack

2- BAGLFA: Bagging-based Label Flipping Attack

3- KCD: K-means-based Clustering Defence

The potential impact of these attacks is significant, particu-
larly in the context of vehicle safety and operational reliability.
Our proposed methods, BOOTLFA and BAGLFA, specifically
target the IDS that are crucial for maintaining the security
of connected vehicle networks. The real-world impact of such
attacks could be profound. Successful implementation of these
attacks could potentially lead to unauthorized access to vehicle
controls and sensitive data. For instance, manipulating sensor
data could cause erroneous vehicle responses, misleading
information displayed to drivers, or inappropriate actions by
autonomous driving systems, all of which could compromise
passenger safety. Additionally, these vulnerabilities could be
exploited to perform more sophisticated attacks, such as
disabling the vehicle remotely or coordinating large-scale
disruptions across a network of vehicles.

The data that can be altered by the attacker consists of
sensor outputs from CVs, which are crucial for the proper

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

functioning and safety of these vehicles. The types of data
that can be targeted by attackers include:

o Temperature Data: Attackers could manipulate read-
ings to fake overheating or cooling situations, which
could mislead the vehicle’s control systems into mak-
ing erroneous decisions, like shutting down the engine
prematurely or failing to regulate operating temperatures
properly.

o Pressure Data: False data could suggest that tire pressure
is either too high or too low, leading to inappropriate
responses from the vehicle, such as unnecessary speed
reduction, alerts that could distract the driver, or even
ignoring genuine tire pressure issues that could lead to
accidents.

o Location Data: Misleading location data could disrupt
navigation systems, leading to wrong routing, delays,
or mismanagement in fleet operations. In more severe
cases, it could also be used to mislead law enforcement
Or emergency services.

o Speed Data: Altering speed data could lead to incorrect
speed readings, potentially causing the driver to violate
traffic laws unknowingly or causing the vehicle’s safety
systems to engage or disengage inappropriately.

o Fuel Level Data: By manipulating fuel level readings,
attackers could cause drivers to believe they have either
more or less fuel than is actually the case, potentially
leading to stranded vehicles or unnecessary fuel stops,
which could also compromise routing efficiency and
safety.

A. BOOTLFA: Bootstrapping-Based Label Flipping Attack

This work introduces a novel adversarial attack strat-
egy called BOOTLFA (Bootstrapping-based Label Flipping
Attack). This method is designed to evaluate the resilience
of ML-based IDS models to adversarial label noise, a com-
mon threat in real-world applications. The BOOTLFA method
builds upon the traditional bootstrapping technique, which
involves creating multiple bootstrap samples from an original
dataset by randomly selecting data points with replacements.
These samples are then used to train multiple models, with
each model capturing different aspects of the data distribution.

BOOTLFA introduces controlled label noise during boot-
strapping to transform bootstrapping into an adversarial attack.
Specifically, for each bootstrap sample, a fraction p of the
selected data points have their labels flipped, thereby injecting
noise into the training data. The fraction p represents the
intensity of the attack, allowing us to systematically explore
the model’s vulnerability to different levels of label corruption.
This method is presented in Alg. 1. In this pseudo-code, the
adversary with access to the training data performs the label
flipping operation, corresponding to lines 1 to 6 of the above
algorithm. The subsequent steps follow the standard procedure
of the Bootstrapping algorithm.

