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Abstract

The evolution of Arctic sea ice thickness and volume over the satellite era are poorly under-
stood because of the difficulties in both modelling and observing the sea ice. The intricate
coupling that occurs between the ice, the ocean and the atmosphere makes modelling the
sea ice cover accurately a very complex task. The harsh conditions and remoteness of the
polar regions as well as the continual changes in the sea ice cover mean that sea ice thickness
is difficult to observe consistently year-round. Further work is needed in understanding the
changes that have occurred in the Arctic sea ice cover, not only to understand where the
changes have occurred, but how and why they have occurred, so that we can understand what
is driving these changes, and what changes are likely to occur in the future. In this thesis, we
produce a new Arctic sea ice reanalysis in an attempt to ascertain where sea ice models are
performing poorly, why this is happening, and identify possible areas of focus for future sea
ice model development in order to obtain better estimates of regional and Pan Arctic changes
in the sea ice cover.

In the past decade groundbreaking new satellite observations of the Arctic sea ice cover
have been made, allowing researchers to understand the state of the Arctic sea ice system in
greater detail than before. The derived estimates of sea ice thickness are useful but limited
in time and space. In this thesis the results from a new sea ice data assimilation system are
presented. Observations assimilated (in various combinations) are monthly mean sea ice
thickness and monthly mean sea ice thickness distribution from Cryosat-2, and NASA Team
and Bootstrap daily sea ice concentration. This data assimilation system couples the Centre
for Polar Observation and Modelling’s (CPOM) version of the Los Alamos Sea Ice Model
(CICE) to the Localised Ensemble Transform Kalman Filter (LETKF) from the Parallel
Data Assimilation Framework (PDAF) library. The impact of assimilating a sub-grid scale
sea ice thickness distribution is of particular novelty. The sub-grid scale sea ice thickness
distribution is a fundamental component of sea ice models, playing a vital role in the dynam-
ical and thermodynamical processes, yet very little is known of its true state in the Arctic.
Observations of summer sea ice thickness are assimilated for the first time, which has not
previously been possible in Arctic sea ice reanalyses.
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We find that assimilating Cryosat-2 products for the mean thickness and the sub-grid scale
thickness distribution can have significant consequences on the modelled distribution of the
ice thickness across the Arctic and particularly in regions of thick multi-year ice. The assimi-
lation of sea ice concentration, mean sea ice thickness and sub-grid scale sea ice thickness
distribution together performed best when compared to a subset of Cryosat-2 observations
held back for validation. Regional model biases are reduced: the thickness of the thickest ice
in the Canadian Archipelago is decreased, but the thickness of the ice in the Central Arctic
is increased. When comparing the assimilation of mean thickness with the assimilation of
sub-grid scale thickness distribution, it is found that the latter leads to a significant change in
the volume of ice in each category. Estimates of the thickest ice improve significantly with
the assimilation of sub-grid scale thickness distribution alongside mean thickness.

We find that our reanalyses of Arctic sea ice over the satellite era (1981-2020) substan-
tially improve the estimates of sea ice extent, primarily in winter where the model estimates
of sea ice concentration are much too high in the Arctic peripheral seas, causing an over-
estimation of sea ice extent in the stand-alone model. The differences in estimated sea ice
concentration in two different sets of observations (NASA Team and Bootstrap) lead to very
different estimates of sea ice volume depending on which is assimilated. These differences
are reduced when ice thickness is also assimilated, demonstrating both the importance of
assimilating ice thickness, and the drawbacks of only using sea ice concentration observations
to make reanalysis estimates of short or long term changes in ice volume. We find that the
distribution of the ice thickness in the Arctic is considerably different in our reanalyses in
comparison to a model simulation that does not use assimilation, with a reduction in very
thick ice and a reduction in the overall range of grid cell mean ice thickness. We also find
strong disagreement between the free run of the model, observation and reanalysis on the
timing of the seasonal sea ice cycle, with observations favouring earlier starts to both the
melt and growth season. The assimilation of recently produced year-round sea ice thickness
estimates is performed for the first time and shows the greatest improvement for ice thickness
estimates in comparison with independent observations. Our work demonstrates the impor-
tance of, and need for, further work in sea ice observations and sea ice data assimilation in
order to improve our understanding of the Arctic sea ice cover.
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Chapter 1

Introduction

The primary objective of this thesis is to produce and analyse a new Arctic sea ice reanalysis
over the satellite era (1981-2020) using recently developed observations from the Cryosat-2
(CS2) satellite. This includes assimilating a sub-grid scale sea ice thickness distribution and
year-round observations of mean sea ice thickness. The impacts and potential benefit of
assimilating these new observational records in a new sea ice data assimilation product are
investigated. Also of particular interest is the identification of incorrect model physics in
CICE from the data assimilation product, which could be used to improve sea ice models
in future. In section 1.1 we give an overview of the Arctic and the changes which have
been occurring in the 21st century. In section 1.2 we discuss the potential for a new sea ice
reanalysis and the usefulness of data assimilation in climate studies. In section 1.3 we lay
out the aims and outline for this thesis.

1.1 Arctic Ocean

The Arctic Ocean is an environment unlike anywhere else on Earth. It is a vast ocean almost
completely surrounded by continental landmass (figure 1.1). Year-round, the Arctic Ocean is
partially covered in sea ice. The sea ice cover waxes and wanes seasonally, covering between
a maximum of around 15 million km2 in March to a minimum of around 5 million km2 in
September. The sea ice cover is not a homogeneously thick slab of ice but is instead charac-
terised by a number of important features. Sea ice in the Arctic first forms on the surface
of the ocean as frazil ice, ice crystals that are up to a few millimetres across. Thin frazil ice
then accumulates to form pancake ice that then freeze together to form a continuous cover.
In the Arctic this ice most often thickens by congelation (freezing at the bottom). Under the
influence of the Beaufort Gyre and Transpolar Drift, ice is packed up against the Greenland
Coast and Canadian Archipelago, where ridging and rafting will occur, further thickening
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the ice. Newly formed ice has substantially different properties to that of thick ridged sea
ice. Firstly, the thick ice will have a layer of snow up to 40 cm deep, which in summer may
melt to form ponds (see figure 1.2), further decreasing the ice albedo and strengthening the
albedo feedback cycle (Schröder et al., 2014). Thicker ice is also less smooth, and ridges
caused by ice floe collisions can be several metres taller than the surrounding surface. The
thick ice is also substantially less saline than thin ice. As ice forms the salt in the seawater
becomes trapped within the crystalline matrix of the ice, and so called ’brine pockets’ are
formed. These brine pockets significantly alter the thermodynamic properties of the ice and
it behaves like a mushy layer: a combination of a solid matrix of ice and brine melt (Feltham
et al., 2006). The brine is slowly drained away from the ice through a number of mechanisms,
primarily gravity drainage. This means that thicker multiyear ice is much less saline than
thin and newly formed ice, particularly at the surface. These differences in dynamical and
thermodynamical properties highlight the importance of a good understanding of the sea ice
thickness distribution in the Arctic.

The Arctic sea ice cover is not a self-contained piece of the global climate, it interacts with
the atmosphere and oceans, driving changes in both the local and global climate. The snow
and ice on its surface reflects between 50% and 80% of incoming solar energy, significantly
more than the surrounding ocean (Curry et al., 1995). This layer of snow and ice impedes
exchanges of sensible and latent heat, moisture and momentum between the atmosphere and
the ocean surface. The brine rejected during ice formation and the increase of freshwater
caused by sea ice melt play important roles in the thermohaline circulation (Mauritzen and
Häkkinen, 1997). The ridging process of sea ice introduces atmospheric wind drag and
momentum exchange between the atmosphere and ocean - the ridges on the surface of ice
floes act like sails, and the keels underneath transfer this momentum to the ocean (Castellani
et al., 2014).

The Arctic, more so than any other region on Earth, has felt the effects of man-made climate
change. ’Arctic amplification’ has meant that the Arctic is experiencing an increase in
surface air temperatures at double the rate of the rest of the planet. The primary (but not sole)
mechanism driving this change is Arctic sea-ice decline observed during the satellite era (Dai
et al., 2019). The Arctic sea ice cover is declining substantially, especially during summer
and early autumn. This is happening at a rate of around -13% in September, and -3% in April
intra-annually (National Snow and Ice Data Center). The overall trend between 1979 and the
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Fig. 1.1 A geographic map of the Arctic Ocean, labelling many of the important seas in the
Arctic for sea ice. Source: ECMWF.
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Fig. 1.2 An image of Arctic sea ice in the Chukchi Sea from July 2011. Melt ponds are
visible and on the LHS of the picture the water on the surface is beginning to refreeze and
form frazil ice. Source: NASA.
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present is around 5%, with a larger decreasing trend occurring since the beginning of the 21st
century (Cavalieri and Parkinson, 2012). Arctic amplification would not be possible without
the ice albedo feedback effect but this is a complicated mechanism with direct effects on
surface temperature during the summer but also the delayed effects this has on the Arctic sea
ice melting season and the exposed dark water surface causing warming of the mixed ocean
layer (Serreze and Barry, 2011). Increased sea ice loss in summer causes excess heat to be
stored in the Arctic Ocean, which is released into the atmosphere as the freezing-up season
begins. The increase of near-surface air temperature causes changes to Arctic geopotential
heights which in turn effect global circulation, and feeds back into the troposphere and
stratosphere (Coumou et al., 2018). These changes could lead to weakened storm tracks
and jet streams due to decreases in the temperature gradient between the mid-latitudes and
the Arctic circle, and cause modifications to planetary waves (Cohen et al., 2014). Arctic
sea ice loss could also affect global oceanic circulation patterns, the Atlantic Meridional
Overturning Circulation is sensitive to changes to freshwater and heat flux changes in the
Arctic and is weakening, which it has been suggested is due to a declining sea ice cover
(Sévellec et al., 2017). The links between the declining sea ice cover and its wider effects
on climate are difficult to prove and widely disputed. For example, observations strongly
support a link between Arctic amplification and mid-latitude weather, but model results show
little connection between Arctic amplification and its potential consequences in other regions
of the globe (Cohen et al., 2020). The impacts of Arctic amplification on a global scale and
the mechanisms driving these changes are only beginning to be understood (Francis et al.,
2017).

The Arctic sea ice, although inhospitable to ourselves and many forms of life we are familiar
with, is a fundamental environment for many bacterial, plant and animal species, forming its
own unique ecosystem. The sea ice is home to large colonies of algae and phytoplankton
which form the basis of the food web and contribute to the cycling of important organic
nutrients (Zhang et al., 2010). There are many species of fish that live under the sea ice
surviving on the algae that forms underneath it, the most common of which being the Polar
Cod (David et al., 2016). However the most visible group of animals that have made sea ice
their home are the marine mammals. A number of seal species use the sea ice as feeding
grounds with which to hunt these fish, and in winter use the thick snow to form lairs. This
means they require stable ice year-round. Polar bears use sea ice as a platform for hunting
these seals, but rapidly declining sea ice cover means that they need to venture further to
hunt (possibly increasing likelihood of contact with humans), and may need to fast for longer
periods (Kovacs et al., 2011). Polar bear population on an inter-annual basis has been linked
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to sea ice extent, and projections show that the Arctic sea ice decline could lead to significant
population loss (Hunter et al., 2010). Arctic sea ice decline is also expected to have an impact
on human activity. Sea ice poses a significant hazard to ships in higher latitudes, preventing
shipping routes from crossing the Arctic. Sea ice decline may however open up the Arctic
for passage, allowing shipping routes to shortcut between Atlantic and Pacific ports and
within the Arctic, opening up trading opportunities (Melia et al., 2016). The sea ice is also
important for indigenous communities living in the Arctic circle. The sea ice is used not
only as a place to hunt but also provides important mental health, physical health, social and
cultural benefits to the peoples living there (Durkalec et al., 2015). Some participants in the
study by Durkalec et al. (2015) already cited negative health impacts as a result of changing
environmental conditions. Sea ice is not only an vital component of the global climate, but
also one of a global ecosystem.

Observations of the Arctic sea ice (and its polar cousin, the Antarctic), in comparison
with the rest of the world, are sparse in both space and time because of its remoteness. The
Arctic is largely inhospitable to humans due to its climate and terrain, and the sparseness of
human activity in this region means that long term climate records are almost non-existent.
The most widely known source consists of 1000-year long records of atmospheric methane
from air bubbles trapped in ice cores in Greenland (Rhodes et al., 2013). Observations of the
Arctic sea ice are made even more difficult because of its position in the Arctic Ocean, and
its evolution throughout the changing seasons. The longest and most consistent records of
Arctic sea ice have been made by passive microwave satellites, observing the sea ice concen-
tration initially bi-daily from the early 1970s and now daily since the late 1980s (Cavalieri
et al., 1984, Comiso et al., 1992). In the second half of the 20th century, observations of
Arctic sea ice were limited in scope, there were a few programmes carried out to establish
manned stations on the sea ice which made atmospheric and oceanic observations. The
biggest programme by far was a Soviet campaign consisting of 28 stations which provides a
record of snow depth on the sea ice between 1954 and 1991, and was later used to provide
a climatological snow depth for the Arctic (Warren et al., 1999). However with the threat
of global warming and Arctic amplification better understood, significant efforts have been
made since the 1990s to improve the observational record of the Arctic sea ice. A record
of sea ice motion since 1979 has been derived from satellites, buoys and reanalysis wind
fields and of particular focus has been sea ice thickness. The Ice Cloud and land Elevation
Satellite ICESat (Schutz et al., 2005) and Cryosat-2 (CS2) (Laxon et al., 2013) satellites
(and their predecessors) are now both in operation, with CS2 providing a record of Arctic
sea ice thickness since October 2010. The SMOS satellite (Kerr et al., 2010), while not
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primarily designed for observations of Arctic sea ice, has also been useful for providing ob-
servations of the thinnest sea ice, which have proved difficult. Recent efforts also include the
Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC), a recent
field campaign which took place between September 2019 and October 2020, undertaken by
an international and interdisciplinary team to survey the changing ice cover for a full year.
The new observational records that have become available over the past two decades mean
that we now have access to an unprecedented amount of sea ice data which can be used in
climatological studies, in our case for reanalysis.

1.2 A New sea ice data assimilation system

Reanalyses are vital tools for climate study, because they allow us to combine state-of-the-art
climate models with observations to create a spatially and temporally continuous climate
record. This can be extremely useful as both sources of information have associated errors.
Climate models can have sources of error such as those arising from lack of resolution, non-
inclusion or incorrect parametrisations of climate processes, poor initialisation or boundary
conditions. Errors occurring early in the model may also be propagated into and accumulate
at future times. Stand-alone models of individual systems of the climate, such as the Arctic
sea ice are also dependent on forcing data obtained from atmospheric reanalyses or climato-
logical data of the atmosphere and oceans, which are imperfect themselves. Observational
records are similarly troubled, with uncertainties arising from human error, instrument issues,
and uncertainties in conversion from the observed parameter to the quantity that we want to
observe (for example from brightness temperature to concentration). The internal variability
in the sea ice cover also limits comparisons between models and observations, and this
internal variability is also non-uniform (England et al., 2019) and has an important influence
on the recent sea ice loss. The internal variability requires the use of statistical approaches for
direct comparisons between models and observations, such as in Swart et al. (2015), which
finds that observed and model trends between 1997 and 2013 are not inconsistent, but there
is a need for additional large ensemble models that can capture the internal variability as
the variability could mask or enhance trends greatly over short periods. Observations are
also unable to provide a completely consistent picture of the climate, even with the advent of
satellites. Not everything is observable using satellite technology, so remote areas like the
Arctic are still an issue. Considering the issues with each source of information, the best way
to study the climate will be to combine them, accounting for the errors in each separately.
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This is where a the reanalysis is born, and why it is so vital for the study of the environment.
Reanalyses are used to monitor both short and long term changes to the climate regionally
and globally, most importantly for the monitoring of climate change (Santer et al., 2004). As
they use the same models that are used for numerical weather prediction, reanalyses can help
to improve weather forecasting (Dee et al., 2011). Reanalyses can answer questions about
unobserved quantities - of particular interest in the Arctic is sea ice volume - which can help
provide important insight in the changes in the climate which either cannot be observed or
are difficult to fully quantify from observations. Reanalyses are also a vital tool for climate
prediction, where they can provide a better initialisation of the state of the climate before the
prediction step occurs. Prediction is of particular importance in Arctic sea ice because of
shipping (Melia et al., 2017), which is becoming increasingly relevant in the Arctic due to the
reduction of ice extent in the Arctic (Melia et al., 2016). Sea ice prediction is also important
for fishing and extraction of resources and resource management in the Arctic Ocean. Sea
ice prediction is also of importance to communities living in these regions. The predictability
of sea ice thickness has a high potential for up to 2 years, but extent is harder to predict and
only shows potential for up to 1 year (Holland et al., 2011). Winter generally shows high
predictability, with summer sea ice predictability depending on the changes in the internal
variability in the sea ice. If the September sea ice extent varies strongly from the linear trend
prediction can be poor in summer (Stroeve et al., 2014). Massonnet et al. (2015) showed
that ensemble Kalman filter assimilation of ice concentration had strong prospects for future
improvement of short-term sea ice prediction. Reanalyses and data assimilation can also be
used to answer questions about model processes, in particular parameter estimation can be a
useful tool for the calibration of poorly-constrained parameters in the sea ice model, e.g. ice
strength and ice-air/ocean fluxes (Massonnet et al., 2014). Reanalyses can be used for the
development and placement of renewable energy sources, and for agriculture (Nezhad et al.,
2021). They are also used in both business and government for decision and policy making
reasons.

In comparison to other research areas in climate science, sea ice has not generally been the
primary focus of much long-term reanalysis research, though there have been a number of
works looking into the usefulness of data assimilation on sea ice reanalysis and prediction in
shorter timescales (up to a decade). This may be due to both a lack of observational data,
and that the uncertainties on these observations are unusually difficult to quantify. Modern
state-of-the-art sea ice models would also be difficult to linearise and are non-Gaussian.
These factors would have made producing a sea ice reanalysis difficult, especially before the
recent development of ensemble data assimilation techniques. Nevertheless, there has been
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much focus in sea ice research on the feasibility of long-term reconstructions of sea ice over
the satellite era, and of sea ice observation assimilation. In 2003 two seminal papers in sea
ice reanalysis research were published, the first, Lisæter et al. (2003), showed the benefits
of the assimilation of sea ice concentration in a dynamic-thermodynamic sea ice model
(coupled to an ocean model), and this was also the first study of sea ice assimilation using the
ensemble Kalman filter. The second paper, Zhang and Rothrock (2003), introduced the most
widely-known sea ice data assimilation system, the Pan Arctic Ice Ocean Modelling and
Assimilation System (PIOMAS). PIOMAS uses a coupled ocean-sea ice system with a 12
category Eulerian thickness and enthalpy distribution. This first paper primarily introduced
the model reanalysis system, but in 2006 the assimilation of ice concentration was introduced
(Lindsay and Zhang, 2006), whereby ice concentration was assimilated using a nudging
method which prioritised the sea ice extent, and improvements were found in both extent and
concentration. Though it uses this simple data assimilation method, it has been extensively
validated with thickness observations from submarines, buoys, ICESat and CS2, which were
studied and verified (Schweiger et al., 2011). The work of Dulière and Fichefet (2007)
also used the assimilation of ice concentration and velocity in a simpler model of the sea
ice cover, using optimal interpolation. Assimilation of ice velocity was found to be much
less useful, though it could improve the sea ice state estimation if the ice dynamics is quite
poor. They found that assimilation of ice concentration needed to be handled with care
due to correlations with other state variables, but the overall impact was very positive. The
sensitivity of the sea ice model in data assimilation to the correlations between the state
variables within the sea ice model, and to the coupling to the ocean and atmospheric models,
means that some studies have focused on assimilating sea ice observations into global climate
models, avoiding unphysical updates to the system. For example, Toyoda et al. (2016) applied
corrections to both the atmospheric and ocean in a 3D-var system. Tietsche et al. (2013) finds
that the addition of sea ice concentration assimilation in a global climate model, even with a
relatively simple nudging scheme, reduces errors in concentration and extent significantly,
though care was needed to reduce unphysical effects from the updates. Both studies found
that the improved sea ice initialisation was effective, though the impacts on the ocean and
atmosphere were minimal.

Within the past decade a growing number of ocean-sea ice DA systems and reanalyses
have been produced and are in operation, including the UK Met Office’s Forecast Ocean
Assimilation Model (FOAM) (Blockley et al., 2014), The Nansen Environmental and Remote
Sensing Center’s (NERSC) Towards an Operational Prediction system for the North Atlantic
European coastal Zones (TOPAZ4) (Sakov et al., 2012), ECMWF’s Ocean ReAnalysis Pilot



10 Introduction

5 (ORAP5) (Zuo et al., 2017), the Modern-Era Retrospective analysis for Research and Ap-
plications (MERRA) Ocean product (Rienecker et al., 2011), The Canadian Global Ice Ocean
Prediction System (Smith et al., 2016) and the US Navy’s Arctic Cap Norwcast/Forecast
System (ACNFS) (Hebert et al., 2015). Many of these use 3D-Var or (OI) and assimilate
only sea ice concentration. TOPAZ4 uses an Ensemble Kalman Filter (EnKF) for sea ice
concentration and has tested the assimilation of SMOS-CS2 sea ice thickness (Ricker et al.,
2017). The Met Office has tested sea ice thickness assimilation in its FOAM system with OI
assimilation of CS2 monthly mean ice thickness (Blockley and Peterson, 2018), and recently
using 3D-Var assimilation of its daily sea ice thickness data (Fiedler et al., 2022). They
have also recently tested the model with assimilation of the combined CS2-Soil Moisture
and Ocean Salinity (CS2-SMOS) product (Mignac et al., 2022). There are also a number of
Arctic sea ice reconstruction studies which do not assimilate any sea ice variables but are
using atmospheric reanalyses to force their ocean-sea ice models, in particular a number of
studies looking at either the Arctic sea ice interannual or intra-annual variability or the long
term trends in the Arctic sea ice extent and volume, including (Cavalieri and Parkinson, 2012,
Hilmer and Lemke, 2000, Kwok, 2018)

In a comparison of 14 ocean-sea ice reanalyses it has been found that the spatial pattern
of ice volume varies widely between products, with no reanalysis standing out as clearly
superior when compared to altimetry estimates (Chevallier et al., 2017). Chevallier et al.
(2017) found that the majority of sea ice reanalyses do a good job at representing the monthly
and interannual variability of the ice velocity, primarily due to the use of surface forcing
from atmospheric reanalyses. In most reanalyses, sea ice concentration is consistent, with
most differences appearing at the ice edge, due to the uncertainties here. In terms of the sea
ice thickness Chevallier et al. (2017) notes that most reanalyses suffer from ice too thick in
the Beaufort Sea and CAA and too thin around the North Pole, something we hope this thesis
can address by using the assimilation of not only mean ice thickness, but sub-grid scale ice
thickness distribution.

1.3 Thesis Aims and Outline

There is a clear need for a better understanding of the mechanisms driving long term changes
in the Arctic sea ice cover. Currently available sea ice reanalyses do not take advantage of
the new observational records of Arctic sea ice available, they use models which have not
kept pace with the advances in sea ice modelling, they use relatively simple data assimilation
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techniques, and/or sea ice is not the primary focus of the reanalysis product. The primary
objective of this thesis is to use the state-of-the-art Centre for Polar Observation and Mod-
elling (CPOM) version of the Los Alamos Sea Ice Model (CICE) (Hunke et al., 2015), with
new long-term observational records that are available and a robust data assimilation method
to produce a new Pan-Arctic sea ice reanalysis over the satellite era. This is then used to
improve our understanding of long term changes in the sea ice cover. Of particular interest is
the assimilation of the sub-grid scale sea ice thickness distribution (Schröder et al., 2019) and
a summer record of the mean ice thickness (Landy et al., 2022), two observation types which
have not been assimilated in any previous study. The sub-grid scale thickness distribution
is a fundamental component of sea ice models, playing a vital role in the dynamical and
thermodynamical processes, yet very little is known of its true state in the Arctic. The
observational products from CS2 are limited, they are monthly mean observations of the
thickness distribution of sea ice with a mean thickness above 1 m. By producing a reanalysis,
we can produce a consistent record of the thickness distribution and can analyse how this
distribution has changed in the past decade. Using an ensemble based data assimilation
method means that much more information can be extracted from the observation. Not only
can we use the information of the observed variable but also information about how it is
correlated to other variables in the sea ice system as a whole, which is used to update the full
model state. This means that even though we only assimilate sea ice concentration between
1981 and 2009, we still obtain information about other aspects of the sea ice state. In this
chapter we provide background on the Arctic Ocean, sea ice, reanalysis studies and data
assimilation in sea ice, for a more complete background and outlook in these fields, see
Thomas (2017) and Buehner et al. (2017).

In chapter 2, we present currently available observations of the Arctic sea ice, including
discussion of how their uncertainties are to be used in the data assimilation. Background
information of the CPOM-CICE model, data assimilation and the Local Ensemble Transform
Kalman Filter (LETKF) are presented in Chapter 3, including details of currently available
sea ice reanalyses, which we compare with our own methods. The methodology of how
the sea ice data assimilation system was produced is presented in chapter 4, which includes
discussion of the Parallelised Data Assimilation Framework (PDAF), the importance of the
post-analysis step processing and how an ensemble spread in a stand-alone CICE model is
generated. Case studies and discussion of some important parameters for the data assimilation
system, and our choices for these parameters are also discussed. An intercomparison of
four-year reanalyses, assimilating different configurations of observations, is presented in
chapter 5. The impacts and consequences of assimilating each type of sea ice observation are



12 Introduction

discussed, and we use this study to decide the observations that will be assimilated in the
satellite era reanalysis to constrain the reanalysis setup further. This study also includes a
comparison of these different configurations to independent data. We present and discuss the
results of our satellite era reanalyses in chapters 6 and 7. The reanalyses are compared to
independent observations of concentration and thickness, and the PIOMAS reanalysis. The
findings, consequences and outcomes of this thesis are discussed and summarised in chapter
8.



Chapter 2

Observations of the Arctic Sea Ice

2.1 Overview

In this chapter we discuss observations of sea ice currently available which could be used
in a sea ice data assimilation system and give a brief overview of their development and
their uncertainties. This is done so that we can choose what observations will be useful to
assimilate in our reanalysis and what their uncertainties are. This is important because the
scientific robustness of our reanalysis depends on choosing observations that have a good
spatial and temporal coverage and quantifying the uncertainties appropriately. In section 2.2
we discuss observations of sea ice concentration, in section 2.3 we discuss observations of
sea ice thickness, in section 2.4 we discuss observations of sea ice thickness distribution, in
section 2.5 we discuss observations of sea ice motion, and we discuss other observations
available in section 2.6.

2.2 Sea Ice Concentration

The most widely available observations of Arctic sea ice over the satellite era have been sea
ice concentration, observations of which have been available since the 1970s from passive
microwave sensing satellites. This data came initially from the Scanning Multichannel
Microwave Radiometer (SMMR) which was launched in 1978 on the Nimbus 7 Satellite, and
continued with the Special Sensor Microwave/Imager (SSM/I) launched in 1987 as well as
the Special Sensor Microwave Imager/Sounder (SSMI/S) beginning in 2003 which were both
placed on board United States Defense Meteorological Satellite Program (DMSP) satellites.
These data sets are extremely useful as they provide a continuous time series of brightness
temperature and hence sea ice concentration data sets since 1978, providing an important



14 Observations of the Arctic Sea Ice

insight into the long term trends of the sea ice concentration and extent (see Figure 2.1) for
more than 40 years. The year of lowest sea ice extent, and volume (see figure 3.1) occurred
in 2012. The causes of the anomalously low 2012 Arctic sea ice state were the increased
vulnerability of sea ice due to decades of reduction and thinning of the sea ice cover, which
made it particularly vulnerable to a strong storm which entered the Arctic in August 2012
(Parkinson and Comiso, 2013). The previous record in 2007 was the result of strong cloud
anomalies in the Arctic, there was reduced the cloudiness over the Arctic and as a result the
downwelling shortwave and longwave radiation increased substantially during summer 2007
(Kay et al., 2008). The overall trend of a thinning and weakening ice pack has made it more
vulnerable in future to anomalous weather patterns such as these which occurred in 2007 and
2012 (Perovich and Richter-Menge, 2009).

The Advanced Microwave Scanning Radiometer for EOS (AMSR-E) and its successor
satellites, launched in 2002, provide daily sea ice data products and may also be used in
formulation or validation of sea ice concentration retrieval algorithms. Sea ice concentration
is retrieved from passive microwave satellites by using observations of the brightness temper-
ature over different surface types. The satellites provide vertically and horizontally polarized
brightness temperatures at various different frequencies, for example SSMI provides data
at 19, 37 and 85 GHz frequencies (Hollinger et al., 1990). The 19V (19 GHz, vertically
polarized) frequency channel is particularly important in distinguishing between sea ice and
water surfaces due to the emissivity differences between the two on this channel. Different
types of ice can also be distinguished especially in the 37V channel - usually first year and
multiyear ice are distinguished as these are important for understanding the changing sea ice
cover. Consequently almost all sea ice concentration retrieval algorithms use these channels.
The key equation for sea ice concentration retrieval is

Tb =
ns

∑
j=1

Tbs jCa j, (2.1)

where Tb is the observed brightness temperature, Tbs j is the reference brightness temperature
over the surface (these are also known as tie-points) and Ca j is the fractional concentration of
the grid cell covered by surface j over all surfaces ns, which must total 1. If you choose two
surfaces: ice cover and open-water then you end up with
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Fig. 2.1 Monthly average September Sea ice extent from 1979 to 2021 with trend line shown
in blue. Source: National Snow and Ice Data Center, US
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Tb = TbiCai +TbwCaw, (2.2)

with Tbi and Tbw the brightness temperatures observed over ice cover and open water, and Ci

and Cw the concentrations of sea ice and open wate respectively. This means we can find sea
ice concentration using

Ci =
Tb −Tbw

Tbi −Tbw
. (2.3)

The retrieval of sea ice concentration then, is reduced to being able to correctly evaluate
reference brightness temperatures (known as tie-points) for each of the surface types when
100% of the surface is dominated by that type. Some of the most widely used algorithms are
the NASA Team algorithm (Cavalieri et al., 1984), Bootstrap (Comiso, 1995), Bristol (Smith,
1996) and the ARTIST Sea Ice (ASI) algorithm upon which the AMSR-E and AMSR-2
retrieval algorithms are based (Kaleschke et al., 2001, Spreen et al., 2008). Although based
upon the same key principle the algorithms differ in a number of key ways: different choices
in both frequency channels and polarizations, choice of reference brightness temperatures,
and their sensitivity to surface temperature and other surface characteristics.

The NASA Team algorithm looks at contributions from three different surface types: mul-
tiyear ice, first-year ice and ice-free ocean (Cavalieri, 1991), and uses the 19V, 19H and
37V channels from the SSM/I, SSMR and SSMIS sensors with a resolution of 25km. The
radiances from these channels are then used to calculate a polarization ratio and spectral
gradient ratio from which sea ice concentration can be retrieved. The NASA Team algorithm
uses different tie points for measuring concentration in the different hemispheres but they are
non-dynamic within these domains. The Bootstrap algorithm also uses the SSM/I, SSMR
and SSMIS but instead takes advantage of the correlated distributions of the brightness
temperatures over the Arctic, specifically over the 37GHz channels, using the 19V 37V
and 37H channels instead. Unlike the NASA Team algorithm however, it only derives a
single sea ice concentration rather than separate first-year ice (FYI) and multi-year ice (MYI)
concentrations. The Bootstrap algorithm uses dynamic (daily) tie-points, which means it
takes more time to process the data, and cannot be used for a near real-time product. The
Bristol algorithm is similar to the Bootstrap algorithm, except that it additionally uses the
19H channel. The AMSR-E and AMSR-2 products are derived using the ASI algorithm, with
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a smaller spatial resolution than that of the NASA Team and Bootstrap datasets of 12.5km,
which is the main advantage of this product. Also unlike the NASA algorithms the ASI
algorithm uses high frequency channels to derive sea ice concentration. It uses the 90GHz
frequency, where the differences in emissivities between the horizontal and vertical channels
are much larger for sea ice than for water. The concentration can then be calculated by taking
the difference in brightness temperatures between these two channels.

Many evaluation and intercomparison studies (Comiso et al., 1997, Ivanova et al., 2015,
Kern et al., 2016, Nose et al., 2020) of sea ice concentration retrieval algorithms have been
conducted. The different retrieval algorithms are all useful, and generally show similar
ice-edge positions for the Arctic. The NASA Team algorithm finds smaller ice concentrations
in general than the Bootstrap algorithm, especially during January and around the inner ice
pack. High temperature and emissivity fluctuations in the marginal ice pack can also produce
discrepancies (Comiso, 1995). These discrepancies can lead to large differences in sea ice
concentration calculations. The NASA Team algorithm is better at handling the brightness
temperature fluctuations. Another difference is also in their handling of melt ponds, which
appear as open water in the satellite data. The Bootstrap algorithm tries to offset this bias by
synthetically increasing sea ice concentrations more than the NASA algorithm does (Bunzel
et al., 2018). The Bristol algorithm is affected most by melt ponds, but also performs best
in areas of high ice concentration (Ivanova et al., 2015). It has been shown that the use of
the vertically polarized 19GHz and 37GHz channels, such as by the Bootstrap algorithm,
are the least sensitive to uncertainty effects that can be caused by atmospheric conditions,
in particular from wind and liquid water content of clouds (Andersen et al., 2006). This
sensitivity to both surface and atmospheric variability has led to the use of weather filters
during the retrieval, where extra frequency channels are used solely to identify where surface
or atmospheric properties may interfere with the retrieval, and possible erroneous data can
then be filtered out. The use of weather filters on the higher frequency channels where
spatial resolution is better can have a smearing effect as the weather filters use low frequency
channels, this can cause ice concentrations along the marginal ice zone to be higher than the
truth (Spreen et al., 2008). The higher frequency channels however are less susceptible to
surface effects that can arise from melt ponds and ridging (Tonboe et al., 2006). The variety
of the algorithms means that the differences between the derived products can be significant,
when deriving sea ice extent they can differ in up to 0.5 million square kilometres (Ivanova
et al., 2014), however all are in good agreement with the decreasing trend of sea ice extent.

In terms of uncertainty in the products an important factor was found to be the differ-
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ing derivation of the reference brightness temperatures or tie-points. The tie-points also
cause difficulties in deriving the errors in the sea ice concentration products because the
tie-points are newly derived at daily or longer time periods, which causes a discontinuity
in the ice concentration time series. However using these dynamic tie points reduces sys-
tematic biases and reduce problems of seasonal variability in the accuracy of the sea ice
concentration retrieval (Ivanova et al., 2015) An important problem which affects all the
algorithms is the underestimation of the concentration in areas with high concentrations of
thin ice. This can lead to a higher gradient of sea ice concentration at the ice edge than in
truth, especially in the Bootstrap algorithm where almost all of the ice pack is evaluated to
have close to 100% ice concentration cover. As there is limited data available of in-situ sea
ice concentration observations it is difficult to verify which of these algorithms is the most
accurate and therefore the best to assimilate in our sea ice data assimilation system. I have
chosen to assimilate the Bootstrap sea ice concentration data (Comiso, 2017), because it
attempts to account for the presence of melt ponds, which are key to understanding changes
in the sea ice cover during the melting season, and it uses dynamic tie points which reduce
systematic biases and problems with the seasonal variability of the ice cover.

Observation errors for sea ice concentration retrievals in the Bootstrap and NASA Team
algorithms are similar, and estimated to be on average between 5 and 10% of the total fraction,
but up to 30% in grid cells with high percentages of thin ice or during the summer melt
season when the sea ice surface is dominated by melt ponds (Comiso, 2017). In CICE-PDAF,
and for months May-September (inclusive) we use a sea ice concentration uncertainties of
0.2 for all observations. Outside of these months we use a 0.1 error for observations with
ice concentration above 0.8, and 0.15 error otherwise. We choose this error formulation
to account for the increased uncertainty in ice concentration retrieval at both the ice edge
and during the summer melt season (Ivanova et al., 2015). Additional errors in sea ice
concentration retrieval algorithms can also be caused by atmospheric effects, where water
vapour and cloud liquid water can alter the observed brightness temperature. High winds and
storms can also cause sea ice to be anomalously observed in open water (ice detected where
none is there in truth). This is caused by the water surface being roughened by the winds
causing surface emissivity to move towards values seen over sea ice (Maslanik, 1992).

The data assimilation requires a model version of the observation, which in this case will be
the sum of the ice concentrations in each of the thickness categories. The ensemble Kalman
filter then works by updating the ice concentrations in each of these categories through
the correlations between themselves and the total sea ice concentration, as it does with all
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CICE state variables. As this relies on linear correlations it means that values for the ice
concentrations in each thickness category can be moved out of bounds, or their total can,
which is unphysical. This is accounted for in the post-processing, which will be discussed in
section 4.3.

2.3 Sea Ice Thickness

Sea ice thickness observations were not possible until the advent of the Synthetic Aperture
Radar or a Lidar ranging instrument that could be used for continuous satellite observations.
These have a resolution which is small enough to allow for for the detection of small leads in
sea ice, essentially cracks in the sea ice cover. This allows for the detection of small leads
in sea ice - meaning freeboard measurements (the elevation difference between the ice and
ocean surface) could now be made because of its high spatial resolution compared to passive
microwave observation techniques. In this sea ice reanalysis, we use CS2 measurements of
sea ice thickness for assimilation and evaluation and we use observation data from Operation
IceBridge (OIB) to evaluate the reanalyses, which are described within this section. We also
describe other sea ice thickness products available here.

2.3.1 Cryosat-2

Cryosat-2 (CS2) is a European Space Agency (ESA) mission whose primary aim is to observe
trends in Earth’s continental and marine ice fields (Wingham et al., 2006). It uses a Synthetic
Aperture Interferometric Radar Altimeter (SIRAL) to monitor a coverage region of a latitude
of up to 88 degrees North. This works by transmitting microwave pulses at regular intervals
defined by a pulse repetition frequency towards the Earth and measuring the time taken by
the pulse to reflect off the Earth’s surface and return to the satellite. The Centre for Polar and
Ocean Modelling (CPOM) uses radar altimeter data from CS2 and processes it to produce
Arctic sea ice thickness and volume datasets (Tilling et al., 2018). The raw data used is
the CS2 Baseline-C L1b SAR and SARIn mode data (Scagliola et al., 2015). This dataset
contains information along the orbit ground track of each 20 Hz waveform, comprising 3000
waveforms on average. The L1b product provides time and orbit information, confidence and
error estimates, external corrections, transmit and echo power, window delayed and numerous
other measurements typically provided by SIRAL instruments. (Cryosat Ice netCDF L1b
Product Format Specification).
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The CPOM method of processing radar altimeter data from the European Remote sens-
ing Satellite (ERS), Envisat and Cryosat has been in development since the 1990s (Laxon,
1994) (Peacock and Laxon, 2004) (Giles et al., 2008) (Laxon et al., 2013), and described
most recently by Tilling et al. (2018). There are two important steps in this process; the
differentiation between measurements of surface elevation of the leads between ice floes and
surface elevation of the sea ice, and the process which then converts the calculated freeboard
to thickness. In order to process the CS2 data other available products must be used. Daily sea
ice concentration data generated by the NASA Goddard Space Flight Centre using brightness
temperature observations from passive satellite microwave sensors. A climatology (Warren
et al., 1999) generated from in-situ measurements of snow depth and density between 1954-
1991 is used, where spatial variability of the depth is represented through a 2d-fitted quadratic
function. Also used is sea ice type data available from the Norwegian Meteorological Service
OSISAF system (Lavergne et al., 2019), where measurements of brightness temperature in
two vertically polarised channels (19 GHz and 37 GHz) are combined and a gradient ratio is
used to distinguish between first-year ice (FYI) and multi-year ice (MYI).

