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Abstract
This paper addresses the notable gap in evaluating eXplainable Artificial Intelligence (XAI) methods for text classification.
While existing frameworks focus on assessing XAI in areas such as recommender systems and visual analytics, a compre-
hensive evaluation is missing. Our study surveys and categorises recent post hoc XAI methods according to their scope of
explanation and output format. We then conduct a systematic evaluation, assessing the effectiveness of these methods across
varying scopes and levels of output granularity using a combination of objective metrics and user studies. Key findings reveal
that feature-based explanations exhibit higher fidelity than rule-based ones. While global explanations are perceived as more
satisfying and trustworthy, they are less practical than local explanations. These insights enhance understanding of XAI in text
classification and offer valuable guidance for developing effective XAI systems, enabling users to evaluate each explainer’s
pros and cons and select the most suitable one for their needs.

Keywords Explainable AI · XAI evaluation · Text classification · Interpretability · Human-computer interaction

Introduction andMotivation

In several Machine Learning (ML) applications, the ability
to explain a model’s predictions and provide the ratio-
nale behind the output for any particular data point is
just as important as the accuracy of those predictions in
various applications [1–3]. Achieving peak accuracy on
extensivemodern datasets frequently entails employing com-
plex models, like ensemble or deep learning models, and
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interpretation in this scenario is challenging and, in some
cases, outright impossible. The trade-off between accuracy
and interpretability has spurred the development of diverse
methods to facilitate user comprehension of complex model
predictions. Yet, how these methods address this trade-off is
still the subject of ongoing research [4]. This study aims to
provide a comprehensive overview of existing eXplainable
Artificial Intelligence (XAI) methods documented in the lit-
erature and their suitability for text classification. Diverse
data types are approached in a fundamentally distinctmanner
in XAI. For instance, tabular classifiers must deal with mix-
tures of continuous and categorical features, finding the right
discretisation of the former, which can result in accurate and
interpretable results at the same time [5]. XAI for images, to
give another example, does not usually explain classification
outputs at a single feature level (i.e. pixel level) but focuses on
higher level features, often presented in the form of heatmaps
or saliency maps [6]. Even the XAI methods for textual data
differ regarding input features, underlying models, and out-
put. Furthermore, Textual data need to be computationally
feasible for many features, which typically comprise the dic-
tionaries of textual corpora [7]. In this article, we narrow
down the scope of the paper on XAI for text classification,
which has gained great importance in academia and industry
in the last years [8, 9].

123

/ Published online: 6 August 2024

Cognitive Computation (2024) 16:3077–3095

http://crossmark.crossref.org/dialog/?doi=10.1007/s12559-024-10325-w&domain=pdf


As the research field of XAI rapidly grows, some previous
surveys [7, 10, 11] have attempted to identify the most suit-
able XAI methods for specific user needs. Still, as we will
discuss in the “Related Works” section, none has succeeded
in offering a truly exhaustive perspective, leaving users with
limited guidance based on the available literature. To address
this problem, we describe how to use several XAImethods in
real-case scenarios, evaluating each algorithm’s performance
and the insights it provides.

The rationale behind preferring one XAI method over
another varies depending on the specific requirements; for
example, explainer A’s transparencymight be a deciding fac-
tor, while explainer B’s ability to cover a broader range of
data could be advantageous in others.

As previously introduced, many XAI methods are avail-
able in the literature. In the next section, we will present
the decision-making process to identify the XAI methods
included in this study and provide an overview of the selected
techniques. Our XAI methods comparison is based on a
real-world dataset, incorporating user evaluations and using
existing metrics. The rationale for the approach used in this
paper is that, despite that there are theoretical assurances
regarding the selected XAI methods, certain properties may
be compromised in specific application domains or datasets.
Thus, a real-world application is essential for a comprehen-
sive overview and to assist users in identifying and deploying
the most suitable XAI method for their particular use case.

The big challenge is evaluating XAI methods since schol-
ars from different disciplines focus on different objectives,
which poses challenges for identifying appropriate design
and evaluation methodology [12].

While numerous well-established works, such as Sokol
and Flach [10], theoretically introduced several metrics,
unfortunately, it is still unclear how to practically utilise them
for comparing explanation methods [13]. Therefore, we have
re-investigated the existing metrics, we chose the most suit-
able ones for the proposed benchmark and we developed a
method for measuring them.

The contributions of this work can be summarised in
three points:

(i) Gathering all these XAImethods into an Evaluation tasks
will empower users of explainability systems to com-
prehensively assess the pros and cons of each explainer,
facilitating informed decisions to select the most suitable
one for their specific application.

(ii) Additionally, the proposed benchmark can serve as a
valuable tool for both the development and deployment
phases of explainable approaches, providing a structured
checklist to ensure a thorough evaluation and to support
a successful integration into various systems.

(iii) All explainers have been deployed in notebooks and
are accessible through a GitHub1 repository, promoting
transparency, reproducibility, and easy adoption by the
community.

All acronyms employed in this manuscript can be found
in the Appendix in Table 5.