The Time Complexity of the BOOTLFA method includes
the following parts. First, the sampling process has a time
complexity of O(N) per iteration. Since this is repeated for
B iterations, the total time complexity for bootstrapping is
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Algorithm 1 BOOTLFA Algorithm

Algorithm 2 BAGLFA Algorithm

Require: Dataset D with N samples, number of bootstrap
samples B, label flipping fraction p
1: for each i € {1,2,..., B} do
2: Generate a bootstrapped dataset D; by randomly
selecting N samples from D with replacement
Randomly select a fraction p of samples from D;
for each selected sample s € D; do
Flip the label of sample s
end for
Train model M; on D;
end for
Aggregate the results of models {M;, M>, ..
evaluation

R A

., Mp} for

Require: Dataset D with N samples, number of subsets B,
label flipping fraction p
1: for eachi =1to B do
Generate a subset dataset D; by randomly selecting
N samples from D with replacement
Randomly select a fraction p of samples from D;
for each selected sample s in D; do
Flip the label of sample s
end for
Train model M; on D;
end for
Aggregate the results of models {M;, M>, ..
evaluation

n

R A

., Mp} for

O(B x N). Next, the selection and flipping operation takes
O(p x N) time per iteration. For B iterations, the total time
complexity for label flipping is O(B x p x N). Given that
p is typically a small constant, this simplifies to O(B x N).
Let the time complexity for training a model on N samples
be O(T(N)). Over B bootstrap iterations, the total time
complexity for model training is O(B x T(N)). Therefore,
the overall time complexity of the BOOTLFA algorithm
is O(B x (N + T(N))), where T(N) represents the time
complexity of training the ML model in the size data set
N. This time complexity signifies reasonable efficiency for
practical implementations, especially in real-time monitoring
systems that require rapid response.

B. BAGLFA: Bagging-Based Label Flipping Attack

Like BOOTLFA, we propose an adversarial technique called
BAGLFA (Bagging-based Label Flipping Attack), which is
also designed to assess the robustness of ML models against
adversarial label noise.

Bagging is an ensemble learning technique in which mul-
tiple subsets of the original dataset are created by random
sampling with replacement. Each subset is used to train
a separate model, and the final prediction is obtained by
aggregating the outputs of these models, typically through
majority voting or averaging. This method effectively reduces
variance and improves the stability of the model’s predictions.

The BAGLFA method extends this approach by introducing
label noise into each subset during sampling. Specifically,
a fraction p of the labels in each subset is intentionally flipped,
simulating a scenario where an adversary has corrupted the
training data.

The methods presented in algorithms 1 and 2 are similar.
The only difference is that BOOTLFA focuses on using
bootstrap samples to capture the variability of the dataset
while evaluating the model’s resilience to label noise, typically
emphasizing the distributional robustness; however, BAGLFA
emphasizes generating diverse subsets and aggregating the
results to reduce variance and improve model stability under
label noise.

The Time Complexity of the BAGLFA method can be
analyzed based on its key steps. First, the time complexity
for generating a single subset is O(N). Since B subsets are

generated, the total time complexity for this step is O(B - N).
Next, the time complexity of selecting and flipping the labels
for a single subset is O(p - N). Given B subsets, the total
time complexity for this step is O(B - p - N). Since B models
are trained, the total time complexity for model training is
O(B- f(N)), where f(N) depends on the specific model being
trained (e.g., linear models, decision trees, neural networks).
Summing the complexities of these steps, the overall time
complexity of the BAGLFA method is:

OB-(1+p)-N+B- f(N))

This time complexity signifies reasonable efficiency for
practical implementations, especially in real-time monitoring
systems that require rapid response.

C. KCD: K-Means-Based Clustering Defence

To address the above attacks, this sub-section details the
K-means-based Clustering Defence (KCD) countermeasure,
BOOTKCD and BAGKCD. Based on the KCD approach, they
are designed to counter BOOTLFA and BAGLFA.

KCD, presented in algorithm 3, is designed to mitigate
label-flipping attacks. The method first applies the K-means
algorithm to cluster training samples and predict initial labels.
It then analyzes the Euclidean distances between each sample
and its assigned cluster centroid to identify potential label
flips. Samples with distances below the mean are considered
likely to be correctly labelled within their cluster. Based on this
analysis, the original labels are updated, and the classification
model is retrained using the refined labels. KCD enhances
model robustness by correcting poisoned data, leveraging the
similarity between related samples to restore label integrity.

