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Abstract. Large-scale atmospheric dynamics modulate the
occurrence of extreme precipitation events and provide
sources of predictability of these events on timescales rang-
ing from days to decades. In the midlatitudes, regional dy-
namical drivers are frequently represented as discrete, per-
sistent and recurrent circulation regimes. However, available
methods identify circulation regimes which are either pre-
dictable but not necessarily informative of the relevant local-
scale impact studied, or targeted to a local-scale impact but
no longer as predictable. In this paper, we introduce a gener-
ative machine learning method based on variational autoen-
coders for identifying probabilistic circulation regimes tar-
geted to spatial patterns of precipitation. The method, CMM-
VAE, combines targeted dimensionality reduction and prob-
abilistic clustering in a coherent statistical model and extends
a previous architecture published by the authors to allow for
categorical target variables. We investigate the trade-off be-
tween regime informativeness of local precipitation extremes
and predictability of the regimes at subseasonal lead times. In
an application to study drivers of extreme precipitation over
Morocco, we find that the targeted CMM-VAE regimes are
more informative of the impact variable of interest, compared
to two well-established linear approaches, while maintaining
the predictability of conventional non-targeted circulation
regimes in subseasonal hindcasts, hence resolving the trade-
off identified in previous studies. Furthermore, the targeted
regimes and their predictability are physically interpretable

in terms of known subseasonal teleconnections relevant to
the region, the Madden-Julian Oscillation and variability of
the stratospheric polar vortex. The proposed method there-
fore allows to identify predictable, interpretable and locally
relevant representations of regional dynamical drivers given
a target variable of interest. These results highlight the poten-
tial of the method for a variety of applications, ranging from
subseasonal forecasting to attribution and statistical down-
scaling.

1 Introduction

Extreme events such as heatwaves and extreme precipitation
cause devastating impacts on lives and livelihoods around the
world every year. Improving the forecasts of these extremes
at timescales ranging from days to decades, in particular in
the context of a changing climate, can support societal re-
silience through measures such as improved early-warning
systems, forecast-based financing, and robust climate change
adaptation (Coughlan de Perez et al., 2019; Lemos et al.,
2012).

The occurrence and predictability of extreme events is of-
ten modulated by regional dynamical drivers such as the
North Atlantic Oscillation over north-western Europe or
the Caribbean Low-Level Jet over Central America and
the Caribbean (Garcia-Martinez and Bollasina, 2020; Scaife
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et al., 2008). These regional dynamical drivers are them-
selves frequently predictable at extended lead times, and
can furthermore be modulated by teleconnections from low-
frequency modes of variability in the climate system such
as the El-Nifio Southern Oscillation, which act as sources of
predictability at longer timescales (Ferranti et al., 2018; Le
et al., 2023; Mariotti et al., 2020; Saggioro et al., 2024).

Regional dynamical drivers and associated teleconnec-
tions have therefore been used to improve extreme event
predictions on a range of timescales. At medium-range lead
times up to 15d ahead, forecasts conditional on regional
dynamical drivers have demonstrated improved skill (Allen
et al., 2021; Mastrantonas et al., 2022; Rouges et al., 2024).
At subseasonal-to-seasonal (S2S) lead times, reduced repre-
sentations of dynamical drivers and empirical models of tele-
connections to other modes of variability have been lever-
aged to improve forecast skill (Bach et al., 2024; de Fondev-
ille et al., 2023; Bommer et al., 2025; Baker et al., 2018;
Kretschmer et al., 2017), as well as identify and explain so-
called windows of opportunity of higher-than-average fore-
cast skill (Dunstone et al., 2023; Mariotti et al., 2020). On cli-
mate timescales, large-scale drivers have been used to gain a
physical understanding of climate model uncertainty as well
as conditional predictability by building plausible storylines
of future change (Harvey et al., 2023; Mindlin et al., 2023;
Shepherd et al., 2018).