Machine Learning Explanations

We will now outline the XAI methods for classification
and elucidate the process by which we selected the ones
deemed suitable for our analysis. Figure1 shows a con-
cise and straightforward diagram that serves as a roadmap
throughout the paper’s literature, facilitating the understand-
ing of the key features that comprise any XAI method, as
presented in [10]. The feature descriptions in Fig. 1 are based
on the framework proposed in [10]. The primary distinction
between XAI methods lies in the contrast between ante hoc
and post hoc methodologies. Ante hoc approaches employ
the same model for prediction and explanation, from elu-
cidating a linear regression through its feature weights to
explaining sentiment analysis results with neural network
attention weights [14]. It’s crucial to acknowledge that cer-
tain techniques within this approach may be accompanied
by caveats and assumptions regarding the training data or
process, which must also be fulfilled for the explanation
task. Still, the latter may not always be feasible. In post hoc
approaches, predictions are generated using onemodel,while
explanations are generated using a separate one. Post hoc
approaches are this article’s main focus and allow for tailor-
ing explanations to specific information needs while keeping
the prediction model untouched. Both methodologies can be
further categorised into two distinct groups:model-agnostic,
which can operate independently of any model family, and
model-specific, which solely applies to a particular model,
such as decision trees. Finally, focusing on the generalisabil-
ity property, each of the previously identified (sub)groups
could be divided into three stages as follows: local, which
pertains to a single data point or prediction; cohort, which
involves analysing a subgroup within a dataset or a subspace
within the model’s decision space; and global, which offers
a comprehensive explanation of the model. We conducted a
comprehensive literature review to identify the most com-
monly used XAI methods, and we framed the works in the
categories just introduced, as reported in Table 1.

As advised by [15], we comprehensively searched elec-
tronic databases. The databases utilised for this search were
as follows:

1 https://github.com/Crisp-Unimib/XAI_Benchmark
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Fig. 1 Concise taxonomy of
XAI methods for classification

XAI Classification 
Methods 

Ante-hoc

Post-hoc

Model agnostic

Model specific

Global Cohort Local

Built-in vs 
External Interp. Approach

Scope

• ACL (https://aclanthology.org/)
• Springer (www.springerlink.com)
• ACM Digital Library (www.acm.org/dl)
• ScienceDirect (www.sciencedirect.com)
• Wiley Interscience (www.Interscience.wiley.com)
• Google Scholar (www.scholar.google.co.in)
• IEEE eXplore (www.ieeexplore.ieee.org)
• Taylor Francis Online (https://www.tandfonline.com/)
• PubMed (https://pubmed.ncbi.nlm.nih.gov/)
• SemEval (https://semeval.github.io/)

We conducted an extensive literature review to identify
the most pertinent XAI methods. Our search encompassed
research studies fromdiverse sources, including conferences,
journals, and arXiv. Specifically, we focused on papers pub-
lished in conferences ranked as A, and journals ranked as
Q1 or at least Q2. However, despite not being published in
a conference or journal, we made an exception for a notable
work that garnered over 500 citations since 2017 [16]. A
summary of the most representative methods under consid-
eration is reported here. We have taken into consideration 29
methods: (a) We will begin with XAI methods employing a
post hoc approach, offering global explanations, and main-
taining model agnosticism. Among these, TREPAN. Craven
and Shavlik [17] stands out as one of the earliest explain-
ers we examined. This algorithm induces a decision tree
that approximates the outcome of a classifier. SAGE [18]
uses shapley values to quantify the predictive power of indi-
vidual input features at a global level while considering
feature interactions. TREPAN constructs its tree using a hill-
climbing search process and a gain ratio criterion to identify
the bestM-of-N splits for each node. ProfWeight [19] utilises
linear probes to generate confidence scores via flattened
intermediate representations, while GLRM [20] employs
rule-based features for regression and probabilistic classi-
fication. These rules aid in model interpretation by capturing
nonlinear dependencies and interactions. GLRMutilises col-
umn generation techniques to optimise over an exponentially
large space of rules without the need to pre-generate a large

subset of candidates or boost rules greedily one by one. (b)
Concerning model-specific approaches, we find the work of
Sushil et al. [21] to be particularly relevant for our pur-
poses. Their research identifies if-then-else rules between
various input features and the class labels that a trained
network captures. (c) When examining post hoc methods
with a local scope and model-agnostic nature, it’s crucial
to consider arguably the two most renowned XAI methods:
LIME [22] and SHAP [23]. LIME elucidates the predictions
of any classifier in an interpretable and accurate manner by
constructing explanations locally around the prediction. On
the other hand, SHAP assigns an importance value to each
feature, based on the concept of Shapley values from the
cooperative game theory, indicating its contribution to the
model’s prediction. Other methodologies within this cate-
gory include the one proposed by van der Waa et al. [24],
which utilises locally trained one-versus-all decision trees
to identify the disjoint set of rules responsible for classi-
fying data points as the foil rather than the fact. Another
notable approach is the one introduced byElenberg et al. [25],
called STREAK,wherein the authors frame the interpretabil-
ity of black box classifiers as a combinatorial maximisation
problem and present an efficient streaming algorithm to
solve it, subject to cardinality constraints. In addition to the
previously mentioned explainers, various other approaches
to explainability have been explored. These include tech-
niques such as the one proposed by Lei et al. [26], which
extracts concise and coherent pieces of input text as jus-
tifications; TCAV [27], utilising directional derivatives to
measure the importance of user-defined concepts; Check-
List [28], which evaluates explainers’ capabilities through
distinct test types; QII [29], breaking input correlations
for causal reasoning and marginal influence computation;
TED [30], providing explanations coherent with consumer
mental models; Staniak and Biecek [31] alternative imple-
mentation of LIME; LORE [16], which employs a genetic
algorithm to train local interpretable predictors for meaning-
ful explanations; and lastly, we encountered CASME [32],
an approach that involves the simultaneous training of a
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classifier and a saliencymapping utilising stochastic gradient
descent. (d) In the category of ante hoc, model-specific, and
global XAI methods, we came across BRCG [33], a study
focused on learning Boolean rules. These rules are presented
in either disjunctive normal form (DNF,OR-of-ANDs, equiv-
alent to decision rule sets) or conjunctive normal form (CNF,
AND-of-ORs), serving as an interpretable method for clas-
sification. (e) We encountered eight notable works in the
category encompassing post hoc, model-specific, and local
approaches. The most famous one is Grad-CAM [34], which
leverages the gradients associated with a specific target con-
cept, propagating through the final convolutional layer to
generate a rough localisation map. This map accentuates
significant areas within the image that contribute to predict-
ing the concept. ACD [35] utilises hierarchical clustering
optimised to discern clusters of features learned by a Deep
Neural Network as predictive. TheCEM [36] algorithm iden-
tifies minimally and sufficiently present elements required
to justify classification and those minimally and necessarily
absent. DeepLIFT [37] decomposes a neural network’s out-
put prediction for a specific input by backpropagating the
contributions of all network neurons to each input feature.
LRP [38] explains a classifier’s prediction for a given data
point by attributing relevance scores to important input com-
ponents using the model’s learned topology. MLAM [39]
focuses on identifying and interpreting attractive points in
available content, explaining the user’s choices. RISE [40]
estimates importance empirically by probing the model with
randomly masked versions of the input image, obtaining cor-
responding outputs. Finally, the work by Wang et al. [41]
introduces an approximate inference method utilising asso-
ciation rule mining and a randomised search algorithm.
In the final category (f), which includes post hoc, model-
agnostic, and cohort explanation methods, we discovered
only Anchors [42]. Anchors is a systematic method designed
to elucidate the behaviour of complex models by establish-
ing high-precision rules known as anchors. These anchors
represent local, “sufficient” conditions for prediction.

