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 a b s t r a c t

This work proposes a unified framework for portfolio allocation, covering both asset selection and optimiza-
tion, based on a multiple-hypothesis predict-then-optimize approach. The portfolio is modeled as a structured 
ensemble, where each predictor corresponds to a specific asset or hypothesis. Structured ensembles formally link 
predictors’ diversity, captured via ensemble loss decomposition, to out-of-sample risk diversification. A struc-
tured data set of predictor output is constructed with a parametric diversity control, which influences both the 
training process and the diversification outcomes. This data set is used as input for a supervised ensemble model, 
the target portfolio of which must align with the ensemble combiner rule implied by the loss. For squared loss, 
the arithmetic mean applies, yielding the equal-weighted portfolio as the optimal target. For asset selection, 
a novel method is introduced which prioritizes assets from more diverse predictor sets, even at the expense 
of lower average predicted returns, through a diversity-quality trade-off. This form of diversity is applied be-
fore the portfolio optimization stage and is compatible with a wide range of allocation techniques. Experiments 
conducted on the full S&P 500 universe and a data set of 1300 global bonds of various types over more than 
two decades validate the theoretical framework. Results show that both sources of diversity effectively extend 
the boundaries of achievable portfolio diversification, delivering strong performance across both one-step and 
multi-step allocation tasks.

1.  Introduction

The problem of portfolio allocation with a quantitative approach 
was introduced by Harry Markowitz in 1952 in the so-called Modern 
Portfolio Theory (MPT) (Markowitz, 1952). It consists of two phases: 
asset selection and portfolio weight optimization. The asset selection 
phase decides which assets from a larger set, such as a market, will be 
included in the portfolio, which has a fixed number of assets but not 
predetermined choices or weights. The portfolio weight optimization 
phase determines the percentage of capital allocated to each selected 
asset. It also has the merit of introducing the concept of diversification 
as a fundamental component in risk management for investments. In 
this specific case, diversification is induced by the covariance matrix 
(Markowitz, 1952). Since then, a large number of methods known as 
"plug-in" (or data-driven) approaches have been developed which use 
optimization inputs with improved estimates of future returns (Best & 
Grauer, 1991; Broadie, 1993; Giglio, Kelly, & Xiu, 2022).

The standard data-driven approach to portfolio choice optimiza-
tion replaces population parameters with their sample estimates, which 
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leads to poor out-of-sample performance due to parameter uncertainty 
(Zhang, Li, & Guo, 2018). This issue is typically addressed by deriv-
ing expected loss functions that quantify the impact of using sample 
means and covariance matrices to estimate the optimal portfolio (Kan 
& Zhou, 2007). Other researchers have focused on portfolio optimiza-
tion using robust estimators, which can be computed by solving a single 
non-linear programming problem (DeMiguel & Nogales, 2007; Lassance, 
Martin-Utrera, & Simaan, 2023). Shrinkage techniques adjust extreme 
coefficients toward more central values in the sample covariance matrix 
to reduce estimation error, often incorporating a parameter to control 
the level of shrinkage (Bodnar, Parolya, & Thorsen, 2024; Ledoit & Wolf, 
2003).

Some researchers have also employed the use of predictive mod-
els to optimize decision-making processes, often with the objective 
of minimizing decision-related costs. Such a conventional "predict-
then-optimize" paradigm decouples prediction and decision-making into 
two distinct stages: firstly, a predictive model is developed to maxi-
mize predictive accuracy; secondly, decisions are derived based on the 
model’s outputs and associated cost functions. A significant limitation
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of this approach is its failure to incorporate cost considerations dur-
ing the predictive modeling phase (Donti & Kolter, 2017). To ad-
dress this shortcoming, recent advances have introduced integrated 
methodologies such as "predict-and-optimize" (Vanderschueren, Ver-
donck, Baesens, & Verbeke, 2022; Wilder, Dilkina, & Tambe, 2019) 
and Smart "Predict, then Optimize" (SPO) (Elmachtoub & Grigas, 
2017). These approaches bridge the gap between structured predic-
tion and cost-sensitive optimization, offering a robust solution for en-
hancing decision-making processes (Kotary, Vito, Christopher, Henten-
ryck, & Fioretto, 2023). These approaches, however, are computation-
ally expensive and mostly focus on solving the classification problems
(Goh & Jaillet, 2016).

While the aforementioned solutions reduce parameter uncertainty 
and can improve out-of-sample performance, they fail to establish a con-
nection between in-sample and out-of-sample diversification, which is a 
key feature addressed in this work. In this context, a framework is pro-
posed for portfolio optimization using structured ensembles for predic-
tion with multiple hypotheses. Each portfolio component corresponds 
to a hypothesis, with its return series modeled by an individual predic-
tor. This approach differs from return forecasting (Ma, Han, & Wang, 
2021) or scoring models (Nguyen & Lo, 2012; Zhao, Liu, Wu, Zhang, & 
Zhang, 2022), where models are used to score assets and predict their re-
turns before applying optimization techniques for portfolio allocation. 
Building on prior research, the degree of diversity in ensemble learn-
ing is parametrically controlled during predictor training and encoded 
in a structured data set of predictions (Dominguez, Shahzad, & Hong, 
2025). This data set serves as input for an ensemble model designed to 
predict portfolio returns. The ensemble model is optimized as a super-
vised prediction problem, using as a target a portfolio whose weights 
are chosen to match the ensemble combiner rule derived from the Bias-
Variance-Diversity decomposition (Wood et al., 2024). In the case of 
squared loss, the corresponding combiner is the arithmetic mean, im-
plying that the equal-weighted portfolio should be selected. The optimal 
portfolio weights are then obtained by normalizing the optimal ensem-
ble parameters. To the best of the authors’ knowledge, this is the first 
method which connects ensemble learning diversity with portfolio risk 
diversification, enabling its parametric control before the optimization 
stage.

Additionally, this work also investigates the hypothesis that out-of-
sample portfolio diversification relates to the asset or hypothesis selec-
tion. Diversity in asset selection is controlled parametrically, indepen-
dently of the learning phase. A parameter regulates the diversity of asset 
sets-randomly selected from ranked out-of-sample return predictions-
across various portfolio sizes and parameters. Results show that greater 
diversity in asset sets increases out-of-sample portfolio diversification 
and risk-adjusted returns, even when the sets have lower average re-
turns. This work links both sources of diversity (i.e., asset selection and 
portfolio weight optimization) to out-of-sample portfolio diversification 
and demonstrates that the diversification levels from both sources can 
be parametrically controlled prior to decision-making, offering valuable 
insights for practitioners.

Following are the main contributions proposed in this work:

• A consistent framework is introduced for applying structured ensem-
ble models in multi-hypothesis prediction settings for portfolio op-
timization, where the ensemble combiner rule defines the portfolio 
target. Specifically, in the case of squared loss, this corresponds to 
the equal-weighted portfolio.

• It presents a “plug-in” and robust method enabling parametric 
a priori control over out-of-sample portfolio risk diversification 
by linking ensemble diversity, derived from the Bias-Variance-
Diversity loss decomposition (Wood et al., 2024), to portfolio risk
diversification.

• A strategy is proposed for parametrically controlling diversity in as-
set or hypothesis selection, leveraging a diversity-quality trade-off in 
predicted returns to enhance out-of-sample portfolio diversification.

• The expansion of diversification limits (Dalio, 2018) is validated 
by the proposed framework, as well as through the incorporation 
of diversity in the asset selection stage across other methodologies, 
demonstrated empirically in both one-step and multi-step decision 
settings.

The paper is organized as follows: Section 2 provides a review of 
previous work on data-driven and robust optimization, Predict-then-
Optimize frameworks, structured ensemble learning, and diversity. Sec-
tion 3 describes the proposed framework and methodology. Section 4 
presents the experimental results and discussions. Finally, in Section 5 
the final remarks and future outlook are offered.

2.  Literature review

Portfolio optimization solutions can be broadly categorized into 
data-driven approaches and robust optimization methods. Data-driven 
methods typically rely on plug-in optimization, where the objective 
function is predefined by frameworks such as Modern Portfolio Theory 
(MPT), and data is used solely to estimate model parameters. In con-
trast, robust optimization modifies the objective function and relaxes 
certain framework assumptions to improve adaptability while tackling 
uncertainty. This approach was among the first to incorporate loss func-
tions, which were later extended to predictive models and predict-then-
optimize frameworks, albeit with computational challenges. Ensemble-
based methods further introduce loss functions which account for diver-
sity in predictions. This work integrates ensemble models with multiple 
hypothesis prediction, establishing a connection between diversity in 
learning and risk diversification, while also introducing computation-
ally efficient analytical solutions.

2.1.  Data-driven and robust optimization

Reducing uncertainty in the optimization stage is critical in many 
applications, and two prominent approaches are data-driven optimiza-
tion and robust optimization. Data-driven optimization relies on data to 
estimate uncertainties, using statistical models or machine learning to 
incorporate these estimates into decision-making (Bertsimas, Gupta, & 
Kallus, 2013; Shapiro, Dentcheva, & Ruszczyñski, 2009). It aims to opti-
mize expected performance metrics such as cost or profit by leveraging 
historical or real-time data. On the other hand, robust optimization fo-
cuses on worst-case scenarios, ensuring decisions remain feasible and 
effective for all outcomes within a predefined uncertainty set, such as 
polyhedral or ellipsoidal bounds (Ben-Tal, Ghaoui, & Nemirovski, 2009). 
This approach prioritizes stability and reliability, often at the expense 
of conservatism if the uncertainty set is poorly calibrated (Bertsimas, 
Brown, & Caramanis, 2011). Recent advances combine the strengths of 
both approaches, such as distributionally robust optimization (DRO), 
which optimizes for the worst-case distribution within plausible distri-
butions, bridging probabilistic and robust methodologies (Esfahani & 
Kuhn, 2015; Rahimian & Mehrotra, 2022). In the context of portfolio 
optimization, data-driven approaches leverage historical and real-time 
market data to model uncertainties, employing methods such as stochas-
tic programming, machine learning, and empirical scenario generation 
to predict asset returns and covariance structures (Giglio et al., 2022; 
Ma et al., 2021; Ozelim, Ribeiro, Schiavon, Domingues, & Queiroz, 
2023; Roncalli, 2013). Robust portfolio optimization solutions include 
fuzzy approaches (Wu & Liu, 2012), genetic algorithms (Akopov, 2014), 
multiobjective particle swarm optimization (Chen & Zhou, 2018), and 
learning-guided multiobjective evolutionary algorithms (Lwin, Qu, & 
Kendall, 2014). Building on these, this work presents a mixed method 
which combines both approaches, featuring a plug-in facet but robust 
in that the risk diversification level can be adjusted parametrically 
before optimization. Therefore, this addresses the disconnection be-
tween out-of-sample diversification and input data in the optimization
process.
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2.2.  Predictive modeling integrated with decision optimization