Identifying leads and floes

In order to calculate sea ice freeboard and hence thickness, we first need to be able to
distinguish between satellite return waveforms from the sea ice and the ocean. This is
possible because different types of radar returns (echoes) occur depending on the smoothness
of the surface from where the radar deflected. Diffuse echoes occur when a radar burst is
reflected off a rougher surface, such as an ice floe or the open ocean, whereas specular echoes
are found when the radar deflects off a smoother surface such as a lead or newly formed
thin ice (which commonly forms in leads). Radar echoes from specular reflections look like
spikes, whereas those from diffuse echoes will spike but then gently decay. These returns can
be identified by the pulse peakiness - the ratio between the maximum power of the waveform
and its mean (Peacock and Laxon, 2004). Ice floes are differentiated from the open ocean
in diffuse echoes by using ice concentration data from the NSIDC (National Snow and Ice
Data Center) processed from passive satellite microwave sensors, where greater than 75% ice
concentration within a grid cell indicates a floe return. We need to then identify the location
on each waveform that represents the average surface elevation within the satellite footprint
identified - this is known as retracking. CPOM uses a Gaussian plus exponential waveform
fit to retrack echoes from leads (Giles et al., 2008) and a 70% leading edge threshold from
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the 1st peak to retrack floe echoes. This two-way travel time is then converted to a range and
a few corrections are then applied; tidal and other geophysical effects are removed and the
geoid (mean sea surface used as reference ellipse of ocean surface) which is itself derived
from CS2 data is also used to remove spatially highly variable ocean topography (Armitage
et al., 2016).

Sea Ice Freeboard

With the surface types distinguished, the sea ice freeboard can be calculated. To calculate sea
ice freeboard, every waveform which is classified as containing an ice floe is identified. The
ocean surface elevation at these points is then found by interpolating the elevation between
leads. A floe must have a lead present on either side of it and extending 100km outwards
from the floe location. We are assuming that the CS2 synthetic aperture radar bursts penetrate
the snow layer and deflects off the snow-ice interface as shown in (Beaven, 1995). Finally
we must apply a correction to the freeboard to account for the reduced speed of light through
snow cover on the sea ice. This freeboard is given by:

fc = fi +hs

(
cv

cs
−1

)
, (2.4)

where fc is the corrected freeboard, fi is the original freeboard, hs is the snow depth, cv is
speed of light in a vacuum and cs is the speed of light propagation through snow (Tiuri et al.,
1984). The speed of light in snowpack can be calculated by

cs =
c√

1+1.7ρs +0.7ρ2
s
, (2.5)

where ρs is snow density in gcm−3. Snow density in the Arctic circle (Warren et al., 1999)
ranges from between 100 and 450 kg m-3 and so we determine speed of light in snow values
range between 2.17x108and 2.77x108 m s-1. CPOM has chosen to use 2.4×108 m s-1 (Tilling
et al., 2018).

Sea ice thickness

Sea ice thickness is calculated from the sea ice freeboard using

hi =
fcρw +hsρs

ρw −ρi
, (2.6)
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where hi is sea ice thickness, fc is the corrected sea ice freeboard, ρw is the density of
seawater, hs is snow depth, ρs is snow density and ρi is sea ice density. The sea ice density is
different depending on whether it is first-year ice (FYI) or multi-year ice (MYI), with 916.7
kg m-3 used for FYI and 882.0 kg m-3 for MYI (Alexandrov et al., 2010), calculated using
typical freeboard values and assumed densities of different layers of the sea ice and ocean
water. Ice densities decrease significantly in MYI due to drainage of brine inclusions and
also an increased presence of air pockets.

Uncertainty in Cryosat-2 products

The CS2 monthly mean sea ice thickness product is produced using over 100 individual
measurements of sea ice thickness taken within a grid cell each month, this averaging takes
place to reduce the error in the product, which originates from multiple different sources, and
is very difficult to quantify. When processing CS2 data we assume that the radar returns from
the top of the snow/ice interface (Beaven, 1995), however it has been shown (Willatt et al.,
2011) that the penetration of the radar into the snow cover can depend on the temperature and
density of the snow. Beaven (1995) also requires that the snow be dry and cold but during
the summer the Arctic sea ice is covered with melt ponds, hence CS2 thickness observations
are not possible during the summer months (May-Sept). The melt ponds on the surface also
cause specular returns from ice floes, meaning ice floes and leads cannot be discriminated.
This means we lack data during the melting period, and this could be the most important
period for understanding sea ice loss as this is where we have seen the most substantial long
term ice loss.

Another possible source of error in CS2 data processing is from the use of snow data
(depth and density) drawn from a climatology (Warren et al., 1999) (referred to from now
on as Warren). This is a climatology of snow depth derived from in-situ data gathered from
Soviet drifting stations on MYI from 1954-1991. There is a possibility this climatology may
no longer be valid due to the large observed loss of Arctic sea ice in the past 2 decades - and
in particular loss of MYI. Use of the Warren climatology is necessary because snow depth
satellite retrievals are not currently feasible, and there are still large problems to overcome
in snow loading models such as uncertainties from magnitude of precipitation (Serreze and
Hurst, 2000), snow compaction issues and difficulties in estimating snow loss caused by leads.
Kurtz and Farrell (2011) showed that the snow cover is much more variable on regional scales
than found in Warren but a good match on larger synoptic (1000km+) scales. They also found
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the Warren climatology was still useful over MYI, but for FYI snow depths were roughly
52% of that reported by Warren. In many places MYI has disappeared and been replaced by
FYI (Tilling et al., 2015) since the time period of the Warren climatology. This detail has
been incorporated into the CPOM CS2 thickness processing where snow depth data over
FYI is multiplied by a factor of 0.5 before freeboard is converted to thickness (Tilling et al.,
2016). A further issue with the Warren climatology is that its region where the snow data is
well constrained by the drifting station observations is smaller than any maximum winter sea
ice extent in the satellite record. Processing freeboard and thickness from CS2 observations
outside this region may not necessarily be valid. Other properties of the snow and ice can also
cause issues, particularly variabilities in the snow and ice densities can affect the radar returns.

CS2 uses a synthetic aperture radar (SAR) instrument to make its altimetry measurements,
and as such is subject to "speckle" which is a granular interference that is borne out of
multiple backscattering constituents randomly combining. Estimated speckle noise for in-
dividual echoes is between 0.1 and 0.14m depending on the operating mode employed and
affects both lead and floe retrievals. To compare and validate CS2 data with in-situ data a
sufficient number of measurements must be averaged to ensure error in sea-ice thickness due
to noise is not dominating the uncertainty estimates (Giles et al., 2007). This requirement
will limit the spatio-temporal resolution of CS2 data. We are limited by the number of
measurements which can be made in a grid cell such that the aforementioned errors can be
sufficiently reduced. Generally we need 100 measurements to make a reasonable estimate
of the sea ice thickness in a grid cell (as monthly averaging decreases random uncertainties
of individual freeboard measurements by the square root of the number of measurements)
(Ricker et al., 2014). Ideally we want to have monthly averages thus we need CS2 to pass
over each grid cell enough times in a thirty day period to be able to produce a result - this
limits our minimum grid cell size to around 1km by 1km. Sea-ice thickness measurements
will also vary significantly depending on the retracker algorithm we choose, this is how we
obtain the two-way delay time of the averaged radar echoes (Ricker et al., 2014). Different
groups have developed a variety of possible algorithms, Kurtz et al. (2013) found effective
retracking near the peak of the waveform and a mean difference of 12cm (MYI) or 6cm
(FYI) between a 50% threshold and this method. Helm et al. (2014) focused on a lower part
of the leading edge to minimize spatial and temporal variations of the volume scattering
contribution. The CPOM method uses a leading edge position taken as the point on the
echo that first crosses the amplitude where the scaling factor is currently set to 0.5 (for 50%)
(Tilling et al., 2018). There also exists a tracker offset which results from the radar altimeter’s
on board tracking system being unable to maintain the echo waveform due to rapid range
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variations in the smoothness of the surface. We must also deal with a problem which exists
in many oceanography applications, namely errors arising from our imperfect knowledge of
the geoid and variations in sea topography and tides. Errors arising from unmodelled tidal
variation and the variability of the dynamic topography can be as much as 9.4cm in thickness
(Peacock and Laxon, 2004). As observations of the sea level are only available at leads, we
must consider also that between leads the local sea-level may vary by a considerable amount
as a result of geoid and topography variations which can be missed by simply interpolation
between leads, though mean sea surface is removed when processing the CS2 data using CS2
Baseline-C data (Laxon et al., 2013).

As errors are introduced through the processing of CS2 data from freeboard to thickness, it is
useful to consider assimilating freeboard instead. The main advantage of assimilating sea ice
freeboard over thickness is that it is a more direct measurement and thus less errors are intro-
duced when deriving it as opposed to the thickness. Errors in freeboard become magnified in
thickness because we multiply freeboard by a factor of up to 10 to produce ice thickness data
as much of the sea ice is obscured beneath the ocean. All errors in freeboard are therefore
magnified by this factor when our thickness data is produced, though freeboard error can
be reduced down from 0.03m (uncertainty limit from CS2) to 0.01m by the averaging of
measurements from CS2 (Alexandrov et al., 2010). This means our error in ice thickness
observations can be as much as 0.3m, without accounting for the other previously mentioned
sources of error. The error in snow depth dominates the error in both freeboard and ice thick-
ness calculations (Kwok and Cunningham, 2015). If freeboard observations are assimilated,
fewer errors may be introduced through our poor knowledge of Arctic snow cover. Snow
density is less important to calculate freeboard than it is for thickness, as processing the
thickness requires more detailed knowledge of snow and ice densities. However error in
snow density is significantly smaller than that of the snow depth which is used in processing
both freeboard and thickness. Assimilating freeboard may ultimately be a better choice as
we are reducing our observation error compared to thickness significantly which should be
helpful when we assimilate the data. Studies conducted by Mathiot et al. (2012), Sandu et al.
(2021) and Sievers et al. (2023) show that freeboard assimilation may perform slightly worse
or slightly better, which may depend on model setup, data used and other factors. Generally
however there has been good success in model improvement in comparison to observations
when sea ice concentration and thickness are assimilated with the Ensemble Kalman Filter
(Evensen, 1994, Zhang, Bitz, Anderson, Collins, Hendricks, Hoar, Raeder and Massonnet,
2018, Fritzner et al., 2019). Here we have chosen to assimilate sea ice thickness within
the CICE-PDAF model, although assimilating freeboard may provide benefits in reduced
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Fig. 2.2 Comparisons of Cryosat-2 data with three different in-situ sources: a) Polar-5 aircraft
EM b) BGEP upward-looking sonar moorings and c) Operation IceBridge (Laxon et al.,
2013).

observation error, it is also a less direct comparison with the sea ice model state vector.

In Laxon et al. (2013), there is an attempt to validate the Cryosat-2 data with three dif-
ferent sources, from drone sources using electromagnetic radar (Polar-5 aircraft EM) (Haas
et al., 2010), from upward looking sonars from the Beaufort Gyre Exploration Project (BGEP)
(Krishfield et al., 2014), and from Operation IceBridge (Kurtz et al., 2012), results from these
comparisons are shown in figure 2.2. In general the comparisons show agreement of CPOM
CS2 ice thickness data is within 0.1 m of the in-situ data, with the BGEP data comparing
best to the CS2 data. However there are some issues with the comparisons due to highly
different spatial and temporal resolutions of the in-situ projects in comparison to the monthly
averaged CPOM CS2 ice thickness. The Operation IceBridge data does not compare so well
to the Cryosat-2 estimates, with an increased scatter and CS2 measuring thinner ice as thicker
in comparison to OIB, but also measuring ice that is thicker in Operation IceBridge to be
thinner, showing evidence of a possible bias in one or both of these sources, possibly due
to one or more of the sources of error described earlier in this section which are possible in
either CS2 or which we will later describe when discussing Operation IceBridge, the lack of
knowledge about the Arctic snow depth on the sea ice will certainly cause some differences
between CS2 and in-situ estimates.

The errors in the CS2 sea ice thickness product are extremely difficult to quantify, due to
the reasons (the many different sources of area) discussed above, however some attempts
have been made to do so. Tilling et al. (2018) does this by estimating the length scales over
which the factors (particularly snow depth, density and sea ice density) contribute towards the
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error in sea ice thickness measurements de-correlate. For the central Arctic region thickness
uncertainty is estimated to be 13.5%, additionally accounting for errors in freeboard due to
interpolation of sea surface heights, a relative error of 25% for the CS2 sea ice thickness
gridded product is found. We use this as the observation error in the monthly mean sea ice
thickness for measurements greater than 1 metre. Measurements of ice thickness less than
1 m are subject to greater error contributions, and thus we use 100% relative error for any
measurements of ice thickness below this threshold.

2.3.2 ICESat, ICESat-2 and Operation IceBridge

The first Ice Cloud and land Elevation Satellite (ICESat) was launched by NASA in 2002
with the primary goal of studying both inter-annual and longer term changes in polar ice
sheet volume using narrow beam laser altimetry (Schutz et al., 2005). One of ICESat’s
secondary goals was to provide estimates of sea ice thickness. Kwok et al. (2004) derived
sea ice freeboard from a small sample of ICESat data (14 days) however there were signifi-
cant uncertainties in converting the freeboard to thickness for the data which made making
estimates of the sea ice thickness difficult. This was compounded by the short operating
lifespan of the ICESat lasers, which could only operate for periods of 33 days every 91
days of the satellite’s orbit. This meant that a continuous long-term dataset of ice thickness
observations was not possible with ICESat, though further studies of the ice freeboard within
these operating periods were conducted such as in Kwok et al. (2007). When ICESat came
to the end of its operating lifespan in 2009 a successor mission, which would be able to
make continuous measurements of the Arctic sea ice was proposed. This mission, however,
would not be ready for launch for almost a decade (ICESat-2 eventually launched in 2018).
Operation IceBridge was proposed to fill the gap between the 2 satellites.

Operation Icebridge (OIB) is a NASA airborne mission which has been in operation since
2009, the aeroplanes used are equipped with various measurement equipment, including a
Ku-band radar altimeter just as in ESA’s CS2, and has also been used to test and early calibra-
tion and validation of ICESat-2’s laser altimeter, the Advanced Topographic Laser Altimeter
System (ATLAS). A number of flight surveys over sea ice are undertaken each year in March
and April. These aircraft fly at an altitude of 460 metres, using along track smoothing of 40
metres and sampling frequency of 1 metre. The oversampling allows for statistical smoothing
and reduce noise (Farrell et al., 2011). Equipped with a wide range of sensors including laser
and radar altimeters, OIB has provided a sparse but significant set of freeboard and thickness
data. OIB is also equipped with a frequency-modulated-continuous-wave (FMCW) snow
radar, which can be used to measure snow depth. The snow depth is calculated by retrieval



2.3 Sea Ice Thickness 27

of the air-snow and snow-ice interfaces and taking the difference (Farrell et al., 2011), which
can be detected by the radar return as two different maxima due to the difference between
the dielectric constants of air, snow and ice. The time difference between the air-snow and
snow-ice returns are then converted into a distance by multiplying by the speed of light in
snow. The data gathered by this radar has been highly correlated (0.95) with in situ snow
depth measurements from Kanagaratnam et al. (2007). The OIB estimates of snow depth and
ice thickness have been evaluated to be consistent with measurements from ICESat, CS2 and
other in-situ data (Kurtz et al., 2013) (King et al., 2015). In this study we use OIB estimates
of sea ice thickness as validation data for our results. Both the quick-look version 1 dataset
(Kurtz et al., 2016) and the more reliable Level 4 product (Kurtz et al., 2015) are used, as the
Level 4 product not cover the whole time period of the experiment. These data are available
in short periods in March and April between 2009 and 2013 primarily over the Greenland and
Lincoln Seas to compare with and validate the sea ice thickness from our sea ice assimilation
experiments. The observational data are of a different resolution to our model, so it has been
interpolated onto the ORCA 1 degree tripolar grid that our model uses.

The successor to ICESat, ICESat-2 launched in September 2018. One of ICESat-2’s primary
scientific objectives is to estimate and study sea ice thickness. It has similar orbital character-
istics to that of CS2, using an inclination of 92 degrees which allows it to survey up to 88
degrees north latitude, identical to that of CS2. It also provides similarly extensive coverage
with a 91 day repeat ground track coverage, with a monthly subcycle for the polar regions and
oceans in order to produce monthly sea ice data (Markus et al., 2017). ICESat-2 is equipped
with the Advanced Topographic Laser Altimeter System (ATLAS), a lidar, as its measuring
instrument. The laser altimeter uses a 2x3 laser array (Markus et al., 2017) to provide much
better spatial resolution along its measuring track and also discriminate elevation changes.
The laser uses a wavelength of 532 nm and transmits a laser pulse with a repetition frequency
of 10 KHz. Although using the 532nm wavelength can produce scattering in the ice, snow
and water and contribute photons from subsurface heights, it offers a more stable laser and
better photon return rates (Kwok and Cunningham, 2015).

As ICESat-2 uses lidar instead of radar measurements, ICESat-2 does not retrieve a waveform
but instead uses a photon counting technique to measure surface elevation. This technique is
used to differentiate between solar background photons and those from the surface through
filtering. One of the important steps in obtaining sea ice thickness estimates is distinguishing
surface elevation measurements over sea ice and those over leads (gaps in the sea ice cover).
For ICESat-2, this is done using a decision tree algorithm with input variables for photon
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rate, width of the Gaussian photon distribution, and calculated background photon rate (Petty
et al., 2020). The ratio between background photons returned by snow covered ice and that of
water is 7-8, which is expected as this is the ratio between the albedos of ice and water, while
surface signal photons peak 4-5 times higher over leads compared to sea ice due to specular
returns from leads (Kwok and Morison, 2016). Of particular importance is that background
photon returns of melt pond covered ice show tracks of surface photons with much higher
variability than ice without melt ponds. This means that ICESat-2 is also able to obtain sea
ice freeboard and thickness data during the summer months because some of the photons
from the laser bursts will be able to penetrate the surface water of the melt ponds and hence
they are not affected by the high percentage of Arctic area covered by melt ponds during
the summer months. ICESat-2 can sample both the surface and subsurface of a melt pond
of maximum depth 2 metres with this technique. (Brunt et al., 2016). This means that not
only can it provide freeboard estimates during the melting season but it could also provide
details about the melting season, such as melt pond fractional area and also information about
melt pond depth. This ability to provide data during the summer months is ICESat-2’s main
advantage over CS2.

The second advantage of the multi-beam approach used in ICESat-2 is the greater de-
tection of leads in particular and also ridges when working with sea-ice, allowing for a much
better understanding of sea-ice floe surface and as such its freeboard and thickness. This is
because of the high level of both cross sampling, by using a beam width of 90m, and along
track sampling by using a Pulse Repetition Frequency (PRF) of 10 KHz (Brunt et al., 2016)
which gives us a much better smaller-scale profile of the surface of the ice pack. As with
CS2, one of the primary challenges of obtaining sea ice thickness from ICESat-2 freeboard
measurements is the presence of snow on sea ice. ICESat-2 uses the snow accumulation
model NESOSIM (Petty et al., 2018) in conjunction with the modified Warren climatology
that is used for CS2 sea ice thickness.

CS2 uses a microwave radar altimeter to measure the surface height, which means that
the photons are not attenuated even by thick atmosphere. ICESat-2 uses a lidar, which uses
much shorter wavelengths than radar, meaning it is more sensitive to small particles. This
means that although it can model the surface better, it is highly susceptible to uncertainty
induced by clouds, as a lidar beam can be attenuated by thick clouds (Yang and Christensen,
2012) and also be scattered by them, causing us to observe smaller surface measurements
than the truth (Zwally et al., 2008). Mahesh et al. (2002) showed that you could correct
for this by filtering out clouds with a higher than acceptable optical depth and also through
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estimating biases using a Gaussian fit method with observations from clouds of similar depth.
Cloud cover in the Arctic is particularly high in the summer - mainly in May/June, where it
can be as high as 90% in some years (Walsh et al., 2009) so although ICESat-2 can make
measurements in summer retrieving reliable sea ice freeboard and thickness data may be
difficult at times.

Although you can filter out measurements containing cloud cover a similar problem can
occur from a different source which is much harder to correct for - snow blown around near
the surface can also cause multiple scattering and cause measurement bias. The blowing
snow layer is usually not very thick and can occur as high as 300m from the surface. The
snow layer has a very small optical depth typically around 0.1, which means a layer of
blowing snow 50-100m thick will cause a bias of around 2-4cm in altimetry data using a
snow particle radius of 10 µm (Mahesh et al., 2002). As is the case with CS2 data, sea
surface uncertainty which results from uncertainty in the Geoid will be a source of error
as will the uncertainties found in the snow depth and density. This is still a problem when
calculating the freeboard even though the laser will reflect from the snow/air interface rather
than the snow/ice interface from which the CS2 radar altimeter reflects off as we still need
to know the amount of snow on the ice and its density. It may be possible to use data from
radar observations and ICESat-2 to estimate snow depth. Recent papers have looked at using
data from CS2, AltiKa (Verron et al., 2015) and OIB which showed good potential, though
hindered by a lack of coincident data (Lawrence et al., 2018).

The main drawback of using ICESat-2 thickness for this study is only the lack of data
available in the period we are studying (1980-2020). As it was only launched in September
2018, ICESat-2 monthly mean sea ice thickness is currently only available between Novem-
ber 2019 and April 2021. This short time series means that it is less useful when trying to
further our understanding of the inter-annual variability of the Arctic sea ice as assimilating
such a short period of observations into the model will only improve our model forecast in
the short term and not invoke changes for longer time scales within our model. As ICESat-2
has only been collecting data for a very short time it also means that the satellite’s ATLAS
instrument has not yet benefited from thorough calibration and valuation (although NASA’s
OIB, which used research aircraft to fly over the polar regions, was equipped with an early
version of the ATLAS instrument and was used to test and calibrate the ICESat-2 instrument
before launch). CS2 on the other hand has been subject to extensive measurement calibration,
data processing and evaluation. However the ICESat-2 data is useful for potential evaluation
and validation of our reanalysis for the brief time period when our study and the ICESat-2
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data overlap.

2.3.3 Summer Sea Ice Thickness

Assimilation of the CPOM processed CS2 sea ice thickness estimates is restricted to months
outside summer because of the inability of the radar altimetry to differentiate melt ponds from
leads on the surface of the sea ice cover. However recent work by Landy et al. (2022) using
a form of machine learning has managed to retrieve summer estimates of sea ice thickness
from CS2. Landy et al. (2022) follows on work by Dawson et al. (2022), which used data
from six different satellites, three optical and three equipped with synthetic aperture radar, to
train a 1D convolutional neural network to separate CS2 returns from leads with those from
floes and melt ponds. The accuracy of this algorithm was around 80%. With this machine
learning method, the radar freeboards are calculated in a different way than the CPOM CS2
data. Usually freeboard is calculated by taking the difference between sea ice floe elevations
and sea level elevations interpolated from along-track lead elevations. However in summer
the presence of leads in the sea ice cover can be very sparse and would lead to interpolation
of lead elevation data over too large a distance for the freeboard calculation. The freeboards
are instead calculated by using each lead point to produce one freeboard estimate using the
mean ice floe elevation surrounding that lead, with floe elevation measurements chosen if
they were within 7 km of the lead point and fitted using a 2nd order polynomial.

In Landy et al. (2022), this work is continued by converting the estimated freeboard to
thickness, and importantly correcting for bias in the CS2 radar altimeter. This observed bias
in the CS2 radar altimeter causes an underestimation of the thickest ice in the Central Arctic,
and is corrected for by assessing the radar response over melt pond covered sea ice and simu-
lations to characterise the EM response. To do this, observations of sea surface roughness
and melt pond coverage are necessary over the observation period (2010-2020), but this is
difficult as there are no consistent observations of either over the period. Melt pond fraction
observations from SENTINEL-3 which cover 2017-2020 are used to extract a climatology
that can be used over the whole period. For the summer sea ice surface roughnesss observa-
tions, the standard deviation is estimated by propagating CS2 estimates in winter using the
Lognormal Altimeter Retracker Model (LARM) dataset. Observations of sea ice drift from
the NSIDC Polar Pathfinder dataset are used (see section 2.5). The bias-corrected freeboard
measurements are then converted to ice thickness using a Lagrangian snow loading model.
The sea ice thickness measurements are averaged and produced on 80 km grid cell size at
15 day intervals, we have interpolated these into monthly mean sea ice thickness estimates
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on the CPOM 1 degree tripolar grid - the same grid as for the CPOM CS2 sea ice thickness
observations. The sea ice thickness measurements calculated in May and September have
patterns that closely resemble the April and October CPOM processed sea ice thickness
respectively. The Landy CS2 thickness estimates are underestimated compared to OIB by
0.28 to 1 m. This data is provided with individual error statistics for each observation, which
are supplied for the observation error covariance matrix for the assimilation.

2.4 Sea Ice Thickness Distribution

The fundamental problem that CICE and all sea ice models seek to solve is the evolution of
the sea ice thickness distribution

∂g
∂ t

=−∇ · (gu)− ∂

∂h
( f g)+ψ (2.7)

where g is the ice thickness distribution function, u is the ice velocity, f is the rate of ther-
modynamic ice growth and ψ is the ridging distribution function. This equation is solved in
sea ice models by splitting the ice in each grid cell into thickness categories and replacing
the thickness distribution function g in the equation above with an, the fractional ice concen-
tration in thickness category n (there is also an open water fraction a0 ). The five thickness
categories hn we use have lower bounds (in metres) of 0, 0.6, 1.4, 2.4 and 3.6. When we
refer to the sea ice thickness distribution assimilation in this paper we mean the assimilation
of ten different variables; a∗n, the concentration of ice in category 1-5, where the open water
fraction a0 in that grid cell is unknown which means

∑
n

a∗n = 1, (2.8)

and hn, the thickness of ice in category 1-5. These are related to the state variables an and vn by

an = a∗na (2.9)

hn =
vn

an
, (2.10)

where a is the total fraction of sea ice in a grid cell and vn is the volume of ice in category n
in a grid cell. The ice thickness distribution observations assimilated here are derived from
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the CS2 monthly mean thickness observations, with the individual measurements (of which
there must be 100 to derive a monthly mean sea ice thickness) binned according to the ice
thickness distribution used in our CICE model (Schröder et al., 2019). Precise errors on
these measurements are extremely difficult to derive due to the nature of the sea ice cover
and several error sources contributing. To find an error approximately consistent to the error
used in the CS2 mean thickness we can do some error analysis. The mean ice thickness of a
grid cell is

h =
5

∑
n=0

anhn, (2.11)

where h is mean thickness of the sea ice in the grid cell, an is ice concentration in grid cell in
category n and hn is the thickness of ice in a grid cell in category n. If all the quantities in
the above equation are in error such that h = htrue + εh, an = atrue

n + εan and hn = htrue
n + εhn.

Then we find

htrue+εh =
5

∑
n=0

(atrue
n +εan)(htrue

n +εhn)htrue+εh =
5

∑
n=0

atrue
n vtrue

n +atrue
n εhn+htrue

n εan+εanεhn.

(2.12)

The ’true’ values satisfy the above equation so this reduces to

εh =
5

∑
n=0

atrue
n εhn +htrue

n εan + εanεhn. (2.13)

We do not know these errors, but assuming we know their root mean square expected errors
using

ε2
x = σ

2
x , (2.14)

where overline indicates average over realisations. Neglecting the triple and quadruple
products leaves us with
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ε2
h =
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∑
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5
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(atrue
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n′ εhnεan′ +htrue
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n′ εanεhn′)+htrue
n htrue

n′ εanεan′.

(2.15)

To simplify this and be able to use it to make an estimation of the errors we make two nec-
essary assumptions, first we assume that the errors in area and height are uncorrelated, and
secondly we must assume that the errors of ice concentration and thickness are uncorrelated
between categories. Of course this is untrue, especially considering that the sum of the
ice concentrations in each category cannot exceed 1, however without these assumptions it
would be impossible to approximate the errors in the ice concentration and thickness in each
category. With these assumptions we find

σ
2
h =

5

∑
n=0

(atrue2

n σ
2
hn +htrue2

n σ
2
an) (2.16)

As we are dealing with relative errors in the case of the mean thickness measurements it is
difficult to find errors for ice concentration and ice thickness in each category that work for
all values of mean ice thickness. However we find that using a total error of 0.3 for category
ice concentration and 0.8 m for category ice thickness leads at least to errors that are close to,
or slightly worse than the mean ice thickness error equivalent.

In figure 2.3 we show the observations of thickness in each category in March and Oc-
tober derived from CS2 observations. It is firstly noticeable that the mean thicknesses in
categories 4 and 5 in most areas of the Arctic is close to 3.6 m. This is because there is
relatively little thick ice here, and of course the ice that is thickest within the category will
peak towards the lower bound. This is also true, to a lesser extent, in category 3. Category 1
and Category 2 ice thickness shows generally no spatial pattern across the Arctic, though
in a few cases there is very thick category 1 ice at the edges of where CS2 has enough
observations, closest to the ice edge. Category 4 and 5 show clear spatial patterns towards
thicker ice in these categories closer to the northern coast of Greenland and the Canadian
Archipelago, as expected and also what is seen in grid cell mean thickness observations.
Category 3 also shows this pattern in October, but not at the end of winter in March. As
expected we see thicker ice in each category across the Arctic at the end of winter (March)
than at the beginning (October) from the observations. These observations are difficult to
compare to, or validate with other observations of ice thickness distribution, because there
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are no publicly available observations of ice thickness distribution, though other studies
have derived ice thickness distributions from other products using different statistical meth-
ods, such as Operation IceBridge (Tian-Kunze et al., 2014) or from upward looking sonars
(Thomas, 2017). However because these observations are in-situ or from aeroplane/drone
campaigns, they do not have the spatial patterns with which we can compare to the CS2
derived observations of thickness distribution.

In this thesis we assimilate categories 1-4 in the thickness distribution alongside the mean
thickness. Since the sum of the elements of the thickness distribution is constrained, errors
must be correlated between elements. Although we have observations in all ice thickness
categories, instead of assimilating observations of a∗n and hn for 1 ≤ n ≤ 5, with the approx-
imation of uncorrelated errors, we assimilate these observations only for 1 ≤ n ≤ 4, plus
the mean thickness. Assuming that errors in the latter data are uncorrelated is presumably a
less damaging approximation than the first. In this thesis, reference to the assimilation of
observations of the thickness distribution is shorthand for the latter collection of data.

2.5 Sea Ice Motion

Another observation of sea ice has seen a significant amount of development over the past
decade, and that is sea ice motion (or drift). There are a few observational datasets of sea
ice motion available, but the one with the most spatial and temporal coverage is the Polar
Pathfinder daily 25 km sea ice motion vectors (Tschudi et al., 2019). This product has
been in development in the last decade and is currently on its 4th iteration. This product is
produced using data from three types of sources; satellite imagery, buoys and NCEP-NCAR
reanalysis wind fields. Sea ice motion is derived from satellite imagery using the maximum
cross-correlation method (Emery et al., 1991). In this process, 2 satellite images of an
identical location, taken between 1-3 days apart are selected and the later image is then
translated relative to the earlier image, producing a correlation for each possible translation.
The translation with the highest correlation between the two images is then selected and sea
ice vectors in the x and y direction are derived. The Polar Pathfinder sea ice motion uses
satellite data from SMMR, SSMI/I and SSMIS passive microwave sensors and the Advanced
Very High Resolution Radiometer (AVHRR), which operates in the visible and near-infrared
ranges. Buoys are the second source of sea ice motion data and buoys from the International
Arctic Buoy Program (IABP) can provide sea ice motion by their transmitted locations. Sea
ice motions from the NCEP-NCAR reanalysis wind fields are produced by assuming that
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Fig. 2.3 Observations of the ice thickness distribution: the mean thickness in categories 1-5
(lower limits 0 m, 0.6 m, 1.4 m, 2.4 m, 3.6 m) in March and October between 2011 and 2020
(in metres).
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the sea ice moves in the geostrophic wind direction at a magnitude of 1% of the wind speed.
The sea ice motions are derived independently from each of these sources and combined
using an optimal interpolation method and mapped onto a 25 km grid. Some grid cells are
masked out, namely grid cells located close to shorelines, which will be affected by land, and
those which occur in narrow channels, such as in the Canadian Archipelago. Finally only
sea ice motion in grid cells which have an ice concentration equal to or greater than 15% are
produced, where they use sea ice concentrations from SMMR, SSMI/I and SSMIS derived
using the NASA Team algorithm.

Another notable dataset for sea ice motion comes from Ocean and Sea Ice Satellite Ap-
plication Facilities (OSISAF) based on Lavergne et al. (2010). They currently produce two
products; a medium resolution (20 km grid) and a low resolution (65 km grid) version. The
low resolution product is on a 62.5 km at 2 day time intervals using satellite data from
DMSP/SSMIS, AMSR-2 and ASCAT. It uses a similar maximum cross correlation method
to derive sea ice motion. The medium resolution product uses AVHRR and ASCAT data
only. Both products have a time coverage of 2005 to the present day, though they only cover
the freeze-up season between October and April. Sea ice motion observations can often
have large relative error observations associated with them, particularly in the melt season.
This was primarily due to the poor spatial resolution of the passive microwave satellites, for
example the Polar Pathfinder product theoretically is limited to a precision of 0.0723 ms−1.
In validation studies however it has been shown that these errors are often lower because
the sources of error offset one another (Tschudi et al., 2020). A recent study by Gui et al.
(2020) which attempted to validate the Pathfinder and OSISAF products over a 4-year period
in the Western Arctic, found that Pathfinder tended to slightly underestimate daily sea ice
motion, while the OSISAF product overestimated it. The minimum and maximum absolute
errors recorded for Pathfinder between 2014 and 2017 were 0.015ms−1 and 0.056ms−1. The
largest errors tend to occur during the melting season, especially during the July-September
period. This is because sea ice motion is at its fastest during this period, but sea ice cover is
also difficult to identify due to surface melt. Overall, Gui et al. (2020) found that both the
Pathfinder and OSISAF products could be used for assimilation purposes. One issue with
the assimilation of sea ice motion is its lack of memory (how its value in one time step can
be related to its values at previous time steps) in sea ice models - this would mean that the
assimilation would be useless because the model would likely revert to the same ice drift
values it would have if no assimilation occurred within a very short time period. Previous
studies in assimilation of sea ice motion from the 2000s found that it was not useful due to
the lack of memory in this variable in sea ice models e.g. (Zhang et al., 2003, Stark et al.,
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2008), though the TOPAZ4 reanalysis (Sakov et al., 2012), which assimilates ice drift, found
that the assimilation could correct some biases in the ice thickness. However, in this study
we will not consider the assimilation of sea ice motion, but instead focus on assimilating
thickness and thickness distribution.

2.6 Other Observations

In this section we have reviewed the observations of Arctic sea ice that are most useful
for the purposes of reanalysis - those with good spatiotemporal coverage and with uncer-
tainties that are not too large or difficult to ascertain. However there are a large number
of further sea ice observations available which have been assimilated in other studies or
could be useful for shorter term reanalyses. Rostosky et al. (2018) was able to produce
Pan-Arctic snow depth from passive microwave satellite measurements, with good agree-
ment over FYI in spring against OIB data. Differences over MYI were larger. This data
has already been assimilated by Fritzner et al. (2019) with the assimilation of snow depth
leading to greater ice thicknesses than assimilating concentration or thickness because of
positive correlations and the model generally having lower snow depths than the observations.

There are additionally a number of in-situ observations that have been made by subma-
rine, ships and buoys/moorings that are very sparse in both space and time and with no
parametrisation of their uncertainty. This makes these observations difficult to use in a
reanalysis, though many have been used for validation of observations or reanalyses. Sea
ice records from submarines and moorings, both equipped with upward-looking sonar, have
been used to validate the PIOMAS reanalysis (Schweiger et al., 2011). This includes upward
looking sonar measurements from the Beaufort Gyre Exploration Project (Krishfield et al.,
2014), and from US Navy submarines (Wensnahan and Rothrock, 2005).

2.7 Summary

In this chapter we have considered a wide range of sea ice observations for reanalysis purposes.
We discuss their suitability for use in a reanalysis and any previous data assimilation studies
where the observations have been assimilated. The observations we find are the most
interesting for a reanalysis study are the CS2 sea ice thickness and thickness distribution.
Although the usefulness of assimilating sea ice thickness from CS2 has been tested and
proved, it has not been assimilated in a long term (30+ year) study previously. The thickness
distribution is interesting because it has not been assimilated before, and is closely related
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to the model description of sea ice, and it should potentially provide new insights into the
thickness distribution of the sea ice with the use of data assimilation, because the . Bootstrap
sea ice concentration is also chosen for assimilation because we have a long term record with
good spatial and temporal coverage, the Bootstrap data is carefully processed and has been
determined to be appropriate for data assimilation, but has not been assimilated previously.
The uncertainties in these observational records are discussed, and we have established the
observation errors that will be used for the data assimilation. Although the scope of this
thesis did not allow for further investigation into assimilation of the sea ice motion and
snow depth, many sea ice motion assimilation studies have shown limited promise, although
there is potential usefulness in combination with sea ice thickness assimilation. Snow depth
assimilation could also provide additional reliability for sea ice thickness estimates (Fritzner
et al., 2019), but these are difficult to determine with the large uncertainties in snow depth
observations.



Chapter 3

Sea Ice Models and Reanalyses

3.1 Overview

In this chapter we discuss two of the three key pieces in a reanalysis system; the forecast
model, and the data assimilation scheme that are used in this study. The third piece is the
observation network discussed in chapter 2. Here we also discuss previously available sea
ice reanalyses. This will be important when discussing the reanalysis produced in thesis, as
it will inform us about the comparisons we make to these reanalyses, and the differences in
our sea ice data assimilation systems that could cause these differences. In section 3.2 we
discuss the sea ice model CICE, and in particular the parametrisations developed by CPOM
unique to this model. In sections 3.3 and 3.4 we give some background in data assimilation
and the development of the Local Ensemble Transform Kalman filter (LETKF) that we use
in this study. In section 3.5 the currently available sea ice reanalyses are investigated.

3.2 The CPOM-CICE Model

The sea ice cover in the Arctic is not just a homogeneous sheet of ice which expands and
contracts throughout the year but is made up of newly formed frazil ice, floes formed from
first year ice colliding and splitting, and thick multi-year ice, some of which has formed
pressure ridges over 5 metres high. Due to this inhomogeneity, sea ice is described in
numerical models not just with a mean sea ice thickness in each grid cell, but with a sea ice
thickness distribution. The CPOM-CICE model discretises the sea ice in a particular grid cell
into categories of thickness. This distribution is fundamentally important as the dynamic and
thermodynamic properties of sea ice depend strongly on its thickness. Hence the essential
equation that sea ice models solve is that describing the evolution of the sea ice thickness
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distribution

∂g
∂ t

=−∇ · (gu)− ∂

∂h
( f g)+ψ, (3.1)

where g(h) is the ice thickness distribution function, u is the ice velocity, f is the rate of
thermodynamic ice growth and ψ is the ridging distribution function. As already explained
in chapter 2, this equation is solved by partitioning the ice in each grid cell into discrete
thickness categories. We use the default five categories (with lower limits of 0, 0.6, 1.4,
2.4 and 3.6 metres) which are ordinarily sufficient to simulate the seasonal cycles of the
sea ice thickness and other important variables (Bitz et al., 2001). The terms on the right
hand side of equation 3.1, from left to right, describe the advection and divergence of ice on
the horizontal plane, the transport of ice in thickness space due to thermodynamic melting
and growth, and the transport of ice in thickness space due to mechanical processes such
as ridging. The horizontal transport is solved using the incremental remapping scheme of
Lipscomb and Hunke (2004), with ice velocity u determined using the sea ice momentum
balance equation,

m
∂u
∂ t

= ∇ ·σ + τa + τw + τb − k̂×m f u−mg∇H0, (3.2)

where m is the mass of ice and snow per unit area, τa, τw are wind and ocean stresses, τb is the
seabed stress, which represents interaction of ridged ice floes with shallow water seabed, σ

is the internal stress tensor, which represents the internal ice stresses such as ice deformation,
k̂×m f u is the Coriolis force and mg∇H0 is the pressure gradient force arising from the sea
surface slope. The internal stress tensor is formulated using an Elastic-Plastic-Anisotropic
(EPA) sea ice rheology (Tsamados et al., 2013). This rheology accounts for the highly
anisotropic nature of sea ice over a wide range of length scales.