ProtoryNet [43] is an approach for interpretable text
classification based on prototypical learning [44, 45]. In com-
puter vision, part-prototype XAI methods are deep neural
networks explainable by design (since they identify key parts
of the image and use them to perform both classification and
explanation). ProtoryNet [43] is a notable work carrying on
the prototype approach in text classification using neural net-
works. Unfortunately, ProtoryNet doesn’t fit the aim of this
paper since it is a model-specific and ante hoc approach.

We focus on supervised models, as a significant portion
of the literature is dedicated to them [10]. Explanations for
these methods provide a rationale behind the output for any
particular data point, serving as justifications for the provided
predictions [10].

In this work, we focused on model-agnostic models. As
previously mentioned, they can work with any model family,
as they focus on revealing certain properties of the black box
model by requiring only input values and predictions [11]. It
is worth recalling that a post hoc approach is required tomake
an explainability technique model-agnostic. Concerning the
third characteristic considered formodels, the examinedXAI
methods encompass both local, cohort and global aspects.
The carefully selected features in our analysis enable us to
conduct a comprehensive benchmark study, providing valu-
able insights for user decision-making across a wide array
of applications.

Selected Tools

The evaluation focuses on model-agnostic tools, meaning
they should not depend on internal model components like
weights or structural information, ensuring applicability to
any black box model. This choice is dictated by the fact that
these explainers are more generally applicable and make it
easier to compare several classification models. Again, for
comparability, we discard papers that require handcrafted
inputs, such as checklists [28] or input explanations to be
validated [30]. Moreover, we consider only tools that have
public, updated, andworking Python code. Finally, we added
transparent machine learning models to the above list that
can be used as surrogates, i.e. decision trees (DT), logistic
regression (LR), and naive Bayes (NB). Given these criteria,
the selection falls on the following methods: LIME2 [22],
SHAP3 [23], SAGE4 [18], BRCG5 [33], Anchors6 [42],
QII7 [29], DT classifier,8 LR,9 andNB.10 Moreover, we add a
rule-based random explainer, which generates random rules,
and a random feature importance generator, built similarly
as a baseline.

RelatedWorks

This work delves into the direction of evaluating XAI
methods and explanations to facilitate human evaluation,
according to the open challenge outlined in the XAI Mani-
festo [48]. In preceding literature, several researchers have

2 https://github.com/marcotcr/lime
3 https://github.com/slundberg/shap
4 https://github.com/iancovert/sage
5 https://github.com/IBM/AIX360
6 https://github.com/marcotcr/anchor
7 https://github.com/hovinh/QII
8 https://scikit-learn.org/stable/modules/tree.html
9 https://scikit-learn.org/stable/modules/generated/sklearn.linear_
model.LogisticRegression.html
10 https://scikit-learn.org/stable/modules/naive_bayes.html
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proposed a comparison of XAI methods. Some works [49,
50] focus on global, post hoc, rule-based explainers, com-
paring the rules generated by different decision trees. Other
works evaluate a larger plethora of methods. In [51], the
authors propose a scoring system that uses various func-
tional tests from existing research, categorising the tests
into four groups: fidelity, fragility, stability, and stress tests.
They display results for 13 XAI methods using 11 functional
tests. In [52], the authors propose EXPLAN, an algorithm
that produces interpretable logical rules, ideal for qualitative
analysis of the model’s behaviour, comparing it with LIME,
LORE, and Anchor. However, EXPLAN is limited to local
and cohortmethods.A lot ofworks [4, 53–57] survey and dis-
cuss several XAI techniques to understand their capabilities
and limitations and to categorise the investigated methods.
Unfortunately, many taxonomies for XAI methods of vary-
ing levels of detail and depth can be found in the literature.
While they often have a different focus, they also exhibit
many points of overlap [54]. The works above perform a rig-
orously structured and theoretically grounded analysis, but
none compares the XAI methods to a common dataset.

Finally, in [58], the authors propose a framework to bench-
mark XAI methods for time series. In all these methods, the
comparison lacks differentiation between local and global
methods and between rule-based and feature-based explana-
tions, making it challenging. Moreover, none of the previous
approaches compares XAI methods both through metrics
and user studies, which is crucial for incorporating the user
perspective into XAI method evaluation. Therefore, as far
as we know, this is the first paper that (1) builds a com-
prehensive evaluation of different types of XAI methods,
comparing local, global, and cohort methods and rule-based
and feature-based explanations, also highlighting their dif-
ferences (2) brings together metrics and user evaluation for a
joint comparison and (3) makes the comparison reproducible
by providing a repository with the implementation of the
benchmarked methods and the metrics.