Predictive models have become essential tools for optimizing 
decision-making processes, particularly when the objective is to mini-
mize decision-related costs. However, this approach overlooks cost con-
siderations during the predictive modeling phase, leading to subopti-
mal decision quality (Donti & Kolter, 2017). Recent advancements have 
sought to address this issue through integrated frameworks like "Predict-
and-optimize" (PO), Smart Predict-then-Optimize (SPO) and End-to-End 
Predict-Then-Optimize (EPO) (Elmachtoub & Grigas, 2017, 2022; Van-
derschueren et al., 2022). These frameworks use surrogate loss func-
tions to manage computational challenges associated with original loss 
functions and link structured prediction outputs to decision variables 
(Elmachtoub & Grigas, 2017). The SPO+ framework further advances 
this integration by defining loss functions based on the objective costs 
of nominal optimization problems, improving computational efficiency 
and decision-aware modeling (Elmachtoub & Grigas, 2022). However, 
most existing studies in structured prediction focus on classification 
problems (Goh & Jaillet, 2016) and are computationally intensive, as 
they require backpropagation through optimization solutions, which of-
ten involves handcrafted rules, and they face challenges in handling non-
convex or discrete optimization models (Kotary et al., 2023).

2.3.  Diversity in multi-hypothesis learning ensembles for portfolio 
diversification

A unified theory of ensemble diversity explains that diversity is a 
hidden dimension in the bias-variance decomposition of the ensemble 
loss (Wood et al., 2024). Moreover, studies on diversity measures in en-
semble learning show their significant impact on model accuracy, gen-
eralization, and robustness (Ortega, Cabañas, & Masegosa, 2022).

Researchers link portfolio estimation to statistical decision theory 
by treating the difference in investor utility between the "true" optimal 
portfolio and the plug-in portfolio as an economic loss function (Kan 
& Zhou, 2007). Outcomes are enhanced by incorporating the investor’s 
utility objective directly into the statistical weight estimation process as 
in Bayesian decision theoretic approaches, rather than addressing esti-
mation and utility maximization as separate issues (Avramov & Zhou, 
2010; Kan & Zhou, 2007). Research has demonstrated the economic im-
plications of using Mean Square Error (MSE) in portfolio optimization 
and financial forecasting, showing that integrating MSE into decision-
making processes can enhance portfolio performance by minimizing es-
timation errors and optimizing risk-return trade-offs (Cai, Cui, Lassance, 
& Simaan, 2024; Lasse Heje Pedersen & Levine, 2021; Mahadi, Ballal, 
Moinuddin, & Al-Saggaf, 2022). This work extends this idea by incorpo-
rating diversity into the MSE loss function within an ensemble learning 
framework. Furthermore, for the first time, it establishes a connection 
between this notion of diversity and portfolio diversification, proposing 
parametric methods to manage diversification prior to decision-making.

3.  Framework description

3.1.  Preliminary

Given 𝒙 ∈ ℝ𝑁×𝑀  as a vector of returns with 𝑀 ≥ 2 assets (each with 
N time-stamps) having mean 𝝁 and a positive-definite covariance ma-
trix 𝚺, then the optimal portfolio 𝒘 ∈ ℝ𝑀  can be found by solving the 
following optimization problem (Markowitz, 1952):

min
𝒘

(

𝒘⊤𝝁 − 𝑟
)2 +𝒘⊤Σ𝒘

𝒘⊤𝝁 ≥ 𝑟

𝒘⊤𝟏 = 1

(1)

where (𝒘⊤𝝁 − 𝑟
)2 represents the bias of the expected return of the port-

folio 𝒘⊤𝝁 compared to the target return 𝑟, and 𝒘⊤Σ𝒘 represents the 

variance of the portfolio. The constraint 𝒘⊤𝝁 ≥ 𝑟 ensures that the ex-
pected return of the portfolio is above the target return. The expression 
in (1) generalizes the standard MSE reflecting the bias-variance trade-off 
(Cai et al., 2024).

If the aforementioned portfolio optimization can be formulated as a 
prediction task, then the objective utility function of the mean-variance 
in (1) can be represented as an MSE loss function (Cai et al., 2024). This 
setup allows for finding the optimal weights which minimize the total 
prediction error of the portfolio, accounting for both bias and variance, 
while ensuring that the expected return remains above the target value. 
In order to incorporate diversity into such an optimization, this work 
applies ensemble models to harness diversity in ensemble learning and 
link it to portfolio diversification.

In a multiple-hypothesis prediction setup in which each hypothesis is 
focused on a particular portfolio constituent, the portfolio can be mod-
eled as an ensemble of hypotheses. Following that, the diversity term 
in the Bias-Variance-Diversity decomposition with the MSE Loss can be 
connected to diversification and controlled parametrically, while the 
centroid combiner rule is applied as the portfolio target. To elaborate, 
in a supervised setting with the data set of time series returns (𝒙, 𝒓), the 
Bias-variance-diversity decomposition can be expressed in terms of the 
MSE loss (𝒓, 𝒓̄) as Wood et al. (2024):

1
𝑀

𝑀
∑

𝑗=1
(
◦
𝑓𝑗 (𝒙𝑗 ) − 𝒓)2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Average Bias

+ 1
𝑀

𝑀
∑

𝑗=1
𝔼
[

(𝑓𝑗 (𝒙𝑗 ) −
◦
𝑓𝑗 (𝒙𝑗 ))2

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Average Variance

−𝔼

[

1
𝑀

𝑀
∑

𝑗=1
(𝑓𝑗 (𝒙𝑗 ) − 𝒓̄)2

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Diversity

(2)

where 𝑓𝑗 (𝒙𝑗 ) denote the temporal predictions and 
◦
𝑓𝑗 (𝒙𝑗 ) = 𝔼[𝑓𝑗 (𝒙𝑗 )] rep-

resents the centroid prediction of the 𝑗-th model in the portfolio ensem-
ble respectively, while 𝒓̄ = 1

𝑀
∑𝑀

𝑗=1 𝑓𝑗 (𝒙𝑗 ) represents the centroid com-
biner rule.

In the next section, the Portfolio-Structured Ensemble Model (PSEM) 
is introduced, where each individual hypothesis predicts a specific port-
folio constituent. The diversity term in Eq.  (2) is linked to both portfolio 
generalization performance and risk diversification. The predict-then-
optimize setting with PSEM for portfolio optimization is then described, 
in which the target portfolio corresponds to the combiner rule. Under 
MSE loss, this rule becomes the arithmetic combiner, that is, the equal-
weighted portfolio. In this context, the optimal ensemble parameters are 
equivalent to the optimal portfolio weights.

3.2.  Proposed portfolio structured ensemble model (PSEM)

The PSEM is a portfolio model formulated as a structured ensemble 
for prediction across multiple hypotheses. Formally, it can be defined as 
a map  ∶ 𝒙 ∈ ℝ𝑁×𝑀 → 𝒓 ∈ ℝ𝑁  which aggregates M predictions from 
multiple individual predictors or hypotheses {𝑓𝜽𝑗 (𝒙𝑗 )}𝑀𝑗=1, parameter-
ized by 𝚯 = {𝜽𝑗}𝑀𝑗=1, to produce portfolio predictions for a given asset 
selection time series return 𝒙:
(𝒙) = 𝑔

(

𝑓𝜽1 (𝒙1), 𝑓𝜽2 (𝒙2),… , 𝑓𝜽𝑀 (𝒙𝑀 )
)

= 𝒓̂ (3)

where 𝑔(⋅) denotes the centroid combiner rule (e.g., averaging, voting, or 
weighted combination) for the ensemble (Wood et al., 2024). A diversity 
parameter 𝜀 ∈ [0, 1] modulates each predictor’s update at step 𝑖, such 
that the update rule for the 𝑗-th predictor is given by:

𝜽𝑗 = 𝜽𝑗 − 𝜂𝑗

(

𝜕(𝑓𝜽𝑗 (𝑥𝑖𝑗 ), 𝑦𝑖𝑗 )

𝜕𝜽𝑗
+

𝜆𝑝
𝑁

𝜽𝑗

)

𝛿
(

𝑓𝜽𝑗 (𝑥𝑖𝑗 )
)

(4)

where 𝑦𝑖𝑗 = 𝑥(𝑖+𝜏)𝑗 with time lag 𝜏 > 0 is the target, 𝜂𝑗 is the learning rate, 
and the loss function  combines a squared error term and regularization 
with parameter 𝜆𝑝. The indicator function 𝛿(𝑓𝜽𝑗 (𝑥𝑖𝑗 )), which adjusts the 
degree to which each predictor’s parameters are updated, is defined as:

𝛿(𝑓𝜽𝑗 (𝑥𝑖𝑗 )) =

⎧

⎪

⎨

⎪

⎩

1 − 𝜀 (𝑓𝜽𝑗 (𝑥𝑖𝑗 ), 𝑦𝑖𝑗 ) < (𝑓𝜽𝑘 (𝑥𝑖𝑘), 𝑦𝑖𝑘) ∀𝑘 ≠ 𝑗

𝜀
𝑀−1 otherwise

(5)
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𝛿(𝑓𝜽𝑗 (𝑥𝑖𝑗 )) indicates whether the output of the 𝑗-th predictor is the top 
prediction for the 𝑖-th instance. A smaller 𝜀 places more emphasis on the 
predictors which perform the best, while a larger 𝜀 encourages updates 
to less accurate predictors, fostering greater diversity in the ensemble. 
Algorithm 1 provides the pseudo-code for the structured data set forma-
tion with stochastic gradient descent.