A well-established approach to representing regional dy-
namical drivers, such as jet variability in the midlatitudes, is
the identification of recurrent and persistent patterns of at-
mospheric circulation, so-called weather regimes (Ghil and
Robertson, 2002; Hannachi et al., 2017). These regimes are
commonly identified using a combination of linear dimen-
sionality reduction and non-probabilistic clustering (see e.g.
Michelangeli et al., 1995). Over several regions, this ap-
proach has been shown to identify weather regimes that
are persistent and predictable by dynamical forecast mod-
els (Dorrington et al., 2022; Falkena et al., 2022; Rouges
et al., 2024; Straus, 2022) as well as useful for understanding
teleconnections from, for example, the Madden-Julian Oscil-
lation (MJO) or Stratospheric Polar Vortex (SPV) (Cassou,
2008; Domeisen et al., 2020).

While these conventional weather regimes are designed to
capture the main features of the circulation over a given re-
gion such as the North Atlantic, they do not necessarily dis-
entangle the dynamical patterns that modulate extreme im-
pacts in a specific country or area of interest (Bloomfield
etal., 2020; Wiel et al., 2019; Vrac and Yiou, 2010; Mastran-
tonas et al., 2020). However, the ability of regional dynam-
ical drivers to improve forecasts across different timescales
depends on both their informativeness of the local extreme
impact of interest, as well as their own predictability and abil-
ity to represent the atmospheric phase space. Therefore, con-
ventional circulation regimes, despite their predictability, do
not necessarily represent suitable regional dynamical drivers
for any given target variable as they lack informativeness of
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the local impact. Different methods have been proposed to
identify regimes targeted to a local impact, such as cluster-
ing the impact variable directly (Bloomfield et al., 2020; Ull-
mann et al., 2014) or filtering for extreme impact days prior
to clustering (Dorrington et al., 2024). However, while the
resulting regimes are more informative of the impact stud-
ied, they were shown to compromise regime predictability
(Bloomfield et al., 2021).

In this study, we introduce a probabilistic machine learn-
ing method for identifying targeted regimes and inves-
tigate the ability of this method to balance the trade-
off between regime informativeness and predictability. The
method, termed Categorical Mixture Model Variational Au-
toencoder (CMM-VAE), is based on a variational autoen-
coder architecture and combines targeted dimensionality re-
duction and probabilistic clustering in a single coherent sta-
tistical model that is fit using Bayesian variational infer-
ence. The method builds on a previous method introduced
in Spuler et al. (2024a) which was found to identify regimes
that are more informative of the chosen target variable while
still being persistent and representative of the entire atmo-
spheric phase space over the region. These promising results
motivate the further investigation of the ability of the ap-
proach to balance the trade-off between regime predictabil-
ity and informativeness. The CMM-VAE method enables the
application of the approach presented in Spuler et al. (2024a)
to spatial patterns of extreme precipitation, which can pro-
vide information that is more useful at local scales compared
to the spatially averaged precipitation used in Spuler et al.
(2024a). The CMM-VAE method is described in detail in
section 2.2.3.

We apply the method to study circulation regimes tar-
geted to precipitation over Morocco, as well as their pre-
dictability in subseasonal hindcasts and associated telecon-
nections (see Fig. 1 for an overview). With most of the rain-
fall occurring in extended winter, the country is vulnera-
ble to both extreme rainfall, which leads to flooding and is
the focus of this study, as well as drought, which impacts
agricultural livelihoods and overall macroeconomic stabil-
ity (Loudyi et al., 2022). Previous studies have shown that
extreme precipitation events over Morocco are associated
with dynamically driven moisture flux from the Atlantic.
This can occur through an alignment of the subtropical jet
with the African coastline and anomalous south-westerly sur-
face to mid-tropospheric flow, leading to large-scale ascend-
ing motions and instability over the Western Mediterranean
region (Dayan et al., 2015; Khouakhi et al., 2022; Toreti
et al., 2010). These regional dynamical drivers of precipita-
tion over Morocco have been studied in terms of both North
Atlantic and Mediterranean circulation regimes (Driouech
etal., 2010; Mastrantonas et al., 2020; Tramblay et al., 2012).
While certain regimes over both regions, such as the negative
phase of the North Atlantic Oscillation (NAO), are associ-
ated with an increase in the probability of extreme precipi-
tation, the dynamical mechanisms described above and anal-
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Figure 1. Graphical illustration of teleconnections (green box) from
the SPV and MJO at subseasonal timescales, their mediation by the
targeted circulation regimes (orange box) and associated impact on
extreme precipitation over Morocco (blue box).