Evaluation of ML Explanations

The recent proliferation of XAI methods requires to rigor-
ously evaluate their efficacy and interpretability. Previous
researches tend to agree that the main distinction is between
objective versus human-centred metrics [13, 59]. In con-
trast, the former is more functionality-oriented and objective,
while the latter is more human-centred and subjective.
To summarise,

1. Objective Evaluation (OE) contains objective metrics
and automated approaches to evaluate XAI methods.

2. Human-Centred Evaluations (HCE) encompass meth-
ods utilising a human-in-the-loop approach, where end-

users are engaged, and their feedback or informed judg-
ment is used.

Within this main partition, previous studies have yielded
a plethora of metrics and evaluation frameworks tailored to
assess the efficacy and quality of XAI explanations. How-
ever, the vastmajority focus either on the objective evaluation
or on the human-centred one. In [10], On the other hand,
the authors propose a framework that groups 34 metrics
into 5 dimensions: (1) functional requirements, ensuring the
method’s core capabilities are met; (2) operational require-
ments, detailing practical implementation needs; (3) usability
criteria, evaluating user experience and effectiveness; (4)
security and privacy considerations, identifying potential
vulnerabilities; and (5) validation methods, confirming the
method’s reliability through testing. These dimensions pro-
vide a comprehensive framework for evaluating and compar-
ing explainabilitymethods, ensuring thorough understanding
and standardisation in the field. We selected this paper
as a reference because the proposed framework offers a
comprehensive yet synthetic comparison of capabilities and
limitations of XAI methods that (1) covers both the objec-
tive and human-centred evaluation and (2), in addition to the
evaluation, paves the way for framing the methods chosen
through their characteristics.

Among the 5 dimensions proposed by [10], four refer to
objective evaluations and one to human-centred ones. Below,
we describe the five dimensions, specifying if they belong to
OE or HCE:

1. Functional Requirements — OE include the algorith-
mic requirements, e.g. the problem type (regression, clas-
sification, or clustering), the explanation scope (global,
local, or cohort), the explainer’s computational complex-
ity, etc.

2. Operational Requirements — OE focus on the user and
explainer interaction, e.g. the explanatory medium (sum-
marisation, visualisation, etc.), the trade-off between
performances and explainability, and the type of inter-
action with the system (static or dynamic).

3. Usability Requirements — OE are objective metrics
centred on the user’s perspective. They focus on making
the explanation more natural and easily comprehensible.
Some examples are the soundness, completeness, and
interactiveness of the explanation.

4. Safety Requirements — OE cover the impact of XAI
systems on the robustness, security, and privacy aspects
of the underlying predictive models.

5. Validation Requirements — HCE encompass user
studies and synthetic experiments. Because XAI aims
to make algorithmic decisions more comprehensible
to humans, their final efficacy needs to be evaluated
by users.
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The remainder of this section will assess the chosen XAI
methods through objective and human-centred evaluations.
Specifically, the “Objective Evaluation” section is dedicated
to objective evaluation. Themetrics utilisedwill be examined
in the “Objective Metrics” section, while their implementa-
tion and experimental results will be shown in the “Objective
Evaluation” section. In the “Human Evaluation” section, we
will introduce the human-centred evaluation, defining its
measures andpractices in the “EvaluationDesign andExperi-
ments” section and presenting its results in the “Human Eva-
luation Results” section.

Objective Evaluation

This section will delve into the four dimensions from [10]
that refer to OE. The authors present 34 criteria, of which 9
belong to functional requirements (denoted with codes from
F1 to F9), 10 to operational ones (O1–O10), 11 to usability
(U1–U11) and 4 to safety requirements (S1–S4).

Of these 34 criteria, some are characteristics or desider-
ata of the explainer, while others are evaluation metrics.
For instance, F1, the problem supervision level, is a char-
acteristic of the XAI method, expressing whether it works
with unsupervised, supervised, or semisupervised ML algo-
rithms. On the contrary, U1 is a metric that measures the
Soundness of the XAI methods with respect to the predic-
tion of the underlying ML model. In the “Characteristics of
the Selected Methods” section, we present all the character-
istics of the selected XAI methods, while in the “Objective
Metrics” section, we present the metrics that are used to eval-
uate the selected XAImethods, presenting the results of their
measurement in the “Objective Evaluation” section. Both
characteristics and metrics are taken from [10] and abbre-
viated as in the paper, e.g. the Functional Requirement 1 —
Problem Supervision Level, which is abbreviated as F1.

Characteristics of the Selected Methods

In this article, we have selected several methods for compar-
ison based on specific characteristics. This section discusses
the selected characteristics according to [10] formalisation.

Functional Requirements In XAI, the vast majority of the
literature is about supervised learning (F1 — Problem
Supervision Level), in the context of classification (F2 —
Problem Type) where explanations serve as a justification
of predictions (F3—Explanation Target) [10], and this will
also be the approach of this research. Regarding the Explana-
tions Scope (F4), we will consider explanations at all levels:
local, global, and cohort. For the sake of comparability, and
because of their greater adoption, we will test only model

agnostic (F6 — Applicable Model Class), post hoc (F7 —
Relation to the predictive system) explainers. Regarding the
Compatible Feature Types (F8), in this article, we focus on
textual data.

Operational Requirements The family of explanations (O1)
that we target is the associations between antecedent and
consequent, while counterfactual and contrastive explana-
tions are evaluated according to different methodologies,
paradigms, and measures [60, 61]. Regarding the explana-
tory medium (O2) and the system interaction (O3), all the
explainers tested present statistic summarisation and static
interaction, respectively. Researchers have found that in
current XAI methods, the presentation layer is usually dis-
tinctly delineated and less curated than the core algorithm [6].
Some works use relevant word highlighting as a visualisa-
tion technique (e.g. in [22]), and the present work goes in
that direction. The explanation domain (O4) in this work
focuses on text classification. Considering the transparency
of the data model (O5), we opt to concentrate on post hoc,
model-agnostic XAI methods, enabling the utilisation of
any opaque underlying model. Concerning the explana-
tion audience (O6) and the purpose of the explanation (O7),
the user study includes a broad audience, both experts
in XAI and non-experts. The study encompasses various
functions, explained in the “Evaluation Design and Experi-
ments” section, such as, but not limited to, understandability,
trust, and satisfaction. All the explanations provided by the
considered methods are of causal nature (O8). The rest of
the paper discusses the requirements of trust vs performance
(O9) and provenance (O10).

