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Abstract
Value at Risk (VaR) and Average Value at Risk (AVaR) are among the most widely-
used risk measures by market participants to assess the risk of individual financial 
firms and institutions. Despite their popularity, both measures fail to account for 
spillover effects between firms. To address this limitation, the CoVaR (Conditional 
Value at Risk) measure was introduced, which defines the VaR of a financial system 
conditional on the state of another institution. The traditional approach to estimat-
ing CoVaR involves a regression model combined with a quantile method to esti-
mate the model’s parameters. This paper proposes a composite quantile regression 
method to enhance the accuracy of CoVaR estimation. We apply this methodol-
ogy to several U.S. companies across various sectors, including finance, consumer 
goods, energy, industry, and technology. An analysis of the out-of-sample forecast 
accuracy using two popular backtesting criteria demonstrates that the composite 
quantile method provides more accurate CoVaR estimates than the standard quantile 
method. All computation codes are freely available in both R and MATLAB.
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1 Introduction

In recent years, much attention has been devoted to enhancing risk measurement 
tools to protect a firm or investment portfolio against unexpected events. Among 
these tools, Value at Risk (VaR) has emerged as one of the most widely used and 
established risk measures (e.g., Markowitz 1952, Roy 1952, and Bernard et al., 
2023). This measure estimates the financial risk of an asset, portfolio, or investment 
over a specified period with a given confidence level. Several reasons lead VaR to 
be welcomed by investors; on top of them, one can mention its minor computation 
costs. However, despite its advantages, this measure also has some undeniable draw-
backs. VaR is not a coherent risk measure and performs poorly in assessing risk in 
the loss distribution’s fat tails (e.g., Cruz et al. 2015 and Emmer et al. 2015). The 
Average Value at Risk (AVaR) risk measure is introduced by Rockafellar et al. (2000) 
to overcome these weak points. AVaR is coherent and consistent with the fat tail loss 
distributions (McNeil et al., 2015). While AVaR performance is better than VaR in 
considering the risk of fat tails, this measure also suffers from more computation 
costs than VaR. Both VaR and AVaR have a significant drawback that makes them 
unsuitable for comprehensive risk measurement: they do not account for risk spill-
over effects among institutions. Despite being the two most widely used risk mea-
sures in financial markets, this limitation undermines their effectiveness in accurately 
assessing systemic risk.

It is proven that, especially during financial crises, losses in some institutions tend 
to spread across other institutions and threaten the whole system. This phenomenon 
is known as systemic risk. Since VaR and AVaR assess institutions’ risk individually, 
both measures fail to consider an institution as part of a system, and therefore they 
do not consider spillover effects among institutions. To address this flaw, Adrian and 
Brunnermeier (2011) introduce the Conditional Value at Risk (CoVaR) risk metric. 
CoVaR is the VaR of a financial system based on whether or not institutions are in 
trouble. Several statistical methods have been applied to estimate the CoVaR risk 
measure. Adrian and Brunnermeier (2011) employ a simple quantile regression (QR) 
method, Borri et al. (2013) focus on the interconnectedness of financial system enti-
ties and the joint distribution of losses, Girardi and Ergün (2013) propose a multivari-
ate generalized ARCH model, Bernardi et al. (2013b) employ a class of multivariate 
hidden Markov models, and Bernardi et al. (2013a) compute CoVaR using a quantile 
Bayesian regression approach.

In this paper, we estimate CoVaR using the same framework as in Adrian and 
Brunnermeier (2011). However, we address the estimation problem for regression 
parameters using the composite quantile regression (CQR) method. The CQR was 
first proposed by Zou et al. (2008) and has become popular in several fields related to 
the quantile approach. As CQR method simultaneously considers multiple quantile 
levels of a random variable, in contrast to the QR estimator that only assesses one 
quantile level, the results enjoy more accuracy. Indeed, the goal of the CQR is to 
propose an estimation method for assessing the conditional mean of the response by 
gathering information from multiple quantile levels instead of estimating the condi-
tional quantiles individually.

1 3



Estimating Systemic Risk Using Composite Quantile Regression

The rest of the paper is organized as follows: Section 2 includes the methodol-
ogy of applying the composite quantile method to estimating CoVaR. Section 3 is 
devoted to introducing two popular backtesting criteria for analyzing the efficiency 
of a method in estimating CoVaR risk measure. In Section 4 we estimate CoVaR for 
real market data using both quantile and composite quantile methods and compare 
the estimation results using the introduced backtesting criteria. The conclusion is 
presented in Section 5.