The Time complexity of the KCD can be analyzed based
on its essential steps. First, the K-means algorithm has a time
complexity of O(I -k- N -d), and for this specific application,
where k = 2, it simplifies to O (I - N -d). Next, calculating the
Euclidean distance between each sample x; and the centroid
of its assigned cluster involves O (N -d) operations. The label
flipping operation requires checking whether the distance for
each sample is less than the mean distance w, which results
in O(N) comparisons. Retraining the classification model on
the updated dataset has a time complexity of O(f(N,d)),
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Algorithm 3 KCD Algorithm
Require: D: Train data with N samples, k: Number of
clusters
Ensure: Updated labels for the dataset D
1:  Apply K-means algorithm to cluster D into k = 2
clusters.
2: Assign cluster labels to each sample x; € D.
3: for each sample x; in the dataset D do
4: Calculate the Euclidean distance between x; and the
centroid of its assigned cluster.
5: end for
6: Calculate the mean distance w of all distances obtained.
7: for each sample x; € D do
8
9

if Distance d(x;) < 1 then

: Flip the label of x; to the predicted label
10: end if
11: end for
12: Original labels in D <— new predicted labels

where f (N, d) depends on the specific model being retrained.
For instance, if a linear classifier is used, f(N, d) could be
O(N - d), but this complexity may vary based on the model
used. Summing the complexities of these steps, the overall
time complexity of the KCD algorithm becomes:

ON-d-(I+1)+ N+ f(N,d))

In this complexity, I is the sample number and its maximum
value is N. Therefore, the final time complexity is:

O(N?-d + f(N,d))

IV. EXPERIMENTAL EVALUATION

This section presents the simulation results of our proposed
methods for both attacks (BOOTLFA and BAGLFA) and
defence (BOOTKCD and BAGKCD). When KCD is used to
defend against BOOTLFA, we refer to it as BOOTKCD, and
when it is used against BAGLFA, we refer to it as BAGKCD.

A. Simulation Setup

The following sections outline the test metrics, dataset,
features, classification parameters, and the defence algorithm
used for comparison.

1) Test Metrics: We use the following metrics to compre-
hensively evaluate our attack and defense methods. All metrics
are calculated based on the confusion matrix, including:

TP: The model correctly identifies a cyberattack.

TN: The model correctly identifies a normal instance.

FP: The model misclassifies a normal instance as an attack.

FN: The model misclassifies a cyberattack as normal.

o Accuracy refers to the overall effectiveness of the ML
model in correctly classifying both normal and attack
samples. Accuracy can calculated by equation (4):

TP+TN
TP+TN+FP+FN

Accuracy =
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o Precision measures the model’s accuracy in identifying
true cyberattacks among all instances it has classified as
attacks, as equation (5):

. Trp
Precision = —— ®))
TP+ FP
e Recall measures the model’s ability to identify all
actual cyberattacks correctly. This can be expressed as
equation (6):
TP

Recall = ————— (6)
TP+ FN

e FNR measures the proportion of actual cyberattacks
incorrectly identified as normal by the model. It can be
calculated by equation (7):

FN
~ TP+FN
e FI-Score is a metric that combines precision and recall to
provide a single measure of a model’s performance. It is
beneficial when dealing with imbalanced datasets with a
trade-off between precision and recall. It is defined as an
equation (8):

FNR )

Precision x Recall
F1— Score=2x — ¥
Precision + Recall

e AUC: evaluates all possible thresholds to identify the
best model for unbalanced datasets, preventing overfit-
ting and indicating better performance by distinguishing
between attacks and non-attacks. This can be calculated

as equation (9):
TN
) )

1 TP
AUC = = +
2\TP+FP  TN+FP

2) Datasets: In the experiments, we utilize the dataset
from [15], which comprises information on the Temperature,
Pressure, and Location of multiple fleets and vehicles.