ysed in terms of distinct patterns in Chaqdid et al. (2023) are
not clearly captured in the regimes over either region. This
motivates the application of the introduced machine learning
method to this region, as a first case study of whether the ap-
proach is able to identify dynamical drivers that are informa-
tive of precipitation over Morocco but which also present an
interpretable and predictable partitioning of the large-scale
atmospheric phase space.

In terms of timescales, we choose to evaluate teleconnec-
tions and predictability at subseasonal to seasonal lead times.
At these lead times, regional dynamical drivers of precipita-
tion extremes in Morocco have been shown to be modulated
by both the Madden-Julian Oscillation (MJO) (Gadouali
et al., 2020) and variability of the northern-hemisphere
stratospheric polar vortex (SPV) (Zhang et al., 2024). The
MIJO is a leading mode of global subseasonal variability that
modulates deep tropical convection and thereby acts as a
source of Rossby waves leading to teleconnections to ex-
tratropical regions (Lee et al., 2020; Roundy et al., 2010).
Variability in the SPV, on the other hand, has been shown to
influence subseasonal forecast skill over the European and
Mediterranean region, with weaker SPV states leading to an
equatorward shift of the tropospheric eddy-driven jet and as-
sociated storm tracks (Kidston et al., 2015; Kretschmer et al.,
2018).

The contribution of this paper is threefold. The first con-
tribution is to introduce the CMM-VAE method, short for
Categorical Mixture Model Variational Autoencoder, which
enables the application of the method previously presented
in Spuler et al. (2024a) to study spatial patterns of precip-
itation extremes as target variables. Furthermore, we work
with a more realistic precipitation dataset (CHIRPS) instead
of the reanalysis-based precipitation data used in Spuler et al.
(2024a).

The second contribution is to use the CMM-VAE method
to identify and analyse targeted regime representations of the
dynamical drivers of extreme precipitation over Morocco.
We compare the informativeness of these targeted regimes to
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conventional non-targeted circulation regimes identified us-
ing Principal Component Analysis (PCA) and k-means clus-
tering, as well as targeted clusters identified using a linear
targeted method, Canonical Correlation Analysis, again com-
bined with k-means clustering.

The third contribution of the paper is to investigate the pre-
dictability of these targeted circulation regimes, compared
to conventional, non-targeted, regimes. We first analyse the
ability of subseasonal dynamical reforecasts to predict the
targeted regimes which provides an assessment of the pre-
dictability of the regimes conditional on state-of-the-art dy-
namical models. We then evaluate the predictability of the
regimes in reanalysis data, conditional on teleconnections
from two relevant modes of subseasonal variability, the MJO
and SPV. We analyse conditional predictability in terms of
the information-theoretical metrics of conditional entropy
and mutual information. Next to presenting another line of
evidence for the predictability of the regimes, this investiga-
tion shows whether the targeted CMM-VAE regimes can be
interpreted as representing physical processes that are mod-
ulated by large-scale drivers and can hence be used for fur-
ther applications such as statistical downscaling as well as to
improve the understanding of dynamical processes over the
region.

The remainder of the paper is structured as follows. Sec-
tion 2 introduces the CMM-VAE method for identifying tar-
geted regimes (Sect. 2.2), and presents the data and meth-
ods used to capture spatial patterns of extreme precipitation
over Morocco (Sect. 2.1), as well as to analyse the MJO
and SPV teleconnections and skill in subseasonal dynami-
cal reforecasts (Sect. 2.3). Section 3 presents the results of
this study: the application of the CMM-VAE method to iden-
tify circulation regimes targeted to precipitation over Mo-
rocco (Sect. 3.1), the evaluation of the forecast skill of these
regimes in subseasonal hindcasts (Sect. 3.2), as well as sub-
seasonal teleconnections to the MJO and SPV in reanalysis
data (Sect. 3.3) Section 4 presents a discussion of the results,
a conclusion and an outlook.