2  CoVaR Systemic Risk

Suppose that Yj  and Yk are the interest variables of institutions or assets j and k 
(k ̸= j), respectively, where Yj  and Yk can be expressed through covariates 
X = (X1, . . . , XM ) such that M ≥ 1. Assume that the behavior of the variable Yk 
is related to both covariates X  and variable Yj . So, yj  and yk, as the observations of 
Yj  and Yk, could be written as follow:

 yj = x⊤θj + ϵj ,

 yk = x⊤θk + βyj + ϵk,

where θj , θk, and β are the unknown parameters of the regression models, and ϵj  and 
ϵk are the independent error terms. Based on the definition of VaR, which is indeed 
a fixed quantile level (e.g., Philippe 2001), VaRX,τ

j , which is used as the notation 
for the Value at Risk of institution j with the confidence level τ  conditional on the 
observed X , satisfies the following equation:

 P (Yj ≤ VaRX,τ
j |X = x) = τ.

Similarly, CoVaRX,τ
k|j  satisfies the below equation:

 P (Yk ≤ CoVaRX,τ
k|j |X = x, Yj = VaRX,τ

j ) = τ.

2.1 Quantile Regression Method in Estimating CoVaR

Sometimes, some problem-specific data features, such as skewness, fat-tails, outliers, 
etc., may affect the dependence between the variable of interest and the covariates. In 
this type of data, the least-squares method may show a weak performance in estimat-
ing the parameters of the regression model. The quantile regression is introduced by 
Koenker and Bassett (1978) to address this problem as a completely distribution-free 
and robust method for estimating the conditional quantiles of the response variable. 
This approach is rapidly expanding in statistics (e.g., Koenker 2005), social science 
(e.g., Firpo et al. 2009), biomedical (e.g., Flemming et al. 2017), finance (e.g., Demir 
et al. 2022), etc.
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Let a regression model y = x⊤θθθ + ϵϵϵ where y is the response variable, matrix x is 
the set of explanatory variables, θθθ is the unknown parameter of the model, and ϵϵϵ is 
the independent error term.

Using the representative qτ (.) as the τ -th quantile level, the following regression 
model is achieved:

 qτ (y) = x⊤θθθτ , (1)

where θθθτ  is the unknown parameter of the regression model related to the τ -th quan-
tile level. To estimate the unknown parameter of Eq. 1 (which is θθθτ ) using the QR 
method, the following optimization problem must be solved:

 
θ̂θθQR = argmin

θθθQR

T∑
i=1

ρτ (yi − x⊤
i θθθQR), (2)

where (yi, xi) for i = 1, 2, . . . , T  are the observations of (y, x), and 
ρτ (u) = u(τ − I(u ≤ 0)) is the check function defined by Koenker and Bassett 
(1978), in which I is the indicator function. As the check function is not differentiable 
at zero, it is impossible to derive an explicit solution to the minimization problem 
2; therefore, the estimation of θQR can be obtained by linear programming methods 
such as Newton or Alternating Direction Method of Multipliers (ADMM).

2.2 Time-Varying Quantile Regression Model of VaR and CoVaR

The quantile regression method has been widely considered as an approach for esti-
mating VaR, AVaR, and CoVaR risk measures. In Huang (2013), a nonparametric 
quantile regression and a kernel estimator are used to find VaR estimates. In Cher-
nozhukov and Du (2006), a conditional extremal quantile model is used to derive 
VaR estimates. Gerlach et al. (2011) uses dynamic conditional autoregressive quan-
tile models to estimate VaR; Chen et al. (2017) use a quantile-function-valued time 
series approach to estimate VaR; Chun et al. (2012) apply least squares and quan-
tile regression methods to estimate VaR and AVaR; and Bernardi et al. (2013a) uses 
Bayesian quantile regression to estimate CoVaR.

With a similar assumption of the previous sections, suppose that 
(y, x) = (yt, xt)T

t=1 = (yj,t, yk,t, xt)T
t=1 is T independent realizations of 

(Yj , Yk, X). based on Adrian and Brunnermeier (2011), one-day-ahead yj,t and yk,t 
could be formulate as:

 yj,t = x⊤
t−1θj + ϵj,t, (3)

 yk,t = x⊤
t−1θk + βtyj,t + ϵk,t. (4)

By applying the quantile method to Eqs. 3 and 4, it is possible to write:
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 VaRX,τ
j,t = x⊤

t−1θj , (5)

 CoVaRX,τ
k|j,t = x⊤

t−1θk + βtVaRX,τ
j,t , (6)

where θj , θj , and βt are unknown parameters of the model.