Usability Requirements This category includes five met-
rics, discussed in the “Objective Evaluation” and “Objective
Evaluation” sections, respectively: U1, U2, U3, U9, and
U11.Moreover, since neither system provides interactive nor
actionable outputs, as specified in Par. Operational Require-
ments, neither U4 nor U5 is discussed. Chronology (U6),
coherence (U7), novelty (U8), and personalisation (U10)
assume previous knowledge and expectations regarding the
output of the system and its interaction with the user, which
in turn implicates a continuous use of the system over time,
which is not this case.

Safety Requirements Of the explanation requirements, S3
will be discussed andmeasured in the “Objective Evaluation”
and “Objective Evaluation” sections, respectively. The other
safety requirements (S1, S2, and S4) are very specific to the
application domain where XAI is used. Therefore, they are
not part of the scope of this paper.
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Objective Metrics

Below, we present the metrics used for the objective eval-
uation. The metrics used differ depending on the type of
explanation, e.g. local vs. global explanations and rules vs.
feature-returning explanations. However, all metrics adopted
are viable for the classification task.

Computational Complexity (F5) andCaveats (F9) The choice
of an XAI method should consider its time, memory, and
computational complexity constraints. In text classification,
the number of features is typically very high. Not all the
XAI methods presented scale well beyond certain amount of
features regarding computational times andmemory require-
ments. In the “Objective Evaluation” section, we will present
the results of four different runs, inwhichwe consider respec-
tively the 10, 100, 1000 and 10,000 most common features
of the corpus. In this way, we can identify the explainers’
computational limits. From the perspective of memory, we
consider only algorithms that do not exceed the 64GB of
RAM requirement, which is the RAM size on which we are
conducting experiments, while from the perspective of com-
putational times, an algorithm will be considered intractable
if it takes longer than one day for global explainers and more
than 3h for a single explanation of local ones.

Explanation Fidelity Measures: Soundness (U1) and Com-
pleteness (U2) Those two dimensions measure how well the
explainer agrees with the underlying model developed by the
classifier. Soundness is usually measured for global surro-
gate models through fidelity [11], i.e. the concordance S of
the predictions of the XAImethodw; taken from a set of pos-
sible white box models I approximated on the training data
X = {xi , . . . , xn}; with the predictions of the underlying
black box one b, as in Eq. (1).

argmax
w∈I

1

|X |
∑

x∈X
S(w(x), b(x)) (1)

On the other hand, completeness assesses the extent to
which an explanation can generalise. It can be evaluated by
verifying the accuracy of an explanation across compara-
ble data points (individuals) within various groups across a
dataset [10]. For rule-based explainers, it can be measured
with their correctness, i.e. the number of correctly predicted
instances explained by the output rules r over total instances
X [50], following Eq. (2).

r

X
(2)

For feature-based ones, we refer to themeasure of faithful-
ness [62, 63] shown in Eq. (3). For an explainer to be faithful,
the important features of the model should correspond to the

important ones of the explainer. It is measured by perturb-
ing the explainer’s features. For an explainer to be faithful,
given a subset size |S|, the change in the predictor b’s output
between the perturbed explanation and the unchanged one
should be proportional to the sum of attribution scores. The
proportionality is computed using Pearson correlation.

corr
S⊆

(
|d|
|S|

)

(
∑

i∈S
w(x)i , b(x) − b(xxs=xi )

)
(3)

Contextfulness (U3) It is important to frame the single expla-
nation in a context for cohort explanations. The context can
be used in several ways, e.g. to check for safe generalisation.
This measure applies only to rule-based explanations. Each
instance is classified by a rule to which a class is associated.
To measure the contexfulness, we select the widely known
rule coverage metric [49] shown in Eq. (4), computing the
ratio of covered input instances c over total input instances X.

c

X
(4)

Parsimony (U11) Explanations should be selective and con-
cise to prevent users from being overwhelmed with unnec-
essary details. In other words, parsimonious methods should
aim to address the most significant (explanation) gaps using
the fewest arguments possible. For rule-based explainers, the
selectiveness of rules ismeasured through their features frac-
tion overlap [59], the degree of overlap between every pair of
rules ri , rk in a ruleset R, according to Eq. (5). Conciseness
is measured by the ruleset’s cardinality |R| and the rules’
average length.

2

R(R − 1)

∑

i, j :i≤ j

overlap(ri , r j )

X
(5)

For feature-based explainers, a complex explanation is one
inwhich all the features have equal attribution, while the sim-
plest explanation would be concentrated on one feature [10].
Consequently, in [63], the authors measure the complexity
of an explanation as the entropy of its features attributions.
Using their metric, in Eq. (6) we measure the parsimony of
feature base explainers as 1 minus the complexity, where
Pw(i) is the fractional contribution of feature xi to the total
magnitude of the attribution.

1 −
d∑

i=1

Pw(i) ln(Pw(i)) (6)

Explanation Invariance (S3) The ideal explainer should rep-
resent the underlying model and its changes in behaviour
without introducing variability of their own. For this reason,
explanations must be:
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Consistent, i.e. given a fixed ML model, explanations of
similar data points should be similar. Ifwe define the sensitiv-
ity [62] as the variation of the features/rules of the explanation
function concerning a change in the input, we can measure
the consistency as 1-sensitivity. Given the black boxmodel b,
the explanation functionw, the distancemetricD, an instance
x and its perturbation z, we follow Eq. (7) [63].