2 Data and Methods

2.1 Extreme precipitation over Morocco as local target
variable

As target variable, we consider extreme precipitation over
Morocco in extended winter (November—March). To this
end, CHIRPS v2.0 (Funk et al., 2015) precipitation data is
averaged over 3 d at each grid cell, as this timescale captures
the duration of most extreme precipitation events over the ob-
servational period (Loudyi et al., 2022). The CHIRPS v2.0
dataset combines in-situ station data with satellite data for
all longitudes and 50° S—50° N and is available from 1981 to
present at 0.05° resolution. The dataset was chosen as it has a
more realistic representation of precipitation compared to the

Weather Clim. Dynam., 6, 995-1014, 2025
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reanalysis data used in Spuler et al. (2024a) and shows good
performance over Africa compared to other available gridded
rainfall datasets (Dinku et al., 2018; Maidment et al., 2017).

To capture precipitation extremes, we analyse the 95th per-
centile at each grid cell as well as of spatially averaged pre-
cipitation over Morocco. Moreover, we compute the dom-
inant spatial patterns of precipitation by applying k-means
clustering on the precipitation data described above, to be
able to capture different dynamical drivers of precipitation
over different regions (Chaqdid et al., 2023). Results for dif-
ferent choices of k were assessed and a cluster number of 5
was chosen as the minimal number that represents the most
prevalent distinct spatial patterns of precipitation over the
region. The resulting precipitation patterns shown in Fig. 2
contain information about both common spatial patterns of
precipitation (Fig. 2a) as well as the extremality of these pre-
cipitation events (Fig. 2b): Pattern 2 summarises all days as-
sociated with no or little precipitation, while patterns 3 and
4 represent most days above the 95th percentile of total pre-
cipitation over Morocco. On the other hand, patterns 1 and 3
(and likewise 4 and 5) represent related spatial patterns but
different levels of extremality.

2.2 Identifying (targeted) circulation regimes as
regional dynamical drivers

Atmospheric circulation patterns are investigated using
geopotential height data at 500 hPa (z500) over the East At-
lantic and Mediterranean region (20-80°N; 50° W-30°E)
in extended winter (November—March) based on ERAS re-
analysis data from 1981 to 2022 (Hersbach et al., 2020)
re-gridded to a resolution of 2.5° x 2.5°. The geopotential
height data is standardized by subtracting the climatological
daily mean and dividing the result by the standard deviation
across grid points.

This choice of region was based on multiple considera-
tions. Previous studies found the North Atlantic to be the
key moisture source for precipitation over Morocco, and ex-
isting literature identifies the NAO as one of the dynami-
cal drivers of precipitation over Morocco (Driouech et al.,
2010; Khouakhi et al., 2022; Tramblay et al., 2012). Fur-
thermore, we found that the anomalies related to circula-
tion regimes targeted to precipitation over Morocco over the
Mediterranean region analysed in Spuler et al. (2024a) ex-
tend to the North Atlantic region. However, key results of
this paper were found not to be sensitive to the choice of re-
gion.

Table 1 provides an overview of the different methods for
identifying circulation regimes used in this study which are
described in detail below.