2.3 Composite Quantile Regression Method in Estimating CoVaR

According to Zou et al. (2008), the unknown error distribution in a regression model 
implies that relying on a single quantile level may result in inefficient parameter 
estimation. To achieve both robustness and high efficiency, they build upon the con-
cept introduced by Koenker and Bassett (1978) by proposing the composite quantile 
regression method.

With a similar set up of the simple quantile model, let y = x⊤θθθ + ϵϵϵ where y, x, θθθ, and 
ϵϵϵ are the response variable, explanatory variables, unknown parameter of the model, 
and the independent error term, respectively. Denoting 0 < τ1 < τ2 < · · · < τK  as a 
set of quantile levels, the unknown parameters of a regression model using the com-
posite quantile method can be obtained by solving the below optimization problem:

 
(b̂1, b̂2, . . . , b̂K , θ̂θθCQR) = argmin

b1,b2,...,bK ,θθθCQR

K∑
k=1

[
T∑

i=1
ρτk

(yi − bk − x
′

iθθθCQR)], (7)

where ρ is the check function and bk is the k−th quantile of the error term. Typically, 
it is possible to use equally spaced quantile levels τk = k

K+1  for k + 1, 2, . . . , K. 
For example, one can set K = 9 and K = 19 to produce 0.1, 0.2, . . . , 0.8, 0.9 and 
0.05, 0.1, 0.15, . . . , 0.9, 0.95 quantile levels.

Similar to Eqs. 2 and 7 is not differentiable at 0, so one cannot derive an explicit 
solution to this minimization problem. However, in Eq. 7, the minimization of the 
objective function is a convex optimization problem. It is shown that the composite 
quantile is uniquely defined and achieved by convex optimization techniques (e.g., 
Zou et al. 2008). Pietrosanu et al. (2017), for example, solve optimisationn problem 
7 using three alternating direction method of multipliers (ADMM), majorize-minimi-
zation (MM), and coordinate descent (CD) algorithms.

2.4 Time-Varying Composite Quantile Regression Models of VaR and CoVaR

After introducing the CoVaR in 2011, quantile-based regression models have gained 
popularity in estimating this risk measure. However, this approach does not neces-
sarily produce relevant results. Chun et al. (2012) question the performance of the 
simple quantile method, compared with the least-squares method, in estimating the 
quantile-based risk measures. Using the Monte Carlo simulation and generating four 
classes of distributions, it is shown that regardless of the error distribution, the least-
squares method works better than the quantile method in estimating VaR and the 
AVaR risk measures. On the other hand, Zou et al. (2008) show that the relative effi-

1 3



M. Sojoudi et al.

ciency of the composite quantile is greater than 70% compared to the least squares, 
regardless of the error distribution. In this regard, we aim to apply the composite 
quantile method in estimating VaR and CoVaR to obtain more robust results than 
the simple quantile method. We review some concepts that deal with the VaR and its 
regression model that help us to define CoVaR in the composite quantile framework.

Consider a probability space (Ω, F , P ), and the space Y := Lp(Ω, F , P ), with 
p ∈ [1, ∞), of measurable random variables Y : Ω −→ R having finite p − th order 
moment. Artzner (1999) suggests that a risk risk measure ρ : Y −→ R should satisfy 
four properties known as coherence axioms:

 ● (A1) Monotonicity: If Y, Y
′ ∈ Y  and Y ⪰ Y

′
 then ρ(Y ) ⩾ ρ(Y ′),( The notation 

Y ⪰ Y
′
 means that Y (ω) ⩾ Y

′(ω), for a.e. ω ∈ Ω).
 ● (A2) Convexity: ρ(tY + (1 − t)Y ′) ≤ tρ(Y ) + (1 − t)ρ(Y ′) for all Y, Y

′ ∈ Y  
and all t ∈ [0, 1],

 ● (A3) Translation Equivariance: If a ∈ R and Y ∈ Y , then ρ(Y + a) = ρ(Y ) + a,
 ● (A4) Positive Homogeneity: If t ⩾ 0 and Y ∈ Y , then ρ(tY ) = tρ(Y ).