1 − max D(w(b, x), w(b, z)) (7)

In the case of textual data, variations are usually of small
magnitude and typically do not alter the sentence’s mean-
ing, such as introducing typos and substituting some words
with synonyms. The changes were made using the nlpaug
library [64]. Stable, i.e. different runs of the same XAI
method, should provide the same output. Like consistency,
stability will be measured using a binary variable equal to 1
if the rules generated after a rerun with a different randomi-
sation seed are the same.

Objective Evaluation

Dataset and Preprocessing The experiments were conduc-
ted on the InternationalMovie Reviews dataset (IMDB) [65].
The dataset contains 50,000 movie reviews collected from
IMDBwith relative ratings and consists of an even number of
positive and negative reviews. The IMDB dataset is widely
known and frequently used in research, [66]. It is a large
dataset containing several reviews on diverse movies and is
well suited for text classification.

Following previous literature, the authors considered a
negative review with a score ≤ 4 out of 10 and a positive
review with a score ≥ 7 out of 10. Therefore, only highly
polarised reviews are considered. For comparability, the pre-
processing has been kept as simple as possible. The dataset
undergoes standard preprocessing transformations for fea-
ture normalisation and noise reduction: converting all the
words to lowercase and stopwords [67] and punctuation
removal.

Training of the Underlying Classification Model As in
the case of preprocessing, the process was made as sim-
ple and repeatable as possible. Three classic yet powerful
ML models were chosen: Random Forest Classifier (RF),
Gradient Boosting Classifier (GB), and Support Vector Clas-
sifier (SVC) with a linear kernel. Several factors drove
the selection.

• The paper results can be easily reproduced not using spe-
cial hardware (e.g. GPU)

• Although Deep Learning models perform better on text
classification w.r.t. Non-Deep Learning models [68], the

difference is not so big and other factors might have
a more significant impact, e.g. according to [69] text
preprocessing (e.g. slang and abbreviation replacement,
repeated punctuation removal, …) and simple classifica-
tion methods can achieve state-of-the-art results, some-
times outperforming complex and recent pre-trained
architectures (i.e. Transformer-based models)

• According to [70], developing a text classifier is a
trial-and-error process. Therefore, Non-Deep Learning
models can be an effective solution in the early stages of
the process thanks to the reduced training time and the
low computational effort required

The chosen models (i.e. RF, GB, and SVC) are popular
algorithms in text classification [68]. The models used are
implemented using scikit-learn [71] with default parameters,
splitting the IMDB dataset into 80% training instances and
20% (10,000) testing instances. The dataset is transformed
via Bag OfWord (BOW), and only the 10,000 most common
features are kept to have a less sparse matrix devoid of spuri-
ous features. The classification results are reported in Table 2.
Given its highest Accuracy and F1 values, we will test the
XAI methods using the predictions and model weights of the
SVC classifier.

Objective Evaluation Results In Table 3, we present the
results of the experiments for the rule-based explainers while
the feature-based ones are presented in Table 4. The execu-
tion time is reported in average seconds. Following [63], we
computed all the measures as the average on a sample of
50 instances for the cohort and the local explainers. In the
experimentation phase, each dimension was evaluated across
varying BOW feature counts: 10, 100, 1000, and 10000.
However, BRCG and QII measurements were unattainable
for 10,000 features due to excessively long computational
times, and SAGE for 1000 and 10,000 features. Similarly,
the required RAM exceeded 64GB for Shap, rendering the
evaluation unfeasible. Another caveat concerns the fidelity of
SAGE, which cannot be computed since it does not imple-
ment predictive functions but returns features’ importance
based on how much predictive power they contribute.

The two tables show high consistency and sensitivity for
rule-and feature-based explainers, except (as expected) for

Table 2 Performance of classifiers

Classifier Accuracy Precision Recall F1

Random Forest 0.822 0.827 0.818 0.822

SVC 0.863 0.857 0.875 0.866

Gradient Boosting 0.800 0.776 0.849 0.811
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the random-generated ones. This confirms two facts: (1)
explainers do not create variability in the results, and (2)
random explainers constitute an effective control method.
This is confirmed by the accuracy values, which consistently
linger around 0.5 for rule- and feature-based methods.

The DT surrogate exhibits the highest soundness among
the global rule-based explainers. The number of rules gener-
ated by DT is a parameter chosen by design, and we used
the default one of 20. The BRCG instead uses a smaller
number of rules. Moreover, BRCG uses shorter rules with
lower fidelity values but greater coverage. For instance, with
1000 features, the DT has a fidelity of 0.76 and coverage
of 48% of the dataset with an average rule length of 8.33,
while the BRCG has a fidelity of 0.62 on 76% of the dataset
with an average rule length of 1.5 words. The execution time
of the DT is lower, with the BRCG explainer being even
intractable for 10,000 features. Anchors also exhibit short
execution times, typically 1 to 5 s, even when dealing with
10,000 features. Being a cohort explainer, we measure the
average rule coverage of a sample of 50 instances instead of
the coverage on the whole dataset. Increasing the number of
features, the coverage decreases while the average rule cor-
rectness on 50 rules increases. A potential interpretation of
this could be that, by using more features, Anchors generate
more precise rules with less common words, which conse-
quently have lower coverage over the data.

In Table 4 we can observe the results for feature-based
explainers. In this case, the fidelity of the surrogate logistic
regression is close to one, whatever the number of features,
and is higher than that of theNaiveBayes classifier. However,
the entropy of the weight distributions of the explanation fea-
tures in Naive Bayes is consistently less than 1%, rendering it
simpler and more interpretable compared to logistic regres-
sion, albeit with lower fidelity. Local explainers exhibit high
faithfulness only when employing many features, which is
intuitive given their local nature. Indeed, despite their fre-
quency, it is challenging for a small subset of features to
manifest within the selected evaluation phrases consistently.
As discussed above, due to time and memory issues, Shap
becomes intractable after 1000 features. Usually, text classi-
fication involves more than this number of features.