3) Features: This study examines different sample
attributes such as temperature, pressure, latitude, and
longitude. These are outlined as follows, and each of themis
collected by a sensor:

o Temperature: This sensor is crafted to measure a tyre’s
rapidly changing surface temperature, offering crucial
insights for adjusting chassis settings and enhancing
driver performance.

o Pressure: The tire-pressure monitoring system, referred
to as Pressure, oversees the air pressure in the pneumatic
tyres of vehicles. It furnishes drivers with instant updates
on tyre pressure through a gauge, pictogram display, or a
leading low-pressure warning indicator.

o Latitude: This sensor is designed to determine a vehicle’s
position using GPS, which includes longitude and latitude
coordinates.

o Longitude: This sensor is designed to determine a vehi-
cle’s position using GPS, which includes longitude and
latitude coordinates.

The dataset was chosen for its critical relevance to the opera-

tion and safety of connected vehicles, featuring essential data
types like temperature sensors for monitoring engine heat,
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tire-pressure sensors for optimal road contact, and GPS data
for navigation and traffic management. It includes labeled
instances of both normal operations and various attack sce-
narios such as spoofing and sensor tampering, providing a
robust ground truth for precise training and validation of
our LFD-IDS. This enables the system to effectively learn
and distinguish between legitimate and malicious alterations.
Additionally, the dataset mirrors the realistic cybersecurity
challenges prevalent in ITS, encompassing typical data tam-
pering and spoofing attacks, thus ensuring the dataset’s
applicability to current industry needs.

The attack instances within the dataset were generated
using a methodology known as the “outlier data method”,
which is designed to simulate anomalous conditions within
the sensor data indicative of potential cyber-physical attacks
or malfunctions [15]. This method involves the following key
steps:

« Data Collection: The authors initially collected a baseline
dataset under normal operational conditions of the con-
nected vehicles’ sensor systems. This data encompassed
various sensor outputs under a wide range of driving
scenarios and conditions to ensure a comprehensive rep-
resentation of typical operational data.

e Outlier Simulation: To simulate attack instances, the
authors introduced outliers into this real-world data.
These outliers represent hypothetical attack vectors, such
as sudden, unrealistic changes in sensor readings or
patterns that deviate significantly from established norms.

e Outlier Implementation: The implementation involved
selectively manipulating sensor data points to reflect
potential failures or attacks. For example, values from
pressure sensors might be altered to exceed typical oper-
ational ranges dramatically, mimicking the effect of a
sensor being compromised.

o Dataset Labelling: Each modified instance was labelled
accordingly as an attack scenario, differentiating it from
normal operational data. This labelling is essential for
training the machine learning models to distinguish
between normal operations and potential threats or fail-
ures.

4) Parameter Setting: To ensure the robustness of our
proposed IDS and counteract potential biases, we employ a
train-test split methodology, which is essential for an unbiased
assessment of model performance. Our dataset is segmented
into three parts: 60% for training, 20% for validation, and
20% for testing. This segmentation is randomly executed using
various seeds to boost the generalizability of our findings.
We focus our analysis on four key features pertinent to
connected vehicle operations. To further validate the integrity
of our evaluation, we repeat this random partitioning ten times
for each algorithm, using different seeds to cultivate a variety
of training, validation, and testing conditions. We then average
the performance metrics across these iterations to ensure a
reliable evaluation of each algorithm’s effectiveness.

The experimental setup is standardized on a
high-performance computing environment to handle the
computational demands of our models. All methods are

40
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Epoch Number
i No Attack BOOTLFA (30 %) =il BAGLFA (30 %)
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___________________________________ s

@il BAGLFA (40 %) ~ eslimss BOOTLFA (50 %)

Fig. 3. Comparing the accuracy (in %) of attack methods for 30%, 40%,
and 50% poison data in 10 epoch for training deep learning.

implemented using Python 3.7.6 and executed on an Intel
Xeon CPU ES5-2667, clocked at 3.3GHz, with access
to 190 GB RAM and 32 CPU cores. The operating system
used is Ubuntu Server 18.04, ensuring a stable and consistent
platform for all tests.