The ice transport in thickness space due to thermodynamic changes is resolved using the
remapping method of Lipscomb (2001). The thermodynamic process in the CICE model
functions in three steps; the energy flux from atmosphere to ice is computed using surface
forcing. New temperatures are then computed using an enthalpy equation, and then top
and basal ice and snow growth/melt are computed. In CPOM-CICE the Delta-Eddington
approach is used for computing the sea ice albedo and shortwave surface forcing. In this
approach the optical properties of the snow and sea ice are prescribed based on physical
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measurements (Briegleb and Light, 2007). A topographical melt pond scheme, in which melt
pond area, depth and volume are carried on each thickness category as tracers (Flocco et al.,
2010), which is used in conjunction with the Delta-Eddington approach. Melt ponds are a
key component of the surface energy balance in sea ice models as they can significantly alter
the ice albedo. CPOM-CICE also uses a "bubbly brine" thermal conductivity parametrization
(Pringle et al., 2007) which increases the thermal conductivity of colder sea ice, which from
in-situ observations was found to be 10-15% higher than previous model formulations.

The term describing the rate of thermodynamic ice growth f is found using the 1-dimensional
vertical Bitz and Lipscomb thermodynamic model (Bitz and Lipscomb, 1999). This model
solves heat flux balance equations for the ice and snow (where it exists) in each thick-
ness category and accounts for the effects of brine pocket melting and freezing and is
energy-conserving. The ice in each thickness category in a grid cell is conceptualized as a
horizontally uniform column with seven layers and an additional snow layer, with a surface
temperature that cannot exceed zero degrees Celsius and a base ice temperature which must
be equivalent to the freezing temperature of the ocean mixed layer. Each of the ice (snow)
layers has an associated enthalpy qik (qsk). The sea ice enthalpy is defined as minus the
amount of energy required to melt a unit of ice volume and is a function of temperature and
salinity,

qi =−ρi[ci(Tm −T )+L0(1−
Tm

T
)− cwTm] (3.3)

where ρi is the sea ice density, ci and cw are the specific heats of ice and water respectively, T
is the temperature and Tm is the melting temperature of sea ice which is a function of the salin-
ity. The expression for the enthalpy of snow (and fresh ice) is a function of temperature alone,

qs(T ) =−ρs(−ciT +L0) (3.4)

where ρs is the snow density. Since the salinity is prescribed the enthalpy has a one-to-one
relationship with the temperature.

The final term in equation 3.1, ψ describes the mechanical redistribution of the sea ice
in thickness space. This function converts thinner ice to thicker ice and is applied after the
horizontal transport of the sea ice. When sea ice converges in the model, it ridges such that
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the fractional ice area in a grid cell does not exceed the grid cell area. CPOM-CICE uses the
mechanical redistribution formulation of Lipscomb et al. (2007) in which the ice thickness
distribution of ridged ice is described in a negative exponential, and a weighting function
which favours the ridging of thin ice and closing of open water area in preference to ridging
thick ice. CPOM-CICE uses the ice strength formulation of Rothrock (1975) whereby the
ice strength is proportional to the change in potential energy from ice deformation due to its
compression.

Although CICE was designed for use in a global climate model, in this research we use it in
stand-alone mode, uncoupled to an atmospheric or ocean model. The model has been used in
this way to produce realistic estimates of the sea ice state, e.g. Schröder et al. (2019), and
its computational efficiency facilitates physical and technical model development. CICE
contains a thermodynamic slab mixed layer ocean model with a prognostic ocean temperature.
This model is initialised with ocean temperature and salinity (3m depth) from a 1993-2010
climatology based on an ocean reanalysis (Ferry et al., 2011). The mixed layer salinity is
prescribed from the climatology and the prognostic temperature is restored to the monthly
climatology with a 20 day timescale to account for heat advection in the ocean. The ocean
currents (also at 3m depth) are also taken from the same reanalysis. The atmospheric forcing
data used are NCEP-2 (Kanamitsu et al., 2002) comprising daily downward shortwave and
longwave radiation fluxes and 6-hourly 2m temperature and humidity and 10m wind velocity.
These atmospheric forcing fields are perturbed to generate ensemble spread as described in
section 4.4. We also take monthly mean precipitation from the same reanalysis, which is not
perturbed. We use a Nucleus for European Modelling of the Ocean (NEMO) 1 degree (a
roughly 40km by 40km grid size) tripolar grid, covering the whole Arctic region. A time
step of 1 hour is used.

3.3 Data Assimilation

Current state-of-the-art models of the climate have been continuously updated, and work is
always ongoing to include newly understood climate processes and physics, or to update
existing parametrizations of climate processes into modern standards. However the sheer
complexity of the climate, or even a section or subsection of the climate, is too great to
account for all the processes which take place. To capture many processes completely accu-
rately would require a model resolution which modern computational processing power could
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not accomplish in any reasonable amount of time. In addition to numerical models we have
access to a multitude of observations, but these have their own shortcomings (see chapter
2). Observations can be irregularly distributed and sparse in both time and space, providing
an incomplete picture of the true state, and often large regions can be completely lacking
observations of important climate indicators due to geography or terrain. This especially
applies to in-situ observations, for example rainfall measurements in the Amazon rainforest,
or snow depth in the Arctic, which is of particular importance to this work. Observations
may also be processed from more fundamental data in a highly complex non-linear way, for
example observations of sea ice concentration from passive microwave satellites use observed
brightness temperatures to produce the final observational sea ice concentration product.
Human error, instrument error and errors arising from the processing of the observations
must all be accounted for in the observation products. Therefore modern operational climate
reanalyses and weather forecasts take advantage of both numerical models and observations
and combine them in a process known as data assimilation.

Data assimilation is an extremely useful tool because it allows us to combine models and
observations to produce better estimates of the model state. To combine these two sources of
information in a statistically coherent way requires the use of probability density functions
(representing the uncertainty) and Bayes’ theorem, which states

p(x|y) = p(x)p(y|x)
p(y)

, (3.5)

where p(x|y) is the conditional probability of x given y, p(y|x) is the conditional probability
of y given x, p(x) and p(y) are the marginal probabilities of x and y respectively (see be-
low). The vector x represents a general state of a system being analysed, and the vector y
represents a general set of observations. In data assimilation we have p(x), the prior density,
which describes the probability of possible states that the system can have, in terms of our
knowledge before observations are made. p(y|x) is the conditional density that observations
take the values y, given that x is the system’s true state. p(y|x) is a function of y for a fixed
x, but in data assimilation, we turn this around and consider it a function of x for a fixed
(given) set of observed values, y, where this function becomes known as the likelihood. p(y)
is often treated as a normalising constant, as we will do here (it does not depend on the state x).

We seek to calculate p(x|y) the posterior density. There are two special states that of-
ten arise in data assimilation. One is called the background state, which can be defined as the
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mean of p(x). The other is called the analysis state, which can be defined as the mean of
p(x|y). In this thesis though we use an ensemble data assimilation method, which does not
have a single background or analysis state at any time, but an ensemble of backgrounds and
analyses, which themselves define the respective densities p(x) and p(x|y) and from which
we can derive the ensemble means and covariances.

Turning attention now to general density functions, a problem arises: numerical models
used for weather prediction and climate reanalysis are extremely high dimensional and this
means it is not plausible to store and calculate the full probability density functions. However
what we can do is calculate an estimate of the probability density functions. This has lead
to development of a number of data assimilation methods, all of which seek to solve this
same problem. These can be divided into four categories; traditional variational methods,
ensemble Kalman filters, hybrids (a combination of variational and ensemble Kalman filter),
and other Monte Carlo methods. Each method has its own advantages and drawbacks.

Traditional variational methods such as 3D-var and 4D-var are efficient and produce an
analysis consistent with the model, and have been widely studied and applied. They are
the most commonly used data assimilation approach in operational weather forecasting and
climate reanalyses. This includes the ECMWF and the Japanese Meteorological Agency
(JMA) climate models, and many other centres use a hybrid approach. Traditional variational
methods, and some hybrid methods, require the development of tangent linear and in the case
of 4D-var an adjoint model, which are time consuming to develop and maintain. Ensemble
Kalman filters avoid the difficulties of having to develop a tangent linear and adjoint models.
Other drawbacks of variational methods include the near-linear and Gaussian assumption,
which are not always valid and can restrict the length of the assimilation window. Also it is
more difficult to account for the background error, which is often taken to be predominantly
constant in time. On the other hand, Ensemble Kalman filters can also be easy to parallelise
and develop separately from the model. Here, the CPOM-CICE model has been coupled to
the Parallelised Data Assimilation Framework (PDAF) (Nerger et al., 2005). PDAF is one
example of a few software environments developed to facilitate the use of ensemble data
assimilation methods in numerical models. Additionally it is also easier to account for the
state uncertainties in ensemble Kalman filters, which are measured by the ensemble spread.

The ensemble Kalman filter also has some drawbacks, some of which arise due to its
sensitivity to ensemble size (Houtekamer and Zhang, 2016). Undersampling in ensemble
Kalman filters can lead to filter divergence (collapse of the ensemble), which can reduce the
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ensemble spread to effectively zero. This means that the observations are virtually ignored
at assimilation time. If the spread is too large the inverse can happen, with the analysis
ensemble over fitting to the observations. The covariances (the second moment of p(x),
described by the covariance matrix P f

n) are also impacted by sampling error, leading to the
assimilation having unwanted effects on some state variables or regions, especially in regions
located far from observations. These are known as spurious correlations. Like variational
methods, ensemble Kalman filters also require a Gaussian assumption, which again may not
be valid for some models. Unlike 4D variational methods, the analysis ensemble produced
by ensemble Kalman filters may not necessarily be consistent with the model physics. An
earlier developed Kalman filter method, the extended Kalman filter, would explicitly evolve
the mean and covariance of the ensemble forward using the model, but this still requires a
tangent linear model and thus it still had the problem of storing and forward integration of
the forecast error covariance matrix P f

n . In the next section I will give a brief summary of the
ensemble Kalman filter methods.

3.4 Ensemble Kalman Filter and the LETKF

The Ensemble Kalman Filter (Evensen, 1994) differs from variational data assimilation in a
number of key ways. It does not require a tangent linear model or adjoint model, it uses an
ensemble of forecasts to estimate the model background error statistics, which means that
it can also evolve in time, which cannot be achieved easily in variational methods between
assimilation cycles. Between assimilation cycles, the model is used to evolve each state
forward, and then an ensemble mean and covariance are found. Instead of assimilating all
observations within a time window, as in variational DA, the ensemble Kalman filter can
assimilate them sequentially in time.

We start our exploration with the Kalman Filter (KF) (Kalman, 1960) (a further introduction
is in Welch et al. (1995)). The forecast stage of the KF uses the model to evolve the mean and
covariance of the posterior distribution forward in time from the previous analysis at time n

x f
n = Mxa

n−1 (3.6)

P f
n = MPa

n−1M+Q (3.7)

where xa
n−1 is the analysis at previous time step n−1, x f

n is the forecast at current time step
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n, Pa
n is the analysis error covariance matrix, P f

n is the forecast error covariance matrix and Q
is the model error covariance. The evolved forecast mean and covariance are then updated
during the current analysis stage by Bayes’ theorem as follows. If we assume Gaussian
probability distribution functions then we find

p(x) =C exp(−1
2
(x−x f )T P f

n
−1
(x−P f

n)) (3.8)

p(y|x) =C exp(−1
2
(y−H(x))T R−1(y−H(x))) (3.9)

where C is a constant, H is the observation operator, y are the observations, HT is the
transpose of H, and R is the observation error covariance matrix. Plugging this into Bayes’
theorem gives us

p(x|y)∼ exp
{
−1

2

[
(x−x f

n)
T P f

n
−1
(x−x f )+(y−H(x))T R−1(y−H(x))

]}
(3.10)

the maximum probability occurs when we maximise p(x|y), which is equivalent to minimiz-
ing ln(p(x|y)):

J(x)∼ 1
2
(x−x f

n)P
f
n
−1
(x−x f

n)+
1
2
(y−H(x))T R−1(y−H(x)). (3.11)

This is commonly known as the cost function. The particular x that minimises this can be
found analytically, if the observation operator is linear, giving

xa = x f +P f
nH(HP f

nHT +R)−1(y−H(x)), (3.12)

or
xa = x f +Kn(y−H(x)) (3.13)

with
Pa

n = (I−KnH)P f
n , (3.14)
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where Kn is the Kalman gain. The Kalman gain is given by

Kn = P f
nHT (HP f

nHT +R)−1. (3.15)

This is one means of deriving the update equation.

The KF alone is difficult to apply for many practical uses, including climate modelling,
because of the size of the covariance matrix P f

n . The ensemble Kalman filter solves this by
instead sampling the mean and covariance from the prior probability density function and
updating the ensemble states. Ensemble Kalman filter methods can be broken up into two
approaches: stochastic and deterministic. Stochastic ensemble Kalman filters were originally
developed to counteract the problem of ensemble collapse by introducing perturbed obser-
vations, though later developments of this method have focused on perturbing the model
version of the observations with noise from measurements, as the actual observations already
contained error and noise. This method however increases computational cost and impor-
tantly, was found to introduce additional sampling noise (Whitaker and Hamill, 2002). This
problem led to the development of the ensemble square root filters (which are deterministic),
such as the Ensemble Transform Kalman Filter (ETKF) and its localised version LETKF,
which we use in this thesis (Hunt et al., 2007). Instead of updating each ensemble member
separately, the ETKF updates the analysis perturbations so that their covariance is consistent
with equation 3.14. This is the idea of the deterministic ETKF (Bishop et al., 2001). The
prediction step in the ensemble square root filter method begins by evolving each ensemble
member x(i), fn forward using the model Mtn−1,tn

x(i), fn = Mtn−1,tn(x
(i), f
n−1 ), (3.16)

where x(i), fn is the forecast ensemble member i at time n. The forecast ensemble mean is then
computed

x̄ f
n =

1
N

N

∑
i=1

x(i), fn , (3.17)
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where N is ensemble size. The ensemble covariance matrix is given by

P f
n =

1
N −1

N

∑
i=1

(
x(i), fn − x̄ f

n

)(
x(i), fn − x̄ f

n

)T
, (3.18)

and by writing this in terms of the perturbations to the mean

X f
n =

N

∑
i=1

(
x(i), fn − x̄ f

n

)
, (3.19)

we find

P f
n =

1
N −1

X f
n(X

f
n)

T , (3.20)

and a similar expression can also be written for the analysis error covariance matrix

Pa
n =

1
N −1

Xa
n(X

a
n)

T . (3.21)

In the same way the forecast ensemble y(i), fn , its mean ȳ f
n and perturbation matrix Y f

n in
observation space are calculated which are needed for the update step. For the update step,
the ensemble mean is updated

x̄a
n = x̄ f

n +Kn(yn − ȳ f
n), (3.22)

where

Kn = X f
n(Y

f
n)

T
(

Y f
n(Y

f
n)

T +(N −1)R
)−1

, (3.23)

is the Kalman gain computed from the ensemble, with
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Y f
n = HX f

n . (3.24)

To update the ensemble perturbations (from forecast perturbations to analysis perturbations),
we use equations 3.20 and 3.21 starting from the ensemble version of equation ??

Pa
n =

1
N −1

Xa
n(X

a
n)

T , (3.25)

and we use an N ×N matrix Ta
n whereby

Pa
n =

1
N −1

Xa
nTa

n(X
a
nTa

n)
T ≃ (I−KnH)P f

n , (3.26)

and so the perturbation matrix is updated via

Xa
n = X f

nTn, (3.27)

by equating T with the Kalman update, and then solving the equation to find Xa
n and Kn, x̄a

n

is then found via equation 3.22.

In this method Ta
n is not uniquely defined, which has led to the development of a num-

ber of different ensemble square root Kalman filters, which have been extensively reviewed
in (Tippett et al., 2003) and more specifically for atmospheric data assimilation applications
in (Houtekamer and Zhang, 2016). The ensemble transform Kalman filter (ETKF) (Bishop
et al., 2001) is one of a number of these square-root Kalman filters. ETKF’s use the Sherman-
Morrison-Woodbury formula to compute Ta

n (see Bishop et al. (2001)) and thereby update
the perturbation matrix Xa

n.

The ETKF was later expanded upon further in Hunt et al. (2007), particularly focusing
on using this assimilation method for spatiotemporally chaotic systems, such as those used
in climate models. This method is known as the Local Ensemble Transform Kalman Filter
(LETKF) (Hunt et al., 2007), which adds a technique of spatial localisation, for the purposes
of avoiding long-range spurious correlations. This is needed to alleviate effects of aforemen-
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tioned undersampling which can occur in ensemble Kalman filters with a small number of
ensemble members (see end of section 3.3). Localisation was first introduced in Houtekamer
and Mitchell (1998), and has been adapted and developed for the LETKF and application
to climate models. The basic underlying idea is to restrict the influence that observations
can have on grid points depending on the distance between them. This is done via a Gaspari
and Cohn function (Gaspari and Cohn, 1999), a piecewise polynomial function that acts as a
weighting function for the observation error covariance, which is scaled such that the effects
of the observation smoothly reach zero at and beyond a defined localisation radius away from
the observation.

The other method that we use in this study to mitigate undersampling is inflation. En-
semble inflation is most commonly applied multiplicatively, whereby each ensemble member
is multiplied by an inflation factor r before or after analysis (Anderson and Anderson, 1999).
In our study we implement inflation using a forgetting factor (Pham et al., 1998). This is a
more computationally efficient way of implementing inflation in many deterministic ensem-
ble Kalman filters because it is applied to T T T , which is smaller (in terms of size) than the
ensemble members that inflation is usually applied to. The forgetting factor ρ is related to r by

ρ = r−2. (3.28)

In this study we have chosen to use the LETKF formulation of (Hunt et al., 2007) with PDAF,
rather than variational methods. We choose this method for a few reasons; because there is
no need to linearise the CICE model or develop tangent-linear and adjoint models, PDAF
provides an efficient way of implementing the LETKF and the LETKF makes it easy to ac-
count for the mean model state error, which is time-dependent. Additionally the covariances
between the model variables vary strongly over the year, and within a season close to the
ice edge, and so the LETKF provides an estimate of the instantaneous covariances between
these variables. The non-static uncertainty of the model is important, as the uncertainty in
the estimated sea ice cover varies by season significantly when compared with in-situ or
satellite observations of sea ice (Wang et al., 2020). In the next chapter we investigate many
of the assimilation parameters discussed here in further detail and conduct further studies to
determine the optimal parameters that we should use in our reanalyses. For a more in-depth
review of current ensemble data assimilation methods, see Vetra-Carvalho et al. (2018).
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3.5 Currently available sea ice reanalyses

3.5.1 PIOMAS

The Pan-Arctic Ice Ocean Modelling and Assimilation System (PIOMAS) (Zhang and
Rothrock, 2003) (Lindsay and Zhang, 2006) is the most widely known and extensively
validated sea ice reanalysis currently available. It covers the whole Arctic during the satellite
era from 1979 to the present day, and is primarily designed to provide estimates of daily
Pan-Arctic sea ice volume. PIOMAS uses a thickness and enthalpy distribution (TED) sea
ice model with 12 categories, simulating the evolution of the ice, snow and enthalpy by
solving a distribution equation for each, based on an Eulerian model developed by Hibler Iii
(1980) and then improved by Flato and Hibler III (1995). This sea ice model is broadly
similar to the CPOM-CICE sea ice model that we will be using, but does not feature some
of the more recent advancements in sea-ice modelling such as melt pond formulation and
form drag parametrisation, although it does use more ice and snow thickness categories. The
TED model is coupled to the Parallel Ocean Program (POP) ocean model, which is based on
the Bryan-Cox model (Cox, 1984). An interesting difference for polar climate studies is in
comparisons between the Bryan-Cox and other ocean models is that it differs significantly in
its representation of the North Atlantic Current, which has an impact on the subpolar gyre
and the Greenland-Iceland-Norway ocean basin, which during Winter is partly covered with
sea-ice (Roberts et al., 1996).

PIOMAS assimilates sea ice concentration from the National Snow and Ice Data Cen-
ter (NSIDC) near-real time product, which is produced using the NASA Team concentration
retrieval algorithm (see chapter 2). This is assimilated in PIOMAS using a relatively simple
nudging method which works to move the model variables closer to their observed counter-
parts through a weighting factor. This weighting factor is a strong function of the difference
between the model and observed state derived using a least squares method and is found by

K =
|Cobs −Cmod|α

|Cobs −Cmod|α +R2
obs

, (3.29)

where K is the weighting factor, Cobs is the observed sea ice concentration, Cmod is the model
sea ice concentration, Robs is the observation error and α = 6. PIOMAS uses an observation
error of 5% (0.05) for all sea ice concentration observations (Lindsay and Zhang, 2006). The
model sea ice concentration is nudged daily using
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ˆCmod =Cmod +K(Cobs −Cmod). (3.30)

This means that the observations will be weighted more heavily when the discrepancy be-
tween the model and the observations is larger. Essentially this means that the nudging will
have the biggest impact at the sea ice edge, which also means that the assimilation method
will favour the ice extent over the ice concentration, because the difference between modelled
and observed ice concentration is likely to be reduced away from the ice edge, and the greatest
uncertainties in sea ice concentration lie at the edges of the ice cover (Lindsay and Zhang,
2006). PIOMAS also assimilates sea surface temperatures from the NCEP/NCAR reanalysis
in ice free areas, and uses atmospheric forcing in areas with sea ice using information (wind
stresses, humidity, surface temperatures) from the same reanalysis. Monthly sea ice volume
in April and September estimated by PIOMAS since 1979 (44 years) is shown in figure 3.1.
These two months are shown because September shows the greatest decreasing trend and
April shows the smallest decreasing trend in sea ice volume over the 44 year reanalysis.

PIOMAS has been extensively validated through satellite (ICESAT) (figure 3.2) (which
showed general agreement with PIOMAS, particularly in the spatial distribution) and in-situ
(submarine, mooring) observations (figure 3.2). Uncertainty for October sea ice volume
estimations is believed to be 1.35×103km3 (Schweiger et al., 2011). This includes a mean
thickness uncertainty of 0.78 m where biases could be as large 0.4 m. In general it was found
that PIOMAS overestimates the thickness of thinner ice and underestimates the thickness of
the thickest ice. Further investigation showed that this occurred particularly in the Beaufort
Sea, Greenland Sea and the Canadian Archipelago (Wang et al., 2016). In the same study they
found that CS2 could suffer from a similar issue. In this study we use the PIOMAS reanalysis
as an evaluation and validation tool for comparison with our CICE-PDAF reanalysis.

3.5.2 TOPAZ

Another ocean sea-ice reanalysis available is TOPAZ (Towards an Operational Prediction
system for the North Atlantic European coastal Zones), currently on its fourth iteration
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Fig. 3.1 PIOMAS monthly sea ice volume between 1979 and 2023 in April and September.
Solid lines show the trend, dashed lines show 1 standard deviation from the trend and dotted
lines show 2 standard deviations from the trend. Source: Polar Science Center, University of
Washington
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Fig. 3.2 Comparison of ICESat and PIOMAS mean thickness and volume between 2003 and
2007 over the ICESat Domain. (Schweiger et al., 2011)

TOPAZ4 (Sakov et al., 2012). TOPAZ4 is a coupled sea ice-ocean data assimilation system
covering the Arctic and North Atlantic for a twenty year period from 1989-2018. The ocean
model used in TOPAZ is the HYbrid Co-ordinate Ocean Model (HYCOM) (Chassignet et al.,
2007) coupled to an earlier version of the CICE model with a single thickness category. The
coupled model is forced using 6-hourly atmospheric fields from the ERA-interim reanalysis.
It uses a 100 member ensemble and a deterministic ensemble Kalman filter configuration
for assimilation. This system is similar to the ensemble square root filter when increments
are small, and is similar to the ensemble transform Kalman filter when increments are larger.
They use a Gaspari and Cohn function for the localisation, with a radius of 300 km. To
help maintain a robust ensemble spread, a model perturbation system is also used whereby
some of the forcing fields are perturbed. The perturbations to the atmospheric fields are
implemented by generating a smooth pseudo-random field with a prescribed variance, and
a mean of zero (Brusdal et al., 2003). TOPAZ4 assimilates a large number of observation
fields and from a number of different sources. This includes sea surface temperature, in-
situ temperature and salinity and sea level anomalies for the ocean. Sea ice observations
assimilated include sea ice concentration and sea ice drift from the Ocean and Sea Ice
Satellite Application Facility (OSISAF). The assimilation of sea ice thickness observations
in the TOPAZ4 reanalysis system was tested using the combined CS2 and SMOS sea ice
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thickness product (Ricker et al., 2017). Assimilating this product was found to significantly
reduce the biased low ice thicknesses in the system and the standard error when compared
to the assimilated product (Xie et al., 2017), and when evaluated against independent sea
ice thickness estimates from buoys and Operation IceBridge (OIB), it was also found that
errors were significantly reduced (Xie et al., 2018). Further evaluation against independent
thickness estimates has been undertaken but is difficult to quantify due to the sparseness of
the available observational data but in general a good agreement with the spatial distribution
of the ice thickness is found with PIOMAS and CS2, with the biggest differences in the
Beaufort sea and in September (Xiu et al., 2021). In an evaluation of other important sea
ice indicators, it was generally found that TOPAZ4 agrees well with the OSISAF sea ice
concentration, with the poorest performance occurring at the ice edge, which included an
ice edge which was too sharp. Sea ice drift from TOPAZ4 was comparable to independent
observations but there were significant issues such as a misplaced Beaufort Gyre and a fast
ice bias (Xie et al., 2017). In general, it seems that TOPAZ4 performs well in moving the
model closer to the observations, but there are significant issues, many of which arise due to
the use of a simple sea ice model.

3.5.3 Further studies

There have been a number of studies undertaken in the past five years to assess the perfor-
mance and effectiveness of the assimilation of sea ice thickness within climate models. We
will discuss some of the more interesting and relevant studies in this section. The UK Met
office has tested the assimilation of CS2 sea ice thickness in its Forecast Ocean Assimilation
Model (FOAM) coupled ocean and sea ice analysis and forecast system which uses the Nu-
cleus for European Modelling of the Ocean (NEMO) ocean model coupled to the CICE sea
ice model (Blockley and Peterson, 2018). The model is forced with atmospheric data from
the ERA-interim reanalysis at 6-hourly time steps. The FOAM system currently assimilates
temperature, salinity, sea level anomaly and sea ice concentration daily using a modified
3D-var scheme. Assimilation of both monthly mean (Blockley and Peterson, 2018) and daily
(Fiedler et al., 2022) CS2 thicknesses have been performance evaluated in shorter multi-year
runs of the system, first using a simple nudging technique and then later using a 3D-var
scheme. It was shown in both studies that the assimilation of the CS2 sea ice thickness had a
positive effect on the modelled ice thickness, reducing the Root Mean Square Differences
(RMSDs) to independent ice thickness observations when compared to a control run. It was
also found that the information from the assimilation during winter would still be useful
for the model during the melting season, when ice thickness observations from CS2 are not
available. They have also recently tested the model with assimilation of the CS2-SMOS
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product (Mignac et al., 2022). The assimilation of the CS2-SMOS product counteracted the
negative effects of assimilating only CS2 data, which caused thicker ice than independent
measurements from moorings in the marginal ice zones.

At the Geophysical Fluid Dynamics Laboratory (GFDL), they have further developed their
seasonal prediction system to include the assimilation of sea ice concentration using the
ensemble adjustment Kalman filter, which significantly improves seasonal predictions of sea
ice extent (Zhang et al., 2021). The assimilation of OSISAF sea ice concentration, OSISAF
sea ice drift, CS2-SMOS sea ice thickness and sea surface temperature have been studied in a
global climate model at the Alfred Wegener Institute (AWI-CM v1.1). This uses a 1-category
thickness distribution, zero-layer thermodynamics scheme and Elastic-Viscous-Plastic (EVP)
sea ice rheology and assimilates using a Local Error Subspace Transform Kalman Filter
(LESTKF). This has been found to perform well against independently available in-situ data
(Mu et al., 2020).

Chevallier et al. (2017) is a good in-depth review and intercomparison of currently available
global ocean-sea ice reanalyses, as previously discussed in chapter 1, and further discussed
in this thesis. It finds that the Arctic sea ice extent and concentration is generally consistent
between the various reanalyses, largely because almost all of them assimilate sea ice concen-
tration and the atmospheric forcing (particularly by the SST) exerts a strong restoring force
(Chevallier et al., 2017). Those which do not assimilate concentration tend to overestimate
sea ice concentration (as we will see happens in this study in the contrl run). The reanalyses
which do assimilate concentration are generally good at capturing the recent trends in extent
and area. In terms of the ice velocity (direction and magnitude), the reanalyses tend to all
overestimate the magnitude of the drift, though monthly and interannual variability, and the
seasonality of the ice velocity fields are reproduced well in the reanalyses in comparison to
observations from the NSIDC. In terms of the ice thickness, the paper primarily compared
the reanalyses to the ICESat data (as we saw earlier in 3.2 for PIOMAS). It is generally found
that the ice is too thick in the Beaufort Sea and too thin near the North Pole and near the
Canadian Archipelago. None of the reanalyses compared assimilate ice thickness, and they
often use PIOMAS to calibrate the ice thickness, which as previously mentioned, also does
not assimilate ice thickness. The ensemble of reanalyses for this paper can find a statistically
significant negative trend over a short period (1993-2007), but the reanalyses are very incon-
sistent in terms of the thickness and volume, so the patterns of interannual variability in the
reanalyses and the resulting ensemble trend estimates are judged as not robust by Chevallier
et al. (2017). In terms of the ice thickness distribution, there is large disagreement between
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the reanalyses (see figure 3.3), because many do not choose to explicitly treat the thickness
when assimilating concentration, which has been found to be important from a number of
studies (Dulière and Fichefet, 2007, Massonnet et al., 2014). Finally Chevallier et al. (2017)
recommends that substantial work is needed on sea ice data assimilation, some of which we
hope to address in this thesis, these include

• Better estimation of observation error for sea ice concentration.

• Adjustment of thickness in post-processing.

• Assimilation or validation of thickness, without calibration through PIOMAS.

• Use of advanced data assimilation techniques.

• Assimilation of sea ice velocity to address ice thickness biases (as in TOPAZ4).

3.6 Summary

In this chapter we have presented a detailed background on the model physics of the CPOM
version of the CICE model, we have discussed data assimilation in general and the particular
assimilation system (LETKF) that we will be using in this study, and our reasons for doing
so. We have also conducted a literature review of previously available reanalyses, the two
most notable of which are PIOMAS, which assimilates sea ice concentration and sea surface
temperature, and TOPAZ4, which assimilates sea ice concentration, sea ice drift, and a large
number of ocean observations. We find that although our design for a reanalysis system has
some similarities with these systems, there are also important differences in the model used,
assimilation systems, observations assimilated and their associated uncertainties. Given the
current state of sea ice reanalysis studies, there is clearly a potential for a long-term reanalysis
of the sea ice cover in a state-of-the-art sea ice model which assimilates newly available
observations from CS2, uses state-of-the-art assimilation techniques and could provide new
insight into the sea ice thickness,and its distribution across the Arctic.
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Fig. 3.3 The annually averaged sea ice area (in million km2) broken down by sea ice in
within five different thickness classes (see top left of figure) for 15 ocean-sea ice reanalyses
(Chevallier et al., 2017).



Chapter 4

Methodology

4.1 Overview

In this section we discuss the methodology behind the sea ice data assimilation system. This
includes discussion about how the ensemble spread was generated in a stand-alone CICE
model, and some of the key parameters for a data assimilation system. In section 4.2 we
discuss the Parallelised Data Assimilation Framework (PDAF), and its coupling to the CPOM
CICE model. In section 4.3 we discuss the post-analysis step processing, which is required
to keep the changes made by the data assimilation consistent with the sea ice physics in the
model. In section 4.4 we discuss how ensemble spread was generated by perturbing the
atmospheric forcing fields. The observation operators for the sea ice observations we have
chosen to assimilate are described in section 4.5. The basic experimental setup for all data
assimilation and reanalysis studies in this paper is discussed in section 4.6. In section 4.7 a
short sea ice data assimilation study is examined to understand how changes in assimilation
parameters will affect the system. Finally in section 4.8 we look at how the data assimilation
works at a singular grid cell level.

4.2 PDAF and the CICE-PDAF Coupling

The Parallelised Data Assimilation Framework (PDAF) is a software framework designed
to enable the use of data assimilation in current state-of-the-art climate models without the
need to make significant changes to the model code (Nerger and Hiller, 2013). Known
hereinafter as PDAF, it is a software environment designed to provide ensemble based data
assimilation algorithms that can be implemented within existing numerical models with
only minimal changes to the existing model code. We are using PDAF V1.16, which has
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improved observation handling over previous versions of PDAF through the use of a modular
implementation. PDAF currently contains the ability to implement many types of ensemble
Kalman filters, such as the LETKF, LESTKF and stochastic ensemble Kalman filters. PDAF
is designed such that the model source code should be changed as little as possible when
coupled. This is achieved by having PDAF collect and operate on the model state vectors,
not the physical fields within the model. The ensemble is propagated forward in time by
the model and at assimilation time steps the model state vector is collected by PDAF. The
assimilation is then computed by PDAF, the analysis state vector is post-processed and then
written back into the model fields. This reinitializes the next forecast phase and the number
of time steps until the next assimilation is computed. In figure 4.1 the basic concepts of
PDAF are shown in a flow chart.

Fig. 4.1 Flow Chart explaining how PDAF assimilation is implemented in models. courtesy,
Nerger et al. (2005)

Beyond the implementation of the data assimilation in CICE, PDAF can also schedule en-
semble forecasts in parallel. This ability is useful for this study as CICE itself does not have
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this ability and to modify the CICE source code for this could have proven difficult. The
module-based implementation of assimilation also enables the assimilation to be configured
for different types of observations - such as sea ice concentration and sea ice thickness, which
is useful for this study.

4.3 Post analysis step processing

In the previous section we explained how PDAF works alongside CICE, collecting the state
vector, performing the assimilation and then distributing the state vector back to CICE, with
each ensemble member working in parallel. However the assimilation can cause the CICE
state variables to become unphysical, due to correlations arising from small sample sizes or
bounded variables exceeding their defined limits. The latter problem is particularly significant
for CICE because it contains a large number of these variables - such as the ice concentration,
thickness, ice drift, enthalpy - most of the variables have bounds, and some of the most
important have both upper and lower bounds. Alongside this they are often physically linked
to one another - for example the ice concentrations in each category cannot sum to more than
1. As a result of these problems, the analysis state vector must be post-processed before it
is redistributed back to CICE, otherwise the model will crash. In this section, we will lay
out the necessary checks in post-processing for each state variable carefully, which must be
carried out in the correct order to avoid creating new issues.

There are three cases to consider when post-processing the analysis state vector for sea
ice in each grid cell

• the case in which sea ice is created in a grid cell where none existed previously

• the case where no sea ice exists in a grid cell where it did exist in the forecast

• the case where the amount of ice in a grid cell has been modified

The first case is the most important because if the analysis creates new ice we must
create an enthalpy (temperature) and salinity profile for the ice; the correlations between
these variables are not enough for the LETKF to create the correct physical profiles for
these properties. We must prescribe the ice enthalpy, snow enthalpy, salinity and surface
temperatures in each thickness category and layer. For physical consistency with CICE this
is done using the thermodynamic layer model present in CICE, using a linear temperature
profile with a predefined salinity profile and melting temperature. This is based on the Bitz
and Lipscomb thermodynamic model, with snow enthalpy prescribed as
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qs(T ) =−ρs(−cOT +LO), (4.1)

where qs is the enthalpy of the snow (which has one layer in this model), ρs is the density of
snow, cO is the specific heat of the ocean, T is the surface temperature and LO is the latent
heat of melting of snow (or fresh ice). We use the surface temperature from the analysis state
vector for this calculation. We then need to calculate the sea ice enthalpy in each layer. We
first calculate the linear temperature profile using the surface temperature and the temperature
of the bottom of the ice (fixed at the freezing temperature of sea water -1.836 C). We then
calculate the profile of the melting temperature using the prescribed salinity profile and the
ratio between the freezing temperature of sea ice and the brine salinity. The sea ice enthalpy
is determined using equation 3.3

After accounting for the creation of completely new ice in a grid cell we now look to
assure some variables are within bounds. We check to ensure that if either area or volume of
sea ice in a thickness category is zero or negative then sea ice area, volume and snow depth in
that thickness category are set to zero. We then check whether the total sea ice concentration
in a grid cell (the sum of the ice concentrations in each category) are greater than 1. If this is
the case then the ice concentrations in each thickness category in that grid cell are normalised.
This is done so that the percentage of ice in each category created through the LETKF by
the correlations is preserved. As we have now decreased the total ice concentration we have
to be careful about the ice and snow volumes as this normalisation could thicken the ice
significantly. To avoid this the ice and snow volumes are also normalised so that we maintain
the ice thickness in the Kalman filter analysis.

In the second case, where there is no longer any ice (ice concentration is at zero) within a
given thickness category in a grid cell, we must reset a number of state variables to their de-
fault (ice-free grid cell) values. This includes concentration, ice and snow volume, snow and
ice enthalpy, melt pond variables and surface temperature. This is to avoid any complications
which could arise when a future assimilation wants to create ice at the same grid cell - the
correlations from the model forecast would be strange and cause strange modifications to
some of the state variables.