After training, the predictions of all predictors form a structured data 
set:

𝒙̂(𝜀) =
⎡

⎢

⎢

⎣

𝑓𝜽1 (𝑥11) ⋯ 𝑓𝜽1 (𝑥𝑁1)
⋮ ⋱ ⋮

𝑓𝜽𝑀 (𝑥1𝑀 ) ⋯ 𝑓𝜽𝑀 (𝑥𝑁𝑀 )

⎤

⎥

⎥

⎦

(6)

Algorithm 1 Structured data set Formation with Gradient Descent.
Require: Individual predictors {𝑓𝜽𝑗 (𝒙𝑗 )}𝑀𝑗=1 with parameters {𝜽𝑗}𝑀𝑗=1, 

input returns {𝑥𝑖,𝑗}𝑁,𝑀 , targets {𝑦𝑖,𝑗}𝑁,𝑀  with 𝑦𝑖,𝑗 = 𝑥(𝑖+𝜏),𝑗 , learn-
ing rates 𝜂𝑗 , diversity parameter 𝜀, regularization parameter 𝜆𝑝, loss 
function .

Ensure: Structured data set 𝒙̂(𝜀), optimal parameters 𝚯̂.
1: Randomly initialize 𝜽𝑗 for all 𝑗 = 1 to 𝑀
2: for 𝑖 = 1 to 𝑁 do
3:  for 𝑗 = 1 to 𝑀 do
4:  if 𝑀 = 1 then
5:  𝛿(𝑓𝜽𝑗 (𝑥𝑖,𝑗 )) ← 1
6:  else
7:  for 𝑘 = 1 to 𝑀 do
8:  if 𝑗 ≠ 𝑘 then
9:  if (𝑓𝜽𝑗 (𝑥𝑖,𝑗 ), 𝑦𝑖,𝑗 ) < (𝑓𝜽𝑘 (𝑥𝑖,𝑘), 𝑦𝑖,𝑘) then
10:  𝛿(𝑓𝜽𝑗 (𝑥𝑖,𝑗 )) ← 1 − 𝜀
11:  else
12:  𝛿(𝑓𝜽𝑗 (𝑥𝑖,𝑗 )) ←

𝜀
𝑀−1

13:  end if
14:  end if
15:  end for
16:  end if
17:

𝜽𝑗 ← 𝜽𝑗 − 𝜂𝑗

(

𝜕(𝑓𝜽𝑗 (𝑥𝑖,𝑗 ), 𝑦𝑖,𝑗 )

𝜕𝜽𝑗
+

𝜆𝑝
𝑁

𝜽𝑗

)

𝛿(𝑓𝜽𝑗 (𝑥𝑖,𝑗 ))

18:  𝑥̂𝑖,𝑗 (𝜀) ← 𝑓𝜽𝑗 (𝑥𝑖,𝑗 )
19:  end for
20: end for
21: return 𝒙̂(𝜀) and 𝚯̂

which serves as input to a structured ensemble model. The PSEM pre-
dictions are given by:
𝒓̂ = 𝑔(𝒙̂(𝜀)𝑇 ) = 𝒙̂(𝜀)𝑇𝒘 (7)

with ensemble parameters 𝒘, which, when properly scaled, are equiv-
alent to portfolio weights. By incorporating the diversity parameter 𝜀, 
the ensemble achieves a balance between prediction accuracy and di-
versity, enhancing its generalization capabilities in portfolio forecasting 
tasks. Interestingly, this diversity aligns with the concept of portfolio 
diversification, as originally proposed in MPT (Markowitz, 1952).

3.3.  Predict-then-optimize method with PSEM

In the predict-then-optimize setting with PSEM, the optimal portfolio 
weights 𝒘 are obtained by minimizing the loss function (𝒓̂, 𝒓̄), formu-
lated as a supervised learning problem between the PSEM prediction 𝒓̂, 
as defined in Section 3.2, and a portfolio target 𝒓̄ whose weights reflect 
the ensemble combiner rule in Eq. (2). This combiner rule depends on 
the choice of loss function, following the bias-variance-diversity decom-
position framework proposed by Wood et al. (2024). For the squared 
loss, the combiner rule reduces to the arithmetic combiner. When the 

target portfolio time series is defined using the arithmetic combiner, it 
is equivalent to the equal-weighted portfolio representing the naive di-
versification strategy (DeMiguel, Garlappi, & Uppal, 2009). The target 
portfolio returns are given by ̄𝒓 = 𝒙𝑇𝒘target = 𝒙𝑇 1

‖𝒙𝑇 ‖ , and the optimiza-
tion is formulated as:
min
𝒘

‖

‖

‖

𝒓̄ − 𝒙̂(𝜀)𝑇𝒘‖

‖

‖

2
+ 𝜆𝑠‖𝒘‖𝑝 (8)

Here, 𝜆𝑠 denotes the PSEM regularization parameter. The predict-then-
optimize approach can be implemented in a "plug-in" format, where 
the structured data set 𝒙̂(𝜀)𝑇  is constructed independently prior to 
training the structured ensemble and deriving the portfolio weights. 
In the experimental section, portfolio weight constraints are applied 
post-optimization, including non-negativity constraints, 𝑤𝑖 ≥ 0, ∀𝑖 ∈
{1,… ,𝑀}, and normalization, ∑𝑀

𝑖=1 𝑤𝑖 = 1. However, the method can 
also be extended to a fully constrained plug-in optimization framework 
using quadratic solvers, which is left for future work.

Although the ensemble prediction 𝒓̄ = 1
𝑀

∑𝑀
𝑗=1 𝒙̂𝑗 (𝜀) is computed as 

an equally weighted average of base learner outputs, the optimal en-
semble weights 𝒘 derived from Eq. (8) do not generally coincide with 
uniform or equal-weighting. This discrepancy arises due to induced di-
versity via the parameter 𝜀, variation in base learner initialization and 
regularization, and inherent dependencies among predictors. These fac-
tors collectively break the symmetry of the hypothesis space, result-
ing in non-uniform projections of the ensemble mean onto the span of 
predictions. As a result, the final ensemble weights adapt to capture 
these structural and informational asymmetries, ultimately improving 
loss alignment while diverging from naive equal weighting.

Fig. 1 shows a representation of the PSEM optimization, illustrated 
as a shooting gallery where the shooters represent individual predictors. 
Each shooter receives inputs such as wind conditions, distance, and tar-
get position, aiming to hit their respective targets. In each iteration, 
the trainer penalizes the best shooter by limiting how much their pa-
rameters update during gradient descent, while the remaining shooters 
update equally. This process introduces diversity in learning through 
𝜀. Once the training of the individual predictors is completed, all shots 
are gathered into a diversified data set, which can be used as input for 
structured prediction models, like the Structured Radial Basis Function 
Network (s-RBFN) (Dominguez et al., 2025), shown in this figure and 
trained using least-squares.

In the next section, the PSEM optimization is detailed for the case of 
the s-RBFN model.

3.4.  Example with structured radial basis function network (s-RBFN)

In this case, the structured data set is used as input to a radial ba-
sis function network, where each 𝑗-th predictor 𝑓𝜽𝑗 (𝒙𝑗 ) is associated 
with a specific basis function 𝜙𝑗 (𝑥̂𝑖𝑗 (𝜀), 𝜇𝑗 , 𝜎𝑗 ). The basis function 𝜙𝑗 is 
applied element-wise to the entries of the 𝑗-th input vector of predic-
tions 𝒙̂𝑗 (𝜀) ∈ ℝ𝑁 , with 𝜇𝑗 and 𝜎𝑗 representing the center and scale pa-
rameters specific to the 𝑗-th predictor. This defines a transformation 
map 𝚽(𝒙̂(𝜀)) ∶ ℝ𝑁×𝑀 → ℝ𝑁×𝑀 , where 𝚽(𝒙̂(𝜀))𝑖𝑗 = 𝜙𝑗 (𝑥̂𝑖𝑗 (𝜀), 𝜇𝑗 , 𝜎𝑗 ). For 
example, the Gaussian basis function 𝜙𝑗 (⋅) = exp

(

−1
2𝜎2𝑗

|

|

|

𝑥̂𝑖𝑗 (𝜀) − 𝜇𝑗
|

|

|

2
)

 can 
be used where the parameters of the centers 𝜇𝑗 and the scales 𝜎𝑗 for the 
basis functions are calculated from each column of 𝒙̂(𝜀) as the mean and 
standard deviation, respectively. The s-RBFN formulation can now be 
expressed in matrix form as follows:

𝚽(𝒙̂(𝜀))𝑇𝒘 =
⎡

⎢

⎢

⎣

𝜙
(

𝑥̂11(𝜀), 𝜇1, 𝜎1
)

… 𝜙
(

𝑥̂1𝑀 (𝜀), 𝜇𝑀 , 𝜎𝑀
)

⋮ ⋱ ⋮
𝜙
(

𝑥̂𝑁1(𝜀), 𝜇1, 𝜎1
)

… 𝜙
(

𝑥̂𝑁𝑀 (𝜀), 𝜇𝑀 , 𝜎𝑀
)

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑤1
⋮

𝑤𝑀

⎤

⎥

⎥

⎦

(9)

The optimal s-RBFN parameters are obtained by least-squares with the 
regularization parameter 𝜆𝑠 and target portfolio, the arithmetic com-
biner or equal-weighted portfolio, 𝒓̄:
𝒘 =

(

𝚽(𝒙̂(𝜀))T𝚽(𝒙̂(𝜀)) + 𝜆𝑠 ∗ 𝑰 (𝑚𝑥𝑚)
)−1𝚽(𝒙̂(𝜀))T𝒓̄ (10)
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Fig. 1. Structured data set formation, including diversity (𝜀), and analytical ensemble training of the s-RBFN model, described in Section 3.4. 𝑓𝜽𝑗 (𝑥𝑖𝑗 ) is the 𝑗𝑡ℎ
shooter (predictor) with input data 𝑥𝑖𝑗 (for example wind, distance, etc.) and 𝜽𝑗 her shooting skills, 𝑥̂𝑖𝑗 is the 𝑖𝑡ℎ shoot from 𝑗𝑡ℎ shooter and 𝒙̂ = 𝒙̂(𝜀) is the full set of 
shoots after training, ̄𝒓 is the portfolio target for the training set (equal-weighted portfolio), and 𝒘 are the s-RBFN model parameters optimized by least-squares.