B. Experimental Results

We employed the Multilayer Perceptron (MLP) model to
differentiate between benign and malicious data. The benign
data were obtained from [15], while the malicious data
were generated through outlier data methods. In this section,
we assess the performance of our proposed attack algorithms,
BOOTLFA and BAGLFA, on the initially trained classifier.
Additionally, we validate our defence algorithms, BOOTKCD
and BAGKCD, using the same dataset.

The training results presented encompass 10 epochs. Sub-
sequent to this training phase, we assessed the final model
using the test data to validate the robustness and accuracy of
our approach. It’s important to note that the results in Table I
and Figs. 3 and 4 correspond to the final epoch (epoch number
10) of training. Meanwhile, Fig. 5 presents the results obtained
on the test data.

1) Comparing Proposed Methods in Training: The results
of the training step are presented in Fig. 3. This figure
illustrates the training performance of our proposed deep learn-
ing models under varying intensities of label-flipping attacks,
specifically BOOTLFA and BAGLFA, across ten epochs. The
y-axis represents the accuracy percentage achieved by the
models, and the x-axis denotes the epoch number from 1 to 10.
The training accuracies are plotted for two types of attacks
(BOOTLFA and BAGLFA) at three different intensities (30%,
40%, 50%) of label flipping.

Under conditions where no attack has occurred, the model
consistently maintains an accuracy exceeding 98%. For the
BOOTLFA at 30% label flipping, accuracy starts at 67.18%
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TABLE I
COMPARING THE ML METRICS VALUES FOR 30%, 40%, AND 50% POISON DATA (%).(TRAINING DATA- FINAL EPOCH)

Algorithms Precision Recall F1-Score
30% 40% 50% 30% 40% 50%  30% 40% 50%
BOOTLFA 6836 65.64 6697 61.13 5459 57.67 5221 4557 48.66
BOOTKCD 9998 99.79 99.89 9998 9995 9996 100 99.96  99.98
BAGLFA 8225 80.98 81.61 6796 6505 6647 4945 4622 4748
BAGKCD 99.98 9993 9996 9995 9993 9994 9998 99.86 99.93

and fluctuates mildly, peaking at 70.24% in the fifth epoch
before declining slightly to 67.26% by the final epoch. In con-
trast, the BAGLFA at the same intensity shows a more
consistent improvement, starting at 69.03% and reaching a
high of 81.66% by the final epoch, indicating a more robust
resilience against the attacks as the training progresses.

At 40% label flipping, both BOOTLFA and BAGLFA
demonstrate lower initial accuracies. However, BAGLFA
shows a steady improvement, starting at 56.66% and ris-
ing to 66.49%, suggesting better adaptability compared to
BOOTLFA, which starts higher at 60.47% but ends only
slightly improved at 61.14%. The 50% label flipping scenario
presents the most challenging conditions, with both attacks
starting below 50% accuracy. BOOTLFA shows a slight
improvement over the epochs, ending at 51.09%, whereas
BAGLFA remains fairly consistent but lower, ending at
50.04%. This visualization underscores the varying impacts of
label-flipping intensities on training dynamics and highlights
the comparative resilience of BAGLFA to higher degrees of
adversarial manipulation compared to BOOTLFA.

a) Comparing based on Precision, Recall and F1-score:
Table I presents a comprehensive comparison of ML metrics
across different levels of data poisoning for 30%, 40%, and
50% poisoned data. These metrics include Precision, Recall,
and F1-Score for various algorithmic approaches: No Attack,
BOOTLFA, BOOTKCD, BAGKCD, and BAGLFA.