In the final case, where the amount of ice in a grid cell has only been modified by the
assimilation, we only need to conduct some physical checks to ensure again that variables
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Table 4.1 Configurations of different CICE-PDAF experiment runs. SIC indicates assimilation
of daily sea ice concentration (NASA Bootstrap), SIT indicates assimilation of monthly
mean sea ice thickness from CS2, and SID indicates assimilation of monthly mean sea ice
thickness distribution from CS2. ne indicates the number of ensemble members in the run,
ff is the forgetting factor ρ , rl is the localisation radius, α is an amplification factor for the
perturbation of the atmospheric forcing fields and t indicates the length of the assimilation
run in years.

state variable physical meaning checks
qice(001-007) sea ice enthalpy within physical bounds and physically consistent
sice(001-007) sea ice salinity within physical bounds and physically consistent
qsno001 snow enthalpy within physical bounds and physically consistent
aicen fractional sea ice area within physical bounds, normalised if total ice concentration above 1
vicen sea ice volume within physical bounds, normalised if total ice concentration above 1
vsnon snow volume within physical bounds, normalised if total ice concentration above 1
apnd melt pond area within physical bounds
hpnd melt pond depth within physical bounds
ipnd melt pond refrozen lid thickness within physical bounds
Tsfcn snow/ice surface temperature must be >−70◦C

are within bounds. This includes the checks above for ice concentration and snow and ice
volumes below or above bounds but some additional checks are required for enthalpy, salinity
and surface temperature. Firstly for snow enthalpy, given equation 4.1, the minimum possible
snow enthalpy in a grid cell must be smaller than

qs =−ρsLO. (4.2)

We also check that it does not get unreasonably low, we use equation 4.1 and use T =−100◦C.
Similarly we use this same check for surface temperature, this minimum temperature is
arbitrary, but still 30 degrees lower than the record minimum temperature recorded in the
Arctic (−69.6◦C). Finally, we check that the sea ice enthalpy remains below zero, and that
salinities are greater than zero. Additionally it was also found that situations can occur on
the ice edge where the LETKF reduces the ice concentration to a very small amount (lower
than 10−5) but ice volume is not reduced in the same way, which leads to ice spikes which
can cause the CICE model to crash. In these situations ice in these grid cells is removed. The
exact variables which may be modified in this post-processing are specified in 4.1 below.
The CICE model itself also contains its own routines that check for consistency and correct
physical properties within the state vector, however we found the checks detailed in this
section were still necessary to avoid model crashes within CICE.
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4.4 Generating Ensemble Spread in CICE

CICE is a forced dissipative model, meaning that if the model is run twice under the same
atmospheric and oceanic forcing conditions it would produce near-identical results. This
being the case, we need a method to induce ensemble spread, as it is a key ingredient for a
well functioning ensemble Kalman filter. To achieve this, we use a multivariate empirical
orthogonal function (EOF) perturbation method on the atmospheric forcing fields used
to drive the model. This is similar to the EOF-based perturbation method first presented
in Brusdal et al. (2003). We start with the 6-hourly fields of humidity, 2 m temperature,
shortwave and longwave radiation and the u and v components of the wind from the NCEP-2
reanalysis (Kanamitsu et al., 2002). For each month we pick out the 00z time data at each date
and convert them into one continuous time series spanning 1979 to the present. We remove
the data from grid cells that are on land, and have a 2d matrix, with vectors representing the
respective surface fields and the columns representing each field of data (of n, where n is 31
days × 40 years). For example, for January we now have

XJanuary =



q1 q2 · · · qn

T1 T2 · · · Tn

SW1 SW2 · · · SWn

LW1 LW2 · · · LWn

u1 u2 · · · un

v1 v2 · · · vn


(4.3)

We then detrend the data point by doing a linear least squares fit at each spatial point which
we then subtract from the original data. The standard deviation of each of these fields is
then found (i.e climatological standard deviation in XJanuary), and then we divide the data
by this standard deviation. This is done to normalize each field because otherwise they
will have large differences in their variances, which can cause problems in the singular
value decomposition (SVD) analysis. We now have six 40-year-long fields for each month
detrended at each spatial point, divided by the standard deviation of the full spatial and
temporal field (and divided by

√
n−1). This gives a matrix of the form:
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ZJanuary =
1√

n−1



q̃1 q̃2 · · · q̃n

T̃1 T̃2 · · · T̃n
˜SW1 ˜SW2 · · · ˜SWn
˜LW1 ˜LW2 · · · ˜LWn

ũ1 ũ2 · · · ũn

ṽ1 ṽ2 · · · ṽn


,

where the ’tilde’ indicates the detrending and normalisation described above. We then per-
form an SVD on this matrix X with weights of

√
cos(2φ) to account for the fact that this is a

flattened grid on a curved 3D surface. We find the following for each forcing field:

ZJanuary = UDVT , (4.4)

where U is the matrix of left singular vectors (these are the EOFs), D is the (diagonal)
matrix of singular values (the amplitudes of the EOFs), and V is the matrix of right singular
vectors. For each month we pick the number of EOF modes that represent the majority
(95%) of the variability in each of the forcing fields. In figure 4.2, as an example, we show
the percentage of variance explained by each EOF mode for 2 m air temperature from the
NCEP-2 reanalysis, where this example shows the variances when doing the EOF analysis
only on the air temperature field, not a full multivariate analysis. This shows the standard
pattern we see when looking at EOF modes, with the most variance explained by the initial
mode and then the variances tail-off thereafter. When looking at an individual field in an EOF
analysis we generally see 95% of the variance explained by the first few modes. However
because this is a multivariate EOF analysis the number of EOF modes required to explain
95% of the variance in a given field are much higher. The number of EOF modes needed for
each month in our analysis varies slightly but is within 160 and 210, being lowest in winter
and highest in summer.

We then add perturbations to the original forcing fields for a given month for each ensemble
member using

j

∑
i=1

ασNiUiDii, (4.5)

with i being the EOF mode and j the total number of EOFs chosen to represent the variance in
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Fig. 4.2 An example showing the percentage of variance in 2m Air temperature explained by
each EOF mode after doing an EOF analysis on the NCEP-2 2m air temperature.

the field, Ni random numbers chosen from a normal distribution with mean = 0 and variance
of 1, σ are the climatological standard deviations of that forcing field in a given month, and
α is a multiplicative factor that we can use to amplify the perturbations on the atmospheric
forcing to induce additional ensemble spread.

As part of this study we have looked at how much spread is generated using this method, and
whether we have to use an ’amplification factor’ a to produce additional ensemble spread.
This study, its results and effects on the reanalysis results are discussed in section 4.7. Note
that for each month in a particular year, the same random numbers are chosen for each
field for perturbing each point for the field to maintain consistency between each field as
they were in the original forcing. If this was not done then the correlations between the
atmospheric forcing fields would be broken, which would lead to inconsistencies between
highly correlated fields, for example, the 2 m temperature and shortwave radiation.
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4.5 Observation operators for sea ice observations

For the data assimilation to work, observation operators, H in section 3.4 are needed to
transform the model into observation space, and using the correct model variables such that
we are comparing like-for-like in terms of model and observation. For the sea ice observa-
tions that we assimilate, these are relatively simple operators. Before any data assimilation
is done all the observations have been regridded and interpolated onto the same NEMO 1
degree (a roughly 40km by 40km grid size) tripolar grid as the model, which makes the
observation operators much simpler. For the sea ice concentration, the model equivalent of
the observations are found just by summing the ice concentrations an in each category n in
each grid cell. For the sea ice thickness, we assimilate the observations of grid cell mean ice
thickness, which is just the sum of vn volume of ice per m2 of grid cell area, in each category
n. For the sea ice thickness distribution, we have observations of a∗n, ice concentration in
category n (where the open water fraction ai0 is unknown) and observations hn, ice thickness
in category n. These are related to the state variables an and vn by

an = a∗na (4.6)

hn =
vn

an
, (4.7)

where a is the total fraction of sea ice in a grid cell. As described in section 2.4, for the
assimilation of thickness distribution, we only assimilate the thinnest four categories of ice.
Sea ice concentration is assimilated daily, and sea ice thickness and thickness distribution
observations are assimilated monthly, using monthly means and assimilated in the middle of
the month, with the model equivalent of the observation constructed using the daily mean on
the day of assimilation. This assimilation time step is the same for all assimilation studies
and reanalyses described in chapters 4, 5, 6 and 7. Assimilating the CS2 data as monthly
means does mean that the size of some of the changes in the sea ice model can be significant,
with large increments in grid cells where the model has a high degree of ensemble spread
and its ensemble mean differs significantly from the observations. Even though there is no
assimilation of CPOM CS2 data in summer months (May-September), we find that these
updates in preceding months are still extremely useful to the model and can cause significant
changes in the sea ice state. For example, at the end of September, when assimilation of CS2
data has not taken place for many months, the thickness and volume will differ significantly
from the case when only ice concentration is assimilated. The observation errors used are
consistent across all the studies, and are described in sections 2.2, 2.3 and 2.4.
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4.6 Model Assimilation Setup

Before any assimilation takes place in CICE-PDAF, we first run CICE in stand-alone mode
from 1979 until 2019, using the NCEP-2 atmospheric forcing data and the ocean reanalysis
from Ferry et al. (2011) to drive the model. To begin any reanalysis or data assimilation
studies we give the model time to spin-up and use restart files from the stand-alone run to
begin all 100 ensemble members. With our generated set of perturbed atmospheric forcing
fields, we then run CICE-PDAF in coupled mode with no assimilation taking place for one
year. This allows a sufficient amount of time for the perturbed forcing fields to generate
enough ensemble spread in the state vector such that the data assimilation will be effective
and ensemble collapse is avoided. We then restart CICE-PDAF again from the end of this
period so that each ensemble member will be initialised differently because of the perturbed
forcing. Without taking this step the data assimilation will either take much longer to have
an effect on the model (maybe more than the time period of the experiment) or the ensemble
spread in the model may never grow sufficiently for any effects from the assimilation to occur.
The coupled run without data assimilation begins in 2011 for the experiments described in
this chapter. Beginning in 2012 we then perform a significant number of different sea ice data
assimilation experiments in order to optimise and fine-tune some of the LETKF assimilation
parameters and to assess the performance of the assimilation. These experiments and their
parameters are detailed in table 4.2.

Although total sea ice concentration and mean sea ice thickness are not variables in the
CICE state vector, their assimilation has a large effect on the CICE state vector through the
correlations between each variable. For example, when assimilating sea ice concentration,
the ice concentrations in individual categories will be affected by their correlation with the
total sea ice concentration calculated by the observation operator. This means that even
when not assimilating sea ice thickness, the assimilation can still have an effect on the model
estimates of sea ice thickness (and all other variables in the CICE state vector). This is
covered in detail in section 4.7.

4.7 Assimilation Parameters

There are four key assimilation parameters that we diagnose and analyse in order to increase
the effectiveness of the LETKF before we conduct the reanalysis; these are the amplification
factor, ensemble size, forgetting factor and the localisation radius. PDAF provides control of
the ensemble size, forgetting factor and localisation radius within its assimilation routines,
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Table 4.2 Configurations of different CICE-PDAF experiment runs. SIC indicates assimilation
of daily sea ice concentration (NASA Bootstrap), SIT indicates assimilation of monthly
mean sea ice thickness from CS2, and SID indicates assimilation of monthly mean sea ice
thickness distribution from CS2. ne indicates the number of ensemble members in the run,
ff is the forgetting factor ρ , rl is the localisation radius, α is an amplification factor for the
perturbation of the atmospheric forcing fields and t indicates the length of the assimilation
run in years.

run name SIC SIT SID ne ff (ρ) rl α t
control N N N 100 N/A N/A 1 4
assim_conc Y N N 100 0.995 100 km 1.5 4
assim_conc_hi Y Y N 100 0.995 100 km 1.5 4
assim_conc_hi_4hd Y N Y 100 0.995 100 km 1.5 4
assim_conc_hi_f100 Y Y N 100 1.00 100 km 1.5 1
assim_conc_hi_f99 Y Y N 100 0.99 100 km 1.5 1
assim_conc_hi_f98 Y Y N 100 0.98 100 km 1.5 1
assim_conc_hi_loc200 Y Y N 100 0.995 200 km 1.5 1
assim_conc_hi_loc400 Y Y N 100 0.995 200 km 1.5 1
assim_conc_hi_loc50 Y Y N 100 0.995 50 km 1.5 1
assim_conc_hi_amp1 Y Y N 100 0.995 100 km 1 1
assim_conc_hi_amp125 Y Y N 100 0.995 100 km 1.25 1
assim_conc_hi_e10 Y Y N 10 0.995 100 km 1.5 1
assim_conc_hi_e10 Y Y N 20 0.995 100 km 1.5 1
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and the amplification factor is a parameter we have generated ourself through our method of
creating an ensemble by perturbing the atmospheric forcing fields. In this section we will
show the results and analysis of a study of each of these parameters in order to fine-tune
them for the final reanalysis.

4.7.1 The Amplification factor

As discussed in section 4.4, we generate ensemble spread by perturbing the atmospheric
forcing fields that are used for each ensemble member by picking random numbers from
a normal distribution. This method alone, however, may not be sufficient to create enough
ensemble spread for the assimilation to work properly. For this reason, we investigate using
an amplification factor in equation 4.5. In figure 4.3 we show the ensemble spread in sea ice
volume for four different CICE-PDAF runs; one control and three assimilating concentration
and thickness using amplification factors of 1, 1.5 and 2. Interestingly with an amplification
factor of 2 we were able to generate a larger ensemble spread when assimilation took place
than in the control with no assimilation. This mainly occurred during the melting season but
there were a few days at the end of March and November when this also occurred. In figure
4.3 you can also see where the assimilation of monthly mean thickness takes place in many
months due to the large increments in the ensemble spread. This is especially clear in January,
and also in October, after the summer gap in CS2 thickness observations. The effects of the
amplification factor are much more pronounced in summer than winter. The peaks in the
sea ice volume ensemble spread in figure 4.3 appear to occur when the peak rate of melting
happens, or just prior. We found that using an amplification factor increased ensemble
spread significantly, especially during the peak melting period in Summer. However if the
amplification factor was increased too much this became detrimental to the sea ice state
estimates in the model. Using higher amplification factors than 1.5 often caused so-called ice
spikes, grid cells with small concentrations but very large thicknesses (over 10 m) to appear
in grid cells at the sea ice edge. We believe the reason for this is likely to be that using a high
amplification factor could cause extremes in some of the forcing fields to appear in many
places, and if they occurred at or close to the ice edge this would lead to instability in some
of the physics in the sea ice model. For this reason, although higher amplification factors
leads to a significant increase of spread, we use a factor or 1.5, which does not have the same
problems as above but still increases ensemble spread significantly.
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Fig. 4.3 Sea ice volume ensemble spread (one standard deviation) in a control run and three
CICE-PDAF runs using atmospheric forcing fields which have been perturbed with different
amplification factors (1, 1.25 and 1.5).

4.7.2 Ensemble Size

A sufficient ensemble size is important for mitigating the problem of undersampling in en-
semble Kalman filters. However there is the additional problem of computing power needed
to run the model in a reasonable time frame. In this project we had use of the Archer-2
supercomputer and have run a maximum ensemble size of 100. However it is still useful to
see how exactly a change in ensemble size will effect CICE-PDAF. In this study we look
at three different 1-year assimilations runs in 2012 with 10, 20 and 100 ensemble members
respectively, all use a forgetting factor of 1.00 and a localisation radius of 100 km. All runs
assimilate concentration and CPOM CS2 mean thickness. In figure 4.4 we show the sea
ice volume ensemble spread in these runs alongside a control run. As expected we see an
increase in the ensemble spread as ensemble size is increased during the majority of the
1-year run, although the effect seems to be reversed during June and in late December. As
with the amplification factor, there again may be some interesting effects occurring within
the model during the peak melting season. It may be showing that the model is very sensitive
to the rapid decrease in sea ice that takes place during this time. There is more uncertainty
around why the experiment with 100 ensemble members has the least spread at the end of
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the run. It is possible that this is just because of the random nature of the perturbations
selected. With 100 ensemble members the model takes just over 23 hours to obtain four years
of results. This being the case we chose to limit these experiments at 100 ensemble members
as larger ensembles would lead to further increases in running time and additional need for
supercomputer time and storage. We believe that 100 ensemble members is sufficient for
gaining a representative sample of the model for data assimilation purposes.

Fig. 4.4 Sea ice volume ensemble spread (one standard deviation) in a control run and three
CICE-PDAF runs using different ensemble sizes (10, 20 and 100).

4.7.3 Forgetting Factor

After choosing an amplification factor and 100 member ensembles we now seek to choose
an appropriate forgetting factor, if necessary for our reanalyses. The forgetting factor, like
ensemble size, will work alongside the atmospheric forcing perturbations to increase ensem-
ble spread and reduce the likelihood of significant undersampling and ensemble collapse. In
figure 4.5 we again show sea ice volume ensemble spread this time for a control and three
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CICE-PDAF experiments with different choices of forgetting factor. As expected an increase
in forgetting factor leads to an increase in ensemble spread. The increase in sea ice volume
spread roughly appears to follow a linear relationship with the decrease in forgetting factor
in the first three quarters of the year. After September using a forgetting factor of 0.98 had an
even more significant effect on the ensemble spread.

In CICE-PDAF we have found that the model is extremely sensitive to forgetting factors
below 1. This is particularly true when assimilating CS2 products. We believe this is because
the analysis increments when assimilating CS2 observations can be large. This problem
often causes the model to crash, and although fixable in post-processing becomes worse as
the forgetting factor is lowered. Using forgetting factors below 0.99 led to a large amount of
instability in the thermodynamic model in CICE and cause crashes after only a few years of
results. For these reasons we have chosen to use a forgetting factor of 0.995 (an inflation
factor of 1.003) in our reanalysis runs, this should help maintain ensemble spread while
avoiding problems caused by large increments in the model state vector.

Fig. 4.5 Sea ice volume ensemble spread (one standard deviation) in a control run and four
CICE-PDAF runs using forgetting factors of 1.00, 0.995, 0.99 and 0.98.
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4.7.4 Localisation Radius

Finally, we look at how changes in the localisation radius can affect the sea ice state in
CICE-PDAF. Our choice of model grid gives us grid cell widths of about 40 kilometres. The
choice of localisation radius is essentially guided by how changes in one model grid cell
could affect or be affected by those around it within a reasonable time frame as determined
by the real-world or model physics. Grid cells located at the sea ice edge are most likely
to be affected by these changes in localisation. Depending on the correlations, changes in
grid cells at the sea ice edge could potentially cause an over or underestimate of the sea ice
at these locations. In figure 4.6 we show Pan-Arctic maps of sea ice thickness in March
and October for a control and three CICE-PDAF assimilation experiments with different
localisation parameters. The changes in the results when using differing localisations only
show very slight differences with each other, though there are noticeable changes in the
region of thickest ice. For our reanalysis we have chosen a localisation radius of 100 km,
using a Gaspari and Cohn function. This means that the correlation effects of assimilation in
a grid cell will smoothly reduce until reaching zero at 100 km away.

Fig. 4.6 Maps of ensemble mean sea ice thickness in March (top row) and October (bottom
row). Columns show Cryosat-2 and three CICE-PDAF runs using localisations of 50 km,
100 km, 200 km and 400 km.
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4.8 Grid Cell Level Analysis

Before presenting the reanalysis, we wish to study how the assimilation will effect changes
in the model, particularly for the assimilation of the thickness distribution. To do this we will
study the correlations between some of the key CICE state variables: sea ice concentration
and volumes in each category in a few grid cells in some key areas of the Arctic. We look
at the evolution of these variables through a one year period. We pick four grid cells for
study, located in the Barents Sea, central Arctic, Lincoln Sea and Beaufort Sea. We pick
these locations because they each have different and interesting characteristics for study,
the correlations and evolution of the sea ice at these locations will be significantly different
because of how the sea ice cover evolves differently in these regions. The Barents Sea is ice
free in summer and occupied by thin first year ice in winter. The Central Arctic is ice covered
virtually year-round, although the rapid decrease in sea ice in recent years means that it is
now ice free in some parts in summer. The Lincoln Sea is covered in thick MYI year-round,
with some ice exceeding 10 m thickness in winter. The Beaufort Sea is frozen over for most
of the year, except in August and September, with significant loss in MYI since 2000 due to
climate change. Between 2005 and 2008 MYI loss in the Beaufort Sea was responsible for
32% of all MYI loss in the Arctic according to ICESat (Kwok and Cunningham, 2010). As
an area of rapid change it is interesting for this study. We highlight these four grid cells on a
map of the Arctic in figure 4.7.

Fig. 4.7 Locations of the four grid cells chosen for this study shown in white. These four
grid cells are in the Central Arctic, Beaufort Sea, Barents Sea and the Lincoln Sea.
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4.8.1 Correlations

In figure 4.8 we show the correlations between the ice concentration in each category, ice vol-
ume in each category, total ice concentration, total ice thickness and total ice volume in each
of these four grid cells in January 2012. In the Central Arctic and Beaufort Sea ice thickness
and volume are negatively correlated with ice in the thinnest two categories, and positively
correlated with the three thicker categories. In winter these grid cells will be fully ice covered
(so have an ice concentration very close to 1), which means that ensemble members with ice
in thinner categories will have a smaller ice volume. As these two regions have similar ice
thickness and volume levels in winter, this is expected. In the marginal ice of the Barents
Sea, the ice is thin and will mostly be in category one. This means that any small increase
in category two or thicker ice categories will increase ice thickness and volume. Therefore
we see negative correlations only between category one and thickness/volume, with positive
correlations between these and the thicker four categories. Finally in the Lincoln Sea (which
will also have a concentration very close to 1) we see positive correlations between categories
four and five and thickness and volume. As this is the region containing the thickest Arctic
ice the two thicker ice categories are the determining factor for these correlations. There is a
small positive correlation between category one ice and volume, however we believe this
to be anomalous because the ice concentration in category one in this grid cell will likely
be extremely small (around 10−3) in all ensemble members. In general the correlations
(positive or negative) appear to be stronger in grid cells with more ice. In the Lincoln Sea the
correlations are generally strongly positive or negative. The correlations are slightly weaker
in the Central Arctic and Beaufort Sea and in the marginal ice zone of the Barents Sea the
correlations are weaker still.

In figure 4.9 we now show the correlations between the same variables as before but this time
in July 2012. For the Central Arctic and Beaufort Sea, the correlations are similar to those in
winter, and again similar to each other. In summer the Central Arctic Ocean and Beaufort
Sea are covered in thinner ice, with some parts ice free in September. You would also expect
some of the thick MYI to survive through the melt season. The negative correlations between
volume and the thinner categories have increased. As in winter, these areas have an ice
concentration close to 1 so a movement of ice towards the thicker categories leads to an
increase in ice thickness and volume. In the Beaufort Sea, the correlations have a very similar
pattern, but are slightly weaker. There is a positive instead of a negative correlation between
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Fig. 4.8 Correlation matrices of CICE state variables: fraction of ice in category n (aice[n]),
volume of ice per unit grid cell in category n (vice[n]), as well as the total sea ice concentration
(conc), grid cell mean ice thickness (hi) and total grid cell sea ice volume (volume) in January
for a grid cell in the Central Arctic Ocean (top left), Beaufort Sea (top right), Barents Sea
(bottom left) and Lincoln Sea (bottom left) in January 2012.

ice volume and category 3 in the Beaufort Sea. In the Barents Sea the correlations are also
significantly different than those in winter. The correlations in the Beaufort are positive
except for category 1 ice. This is because this region is now most likely covered with ice
only in the thinnest category, meaning that any small increase of ice in the thicker categories
will lead to a higher thickness and volume. As the Barents Sea probably has the highest
variability in concentration between ensemble members, the correlations for concentration
are the strongest from all the correlations we study. Finally, in the Lincoln Sea, correlations
are again similar to those in winter, with positive correlations between volume and the two
thickest categories of sea ice. This region remains covered in thick ice throughout the melt
season so it is not too surprising that the correlation pattern remains almost identical to those
in winter. In general the correlations between concentration and other variables are stronger
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in summer due to the reduction in ice coverage, conversely the correlations between volume,
thickness and the ice in each category are weaker. Overall the correlations in these grid cells
we have studied are plausible and so we would expect the assimilation of concentration,
thickness and thickness distribution to be effective.

Fig. 4.9 As 4.8, but for July 2012.

4.8.2 Sea Ice Concentration

Now we have studied correlations between some of the most important CICE state variables
at a few individual grid cells, we want to see how the assimilation affects them over a reason-
able time period. In these short reanalysis studies we study how the assimilation changes the
sea ice state and in particular the thickness distribution, in the same grid cells we selected
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above. In figure 4.10 we show the evolution of sea ice concentration in our chosen grid
cells through one year of the control run, three assimilation runs alongside the assimilated
Bootstrap observations.

In the Central Arctic grid cell concentration is above 0.9 year round in Bootstrap, whereas
the control has significant ice loss in late August and September. In the Beaufort Sea the
control is similar to the observations, with the only difference being that the melt occurs
earlier in the control. In this grid cell the assimilation runs tend to stay very close to the
observations, though the observations show strong daily variability during the melt season,
which is not reproduced in the control run. In the Barents Sea the observations are again
similar to the control run but with much more rapid changes in the sea ice cover. In the
bootstrap observations there are also rapid changes in observed concentration of up to 0.5
for a few days in early November. In the Lincoln Sea the sea ice concentrations also remain
higher in Bootstrap than the control though the effect is not as severe as for the grid cell in
the Central Arctic. The assimilation runs again stay close to the observations but there is a
compromise between model and observation in the assimilation in August and September
due to the differences between the control and Bootstrap.

Relative to the observations the control model performed better in areas of thinner ice
in the Beaufort and Barents Seas than in the Central Arctic and Lincoln Sea where the ice
melt was exaggerated by the control. In general, in terms of these concentration diagnostics
we see that CICE-PDAF with the assimilation of concentration is significantly closer to
the observations than the control run. There appears to be no additional benefit to sea ice
concentration estimates when assimilating CS2 sea ice thickness or thickness distribution.
This is not surprising because we assimilate sea ice concentration daily whereas we only
have monthly mean data from CS2, and only for 7 months of the year. We will see in the
next sections that sea ice thickness observations do impact other diagnostics

4.8.3 Sea Ice Thickness

After studying the evolution of the concentration we now want to look at the evolution of the
sea ice thickness. In figure 4.11 we show the sea ice thickness in the same grid cells over a
period of one year for CICE-PDAF experiments and the monthly mean CS2 observations
(shown as points on the days they were assimilated). In the central Arctic the assimilation of
the thickness distribution actually had a negative effect in comparison to the observations
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Fig. 4.10 Sea ice concentration (ensemble mean) from Bootstrap observations and CICE-
PDAF in 2012 for one grid cell in each of the Central Arctic, Beaufort Sea, Barents Sea and
the Lincoln Sea.

between January and April. However the thickness was much better in October and close to
the observations in November and December as well. The negative impact of assimilating
concentration is clear in November and December, as the melt season begins the assim_conc
experiment maintains a much higher thickness than the control through the rest of the year.
The sea ice in the control experiment thins dramatically in comparison to the assimilation
experiments. In the Beaufort Sea again we see that the assimilation of thickness distribution
favours a decrease in thickness that appears to be due to a reduction in category 5 sea ice.
The control run and the observations are similar here in the early part of the year so thickness
assimilation cannot provide any benefits. Again though, in the latter half of the year, when
CS2 observations become available again, the assimilation of thickness distribution appears
to work best at points, and is this time quite similar to the assim_conc_hi runs. The thickness
in assim_conc appears to be slightly too thin during the last few months.

In the Barents Sea the story is quite different. Given that all of the assimilation exper-
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iments are further away from CS2 than the control it seems that the assimilation of the
concentration here, occurring daily, has a negative impact. There are only monthly mean
observations at this grid cell for three months (instead of the usual seven) here. This is
because the sea ice here is very thin year-round, making it more difficult to process and
extract thickness observations from the CS2 altimetry data.

Finally, in the Lincoln Sea, we see the fullest benefit of assimilation of the CS2 data. The
assimilation of mean thickness and thickness distribution is clearly significantly better than
the control and assim_conc, particularly during January-April. The assim_conc experiment
is particularly poor in this region and the pattern is similar to the one we see in the Central
Arctic whereby the assimilation of concentration maintains substantially thicker sea ice
through the melting period. This then has a negative impact on the thickness estimates of
assim_conc during October-December.

There are common patterns that are occurring in all four grid cells. In grid cells with
thicker ice, assim_conc tends to overestimate the sea ice thickness and undergoes less thin-
ning of the sea ice than the other experiments. On the other hand the control run tends
to undergo more melting during the melt season. The assim_conc_hi experiment tended
to be closer to the CS2 observations between January and April than assim_conc_hi_4hd,
but they were similar in October-December with assim_conc_hi_4hd maybe performing
slightly better. The assim_conc_hi_4hd experiment generally had the thinnest ice out of
the assimilation experiments and seems to have a good ice thickness distribution estimate
before the summer period where no assimilation takes place such that it forecasts the CS2
observations between October-November well.

4.8.4 Category 5 thickness and volume

Finally, we want to look at how the thickness of ice in category 5 evolves throughout the
experiment, as this is the thickness category which is not assimilated in the thickness distribu-
tion assimilation. In figure 4.12 we show mean ice thickness in category 5 over the whole grid
cell (normalised with ice concentration in category 5) again in the same four grid cells. It is
clear here that the model is significantly overestimating the thickness of the ice in category 5.
The control experiment has much higher ice thickness in this category than the observations.
The assim_conc experiment generally has similar thicknesses to the control experiment until
the melting season when it is slightly thicker (or in the case of the Central Arctic nearly a
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Fig. 4.11 Ensemble mean sea ice thickness (in metres) from Cryosat-2 observations and
CICE-PDAF in 2012 for one grid cell in each of the Central Arctic, Beaufort Sea, Barents Sea
and the Lincoln Sea. Cryosat-2 monthly mean observations shown at time of assimilation.

metre thicker). The assimilation of mean thickness generally followed a similar pattern but
was worse than the control in the Central Arctic and Lincoln Sea, where the ice is thicker. In
the Lincoln Sea grid cell the assim_conc_hi experiment is especially poor in comparison to
the CS2 observations. The assim_conc_hi_4hd experiment performed significantly better
with respect to the CS2 estimates in three of the four grid cells (Central Arctic, Beaufort Sea
and Lincoln Sea). Between August and November the thicknesses in the Barents Sea are
largely irrelevant because the concentration of ice in this grid cell is so small. This means the
volume of ice in category 5 is also very small. There is also only small volumes of category 5
ice in the Beaufort Sea between July and October. The assimilation of thickness distribution
is most effective for category 5 estimates in the Beaufort Sea between January and April, and
also December. It is not completely clear why this should be, although it could be because
it has a smaller concentration of ice in category 5 than the Central Arctic and the Lincoln
Sea, but a concentration not completely negligible like that in the Barents Sea. The results in
the Lincoln Sea are particularly interesting because they show the potential importance of
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assimilating thickness distribution alongside mean thickness (and in likelihood other regions
of very thick ice). The assimilation of mean thickness without thickness distribution made
the assim_conc_hi estimates of category 5 ice thickness significantly poorer than the control,
an effect that was completely reversed by assimilation of thickness distribution as well.

We believe the reason that the assimilation of the ice concentration and mean thickness
of the four thinnest categories of sea ice works so well for the thickest sea ice in category
5 is because of the restrictions in the ice concentration. This is because the sum of the ice
concentrations in each category must add up to 1, and the model is underestimating the
amount of ice in category 5 which leads to it overestimating the thickness. This means
that when the concentration of ice in category 5 is increased due to its relationship with the
concentration in the other four categories, the thickness of this ice is then decreased so that
the increments in the sea ice volume in category 5 are not too large. However the sea ice
volume in category 5 is still significantly affected in the regions of very thick ice, for example,
in the Lincoln Sea. Overall, it seems clear that assimilation of the thickness distribution
of the thinnest four categories significantly improves category 5 ice thickness estimates in
regions that are covered in thick ice year-round, or almost year-round.

These changes in category 5 thickness distribution are important because they affect not only
the grid cell mean thickness but also the sea ice area and volume budget in the grid cells. In
figure 4.12, we show the total sea ice volume in category 5 in each of the grid cells. In the
Central Arctic the difference in category 5 ice volume that occurs between assim_conc_hi and
assim_conc_hi_4hd is significant, especially in winter, where the assimilation of thickness
distribution leads to lower category 5 ice volume than the control, without the thickness
distribution assimilation the category 5 ice volume is increased. In winter the control has
the lowest volume, this is likely because the control has much thinner ice in this region than
the observations. Assimilating only concentration leads to the highest volumes of thick ice.
The story in the Beaufort Sea is similar except that the control experiment is very similar to
the control between August and November. In the Barents Sea, which is ice free or covered
in thin ice for most of the year, the experiments have very little ice volume in category 5
except between March and June. In this case assim_conc actually has the lowest volume of
the experiments, with assim_conc_hi_4hd again also having lower volumes of category 5 ice.
Finally in the Lincoln Sea the two experiments which assimilate CS2 actually have an analo-
gous volume of category 5 ice for the first three quarters of the year. This is primarily caused
by a significant change in the first assimilation time step in January. When we looked at the
thickness in category 5 we saw that assim_conc_hi_4hd had a much lower mean thickness
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than assim_conc_hi, so their comparable volumes have been caused by assim_conc_hi_4hd
having a much larger area of category 5 ice in this grid cell. However after September the
two experiments have a difference in category 5 ice volume on the order of 109 m3, which is
substantial both in terms of volume and for the mass budget. If assim_conc_hi_4hd has more
thicker ice this also makes it less vulnerable during the melting season.

Interestingly, in the Lincoln Sea and the Central Arctic, the only experiment which ex-
periences a rapid decrease in category 5 sea ice volume during the melting season is the
control. This either suggests that ice in the thickest category is not as vulnerable during
the melting season as the model suggests, or this could be a negative impact that occurs
from the assimilation of Bootstrap concentration. In the three grid cells containing MYI
(Central Arctic, Beaufort Sea and Lincoln Sea), assim_conc has much larger category 5 ice
volumes than other runs. In the Lincoln Sea the excessively high thicknesses caused by
only assimilating concentration look to be a result of the assimilation putting too much ice
into category 5. In the Central Arctic grid cell the volume of category 5 ice increases in the
assim_conc experiment during the melting season, whereas the category 5 thickness stays
relatively stable and in late summer is increasing. You would expect the area of category 5
ice to decrease as some of it thins and is moved into a lower category, yet this does not appear
to be the case in some regions in the model. Instead the decrease in ice volume is largely a
result of changes in the ice area. On the whole the assimilation of the thickness distribution
results in lower estimate of category 5 sea ice volume during the freeze-up season than the
control and other assimilation experiments. In the melting season the control experiment
experiences significant loss of category 5 sea ice volume which leads to lower category 5
volume estimates than seen in assim_conc_hi_4hd. These changes may be what causes the
underestimate in Arctic sea ice thickness in 2012 in comparison with CS2 and OIB.

In summary, we can clearly see that the assimilation is working well at grid cell level. The
assimilation of the Bootstrap concentration is highly effective and significantly reduces the
RMSE sea ice concentration to Bootstrap in comparison to the control. However assimilating
concentration alone appears to be detrimental to the ice thickness estimates, particularly
during the melt season which has an effect on assim_conc estimates of thickness not alone
during the melt season but also the rest of the year. Assimilating ice thickness in tandem with
ice concentration negated this effect and reduced RMSE sea ice thickness to the assimilated
product successfully. The assimilation of the thickness distribution was similarly successful
in the assimilation of mean thickness in terms of both concentration and thickness but also
substantially improved estimates in regions of thicker ice because of how well the assimila-
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tion of thickness distribution of the thinnest four categories improved estimates of the ice
state in the thickest category of ice.

4.9 Summary

In this chapter we have presented an extensive overview of how our sea ice data assimilation
functions. We introduced our method of perturbing the atmospheric forcing fields to generate
ensemble spread. We found that we are able to generate a good ensemble spread in the sea
ice model state vector such that the assimilation system can function well and correctly. We
apply a post-analysis step processing that means the sea ice concentration and volume in each
category are not updated in an unphysical way to avoid model crashes and more importantly
in order to not make the incremental changes to the sea ice state too large or strange, which
could upset the model system and potentially cause large biases or other unwanted results. We
conducted short studies into four important parameters: amplification factor, ensemble size,
forgetting factor and localisation radius, and found appropriate settings for each, although
there is significant room for further studies in these parameters whereby calibration of these
parameters could improve the sea ice estimates produced by the system, possibly significantly,
as Chevallier et al. (2017) found that there was much room for improvement in current sea
ice reanalyses by improving and tuning the assimilation system and its parameters. We also
tested the assimilation of some sea ice observations at a grid cell level, to ensure that the
assimilation is functioning correctly and that it has the desired effect. Now that we have
established the feasibility and success of our data assimilation system, CICE-PDAF, on a
local level over a reasonable length of time, we will next look to produce a multi-year test of
the assimilation of the observations to make a more detailed analysis of the system and to
decide which observations we will assimilate in the full reanalysis.
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Fig. 4.12 Top four panels: Category 5 sea ice thickness (in metres) from Cryosat-2 observa-
tions and CICE-PDAF in 2012 for one grid cell in each of the Central Arctic, Beaufort Sea,
Barents Sea and the Lincoln Sea. Note that these are normalised by ice concentration so they
are not necessarily within the category bounds. Cryosat-2 monthly mean observations shown
at time of assimilation. Bottom four panels: Category 5 ensemble mean sea ice volume (in
metres cubed) from CICE-PDAF in 2012 for one grid cell in each of the Central Arctic,
Beaufort Sea, Barents Sea and the Lincoln Sea.



Chapter 5

An intercomparison of short term sea ice
data assimilations studies investigating
the effects of assimilating different sea ice
observations

5.1 Overview

In this chapter we present an intercomparison study of a short term (4-year) reanalyses,
which assimilate different configurations of the sea ice observations we describe in the
literature review. This intercomparison is used to help us decide which observations we
should assimilate in the full reanalysis, and in particular to assess the potential contribution of
the assimilation of the sub-grid scale sea ice thickness distribution. This chapter also provides
an important test as to the feasibility of a long term sea ice reanalysis produced by this system.
The usefulness of the data assimilation is assessed using root-mean-square-error (RMSE)
tests against both the assimilated data and independent data. The experimental setup is
described in section 5.2. The results are evaluated against Bootstrap sea ice concentration and
CS2 data in section 5.3. The results for sea ice concentration, area and volume are discussed
in section 5.4. The results are discussed in section 5.5 and the chapter is summarised in
section 5.6.
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Table 5.1 Configurations of different CICE-PDAF experiment runs. SIC indicates assimilation
of daily sea ice concentration (NASA Bootstrap), SIT indicates assimilation of monthly
mean sea ice thickness from CS2, and SID indicates assimilation of monthly mean sea ice
thickness distribution from CS2.

run name SIC SIT SID
control N N N
assim_conc Y N N
assim_conc_hi Y Y N
assim_conc_hi_4hd Y Y Y

5.2 Experimental Setup

Four short-term assimilation studies are conducted, spanning the years 2012-2015. This
includes a restart from a stand-alone CICE model run in 2011, and then a further year with
the system running in ensemble mode, with no assimilation taking place. All experiments
use an ensemble size of 100, a forgetting factor of 0.995 and a localisation radius of 100
km. All experiments use a set of atmospheric forcing data generated using an amplification
factor of 1.5. In table 5.1 we describe which observations are assimilated in each experiment.
These are the same configurations of observations that we looked at in the previous section
except we now look at the effects of this data assimilation on regional and pan-Arctic scales.

5.3 Evaluation of CICE-PDAF against Bootstrap and Cryosat-
2 observations

To assess the effectiveness of the DA we look at the root-mean-square-error (RMSE) of
the control runs, assimilation runs and observations assimilated, against the Bootstrap data
and the CS2 data randomly selected for validation throughout the four years. The CS2
data randomly selected is only used for evaluation and not assimilated. 25% of the data is
randomly chosen for each month of data where it exists. In figure 5.1 we show the RMSE in
daily sea ice extent for CICE-PDAF against the Bootstrap extent. We see a large reduction
in total sea ice extent RMSE when assimilating sea ice concentration (blue, magenta, and
gold lines) in comparison to the control run (green line) in all three experiments year-round.
Assimilating ice thickness or ice thickness distribution in addition to concentration does not
have any visible impact on sea ice concentration.



5.3 Evaluation of CICE-PDAF against Bootstrap and Cryosat-2 observations 89

2012 2013 2014 2015
Time

0.0

0.5

1.0

1.5

2.0

2.5

RM
SE

 E
xt

en
t (

m
2 )

1e12
control
assim_conc
assim_conc_hi
assim_conc_hi_4hd

Fig. 5.1 RMSE of daily sea ice extent for the control and three assimilation runs of CICE-
PDAF in comparison to the Bootstrap extent from 2012 to 2015. Note that assim_conc,
assim_conc_hi and assim_conc_hi_4hd plotted lines overlap.

In figure 5.2 we show mean thickness in CICE-PDAF against CS2 for our four experiments.
Assimilating CS2 mean sea ice thickness significantly reduced the RMSE in ice thickness
compared to the evaluation data. We can see that the control has a significant number of
data points which lie outside the dense central region. For the assim_conc experiment, the
ice appears to be much thicker than in Cryosat-2 . With the assimilation of mean thickness
included in assim_conc_hi the central region following the linear trend is now more visible.
This is also reproduced in assim_conc_hi_4hd, though there is a bulge of slightly thicker
ice in CICE-PDAF between 1.5 and 2.5 m. In general it appears that the model is weighted
towards slightly thinner ice than the equivalent from Cryosat-2 observations. It seems that
most of the improvement in thickness estimates when assimilating Cryosat-2 data comes
from removing a substantial quantity of the thickness estimates in the control that are too
high. Although the high density of low thickness estimates between 1 and 2 m that appear in
the 2d histogram plot for control compared to that in assim_conc_hi and assim_conc_hi_4hd
is smaller the assimilation of the products is not able to completely remove this bias.
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Fig. 5.2 2d histogram plots of sea ice thickness estimates in CICE-PDAF against the Cryosat-2
evaluation data for four CICE-PDAF experiments.