Fig. 2. Systems representation comparison between the Mean-Variance framework for portfolio optimization from Modern Portfolio Theory (Markowitz, 1952)(left 
blue box) and the predict-then-optimize PSEM framework (right blue box). In the Mean-Variance case, the portfolio constituents’ returns, 𝒙, and the target portfolio 
returns, 𝒓, are assumed to be normally distributed. In contrast, in the PSEM framework, the target is the equal-weighted portfolio 𝒓̄. Additional parameters and 
variables include the portfolio weights 𝒘, the diversity parameter 0 < 𝜀 < 1 used for forming the structured data set 𝒙̂(𝜀), the individual predictors {𝑓𝜽𝑗 (𝒙𝑗 )}𝑀𝑗=1, and 
the s-RBFN model basis functions represented in matrix form by 𝚽.

The optimal portfolio weights are equivalent to the s-RBFN optimal pa-
rameters 𝒘, after applying weight normalization and other relevant con-
straints.

In Fig. 2, a comparative analysis between two portfolio optimization 
frameworks is presented: the classical mean-variance approach from 
Modern Portfolio Theory (MPT) (Markowitz, 1952), shown in the blue 
box on the left, and the s-RBFN model trained via the least-squares algo-
rithm (Dominguez et al., 2025), as the PSEM model, shown in the blue 
box on the right. Despite their structural differences, both methodolo-
gies exhibit notable conceptual and computational parallels.

In the mean-variance framework, the key plug-in component is the 
covariance matrix, which is based exclusively on the input data set 𝒙
and does not provide a guarantee of achieving portfolio diversification 
outside the sample. In contrast, the PSEM framework incorporates port-
folio diversification directly into the modeling process by treating as-
sets as hypotheses and the portfolio as an ensemble predictor, lever-
aging the diversity among individual predictors during training. The 
structured data set 𝒙̂(𝜀), constructed from predictions generated by mod-
els using the same input data as the mean-variance model, enables the 

use of a continuous diversification parameter 0 < 𝜀 < 1. This allows for 
the creation of multiple diversified plug-in data sets from the same 
input and for portfolio diversification to be adjusted prior to weight
optimization.

Both approaches allow closed-form solutions via the least-squares 
algorithm, rendering them computationally equivalent in terms of ef-
ficiency. In the PSEM framework, the input data 𝒙 is replaced with 
the diversified structured data set of predictions 𝒙̂(𝜀), which is then 
augmented using basis functions within the s-RBFN model. These basis 
functions-such as radial, Gaussian, or other types-introduce additional 
flexibility to the s-RBFN model, enabling it to capture more complex 
non-linear relationships within the data.

The focus of this work is on portfolio allocation, which encom-
passes both asset selection and portfolio optimization. The latter has 
been addressed in the previous sections. The former is introduced in 
the next section through a novel method which leverages the diver-
sity of asset return predictions as an asset selection tool. This ap-
proach seeks to uncover connections between diversity in asset selec-
tion and out-of-sample portfolio diversification, identify new limits on
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Fig. 3. Assets or hypotheses selection including forecasting (see left block). A 1-month cumulative return ranking with threshold 𝑇 , random selection of 𝑀 constituents 
from a sample of 𝑚 candidates (𝑚 = 𝛾 ×𝑀 ≥ 𝑀) and 𝛾 the diversity parameter in the hypothesis selection stage (see middle block). Model architecture for s-RBFN 
for 𝑚 = 𝑀 and 𝛾 = 1, and 𝜀 the diversity parameter for the learning stage (see right block).

portfolio diversification introduced by this additional source of variabil-
ity, and evaluate the ability to control these effects parametrically prior 
to weight optimization.

3.5.  Parametric control of out-of-sample diversification at the asset or 
hypothesis selection stage

The portfolio allocation is structured into two stages (Markowitz, 
1952): asset selection and portfolio optimization. In the asset selection, 
the cumulative 1-month forecasts for the 𝑚 members of a hypothetical 
market are computed and ranked based on their predicted cumulative 
returns. A threshold 𝑇  is applied to the ranking, and the top-performing 
assets exceeding this threshold are selected based on rational investor 
behavior, prioritizing those with the highest expected or predicted re-
turns (Markowitz, 1952). To incorporate diversity into the asset selec-
tion process, a parameter 𝛾 is introduced. This parameter acts as a mul-
tiplier of the number of portfolio constituents 𝑀 , generating a sample 
of size 𝑚 = 𝛾 ×𝑀 consisting of assets with predictions exceeding the 
threshold 𝑇 , from which a set of 𝑀 portfolio constituents is randomly 
selected.

This can be seen in Fig. 3, where the forecast is first computed (see 
left block). Then, depending on whether 𝛾 = 1, no diversity is added; 
if 𝛾 > 1, diversity is introduced into the asset selection, provided the 
sample size is such that all predictions in the sample exceed 𝑇 . From 
this sample, 𝑀 portfolio constituents are randomly selected, with the 
parameter 𝛾 controlling the degree of diversity in asset or hypothesis 
selection (see central block). The right block refers to the structured 
prediction model with multiple hypotheses, where the hypotheses have 
already been selected. At this stage, the parameter 𝜀 regulates the diver-
sity in the learning process of individual predictors and the ensemble. 
Once the prediction data set with the selected diversity is obtained, the 
portfolio weights are optimized as described in Section 3.4 (see right 
block in Fig. 3).

This setup allows the testing of the hypothesis that there is a trade-
off between the diversity of expected or predicted future returns and 
their average value as a group. A more diverse group of predictions is 
preferred, even if it includes lower returns which reduce the group aver-
age, highlighting a balance between diversity and the quality of return 
predictions for asset or hypothesis selection. This trade-off is verified by 
the experiments.

In conclusion, modeling the portfolio allocation problem as a struc-
tured prediction task over multiple hypotheses allows the separation of 
the process into two key components: hypotheses selection and weight 
optimization. This approach provides parametric methodologies to
induce diversity in hypothesis selection through the parameter 𝛾 and to 
regulate diversity in the learning process of individual predictors based 
on the selected hypotheses through the parameter 𝜀. These two sources 
of diversity are directly connected to out-of-sample portfolio risk diver-
sification and can be controlled and adjusted prior to the optimization 
and decision-making process.

4.  Numerical results

4.1.  Data and experimental setup

The time series of daily prices for the S&P 500 index members (S&P, 
2005) (excluding weekends) was obtained from Bloomberg (S&P, 2024). 
Returns were calculated as the percentage change in daily prices.

To empirically demonstrate the connection between diversity in 
the structured prediction setting with multiple hypotheses and out-
of-sample portfolio diversification, numerous out-of-sample Sharpe ra-
tios are computed using the predictive setting. The Sharpe ratio is 
the quotient between return and volatility (risk) for a portfolio of 𝑀
stocks over a time period Δ𝑡. The Sharpe ratio is computed for dif-
ferent values of portfolio size 𝑀 and diversity parameter 𝜀, both for 
the case without diversity in asset selection and for the scenario where 
the portfolio allocation decision is made once, performing 100 simula-
tions for each trial, as in Modern Portfolio Theory (MPT) (Markowitz, 
1952). This allows comparison with traditional methods and reveals 
the pattern of portfolio diversification behavior in relation to the
parameters 𝑀 and 𝜀.

Next, a more realistic case not considered in MPT is included, 
where the problem becomes sequential over 10-months, making it more
practical and useful for practitioners (in this case, the Sharpe ratio over 
the 10-month period is reported). For these cases, the asset selection is 
performed by ranking 1-month cumulative return predictions and choos-
ing the top 𝑀 assets based on different threshold values 𝑇 . In the one-
step decision-making cases, the same assets are usually selected across 
simulations, whereas in the sequential cases, the non-stationarity in the 
data may alter prediction ranking and asset selection. Finally, a second 
source of diversity is introduced through asset or hypothesis selection, 
controlled by the parameter 𝛾. The experiments are performed for both 
sources of diversity in one-step as well as in the multi-step decision-
making cases.

The structured ensemble models used are the s-RBFN optimized by 
least-squares and two-layer networks as individual predictors, with the 
same set of hyperparameter configurations for all cases as described 
in Dominguez et al. (2025). The equal-weighted model and the MSE-
weighted model are also included, where the weights are either equally 
distributed across all constituents or inversely proportional to their gen-
eralization prediction error. For asset selection, the ranking is con-
structed by calculating the 1-month recurrent prediction of the daily 
time series and then ranking them based on the accumulated monthly 
return. The prediction is performed using the same model as the indi-
vidual predictors with identical hyperparameters, but each of the 500 
index members has its own network.

To evaluate the generalization of the proposed framework across dif-
ferent market regimes and asset classes, additional experiments are pre-
sented in Appendix D. These include 1336 global bond time series from 
2014 to 2018, with the distribution by sector, seniority, rating, tenor 
(curve), and country (ISO) shown in Fig. D.15, as well as all S&P 500 
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Table 1 
Sets of values for the individual predictors and s-RBFN hyperparameters, 
(Dominguez et al., 2025).
(a) 𝑀 number of hypotheses, 𝜅 number of neurons per layer, 𝜂 learning 
rates for the predictors, 𝜒 is a multiplicative factor for random initial 
predictors’ parameters Θ.
𝑀 𝜅 𝜂 𝜒

[2, 5, 10, 20, 35] [20, 200, 2000] [0.03, 0.3] [0.0001, 0.01, 0.1, 1]

(b) 𝜀 is the diversity parameter in the optimization and 𝛾 in the asset 
selection, 𝜆𝑝 is the regularization parameter for the predictors and 𝜆𝑠 for the 
s-RBFN.

𝜀 𝜆𝑝 𝜆𝑠 𝛾

[0, 0.1, 0.35, 0.5] [0, 0.0001, 0.01, 0.07] [0, 3, 5] [1, 2, 3, 5]

constituents during the Global Financial Crisis (2007–2009) and the U.S. 
equity rally (2009–2016).

4.2.  Model evaluation and performance metrics

One of the most commonly used portfolio performance metrics is 
the Sharpe Ratio (Sharpe, 1994), defined as the ratio of the average 
daily return over a period to its standard deviation. In this work, re-
turn predictions are evaluated using 1-month cumulative returns. Ac-
cordingly, a slight variation of the Sharpe Ratio is considered, where 
the cumulative return over one month is divided by the standard de-
viation of daily returns during that same period. This modified Sharpe 
Ratio is used to assess out-of-sample portfolio performance in the one-
step decision scenario. For the multi-step decision setting, the modi-
fied Sharpe Ratio is computed over a 10-month sequential investment
horizon.