No attack scenario serves as a baseline, with consistently
high scores across all metrics approaching near perfection
(above 99.93%). This indicates optimal model performance
without adversarial interference, validating the efficacy of
the training process under controlled conditions. Notably,
the BOOTLFA significantly deteriorates model performance.
Precision and Recall decrease with increasing poison data,
showing a drop in Precision from 68.36% at 30% poisoning
to 66.97% at 50%, and an even starker drop in Recall from
61.13% at 30% to 57.67% at 50%. This illustrates the disrup-
tive impact of BOOTLFA on the model’s ability to correctly
identify and classify data points under adversarial attack
conditions. The F1-Score also shows a decline, suggesting
that BOOTLFA effectively compromises both the accuracy and
the completeness of the predictions. Applying the BOOTKCD
restores the metrics to near-baseline levels. Precision and
Recall are almost fully recovered, and the F1-Score reaches
100% at 30% poisoning, demonstrating the effectiveness of
KCD in mitigating the adverse effects of BOOTLFA.

The BOOTKCD and BAGKCD defensive methodologies
exhibited robustness comparable to the No Attack scenario,
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Fig. 4. Comparing proposed method based on FNR and AUC (training data-
final epoch).

with only minor deviations in Precision and Recall observed
across different levels of data poisoning. This robustness
underscores the efficacy of the proposed defensive strategies
in maintaining system integrity under adversarial conditions.
However, a comparative analysis with scenarios where no
attacks were conducted reveals that despite the defenses’ effec-
tiveness, the attacks have succeeded in slightly diminishing
the accuracy and in elevating the FPR. This indicates that
while the defensive methods significantly mitigate the impact
of the attacks, they do not completely negate the adver-
saries’ ability to affect system performance. Nevertheless, the
resilience demonstrated by the defensive strategies highlights
their potential in safeguarding systems against sophisticated
cyber threats, thus providing a reliable shield in maintaining
operational accuracy and security.

b) Comparing methods based on FNR and AUC: Fig 4
presents a detailed analysis of the FNR and AUC metrics
across various scenarios, including no attack, different intensi-
ties of BOOTLFA and BAGLFA (30%, 40%, 50%), and their
respective defences BOOTKCD and BAGKCD.

The no-attack scenario shows an FNR of 2.60% and an
AUC of 25.11, establishing the performance benchmark in
a secure environment. BOOTLFA significantly increases the
FNR, indicating a higher rate of missed cyberattacks as
the intensity of perturbation increases—rising to 54.42% at
50%. Conversely, AUC generally increases with the intensity
of the attack, suggesting a decrease in the overall model’s
ability to distinguish between classes effectively. BOOTKCD
effectively mitigates the impact of BOOTLFA across all per-
turbation levels, substantially lowering the FNR close to the
no-attack scenario and maintaining a stable AUC. This high-
lights BOOTKCD’s robustness in correcting misclassifications
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caused by the attack. The high FNR at the intensity of 30%
indicates a significant degradation of the model’s ability to
detect actual attacks. This can be attributed primarily to the
nature of the BOOTLFA attack, which, through its method-
ology of bootstrapping and label flipping, creates a specific
noise pattern in the training data. This noise may have caused
the model to misclassify actual attacks as benign activities
more frequently than anticipated. The label flipping inherent
in BOOTLFA introduces systematic errors into the training
dataset, effectively misleading the learning algorithm during
the model training phase. Such distortions in the training data
likely contribute to the model’s increased difficulty in correctly
identifying attack instances, resulting in a higher FNR. This
result also underscores potential limitations in the model’s
detection capabilities under adversarial conditions.

Like BOOTLFA, BAGLFA considerably impacts the FNR,
indicating a sizable number of attacks going undetected,
especially at higher perturbations (reaching up to 53.77% at
50%). The AUC for BAGLFA shows a decline, particularly
noticeable as the perturbation increases, reflecting a compro-
mised ability to separate the classes under attack conditions.
In contrast, BAGKCD significantly reduces the FNR, bringing
it close to the no-attack scenario, and helps maintain an accept-
able level of AUC. This defence strategy proves effective even
at higher attack levels, underscoring its capability to restore
model reliability.