Now, suppose that ρ(.) is a law-invariant risk measure, which means ρ(Y ) depends 
only on the distribution of Y (e.g., Kusuoka 2001), satisfying the axiom (A3). By 
applying ρ(.) to Eq. 3, the following equation is obtained (see Chun et al. 2012 to 
proof):

 

ρ|X(yj,t) = ρ|X(x⊤
t−1θj + ϵj,t)

= x⊤
t−1θj + ρ|X(ϵj,t)

= x⊤
t−1θj + ρ(ϵj,t).

Both VaR and CoVaR are law-invariant risk measure (e.g., Föllmer and Knispel 
2013), so by applying VaR to Eq. 3 and CoVaR to Eq. 4, we obtain:

 VaRX,τ
j,t = x⊤

t−1θj + VaRX,τ (ϵj,t), (8)

 CoVaRX,τ
k|j,t = x⊤

t−1θk + βtVaRX,τ
j,t + VaRX,τ (ϵk,t), (9)

where θj , θk, and β are the unknown parameters of the model and VaRX,τ (ϵ) is the 
τ -th quantile level of the distribution of ϵ. The superiority of the composite quantile 
method is that this method estimates the different quantiles of the ϵ, including τ − th 
quantile. Thanks to this advantage, one can rewrite Eqs. 8 and 9 in the composite 
quantile framework as:

 VaRX,τ
j,t = x⊤

t θj + bjτ
(t),

 CoVaRX,τ
k|j,t = x⊤

t θk + βtVaRX,τ
j,t + bkτ

(t),
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where θj , θk, and βt are the unknown parameters of the regression model and bjτ  
and bkτ  are the τ -th quantiles of ϵj  and ϵk computed using the optimization problem 
7.

3 Backtesting of CoVaR Risk Measure

Along with the increased application of quantile-based risk measures such as VaR, 
AVaR, and CoVaR in the financial markets, economists and statisticians have started 
introducing backtesting criteria to evaluate the effectiveness of various methods for 
estimating these risk measures. The amount of backtesting for the quantile-based risk 
measures is considerable, and each criterion pursues a particular goal. For instance, 
Angelidis and Degiannakis (2018) propose a two-stage backtesting method that lever-
ages conditional volatility models, while Christoffersen and Pelletier (2004) utilize 
the time between VaR violations as a backtesting approach. We focus on two widely 
used backtesting criteria, violation and risk map, to achieve a rational comparison 
between quantile and composite quantile methods in estimating CoVaR.

3.1 Violation Backtesting

Violation is one of the most popular benchmarks, with a very easy-to-apply proce-
dure accepted by many researchers to evaluate the efficiency of a method in esti-
mating VaR and CoVaR. Violation is said to occur whenever an asset return on a 
particular day exceeds the estimated CoVaR on the same day (e.g., McNeil and Frey 
2000). The violation process is defined as:

 
Iτ (t) =

{
1 if rt < CoVaRτ

t ,
0 else,  (10)

where rt is the return at time t. Christoffersen (1998) studies the Unconditional Cov-
erage (UC) hypothesis in detail. Based on the UC hypothesis, the probability of the 
exceeded returns must be equal to the τ  coverage rate:

 Pr[Iτ (t) = 1] = E[Iτ (t)] = τ.

In this regard, if the violation of method A be closer to τ  compared to method B, it is 
said that method A is more efficient than method B in estimating VaR risk measure. 
Two below scenarios happen to analyze the performance of a method:

 

{
if Pr[Iτ (t) = 1] > τ ; the risk is underestimated,
if Pr[Iτ (t) = 1] < τ ; the risk is overestimated.  (11)

Since CoVaR is a special VaR, a similar approach is implemented for CoVaR. Hence, 
for comparing the efficiency of the quantile and composite quantile methods for a 
fixed level of confidence level, it is only enough to compare their violations for that 
confidence level.
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3.2 Risk Map

In contrast to its popularity in analyzing the performance of the quantile-based risk 
measures, the violation criterion suffers from an undeniable drawback. This criterion 
only focuses on the number of exceeded returns and does not consider the magnitude 
of these losses. However, in practice, market participants are also paying attention 
to the magnitude of their losses. Berkowitz and O’Brien (2002) and Stulz (2008) 
discuss this issue more profoundly.