For the individual predictors, a two-layer multi-layer perceptron 
(MLP) is used with hyperbolic tangent activation functions. The num-
ber of neurons in each layer is denoted by 𝜅, the learning rate by 𝜂, 
and a multiplicative factor for the random initial weights during gradi-
ent descent by 𝜒 , which affects model performance. Regularization pa-
rameters are represented by 𝜆𝑝. These individual predictors are applied 
during the asset selection stage, where RMSE is used as the metric for 
time-series forecasting performance. Assets are selected from a pool of 
diversified assets based on their predicted values, with diversity scaled 
by the parameter 𝛾.

The s-RBFN is employed as the PSEM model in the experiments, 
where the number of predictors or hypotheses is denoted by 𝑀 , and the 
regularization parameter is represented by 𝜆𝑠. Once the optimal portfo-
lio weights are obtained-by normalizing the ensemble parameters, they 
are used to evaluate out-of-sample portfolio performance using the mod-
ified Sharpe Ratio: 1-month for the one-step decision case and 10-month 
for the multi-step decision case. Portfolio performance serves as the cri-
terion for selecting the optimal network configuration for both the in-
dividual predictors and the s-RBFN. Multiple hyperparameter combina-
tions are tested in the experiments, and all hyperparameter values used 
are listed in Table 1.

Additional evaluation metrics-Maximum Drawdown, Sortino Ratio, 
and Omega Ratio, alongside Sharpe Ratio-are reported in Appendix D. 
These are applied to both the regime-based analyses and the global bond 
data set, supporting the sensitivity study in Section D.1 and the compar-
ative performance analysis in Section D.2.

4.3.  Parametric portfolio risk diversification

Experiments validate the hypothesis that out-of-sample portfolio risk 
diversification can be controlled prior to the decision making process 
if the portfolio is modeled as a structured ensemble in a multiple-
hypothesis prediction setting.

Fig. 4. The limits of diversification, (Dalio, 2018). Sharpe and Return-to-Risk 
ratios are the same (inverted axis). The standard deviation is reduced up to a 
diversification limit.

4.3.1.  Diversity in the ensemble learning stage
In this section, asset selection is performed for each portfolio al-

location as described previously, taking portfolio constituents as the 
top 𝑀 of the ranking based on the 1-month accumulated return that 
are also higher than the threshold 𝑇 . Two types of experiments are 
carried out: one-step decision-making (1-month and 100 simulations 
per trial) and sequential multi-step decision-making (10-months and 1 
simulation per trial). The structured prediction model s-RBFN with ra-
dial and Gaussian basis functions is implemented, both with and with-
out regularization. The experiments are repeated for different thresh-
old values 𝑇 = −1%,−0.5%, 0.0%, 0.5%, 1% and diversity parameter
𝜀 = 0, 0.1, 0.35.

The result for the one-step decision-making case can be seen in 
Fig. 5, showing a strong similarity with the results from the MPT setup 
(Markowitz, 1952), which is illustrated in Fig. 4. Fig. 4 shows the di-
versification limits according to MPT, where the Sharpe ratios are pre-
sented with an inverted axis compared to Fig. 5, with the same hori-
zontal axes referring to the number of assets or stocks 𝑀 . In the case 
of MPT, the Sharpe ratios are displayed for different values of the cor-
relation between assets, and it is observed that the negative growth of 
the correlation has the same effect as the positive growth of the diver-
sity parameter in ensemble learning in the multi-hypothesis prediction 
setting, as shown in Fig. 5. Thus, portfolio diversification, which de-
pends on correlation (the lower, the better) and the number of portfolio 
constituents, is to some extent equivalent to diversity in the learning of 
structured ensembles in a setting like the one discussed (regulated by 
𝜀) and the number of predictors. The experiments empirically validate 
the equivalence between out-of-sample portfolio diversification and di-
versity in the learning of a structured ensemble in a multi-hypothesis 
prediction setting when used to model a portfolio, according to
Section 3.2.

In Fig. 6, the same set of experiments is carried out, but for the se-
quential multi-step decision-making case is presented. In this case, the 
resemblance is different from that shown in MPT and Fig. 4, which 
makes sense since those setups are one-step, whereas the results here 
are sequential multi-step cases. Nevertheless, the conclusions remain 
unchanged, and the same patterns can be observed regarding the rela-
tionship between diversity in ensemble learning and out-of-sample port-
folio diversification. A consistent increase in Sharpe ratios can be seen as 
the parameter 𝜀 and the number of predictors, hypotheses, or assets 𝑀
increase. On the other hand, the regularization parameter has a greater 
impact in this case than in the one-step scenario shown in Fig. 5. It can 
be observed that the out-of-sample risk-adjusted portfolio performance 
improves even in the case where the diversity parameter 𝜀 is not applied. 
This may indicate that performance in multi-step settings depends not 
only on diversification but also on the complexity of the data. The same 
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Fig. 5. One-step (1-month) 100 simulations Sharpe ratios (Y-axis) for different number of predictors 𝑀 (X-axis), diversity parameter 𝜀 = 0, 0.1, 0.35 (colours), s-RBFN 
regularization parameter 𝜆𝑠, and −1% ≤ 𝑇 ≤ 1%. s-RBFN with Gaussian basis functions.

experiments can be seen for the case of radial basis functions with the 
same conclusions in the Appendix in Figs. A.10 and A.11.

4.3.2.  Diversity-quality trade-off of returns predictions: Including diversity 
in the asset selection stage

In this section, the same experiments are performed, but here the 
𝑀 portfolio constituents or hypotheses are randomly selected from the 
top 𝑚 = 𝑀 × 𝛾 stocks based on the 1-month cumulative forecast rank-
ing. The parameter of asset selection diversity 𝛾 is a multiplier which 
scales the candidate pool relative to the final selection size 𝑀 . This 
approach seeks to test the hypothesis that out-of-sample diversifica-
tion in portfolio allocation is achieved not only during the optimiza-
tion process-whether through the inclusion of the parameter 𝜀 in this 
structured prediction model framework or through other plug-in meth-

ods without such aid-but also at the stage of hypothesis selection, when 
choosing assets or stocks prior to optimizing portfolio weights. For this 
purpose, the experiments are repeated for different values of the mul-
tiplier, including in the no-diversity case, which is equivalent to the 
results in the previous section, with 𝛾 = 1, 2, 3, 5 for both one-step-ahead 
and multi-step-ahead cases, using the s-RBFN model with radial basis
functions.

Figs. 7 and 8 present the out-of-sample Sharpe ratios for different 
numbers of stocks 𝑀 ; various values of the asset selection diversity pa-
rameter 𝛾; the learning stage diversity parameter 𝜀; and threshold values 
𝑇  used in the asset selection process based on forecast rankings, for the 
multi-step sequential (10-month strategy) case. Figs. C.13 and C.14 in 
the Appendix show the same results for the one-step decision case (1-
month, 100 simulations).
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Fig. 6. Multi-step (10-month) Sharpe ratios (Y-axis) for different number of predictors 𝑀 (X-axis), diversity parameter 𝜀 = 0, 0.1, 0.35 (colours), s-RBFN regularization 
parameter 𝜆𝑠, and −1% ≤ 𝑇 ≤ 1%. s-RBFN with Gaussian basis functions.

Within the proposed PSEM framework, the Sharpe ratios, along with 
the average Sharpe ratio for all levels of diversity determined by the 
structured ensemble diversity parameter (𝜀), can also be analyzed to ex-
amine the impact of diversity in asset or hypothesis selection on out-of-
sample portfolio diversification. These results are presented in Table 2 
for the one-step-ahead case (1-month) and Table 3 for the multi-step
experiments (10-month strategy), both using the s-RBFN model with ra-
dial basis functions.

In the one-step ahead case, a generalized increase in out-of-sample 
performance, represented by the Sharpe ratio, can be observed when 
selecting more diverse assets or hypotheses during the stock selection 
process prior to weight optimization, even if they have worse average 
predictions. This can be seen in Table 2, where the average Sharpe ratio 
improves as the values of 𝑚 grow, driven by the increasing value of 𝛾, 

allowing for greater diversity of predictors with different out-of-sample 
performances as part of the stock selection.

This indicates that a higher number of candidates with greater di-
versity in predictions, and worse average 1-month out-of-sample return 
predictions (with relatively similar RMSE in their predictions), leads to 
portfolios with better out-of-sample Sharpe ratios and greater diversifi-
cation, not due to the learning stage, but due to better asset selection. 
This pattern holds for both thresholds 𝑇 = 0.5% and 𝑇 = 0.0%, mean-
ing that the variety of 1-month cumulative return predictions from the 
sample of 𝑚 candidates includes positive predictions above 0.5% and 
0.0%, respectively.

In the case of negative thresholds 𝑇 = −0.5% and 𝑇 = −1%, it 
can be observed that the pattern is more pronounced, which surpris-
ingly indicates that, by adding negative return predictions to the 𝑀
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Fig. 7. Multi-step (10-month) Sharpe ratios (Y-axis) for different number of predictors 𝑀 (X-axis), diversity parameter 𝜀 = 0, 0.1, 0.35 (colours), multiplicative factor 
𝛾, and 0% ≤ 𝑇 ≤ 0.5%. s-RBFN with radial basis functions.

portfolio constituents improve portfolio generalization performance and 
out-of-sample diversification. This occurs because it adds diversity to the 
hypothesis selection, even if it downgrades the average performance of 
the group, compared to other selections with more positive predictions 
but less diversity. This represents the diversity-quality trade-off of re-
turn predictions in asset selection discussed in Section 3.5. It should 
be highlighted that 𝛾 = 2, 3, 5 and 𝑀 = 20, 50 portfolio cases have con-
stituents selected randomly from samples of 𝑚 = 40 to 𝑚 = 250. As the 
index consists of 500 stocks, this indicates that the spectrum of negative 
predictions is not small at all.

Table 2 also shows that, as 𝑇  decreases, increasing diversity improves 
the average Sharpe ratio up to a limit, with 𝑇 = −0.5% yielding better 
values than 𝑇 = −1.0% and the other thresholds for the one-step-ahead 
case (1-month). This is consistent with the limits of diversification, as 
shown in Fig. 4 (Dalio, 2018).