2) Comparing Proposed Methods in Test: Fig. 5 illustrates
the testing accuracy of our ML models under no attack
conditions and various adversarial attack scenarios at different
levels of data perturbation (30%, 40%, and 50%). These
scenarios include BOOTLFA, BAGLFA, and their respective
BOOTKCD and BAGKCD.

o No Attack Performance: As a control, the models main-
tain a consistently high accuracy of 99.96% across all
perturbation levels, serving as a benchmark for evaluating
the impact of adversarial conditions.

« Impact of BOOTLFA: This attack significantly reduces
model accuracy, particularly as the level of perturbation
increases—from 67.26% at 30% perturbation to 51.09%
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The comparison of different models trained with 30%, 40%, and 50% poison data- Accuracy on Test Data.

at 50%. This demonstrates the attack’s effectiveness in
degrading model performance.

o Efficacy of BOOTKCD: The K-means-based defence
strategy (BOOTKCD) effectively neutralizes the impact
of BOOTLFA, restoring accuracy to near perfect levels
(above 99.85% across all perturbations), illustrating its
robust defensive capability.

o Impact of BAGLFA: While less detrimental than
BOOTLFA, BAGLFA still notably decreases accuracy,
with a gradual decline as perturbation increases, reaching
as low as 48.98% at 50% perturbation. This indicates the
model’s significant vulnerability to this type of attack at
higher perturbation levels.

o Efficacy of BAGKCD: Similarly to BOOTKCD,
BAGKCD substantially mitigates the effects of BAGLFA,
restoring accuracies to nearly the same levels as the no
attack scenario (99.93% at 50% perturbation), highlight-
ing the effectiveness of the defence mechanism.

3) Comparing Proposed Methods With State-of-the-Art: As
depicted in Table II, our work stands out distinctly in the
landscape of IDS for Connected Vehicles. The comparison
highlights several unique aspects of our approach:

« Unlike existing approaches listed in the table, our system
is specifically designed to address model poisoning and
data poisoning attacks through adversarial training and
clustering-based defenses.

e Our work is the only one in the comparison that uti-
lizes real-world data from connected vehicles, sourced
from [15]. Other studies often repurpose datasets from
general computer networks or simulations that may not
accurately represent the unique challenges faced by con-
nected vehicle environments.

« The time complexity of our proposed LED-IDS is O(N?),
which is comparable to other state-of-the-art methods
while providing real-time detection capabilities, a critical
requirement for IDS in vehicular networks.

o The LFD-IDS system is designed to operate in real-time,
a significant advancement over several other listed meth-
ods. This capability allows for immediate identification
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TABLE I
COMPARISON BETWEEN DIFFERENT IDS IN CONNECTED VEHICLES AND SIMILAR AREAS

Ref. Application Adversarial attack Type Defense Dataset Time complexity RT
[16] VANET safety — — SRoutingMetrics — —
[17] Anomaly Detection — — AIS dataset — —
[18] DS - - NSL-KDD -
[19] Internet of Vehicles — - CAN and CICIDS2017 O(N?) —
[20] Internet of Vehicles — — CIDS2017 and Car-Hacking O(N) -
[21] IoT Network - - TON IoT O(NZlogN) v
[22] Malware Model Poisoning Adversarial Training CICIDS2018 O(N) -

LFD-IDS IDS in Connected Vehicle Data Poisoning Clustering based Real world data from [15] O(N?) v

and response to threats, an essential feature for main-
taining the safety and reliability of connected vehicle
systems.