Human Evaluation

The FOUSV (Functional, Operational, Usability, Safety, Val-
idation) evaluation framework used above and summarised
by Sokol and Flach [10] is based on requirements that can
be quantitatively formulated, therefore, this framework does
not fit user-centred metrics. Another recently proposed user-
centredhumanevaluation framework [12] considers the “user
types” and “design goals” (i.e. AI Novices, Data Experts, or
AI Experts will use the explanations with different purposes,
hence having different requirements). According to this 5Ms

framework, there are also five dimensions to measure for
human evaluation:

• M1: Mental Model
• M2: Usefulness and Satisfaction
• M3: User Trust and Reliance
• M4: Human-AI Task Performance
• M5: Computational Measures

The mental model (M1) evaluates how helpful the explana-
tions are in conceptualising and understanding the mech-
anism of the target ML model. Therefore, they are very
context-specific and difficult to compare acrossmethods. The
M2 and M3 dimensions are usually self-reported, and pre-
vious studies have used interviews, questionnaires, and case
studies as subjective measures [12]. M4 has overlaps with
functionality metrics. M5 is less commonly implemented
according to a survey covering42 recent papers [12] andover-
laps a lot with objective metrics. Therefore, we concluded
that only M2 and M3 are relevant in our study. In the con-
text of text classification, the human evaluation will measure
(1) Usefulness, (2) Satisfaction, and (3) Trustworthiness. We
dropped “Reliance” because those text classification systems
usually achievehigh accuracy, hence they are consideredvery
reliable already.

A reliable metric for Usefulness is the response time. In
the translation application example, one complaint is that
the explanations for recommended translations extend the
time needed for the translator to complete the task. Given
that processing the explanations always takes time, useful
explanations only minimally increase or reduce the response
time to the same task. So, theUsefulness question is designed
to ask the user to classify a piece of text into given categories,
with/without a hint (system-generated explanations).

To be consistent with previous studies, Satisfaction and
Trustworthiness are measured by self-report:

• Rate from scale 1(worst)-5(best), how satisfied the user
is with a given explanation?

• Compare explanations for the given classification task
and choose the more trustworthy one that leads to the
classification outcome.

Evaluation Design and Experiments

To cover the different XAI methods with a resource con-
straint, we sample four representative methods, i.e. LIME
for local features [22], Logistic Regression for global fea-
tures,11 Decision Tree for global rules [72], andAnchors [42]

11 https://scikit-learn.org/stable/modules/generated/sklearn.linear_
model.LogisticRegression.html
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Fig. 2 Demographic information of the user study participants

for cohort rules. Each user is presented with 8 questions ran-
domly selected from the explanation no-explanation pairs
and 2 additional questions for satisfaction and trustworthi-
ness. This ensures the interdependence of response times and
ratings for the same text samples. An example of the survey
questions can be found in the Appendix.

We recruited 42 users in two batches from Prolific12 using
the LimeSurvey13 online tool. The participants (paid approx.
£ 9 per hour and took 13min to finish the survey in average)
are filtered using two criteria: fluent in English, and have
completed secondary education or above.

Figure2 provides more information on the participants’
demographics. It can be observed that the sample is diverse
across gender, ethnicity, and country. Because the result
distributions, e.g. in Fig. 3 are continuous, we believe our
findings have goodgeneralisability across these demographic
features. Further, we noticed that the participants are skewed
to young people under 40: that is probably also the demo-
graphics of online gig workers. The geographic distribution
also mainly covers Eurafrica and overlooks Asia, proba-
bly due to the language criterion. Though we believe these
potential biases are unlikely to have significant impacts on

12 https://app.prolific.com/
13 https://www.limesurvey.org/

user perception of explanations, it may be more confident
to limit our user study findings to relatively young English-
speaking people.

Human Evaluation Results

Figure3 shows the violin plot [73] of users’ response time
with/without different explanations. An interesting observa-
tion across all explanations is that their presence makes the
response time distributions more concentrated. The feature-
based explanations (LIME and LR) generally increase the
quantiles of response times. Local features seem to be more
useful with the 3-quantile decreased. A median decrease
is also observed for LIME before averaging. The quan-
tile decreases for rule-based explanations are more pro-
nounced. We conclude that Anchors produce the most useful
explanations among the evaluated methods. The general
trends are that rule-based explanations are more useful than
feature-based ones, and localising explanations increases
their usefulness.

Regarding satisfaction ratings, users are mostly satisfied
with the LR (s = 3.04) and DT (s = 2.96) explanations. At
the same time, they are less satisfied with the explanations
for the Anchors (s = 2.62) and LIME (s = 2.55), although
the explanations for the Anchors were the most useful. Users
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(a) Local features (b) Global features

(c) Global rules (d) Cohort rules

Fig. 3 Average response time (seconds) with/without the explanations

seem to be more satisfied with global explanations than local
ones. This may be because global explanations are usually
well-aligned with common sense, while local ones, despite
their discriminative power, feel unnatural with less frequent
features/rules.

The trustworthiness choices reveal that out of 39 valid
responses, the LR explanation is the most trustworthy (n
= 27) and is significantly better than DT (n = 9), LIME (n
= 2) and Anchors (n = 1) explanations. Further investigation
into the user responses suggests the importance of “semantic
correctness” of the explanations for trustworthiness. Even
those who chose DT mentioned that the words are “really
related to the movie” or the narrative “sounds like a review”.
On this factor, global explanations usually do a better job of
discovering semantically relevant words.