Table 3 shows similar results, confirming the same hypothesis for 
sequential multi-step 10-month cases. It is important to note that this 
scenario is much more restrictive, as it involves making ten consecutive 
decisions over 10-months instead of just one. One might expect to pri-
oritize the positiveness of predictions (quality) over the diversity of the
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Fig. 8. Multi-step (10-month) Sharpe ratios (Y-axis) for different number of predictors 𝑀 (X-axis), diversity parameter 𝜀 = 0, 0.1, 0.35 (colours), multiplicative factor 
𝛾, and −1% ≤ 𝑇 ≤ −0.5%. s-RBFN with radial basis functions.

prediction set during asset selection in such problems, as this would 
seem the most logical approach. However, the experiments validate 
the initial hypothesis and confirm the existence of this trade-off, with 
a significant impact on generalization performance and out-of-sample 
risk diversification. In Table 3 it can be observed that with a threshold 
𝑇 = −0.5% for ranking predictions versus 𝑇 = 0.5%, the average out-of-
sample Sharpe ratios are better for experiments with negative 𝑇  in most 
cases. Furthermore, in the case of a positive 𝑇 , the results are negative 
for portfolios with fewer assets, indicating the need for a minimum num-
ber of stocks in the portfolio (Table 3, case 𝑇 = 0.5%). This issue can be 
addressed easily without increasing 𝑀 by adding diversity in asset or 

hypothesis selection through 𝛾. This is very useful for practitioners, as 
with constraints on the number of constituents, they can increase the 
level of diversification of their portfolio with the asset selection diver-
sity component.

Finally, it can be shown that both in the one-step ahead case (1-
month), which is comparable to the MPT setting and other plug-in 
methods, and in the multi-step case (10-month), the diversity param-
eter in the ensemble (𝜀 = 0, 0.1, 0.35), which relates to weight opti-
mization but not asset selection, shows improvement in all tables for 
(𝛾 = 1). Without applying diversity in asset selection and only in op-
timization, the ratios improve with the parameter and the number of 
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Table 2 
One-step-ahead experiments (1-month; 100 simulations): Sharpe ratios for different diversity parameters in the learning stage 𝜀 = 0, 0.1, 0.35, number of stocks 𝑀 , 
and multiplicative factor or diversity parameter in the asset selection stage 𝛾 = 1, 2, 3, 5. 𝑇  represents the threshold in the ranking of return predictions. Avg. Sh. 
refers to the average Sharpe ratio of the elements in the corresponding column.
 Div. (𝜀)  (𝑇 = 0.5%)  (𝑇 = 0.0%)  (𝑇 = −0.5%)  (𝑇 = −1%)

 2  5  10  20  50  2  5  10  20  50  2  5  10  20  50  2  5  10  20  50
 Div. (𝛾 = 1); 𝑚 = 𝑀 × 𝛾 = {2, 5, 10, 20, 50}

 0  3  5  6  8  10  3  4  6  8  10  4  5  7  8  9  3  5  6  8  10
 0.1  4  6  6  9  10  4  7  7  8  10  4  5  8  8  11  1  6  7  8  10
 0.35  5  6  7  9  10  5  5  6  8  10  3  6  7  8  10  0  6  8  9  10
 Avg. Sh.  4  6  6  8  10  4  5  6  8  10  4  5  7  8  10  1  6  7  8  10
 Div. (𝛾 = 2); 𝑚 = 𝑀 × 𝛾 = {4, 10, 20, 40, 100}

 0  4  5  6  8  9  4  6  6  7  10  4  5  6  8  10  4  5  5  7  9
 0.1  4  5  8  9  11  4  5  7  9  10  4  5  7  8  10  3  5  8  9  11
 0.35  3  5  8  9  11  6  8  9  10  10  4  6  7  8  10  3  6  7  9  11
 Avg. Sh.  4  5  7  9  11  5  6  7  8  10  4  5  7  8  10  3  5  7  8  10
 Div. (𝛾 = 3); 𝑚 = 𝑀 × 𝛾 = {6, 15, 30, 60, 150}

 0  4  5  6  7  9  4  6  7  8  9  4  5  6  8  10  5  5  6  8  10
 0.1  5  5  7  9  11  6  7  8  11  3  4  6  7  9  1  6  7  8  11
 0.35  4  5  7  9  11  6  6  7  9  10  3  5  7  9  11  3  5  7  9  11
 Avg. Sh.  4  5  7  9  10  5  6  8  9  7  3  5  7  9  10  3  5  7  9  10
 Div. (𝛾 = 5); 𝑚 = 𝑀 × 𝛾 = {25, 50, 100, 250}

 0  6  8  7  11  5  6  8  10  5  7  8  10  5  6  8  8
 0.1  6  7  3  6  5  7  9  10  6  8  9  11  5  8  9  12
 0.35  5  11  9  11  6  8  10  10  6  8  8  11  6  7  9  11
 Avg. Sh  5  9  6  9  5  7  9  10  6  8  8  11  5  7  9  10

Table 3 
Multi-step-ahead experiments (10-month sequential strategy): Sharpe ratios for different diversity parameters in the learning stage 𝜀 = 0, 0.1, 0.35, number 
of stocks 𝑀 , and multiplicative factor or diversity parameter in the asset selection stage 𝛾 = 1, 2, 3, 5. 𝑇  represents the threshold in the ranking of return 
predictions. Avg. Sh. refers to the average Sharpe ratio of the elements in the corresponding column.
 Div. (𝜀)  (𝑇 = 0.5%)  (𝑇 = 0.0%)  (𝑇 = −0.5%)  (𝑇 = −1%)

 2  5  10  20  50  2  5  10  20  50  2  5  10  20  50  2  5  10  20  50
 Div. (𝛾 = 1); 𝑚 = 𝑀 × 𝛾 = {2, 5, 10, 20, 50}

 0 -1 -1  3  8  6  2  5  6  8  10  5  4  9  6  10  5  6 -2  10  11
 0.1  0  6  3  15  11  10  14  10  11  11  2  8  1  16  10  1  1  1  14  9
 0.35 -3  9  13  10  12 -7  5  8  9  10  8  8  12  6  13  0 -1  0  5  10
 Avg. Sh. -1  5  7  11  10  2  8  8  10  10  5  7  7  9  11  2  2  0  10  10
 Div. (𝛾 = 2); 𝑚 = 𝑀 × 𝛾 = {4, 10, 20, 40, 100}

 0  3  7  12  14  7  10  11  6  4  11  0  5  6  1  11 -4  8  8  7  2
 0.1 -1  11  8  9  13  5  3  7  4  11  5  4  5  7  15 -6  10  14  7  11
 0.35  5  6  9  10  13  8  8  16  11  10 -2  5  3  9  7  2  13  13  11  12
 Avg. Sh.  3  8  10  11  11  8  7  10  7  10  1  4  5  6  11 -3  10  11  8  8
 Div. (𝛾 = 3); 𝑚 = 𝑀 × 𝛾 = {6, 15, 30, 60, 150}

 0  6  5  10  5  8 -1  2  7  4  10  6  8  0  4  14  4 -2  11  6  10
 0.1  11  8  6  12  10  8  11  12  9  11  1  12  5  6  10  1  5  8  8  11
 0.35  4  1  0  7  15  8  9  13  9  11 -2  12  8  12  4 -2  11  6  10
 Avg. Sh.  7  5  5  8  11  7  7  11  8  11  4  8  8  9  11 -1  3  8  8  10
 Div. (𝛾 = 5); 𝑚 = 𝑀 × 𝛾 = {25, 50, 100, 250}

 0  7  9  0  7  6  6  11  11  7  7  8  9  9  4  9  10
 0.1  1  19  5  9  7  6  11  13  2  10  11  12  5  11  12  12
 0.35  4  13  2  8  8  8  13  11  0  8  8  15  10  3  7  10
 Avg. Sh.  4  14  3  8  7  7  11  12  6  6  9  12  8  6  9  11

assets, consistent with the results shown in more detail in the previous
section.

However, in cases where diversity is included in asset selection prior 
to optimization with (𝛾 = 2, 3, 5), it can be seen that the parameter 𝜀 still 
has a strong impact, although slightly reduced, on the out-of-sample 
Sharpe ratio and portfolio diversification. This can only be explained 
as diversification resulting from a combination of diversity in hypoth-
esis selection, given by 𝛾, and the parametrically introduced diversity 

in the optimization process through 𝜀 during the learning of individual 
predictors.

Appendix D.1 presents additional experiments across different mar-
ket regimes and a fixed income data set comprising 1336 globally diver-
sified bonds from 2014 to 2018, as shown in Fig. D.15. Specifically, out-
of-sample portfolio performance metrics-including the Sharpe, Sortino, 
and Omega ratios, as well as maximum drawdown-are reported for the 
full range of the diversity parameter 𝜀.
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Results for U.S. equity portfolios under bull and bear market regimes 
are shown in Tables D.5 and D.6, respectively. Table D.7 presents the 
corresponding results for the fixed income data set. Across all cases, 
the diversity parameter 𝜀 improves performance metrics up to an op-
timal value. In the bull market regime, this optimal value is around 
0.5, while in the bear market regime (2008 Credit Crunch), two opti-
mal ranges are observed, typically around 0.5 and 0.95. This suggests 
that, while bull markets exhibit a well-defined optimal level of diversi-
fication, bear markets may benefit from multiple diversity regimes, in-
dicating a more complex relationship between ensemble diversity and 
out-of-sample portfolio diversification under crisis conditions.

For the fixed income dataset, a pattern similar to the U.S. equity bull 
market case is observed. In both scenarios, the diversity parameter 𝜀
exhibits a clearly defined optimal range, and deviations from this range 
are primarily influenced by the number of portfolio constituents. As re-
ported in Table D.7, the optimal value of 𝜀 is approximately 0.35 for 
small and large portfolios (5 and 100 assets or more), and around 0.1 
for medium-sized portfolios (20–60 assets).

4.4.  Comparative performance analysis

This section presents a comparative analysis between the pro-
posed method, implemented with the s-RBFN as the PSEM model, 
and several well-established, robust and data-driven “plug-in” port-
folio optimization methods. These consist of Inverse Volatility (IV) 
(Ang, Hodrick, Xing, & Zhang, 2006), CVaR Risk Parity (CVaR RP) 
(Kapsos, Christofides, & Rustem, 2018), Maximum Diversification 
(MD) (Choueifaty & Coignard, 2008), Hierarchical Risk Parity (HRP) 
(Lopez de Prado, 2016) and Hierarchical Equal Risk Contribution 
(HERC) (Raffinot, 2018). The comparison is conducted over a two-year 
investment horizon with monthly portfolio reallocation. The perfor-
mance metric used is the monthly standard Sharpe Ratio, calculated 
using a time series of 1-month cumulative returns. This is computed as 
the average return over the 24-month period divided by its standard 
deviation and then annualized. It is important to note that the Sharpe 
ratios reported in this section are generally lower because they are cal-
culated using average returns, whereas in previous sections, a modified 
version of the Sharpe ratio was used, based on cumulative returns over 
1-month and 10-month periods.