To our knowledge, no existing studies integrate real con-
nected vehicle data, specific adversarial attack scenarios, and
real-time processing capabilities into a single IDS framework
as effectively as our LFD-IDS system does. This unique com-
bination not only addresses conventional IDS challenges but
also specifically caters to the complex dynamics of connected
vehicle environments. The use of real-world data enhances the
practical applicability and robustness of our system, estab-
lishing a new benchmark in the field and ensuring that our
results are directly relevant to actual operational conditions of
connected vehicles.

V. DISCUSSION

This study presented an extensive evaluation of the
effects of label-flipping attacks (BOOTLFA and BAGLFA)
and the corresponding K-means-based Clustering Defense
strategies (BOOTKCD and BAGKCD) on the performance
of IDS in CVs. The results underscore significant vul-
nerabilities introduced by adversarial attacks and highlight
the robustness of proposed Defences in mitigating these
threats.

The BOOTLFA and BAGLFA attacks substantially
degraded system performance. The increasing perturbation
levels (30%, 40%, 50%) indicate a higher likelihood of the
IDS failing to detect actual attacks, thereby compromising
the security of the CV system. Similarly, BAGLFA’s impact,
although slightly less severe than BOOTLFA, still presented a
significant challenge, especially at higher perturbation levels,
highlighting the susceptibility of deep learning-based IDS to
sophisticated adversarial manipulations.

Implementing BOOTKCD and BAGKCD, effectively coun-
tered the adversarial impacts. This resilience suggests that
leveraging clustering algorithms to detect and correct label
anomalies significantly enhances the robustness of IDS
against adversarial attacks. The success of these strategies
is attributed to their ability to discern and rectify misla-
beled data, thus preserving the integrity of the learning
process.

As a result, applying BOOTKCD and BAGKCD introduces
a robustness-enhancing effect on the model. These defense
mechanisms are designed to correct label flips and other forms
of data corruption. In doing so, they inadvertently aid the
model in developing a resilience not just against adversarial
manipulations but also against any noise inherently present in
the dataset.

This noise could include mislabeled instances or subtle
non-adversarial anomalies, which are not explicitly targeted
under the no attack condition. Also, both BOOTKCD and
BAGKCD employ techniques that can detect and mitigate
outliers or anomalous data points effectively as part of their
defense strategy. This capability might lead to a cleaner and
more reliable training dataset compared to the original dataset
used in the no-attack scenario, where such anomalies are not
corrected.

Finally, the process of defending against label-flipping
attacks often involves identifying and correcting mislabeled
data points. This correction process not only defends against
adversarial actions but can also rectify pre-existing label errors
in the training dataset. Consequently, this ‘cleansing effect’
might result in a model that performs better than one trained
on the uncorrected dataset.

The findings from this study underscore the urgent need for
robust defensive strategies within CV ecosystems. As vehicles
become increasingly connected and rely on ML for critical
functions such as intrusion detection, such strategies become
paramount. The demonstrated efficacy of KCD in this study
suggests that integrating such methodologies could be crucial
in developing next-generation IDS that are both resilient to
and capable of evolving in response to adversarial threats.

VI. CONCLUSION AND FUTURE DIRECTIONS

This paper presents significant contributions to the field
of adversarial machine learning to detect cyber attacks on
Connected Vehicle (CV) systems. The authors proposed two
novel adversarial attack methods -BOOTLFA and BAGLFA
- that leverage Bootstrapping and Bagging as a label-
flipping attack. They also introduced comprehensive defence
mechanisms, BOOTKCD and BAsGKCD that leverage K-
means-based Clustering Defence (KCD) to mitigate attacks
and maintain model accuracy. Experimental evaluations on
datasets validated the proposed attacks and demonstrated
the robustness of the defence mechanisms in mitigating the
impact of attacks and maintaining model accuracy. For future
research, the authors suggest focusing on optimizing adversar-
ial defence mechanisms. This can be achieved by exploring
novel techniques for hyperparameter tuning, adjusting model
architectures, and fine-tuning training processes to enhance
the generalizability and adaptability of defences across diverse
datasets and attack scenarios.
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