The human evaluation shows that the results can be quite
diverse for different XAI methods, even for subjective met-
rics like Usefulness, Satisfaction, and Trustworthiness. The
rule-format and localised explanations are useful for assisting

human text classification tasks, while the global explanations
are more satisfying and trustworthy.

Discussion

The objective evaluation of XAImethods highlights nuanced
characteristics across different global explainers, as depicted
in Table 3. At a global level, some methods consistently
demonstrate high fidelity, irrespective of the number of fea-
tures. On the other hand, their simplicity and interpretability
are underscored by the consistently low entropy of its weight
distributions. On the other hand, local explainers exhibit
heightened faithfulness primarily with a substantial feature
set, aligning with their inherent nature of capturing localised
patterns. Notably, the computational constraints become
apparent with several methods, rendering it intractable with
many features, a common occurrence in text classification
scenarios where feature counts tend to be high.
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Transitioning to the human evaluation, the user study
sheds light on complementary insights. Anchors emerge
as the most useful explanation method, with rule-based
approaches generally deemed more valuable than feature-
based ones, particularly in enhancing response time dis-
tributions. Users express higher satisfaction with global
explanations, potentially attributed to their alignment with
common understanding. In contrast, despite their discrimi-
native power, local explanations are perceived as less natural
due to incorporating less frequent features or rules. The trust-
worthiness ratings underscore the significance of semantic
correctness in explanations, with global explanations often
excelling in uncovering semantically relevant words.

In synthesis, while the objective evaluation provides cru-
cial insights into the technical capabilities of XAI methods,
the human evaluation underscores the subjective nuances in
user perception, emphasising the importance of consider-
ing technical efficacy and user satisfaction in selecting the
appropriate explainers. The absence of a singular silver bul-
let in XAI necessitates a nuanced approach, where the choice
of explainer should be tailored to the specific use case and
user requirements.

Conclusions and Future Contributions

In this study, we conducted a comprehensive survey of XAI
methods. Then, we evaluated different levels of granularity,
i.e. their scope and output. In the evaluation, we employed
both objective metrics and user evaluations and discussed
the results in depth. Our findings underscore the complexity
of choosing an appropriate XAI method, as there is no one-
size-fits-all solution. Instead, the selection process should be
approached on a case-by-case basis, considering the specific
context and requirements of the task at hand. By thoroughly
analysing the strengths and limitations of different explain-
ers, this paper is a valuable resource for users navigating
the landscape of XAI methods, aiding their decision-making
process and fostering a deeper understanding of the trade-
offs involved. Future research will explore papers focusing
on XAI for embeddings, which also hold a particular signif-
icance in text classification.

Appendix

In Table 5, we present all acronyms used throughout the
paper.

Below is the survey template presented to participants;
the response time is recorded for all the questions, especially
Q1–Q8.

Table 5 Full list of acronyms employed in this manuscript

Concept Acronym

Machine Learning ML

eXplainable Artificial Intelligence XAI

International Movie Database IMDB

Random Forest Classifier RF

Gradient Boosting Classifier GB

Support Vector Classifier SVC

Bag Of Words BOW

Shapley Additive exPlanations SHAP

Local Interpretable Model-agnostic Explanations LIME

SHAP Additive exPlanations SAGE

Bayesian Rule Change Generators BRCG

Quantitative Input Influence QII

Generalised Low Rank Models GLRM

Objective Evaluation OE

Human-Centred Evaluations HCE

Usability requirements indices U1–U11

Soundness U1

Completeness U2

Contextfullness U3

Interactiveness U4

Actionability U5

Chronology U6

Coherence U7

Novelty U8

Complexity U9

Personalisation U10

Parsimony U11

Functional requirements indices F1–F9

Problem Supervision Level F1

Problem Type F2

Explanation Target F3

Explanations Scope F4

Computational Complexity F5

Applicable Model Class F6

Relation to the Predictive System F7

Compatible Feature Types F8

Caveats and Assumptions F9

Operational requirements indices O1–O10

Explanation Family O1

Explanatory Medium O2

System Interaction O3

Explanation Domain O4

Data and Model Transparency O5

Explanation Audience O6

Function of the Explanation O7

Causality vs. Actionability O8
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Table 5 continued

Concept Acronym

Trust vs. Performance O9

Provenance O10

Safety requirements indices S1–S4

Information Leakage S1

Explanation Misuse S2

Explanation Invariance S3

Explanation Quality S4

Functional, Operational Usability, Safety, Validation FOUSV

Q1: Read the following description,
[text sample 1]
[no LIME explanation]
Do you think of the comment as a positive or negative

one?

Q2: Read the following description,
[text sample 2]
[with LIME explanations]
Do you think of the comment as a positive or negative

one?

Q3: Read the following description,
[text sample 3]
[no LR explanation]
Do you think of the comment as a positive or negative

one?

Q4: Read the following description,
[text sample 4]
[consider LR explanation words]
Do you think of the comment as a positive or negative

one?

Q5: Read the following description,
[text sample 5]
[no DT explanation]
Do you think of the comment as a positive or negative

one?

Q6: Read the following description,
[text sample 6]
[consider DT rules: if..., choose positive/negative]
Do you think of the comment as a positive or negative

one?

Q7: Read the following description,
[text sample 7]
[no Anchors explanation]

Do you think of the comment as a positive or negative
one?

Q8: Read the following description,
[text sample 8]
[consider Anchors explanation words]
Do you think of the comment as a positive or negative

one?

Q9: You are told the following description is positive/nega-
tive,

[text sample 9]
because: /shuffled
[LIME explanation]
[LR explanation]
[DT explanation]
[Anchors explanation]
Rate the above four explanations from a scale of 1–5, how

are you satisfied with them.

Q10: You are told the following description is positive/nega-
tive,

[text sample 10]
Choose the explanation that you trust most, and briefly

explain why do you trust it?
/shuffled
[LIME explanation]
[LR explanation]
[DT explanation]
[Anchors explanation]
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