Table 4 reports the average Sharpe Ratios across various threshold 
levels 𝑇  and values of the asset selection diversity parameter 𝛾. It can be 
shown how the presented method to select assets based on prediction 

Table 4 
Average Sharpe ratios across all configurations of the optimization diver-
sity parameter 𝜀 ∈ {0, 0.1, 0.35} and number of portfolio constituents 𝑀 ∈
{5, 10, 20, 35}, grouped by threshold 𝑇  and the asset selection diversity param-
eter (multiplicative factor) 𝛾 ∈ {1, 2, 3}.

 (a) Threshold 𝑇 = −0.5

𝛾  s-RBFN  IV  CVaR RP  MD  HRP  HERC
 1  0.79  0.59  0.74  0.41  0.54  0.55
 2  0.64  0.40  0.50  0.29  0.36  0.28
 3  0.55  0.41  0.46  0.36  0.37  0.42
 (b) Threshold 𝑇 = 0.0

𝛾  s-RBFN  IV  CVaR RP  MD  HRP  HERC
 1  0.70  0.40  0.59  0.31  0.36  0.39
 2  0.85  0.56  0.63  0.55  0.55  0.41
 3  0.69  0.43  0.49  0.29  0.43  0.51
 (c) Threshold 𝑇 = 0.3

𝛾  s-RBFN  IV  CVaR RP  MD  HRP  HERC
 1  0.55  0.45  0.64  0.35  0.45  0.42
 2  0.58  0.40  0.57  0.32  0.37  0.52
 3  0.83  0.49  0.65  0.33  0.48  0.47
 Avg.  0.69  0.46  0.58  0.35  0.44  0.44

Fig. 9. Sharpe ratios distributions across all experiments (108 configurations 
for 𝜀,𝛾,𝑀 ,𝑇 ) for each portfolio optimization model.

diversity (diversify-quality trade-off of predictions as in Section 4.3.2) 
makes all the methods improve generalization performance, due to in-
creased out-of-sample diversification measured by the Sharpe ratios. 
Also, the s-RBFN is the top-performing method, as can be seen in the 
average value across all the experiments at the bottom of the same ta-
ble. For selections of assets with less than -0.5% cumulative monthly 
return, as in Table 4(a), diversity is not of clear value, but for selec-
tions above 0.0% and 0.3% it is a clear winning selection choice for all 
methods.

Fig. 9 displays the distribution of Sharpe ratios, ordered from high-
est to lowest, across all experiments conducted in this section (108 
in total). These experiments include various configurations of the di-
versity parameters 𝜀 and 𝛾, threshold 𝑇 , and the number of portfolio 
constituents 𝑀 . The horizontal axis represents individual experiments, 
sorted by decreasing Sharpe ratio. Fig. 9 clearly demonstrates that the 
s-RBFN consistently outperforms all other models-often by a signifi-
cant margin-highlighting the robustness and accuracy of the proposed
method.

The results indicate that the s-RBFN method consistently outper-
forms the other portfolio optimization approaches across all threshold 
levels and values of the asset selection diversity parameter (𝛾), achiev-
ing the highest average Sharpe ratios in most cases. Furthermore, per-
formance generally improves for all methods as 𝛾 increases, suggesting 
that greater diversity in asset selection positively contributes to out-of-
sample performance.

In Appendix D.2, the proposed method is compared against alterna-
tive portfolio optimization approaches across distinct market regimes-
specifically, the bear market during the Global Financial Crisis (2007-
2009) and the bull market of the subsequent U.S. equity rally (2009-
2016). Additionally, a diversified global bond data set comprising 1336 
instruments from 2014 to 2018, characterized in Fig. D.15, is used to 
evaluate performance across varying portfolio sizes.

As shown in Tables D.8 and D.9, the proposed s-RBFN model consis-
tently achieves the highest average performance across all portfolio sizes 
under both bull and bear market regimes. Table D.10 presents the results 
for the fixed income data set, where the s-RBFN attains superior Sharpe, 
Sortino, and Omega ratios, along with the second-lowest maximum 
drawdown among all evaluated methods. Notably, the s-RBFN model 
with 10 portfolio constituents delivers the best performance across all 
metrics for both the U.S. equity portfolios during the Credit Crunch (Ta-
ble D.9) and the fixed income data set (Table D.10).

Overall, the proposed solution demonstrates significantly stronger 
performance for small-sized portfolios compared to other methods, 
which can be attributed to the enhanced diversification induced by the 
diversity parameters.
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5.  Conclusion and future work

This work explored the relationship between the diversity of indi-
vidual predictors in structured ensembles and portfolio diversification, 
offering a novel perspective within a multiple-hypothesis predict-then-
optimize framework. One key contribution was the use of the ensemble 
combiner rule as the portfolio target during optimization-for example, 
the equal-weighted portfolio with the MSE loss. To the best of the au-
thors’ knowledge, this represents the first learning-based plug-in method 
that enables parametric control of out-of-sample diversification prior to 
decision-making. Experimental results confirmed that out-of-sample di-
versification and generalization performance depend not only on the 
optimization procedure but also on the asset selection stage. Notably, 
when RMSE ranges were similar, asset selections with greater diversity 
in return predictions consistently outperformed those with less diversity, 
highlighting the importance of the diversity-quality trade-off. This forms 
a third contribution, and both sources of diversity were shown to extend 
the boundaries of portfolio diversification beyond previously suggested
limits (Dalio, 2018).

For future work, it would be valuable to explore deeper architectures 
for individual predictors, as well as the integration of multimodal data 
sets, enabling hypotheses to incorporate information beyond stock time 
series. Furthermore, extending the methodology to settings where each 
hypothesis represents a portfolio or a group of assets could open new 
avenues for application. Another promising direction involves investi-
gating the interplay between ensemble complexity, prediction diversity, 
and portfolio risk. Additionally, exploring alternative loss functions and 

ensemble combiners tailored to various portfolio risk objectives may 
further enhance the flexibility and effectiveness of the proposed frame-
work.
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Appendix A.  Diversity in Learning Stage: Radial Basis Functions

Fig. A.10. One-step (1-month) 100 simulations Sharpe ratios (Y-axis) for different number of predictors 𝑀 (X-axis), diversity parameter 𝜀 = 0, 0.1, 0.35 (colours), 
s-RBFN regularization parameter 𝜆𝑠, and −1% ≤ 𝑇 ≤ 1%. s-RBFN with radial basis functions.
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Fig. A.11. Multi-step (10-month) Sharpe ratios (Y-axis) for different number of predictors 𝑀 (X-axis), diversity parameter 𝜀 = 0, 0.1, 0.35 (colours), s-RBFN regular-
ization parameter 𝜆𝑠, and −1% ≤ 𝑇 ≤ 1%. s-RBFN with radial basis functions.

Expert Systems With Applications 292 (2025) 128633 

16 



A. Dominguez et al.

Appendix B.  Ensemble Regularization in the Gaussian Basis Functions Experiments (Multi-step ahead case)

Fig. B.12. Portfolio ensemble 10-month (multi-step) average test RMSE with different diversity parameter 𝜀, ensemble (s-RBFN) regularization parameter 𝜆𝑠, thresh-
old for asset selection 𝑇 , number of portfolio constituents or predictors (2, 5, 10, 20, 50), and Gaussian basis functions. To perform a closer analysis of the regularization 
parameter, it can be seen how for 𝜆𝑠 = 10 the generalization error is more stable for all model hyperparameters, and in the case of no regularization parameter, there 
are some cases in which the results are quite unstable (like in Figs. B.12(b) and B.12(c)) where the test RMSE are displayed. It can be concluded that the regularization 
parameter reduces the uncertainty of the s-RBFN hyperparameters in the case of the Gaussian basis function. This instability in hyperparameter selection was not 
observed with the s-RBFN using radial basis functions.
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Appendix C.  Including Diversity in the Asset or Hypothesis Selection Stage: One-step Decision-making

Fig. C.13. One-step (1-month) Sharpe ratios (Y-axis) for different number of predictors 𝑀 (X-axis), diversity parameter 𝜀 = 0, 0.1, 0.35 (colours), multiplicative factor 
or diversity parameter in the asset selection stage 𝛾, and 0% ≤ 𝑇 ≤ 0.5%. s-RBFN with radial basis functions.
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Fig. C.14. One-step (1-month) Sharpe ratios (Y-axis) for different number of predictors 𝑀 (X-axis), diversity parameter 𝜀 = 0, 0.1, 0.35 (colours), multiplicative factor 
or diversity parameter in the asset selection stage 𝛾, and −1% ≤ 𝑇 ≤ −0.5%. s-RBFN with radial basis functions.
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Appendix D.  Sensitivity Analysis of Diversity Parameters across different Regimes, Asset Classes and Performance Metrics

D.1.  Performance analysis of the s-RBFN model across different regimes and asset classes as a function of the diversity parameter 𝜀 and the number of 
portfolio constituents 𝑛

Table D.5 
Performance metrics across varying values of 𝜀 and number of assets 𝑛 during the U.S. equities market rally spanning 2009 
to 2016.
 Metric 𝑛  0  0.1  0.35  0.5  0.75  0.95
Sharpe  5  0.645  0.629  0.399  1.035  0.685  0.691

 10  1.093  1.208  0.960  0.687  1.023  1.220
 20  1.369  1.135  1.135  1.452  1.135  0.852
 100  1.020  1.182  1.061  1.231  1.229  1.186
 Avg.  1.032  1.039  0.889  1.101  1.018  0.987

Max Drawdown  5 -0.307 -0.286 -0.219 -0.328 -0.336 -0.285
 10 -0.352 -0.252 -0.258 -0.348 -0.322 -0.215
 20 -0.261 -0.235 -0.220 -0.259 -0.248 -0.289
 100 -0.260 -0.259 -0.261 -0.231 -0.258 -0.252
 Avg. -0.295 -0.258 -0.240 -0.292 -0.291 -0.260