In Table 5.2 we show the RMSE for mean thickness and category 5 thickness compared
to CS2. The RMSE in mean thickness was more than halved when assimilating CS2 sea
ice thickness in comparison to the control run from 0.63 m to 0.27 m. On the other hand
assimilating Bootstrap concentration alone appears to be detrimental to the model estimates
of monthly mean thickness, as shown by the assim_conc experiment, which had a higher
RMSE (0.88 m) than the control. As shown by the 2d histogram plot in Fig. 7 (top right) this
seems to be caused by the assimilation of concentration as the model estimates tend to be
much thicker than in CS2. In terms of the mean thickness, assimilating the ice thickness and
concentration in the four thinner categories of ice did not improve total mean sea ice thickness
estimates. However assim_conc_hi_4hd did lead to significantly improved estimates of the
thickness in category 5 (RMSE of 1.7 m vs. 3.2 m), even though information about category 5
was not directly assimilated (see Sect. 5.2). This improvement is not seen in any of the other
CICE-PDAF runs. There were no changes to the RMSE in the thickness or concentration in



5.4 CICE-PDAF Assimilation Results 91

Table 5.2 RMSE of the domain-averaged monthly mean ice thickness (hi) and ice thickness
in category 5 (hice5) to Cryosat-2 evaluation data

RMSE hi hice5
control 0.63 3.2
assim_conc 0.88 3.3
assim_conc_hi 0.27 3.3
assim_conc_4hd 0.27 1.7

the other four categories compared to the CS2 data. This change in thickness in category 5
also has a generally positive effect on the model estimates of volume in this category.

In figure 5.3 we show monthly mean RMSE of ice thickness in category 5 for each experi-
ment, compared to CS2, and snapshots of how this difference in thickness for one month
(December 2013) leads to an improvement in the volume in this category (using Bootstrap
data to convert CS2 thickness estimates into volume). We found that additionally assim-
ilating thickness distribution leads to a significant decrease in the thickness and volume
RMSE of category 5 in the model, because CS2 estimates of thickness in this category are
generally much lower. Assimilation of concentration and mean thickness seemed to have a
small negative effect on the estimates of category 5 thickness and volume for most of the
experiment in comparison to the control. The improvement in category 5 RMSE occurs
because the category 5 ice thickness in the control model is 6 to 7 metres in most places
year round, whereas CS2 has much thinner estimates around 3.5 to 4 metres. In many areas
the thickness and volume of ice of the thickest category is much higher than in CS2, and
only assimilating part of the thickness distribution seems to be able to resolve this difference.
The assimilation of the concentration and thickness in the lowest four categories then has
an important effect on achieving better estimates of the thickness, volume and mass budget
distribution in comparison to observations on a pan-Arctic scale.

5.4 CICE-PDAF Assimilation Results

Looking at time series of daily pan-Arctic sea ice area, figure 5.4, we see that in all four
years, the sea ice area in the freeze-up season is smaller, and in the melting season is larger
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Fig. 5.3 LHS: RMSE of Category 5 sea ice thickness between 2012 and 2015 for January,
February, March, April, October, November and December for the control and CICE-PDAF
assimilation runs, against Cryosat-2 sea ice thickness evaluation data. RHS: Maps of
category 5 sea ice volume RMSE in December 2013 for four CICE-PDAF runs against
Cryosat-2 evaluation data. Clockwise from the top left map: control run, assim_conc,
assim_conc_hi_4hd and assim_conc_hi.

than the control, leading to a narrower seasonal variation. On a pan-Arctic scale we see again
that the assimilation of the concentration is the key factor for this area diagnostic, with the
assimilation of CS2 products providing no additional benefits, as expected.

We show pan-Arctic sea ice volume in figure 5.5. We see after the first year that the assimila-
tion of only concentration (blue) increases sea ice volume over the experimental time frame
in comparison to the control run (green). The assimilation of monthly mean thickness in
addition to this (magenta and gold) appears to mitigate this effect, where assim_conc_hi
(magenta) has sea ice volumes in winter comparable to the control run, but on the other hand
it has greater sea ice volumes in summer. The assimilation of the sub-grid scale thickness
distribution (gold) appears to cause a rebalancing of the ice thicknesses and fractional areas
in each category, leading to large swathes of ice being moved into lower thickness categories,
which results in lower sea ice volumes. A further analysis (see figure 5.6) shows that this
is caused by large differences between the CS2 ice thickness in category 5 and the model
ice thickness in category 5. In the first four months of the experiment the increments in sea
ice volume caused by the thickness distribution assimilation are significant because of these
differences.
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Fig. 5.4 Pan-Arctic sea ice area in m2 from 2012-2015 from Bootstrap observations and four
different CICE-PDAF runs. Solid lines show observations or ensemble mean and the shading
shows observation error or ensemble spread (one standard deviation)

In figure 5.6 we show maps of sea ice thickness in October 2012-2015 from CS2, the control
run, three CICE-PDAF experiments and PIOMAS. We can see that CS2 has thinner sea ice
than all the CICE-PDAF experiments and PIOMAS during this time period. In particular
the control and assim_conc experiments show a tendency to pile up thicker and thicker ice
against the Canadian Archipelago. If we compare the ice thickness in assim_conc to that
in assim_conc_hi we can see that the assimilation of the mean thickness alongside the ice
concentration significantly reduces the gradient of sea ice thickness from the sea ice edge
towards the Canadian Archipelago. The assim_conc_hi experiment has much thinner ice in
these regions, similar to CS2. In assim_conc_hi there is instead a much more homogeneous
(in terms of mean thickness) ice cover across the Arctic, with a majority of the ice cover
having a mean ice thickness in October between 1.4 and 2.4 metres. The assimilation of the
CS2 mean ice thickness appears to be very effective in CICE-PDAF, with the ice thickness of
assim_conc_hi looking quite similar to that of the CS2 product, and shown by the reduction
in RMSE in Table 5.2. The assimilation of the concentration does however have the effect
of significantly reducing the amount of thin ice at the edges of the sea ice pack, with much
less ice between 0 and 0.6 metres in the Arctic in October in the CICE-PDAF experiments.
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Fig. 5.5 Pan-Arctic sea ice volume from 2012-2015 in four different CICE-PDAF runs.
Solid lines show observations or ensemble mean and the shading shows observation error or
ensemble spread (one standard deviation).

Additionally assimilating the four thinnest categories of sea ice in the sub-grid scale thickness
distribution generally had the effect of slightly increasing the thickness of the thickest ice,
however this still has very good agreement with CS2. The assimilation of the sub-grid scale
thickness distribution is also most similar to PIOMAS at this time. The assimilation of the
CS2 products from October through April causes a thicker sea ice cover to persist throughout
the summer period than we see in the control model, with higher sea ice extents and volumes
in summer (not shown).

Alongside ice thickness, we also look at sea ice concentration in September 2012-2015 in
figure 5.7. Here all runs with assimilation of sea ice concentration showed very similar results,
and similar to the Bootstrap sea ice concentration. This shows what the RMSE was telling us
from the top panels in figure 5.1 – that the assimilation of sea ice concentration works well,
and moves the concentration estimates in the assimilation experiments close to the observa-
tions. A significantly smaller marginal ice zone (MIZ, the area of ice containing between 0.15
and 0.8 sea ice concentration), which is present in the Bootstrap sea ice concentration, is also
seen in the assimilation runs. The Bootstrap concentration tends to feature ice concentrations
close to 1 inside the ice pack, which could also lead to thicker ice within the ice pack because
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Fig. 5.6 Monthly mean sea ice thickness (in metres) in October 2012, 2013, 2014 and 2015
in Cryosat-2 and our CICE-PDAF experiments (ensemble mean) and PIOMAS.
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Fig. 5.7 Monthly mean sea ice concentration in September 2012, 2013, 2014 and 2015 in the
Bootstrap observations, the control and three CICE-PDAF experiments (ensemble mean).

higher ice concentrations are expected to correlate with higher ice thicknesses – in Fig. 4
strong correlations are shown between concentration and thickness except for the Fram Strait
in Summer. These wide areas of high concentrations in the ice pack are not present in other
sea ice concentration observation products such as the NASA team product. For this reason
it would be interesting to compare the assimilation of different sea ice concentration products.

In figure 5.8 we show sea ice volume in each thickness category and the total Arctic sea
ice volume for 2012-2015. Large differences occur in the three largest categories, which
we expect because smaller changes in the fraction of ice in these categories would lead to
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bigger differences in their volume. In the thinnest category (ice 0.6 m and thinner), there are
small decreases in the fraction of ice in this category when compared to the control, but the
three assimilation runs are generally similar to one another. The largest differences seem to
occur at the end of each melting season, with the control run having significantly more ice in
the thinner categories than the assimilation experiments. In category 2 (0.6-1.4 m) the same
pattern occurs, but shifted slightly (with the maximum ice volume in this category occurring
around late December and early January), and again with significantly more ice at this time
in the control run.

In category 3 (ice thickness between 1.4-2.4 m) we first see larger differences between
the assimilation runs. Most notably the assimilation of the thickness distribution (as-
sim_conc_hi_4hd) has caused a significant decrease in ice in this category compared to
assim_conc_hi at the end of the freezing-up season (March-April) in 2013. This decrease
persists throughout the rest of the run. The ice in this category in the control run tends
to experience the greatest variation between the minimum and the maximum, generally
having the lowest fraction of ice in this category at the end of summer but the most at the
end of winter. In assim_conc the reverse is true. The assimilation of thickness alongside
concentration has a substantial effect on the volume of ice in this category, particularly
during the minimum, with assim_conc_hi having much larger ice volume estimates in this
category than assim_conc. Additionally assimilating sub-grid scale thickness distribution
seemed to remove this category 3 ice created by the mean thickness assimilation, with
assim_conc_hi_4hd having similar category 3 volume estimates to assim_conc. In category
4 (2.4-3.6 m), assimilation leads to more ice in this category, particularly when assimilating
the sub-grid scale thickness distribution, where the analysis increments are quite large. This
increase of ice volume in category 4 seems to counteract the decrease in categories 3 and 5
in this run.

Looking at the thickest ice (3.6 m and thicker), the assimilation of concentration alone
causes a large increase in category 5 volume. The assimilation of mean thickness tends to
decrease the volume of the thickest ice compared to the control. The addition of sub-grid
scale thickness distribution assimilation does not seem to significantly affect the total volume
of ice in this category, however regional differences could be significant. It seems that the
primary reason for the decrease in sea ice volume when assimilating thickness distribution
is that a decrease in ice in categories 3 and 5 is partially (but not fully) counteracted by
an increase in category 4 ice volume. Overall we see that assimilation of the thickness
distribution product can have wide-reaching impacts on the distribution of the sea ice in the
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Fig. 5.8 Volume of ice in each thickness category and the total volume for each of the
CICE-PDAF experiments (ensemble mean).

Arctic.

5.5 Discussion of Short-Term Reanalysis Study

Overall, the assimilation of sea ice observations decreased the seasonal variation of both
sea ice extent and sea ice volume in the freeze-up and melting periods in comparison to the
control run. The assimilation of the CS2 observations resulted in an increase in the area of
thicker ice extending outwards to the North pole from the Canadian Archipelago, but was
compensated by a reduction in the thickness in the regions of the thickest ice. The sea ice
in the control experiment was generally too thin throughout most of the year, except in the
Canadian Archipelago region. As a lot of thin first year ice is being formed in the control
model this will make it more susceptible to subsequent melting during the melting season,
and hence increase the seasonal variation. The model generally appears to overestimate both
summer ice melt and the winter freeze up, except in the Canadian Archipelago where the
ice gets much thicker than observations from CS2. This may be caused by too much ice
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advecting into this region in the model or the ridging formulation in the model favouring the
formation of too much thick ice. This problem could be being exacerbated by possible issues
with the climatology we use to simulate the oceans, which may cause too much congelation
growth in this region.

Apart from in assim_conc_hi_4hd, the estimates of ice in the thickest category are poor (see
5.3), so the model appears to have significant difficulties in simulating the thickest sea ice.
In assim_conc the ice thickness and volumes are substantially larger than in the control,
particularly in the regions of the thickest ice (ice thickness > 3.6 m). This could indicate
issues with the open water fraction in the CICE model as CICE generally has lower sea
ice concentrations within the ice pack than Bootstrap (which has concentrations generally
close to 1 away from the ice edge) and the correlations between concentration and thickness
within the model could cause new ice created to be thicker than it should be. The marginal
ice zone (MIZ) which is defined as the area of ice between 15% and 80% concentration,
forms a boundary region of small sized ice floes between the open ocean and the central ice
pack which are strongly affected by ocean waves (Sundfjord et al., 2007). The interactions
between the atmosphere, ocean and sea ice are particularly strong in the MIZ, and a reduction
in MIZ could also have strong impacts on Arctic sea ice ecosystems (Barber et al., 2015).
The assimilation of Bootstrap sea ice concentration also appears to decrease the marginal
ice zone (MIZ) area, which is again an artefact of the characteristics of the Bootstrap sea
ice concentration. A wholesale change in the mean thickness across the Arctic will change
how a lot of this ice behaves because the dominant physical processes on the sea ice change
depending on its thickness. As the ice is much thicker the ocean waves have a much smaller
effect on it. Thicker ice created by the assimilation can also advect into the Beaufort and
Lincoln seas causing higher than expected ice thickness and volume in these regions.

The areas of thickest ice (> 3.6 m) and thinnest ice (< 0.6 m) narrowed rather than broadened
when ice thickness products from CS2 were additionally assimilated. This resulted in a
significant increase in the area of ice between 0.6 and 3.6 m thick. In addition to the effects
of the sea ice concentration assimilation, this could partially explain why the sea ice extent
minima in September were larger in the assimilation runs than the control model every year,
because the thicker ice would be more resilient to being fully melted during the melt season
than the thinner ice. This study highlights significant benefits of observations of sea ice
thickness and sub-grid scale thickness distribution for estimation of sea ice thickness and
volume using data assimilation. It shows that there should be further emphasis put on making
future observations of sea ice thickness in order to establish a more accurate long term record
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of ice thickness and volume in a reanalysis, and also in making use of different types of
observations in sea ice data assimilation studies to ascertain a clearer picture of the Arctic
sea ice.

One shortcoming of this study is that the observation errors of ice thickness, and the sub-
grid scale thickness distribution (ice concentration and ice thickness in each category) are
highly correlated, but for simplicity we do not account for observation error correlations.
The observation error statistics on the sub-grid scale thickness distribution and the mean
thickness are both highly uncertain and are assimilated only once a month and only outside
of the Arctic melting season. Assimilating only once a month can cause large increments in
some of the CICE state variables especially in October, after the 5 month Summer period
without assimilation. The assim_conc experiment differs significantly from assim_conc_hi
and assim_conc_hi_4hd so the thickness assimilation is not only highly effective in reducing
the RMSE in mean ice thickness but has a significant effect in September, 5 months after any
thickness or thickness distribution assimilation has taken place. A more accurate assessment
of the uncertainties in the Cryosat-2 products assimilated in this study would likely lead to
significant improvement in the system and estimated sea ice state.

Another important factor to consider is that many of the variables in the CICE state vector
are assumed to be Gaussian are bounded, for example sea ice concentration, as well as many
other state variables which have upper or lower bounds. This means that we need to account
for the correlations in the LETKF leading to unphysical sea ice states, so some variables
need to be altered after the assimilation to avoid model crashes. Of the observations we
assimilate, sea ice concentration and sub-grid scale thickness distribution have upper and
lower bounds, and sea ice thickness has only a lower bound, therefore the observation error
covariances for our observations should approach zero as the bounds are reached (Bishop,
2019). For simplicity we have not applied this in our study. The observation error variances
we have used for sea ice concentration and sea ice thickness do depend on the measured
state, and in the case of sea ice concentration do get smaller as some bounds are approached,
but this is done to account for uncertainties in the observational method. To evaluate the ice
thickness from the studies in this chapter, we used randomly selected Cryosat-2 data held
back for evaluation. When evaluating the studies with the Cryosat-2 we have to recognise
that although the data held back for evaluation was randomly selected, it is not completely
independent and so the evaluation data will be correlated in some way with the observations
chosen for assimilation.
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Assimilating Bootstrap sea ice concentration alone resulted in an increase in sea ice thickness
and volume in comparison to the control experiment, and it performed worse against our
evaluation CS2 dataset. This effect has not been seen seen in other studies assimilating only
ice concentration and evaluating modelled ice thickness. In Fritzner et al. (2019) when only
OSISAF sea ice concentration was assimilated estimates of thickness generally improved in
comparison to independent observations, only performing worse in May, and unlike in our
experiment the ice thickness and volume were generally reduced. It appears to be caused
by the assimilation of Bootstrap sea ice concentrations in the summer months. There are a
few months in summer when Bootstrap sea ice concentrations are higher than the control
model, which would lead to positive increments in sea ice concentrations. This may be
causing unrealistic thickening of the sea ice through positive correlations between sea ice
concentration and sea ice thickness within the data assimilation. It seems that further care is
required when assimilating sea ice concentration alone when using assimilation schemes like
we have used in this study. This is not an issue for other reanalyses like PIOMAS, which
uses a highly tuned optimal interpolation technique which only affects ice concentration
close to the ice edge, and assimilates a different dataset of sea ice concentration observations
(NASA Team). It is likely a result of some unique characteristic of the Bootstrap sea ice
concentration in combination with the physics of the CPOM-CICE model and the data
assimilation scheme we use. It does show that care should be taken in the interpretation of
sea ice volume estimates when assimilating sea ice concentration alone in any reanalysis
study.

In this study we attempted to tune a number of important assimilation parameters - for-
getting factor, localisation radius and an amplification factor. We attempted to do this using
a short 1-year assimilation study, which we assumed is a reasonable length with which to
determine their long term effects. However we showed that changing any of these parameters
could in some cases result in a considerably changed estimate of the sea ice state, without
altering any part of the model or observations assimilated. We have used the results of this
study to fine-tune parameters selected for the satellite era reanalysis presented in chapters 6
and 7. There is a significant amount of room for additional fine-tuning which could result in
further improvements in estimates of the sea ice state, but this is outside the scope of this
study. The localisation radius study did show that larger radii may slightly improve the model
estimates, but these larger radii are probably physically unrealistic for the range of the effects
of the CPOM-CICE model sea ice dynamics. In the future a location-dependent localisation
radius would be beneficial, especially near the sea ice edge. However they would not likely
change any of the outcomes of the study with regards to the intercomparison between each
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assimilation experiment. With regards to ensemble size, more is generally better for the
health of a data assimilation system, though 100 is on par with, for example, TOPAZ4, and
much larger than in Fritzner et al. (2019).

In this study we have assimilated a sub-grid scale thickness distribution for the first time.
When this is additionally assimilated alongside the mean thickness there are benefits to the
estimates of ice in category 5. The model appears to overestimate the thickness of the thickest
ice substantially. However it could be argued that this region where category 5 sea ice is
present in large quantities is the least important because the ice cover has not changed as
drastically here as it has in any other region of the Arctic. The ice is so thick in this region
that even under increased Arctic warming the ice concentration here is close to or is 1, and
has been throughout the satellite era. However a more accurate sub-grid scale thickness
distribution could lead to medium and longer term benefits to sea ice estimates in the rest of
the Arctic.

5.6 Summary

In this chapter we have conducted an intercomparison study of three short-term reanalyses
from 2012-2015. This was done in order to ascertain the most useful observations for
assimilation, and to better understand how the model reacts to the assimilation of these
observations, before we produce the satellite era reanalysis in the next chapter. Importantly,
we have seen that the sub-grid scale thickness distribution significantly improves the estimates
of sea ice concentration, thickness and volume in category 5, though only in comparison to
the assimilated observations, which have not been fully validated themselves due to a lack
of independent ice thickness distribution observations. Therefore it is difficult to say with
complete confidence that the estimates of ice thickness distribution have been improved. The
assimilation of Bootstrap sea ice concentration was less successful, so we will produce two
separate reanalyses assimilating Bootstrap and NASA Team sea ice concentration separately.
The information from the CS2 observations of mean thickness are also very important for the
thicker (> 1 m) sea ice in the ice pack, as the mean thickness in the control was either too
thin in the central Arctic, or too thick north of Greenland and in the Canadian Archipelago.
In this chapter we show that the assimilation of the CPOM Cryosat-2 observations can
provide important benefits in sea ice data assimilation. We find that the system seems
to work well over the 4-year experimental period when ice concentration is assimilated
alongside observations of thickness, thus in the next chapters we will now look at repeating
this experiment and producing the full 40-year reanalysis. As a result of this study we choose
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to assimilate sea ice concentration, CS2 sea ice thickness and the CS2 sub-grid scale sea ice
thickness distribution observations in our satellite era reanalysis.





Chapter 6

A Satellite Era Arctic Sea Ice Reanalysis:
Part I

6.1 Overview

The presentation and analysis of the nearly 40-year satellite era Arctic sea ice reanalyses
is split between two chapters. Part I (this chapter) concerns the set-up and evaluation and
Part II (chapter 7) concerns analysis of the sea ice processes. In this chapter we will present
three newly produced satellite era Arctic sea ice reanalyses between 1981 and 2019. This
includes a comparison to a free run of the CPOM-CICE model as well as evaluation against
independent data and comparisons with currently available sea ice reanalyses. In this chapter
we will examine the differences between the model and reanalyses, and importantly, look at
the long-term trends in the reanalyses and their similarities and differences with observations
and PIOMAS. We discuss the reanalysis setup in section 6.2. In section 6.3 we evaluate the
reanalysed sea ice concentration, extent and thickness against assimilated and independent
observations. In section 6.4 the simulated sea ice extent in the reanalyses are evaluated and
compared with a control and observations. The regional changes in ice concentration are
studied in section 6.5. The same is done for the sea ice volume in section 6.6, and for the
thickness in section 6.7. The changes to the Pan-Arctic thickness distribution are investigated
in section 6.8. Finally, the chapter is summarised in section 6.9.

6.2 Reanalysis Setup

The reanalysis setup is similar to that of our short-term reanalysis studies. There is a four
year spin-up phase beginning in 1977, with the CPOM-CICE model running in ensemble
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Table 6.1 Configurations of three different reanalyses produced in this chapter. SIC is sea ice
concentration, SIT is sea ice thickness and SID is sea ice thickness distribution. N indicates
no assimilation of this product takes place.

Experiment SIC SIT SID
CPOM-CICE N N N
reana_bt Bootstrap CPOM CS2 CPOM CS2
reana_nt NASA Team CPOM CS2 CPOM CS2
reana_landy Bootstrap Landy CS2 N

mode to allow for the spinning up of the CICE model and for the generation of an ensemble
spread that will be sufficient for the Kalman filter to reasonably account for the model
error. All reanalyses are run with 100 ensemble members using a newly generated set of
atmospheric forcing fields, with an amplification factor α of 1.25. The forgetting factor
is 0.995 and the localisation radius is 100 km as was used in the shorter studies. The
reanalysis period spans 1981-2019 with sea ice concentration assimilated bi-daily from 1981
to 1989, and daily thereafter. CS2 mean sea ice thickness and sub-grid scale sea ice thickness
distribution are assimilated monthly in the middle of the month from October 2010. We run
three configurations of the reanalysis in this thesis, assimilating different combinations of
Bootstrap sea ice concentration observations, NASA Team sea ice concentration observations,
CPOM CS2 sea ice thickness, CPOM CS2 sea ice thickness distribution and Landy CS2
sea ice thickness. The control run is known as CPOM-CICE. As the errors in the NASA
Team and Bootstrap products are believed to be similar we use the same observation errors
when assimilating the two products (see section 2.2). All other parameters in the assimilation
system are also the same. The configurations of these reanalyses are detailed in table 6.1.

6.3 Evaluation of sea ice reanalyses

In order to evaluate our reanalyses, we will use data from both assimilated observations,
semi-independent data from CS2 and NASA Team, and some independent data from OIB.
We will use the concentration and extent using the Bootstrap and the NASA Team sea ice
concentration data, which although they are separate data sets are not truly independent, as
they both use some of the same raw data from the same satellites, and are processed in a
similar way (see section 2.2). To evaluate the grid cell mean ice thickness and ice thickness
distribution assimilation we will use the randomly selected 25% of CS2 data held back from
assimilation, and we will also use ice thickness data from OIB to evaluate the mean ice
thickness.
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6.3.1 Evaluation of sea ice extent and concentration

To assess the reanalysis estimates of sea ice extent we evaluate the monthly mean sea ice
extent in March, June, September and December using the RMSE in comparison to both
the Bootstrap and NASA Team observations, which is shown in figure 6.1. In all four
months the RMSE is greatly reduced by the assimilation throughout the reanalysis period. In
March the reduction in RMSE for reana_bt to both Bootstrap and NASA Team is on average
0.716×1012 m2 in comparison to the CPOM-CICE model. The RMSE to the NASA Team
extent in reana_bt increased in the last decade of the reanalysis, though this is probably
more a result of NASA Team and Bootstrap having greater differences at this time. There
is a small increasing trend in the RMSE of CPOM-CICE in March over the whole period,
which may indicate the model does a poor job of simulating the trend in sea ice extent that
occurs over the satellite period in winter, this is also seen in Schröder et al. (2019). In June
the reduction in RMSE in reana_bt is much smaller between 1981 and 2000 compared to
March, but after 2000 the differences become much larger and there is a strong increase
in the CPOM-CICE RMSE to both Bootstrap and NASA Team observations. As we also
saw in March, the difference in RMSE to Bootstrap and NASA Team increased later in the
reanalysis period, showing again that there is stronger disagreement between Bootstrap and
NASA Team later in the satellite period.

In September the differences between NASA Team and Bootstrap sea ice concentrations are
at their highest because of the different methods used to estimate summer sea ice cover, so
the RMSEs to Bootstrap and NASA Team differ the most here. Interestingly, after 2005 the
RMSEs of CPOM-CICE improve substantially and are better than the RMSE of reana_bt
to NASA Team. The stand-alone model does a much better job of estimating sea ice extent
after 2006 in September, particularly in comparison to the NASA Team data. We saw that the
CPOM-CICE model estimates very low September sea ice extent (see section 6.4) through-
out the satellite period, whereas it seems that the observations show that a more dramatic
decline occurs around 2005 such that the model and observation estimates are now much
closer. In December we see RMSEs in CPOM-CICE and reana_bt similar to what we see in
March, with the exception of 1987. There are no observations of sea ice concentration in
December 1987 after December 3rd, though it is surprising to see that the RMSE of reana_bt
could be higher than CPOM-CICE, given that the estimate of reana_bt before the period
without observations has a much lower RMSE. We have already seen that the model performs
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Fig. 6.1 Root mean square error of monthly mean Arctic sea ice extent in March, June,
September and December in reana_bt. ’bt’ indicates comparison with Bootstrap sea ice
concentration and ’nt’ indicates comparison with NASA Team sea ice concentration.

poorly in the freeze-up season and this may be evidence of just how poorly it performs
without assimilation, even when it is initialised from a sea ice cover that compares well to
the observations.

Overall the RMSE is reduced to both NASA Team and Bootstrap when Bootstrap sea
ice concentration is assimilated, and for March, September and December the improvement
is substantial. In September the RMSE reduction in comparison to Bootstrap is large but
because of the uncertainty in sea ice concentration observations at this time it is difficult to
fully ascertain how useful the changes made by the assimilation in reana_bt are in relative
terms. This RMSE analysis has also shown us some detrimental aspects of the CPOM-CICE
model. It does a poor job of capturing the overall trend compared with observations in all
four months we studied, especially for June and September trends in the 21st century. The
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estimates of the sea ice extent in winter appear to be particularly poor at a time when different
sea ice concentration observations generally have good agreement. Given that the differences
between NASA Team and Bootstrap ice concentration observations are much more different
in the 21st century in June, there may be changes in the melting season in the Arctic sea ice
that are not currently reflected in the CPOM-CICE model, given how the RMSE at this time
is increasing at a high rate in the 21st century.

6.3.2 Evaluation of Ice Thickness using Cryosat-2

We evaluate the CPOM-CICE model, reana_bt, reana_nt and reana_landy using a 2d his-
togram plot, which is shown in figure 6.2. CS2 data from all months possible (October-April)
between October 2010 and April 2020 is used in this evaluation We only show this for ice
thicker than 1 m and thinner than 5 m, because we do not use CS2 ice thickness data thinner
than 1 m and because of large uncertainties in CS2 data outside this range, and there is only
a very small number of data above 5 m thickness. We use 200 bins, so each bin covers a
range of 2 cm of thickness. For ice between 1 and 3 m measured by CS2, CPOM-CICE
appears to underestimate the thickness of the ice. If more grid cells are covered in thinner ice
between October and April (when we have the CS2 observations), then they are more likely
to become completely open water throughout the summer melting season, so CPOM-CICE
has a minimum extent which is too low in September. Conversely for regions of the ice cover
above 3 m in CS2 the ice appears to be too thick in CPOM-CICE. The distribution of the
ice thickness in CPOM-CICE is too heterogeneous, with thin ice too thin, and thick ice too
thick, in comparison to the observations. In comparison, when we compare reana_bt to the
CS2 observations, reana_bt ice thickness is much closer to the required linear fit, with the
majority of grid cells close to a dense control core between 1 and 3 m (though still a slight
underfit). The assimilation has improved the ice thickness estimates of the thicker ice (above
3 m) by a lot. In the comparison with CPOM-CICE there were some bins well above the
linear fit, but these have almost completely disappeared in the comparison with reana_bt.
The reana_nt experiment (c) in figure 6.2 is very similar to reana_bt (b), which shows that the
assimilation of the CS2 observations has the dominant impact on changes to the thickness,
not the assimilation of different concentration products. The comparison of reana_landy
shows the ice thickness in this experiment more closely packed in a thinner arrangement just
underneath the linear fit, following a very linear trend, but with an offset to the best fit. As
the Landy CS2 data are generally thinner than the CPOM CS2 data this is expected, and we
should treat the comparison between reana_landy and the CPOM CS2 data with caution.

Alongside the histogram plots, we also show RMSE and the Pearson linear correlation coef-
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Fig. 6.2 2d histogram plots of CPOM-CICE, reana_bt, reana_nt and reana_landy (ensemble
mean) ice thickness against the Cryosat-2 evaluation data. There are 200 bins with a bin size
of 2 cm each.
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ficient for CPOM-CICE and reana_bt, reana_nt and reana_bt_landy against the evaluation
data in table 6.2. The RMSEs in reana_bt and reana_nt are reduced significantly, with ice
thickness RMSE 0.72 m lower in reana_bt than CPOM-CICE. The RMSE in reana_nt is
slightly lower at 0.27 m, so there are only minimal benefits to estimates of sea ice thickness
depending on which ice concentration product you choose to assimilate. The correlation
coefficient is higher in reana_bt at 0.64, compared to 0.51 for CPOM-CICE. This further
reinforces what we saw in figure 6.2. For reana_nt the correlation coefficient is marginally
better, which coincides with what we found for the RMSEs in the two reanalyses. Due to the
differences seen when looking at ice below and above 3 m, we also looked at the RMSE in
these two different categories. The RMSEs for reana_bt for ice both thicker and thinner than
3 m is similar but the differences in the CPOM-CICE RMSE are larger. We found that the
RMSE in ice thicker than 3 m was 1.47 m for CPOM-CICE, but only 0.28 m in reana_bt.
The improvement in RMSE for the thickest ice in the Arctic is substantial in reana_bt, and
shows how poor the model performs in the regions of the thickest ice. Despite the reduction
in RMSE we find that the correlation coefficient for ice thicker than 3 m is almost identical
in both CPOM-CICE and reana_bt, which is surprising. We do however see a clear increase
in correlation coefficient in reana_bt for ice thinner than 3 m. There are a lot more grid cells
with ice thickness below 3 m than above, especially in reana_bt and CS2 data, so there is
more uncertainty attached to the RMSE and correlation coefficients on ice thicker than 3 m.
Overall we see there are clearly important benefits to the model estimates of sea ice thickness
when we assimilate randomly chosen 75% of CPOM CS2 monthly mean ice thickness and
thickness distribution in comparison with the 25% of data kept back for evaluation. It is also
clear that either choice of sea ice concentration product you assimilate alongside the CPOM
CS2 sea ice thickness does not provide any clear benefit to the reanalysis against the CS2
evaluation data.

6.3.3 Evaluation of Ice Thickness using Operation IceBridge

For further evaluation of the reanalyses we also use OIB sea ice thickness data. We use data
from 2012-2015 which uses the OIB Quicklook version 1 dataset (Kurtz et al., 2016) and the
more reliable Level 4 product (Kurtz et al., 2015) are used. In table 6.3 we show the RMSE
for the CPOM-CICE model and the reanalyses. All three reanalyses have better RMSE
values to OIB than CPOM-CICE, with the largest reduction in RMSE seen in the reana_landy
experiment. Assimilating the Landy CS2 observations then shows a big improvement in sea
ice thickness estimates in comparison with independent observations. Given that reana_nt
has a lower RMSE than reana_bt and assimilates NASA Team instead of Bootstrap sea ice
concentration, it may be possible to find further reductions in RMSE if NASA Team sea ice
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Table 6.2 Root-Mean-Square-Error of domain-averaged monthly mean ice thickness (m) and
the correlation coefficient for the CPOM-CICE model and our reanalyses (ensemble mean).
This analysis is also done separately for ice below and above 3 m thickness.

Experiment RMSE (m) Correlation Coefficient
CPOM-CICE 1.01 0.51
reana_bt 0.30 0.64
reana_nt 0.28 0.65
reana_landy 0.38 0.62
CPOM-CICE (< 3 m) 0.94 0.38
reana_bt (< 3 m) 0.30 0.57
CPOM-CICE (> 3 m) 1.47 0.27
reana_bt (> 3 m) 0.28 0.26

Table 6.3 Root-Mean-Square-Error of domain-averaged monthly mean ice thickness (m) and
the correlation coefficient for the CPOM-CICE model and our reanalyses (ensemble mean)
against Operation IceBridge observations.

Experiment RMSE (m)
CPOM-CICE 0.54
reana_bt 0.46
reana_nt 0.40
reana_landy 0.29

concentration is assimilated alongside the Landy CS2 thickness data.

6.4 Sea Ice Extent and Area

Firstly, we will investigate the sea ice extent in the reanalyses. In figure 6.3 we show the
daily sea ice extent between 1981 and 1987. We look at this early period of the reanalyses
to investigate how assimilation of concentration is working. As we would expect, the sea
ice extent is affected substantially by the assimilation of sea ice concentration. During the
freeze-up season the sea ice extent in reana_bt and reana_nt is decreased when compared to
the CPOM-CICE model, with the sea ice extent reduced in both reanalyses at this time. In
winter the sea ice extent in both reanalyses is extremely similar, to the point that they can be
difficult to distinguish during this time of the year in figure 6.3. Both reana_bt and reana_nt
have similar sea ice extent throughout the majority of the assimilation period shown. The
only exception being that the melting period begins slightly earlier in reana_nt and it has a



6.4 Sea Ice Extent and Area 113

Fig. 6.3 Daily sea ice extent between 1981 and 1987 in the control CPOM-CICE model,
reana_bt and reana_nt (ensemble mean).

lower minima in sea ice extent in September - closer to the minimum seen in CPOM-CICE.
In comparison to the CPOM-CICE model, the same trend occurs that we saw in the shorter
studies in chapter 5, with the interseasonal variation of the ice extent diminished by the
sea ice concentration assimilation. If the assimilation of Bootstrap ice concentration is
causing a thickening of the central ice pack, this would mean that the number of grid cells
that could become completely ice free would decrease because a similar amount of ice loss
through thermodynamic effects caused by the atmospheric forcing would not be enough for
these grid cells to become ice free. This would cause a higher sea ice extent minima than
seen in CPOM-CICE, so therefore, interseasonal variation is reduced. Winter ice growth is
larger in CPOM-CICE than seen in Bootstrap, and so both reanalyses moves closer towards
CPOM-CICE - with winter ice extent decreased and summer ice extent increased, seasonal
variation is much smaller, which is shown in figure 6.3.

In figure 6.4 we show the monthly mean sea ice extents for CPOM-CICE, Bootstrap, reana_bt
and reana_nt for March, June, September and December between 1981 and 2019. Note that
in March and December the sea ice extents in reana_bt and reana_nt are virtually identical,
and the differences are only slightly larger in June and September. This is because NASA
Team and Bootstrap generally have strong agreement in terms of extent, but not so much in
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terms of ice concentration in summer (Ivanova et al., 2015). In section 6.5, we will see that
the main differences, albeit still small, occur at the ice edge. We see that the assimilation
is highly effective in moving the sea ice extent estimates closer to Bootstrap observations
in both reanalyses, particularly in September. We can also see that both reanalyses follow
the trends much closer in the Bootstrap extent than the CPOM-CICE model does. Between
1981 and 2000, sea ice extents in June were similar for Bootstrap, CPOM-CICE and both
reanalyses. However since 2000 the June sea ice extent in Bootstrap and the reanalyses are
lower than CPOM-CICE, showing that the increasing June ice melt seen in the observations
has been reproduced in the reanalyses. This is interesting because it occurs around the same
time as sea ice extent in September began to decrease a lot, it may show that the intensive
period of the sea ice melt season began earlier than the CPOM-CICE model simulates. On the
other hand, the September sea ice extent is lower in CPOM-CICE, so it seems that the melting
season overall is too intense in the model. In December and March both Bootstrap and both
reanalyses are substantially lower than the model, so the assimilation of ice concentration
appears to not be as highly effective as it is in September and June, but there are still large
changes.

In figure 6.5 we show the daily sea ice area and marginal ice zone (MIZ) area between
2009 and 2016 in CPOM-CICE, Bootstrap, reana_bt and reana_nt. As ice area is closely
related to the extent, some of the interseasonal patterns look similar to the daily extent we
saw in figure 6.3. The reason we also look at this plot is to show the MIZ, an important
region of the sea ice, where ice is primarily affected by interactions with ocean waves. The
MIZ area is defined here as grid cells with ice concentration between 15% and 80%. The
MIZ areas in the reanalyses, Bootstrap observations and the CPOM-CICE model are very
comparable for most of the year except during the peak melting season. In some years the
CPOM-CICE and reana_nt MIZ become larger during the melting period than both Bootstrap
and reana_bt, and it is very likely that this increased MIZ area then undergoes further melting
and becomes ice free. In fact the additional MIZ area seen in the CPOM-CICE model appears
to directly correlate to the decreased sea ice extent in CPOM-CICE. For this reason the ice
area in CPOM-CICE is smaller in summer than in the Bootstrap observations and reana_bt.
The increased MIZ appears in reana_nt but not reana_bt, so the observations you choose to
assimilate are important for estimates of the MIZ. The NASA Team dataset is believed to
underestimate concentration when the ice is thin (see section 2.2), so this could be the cause
of the increased size of the MIZ in reana_nt.

Our discussion about both the sea ice area and the extent so far appears to suggest that
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Fig. 6.4 Monthly mean sea ice extent in m2 between 1981 and 2019 in the control CPOM-
CICE model and the ensemble mean of reana_bt and reana_nt in March, June, September
and December. Note that the lines for reana_bt and reana_nt are coincident in these figures.
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Fig. 6.5 Daily sea ice area and marginal ice zone area in m2 between 2009 and 2016 in the
control CPOM-CICE model, reana_bt and reana_nt (ensemble mean).

the CPOM-CICE model melts thin ice too strongly, whereas thicker ice is less affected
thermodynamically by the atmospheric forcing than perhaps it should be in the model during
the melting season. An excess of melting and creation of thinner ice in CPOM-CICE would
mean that it has a much larger seasonal variation in ice concentration and area than the obser-
vations and the reanalyses, which is what seems to occur. However the MIZ areas outside of
the July-August period are similar, so the ice growth caused by the forcing is not completely
realistic. This could be an issue with the use of the 1D mixed layer ocean model in CICE,
the sea surface temperatures are restored to a climatology after 20 days but this restoring is
slower than the true process, so more ocean could be frozen than in truth in the CPOM-CICE
model. The sea surface temperatures are highly important for modelling changes in the ice
cover in the MIZ so it is possible this problem could be reduced by considering the use of an
ocean reanalysis to provide forcing data or to couple the system to an ocean model. If we
were to use a reanalysis, this could not only improve the sea surface temperatures used to
force the model but also provide information about the trends in the sea surface temperature
over the reanalysis period. If this sea ice data assimilation system was coupled to an ocean
model it would then also be possible to assimilate sea surface temperatures (as is done in
PIOMAS over open ocean), to further improve the ice estimates in the MIZ in the system.