To address the magnitude issue, Colletaz et al. (2013) introduce the risk map, a 
novel criterion of violations that accounts for the number and magnitude of extreme 
losses. In this framework, they use the benefits of an extra τ

′
 confidence level which 

is much lower than the main confidence level τ ( e.g. τ = 1% and τ
′ = 0.2%). If a 

significant loss happens, this loss not only exceeds the estimated CoVaR for τ  but 
also is likely to exceed the estimated CoVaR for τ

′
 confidence level. The first one is 

named the exceptions and the latter one is the super exceptions.
Let {It(τ)}T

t=1 and {It(τ
′)}T

t=1 be the violation process for τ  and τ
′
 confidence 

levels defined in Eq. 10. Based on the Unconditional Coverage hypothesis, the below 
equations must be satisfied:

 Pr[Iτ (t) = 1] = E[Iτ (t)] = τ,

and

 Pr[Iτ ′ (t) = 1] = E[Iτ ′ (t)] = τ
′
.

Let N and N
′
 be the number of the CoVaR violations for τ  and τ

′
, respectively:

 
N =

T∑
t=1

Iτ (t) N
′

=
T∑

t=1
Iτ ′ (t).

Using the null and alternative hypothesis, one can test the UC hypothesis for the 
CoVaR violations as:

 

H0 : E[Iτ (t)] = τ,

H1 : E[Iτ (t)] ̸= τ.

It is shown that LRUC  is an asymptotically chi-square distribution with one degree 
of freedom (e.g., Wipplinger 2007). Under the null hypothesis, the corresponding 
log-likelihood ratio statistics is defined as:

 
LRUC(τ) = −2ln

[
(1 − τ)T −N τN

]
+ 2ln

[
(1 − N

T
)T −N (N

T
)N

]
d−−−−−→

T −→∞
χ2(1). (12)

A similar validation test can be conducted for the super exceptions:
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H0 : E[I
′

τ (t)] = τ
′
,

H1 : E[I
′

τ (t)] ̸= τ
′
.

Similar to Eq. 12, one can define LRUC(τ ′) by replacing τ  and N by τ
′
 and N,

′
, 

respectively.
The goal of the risk map is to merge the non-rejection zone of LRUC(τ) and 

LRUC(τ ′) for a fixed sample size. Colletaz et al. (2013) create a balance between the 
exceptions and the super exceptions by offering a graphical way. In this regard, the 
null hypothesis is defined to jointly test the number of CoVaR exceptions and super 
exceptions:

 H0 : E[Iτ (t)] = τ and E[I
′

τ (t)] = τ
′
.

The Multivariate Unconditional Coverage (MUC) test is defined as:

 

LRMUC(τ, τ
′
) = −2ln

[
(1 − τ)N0(τ − τ

′
)N1(τ

′
)N2

]

+ 2ln

[
(N0

T
)N0(N1

T
)N1(N2

T
)N2

]
d−−−−−→

T −→∞
χ2(2),

where Ni =
∑T

t=1 Ji,t for i = 0, 1, 2. Indicators Ji,t for i = 0, 1, 2 are calculated 
using below formulas:

 
J1,t = Iτ (t) − Iτ ′ (t) =

{
1 if CoVaRτ

′

t < rt < CoVaRτ
t ,

0 otherwise.

 
J2,t = Iτ ′ (t) =

{
1 if rt < CoVaRτ

′

t ,
0 otherwise.

and

 J0,t = 1 − J1,t − J2,t = 1 − Iτ (t).

A risk map is conducted based on the acceptance and rejection of two confidence 
levels. If the pair (N, N

′) falls into the green area, one cannot reject the multivariate 
null hypothesis E[Iτ (t)] = τ  and E[I ′

τ (t)] = τ
′
 under the 95% confidence level. If 

(N, N
′) falls into a yellow cell, one can reject the null hypothesis at the 95% confi-

dence level but cannot reject at the 99%. Finally, a red cell implies that one can reject 
the null hypothesis at both 95% and 99% confidence levels (Fig. 1).
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Fig. 1 The risk maps for different numbers of CoVaR exceptions (N) and CoVaR super exceptions 
(N

′
) for T = 555
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4 Empirical Studies

This section applies the methodologies discussed in the previous sections to real mar-
ket data. In line with Bernardi et al. (2013a), the data are obtained from the different 
sectors of the Standard and Poor 500 Composite Index (S&P 500) on the basis of 
daily observations. The collected data include the 2018 financial crisis to consider a 
crisis period. Many stock markets around the world saw their values fall in 2018. For 
example, the S&P 500 index finished the year down 6 percent, the Dow Jones Indus-
trial Average dropped 5.6 percent, and the NASDAQ composite slid nearly 4 percent. 
Moreover, most European and Asian markets also lost ground in 2018.