Sortino  5  0.923  0.871  0.536  1.417  0.893  0.983
 10  1.403  1.626  1.336  0.934  1.397  1.763
 20  1.897  1.532  1.541  1.900  1.453  1.125
 100  1.328  1.541  1.385  1.520  1.611  1.557
 Avg.  1.388  1.393  1.200  1.443  1.339  1.357

Omega  5  1.123  1.118  1.073  1.205  1.130  1.132
 10  1.221  1.242  1.185  1.129  1.198  1.237
 20  1.270  1.224  1.224  1.296  1.211  1.165
 100  1.201  1.238  1.211  1.231  1.246  1.237
 Avg.  1.204  1.206  1.173  1.215  1.196  1.193

Table D.6 
Performance metrics across varying values of the diversity parameter 𝜀 and number of assets 𝑛, averaged over 𝑀 , during the 
U.S. Credit Crunch Crisis (2007–2009).
 Metric 𝑛  0  0.1  0.35  0.5  0.75  0.95
Sharpe  5 -0.454  0.007  0.380 -0.027 -0.744  0.585

 10 -0.457 -0.027 -0.225 -0.203 -0.484 -0.112
 20  0.129 -0.041 -0.034  0.215 -0.284 -0.226
 100 -0.186 -0.170 -0.209 -0.124 -0.264 -0.298
 Avg. -0.242 -0.058 -0.022 -0.035 -0.429 -0.013

Max Drawdown  5 -0.646 -0.690 -0.605 -0.645 -0.790 -0.488
 10 -0.713 -0.564 -0.604 -0.607 -0.640 -0.534
 20 -0.498 -0.570 -0.551 -0.382 -0.578 -0.575
 100 -0.532 -0.540 -0.577 -0.545 -0.581 -0.606
 Avg. -0.597 -0.591 -0.584 -0.545 -0.647 -0.551

Sortino  5 -0.623  0.008  0.542 -0.036 -1.077  0.846
 10 -0.625 -0.038 -0.319 -0.270 -0.749 -0.167
 20  0.191 -0.053 -0.047  0.309 -0.401 -0.313
 100 -0.267 -0.238 -0.291 -0.173 -0.372 -0.412
 Avg. -0.331 -0.080 -0.029 -0.043 -0.900 -0.011

Omega  5  0.921  1.001  1.073  0.995  0.878  1.111
 10  0.912  0.995  0.960  0.964  0.916  0.981
 20  1.024  0.992  0.994  1.039  0.949  0.960
 100  0.967  0.970  0.963  0.978  0.954  0.947
 Avg.  0.956  0.990  0.998  0.994  0.924  1.000
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Fig. D.15. Distribution of the 1336 bonds in the data set across key categories: rating, curve (tenor), seniority, country (ISO), and sector.
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Table D.7 
Performance metrics across varying values of 𝜀 and number of assets 𝑛 on a fixed income data set covering the global 
bond market (public, private, institutional, corporate, municipal sectors) from 2014 to 2018.
 Metric 𝑛  0  0.1  0.35  0.5  0.75  0.95
Sharpe  5 -0.25 -0.28  0.01 -0.68 -0.31  0.03

 10  0.48 -0.57 -0.20  0.51  0.15 -0.44
 20 -0.31  0.51 -0.54 -0.55 -0.33 -0.20
 100  0.41  0.31  0.52 -0.48  0.39  0.35
 Avg.  0.08 -0.01 -0.05 -0.30 -0.02 -0.06

Max Drawdown  5 -0.10 -0.21 -0.07 -0.19 -0.17 -0.09
 10 -0.14 -0.10 -0.06 -0.15 -0.07 -0.10
 20 -0.06 -0.12 -0.10 -0.08 -0.09 -0.05
 100 -0.08 -0.06 -0.06 -0.07 -0.05 -0.06
 Avg. -0.10 -0.12 -0.07 -0.12 -0.10 -0.08

Sortino  5 -0.29 -0.29  0.01 -0.75 -0.32  0.04
 10  4.52 -0.67 -0.24  9.34  0.18 -0.49
 20 -0.36  12.24 -0.61 -0.64 -0.43 -0.24
 100  2.97  1.36  16.16 -0.62  2.17  1.17
 Avg.  1.21  3.16  3.33  1.83  0.40  0.12

Omega  5  0.93  0.91  1.00  0.84  0.91  1.01
 10  2.84  0.88  0.96  5.01  1.03  0.90
 20  0.94  4.76  0.89  0.90  0.91  0.96
 100  1.44  1.20  3.79  0.91  1.31  1.18
 Avg.  1.54  1.94  1.66  1.91  1.29  1.26

D.2.  Comparative analysis of different portfolio optimization methods

Table D.8 
Performance metrics by strategy and number of assets during the U.S. Equity Rally regime.
 n  s-RBFN  1_N  CVaR RP  HERC  HRP  IV  MD

 Sharpe Ratio
 5  1.11  0.51  0.58  0.08  0.48  0.58  0.49
 10  1.03  1.11  1.10  1.20  1.17  1.10  1.16
 20  1.16  1.12  1.20  1.00  1.18  1.20  1.11
 100  1.15  1.13  1.19  0.97  1.23  1.19  0.83
 Avg  1.11  0.97  1.02  0.81  1.02  1.02  0.90

 Maximum Drawdown
 5 -0.30 -0.31 -0.28 -0.41 -0.29 -0.28 -0.26
 10 -0.31 -0.34 -0.27 -0.27 -0.25 -0.27 -0.27
 20 -0.26 -0.22 -0.20 -0.23 -0.20 -0.20 -0.19
 100 -0.25 -0.26 -0.21 -0.23 -0.21 -0.21 -0.32

 Avg -0.28 -0.28 -0.24 -0.29 -0.24 -0.24 -0.26

 Sortino Ratio
 5  1.25  0.71  0.80  0.11  0.65  0.80  0.68
 10  1.46  1.39  1.41  1.67  1.52  1.41  1.51
 20  1.64  1.50  1.61  1.26  1.57  1.61  1.52
 100  1.55  1.47  1.53  1.26  1.58  1.53  1.07
 Avg  1.48  1.27  1.34  1.08  1.33  1.34  1.20

 Omega Ratio
 5  1.00  0.94  0.94  0.98  0.94  0.94  0.94
 10  1.17  0.91  0.90  0.92  0.89  0.90  0.87
 20  1.02  0.96  0.95  0.93  0.94  0.95  0.93
 100  0.99  0.97  0.95  0.95  0.95  0.95  0.95
 Avg  1.04  0.95  0.93  0.95  0.93  0.93  0.92
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Table D.9 
Performance metrics by strategy and number of assets during the U.S. Credit Crunch (2007–2009).
 Assets  s-RBFN  1/N  CVaR RP  HERC  HRP  IV  MD

 Sharpe Ratio
 5 -0.64 -0.33 -0.37 -0.11 -0.34 -0.37 -0.35
 10  0.82 -0.53 -0.59 -0.42 -0.65 -0.59 -0.72
 20 -0.15 -0.22 -0.28 -0.38 -0.34 -0.28 -0.38
 100 -0.07 -0.18 -0.28 -0.23 -0.31 -0.28 -0.28

 Avg. -0.01 -0.32 -0.38 -0.29 -0.41 -0.38 -0.43

 Maximum Drawdown
 5 -0.80 -0.60 -0.57 -0.54 -0.58 -0.57 -0.56
 10 -0.60 -0.68 -0.61 -0.69 -0.62 -0.61 -0.62
 20 -0.64 -0.55 -0.52 -0.59 -0.54 -0.52 -0.53
 100 -0.56 -0.53 -0.51 -0.50 -0.51 -0.51 -0.48

 Avg. -0.65 -0.59 -0.55 -0.58 -0.56 -0.55 -0.55

 Sortino Ratio
 5 -0.12 -0.49 -0.55 -0.17 -0.50 -0.55 -0.52
 10  0.07 -0.72 -0.80 -0.52 -0.86 -0.80 -0.91
 20 -0.21 -0.31 -0.39 -0.50 -0.48 -0.39 -0.50
 100 -0.11 -0.25 -0.40 -0.31 -0.44 -0.40 -0.37

 Avg. -0.09 -0.44 -0.54 -0.38 -0.57 -0.54 -0.58

 Omega Ratio
 5  0.89  0.94  0.94  0.98  0.94  0.94  0.94
 10  1.01  0.91  0.90  0.92  0.89  0.90  0.87
 20  0.97  0.96  0.95  0.93  0.94  0.95  0.93
 100  0.99  0.97  0.95  0.95  0.95  0.95  0.95
 Avg.  0.97  0.95  0.94  0.95  0.93  0.94  0.92

Table D.10 
Performance metrics by strategy and number of assets on a data set of 1336 global bonds, including public, 
corporate, institutional, municipal, and other sectors (2014–2018).
 Assets  s-RBFN  1/N  IV  MD  HRP  HERC

 Sharpe Ratio
 5 -0.25 -0.48 -0.80 -0.65 -0.73 -0.78
 10  0.48  0.47  0.29 -0.14  0.32  0.19
 20 -0.31 -0.37 -0.42  0.08 -0.16 -0.37
 100  0.41  0.39  0.32  0.06  0.36 -0.02

 Avg.  0.08  0.00 -0.15 -0.16 -0.05 -0.25

 Maximum Drawdown
 5 -0.10 -0.11 -0.12 -0.10 -0.11 -0.12
 10 -0.14 -0.12 -0.12 -0.13 -0.13 -0.14
 20 -0.06 -0.06 -0.09 -0.17 -0.11 -0.09
 100 -0.08 -0.08 -0.15 -0.07 -0.12 -0.18

 Avg. -0.10 -0.09 -0.12 -0.12 -0.12 -0.13

 Sortino Ratio
 5 -0.29 -0.54 -0.73 -0.59 -0.67 -0.73
 10  4.52  4.42  1.91 -0.25  2.19  0.80
 20 -0.36 -0.48 -0.58  0.11 -0.23 -0.50
 100  2.97  2.85  4.09  0.09  3.87 -0.13

 Avg.  1.21  1.06  1.17 -0.16  1.29  0.11
 Omega Ratio

 5  0.93  0.90  0.80  0.82  0.81  0.81
 10  2.84  2.62  1.53  0.91  1.69  1.20
 20  0.94  0.91  0.79  1.11  0.88  0.84
 100  1.44  1.40  1.65  1.07  1.79  0.98
 Avg.  1.53  1.46  1.19  0.98  1.29  0.96
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