The monthly mean MIZ area in March and September over the whole reanalysis period for the
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Bootstrap observations, the CPOM-CICE model, reana_bt and reana_nt is shown in figure 6.6.
In March the MIZ is relatively stable throughout most of the period in observations, models
and reanalyses. There is a large amount of variation in MIZ area seen in the late 90s, with
minimum MIZ area in both Bootstrap and reana_bt occurring in 1999. There appears to have
been another low point in MIZ area in March during the late 2000s but then a recovery to a
slightly higher stable point in the last decade. There is no clear overall trend in MIZ in March
over the reanalysis period. The March MIZ area is much larger in CPOM-CICE than our
reanalyses and observations in March, double the area in some cases. The model clearly fails
to represent the size of the MIZ correctly at this time of the year, though the trend in the MIZ
is comparable between CPOM-CICE, Bootstrap observations and reanalyses. The reduction
of MIZ area in winter is largest in the reanalyses. However without knowing where the MIZ
is each year, this could mean that the central ice pack region is relatively stable, and that
only the MIZ is becoming more volatile. In September there is a clear positive trend in MIZ
area in the CPOM-CICE model, which as we saw in figure 6.5, seems to happen because of
accelerated ice melt in August and September in CPOM-CICE, and the ice in the MIZ is then
further melted and later become ice-free. In reana_nt the MIZ area in September is initially
similar to that from CPOM-CICE, but in the mid-2000s and thereafter is slightly decreasing,
though it varies significantly year on year. It appears that CPOM-CICE is melting too much
ice in the Central Arctic (see section 6.7), which is why the sea ice concentrations in this
region in CPOM-CICE are lower than in Bootstrap and reana_bt. This could be because the
ice is not thick enough in the Central Arctic, so it becomes MIZ and eventually is fully melted,
and this ice is thicker in reality which means it remains throughout summer. The increasing
trend in CPOM-CICE over the whole period in September MIZ area is 15.1 × 109m2 per
year, which given the relative stability of the MIZ in CPOM-CICE in March is significant.
For comparison it is around 2.5% of the average MIZ area over the same period per decade.
The MIZ in Bootstrap and reana_bt are stable in comparison with CPOM-CICE and reana_nt.
The MIZ is too large in CPOM-CICE in March and September over the last twenty years, and
there is a trend occurring in the model which does not appear in observations or the reanalyses.

Note that in figures 6.3, 6.4 and 6.5 we account for the hole in the satellite observations
that occurs at the pole by interpolating over this region. Although doing this is imperfect, it
allows us to make better use of the data for analysing the trends, as the pole hole is much
bigger in the early data between 1981 and 1988. Without doing this we would also need to
mask the pole hole in our model results and we see an unrealistic increase in ice between
1987 and 1988 as the size of the pole hole reduces. Additionally note that between December
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Fig. 6.6 Monthly mean marginal ice zone area in m2 between 1981 and 2019 in March and
September in the Bootstrap observations, the control CPOM-CICE model, reana_bt and
reana_nt (ensemble mean).

3rd 1987 and January 13th 1988 there are no Bootstrap sea ice concentration data available,
due to a gap in the SSMI brightness temperature observations.

6.5 Regional changes in sea ice concentration

In section 6.4 we saw differences in the sea ice extent and area between CPOM-CICE and
the reanalyses. It is important to also try and understand the changes in sea ice concentration
on a regional scale. In figure 6.7 we look at maps of mean sea ice concentration for March,
June, September and December between 2011 and 2019, the last decade of our reanalysis.

In March the sea ice concentration in CPOM-CICE is greater in Baffin Bay, the Green-
land Sea and the Barents Sea, particularly near Novaya Zemlya, which is surrounded by ice
in CPOM-CICE but not in either reanalysis. The MIZs are roughly similar, but displaced
wherever the ice edge has changed.

There are some very interesting changes in June, where we saw a lot of changes in re-
ana_bt and reana_nt in section 6.4. There are many large areas close to the ice edge which
have become devoid of ice in June in comparison to CPOM-CICE. This is particularly
noticeable in the north of Baffin Bay, the western Beaufort Sea and the Barents Sea. The ice
has retreated much further in the Barents Sea in both reanalyses than it has in CPOM-CICE.
In the Chukchi Sea the ice has also receded more in our reanalyses than in CPOM-CICE.



6.6 Sea Ice Volume in a Satellite era sea ice reanalysis 119

There are, however, larger ice concentrations seen in the Fram Strait and the Greenland Sea,
which is a region where ice is exported south from the Arctic Ocean and eventually melts.
This could indicate increased melting is occurring in the model from sea ice dynamics, which
we will look at in greater detail in section 7.2. The two reanalyses have similar compar-
isons to CPOM-CICE, but reana_nt has lower ice concentration than reana_bt in many places.

At the nadir of the sea ice extent in September, the mean sea ice concentrations are substan-
tially lower in the Central Arctic in the CPOM-CICE model than they are in either reanalysis,
which are highly comparable at this time. CPOM-CICE has a much smaller defined region
where the mean sea ice concentration is (or very close to) 1. This decrease in concentration
in the Central Arctic is important for when we look at volume in section 6.6 and thickness
in section 6.7 later, because the decreases in concentration are seen alongside decreases in
thickness and volume, as we would expect.

Finally, in December CPOM-CICE now has greater ice concentrations than either reanal-
ysis in some of the same regions which were noted in March and June. As in March and
September, the two reanalyses have very similar ice concentrations. The primary regions
in which there are substantial differences in ice concentration between CPOM-CICE and
the reanalyses are the Beaufort Sea, Greenland Sea, Baffin Bay and the Chukchi Sea, with
the Barents Sea also seeing surprisingly large decreases in sea ice concentration in June
and September in both reanalyses. The changes in the Greenland Sea and Baffin Bay are
interesting due to the export of ice that happens in those regions. The changes in the
Beaufort Sea are also interesting because the differences between CPOM-CICE and both
reanalyses are very large, and we see in section 6.7 that PIOMAS estimates ice thickness
closer to CPOM-CICE, whereas the reanalyses estimates thicker ice more comparable to CS2.

6.6 Sea Ice Volume in a Satellite era sea ice reanalysis

In figure 6.8 we show the daily sea ice volume in the stand-alone CPOM-CICE model,
reana_bt and reana_nt between 1981 and 1987. We are interested in looking at the daily
volume for the first few years of the reanalysis period to see how the sea ice concentration
assimilation affects the sea ice state when it is the only observation assimilated, because
this resulted in higher volume estimates in our intercomparison study (though there are no
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Fig. 6.7 Monthly mean sea ice concentration between 2011 and 2019 in March, June,
September and December for CPOM-CICE, reana_bt and reana_nt.
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thickness observations in this period). Figure 6.8 shows this happening in reana_bt, and at an
increasing trend for this time period. This increasing trend is also shown in the CPOM-CICE
model so this is not unsurprising, though the increasing trend in reana_bt is bigger than the
CPOM-CICE model. Interestingly the effects of assimilating Bootstrap concentration alone
on the sea ice volume are not seen immediately but appear to take place gradually, as reana_bt
initially has a lower volume than the CPOM-CICE model until the end of the melting season
of 1981. As we saw in the previous section, assimilation of concentration reduces the extent
in winter, so we would expect this to reduce the volume as the concentration assimilation
should not have an immediate effect on the ice pack, as the ensemble spread will be too
small away from the ice edge. What seems to be happening is that the ice concentration
assimilation thickens the inner ice pack during the freeze-up season in comparison to the
CPOM-CICE model. This would make the ice pack more resilient to melting by the time
the melting season begins. It seems that the minimum extent happens slightly earlier in the
Bootstrap observations, and when the assimilation creates sea ice during this period it makes
the new ice thicker during the initial freeze-up period than the model does when the freeze-up
period begins. Some of this ice advects into the Canadian Archipelago, making the thickest
sea ice even thicker. Both of these arguments correlate with what we saw happening in the sea
ice extent. In this reanalysis we used a spin-up period of two years. While this is sufficient
for the ice concentration and most diagnostic variables in the model, this is probably not true
for the volume, because it takes time for the ice in the Canadian Archipelago to thicken from
the ridging processes in the model.

The most striking result in figure 6.8 is the difference between the two reanalyses. The
assimilation of ice concentration in reana_bt and reana_nt has had a similar effect in the first
day, with both two volumes beginning from nearly identical points. However they diverge
already in the freeze-up season between January and its peak in April. After this, reana_nt
sea ice volume estimates are much lower than in CPOM-CICE, while in reana_bt they are
much higher. This is expected to some extent, because Bootstrap concentrations are higher
closer to the ice edge than NASA Team, and the positive correlations between concentration
and thickness would therefore lead to thicker ice covering a larger area in Bootstrap in MIZ
regions (see correlation plots in section 4.8.1). However during the melting season the loss of
ice volume is much stronger in reana_nt than it is in reana_bt, and there is also less ice growth
in the months succeeding the sea ice volume minima. The modelled sea ice volume in re-
ana_nt is on average 0.47×1013m3 smaller than in reana_nt, a significantly different estimate.



122 A Satellite Era Arctic Sea Ice Reanalysis: Part I

Fig. 6.8 Daily sea ice volume between 1981 and 1987 in the CPOM-CICE model and the
ensemble mean of reana_bt and reana_nt.

The daily sea ice volume results show interesting changes occurring when we assimilate
sea ice concentration alone, but we should also look at a more recent time period, during
which sea ice thickness and sub-grid scale thickness distribution observations are assimilated.
In figure 6.9 we show daily sea ice volume from CPOM-CICE and the ensemble mean in
our reanalyses. The increments to the volume estimates in reana_bt are substantial after
October 2010, the first assimilation time step for CS2 mean thickness and sub-grid scale
thickness distribution. Before October 2010 the volume estimates are 5× 1012m3 larger
during the summer minimum and 2× 1012m3 larger at the winter peak in reana_bt than
in reana_nt. In reana_bt there is a big increment in daily sea ice volume in October 2010
and smaller but noticeable increments occur through the first year of assimilation of CS2
observations. The assimilation of CS2 data greatly reduces the ice volume estimates when
compared to pre October 2010, with the reana_bt ensemble mean ice volume estimates
now lower in winter than in CPOM-CICE. In summer reana_bt still has higher (but not as
high as pre October 2010) ice volume estimates than CPOM-CICE. This means that the
seasonal variation in the volume, like it was in the extent, has been diminished, an effect we
also saw in the much shorter intercomparison study in chapter 5. The lack of observations
of mean thickness and sub-grid scale thickness distribution through May to September is
affecting the thickness estimates during the latter stages of this period in the reanalyses,
as we can see a clear increment in total volume in October 2014. When we assimilate
the year-round CS2 thickness observations from Landy et al. (2022), we may find that the
volume estimates in CPOM-CICE and the reanalyses are more comparable, because there
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are visible volume increments that happen in October which are negative (2011 and 2014 are
visible in figure 6.9). Therefore the seasonal variation within the model may not be quite as
bad as estimated by the reanalyses, it may just be that winter estimates of sea ice thickness
and volume are biased high in comparison with information from observations and reanalyses.

If you compare the volume increments in October 2010 in reana_nt with those in reana_bt,
they are much smaller, and less visible in figure 6.9 throughout the period when ice thickness
is being assimilated. In reana_nt the ice volume is decreased year-round in comparison with
CPOM-CICE and reana_bt, and in winter there is a remarkable decrease in sea ice volume,
even though both reana_bt and reana_nt are assimilating the same ice thickness observations,
though much smaller than they were before 2010. The only time when any of the experiments
are comparable is during September, where reana_nt and CPOM-CICE tend to converge
toward similar sea ice volume minima.

Fig. 6.9 Daily sea ice volume between 2009 and 2015 in CPOM-CICE, reana_bt and reana_nt
(ensemble mean).

To further try and understand how the assimilation of the different observations are affecting
the reanalyses, we need to look at sea ice volume covering a longer time period. In figure 6.10
we show monthly mean sea ice volumes in March, June, September and December between
1981 and 2020 for the CPOM-CICE, reana_bt, reana_nt and PIOMAS. We see that the
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monthly mean volumes are higher between 1982 and 2010 in reana_bt for all months when
compared to both CPOM-CICE and PIOMAS, and much higher in March and December.
Perhaps unsurprisingly, given that we are now assimilating NASA Team concentration as
PIOMAS does, reana_nt is strikingly similar to PIOMAS in both March and December. The
reana_nt experiment is less comparable to PIOMAS in June and September, having lower
ice volumes during these months. However in some ways it is interesting that PIOMAS and
reana_nt are so close, as PIOMAS also assimilates sea surface temperatures in ice-free grid
cells, and is a coupled ice-ocean model. It may be that sea surface temperature assimilation
is more effective during the melting season, which is why PIOMAS and reana_nt differ in
June, or that some sea ice model physics in CPOM-CICE that are not present in PIOMAS (or
vice-versa) lead to differences in summer. Perhaps a superposition of these two differences
cause the similarities during the growth season and the differences during the melting season.
The choice of which sea ice concentration observational dataset you assimilate is very impor-
tant for the reanalysis estimates of sea ice volume, possibly more important than has been
previously understood.

In figure 6.10 there is a substantial change in sea ice volume estimates in reana_bt in
2011 (or for 2010 in the case of December), as the assimilation of ice thickness and sub-grid
scale ice thickness distribution begins in October 2010. The sea ice volume estimates for
all months are decreased by a lot, showing the strength of the sea ice thickness assimilation,
and the drawbacks of assimilating sea ice concentration alone. The effects of ice thickness
assimilation on reana_nt are much smaller, but still visible. At the height of the sea ice extent
in March, the sea ice volume in reana_bt after 2010 is very comparable to CPOM-CICE,
though still higher than PIOMAS and reana_bt. The sea ice volume patterns are similar in
December. In June the sea ice volumes after 2010 are lower in reana_bt than CPOM-CICE,
and very similar to those from PIOMAS, with reana_nt lower still. June is the month where
most disagreement occurs between models, observations and reanalyses. In September the
volume estimates split into two groups, CPOM-CICE and reana_bt agree on higher ice
volumes, while PIOMAS and reana_nt agree on a lower ice volume estimate. Knowing that
CPOM-CICE has a much lower extent in September than reana_bt does we can conclude
that the control run has thicker ice within this smaller region than reana_bt does. PIOMAS
is most trustworthy during the later decades, as more sea ice thickness data has become
available for validating its ice thickness estimates during this period. It seems likely then
that the CPOM-CICE model sea ice volume are too high for this period, but the extent is too
small according to observations of ice concentration. We will next look at how the thickness
compares between the CPOM-CICE model, our reanalyses, PIOMAS and CS2.
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Fig. 6.10 Monthly mean sea ice volume between 1981 and 2018 in March (top left), June (top
right), September (bottom right) and December (bottom right) for CPOM-CICE, reana_bt
and reana_nt (ensemble mean) and the PIOMAS reanalysis.

6.7 Sea Ice Thickness

We have found that in many cases we have comparable sea ice volumes between our reanaly-
ses and CPOM-CICE, despite very differing estimates of ice extent. This means that the ice
thickness in the Arctic must be distributed in different ways. In figure 6.11 we show the daily
mean sea ice thicknesses over sea ice covered grid cells for the years 1981, 1982, 2010 and
2011. This helps give us more understanding of how the assimilation of concentration affects
the sea ice thickness and how the assimilation of the CS2 products affects the thickness in
the first few months that it becomes available. In 1981 both reanalyses initially have higher
mean thicknesses than CPOM-CICE, because the assimilation of concentration is removing
regions of thinner ice at the edges of the model. Between June and September, the three
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models diverge, with reana_nt thinning much more than reana_bt, and by the end of 1981,
reana_bt is 34 cm thicker on average than reana_nt and 28 cm thicker than CPOM-CICE. In
1982 the same effect again occurs during this time of the year. This seems to show that a
lot of ice forming in reana_bt is thicker than in CPOM-CICE, which might occur because
the Bootstrap observations at this point have a greater ice extent than CPOM-CICE does, so
when assimilation of Bootstrap concentration occurs, the ice added due to the assimilation is
too thick. This concurs with what we saw in the sea ice volume. By 2010, the assimilation of
Bootstrap ice concentration has resulted in ice which is 30-40 cm thicker during some parts
of the year than in the control. CPOM-CICE and reana_nt on the other hand remain much
more comparable even at this time. In the middle of October 2010, the first assimilation of
mean ice thickness and sub-grid scale thickness distribution takes place, and there are effects
on the mean thickness of the sea ice area, reducing it in reana_bt by 40 cm, a significant
amount. The effect on reana_nt is much smaller, only about 10 cm. Subsequent increments in
the next 6 months have a noticeable but substantially smaller impact in reana_bt, with mean
thickness only reducing a few cm at assimilation time steps. In October 2011 the changes
caused by the assimilation are not as drastic in reana_bt as the year before, with around a 20
cm decrease, but this can still have substantial effects on the model state, and make the post
analysis step processing necessary. Interestingly the increment in October 2011 in reana_nt
is still around 10 cm, but the rest of the time is still unnoticeable in figure 6.11.

We show maps of mean ice thickness in June, August, October and December 1981 in
CPOM-CICE, the reanalyses (ensemble mean) and PIOMAS in figure 6.12. It is notable that
PIOMAS has smaller regions of thicker ice, especially in August, October and December
where there are only a few grid cells with mean thicknesses above 3.6 m. PIOMAS appears
to have a much larger seasonal variation in the ice thickness in the Lincoln Sea and the
Canadian Archipelago than CPOM-CICE and both reanalyses, because the region of ice
between 3.6 m and 5 m disappears almost completely in October but is very large in June. In
June the only noticeable difference is that this region of the thickest ice is slightly smaller,
otherwise all four maps look relatively similar, though PIOMAS has some thick ice in the
East Siberian Sea. In June and August, the thinnest ice in CPOM-CICE, PIOMAS, reana_bt
and reana_nt cover a very similar area. However in August CPOM-CICE has a region of ice
thicker than 2.4 m that is much larger than both the reanalyses and PIOMAS. In October
the same situation occurs with the thicker ice comparison between CPOM-CICE and our
reanalyses, however the area of ice between 1.4 and 2.4 m thick is substantially larger in
reana_bt than it is in CPOM-CICE. October is where this area of ice in reana_bt was larger
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Fig. 6.11 Daily mean sea ice thickness in CPOM-CICE and reana_nt and reana_bt (ensemble
means) where ice thickness is greater than 0.15 m in 1981, 1982, 2010 and 2011.

than that in the CPOM-CICE model for the first time in figure 6.12. It may be then that
the cause of this issue is open water areas that are close to the ice edge during the early
freeze-up season, where there is more likely to be higher open water fractions in the model.
As concentration is positively correlated to thickness, increases in concentration caused by
the assimilation may also thicken the ice too much. There is enough ensemble spread in
these regions at this time such that the assimilation can have an effect on the model, which is
not possible at any other time because ensemble spread will be low in the ice pack in winter.
In summer the observed concentrations and extent are lower than in CPOM-CICE, so the
assimilation is usually removing ice instead of adding it. In December there is a large region
of ice between 2.4 and 3.6 m in the Beaufort and Chukchi seas which occurs in reana_bt
but not to the same extent in the other models. The ice in the Barents Sea is also thicker in
reana_bt than in the other models, the increase in ice thickness in these regions probably
explains the overall increase in mean ice thickness we saw in figure 6.11.

Now we have looked at the ice thickness in the early period of the reanalysis, we want to look
at how the assimilation of the CS2 products affects the mean ice thickness after 2010 and how
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Fig. 6.12 Monthly mean sea ice thickness in June, August, October and December 1981 for
CPOM-CICE, reana_bt, reana_nt (ensemble mean) and PIOMAS.
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it compares with CS2 and PIOMAS. In figure 6.13 we show the March and October monthly
mean sea ice thickness in CPOM-CICE, reana_bt, reana_nt, CS2 and PIOMAS in 2012 and
2017. In March 2012 it is striking how similar the reana_bt and PIOMAS thicknesses are,
especially with the region of ice thicker than 3.6 m looking very comparable in broad terms.
At the same time, reana_nt is also similar, but with a smaller region of ice thicker than 3.6 m.
The only notable difference between PIOMAS and the two reanalyses in March 2012 occurs
in the Barents Sea, with PIOMAS ice thinner in this region. In October 2012 reana_bt has
thicker ice than in PIOMAS in the Central Arctic and Canadian Archipelago, but the regions
of thin ice are now very similar, reana_nt matches PIOMAS even in the region of thick ice
at this time. We previously looked at comparing data assimilation results with those from
CS2 for ice thickness in 2012 in chapter 5, so for the reanalyses we also look at a later year,
2017. The mean ice thicknesses in March and October 2017 for the most part tell the same
story as the 2012 results, though PIOMAS and both reanalyses are slightly more different
than they were in 2012. In October 2017 both reanalyses have ice thicknesses much closer to
that of CS2 than PIOMAS, as PIOMAS ice in the central pack is too thin relative to CS2. In
general PIOMAS ice thickness is slightly thinner than CS2 especially on the outer regions of
the ice pack. Conversely both reana_bt and reana_nt tend to do well in these regions, but the
ice thickness close to the North Greenland Coast and the Canadian Archipelago is too thick.
CPOM-CICE ice thickness is too thick in the Canadian Archipelago and North Greenland
Coast in both March and October in comparison to both the CS2 observations, PIOMAS
and our reanalyses. CPOM-CICE has ice that is much too thin in the Central Arctic, but the
ice that piles up against the Canadian Archipelago in the model is much thicker than seen
in CS2, PIOMAS or the reanalyses. In March CPOM-CICE has a much greater extent than
PIOMAS, reana_bt and reana_nt, but the regions of thin ice (thinner than 1.4 m), are too
large. This clearly identifies a problem in the CPOM-CICE model whereby too much ice gets
packed into a small region against the Canadian Archipelago, and this ice is not undergoing
the same rate of melting as in PIOMAS or observations. There is also too much thin ice in
CPOM-CICE in March.

In the previous section, we saw how monthly sea ice volume estimates in CPOM-CICE and
PIOMAS in September were similar, however, by looking at maps of the mean thickness,
we have seen a significant difference in how this is distributed across the Arctic. Although
CPOM-CICE estimates of volume appeared to be similar to PIOMAS, the distribution of the
ice thickness in each model is very different, PIOMAS has a much higher sea ice extent in
summer and autumn than CPOM-CICE, and in PIOMAS and CS2 the thickness of the ice is
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Fig. 6.13 Monthly mean sea ice thickness in March and October for CPOM-CICE, reana_bt,
reana_nt (ensemble mean) PIOMAS and Cryosat-2 in 2012 and 2017.
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more homogeneous. In CPOM-CICE there is an increasing gradient in the thickness of the
sea ice as you move away from the ice edge. This shows the importance of looking at changes
in the sea ice state on different scales, and the importance of assimilating thickness products
for extending our knowledge of the sea ice state at smaller resolutions. We saw decreases
in both concentration and thickness between October and July in the Chukchi Sea, Barents
Sea, Greenland Sea and Baffin Bay in the last decades of both reanalyses. Conversely the ice
concentration and thickness was increased in the Central Arctic because of the assimilation,
which is particularly notable during summer as the increase in ice thickness means more of
this ice cover is able to survive in the reanalyses, and this means that both reanalyses have
a greater ice extent in summer than CPOM-CICE. The reana_bt reanalysis generally has
slightly more thicker ice than reana_nt after 2010, and substantially (likely too much) more
beforehand.

6.8 Changes in Pan-Arctic Thickness Distribution

In section 6.7 we saw wide scale changes in the mean ice thickness across the Arctic through-
out the year, with big differences between CPOM-CICE and the reanalyses in the Canadian
Archipelago, Central Arctic and the Barents and Kara Seas in the past decade. Overall
it seemed as though the distribution of thickness in reana_bt and reana_bt was becoming
more homogeneous, with the thickest ice thinning and the thinner ice getting thicker. To see
whether this assessment is true we look at the distribution of the mean thickness across the
Arctic in four different months over the 2011-2019 climatological mean, which are shown in
figure 6.14. In general, we see that the sea ice thickness did become more homogeneous in
reana_bt, with the distribution in CPOM-CICE covering a much wider range than in reana_bt.
In all months there is also very little ice above 4 m thick in reana_bt, whereas in CPOM-CICE
there is ice between 4 and 5 m in a non-negligible number of grid cells. In March reana_bt
has much less ice between 0 and 2 m thick (some of which is explained by the greater sea
ice extent in CPOM-CICE), but more grid cells with ice between 2 and 4 m thick. This will
mean that some regions should be less vulnerable to summer melting when the melt season
begins. In June, the ice cover is simply more homogeneous in reana_bt, with most ice cover
between 0 and 2 m thick.

In September there are a lot of grid cells with less than 1 m ice in CPOM-CICE, but
this distribution tails off rapidly to about 3 m thickness, and then much more slowly so that
there are still many grid cells with ice thicker than 4 m. In reana_bt the peak of ice thickness
is still at the thinnest ice, but the distribution tails off at a more constant rate, with very few
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grid cells of a mean thickness above 4 m. This echoes what we saw in 6.13, with a decreased
area of very thick ice in reana_bt in comparison to CPOM-CICE, but a wider area of ice
over 1 m thick. In December the thickness distribution in reana_bt is very interesting, with
the ice cover evenly distributed between 0 and 3 m thick, but with almost no grid cells with
ice thicker than 3 m, and in fact, fewer grid cells with ice over 3 m thick than there were in
September. This is interesting because it is further evidence that points toward the ice growth
of very thick ice being overestimated in the early freeze-up season, but there is also less area
covered by ice 1.5 and 3 m thick in CPOM-CICE. CPOM-CICE appears to grow thin ice
(less than 1 m thick) too rapidly in the freeze-up season but some of this ice does not thicken
enough in comparison to reana_bt or the CS2 observations. This underestimation of ice over
1 m thick was also seen in Schröder et al. (2019).

It has been shown that the sea ice dynamics and Fram Strait export have a strong impact on
the winter ice thickness (Ricker et al., 2018), and also that winter atmospheric conditions
only play a small role in Arctic sea ice growth and the ice thickness in the late freeze-up
season (Schröder et al., 2019). In both reanalyses the ice is thicker at the end of the freeze-up
season in March, but occurrence of mean ice thicknesses of 4 m and above are very few
or non-existent, so there is a need for additional melting in regions of very thick ice not
captured in the CPOM-CICE model. Using these reanalyses we can see that the ice growth in
CPOM-CICE is overestimated at the ice edge, but also underestimated in the Central Arctic.
We see that the difference between the CPOM-CICE thickness distribution and the thickness
distributions in the reanalyses were much larger than the differences between reana_bt and
reana_nt, also seen in figure 6.14. The thickness distribution is more strongly weighted
towards lower thicknesses in reana_nt, particularly for June and September. In September
reana_nt is even more strongly weighted towards grid cells with thin ice than we see in
reana_bt, with very few cells containing ice of a mean thickness above 3 m. The reana_nt
reanalysis is more strongly peaked throughout most of the year, closer to the distribution
shape of CPOM-CICE, but with a smaller distribution overall. There seems to be most
agreement between models and observations in terms of both concentration and thickness
in late winter, between February and April. These results agree with our analysis of the sea
ice thickness and volume, with reana_nt showing thinner ice and a decrease in Pan-Arctic
volume in comparison to reana_bt.
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Fig. 6.14 The distribution of grid cell mean thickness across the Arctic in CPOM-CICE,
reana_bt and reana_nt in March, June, September and December between 2011 and 2019.
Only grid cells with a mean thickness greater than 10 cm are included, bin width is 10 cm.
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6.9 Summary

In the first part of this chapter we presented the first results from new Arctic sea ice reanalyses
using a stand-alone sea ice model, for the first time assimilating observations of the sub-grid
scale thickness distribution from the CPOM CS2 data. We have investigated the reanalyses in
three different ways in this chapter. We looked at the differences between the reanalyses and
the control model, the long-term trends in extent, thickness and volume in the reanalyses, and
the changes in the thickness distribution in the reanalyses. The record of long-term decline
in sea ice extent is clearly reproduced in the reanalyses, as is present in the control model,
though the assimilation of the Bootstrap ice concentration does severely impact thickness and
volume estimates. We would recommend that a lot of care should be used when assimilating
the Bootstrap sea ice concentration dataset. We have found that assimilation of sea ice
concentration, thickness and thickness distribution can produce reliable estimates of concen-
tration, thickness and therefore volume in the Arctic in a long-term reanalysis, though in this
case the results have only been verified when all three were assimilated together, post-2010.
It was found that the reanalysis estimates are much closer to both sets of observations than
the control. All three reanalyses are evaluated in comparison with sea ice thickness data
from the CPOM CS2 data held back for evaluation and independent Operation IceBridge
sea ice thickness measurements. In comparison with the CPOM CS2 data reana_nt has an
RMSE 2 cm lower than reana_bt, with a similar correlation coefficient. There may be a
possibility to reduce RMSE further by assimilating Landy CS2 observations alongside NASA
Team sea ice concentration. We found that both reana_nt and reana_bt have a lower sea
ice extent than CPOM-CICE throughout most of the year except in August-September, as
the CPOM-CICE model creates a lot of thin ice cover during the freeze-up season but this
does not thicken enough during the freeze-up, so more of the sea ice cover is melted away in
CPOM-CICE by the end of the melting season. As the thin ice in sea ice models is primarily
thermodynamically driven, this indicates issues in the modelling in the thermodynamics.

We found that the long term trends in the Arctic sea ice cover were reproduced well by
the reanalyses in comparison to observations of the extent and the PIOMAS reconstruction
of Arctic sea ice volume. Our reanalyses show a clear decreasing trend in both extent and
thickness, and subsequently volume, as a result of the increased warming in the Arctic,
though there is substantial uncertainty before 2010 due to the availability of thickness ob-
servations. There are relatively few long term records of the Arctic sea ice state which go
further than assimilating only sea ice concentration in terms of sea ice model variables (even
PIOMAS does not), so this is further evidence of the loss in Arctic sea ice volume seen in
previous studies, as mentioned in chapter 3. We found that the thickness distribution of the
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reanalyses was much different to that of the control CPOM-CICE model, with a smaller
range of thicknesses in the reanalyses due to a lack of grid cells with very thick ice. Many
more grid cells in reana_bt and reana_nt are covered in ice with a mean ice thickness of
2 - 4 m, but with comparatively little above this, in comparison with the control run. Our
reanalyses appear to estimate that the Arctic sea ice cover has become more homogeneous
over the 40-year reanalysis period, and more homogeneous overall than previously estimated.
However as the grid cell resolution is quite large, so we should be careful as small scale
features could still feature heavily in regions of multi-year ice.





Chapter 7

A Satellite Era Arctic Sea Ice Reanalysis:
Part II

7.1 Overview

This chapter represents Part II of the analysis of our newly produced satellite era Arctic sea
ice reanalyses between 1981 and 2019. In section 7.2 we discuss changes in the volume
fluxes in the reanalyses and compare them with CPOM-CICE. In section 7.3 we investigate
the long term trends in the reanalyses in much greater detail. The ensemble spread in the
reanalyses is studied in section 7.4. In section 7.5 we assimilate the recently produced
Landy CS2 observations of sea ice thickness, which include observations of summer sea ice.
The Landy CS2 observations are assimilated in place of CPOM CS2 observations, and we
compare the results with our other reanalyses. The results are discussed in further depth in
sections 7.6 and 7.7, including identified ways of improving both the CPOM-CICE model
and the reanalysis. The chapter is summarised in section 7.8.

7.2 Volume Budget Changes

Ensemble-based data assimilation allows quantities other than those directly observed to be
updated, in a way that is consistent with the ensemble’s statistics. This means that changes in
the state vector of the model made by the assimilation should lead to improved modelling of
the sea ice at future time steps, and hence better attribution of the changes that are occurring
in the sea ice. One of the reasons we have undertaken this reanalysis is to create a better
understanding of why the sea ice cover is changing rapidly with climate change. We can
do this by looking at what processes are driving changes in sea ice area and volume in the
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model, and how these change between the control CPOM-CICE model and our reanalyses.
The processes driving area and volume changes are split into to main categories in the model:
dynamical and thermodynamical. The dynamical processes describe changes due to ice
drift, ridging and other mechanical processes. The thermodynamical processes are split into
congelation, the formation of ice at the bottom of existing ice cover; snow-ice formation, ice
forming from snow and seawater on the surface of floes; frazil, the formation of ice crystals
on the sea surface; sublimation, the process by which ice turns directly into water vapour;
and then melting processes, which are subdivided into top, lateral and basal. We also look
at these changes and compare them with area and volume changes made by the LETKF.
We will only look at the area and volume fluxes for the last decade of the reanalysis period
(2010+) because this is the period of the CS2 observations.

7.2.1 Total annual ice volume changes

In figure 7.1 we show the Pan Arctic sum of the volume fluxes between 2011 and 2020 (in
grid cells with ice concentration above 0.15) for each of the processes described above, and
the volume changes made by the assimilation. In the reanalyses, the contribution from the
assimilation increment is larger than many of the sea ice model processes, but the congela-
tion growth dominates as the source of ice volume change over the period, with a smaller
contribution from frazil ice formation. Snow-ice formation contributes very little. There is a
decrease in congelation in reana_bt in comparison to CPOM-CICE which is compensated by
an increase in frazil ice formation. This happens because the assimilation tends to decrease
the ice cover in the Arctic when compared to CPOM-CICE (see section 6.4), so there is
less ice area available for ice congelation growth to occur. As a result of this, open water
area has increased, and as we do not change the ocean forcing between CPOM-CICE and
our reanalyses, this means that frazil ice formation will be possible in these areas as the
ocean will still be (or become) cold enough for this to happen. In reana_nt there is higher
congelation growth and frazil ice formation, as reana_nt removes even more ice concentration
than reana_bt, this could be the model trying to counteract the effects of the assimilation.
This could also be a positive effect from the assimilation which results in thicker ice in the
Central Arctic, which does not occur in the the CPOM-CICE model.

Snow-ice formation has decreased in both reanalyses but it only contributes relatively little to
the overall ice formation in either experiment. Overall, the relative changes in ice formation
between CPOM-CICE, reana_nt and reana_bt are small. Conversely, there are substantial



7.2 Volume Budget Changes 139

changes to processes contributing to a decrease in the ice volume. Contributions from dy-
namical processes have tripled towards a decrease in sea ice volume in reana_bt and doubled
in reana_nt compared to CPOM-CICE. This may be a sign of the changes to the ice cover
we saw in the Fram Strait export region, which we saw in section 6.7 and section 6.5. Basal
melt has decreased in both reanalyses in comparison to CPOM-CICE, and this seems another
positive effect from the assimilation of ice thickness, as this ice should be thicker according
to observations. The changes in top melt are interesting, with reana_bt seeing an increase in
top melt, but reana_nt seeing a reduction in comparison to CPOM-CICE. This difference
is small in relative terms but intriguing, and would have to be the result of changes to the
temperature or enthalpy of the sea ice made by the correlations. The differences in volume
due to the assimilation are very different in reana_bt and reana_nt, and primarily the cause
of the differences between the two reanalyses. Besides the assimilation, the main reasons
for the volume difference between the reanalyses and CPOM-CICE are congelation growth,
top melt, basal melt and dynamics. In reana_bt the differences in the melting processes
are responsible for 45% of the difference in volume flux in comparison with CPOM-CICE
between 2011 and 2020, if you do not include the contribution from the assimilation the
melting processes are responsible for 81% of the difference. For reana_nt the difference in
congelation to CPOM-CICE is larger, the changes due to the assimilation are greater, and
thus the melting processes are less responsible (29%). As this is looking over the whole
period, there could likely be seasonal changes in these processes which are important. In
order to understand these changes further we will look at volume fluxes in this period in four
different months of the year.

7.2.2 Monthly resolved ice volume changes

The Pan Arctic volume fluxes from each process in each month between 2011 and 2019 in
grid cells with ice concentration above 0.15 for CPOM-CICE, reana_bt and reana_nt are
shown in figure 7.2. In the first three months of the year (the second half of the freeze-up
season) congelation growth is by far the dominant process driving sea ice volume changes, as
would be expected. Frazil ice formation is stronger in both reanalyses, meanwhile dynamic
processes and changes from the assimilation represent stronger decreases in ice volume
in reana_bt and reana_nt. The effects of basal melt though are strongly reduced in both
reanalyses. In reana_nt there is increased congelation between January-March, which is
counteracted by an additional decrease in volume caused by the assimilation. There are some
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Fig. 7.1 Pan Arctic contribution to sea ice volume fluxes between 2011 and 2019 by each of
the different physical processes in the model, volume changes made by the data assimilation,
and the total volume flux in CPOM-CICE, reana_bt and reana_nt (ensemble means). Note
that ’congel’ refers to congelation, ’snoice’ refers to snow-ice formation, ’dynam’ refers to
volume changes due to dynamics, ’meltt’ refers to top melt, ’meltl’ refers to lateral melt,
’meltb’ refers to basal melt, ’evap’ refers to sublimation and ’assim’ refers to assimilation.

minor changes in some of the other processes but these are negligible in terms of the total
volume flux. As we expect there is an increase in sea ice volume during January-March in
all runs, but both assimilations lead to a reduction in sea ice volume. The net decrease in
ice volume fluxes is relatively small in comparison to total sea ice volume in this period. In
April, the assimilation strongly reduces the ice volume added in the reanalyses, reana_bt has
just over half the volume increase seen in CPOM-CICE, and reana_nt has a small fraction of
CPOM-CICE.

May is a very interesting month in terms of volume flux, in CPOM-CICE the volume
flux is small compared to other months, with ice formation and melting mostly cancelling
one another out. The assimilation removes a huge amount of ice in both reanalyses and
particularly in reana_nt. The beginning of the melting season in May (and June) are much
stronger in the reanalyses than in CPOM-CICE. We see again that the dynamical processes
in the reanalyses cause a stronger decrease in volume than in the control. Relative to the
changes made by the assimilation, the changes in the other contributions are minimal. The
ice volume reduction in June in reana_bt is 1.5× 1013m3 greater than CPOM-CICE over
the 2011-2019 period, while for reana_nt it is 2.4×1013m3 greater, a reduction in sea ice
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volume of almost double than that seen in CPOM-CICE. Some of this difference is likely
explained by how the sea ice concentration in both observational datasets in comparison to
CPOM-CICE is much smaller, so we expect that some of this change is accounted for by
a decrease in ice area. In July the differences in the volume fluxes are smaller, though the
melting in reana_bt and reana_nt is still stronger. In August we see for the first time that
the assimilation is adding ice, which is again stronger in reana_nt. This results in a much
smaller loss in ice volume for reana_nt, however for reana_bt an increase in basal melt and
top melt mean that more ice volume is lost in August than in CPOM-CICE. The choice of
assimilating Bootstrap or NASA Team sea ice concentration lead to very different sea ice
volume changes over the melting season.

In September we see the most striking differences between the CPOM-CICE and the reanaly-
ses, ice formation is substantially decreased in both reana_bt and reana_nt, and melting is
increased. This melting effect is stronger in reana_bt. This is interesting because neither
reanalysis has assimilated thickness observations for five months, yet the difference between
the model and reanalyses are largest at this time of the year. The possibility of introducing
thickness observations in summer could then be very important for constraining the volume.
In all three models the minimum sea ice volume occurs at this time of the year, but is
greater in reana_bt (see section 6.6). The melting season is either stronger or lasting further
into September in both reanalyses than in CPOM-CICE, because ice growth is weaker and
melting is stronger. However the assimilation is adding huge amounts of ice volume in
September with concentration observations alone. In fact, without the assimilation of the ice
concentration, the total ice volume would have decreased in both reanalyses in this month. A
lot of ice volume is added in reana_nt, but more ice volume is removed in reana_nt during
the melting season which negates this effect.

In October the freeze-up season is much stronger in CPOM-CICE than in reana_bt, which is
caused by differences in congelation, with the assimilation only accounting for around 25%
of the differences between reana_bt and CPOM-CICE. The ice volume flux in reana_nt is
much closer to the CPOM-CICE estimates, and the assimilation in reana_nt only contributes
to a small decrease in the total volume flux. This seems to show that the ice growth in
October is too strong in the model, though this could be balancing out the lower volume
flux in CPOM-CICE in September. The ice area in both reanalyses is smaller at this time,
but not enough to account for the total congelation difference. The high congelation growth
in the CPOM-CICE model in this month could be responsible for the ice being too thick
in the area close to North Greenland and the Canadian Archipelago, which is an important
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difference between the model compared with reanalyses and observations. In November and
December, as we saw in January, February and March, congelation growth is the dominant
process driving changes in ice volume, with only relatively small decreases in the reanalyses
in comparison to CPOM-CICE. As the ice cover is smaller in winter in the reanalyses (see
section 6.4), this means that a smaller area of ice has increased in thickness in comparison to
CPOM-CICE. Frazil ice formation is increased at the same time, which is probably because
there is an increase in ice-free areas where the ocean is cold enough for this to occur. There
are also changes to the dynamics and basal melt, similar to those we saw in March. The
assimilation only accounts for a relatively small change in the sea ice volume between
CPOM-CICE and the reanalyses during these months, the differences are comparable with
those in the basal melt and the dynamics between the two systems.