Our empirical analysis is based on publicly traded U.S. companies of S&P 500 
listed in Table 1. The companies belong to different sectors including Financial, Con-
sumer, Energy, Industrial, Technology. Daily equity price data included a sample 
period from January 3, 2017 to December 31, 2024 (Fig. 2).

We use the below indexes as the explanatory variables of the regression models 
(Table 2):

REIT Index is securitized portfolios of real estate properties which allows ordinary 
investors to buy shares in commercial real estate portfolios, the MSCI EAFE Index 
captures several large and mid-cap representation in 21 countries, and GCG Index 
includes the futures contracts for a diversified group of commodities futures (Fig. 3).

4.1 CoVaR Estimating and Backtesting Using Quantile and Composite Quantile 
Methods

We perform out-of-sample backtesting procedures to compare the efficiency of the 
quantile and composite quantile methods in estimating CoVaR. We consider observa-
tions from January 3, 2017, to December 31, 2024, comprising 2012 daily returns. 
The full data period is divided into a learning sample: January 3, 2017, to May 5, 
2017; and a forecasting sample: May 6, 2017, to December 31, 2024. We employ an 

Table 1 Summary statistics of the company’s stock prices
Name Ticker Sector Mean Min Max Std. Dev
American Express Co. AXP Financial 141.378 68.960 305.570 50.706
Bank of America Corp. BAC Financial 32.146 18.080 49.380 6.597
Comerica Inc. CMA Financial 67.644 26.050 102.210 17.564
JPMorgan Chase & Co. JPM Financial 131.967 79.030 250.290 36.003
KeyCorp KEY Financial 17.332 8.160 27.010 3.621
Moody’s Corp. MCO Financial 269.412 94.270 500.880 100.080
Morgan Stanley MS Financial 69.372 27.810 134.990 23.938
McDonald’s Corp. MCD Consumer 220.385 119.480 316.560 49.059
Nike Inc. NKE Consumer 98.659 50.830 177.510 30.057
Chevron Corp. CVX Energy 126.925 54.220 188.050 27.107
Exxon Mobil Corp. XOM Energy 81.419 31.450 125.370 22.964
General Electric Co. GE Industrial 78.601 27.333 194.230 40.899
Intel Corp. INTC Technology 44.087 18.890 68.470 11.057
Standard and Poor 500 S&P 500 Index 3675.050 2237.400 6090.270 977.332
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estimation window of 100 observations to estimate one-day-ahead VaR, and an esti-
mation window with the same length to estimate one-day-ahead CoVaR using both 
quantile and composite quantile methods. This procedure is consistent with both vio-

Fig. 3 Histogram of the indexes

 

Name Ticker Mean Min Max Std. Dev
Real Estate 
Investment 
Trust

REIT 2162.484 1380.150 2964.060 352.897

MSCI EAFE MSCI 
EAFE

2035.158 1354.300 2506.690 205.939

iShares 
S&P GSCI 
Commodity

GCG 17.274 7.830 26.300 3.742

Table 2 Summary statistics of 
the indexes
 

Fig. 2 Histogram of daily prices for the listed U.S. stocks
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lation and risk map backtesting. The only difference is that for the violation, one must 
slide the window for one confidence level, while in the risk map, the window sliding 
procedure must be performed for two confidence levels to compute both exceptions 
and super exceptions. The below figures are the estimated CoVaR for several U.S 
companies with two quantile and composite quantile methods to obtain violation and 
risk map criteria (Figs. 4 and 5).

4.1.1 Violation

Table 3 shows violations of the CoVaR at the different confidence levels for compa-
nies listed in Table 1.

Fig. 4 Time series plot of the CoVaR for companies at the confidence levels τ = 0.05( blue line), and 
τ

′ = 0.01( green line), using the quantile method
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Comparing the results in Table 3 reveal that the performance of the composite 
quantile approach is far better than the quantile method for all companies at any 
supposed confidence level. Especially in the lower quantile levels, this efficiency is 
more compared to upper levels. Note that both risk measures underestimate CoVaR 
in almost all cases. Until this point, using the violation backtesting, we show that the 
composite quantile method enjoys considerable efficiency compared to the simple 
quantile method. We analyze both methods using the risk map criterion in the next 
steps.