Somewhat surprisingly the largest changes in volume fluxes appear to be occurring in months
where ice thickness and sub-grid scale ice thickness distribution is not being assimilated. This
could be caused by spurious correlations between ice concentration and ice thickness during
the melting season which have unwanted effects on ice volume when only ice concentration
is assimilated. This demonstrates that the CS2 products are having important year-round
impacts not only on the modelled sea ice state but on the processes occurring within the
model, even though they are assimilated as a monthly mean for only seven months of the
year. Here we have identified some processes which have undergone significant changes in
both reanalyses either throughout the year or at important times of the year, therefore we
would now like to try and understand where and then why these changes have occurred.

7.2.3 Changes to Congelation Growth

Congelation growth was reduced by almost half in September and by about a quarter in
October in reana_bt in comparison to CPOM-CICE, which has important consequences
for the early freeze-up season. In figure 7.3 we show the differences in congelation be-
tween CPOM-CICE and the reanalysis ensemble mean over 2011-2019 for these months.
In September there are differences over a large region covering most of the Central Arctic
where the reanalysis has much lower congelation than CPOM-CICE. This area of lower
congelation growth has increased in October and covers much of the Arctic sea ice cover
at this time of year. Interestingly the one region of ice cover where there are no changes is
the region which packs up against the Canadian Archipelago and North Greenland (at least
in CPOM-CICE). We know the assimilation of CS2 observations reduces the ice thickness
a lot in both reanalyses in this region (see section 6.7), but there are very few differences
in ice concentration between model and observations. It is positive that the changes made
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Fig. 7.2 As Fig. 7.1, but separated into months for the period 2011 to 2019.
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to the thickness in the Canadian Archipelago by the thickness assimilation do not affect
congelation growth in this area - the changes made to the temperature and possibly other
thermal properties of the sea ice by the correlations are stopping the model trying to thicken
the ice to the level seen before assimilation.

We also saw differences in congelation growth between reana_nt and CPOM-CICE in the
latter freeze-up period, and we show the February and March differences in figure 7.3. The
reason for the increased congelation growth in reana_nt at this time is because of increasing
congelation growth at the sea ice edge. This is not surprising because the assimilation of sea
ice concentration reduces the concentration in this area during the freeze-up season, but the
model attempts to regrow the ice here because of the ocean forcing used. This shows that
care is required in interpreting the volume flux changes because they may be a result of the
model attempting to counter the changes made by the assimilation. The differences in the
congelation growth between CPOM-CICE and both reanalyses are a result of correlations
in the LETKF with the temperature and/or enthalpy of the sea ice in the CICE state vector,
as our reanalysis setup does not make any changes to the ocean forcing setup from the
CPOM-CICE model. This shows how useful the LETKF and more modern data assimilation
techniques can be in comparison to optimal interpolation and nudging methods.

7.2.4 Changes to Dynamical Processes

We have seen that the dynamical processes of the sea ice have caused additional ice volume
loss in both reana_bt and reana_nt, this occurs year-round, but is strong (particularly for
reana_bt) between June and September. In figure 7.4 we show sea ice volume flux in cm/day
(cm3 of ice per cm2 of grid cell area) between 2011 and 2019 in June and September in
CPOM-CICE and its differences with reana_bt and reana_nt for June and September. In
June both reanalyses appear to have more sea ice volume being advected due to dynamics
to within a certain area, which also results in a decrease in the area surrounding this. This
effect is stronger in reana_bt than in reana_nt but both have similar patterns in comparison to
CPOM-CICE. There is stronger ice loss due to dynamics in the Western Fram Strait, and
ice volume gain in the Eastern Fram Strait, so both reanalyses appear to be shifting the
export pattern of the sea ice further away from the east coast of Greenland. There is also an
arc pattern in Baffin Bay occurring in both reanalyses in comparison to CPOM-CICE, with
sea ice being shifted from the west of Baffin Bay to an arch pattern surrounding Western
Baffin Bay. In September the story is not so clear, reana_bt has stronger differences with
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Fig. 7.3 Plotted are differences between reanalyses and CPOM-CICE, reana_bt minus CPOM-
CICE is plotted for (a) September and (b) October, and reana_nt minus CPOM-CICE is
plotted for (c) February and (d) March
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CPOM-CICE than reana_nt does, but there is less of a pattern. There appears to be a region
which is close to the ice edge at this time of the year where there is more ice volume loss due
to dynamics, with the surrounding areas again compensating. The additional sea ice volume
loss in the outer regions of the thicker ice pack could be caused by additional divergence of
sea ice floes in these areas. In June this could occur because these regions are now closer to
the marginal ice zone, where there is more open water and hence there is more possibility of
these regions being influenced by ocean currents. However the key pattern that has carried
through from June are the changes in both reanalyses in the export region of the Fram Strait.
Both reanalyses clearly agree on a change in ice advection in the Fram Strait, though they
disagree as to the strength of these changes. In some areas where additional ice is lost from
dynamical processes in the reanalysis, we also see additional loss from basal melting (see
section 7.2.5), so it seems likely that increased open water fraction is playing some role in
the elevated sea ice loss we see in the reanalysis.

7.2.5 Changes to Basal Melting

For most of the year, Basal melting was reduced in both reanalyses (November-July) in
comparison with CPOM-CICE, and increased between August and October, with reana_bt
seeing a greater increase in comparison to CPOM-CICE than reana_nt. We will look at the
differences in March and September, which have two clearly contrasting patterns. September
was also interesting because in both reanalyses it was the most impactful process driving
changes in the sea ice volume, whereas congelation growth was more important in CPOM-
CICE. In figure 7.5 we show the basal melting (in cm/day) in March and September in
CPOM-CICE and its differences with both reana_bt and reana_nt. In March the reduction
in basal melt clearly occurs because of the reduced sea ice extent in both reanalyses, which
have similar sea ice extents at this time. There is a small increase in basal melt in some
grid cells close to the ice edge, which is probably negligible. In September, there is a strong
increase in basal melt in both reanalyses in the Fram Strait, which could be due to increased
ice cover here as the ice export in this region has increased in both reanalyses. In reana_bt
there is increased basal melt in the East Siberian Sea, Beaufort Sea and the Northern Chukchi
Sea, which is balanced out by some weaker basal melting in the Southern Chukchi Sea. In
reana_nt the increases in basal melt in these regions are not as strong, but the reduction
in basal melt in the Southern Chukchi Sea is of a similar amplitude, so Basal melt is not
as strong in reana_nt as in reana_bt. As we have seen with the volume fluxes due to the
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Fig. 7.4 Volume Flux Tendency due to dynamical processes (advection, ridging, convergence)
in cm/day in June (top) and September (bottom) between 2011 and 2019 for the reanalyses
ensemble means (left), CPOM-CICE (middle) and their difference (right)
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Fig. 7.5 As for Fig 7.4 but for March and September basal melting

dynamical processes, reana_bt and reana_nt agree for the most part on the patterns of the
changes with CPOM-CICE, but not on their amplitudes, with changes in the East Siberian
Sea and the Fram Strait standing out for the basal melt.

7.2.6 Changes to Top Melting

In July and August there are stark differences between the top melt seen in CPOM-CICE,
reana_bt and reana_nt. In general throughout summer reana_nt had lower top melt than
the other model runs, whereas reana_bt had comparable or higher top melt in comparison
to CPOM-CICE. In figure 7.6 we show top melt in July and August in CPOM-CICE and
the difference between each reanalysis and CPO-CICE. In July, top melt is much stronger



7.2 Volume Budget Changes 149

in reana_bt in a large region covering a lot of the Central Arctic, though there are some
areas of decreased top melt covering a smaller region in the central pack, and the Fram
Strait, Baffin Bay, Beaufort Sea and the Barents Sea, which are covered by thinner ice at
this time of the year. Conversely, in reana_nt there is a strong decrease in top melt in most
regions, with only the innermost ice pack seeing a comparable or slightly increased top melt
in comparison with CPOM-CICE. As only concentration is assimilated at this time of the year
these effects are occurring either directly from correlations between ice concentration and
the thermodynamical properties of the sea ice within the assimilation scheme, or indirectly
because of the changes to the sea ice concentration. Thickness observations though have
been assimilated in previous winter months, which results in significantly thinner ice, which
is likely to be more strongly correlated with an increase in the surface temperature, which
will cause an additional top melting to occur. There could also be correlations between other
variables and thinner ice that contribute to the increased top melt in reana_bt, but decreased
top melt in reana_nt, such as in the presence of melt ponds.

7.2.7 Contribution of the assimilation to volume flux in the reanalysis

We have seen that reana_bt adds more sea ice volume in September than CPOM-CICE and
PIOMAS, and this appears to occur in September-October, around and just after the sea
ice minima (figure 6.9). In September, reana_nt has more comparable ice volumes with
PIOMAS in the last decade of the reanalysis period. In figure 7.2 we saw that a lot of ice
volume was added in September through the assimilation. We reasoned that this probably
occurs because this is the only time of the year when the observational sea ice extent is higher
than in CPOM-CICE. As Bootstrap sea ice concentrations are particularly high in the ice
pack throughout the year (unlike NASA Team) it could result in positive correlations between
concentration and thickness leading to increased sea ice volume in reana_bt. For this reason
we want to see how the changes to the volume made by the assimilation are distributed across
the Arctic during this time and at other months of the year, because this should help locate
areas of issue within the model. For example the assimilation causes a large decrease in
volume in May and June, and total volume flux in other months could overall be small but be
balanced out by strong positive and negative changes in different regions. To verify this we
show maps of the mean thickness change between 2011 and 2019 for six months in figure 7.7.

In January and March the only substantial changes take place on the ice edge. There



150 A Satellite Era Arctic Sea Ice Reanalysis: Part II

Fig. 7.6 Top melt in July and August for CPOM-CICE and its differences with reana_bt and
reana_nt between 2011 and 2019 in cm/day (m3 of ice per m2 of grid cell area).
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is a decrease in thickness at the ice edge because sea ice concentration observations have a
smaller sea ice extent than CPOM-CICE does in these months, and the observations do not
have ice in these areas. This means that the decrease in thickness is a result of a decrease
in ice concentration. In some cases these grid cells at the edge become completely ice free.
Interestingly the biggest changes to the volume made by the assimilation in these months
are in the Fram Strait. The assimilation here causes a large decrease in volume lost in the
eastern Fram Strait but there is a large volume gain on the western side near the eastern
coast of Greenland. The Fram Strait is the primary export region of sea ice in the Arctic,
and it appears that the angle of this export out of the Fram Strait is quite different in both
reanalyses, much closer to the eastern coast of Greenland. There is very little difference
between changes made by the assimilation in reana_bt and reana_nt during these months.

In May there is an increasing area of decreased thickness caused by the assimilation, though
still occurring mostly around the ice edge. In the Beaufort and Chukchi seas the ice thickness
removed by the assimilation is very strong, particularly in reana_nt. The melting of ice
in the Beaufort Sea does not appear to be strong enough in the model at this time, so the
ice in the Beaufort sea is thicker in CPOM-CICE than in the reanalysis. The sea ice in the
Beaufort Sea is much more seasonal in both reanalyses than in CPOM-CICE for this reason.
In reana_nt there is also more loss of ice thickness in the Barents and Kara Seas, this is
probably because the NASA Team observations tend to have lower ice concentrations than
the Bootstrap observations in summer at the ice edge.

In July, the thickness changes caused by each reanalysis are almost directly opposed. The
sole region where the reanalyses agree is the Beaufort Sea. In reana_bt, ice thickness is
being increased in the thick ice pack, but at the ice edge thickness is being decreased. On the
other hand, in reana_nt the assimilation caused a decrease in the thickness of the central ice
pack, but an increase of thickness in the ice edge. This is almost certainly the cause of the
higher ice volumes in reana_bt, and it is probably the result of the high ice concentrations
in the Bootstrap observations of sea ice concentration in the central ice pack, which are
close to 1. In NASA Team observations and the CPOM-CICE model, the ice concentrations
are not as high, and so the assimilation of Bootstrap increases concentration at this time in
comparison. Due to positive correlations between concentration and thickness, ice thickness
is then increased in reana_bt. The Bootstrap sea ice concentrations are believed to be more
accurate than NASA Team at this time (see section 2.2), but the correlations are having a
potentially detrimental effect on the ice thickness estimates. This is an important result when
considering future assimilation of sea ice concentration.
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For September, unlike July, there is very good agreement between both reanalyses, both
showing an increase in ice thickness due to the assimilation at this time. The increases in ice
thickness in reana_nt are perhaps slightly stronger, and in reana_bt there are a few areas on
the ice edge where the assimilation is causing a decrease in ice thickness. reana_bt also has a
stronger increase in ice thickness close to the Canadian Archipelago.

In November, reana_nt shows a small increase in ice thickness due to the assimilation
across most of the Arctic, though the Fram Strait is again an area of significant change. There
is a large band of sea ice removed by the assimilation between Franz Josef Land and the
eastern coast of Greenland, with ice added to the west against the eastern coast of Greenland,
which we also saw in the January-April period. The changes in the Fram Strait also occur in
reana_bt, however there are very little changes to the ice thickness made by the assimilation
in the Central Arctic in reana_bt. Unlike in reana_nt, there is also a reduction to the ice
thickness in the Canadian Archipelago, which may be a result of the thicker ice here caused
by the assimilation in July. As we have seen in other months, there is agreement in the
Beaufort Sea between the two reanalyses, so the Beaufort Sea seems to be an area in which
the CPOM-CICE model performs very poorly.
Overall we have seen that the volume changes made by the assimilation throughout most of
the year occur to seasonal ice (regions which are seasonal since 2011). Changes here would
not affect the thickness of the thickest ice, but we do see ice thickness increasing due to the
assimilation in July in reana_bt, which is the cause of the increased ice volume in this reanal-
ysis. Without the assimilation of the thickness in October, this ice would remain thicker than
in reality, and grow throughout the winter freeze-up season, and this is the reason why the sea
ice volume increases when only Bootstrap sea ice concentration is assimilated between 1981
and October 2010. We have also identified that the Fram Strait and the Beaufort Sea are two
regions with a need for improvement in CPOM-CICE, as there is good agreement in these
regions in both reanalyses. In particular the export area is quite different when comparing
the reanalyses and CPOM-CICE. The Beaufort Sea requires closer inspection because the
ice here varies much more seasonally in the reanalysis than it does in CPOM-CICE, and the
assimilation shows that the reanalysis and observations strongly disagree with the model.
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Fig. 7.7 Mean change in sea ice thickness (in metres) due to the assimilation between 2011
and 2019 for six months of the year in reana_bt and reana_nt (ensemble mean).
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7.3 Changes in the Sea Ice Cover over the Reanalysis Period

7.3.1 Trends in the Sea Ice Extent

One of the primary reasons for doing a reanalysis is to study and improve our understanding
of climate trends over a long term period. For reana_bt this is somewhat difficult because of
the significant impact of the assimilation of CS2 products in 2010 on the thickness of the
sea ice (for reana_nt there is an impact but it is much smaller). However concentration is
assimilated almost consistently over the whole time period of the reanalyses and we have
shown (see e.g. section 5.4 and section 6.4) that additionally assimilating thickness and
sub-grid scale thickness distribution has a very limited (if any) effect on the modelled sea ice
extent. Therefore we believe it is still valid to look at trends in the sea ice extent over the
whole reanalysis period, and compare these with trends from the control model and other
observations. In figure 7.8 we show the reana_bt and reana_nt ensemble mean sea ice extent
for each year from 1981-2019, and include the climatological means between 1981-2010. In
general the extents and its trends are very comparable in reana_nt and reana_bt, with very
few differences in each plot. In the years 1981 and 1988 there are large increments reducing
the sea ice extent. In 1981 this increment occurs because it is the second assimilation time
step, and the differences between the model and the observations is still substantial. The
second occurs on January 13th 1988 and is a result of a gap in the sea ice concentration
observations between 3rd December 1987 and 13th January 1988. The size of these incre-
ments shows a significant difference in winter sea ice growth between the model with and
without constraints from sea ice concentration observations, which appears to be severely
overestimated in the model. As we know, the past decade has clearly seen sea ice extents
well below the 1981-2010 climatological mean, and both reanalyses follow this trend. The
minimum extent occurs in 2012, and in 2016 the sea ice extent was lowest between May and
July and in the early freeze-up period between October and November.

7.3.2 Trends in the Sea Ice Volume

As with the sea ice extent, for the sea ice volume we will first look at the whole reanalysis
period. We note that due to the substantial reduction in sea ice volume that occurs when ice
thickness is assimilated for the first time in reana_bt in 2010 these results should be viewed
with some caution. In figure 7.9 we show ensemble mean sea ice volume between 1981 and
2019 for reana_bt and reana_nt and their climatological means between 1981 and 2010. As
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Fig. 7.8 Ensemble mean Arctic sea ice extent in reana_bt and reana_nt between 1981 and
2019 and including a climatological mean between 1981 and 2010.

with the extent there is a clear downward trend in sea ice volume estimates in both reanalyses.
In reana_bt there appear to be three distinct groupings. Between 1981 and 2006 ice volume is
relatively high, with a few anomalous years of lower sea ice volume in the 80s. Between 2007
and 2009 ice volume is lower than in the previous group. 2010 is also part of this group but
only until September, as in October the first thickness observations are assimilated. The final
group includes 2010 and subsequent years which all have much lower ice volumes than the
1981-2010 climatological mean. There are clear increments in every year after 2010 when
ice thickness assimilation begins after the summer period in which CS2 observations are
not available. These are all negative increments, showing again that assimilating Bootstrap
concentration alone (in the summer months) anomalously enhances ice thickness and volume.
In reana_nt, the ice volumes are lower than in reana_bt, and the groupings are less clear. The
increments which take place post-2010 are less obvious, though still visible, and are positive.
The climatological mean of 1981-2010 is between 0.6×1013m3 and 0.9×1013m3 greater
in reana_bt than reana_nt, a huge difference. In winter there is never a year with greater
than 3×1013m3 in reana_nt, whereas in reana_bt many of the winters in the 1980s see an
ice volume estimate this high. Both reanalyses however do agree that all years post-2010
are well below the 1981-2010 climatological mean, substantially in the case of reana_bt,
where the assimilation of CS2 ice thickness was more effective and the effects of assimilating
Bootstrap ice concentration alone caused very high estimates of sea ice volume.

To see how the long term trends in each reanalysis fare over the satellite era, we compare
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Fig. 7.9 Ensemble mean Arctic sea ice volume in reana_bt and reana_nt between 1981 and
2019 and including a climatological mean between 1981 and 2010. In the past decade sea
ice extent has been significantly below 1981-2010 mean.

the linear trends in sea ice volume in CPOM-CICE, reana_bt, reana_nt and PIOMAS in
table 7.1. CPOM-CICE and PIOMAS generally have similar trends over all four months we
analysed, which peaked in September. On the other hand, reana_bt and reana_nt had larger
ice losses which were higher in June and December. The trends in reana_bt are particularly
high, and may be biased because of the very large increment in the sea ice volume which
take place in October 2010. This does not happen in reana_nt, yet there are still stronger
trends in June and December. Meanwhile the downward trend in September was very low
in reana_nt in comparison to CPOM-CICE, PIOMAS and reana_bt. This appears to be
logically consistent with the ice volume estimates we saw in section 6.6, as reana_nt had
lower ice volume estimates than the other models between 1981 and the mid-2000s, whereas
estimates afterwards were more comparable. This is a surprising result, as reana_nt seems to
disagree strongly with the strong trends in September seen in models, observations and other
reanalyses.

7.4 Ensemble spread in the reanalyses

In this study we generated ensemble spread by perturbing the atmospheric forcing fields
using EOFs and numbers randomly selected from a normal distribution, this means that the
relationship between the different atmospheric forcings - for example 2 m air temperature
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Table 7.1 Monthly mean sea ice volume trends for March, June, September and December in
CPOM-CICE, reana_bt, reana_nt and PIOMAS between 1981 and 2017 (in km3/month).

Model Mar Jun Sep Dec
CPOM-CICE -246 -304 -322 -295
reana_bt -308 -371 -346 -381
reana_nt -246 -345 -262 -274
PIOMAS -249 -306 -312 -279

and shortwave radiation - should be kept relatively intact. We found that this generates a
significant amount of spread in the model, and thus this procedure may be useful for future
data assimilation studies using dissipative models. We also amplified these perturbations in
order to create additional spread (see section 4.4) because we felt this might be necessary in
the dissipative CPOM-CICE model. The amount of spread that was generated in our data
assimilation system meant that although we assimilated sea ice concentration daily with
relatively low errors, the reanalyses were able to move significantly closer to the observations,
especially the extent. This was the case not only during the early assimilation time steps
but throughout the reanalysis period. This means that there was enough ensemble spread
throughout the reanalysis period for the assimilation to remain effective. Amplifying the
perturbations could have the effect of removing some of the relationship between the atmo-
spheric forcing variables that would have been preserved if we had not done this, because
inflating the ensemble could remove the relationship. The ensemble spread appears to be
high in our reanalyses compared to the total extent or volume, but this may reasonably
reflect that sea ice modelling still has substantial uncertainties, and there are large differences
between different models and reanalyses (as we saw in section 3.5). In our reanalyses we
begin assimilating new observations from CS2 in October 2010, 29 years after the reanalyses
begin and after 29 years of daily sea ice concentration assimilation. We now know (see
section 6.3) that the assimilation of CS2 products is effective even after a long period of sea
ice concentration assimilation. It appears that the sea ice concentration assimilation largely
affects the spread in sea ice concentration (and related diagnostics such as area and extent).

The mean ensemble spread in sea ice concentration for four months over the reanalysis
period in reana_bt and reana_nt are shown in 7.10. The regions of the Arctic in each of these
months where the assimilation of sea ice concentration will have a strong effect can be seen
in purple, as these areas show ensemble spread which is around equal or greater than the
observation error of the concentration observations. The ensemble spreads are similar for
reana_bt and reana_nt. The region of higher ensemble spread covers the largest area in June
and September, with even some inner ice pack areas in the Canadian Archipelago showing
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large concentration spread in September. In June and September however, the ensemble
spread peaks are generally not as high as in March or December, where there are significant
differences at the ice edge. During much of the year the sea ice concentration assimilation
will only have noticeable effect at the ice edge. The main exception to this is Baffin Bay in
summer where there is a lot of spread throughout the whole region, and as such the reanalyses
and CPOM-CICE are quite different at this time which we saw in 6.5 and 6.7.

The sea ice concentration ensemble spread appears to be reasonable and behaving correctly
with the observations influential at the ice edge for the majority of the year, as one would
expect. The ensemble spread also stays reasonably high throughout the period so that the
mean of the ensemble spread over the whole period is still relatively high in the correct
places for the assimilation to be effective. To see more clearly whether there are any trends
in the ensemble spread, we look at the monthly mean spread in sea ice extent between 1981
and 2019 in the same four months in figure 7.11. There is a reduction in spread that occurs
before and after 1987 in the reanalysis, and this is because ice concentration is assimilated
once every two days before January 1987 and daily afterwards. There is anomalously high
ensemble spread in December 1986 due to the gap in ice concentration observations at this
time. In both reanalyses, spread in the sea ice extent is higher in March and December,
because ensemble spread at the ice edge is high at this time of the year. March and De-
cember have similar ensemble spreads throughout the reanalysis period, as do June and
September, so there appears to be a consistency in spread in both the freeze-up and melting
seasons for the extent. The ensemble spread in sea ice concentration and extent is not
reduced by the additional assimilation of the CS2 products after October 2010. In reana_nt
(dashed lines) there tends to be higher ensemble spread than the equivalent month in reana_bt.

Although there is no reduction in the ensemble spread of sea ice concentration or extent when
CS2 products begin to be assimilated, we do expect the ensemble spread of ice thickness
will be reduced once we begin assimilating CS2 observations. In figure 7.12 we show a
comparison of ice thickness ensemble spread between 2000-2009 and between 2010-2019
in reana_bt in March and September. We see that ensemble spread is reduced after 2010,
though the patterns in the uncertainty remain similar. The places with the most uncertainty in
the model are the Beaufort Gyre, the region of thick ice packed against Greenland and the
Canadian Archipelago, and also grid cells next to coasts. There is a ring of higher ensemble
spread which surrounds a region of low ensemble spread in the thick ice pack in the Central
Arctic. There is a lot of uncertainty in the CPOM-CICE model regarding the existence
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Fig. 7.10 1981-2019 mean ensemble spread in sea ice concentration in March, June, Septem-
ber and December in reana_bt and reana_nt.
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Fig. 7.11 1981-2019 monthly mean ensemble spread in sea ice extent in March, June,
September and December in reana_bt and reana_nt.

and size of this region of very thick ice, and we actually see in reana_bt that this thick ice
mostly disappears (see section 6.7). High uncertainties in grid cells adjacent to coastlines
are unsurprising given the uncertainties of sea ice and ocean dynamics in these regions. In
September the ensemble spread in the middle of the ice pack (Central Arctic) is higher than
in March. The melting and build-up of ice in the Central Arctic is uncertain, and we have
already seen that the early period of the freeze-up season and melting season are not modelled
well in CPOM-CICE, which will affect the regions where ice is present year-round or almost
year-round the most. The increased uncertainty in the Central Arctic also means that the
assimilation of ice thickness products will be more effective in the Central Arctic, which is
important for improving the model in this region. As with the concentration, the ensemble
spread in the ice thickness looks like it is reasonable and will mean that the assimilation of
the thickness observations will be influential in the regions we want and expect.

In terms of the longer term changes in the ensemble spread over the reanalysis period and
the effects on the volume, we can look at the monthly mean volume spread between 1981
and 2020 for the same four months, which is shown in figure 7.13. We actually see, as
we did for the extent, that the lack of concentration observations in December 1987 had a
significant impact on the volume spread in December, the spread in this month (the spread in
December 1987 is over three times higher than in December 1986 or 1988 and the ensemble
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Fig. 7.12 Mean ensemble spread in reana_bt in thickness (m) for the 2000s for March (a) and
September (b) and in the 2010s for March (c) and September (d).
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Fig. 7.13 1981-2019 monthly mean ensemble spread in sea ice volume in March, June,
September and December in reana_bt and reana_nt.

spread in December is the lowest from all the months we look at, for all years except 1987,
when it is the highest). In contrast with the sea ice extent ensemble spread, the pattern is
reversed, with June and September having the highest volume ensemble spread, and De-
cember and March ensemble spread now lower. The ensemble spread is highest in June,
which is further evidence that the modelling of the melting season in June is not particularly
great. Surprisingly the sea ice volume ensemble spread is only reduced relatively slightly
in December and March with the assimilation of CS2 ice thickness, and conversely the
volume ensemble spread is reduced by relatively a lot in June and September, when sea ice
thickness is not assimilated. The primary source of ensemble spread in December and March
will probably be in the concentration, not in the thickness, so a reduction in the ensemble
spread of the thickness does not affect the ensemble spread in the volume much. In June and
September however there is a lot more ensemble spread in the thickness, and we saw that the
ensemble spread in sea ice concentration (and extent) was much smaller. This means that the
uncertainty in thickness plays the important role in determining the ensemble spread of the
volume in June and September.

Overall, it does not look like either reanalysis is suffering from continual reduction in ensem-
ble spread for any of the assimilated variables during the reanalysis period, though there are
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expected reductions in sea ice thickness and volume ensemble spread when the assimilation
of sea ice thickness begins. We do not see any signs of ensemble collapse in the ensemble
spread, nor did we see anything in any other results from the reanalysis. The ensemble spread
in both reanalyses looks to be relatively healthy and stable throughout the reanalysis period.
There is higher spread in sea ice concentration and extent in reana_nt than reana_bt, but there
is lower spread in sea ice thickness and volume.

7.5 Assimilation of Landy Cryosat-2 sea ice thickness data

Within the last year, new research in machine learning using CS2 observations has led to
the development of a new sea ice thickness observational record (Landy et al., 2022). These
observations use the same raw data as the CPOM CS2 observations used above, but are
processed in a very different way (see section 2.3.3). The Landy sea ice thickness product has
two important features that may make it more useful for assimilation than the CS2 product.
Firstly it provides sea ice thickness data between May and August, which the CPOM CS2
data does not and we have seen that the assimilation of sea ice concentration observations
alone in this period can negatively affect the sea ice estimates in this period (see sections 5.3
and 6.3). Secondly the Landy CS2 thickness data also provide a quantified error for each
observation, which the CPOM CS2 data does not. This is vital for achieving a better analysis
state from the LETKF. For this reason we run a new experiment which assimilates the Landy
monthly mean sea ice thickness product between 2010 and 2020 instead of the CPOM CS2
mean thickness and sub-grid scale thickness distribution. This experiment (reana_landy -
see table 6.1) is restarted from the original reanalysis at the beginning of 2010, and uses the
same forgetting factor, localisation radius and ensemble size as our previous reanalyses. The
observation errors provided with the Landy thickness data are used in the observation error
covariance matrix. Bootstrap sea ice concentration observations are assimilated. Sub-grid
scale thickness distribution is not assimilated in this experiment because this is processed
using the CPOM CS2 data.

The sea ice thicknesses in the Landy product are generally thinner than those in the CPOM
product (compare (Landy et al., 2022) with(Laxon et al., 2013)), and so we find that the
reana_landy experiment estimates decreased sea ice volume in comparison to reana_bt,
as seen in figure 7.14, which shows the daily sea ice volume between 2010 and 2015 for
CPOM-CICE, reana_bt, reana_nt and reana_landy. The sea ice volume minima in September
is decreased and close to, or below the sea ice volume minima estimated in CPOM-CICE. It
is noticeable that the increments when the Landy CS2 product is assimilated are larger than
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Fig. 7.14 Daily sea ice volume between 2010 and 2015 in CPOM-CICE, reana_bt, reana_nt
and reana_landy (ensemble means).

those when the CPOM CS2 product is, which happens because of the greater differences
between the CPOM-CICE estimates and Landy CS2 sea ice thickness observations in com-
parison to those from the CPOM CS2 product. There are large differences in sea ice volume
in winter in particular, as high as 5×1012m3 during the winter peak between reana_landy
and CPOM-CICE, with reana_bt lying in the middle of the two. In comparison with reana_nt,
reana_landy has higher estimates of ice volume in summer, but in winter the two are more
comparable, especially between 2012 and 2015.

The monthly mean sea ice volumes from reana_landy are compared to CPOM-CICE, re-
ana_bt, reana_nt and PIOMAS for March, June, September and December in figure 7.15. In
March reana_landy estimates of sea ice volume are similar to those from PIOMAS and re-
ana_nt. In June reana_landy estimates are mainly lower than the other models except reana_nt.
The ice melt in late May and June seems to be very strong in reana_nt. In September however
PIOMAS sea ice volumes are the lowest alongside reana_nt. This must mean that melting
in July and August is much more intense in PIOMAS than in reana_landy and reana_bt, so
the thicker ice in PIOMAS is thinning to a much greater degree than in reana_landy and the
other models. In December PIOMAS, reana_nt and reana_landy are comparable, as in March.

Although we now have an idea about the differences in total sea ice volume in a num-
ber of different models and observations, we also need to look at maps of the thickness to see
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how it is distributed within the observations and the models. We show the March and October
2012 mean ice thickness from CPOM and Landy CS2 observations, PIOMAS, CPOM-CICE,
reana_bt and reana_landy in figure 7.16. In March, there is good agreement on a region of
thick ice between 2.4 m and 3.6 m off the north of Greenland and the Canadian Archipelago
in CPOM CS2 observations, PIOMAS, reana_bt and reana_landy, while in the Landy CS2
observations this region is shifted slightly northward around the north pole. CPOM-CICE and
Landy CS2 ice thickness agree well in both March and October except at the ice edges and
the ice closest to the Canadian Archipelago, which is thinner in the Landy CS2 observations.
The main region of disagreement in March sea ice thickness is in the Kara and Barents Seas.
In October the observations have the thickest ice occurring away from North Greenland and
the Canadian Archipelago and close to the North Pole, with very little ice above 1.4 m thick
in the Landy CS2 observations. PIOMAS, reana_bt and reana_landy ice is thicker closer to
North Greenland. The CPOM-CICE model differs significantly from the other data sets in
how the sea ice is distributed across the Arctic, suggesting a need for improved or new sea
ice model physics.

7.6 Shortcomings of the current reanalysis

We have striven to produce the best possible reanalyses in this study, but there are a number
of issues we have identified in our data assimilation system that could be improved. As
discussed in 2.2, there are now a range of different datasets available of sea ice concentration,
using retrieval algorithms that make use of different brightness temperatures, frequencies
and polarisations, or a combination of these. Sea ice concentration data sets can produce
substantially different ice concentrations within the ice pack depending on the features of the
retrievals, though they all have similar sea ice extents. We have found that assimilating two
different sea ice concentration products have produced two remarkably different reanalyses.
This is particularly true during the period when only sea ice concentration is assimilated:
reana_bt has much higher ice thickness and volume estimates than reana_nt, CPOM-CICE
and PIOMAS. When sea ice thickness and sea ice thickness distribution are assimilated, this
difference is reduced substantially, primarily because the thickness and volume estimates in
reana_bt are reduced. Assimilating Bootstrap sea ice concentration alone leads to particularly
poor estimates of thickness and volume, though for long periods of our reanalyses it is
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Fig. 7.15 Monthly mean sea ice volume in March, June, September and December between
2010 and 2017 in CPOM-CICE, reana_bt, reana_landy (ensemble means) and PIOMAS.
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Fig. 7.16 Monthly mean sea ice thickness in March and October 2012 in the CPOM Cryosat-
2 observations, Landy Cryosat-2 observations, PIOMAS, CPOM-CICE, reana_bt and re-
ana_landy.
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impossible to evaluate thickness or volume estimates because of the lack of observational
products of these quantities. There may also be unrealistic estimates of thickness and volume
in reana_nt during the 1981-2010 period which are difficult to identify.

7.6.1 Observation error covariances

Choosing the observation errors for sea ice concentration is difficult due to the uncertainties in
the observation errors themselves. There are no observation errors provided with the datasets,
with estimates on the uncertainties being between 5% and 30% depending on a number of
factors (see section 2.2), and a lack of verification data. This means that the data assimilation
is not well placed to optimally ’balance’ the sea ice state between model and observation.
A similar problem occurs regarding the CPOM CS2 observations of mean ice thickness
observations, as observation errors are again not provided with the mean thickness data. CS2
mean thickness errors are difficult to quantify because of the long, complex processing chain
that converts CS2 altimetry measurements into monthly mean gridded measurements of sea
ice thickness. There is potential for assimilation of sea ice freeboard instead of thickness,
and this would decrease the uncertainties in the observation products substantially. However,
the model snow depth would then need to be used in the observation operator, so we are
only moving away from the uncertainties in the observation to add additional uncertainty
in the model (see section 2.3 for further details). As our sub-grid scale sea ice thickness
distribution observations are derived from the same source as the mean thickness obser-
vations, they also have a highly uncertain observation error covariance matrix. There are
even more uncertainties involved with quantifying the mean thickness errors than for the
sea ice concentration. For the assimilation of sub-grid scale sea ice thickness distribution all
observations within a category are assumed to have the same error, which means that some
observations will be incorrectly weighted. This could also mean that within a grid cell there
is imperfect weighting on the errors in the ice concentration (or ice thickness) across the
thickness categories, which means that the analysis update is not ideal. Therefore further
research into quantifying the errors in sea ice observation products would be useful for sea
ice reanalysis studies so that the observation error covariance matrices are better known.

From October 2010 onwards, we assimilate three different types of observation (concentra-
tion, thickness and thickness distribution), these three types of observation are all correlated
with one another, but we do not account for these correlations in the observation error co-
variance matrix (our R matrix is diagonal). The observation error correlations are important
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because without them, we lose some of the information. In general data assimilation inclusion
of error correlations has been shown to improve the accuracy of the observed variables in the
analysis (Seaman, 1977) and to improved analyses (Miyoshi et al., 2013), and that they are
also likely to be important for satellite observations (Stewart et al., 2013). However these
error correlations are difficult to quantify, particularly for sea ice observations, which as we
have discussed already contain a number of uncertainties. The observation error correlations
are ignored in this study for simplicity, and outside the scope of this work.

7.6.2 Climatological Forcing

In this study we use the CICE default mixed layer model to prescribe the ocean temperature,
salinity and currents using a climatology (Ferry et al., 2011). Therefore we are using an ocean
that remains unchanged throughout the reanalysis period - with no trends in these variables.
This is not realistic as there will be year-on-year changes and there are trends occurring over
the whole period. For example the upper Arctic Ocean has warmed in the 21st century (Li
et al., 2022), and its salinity has also decreased (Li and Fedorov, 2021) as the sea ice cover
has retreated. There will also be inter-annual variability in the ocean which could not be
represented in the climatology. For example in the circulation, which could affect regional
distribution of the ice, e.g. in the Beaufort Gyre. This could also affect the export of sea ice
in the Fram Strait, a region where we saw large differences both reanalyses and CPOM-CICE
caused by the assimilation. Whether we use an ocean climatology or an ocean reanalysis to
force the model, we are still lacking some of the ocean-ice feedback processes which would
be present in a coupled ice-ocean model. However using a stand-alone forced sea ice model
does mean it is easier to understand changes in the internal ice model processes caused by
the data assimilation. Future work could involve employing this sea ice data assimilation
system to an ocean model.

7.6.3 Spin-up of the assimilation

In our reanalyses we have run the model for a spin-up period of four years. The spin-up
time is important for having a reasonable estimate of the sea ice state for the initialisation
of the reanalyses, and for generating a sufficient ensemble spread so that the assimilation
is effective. With regards to the ensemble spread, this choice of spin-up period appears to
have been more than adequate, as we see a lot of movement by the ensemble mean towards
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the observations in 1981 when sea ice concentration is first assimilated (see figures 6.3, 6.8
and 7.8). In terms of the spin-up for the initial estimate of the sea ice state to be reasonable,
four years could be on the shorter side for the sea ice volume, because the ice in the thickest
regions of the sea ice may not be adequately thick yet (although we believe that the model
over-estimates ice thickness in this region anyway). It is more than adequate for estimates
of sea ice concentration and extent, and for most other sea ice diagnostic variables, because
there is very little memory in the sea ice cover inter-annually.

7.6.4 Special problems with CS2 thickness and CS2 thickness distribu-
tion data

In this study we assimilate observations from CS2 as monthly means, which appears to be
necessary to reduce the uncertainties in these observations. We have chosen to assimilate
the CS2 observations in the middle of the month, because the instantaneous model forecast
at this time is expected to be the closest approximation to the monthly mean. In winter this
is a reasonable approximation but during summer it is likely there are months when this is
not the case, as during the peak melting season the ice cover is rapidly evolving in response
to atmospheric and oceanic forcing. This may also be a problem in late Autumn and early
winter when a lot of thin ice begins to form. However because we do not use CS2 thickness
measurements below 1 m this is less of an issue. We assimilate CS2 observations between
October and April only, so our choice to assimilate in the middle of the month should not be
a big concern.

As the CS2 observations are assimilated monthly for only seven months of the year we
also face an issue of large analysis increments occurring. There are two situations in the data
assimilation that cause noticeable increments in parts of the sea ice state at certain points.
The first occurs in October 2010, during the first assimilation time step of sea ice thickness,
this causes noticeable increments in thickness, volume and a few other variables. For this
reason it is important to avoid using this reanalysis to look at volume and thickness trends
through 2010, as the thickness and volume estimates change significantly because of the
impact of the sea ice thickness assimilation. Therefore we believe sea ice thickness and
volume trends between 1981 and 2010, and trends from 2011 and later should be analysed
separately. The second situation occurs every October after this year, due to the gap in
summer sea ice thickness observations from CS2, these increments are noticeable but much
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smaller than the one which occurs in the first situation, as this increment occurs every year
on the same date it is also easier to account for when analysing trends in thickness or volume
that occur after 2010.

Even after 2010, between May and September only sea ice concentration is assimilated
because CPOM CS2 sea ice thickness does not have observational records during this time.
This means that the sea ice concentration assimilation could possibly bring about the same
effects it has before 2010 between May and September, whereby the thickness of the ice pack
appears to gradually become too thick. However by looking at the beginning of the reanalysis
in 1981, we see that this effect appears to occur during the freeze-up period, where the ice
that forms during this time seems to be thicker than in the CPOM-CICE model. Although
both reana_nt and reana_bt experiments only assimilated concentration between May and
September the changes made to the model between October and April were significant such
that the sea ice volume in these experiments did not converge. For these reasons we do not
believe the lack of summer ice thickness observations from CPOM CS2 records to be an issue
impacting the volume after 2010, though it does cause slightly larger increments to occur
in some years in October during this period. It may cause slightly higher ice thicknesses in
the Arctic than would appear if we had observations in this time period to assimilate, but
this affect is likely negligible when compared with the substantial positive impacts from
assimilating sea ice thickness in the first place.

7.6.5 Difficulties with the ensemble-inferred forecast error covariances

We have found that when the sea ice concentration assimilation causes positive increments to
sea ice concentration, it tends to also thicken existing sea ice and create anomalously thick
new ice in grid cells that were previously fully open. Although there should be ice in these
grid cells according to the observations, the ice added is possibly too thick compared with
reality. This effect appears to be particularly bad in July and August during our reanalyses.
This problem is particularly apparent with reana_bt but lesser so with reana_nt. There may
also be other unwanted effects caused by the correlations which are harder to identify. One
way to prevent these problems might be to allow the ice concentration assimilation to add
ice in the thinnest ice thickness category, though this would be impossible to implement
if other observations are assimilated at the same time step as ice concentration. We could
have implemented this strategy before 2010 and then not allow it afterwards, but this would
cause further issues with the consistency of the reanalysis, in addition to those we have
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highlighted above. The increased ice volumes in reana_bt have not been seen in other sea ice
data assimilation studies that we know of (see section 3.5).

We have chosen to use a localisation radius of 100 km in our reanalysis, which is used
at all locations on the model grid. This is not necessarily the ideal choice for localisation
radius, which ideally needs to be tuned for each system depending on the the model and
observation density, observation uncertainty and the ensemble size (Hamill et al., 2001).
The localisation radius should correspond to the maximum distance at which meaningful
correlations have a higher signal than those from spurious correlations (Ying et al., 2018).
This means that finding the ideal localisation radius for each observation will require a
significant amount of time and computing investment, which is outside the scope of this
study. Depending on the ice thickness and concentration, the dominant factor in determining
ice dynamics - which is important for determining the localisation radius - can be different.
Close to the ice edge, in the MIZ, sea ice drift as a result of ice dynamics is key, whereas in
the regions of thickest ice, the convergence of the ice by ridging is important. The correlation
length scales will also change as the sea ice cover evolves throughout the seasons, a grid cell
that is at the ice edge at the end of summer will be within the ice pack in winter, and this
can change on an inter-annual basis. We chose a small localisation radius so that we avoid
cases where the spurious correlations will be higher than those from true correlations almost
anywhere, at anytime within the model. Other studies of sea ice-ocean data assimilation
systems have used larger localisation radii, for example TOPAZ4 uses 300 km arctic-wide
(Sakov et al., 2012), as does Fritzner et al. (2019). A study by Wang et al. (2017) found
improvements by using a localisation radius dependent on latitude in a coupled ocean-sea ice
model (assimilating both ocean and sea ice observations), but there has been little research in
localisation radius choices for data assimilation in stand-alone sea ice models. By using a
short localisation radius, it might mean that in some cases, information from some observa-
tions are lost, but any effects from spurious correlations should be almost entirely avoided
for any region and season.

7.6.6 Evaluation of the reanalayses

In an attempt to evaluate our reanalysis we randomly chose around 25% of CS2 data that is
not assimilated but is instead used to evaluate the ice thickness in the reanalyses. We do this
because there is limited data available for which we can evaluate the system, but it is not ideal
because we are decreasing sources of information for our reanalyses to use to improve our
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estimates of the sea ice state. The primary issue with this is that the randomly chosen data for
evaluation and the rest of the data which is assimilated will be correlated with one another in
some way. As long as the assimilation system is functioning correctly then you would expect
that the assimilation will decrease the RMSE in comparison to the non-assimilated data.

We also use Operation IceBridge data for evaluation, though it has severe restrictions. OIB
data is limited mostly to March, with a few days of data also available in April each year.
OIB measurements are made at a much smaller footprint than the model, which must be
interpolated onto the CPOM-CICE model grid. The measurements are made using a lidar
instrument which is flown on board an aircraft, with only one flight taking place each day,
meaning that the data is also very sparse. There are also substantial differences between the
CS2 observations that we assimilate and the OIB measurements, because there are signif-
icant uncertainties associated with each method of measuring ice thickness (Laxon et al.,
2013). We use OIB data from 2012-2015 to assess the ice thickness estimates in both our
reanalysis and the control CPOM-CICE model, and we find that the reduction in RMSE in
the reanalyses is small but not non-negligible, with reana_nt seeing a greater reduction in
RMSE than reana_bt.

7.7 Identification of key areas where model and observa-
tions disagree

As we stated in chapter 1, reanalyses can be a very useful tool for learning about model short-
comings. We have identified a substantial difference in the distribution of the ice thickness in
the CPOM-CICE model in comparison with our reanalyses and other data sets. Although the
Arctic sea ice volumes and its trends are not too dissimilar between CPOM-CICE and either
reanalyses, the thickness distribution in the CPOM-CICE model is much more mounded, and
tails off sharply initially from a central peak, and also covers a wider range of thicknesses
(especially higher thicknesses - see figure 6.14). The sea ice cover is distributed more evenly
around a smaller range of thicknesses in both reanalyses than in CPOM-CICE, especially
in the early and middle periods of the freeze-up season, and in general there are too many
grid cells with very thick ice. There are smaller differences between the ice cover in different
regions between CPOM-CICE and our reanalyses, with CPOM-CICE underestimating the
ice thickness in the Central Arctic and overestimating it in the Canadian Archipelago and
north of Greenland. For this reason we will study and try to understand why these differences
occur in each region in this section, focusing on the places where the sea ice cover is thickest
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and the differences between CPOM-CICE and the reanalyses are largest, and suggest ways
in which the modelling in these regions could be improved.

In CPOM-CICE most of the grid cells with very thick ice are in a region packed up against
the Canadian Archipelago and north of Greenland. As we look at the ice cover spanning
out from this region it becomes thin very quickly in summer, and so at the end of summer
it has much lower ice extent than the reanalyses. This very thick ice (thicker than 4 m)
is not seen in our reanalyses or observations (see section 6.7) in the past decade, and the
model has not successfully captured the loss of this thick multi-year ice in the Canadian
Archipelago (Howell and Brady, 2019). This seems to occur because of a lack of melting
on the thickest ice in this region during the melting season, and the thick ice appears to be
too resilient to melting in CPOM-CICE. It is difficult to discern why this is, because of the
lack of sea ice thickness observations during the melting season. Basal melt was increased in
the reanalysis in comparison to CPOM-CICE in both August and September, however top
melt was increased in reana_bt but decreased in reana_nt, so the solutions offered by the
reanalyses are not consistent. These changes to the volume fluxes could also be reactions by
the model to the assimilation of the different sea ice concentration products. The estimation
of top melt on the surface of the sea ice may be underestimated in CPOM-CICE, which
would result in reduced melt pond coverage that cause enhanced melting. There has been
research on improving the numerical models of melt ponds (Zhang, Schweiger, Webster,
Light, Steele, Ashjian, Campbell and Spitz, 2018) and on developing observational data
sets of melt ponds in the last decade with the use of imagery from the Moderate Resolution
Imaging Spectroradiometer (MODIS) and machine learning (Lee et al., 2020) (Ding et al.,
2020), since it was discovered that melt ponds are important in predicting summer sea ice
loss (Schröder et al., 2014). The assimilation of melt pond observations may be important
for improving estimates of sea ice cover during summer, and particularly for multi-year
ice. The additional melt in thick ice regions may be accounted for by improved melt pond
modelling or sea ice physics that are unknown or unaccounted for in the model. With the
further development of melt pond observations it may be possible to assimilate melt pond
fraction (area of a grid cell covered by melt ponds).

The Central Arctic ice cover, on the other hand, is generally much too thin throughout
the 2010s in CPOM-CICE in comparison with observations. 2012 is a particular issue be-
cause much of the Central Arctic is ice free in CPOM-CICE, but this is in strong disagreement
with observations and the reanalyses, where ice is still thicker than 2 m in many places. This
problem could be related with the ice which is too thick close to the Canadian Archipelago,
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with sea ice in the model converging too much toward the Canadian Archipelago away from
the Central Arctic. The strong congelation ice growth that we saw in winter in section 7.2
could also be a cause, as the ice volume gain due to congelation is decreased a lot in both
reanalyses in October and both reana_bt and reana_nt are closer to the evaluation data set
from CS2 and independent observations from OIB.

In the freeze-up season, thin ice grows much quicker in the model than in observations,
and ice extent and volume are overestimated throughout most of the year for this reason. The
MIZ is generally larger in CPOM-CICE than in both reanalyses and observations, though
reana_nt has an MIZ more comparable to CPOM-CICE in September, but not in March (see
figure 6.6). It seems that this is more likely to be caused by less-than-ideal atmospheric
and ocean forcing, especially as the sea ice at the ice edge is particularly sensitive to the
ocean forcing. The modelled sea ice cover (and in particular volume) is more sensitive to
changes in atmospheric forcing data sets than to changes in, for example, the melt pond
parametrisations (Sterlin et al., 2021). There are large differences in reanalyses over the
Arctic Ocean in many fields important for calculating air-sea and air-ice fluxes, especially
for wind speeds and radiation, though there is more agreement in humidity and temperature.
A comparison with reference observations shows that the uncertainties for all these fields
however are quite similar, with no reanalysis clearly better (Chaudhuri et al., 2014). In this
study we use a climatology to drive the ocean, but the sea ice concentration estimates at the
ice edge and the total ice extent may be strongly improved by using a reanalysis. Recent
improvements in wave modelling including the break up of ice from waves and the effects on
lateral melt and the ice drift (Boutin et al., 2020) and floe size distribution (Bateson et al.,
2020) should bring benefits to sea ice modelling at the ice edge.

In CPOM-CICE there is an issue with both overestimated freeze-up and melting of the
sea ice. This means that the CPOM-CICE model estimates a sea ice cover which is much
more seasonally varied than shown by observations of concentration or thickness. Though the
ice growth is intense in CPOM-CICE through a single winter, the sea ice in a grid cell which
was ice-free at the beginning of winter and then freezes over in winter is very unlikely to
remain through the intense melting in summer. In particular we have identified some regions
in the Arctic where the CPOM-CICE model and our reanalyses differ significantly. We have
already talked about the differences in the thickest ice in the Canadian Archipelago and the
Central Arctic, but there are also large differences in the Beaufort Sea, the Fram Strait and
the Barents Sea. We also show that there are fundamental differences in the seasonal cycle
seen in model and observations. Both ice thickness and ice concentration observations show
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to some extent that both the melting and freezing begin earlier in the year, and because of this
the assimilation increments are relatively very large in May and September in comparison
with other months. Further work is needed to look at whether the annual cycle is wrong in
the model (and why this is), or whether there are issues within the observational methods
(uncertainties in measurements due to sea ice cover changes in the melt season) that cause
this inconsistent annual cycle.

The sea ice estimates, and in particular the interseasonal changes of the sea ice in the
Beaufort Sea differed substantially between the CPOM-CICE model and our reanalyses. This
is probably the one region in which the ice cover went from multi-year ice to first-year ice
in both reanalyses in the last decade, in particular, reana_nt saw strong melt in the Beaufort
Sea. The Beaufort Gyre, one of the major ocean currents in the Arctic, means ice often
becomes trapped in this region and this would lead to the formation of thick multi-year ice.
In particular there is a loss of ice close to the Alaskan coast in summer, and the ice here is
thinner year-round. Case studies have shown that an ice-free Beaufort Sea may be a result
of high sea ice export and divergence (Babb et al., 2019), and both reanalyses do show an
increased loss of ice volume due to dynamical processes. The negative trend of sea ice area
in the Beaufort Sea is one of the highest of any regions, but this region is more stable in the
CPOM-CICE model because the model is not able to melt the thick ice that builds up in
this region during the 1980s. In both reanalyses the ice is also thicker than CPOM-CICE in
winter, sometimes above 2 m thick in some grid cells, so although overall the CPOM-CICE
model is more seasonal, in the Beaufort Sea it is not able to capture the large thickness
changes in the sea ice cover which occur intra-annually.

The Barents and Kara Seas are probably the regions where sea ice models and observations
differ the most, and for this reason we have seen that large differences between CPOM-CICE,
reana_bt and reana_nt occur here where the largest differences have occurred within the
last decade. The Barents Sea is of particular interest because observations of sea surface
temperature (SST) suggest it has undergone rapid warming since 2000 (Kohnemann et al.,
2017). This has helped to restrict sea ice formation in the Barents Sea and led to a lot of
changes in water formation in the Barents Sea (commonly referred to as "Atlantification")
(Barton et al., 2018). The Barents Sea is ice free in summer, but in winter is one of a number
of seas at least partially covered with seasonal ice. In CPOM-CICE the ice in the Barents Sea
is thin, with a mean thickness between 0 and 0.6 m in almost all grid cells. In the Kara Sea
ice is slightly thicker but not above 1.4 m thick. In contrast the ice is thicker in the reanalyses
(especially reana_bt) even though the extent of the sea ice is lower. In the Kara Sea there are
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a lot more grid cells with a mean thickness between 1.4 m and 2.4 m in the reanalyses, and
the Barents Sea also contains thicker ice than in CPOM-CICE. The CPOM CS2 observations
are below 1 m in most of the Barents Sea, but the Kara Sea is covered with ice at least 1.5 m
thick and in some cases 2.5 m thick. The Landy CS2 observations conversely show the Kara
Sea and Barents Sea covered in ice thinner than 1 m. In PIOMAS the ice in the Barents and
Kara is thin, interestingly quite similar to the CPOM-CICE estimates. The large differences
in these data sets show there is a need for further observations and modelling improvements
in the Barents Sea, especially when two different observational data sets produced from the
same raw CS2 data give very different estimates of the sea ice in this region. Both reana_bt
and reana_nt have thicker ice in the Kara Sea, but then the Barents Sea ice stays relatively
thin. The reanalyses seem to show that the intense warming in the Barents Sea is thinning
the ice in the Barents Sea but is not effecting the ice cover in the neighbouring Kara Sea so
much, which is not captured in the models and is only reproduced by the assimilation of ice
thickness.

In the Fram Strait there is also a large uncertainty in the ensemble spread in the reanal-
yses, and models and observations differ substantially. For this reason the assimilation is
very effective in this region, and the reanalyses’ estimates of sea ice in the Fram Strait are
very different from CPOM-CICE. The thickness of the sea ice close to Greenland in the
Fram Strait is increased, but there is less ice further away from the coast. The ice in this
region is essentially export ice from the Transpolar drift stream and it is shifted in both
reanalyses towards the eastern coast of Greenland. There is an increase in the ice thickness
in this region in late summer in our reanalyses, but a decrease during the rest of the year. An
analysis of long term trends in sea ice export in the Fram Strait by Smedsrud et al. (2017)
showed that the September-February export was around 60% of the total export, with the
remaining 40% between March-August, with no long term trends. Smedsrud et al. (2017)
also showed that the Fram Strait export has increased during the last few decades, and that
the export is responsible for 18% of the variance in the sea ice extent in September. It
is important then that the Fram Strait is modelled well in CPOM-CICE for summer sea
ice estimates, but in this area it appears to be poor. In terms of sea ice volume, Spreen
et al. (2020) analysed volume export between 1992 and 2014 using observations of sea ice
concentration, drift and thickness and found a decreasing trend in ice volume export through
this time, however there were signals for years of very low sea ice volume like 2007 and
2012 where the export has contributed to overall ice volume loss. We saw that there is an
increase in sea ice volume loss due to dynamics when analysing the volume fluxes in the
2010s (see section 7.2). It is possible that the estimates of sea ice in the Fram Strait could
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already be improved by improving modelling of ice in the MIZ as mentioned previously
in this section. If the reason for the displacement of the export region is because of ocean
forcing, then it could be improved by coupling the model to an ocean model, or using more
scientifically robust ocean forcing.

7.8 Summary

In this chapter we have investigated the reanalyses in greater detail. One of the primary
reasons for producing a reanalysis is to study the changes to the processes in the model that
occur as a result of the assimilation of observations which bring the model closer in line
with the observations. We examined the changes in the volume budget and the differences in
the fluxes between the reanalyses and CPOM-CICE. The detrimental impacts on the sea ice
volume by assimilating sea ice concentration alone mean that there is a large discontinuity
in October 2010, and so we look at the impacts only after 2010. We found that the most
interesting differences occur in the early melting season, where there are changes to the top
and basal melt which increase the ice melt in the reanalyses, showing that either the model is
creating too much ice in winter or that the model misrepresents the melt in early summer,
most likely a combination of both. This aligns with what was found in chapter 6, where the
seasonality of the thinner thermodynamically driven ice was much different in the reanalyses
than in the control. In September and October the ice formation is reduced in both reanalyses,
and this prevents ice from becoming too thick in the Canadian Archipelago, and the excessive
growth of thinner ice in CPOM-CICE which occurs in the early growth season.

The climatological trends in the reanalyses were investigated in much further detail in
this chapter, and in particular the volume. Sea ice volume is closely tied to thickness and
concentration, two key indicators of climate change in the Arctic Ocean, but there is little
knowledge of its true state due to limited knowledge, primarily concerning the ice thickness,
though ice concentration at the ice edge is also highly uncertain. In reana_nt we found
decreasing trends in volume which were remarkably similar to those from PIOMAS in
winter, spring and autumn. In summer the decreasing trend in reana_nt was much lower
than PIOMAS, though there is still reasonable agreement, within the margin of error. All
reanalyses agree with PIOMAS on the decreasing volume of Arctic sea ice over the last 40
years. In reana_bt the trends are much larger than seen in the other reanalyses, the control and
PIOMAS, likely skewed by the large increments in thickness and volume that occur when
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ice thickness began to be assimilated in 2010. We compared both our reanalyses in depth
with PIOMAS, which has much lower sea ice volumes than reana_bt, but is comparable to
reana_nt in many months. We speculated that the differences between PIOMAS and reana_bt
are due to the different sea ice concentration observations chosen for assimilation and the
different data assimilation scheme used. The reana_nt study was able to produce sea ice
volumes very similar to those in PIOMAS in winter, and much lower than those in reana_bt.
The assimilation of Bootstrap sea ice concentration alone clearly causes excessively high
estimates of sea ice thickness in the Canadian Archipelago, but it is difficult to verify any sea
ice volume reanalysis in the 1980s and 1990s because of a lack of thickness observations for
evaluation. This means then that the sea ice volume in any reanalysis is strongly dependent
upon which product is chosen to assimilate, and though assimilating NASA Team sea ice
concentration leads to slightly better sea ice thickness estimates in the last decade than
assimilating Bootstrap concentration, there could be unknown effects from data assimilation
which could lead to sea ice state estimates substantially different from the truth in the 1980s
and 1990s.

In this chapter we also looked at the assimilation of the very recently introduced Landy CS2
thickness observations, which use machine learning to produce year-round observations of
sea ice thickness from CPOM CS2 data. The assimilation of this dataset provides the best
results in comparison to independent observations by a substantial margin in comparison to
the CPOM CS2 thickness observations. The reana_landy experiment assimilates Bootstrap
observations but provides a closer match to PIOMAS than reana_bt, the year-round assimila-
tion of sea ice thickness seems to correct for the high thickness bias caused by assimilation
of the Bootstrap sea ice concentration dataset. This is the first time this observational product
has been assimilated for use in a reanalysis product, and it shows highly promising results
for use in sea ice reanalysis study, and should greatly improve knowledge of summer Arctic
sea ice thickness with its use in combination with state-of-the-art sea ice models and data
assimilation system. This is important because our knowledge of the summer sea ice state is
much less confident than in winter, due to the lack of thickness observations and because of
the increased uncertainty in the ice concentration observations due to melt pond interference.





Chapter 8

Concluding Remarks

The primary objective of this thesis was to produce and analyse a new Arctic sea ice reanalysis
over the satellite era. In addition to assimilating ice concentration observations from Bootstrap
or NASA Team and seasonally available mean sea ice thickness observations from Cryosat-2
(CPOM CS2), we also experimented with assimilating other recently developed observations
from the CS2 satellite. These included assimilation of sub-grid scale sea ice thickness
distribution and year-round observations of sea ice thickness (Landy CS2). The impacts
and potential benefits of assimilating these new observational records in a new sea ice data
assimilation system were investigated in chapter 5. In chapters 6 and 7 we identified a
number of differences between the CPOM-CICE model and three reanalyses, investigated the
potential causes of these differences and identified possible solutions for the sea ice modelling.
In this chapter we lay out the conclusions of this thesis, and comment on implications in
both sea ice data assimilation and wider questions in sea ice study, as well as future research
potential.

8.1 An intercomparison of short-term sea ice data assimila-
tion studies

We have developed a new sea ice data assimilation system CICE-PDAF, using the method of
LETKF assimilation, in order to produce a new sea ice reanalysis and to identify and improve
our current sea ice model CPOM-CICE. In chapter 2 we discussed presently available sea
ice observation datasets including sea ice concentration, sea ice thickness, sea ice thickness
distribution and recent advancements in making observations of snow depth and melt ponds.
This includes a discussion of the errors in these products and the error statistics we use when
assimilating any of these products. The sea ice model which is used in this study, CPOM-
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CICE, is detailed in chapter 3. Data assimilation and the LETKF assimilation system used is
also introduced in chapter 3, where we also discuss currently available sea ice reanalyses,
including PIOMAS.

In chapter 4 we discussed the development of the coupled CICE-PDAF system and post-
analysis step processing which is necessary under certain conditions due to the changes in
the model sea ice state made by the assimilation. The method of generating ensemble spread
is introduced, which follows from Brusdal et al. (2003). This method works by perturbing
NCEP-2 atmospheric forcing fields using an EOF method, and then amplifying them. Using
this data assimilation system we conducted experiments assimilating NASA Team Bootstrap
daily sea ice concentration alongside CS2 products of monthly mean sea ice thickness in
order to test and refine assimilation parameters for setting up the reanalysis studies. We used
a localisation radius of 100 km, a forgetting factor of 0.995 and an ensemble size of 100.

In chapter 5 we performed short-term experiments comparing a control run (no assimi-
lation) of the CICE-PDAF model alongside assimilation runs and found that the assimilation
performed well for sea ice concentration, sea ice thickness and sub-grid scale sea ice thick-
ness distribution. The best performing experiment in comparison to independent observations
was assim_conc_hi_4hd, which assimilated sea ice concentration, mean sea ice thickness
and the sea ice thickness distribution in the thinnest four categories of sea ice. For the
first time we have assimilated a sub-grid scale sea ice thickness distribution, which caused
significant changes in the ice thickness distribution across the ice cover in comparison to
other reanalyses. By assimilating thickness distribution alongside mean thickness, there were
important benefits to the thickness distribution and sea ice mass budget estimates in our sea
ice model, primarily in the thickest category of sea ice, which saw a reduction in RMSE of
1.5 m that persisted throughout the experimental time period. This is the first time that a
sub-grid scale sea ice thickness distribution product has been assimilated, and it shows that
there are potentially benefits to assimilating it, though these are difficult to quantify due to a
lack of independent verification data which have been processed in the same way as the CS2
ice thickness distribution observations.

We have shown that the assimilation of the CS2 products were highly beneficial when
compared to the assimilation of concentration alone, when compared against randomly
chosen CS2 evaluation data that were not assimilated. This has also been seen in Fritzner
et al. (2019) and Fiedler et al. (2022). The assimilation of thickness distribution provides
strong additional benefits for the ice thickness estimates in the thickest category. The large



8.2 A Satellite Era Arctic Sea Ice Reanalysis 183

(in some places over a metre) differences in ice thickness between assimilating only ice
concentration and assimilating both ice concentration and ice thickness are striking and
suggest that information about sea ice thickness is essential to produce a more realistic sea ice
reanalysis data set. The assimilation of the Bootstrap concentration appeared to negatively
effect CICE-PDAF estimates of sea ice thickness compared to these evaluation data, however
many ocean-sea ice reanalyses have found positive impacts to sea ice thickness estimates
(Chevallier et al., 2017). These differences may be a result of the use of the Bootstrap ice
concentration dataset for assimilation, or the lack of a full ocean model in our reanalysis, and
possibly a combination of both.

8.2 A Satellite Era Arctic Sea Ice Reanalysis

During the period of ice thickness assimilation in the reanalyses, particularly reana_nt and
reana_bt, we find that the greatest improvement in sea ice thickness estimates in comparison
to observations (independent and semi-independent) is in the central Arctic, around the
North Pole, and in the Beaufort Sea. These areas are identified in Chevallier et al. (2017)
as areas where current reanalyses of Arctic sea ice are deficient, so it is encouraging that
our reanalysis shows significant improvement in these regions of the Arctic. They also note
that many of the reanalyses use PIOMAS as calibration, despite the fact that PIOMAS does
not use sea ice thickness assimilation for its sea ice reanalysis, but solely based on the fact
that it has been verified with a wide range of in-situ data sources (Schweiger et al., 2011).
Chevallier et al. (2017) mentions the need for further investigation into the observation errors
which should be used for the data assimilation, which we also found to be the case, as many
sea ice observational datasets do not provide fully quantified errors. Additionally Chevallier
et al. (2017) also mentions that sea ice velocity biases are associated with ice thickness biases,
so further work into successfully assimilating sea ice velocities might provide further benefits
to ice thickness if assimilated alongside observations of sea ice thickness, so this could be
an interesting, although challenging study, as early attempts at assimilating sea ice velocity
alongside ice concentration showed there was little benefit, but assimilating sea ice velocity
alongside ice thickness could provide some benefits.

As part of this thesis we have produced three new satellite era Arctic sea ice reanalyses,
which we analyse, investigate and discuss in chapters 6 and 7. We assimilated Bootstrap and
NASA Team sea ice concentration (separately), CPOM CS2 mean ice thickness, CPOM CS2
ice thickness distribution and Landy CS2 mean ice thickness. We found that assimilating
Bootstrap concentration alone between 1981 and 2010 led to an excessive amount of sea ice
being created in the late melting season (August and September), which, as with the study
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we did on shorter reanalyses, led to higher sea ice volumes than in CPOM-CICE. When
the CPOM CS2 products began to be assimilated in October 2010, there were significant
increments to the ice thickness and ice volume in this case. We looked at differences in sea
ice thickness between the free run and the reanalysis and found that the main differences
were located in the Central Arctic, which is too thin in CPOM-CICE, and the Canadian
Archipelago, where the ice is much too thick. There were also smaller differences in the
Beaufort Sea, Barents Sea, Kara Sea and the Fram Strait. The differences in spatial distribu-
tion between the control run and the assimilation are important, as many studies note that a
common bias in sea ice models is that ice is too thin near the Canadian Archipelago, and
too thick in the central Arctic (near the north pole) and the Beaufort Sea, for example in
Schweiger et al. (2011) it is found that PIOMAS overestimates the thickness of the thin ice
and underestimates the thickness of thicker ice, this is also seen in the intercomparison study
in Chevallier et al. (2017) and also noted in other studies such as Johnson et al. (2012), Kwok
and Cunningham (2008), Chevallier et al. (2013), particularly showing a negative sea ice
thickness bias in the regions of the thickest ice.

We discussed differences between the free model run, the reanalyses we produced and
observations in the sea ice state in different regions of the Arctic. Generally, the model has
a tendency to make the ice which packs up against the Canadian Archipelago too thick in
comparison to the observations of thickness, and thus when thickness is assimilated we find
that the reanalyses have thinner ice in this region, closer to estimates from independent OIB
thickness observations. Conversely we find that ice in many regions surrounding the Cana-
dian Archipelago is too thin in the model, and the reanalyses are able to improve estimates of
thickness in these regions in comparison to the independent estimates. Assimilation of the
Landy CS2 sea ice thickness data is particularly effective in this region in comparison to the
OIB estimates in terms of the RMSE. In the Beaufort Sea, the sea ice cover in the reanalyses
fluctuates much more throughout the seasons than in the free model run, reflecting some of
the changes seen in observations (Kwok and Cunningham, 2010), particularly capturing the
seasonal cycle here in an improved manner. The sea ice thickness estimates also differ in
the regions of the Barents and Kara Seas, where ice is thicker in the reanalyses than in the
CPOM-CICE model, and the reanalyses seem to capture the thinning ice in the Barents Sea,
and also the thicker ice in the Kara Seas, in a way that is much closer to the observational
estimates. In the Fram Strait there is an increase in the ice volume and a displacement of the
ice export region in the reanalyses in the past decade in comparison to the free model run.

We investigated differences in components of the volume flux determining the local volume
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budget between the free run and the reanalysis, to try and identify any particular problems
in the sea ice modelling. We found that congelation ice growth was significantly higher
in the free run than in the reanalysis in October, and that frazil ice growth is also higher
between September and November. These differences appear to be partially responsible
for the excess thickness that occurs in the Canadian Archipelago, and the increased sea ice
extent that occurs in CPOM-CICE in winter. There were also differences in the early melting
season in June between the free run and the reanalysis. In the Fram Strait, where sea ice is
exported due to the Transpolar drift stream, the distribution of the ice was changed, with the
ice closer to the eastern coast of Greenland becoming thicker, and ice further away thinning.
The angle at which the sea ice is exported out of the Arctic is tilted closer towards Greenland,
and there is an increased loss of sea ice due to dynamics in all months. The increase in sea
ice volume loss due to dynamics is not completely due to changes in the sea ice drift in this
region though, as there are also changes to convergence and divergence in the Central Arctic
and the Beaufort Sea.

In section 7.4 we saw that in the freeze-up season the ensemble spread of the sea ice volume
in the reanalysis was determined mainly by the uncertainty in the concentration (hence area
and extent), and between May and September it was determined by the uncertainty in the sea
ice thickness. In terms of improving the sea ice volume estimates in CPOM-CICE then, the
sea ice concentration is important during the freeze-up season between October and April,
and sea ice thickness is important during the melting season between May and September.
Although the assimilation of the CPOM CS2 thickness observations does have an effect on
sea ice volume estimates in summer, we have seen that there are also some negative effects
from assimilating the Bootstrap sea ice concentration observations alone during the late
melting season (August-September and parts of October). Assimilation of summer sea ice
thickness observations then looks like it could be extremely useful for estimates of summer
sea ice thickness and hence volume, which is important as the trends in declining sea ice
are strongest during these months, and our knowledge of sea ice is not as strong in summer
(Wunderling et al., 2020). Assimilation of summer sea ice thickness also appears to improve
estimates of year-round ice thickness as well, as we see in this study.

We studied the distribution of mean thickness across the Arctic and found that the free
run was overestimating the grid cells with very thick ice (> 4 m), and its shape was too
peaked. The distribution of the mean thickness in the reanalysis was flatter than seen in the
free run, with stark differences seen in September and particularly December. In December
almost all grid cells in the reanalysis had a mean ice thickness between 0 and 3 m, whereas



186 Concluding Remarks

CPOM-CICE was much more skewed towards ice less than 1 m thick, but also with a lot more
grid cells with ice thicker than 3 m. This is further evidence of issues with the modelling of
the early freeze-up season in CPOM-CICE. Future work in sea ice data assimilation should
focus on further improving estimates of the thickness distribution using observations, and
also producing a thickness distribution product from ICESat-2 which could be used as a
validation tool with the CS2 measurements, or vice-versa.

We evaluated the new reanalyses produced in this thesis against evaluation (non-assimilated)
observations from CS2, and independent observations from Operation IceBridge (OIB):
all three reanalyses have lower RMSEs with respect to both sets of observations than the
stand-alone CPOM-CICE model. Assimilating NASA Team and CPOM CS2 data led to
marginally lower (2 cm) RMSEs than assimilating Bootstrap and CS2 data with respect to
the evaluation data set from CS2. Assimilating Landy CS2 thickness data also resulted in a
large decrease in RMSE, its RMSE was 7-9 cm higher than those which assimilated CPOM
CS2 sea ice thickness. However in comparison with OIB ice thickness, the assimilation of
Landy CS2 ice thickness resulted in the biggest decrease in RMSE, from 54 cm to 29 cm.
Comparing the assimilation of Bootstrap and NASA Team SIC, assimilating NASA Team sea
ice concentration decreased RMSE to 40 cm, whereas Bootstrap assimilation only reduced
RMSE to 46 cm. The amount of OIB data is relatively small and restricted to March and a
few days in April each year for a few years, but these results would indicate that assimilating
NASA Team concentration alongside CPOM CS2 ice thickness performs slightly better than
Bootstrap with CPOM CS2 since 2010.

The reanalyses were compared with PIOMAS, and it was found that there were large differ-
ences in sea ice volume estimates between PIOMAS and when assimilating Bootstrap sea ice
concentration. When NASA Team observations were assimilated, the volume estimates were
similar to PIOMAS estimates in the freeze-up season. However there were lower estimates
of volume in the melting season (June and September) in comparison to PIOMAS. These
differences in the melting season were smaller after 2005. As PIOMAS also assimilates
NASA Team data we expect the differences should be small, so the differences in summer
are surprising. When looking at the mean ice thickness, there are big differences in the
distribution of the sea ice thickness across the Arctic, particularly in the Central Arctic and
the Canadian Archipelago. Overall we identified five key regions where differences were the
greatest between models, observations, our reanalyses and PIOMAS. PIOMAS has much
thinner ice the Canadian Archipelago than the CPOM-CICE model all our reanalyses besides
reana_landy, but then a more wide ranging region of ice over 1.4 m thick still covering
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much of the Arctic Ocean. Baffin Bay is not mostly ice free in PIOMAS whereas it is in our
reanalyses in late summer. The Barents and Kara Seas see the widest range of differences
between models, observations and reanalyses. The reanalyses seem to show that the intense
warming in the Barents Sea is thinning the ice in the Barents Sea but is not effecting the ice
cover in the neighbouring Kara Sea so much, which is not captured in the models and is only
reproduced by the assimilation of ice thickness. There is also strong disagreement about the
thickness of the ice in the Central Arctic, with the CPOM-CICE model showing much thinner
ice than in observations (which disagree themselves about how much thicker the ice should
be). The consensus within sea ice reanalyses seems to be thicker ice in the Central Arctic
than in sea ice models, which evaluates well against independent observations (particularly
for reana_landy). In terms of sea ice extent PIOMAS has a slightly larger extent than all our
reanalyses, primarily caused by the differences in the Barents Sea and Baffin Bay. This study
has provided further evidence into the reduction of the Arctic sea ice cover over the satellite
period. Of most importance is the increased evidence of the thinning of the Arctic sea ice
that has taken place over the past 40 years. We find trends in the decreasing sea ice volume
similar to those from PIOMAS (within the margin of error) in spring, autumn and winter,
however we should be careful in extracting too many conclusions from this, as Chevallier
et al. (2017) pointed out that reanalyses have calibrated themselves too much using PIOMAS,
which still has considerable uncertainty associated and does not assimilate thickness. Here
we have not calibrated these reanalyses in any way using PIOMAS, but as PIOMAS has been
verified using in-situ data from a long time period, it is useful for comparison. A notable
difference between our trends and those from PIOMAS is that the September trend in our
reanalyses is much smaller, but the trend in June is greater.

As part of this thesis we introduced a new sea ice data assimilation system CICE-PDAF
in order to investigate both short term sea ice data assimilation experiments and long term
satellite era reanalyses. This system can be used to continue to produce the reanalysis for
recent and future years when the observation and atmospheric/ocean forcing data become
available, which will allow for further study of the current trends in the sea ice cover, and
for further analysis of the long term impact of assimilating sea ice thickness observations in
the system. There is also the potential for a lot of further study from this reanalysis. This
includes the potential for further intercomparison studies with sea ice models, observations
and reanalyses. There could be work arising from the data assimilation increments in the
reanalysis, as well as how the assimilation parameters are working, and whether their refine-
ment could improve the reanalysis. There are also a number of model diagnostic variables
that we did not look at in this thesis, including ice age, melt ponds and ice strength - which
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could provide important insight. There is also the potential for more in depth studies of this
reanalysis on a smaller scale - looking at particular seas or areas of the sea ice cover - some
of which we have identified and examined in some detail in this thesis. Parameter estimation
using data assimilation (Hansen and Penland, 2007) could also provide a useful tool and
provide a lot of insight into many of the uncertain parameters in sea ice models - in particular
ice strength and albedo. Parameter estimation has been used very little in sea ice modelling
studies thus far, but has a lot of potential in revealing more about important parameters in sea
ice models, as was shown in Massonnet et al. (2014).

This thesis shows that with future work in producing new observations of sea ice, with
improved spatiotemporal coverage, and with further work in sea ice data assimilation, there is
a lot of potential for sea ice reanalyses to improve our understanding of the changing Arctic
sea ice cover. For example, the assimilation of the summer sea ice thickness observations
provided a marked improvement in ice thickness validation against independent observations.
This is despite the fact that the independent observations used for validation are only available
in March and April, meaning that the validation occurs 6 months after the end of the summer
thickness assimilation. These results are also promising for sea ice forecasting using summer
sea ice thickness. The assimilation of ice thickness distribution was able to significantly
improve estimates of the sea ice thickness in category 5. There is also substantial room for
improving and calibrating the data assimilation parameters used in the reanalyses, which is
mentioned in Chevallier et al. (2017) as one area of sea ice data assimilation study where
there is room for improvement. This was outside the scope of this study, though we did do
a basic analysis in chapter 4 which showed how small changes in these parameters can be
significant. In particular the uncertainties in both the observations and model, because the
reliability and effectiveness of ensemble-based data assimilation is highly dependent on the
use of accurate observation errors and a well-calibrated ensemble spread that represents the
uncertainty in the model as close as possible (Rodwell et al., 2016). Further work could
also include looking further back into the ice thickness record and assimilating ICESAT for
ENVISAT ice thickness records, which although are highly uncertain could still provide
benefits to a sea ice reanalysis, and would allow for a much longer (2002 onwards) period
of ice thickness assimilation, for further consistency. Recent work by Tilling et al. (2019),
which looked at creating a consistent longer term dataset of ice thickness by correcting issues
with the ENVISAT ice thickness retrieval showed promise, and data like this produced in
future could be used in a reanalysis system to lengthen the period where ice thickness can be
assimilated, this could increase the length of a reanalysis assimilating sea ice thickness to 8
years. This work should also be useful for Arctic sea ice prediction.
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We have shown that assimilating different sea ice concentration observations can lead to very
different sea ice volume estimates, despite the similarities between the Bootstrap and NASA
Team datasets. The strong disagreement in the seasonal cycle between the observations
and model shows that future work is needed in this area, to decrease the uncertainty in sea
ice observations in the transition periods between the melting and growth season, and to
understand how the model physics cause the shift in the seasonal cycle. The differences in
volume caused by assimilating different sea ice concentration datasets shows us the impor-
tance of additionally assimilating sea ice thickness observations, which can help constrain the
influences of the sea ice concentration assimilation on the model. The findings of this thesis
indicate that assimilating Landy CS2 ice thickness observations, which have been assimilated
for the first time in this thesis, can further reduce the uncertainty in sea ice thickness and
hence sea ice volume in model estimates of the sea ice state. This thesis shows that the
assimilation of summer sea ice thickness and sea ice thickness distribution is extremely
promising for future sea ice reanalysis and prediction studies, and can provide significant
benefits to our estimates of the Arctic sea ice state and its trends over the satellite era.
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