Fig. 5 Time series plot of the CoVaR for companies at the confidence levels τ = 0.02( blue line), and 
τ

′ = 0.1( green line), using the quantile method
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4.1.2 Risk Map

Table 4 shows the numbers of CoVaR exceptions (N) at confidence levels 0.05, 0.1, 
and Numbers of CoVaR super exceptions (N

′
) at the confidence levels 0.01, 0.02.

Based on Table 4, we conclude that the composite quantile method estimates the 
CoVaR risk measure much better than the quantile approach for all listed companies. 
In the composite quantile method, we cannot reject the multivariate null hypothesis 
τ = 0.05 and τ

′ = 0.01 at the 95% confidence level for AXP, BAC, KEY, MCO, 
MS, MCD, NKE, CVX, XOM, GE, and INTC companies. Also, we cannot reject for 
CMA, MCO, and NKE at the 99% confidence level. For τ = 0.1 and τ

′ = 0.02, we 
observe an interesting pattern. In the composite quantile method, we cannot reject 
the null hypothesis at the 99% confidence level for all companies except AXP and 
INTC, where we can reject it at both the 99% level but not at 95% level. Interestingly, 
with the quantile method, we can reject the multivariate null hypothesis τ = 0.05 and 
τ

′ = 0.01 at both 95% and 99% confidence levels for all companies. Similarly, we 
can reject the null hypothesis for τ = 0.1 and τ

′ = 0.02 at both the 95% and 99% 
confidence levels for all companies.

Table 3 Violations of CoVaR at confidence levels τ = 0.01, 0.02, 0.05, and 0.1
Ticker 0.01 0.02 0.05 0.1

AXP Q 0.0534 0.0660 0.1113 0.1475
CQ 0.0175 0.0260 0.0806 0.1240

BAC Q 0.0605 0.0726 0.0767 0.1224
CQ 0.0193 0.0285 0.0809 0.1294

CMA Q 0.0550 0.0518 0.0804 0.1454
CQ 0.0190 0.0421 0.0863 0.1309

JPM Q 0.0641 0.0696 0.0931 0.1349
CQ 0.0194 0.0319 0.0826 0.1242

KEY Q 0.0499 0.0533 0.0822 0.1314
CQ 0.0211 0.0304 0.0734 0.1241

MCO Q 0.0352 0.0768 0.1023 0.1263
CQ 0.0201 0.0311 0.0812 0.1236

MS Q 0.0518 0.0489 0.0741 0.1527
CQ 0.0210 0.0337 0.0451 0.1248

MCD Q 0.0679 0.0662 0.0915 0.1290
CQ 0.0175 0.0301 0.0690 0.1260

NKE Q 0.0735 0.0490 0.0470 0.1492
CQ 0.0230 0.0320 0.0735 0.1205

CVX Q 0.0662 0.0627 0.1260 0.1756
CQ 0.0275 0.0485 0.0662 0.1132

XOM Q 0.0771 0.0753 0.0915 0.1600
CQ 0.0140 0.0303 0.0753 0.1312

GE Q 0.0573 0.0537 0.0700 0.1492
CQ 0.0230 0.0303 0.0771 0.1168

INTC Q 0.0609 0.0627 0.0987 0.1816
CQ 0.0175 0.0340 0.0717 0.1366
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5 Conclusion

This paper contributed to the literature by addressing the problem of estimating the 
CoVaR risk measure using a robust composite quantile regression method. In the 
most of the financial papers, CoVaR risk measure is estimated and analyzed by using 
the simple quantile method. By emphasizing the drawback of the simple quantile 
method in estimating quantile-based risk measures, a new method, called composite 
quantile method, was suggested to assess CoVaR systemic risk. Using two backtest-
ing criteria, violation and risk map, the out-of-sample studies on companies from dif-
ferent sectors of the U.S stock market, including financial, consumer goods, energy, 
industries, and technology, revealed that the composite quantile method is superior 
to the simple quantile method in estimating CoVaR. Based on the results, we recom-
mend market participants and companies consider the composite quantile method as 
a robust approach to estimating CoVaR systemic risk.

Table 4 Numbers of CoVaR exceptions (N) at confidence levels 0.05, 0.1, and Numbers of CoVaR super 
exceptions (N

′
) at confidence levels 0.01, 0.02.
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