Weather Clim. Dynam., 6, 995-1014, 2025
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2.2.1 Principal Component Analysis and k-means
clustering (PCA + k-means)

Principal Component Analysis (PCA, commonly referred
to as Empirical Orthogonal Function analysis in atmo-
spheric science) combined with k-means clustering have
established themselves as a common choice for determin-
ing non-targeted circulation regimes (Charlton-Perez et al.,
2018; Michelangeli et al., 1995), including over the Atlantic
and Mediterranean regions (Giuntoli et al., 2022; Mastran-
tonas et al., 2020). While other approaches exist (Hannachi
et al., 2017), this two-step approach (hereafter abbreviated
PCA + k-means) is used as a baseline here against which to
benchmark the targeted method. PCA is a linear dimension-
ality reduction method that projects a higher-dimensional in-
put space into a reduced space spanned by the orthogonal
eigenvectors of the covariance matrix of the data (e.g. Jol-
liffe and Cadima, 2016). K-means clustering is then applied
to the reduced space of principal components and partitions
the data into k sets that minimize the mean within-cluster
squared distance from the respective cluster centre. PCA is
implemented using the eofs Python package (Dawson, 2016)
and the first 15 principal components are retained, while k-
means clustering is applied using the Python sklearn imple-
mentation.

2.2.2 Regularized Canonical Correlation Analysis with
k-means clustering (CCA + k-means)

Canonical Correlation Analysis (CCA) is a linear dimension-
ality reduction method that jointly identifies respective linear
transformations of two high-dimensional spaces onto sub-
spaces that maximize the correlation between the projections
of the variables onto their new basis vectors (Johnson and
Wichern, 2013). The method has previously been applied to
identify targeted circulation regimes (Vrac and Yiou, 2010),
and is therefore implemented here, in combination with k-
means clustering, to provide a well-established linear tar-
geted method against which to compare methods based on
nonlinear variational autoencoders. However, both the pre-
cipitation and geopotential height field were found to be too
high-dimensional for traditional CCA to algorithmically con-
verge. We therefore aggregated precipitation at the district
level over Morocco and implemented a ridge regularization
parameter for the geopotential height field (Vinod, 1976).
The ridge regularization penalizes the number of dimensions
used and has been shown to address numerical convergence
issues of CCA when applied to collinear data. The regular-
ized CCA method is implemented using the Python package
cca-zoo (Chapman and Wang, 2021). Due to the aggregation
of the precipitation field, only the first 10 canonical covari-
ates could be computed and were used for subsequent clus-
tering.

https://doi.org/10.5194/wcd-6-995-2025
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Figure 2. (a) Spatial patterns of 3 d precipitation events over Morocco in extended winter (November—March) identified using k-means
clustering. The percentage number in the heading indicates the occurrence probability over all days. (b) Occurrence probability of clusters
in different quantiles of total precipitation over Morocco. The vertical axis represents the percentage of days in a given precipitation quantile

that are assigned to a specific pattern.

Table 1. Overview of methods used for identifying (targeted) circulation regimes.

Abbreviation Method

Target variable

PCA + k-means

subsequent k-means clustering

Linear dimensionality reduction using
Principal Component Analysis and

None

CCA + k-means

Linear dimensionality reduction using
regularized Canonical Correlation Analysis
and subsequent k-means clustering

CHIRPS precipitation over Morocco
aggregated by administrative regions
(see Loudyi et al., 2022, Fig. 2.1).

CMM-VAE

Categorical Mixture Model — Variational
Autoencoder: nonlinear dimensionality

Spatial patterns of extreme precipitation
over Morocco shown in Fig. 2.

reduction and probabilistic clustering

2.2.3 CMM-VAE: a nonlinear targeted method based
on variational autoencoders

We introduce a novel method, referred to as CMM-VAE,
for identifying probabilistic and targeted circulation regimes
based on a variational autoencoder, building on the RMM-
VAE method previously introduced in Spuler et al. (2024a).

A variational autoencoder (VAE) is a deep generative ma-
chine learning method used for non-linear dimensionality re-
duction, that is to find a reduced representation of a high-
dimensional input space. Autoencoders can be interpreted as
a non-linear extension of PCA implemented through an en-
coder and decoder neural network. Variational autoencoders
extend the encoder-decoder architecture of autoencoders by
fitting a probabilistic model into the reduced space using
Bayesian variational inference (Kingma and Welling, 2013).
The method is referred to as generative because the proba-
bilistic reduced space is continuous and can be used to simu-
late new realizations of the resulting regimes.

https://doi.org/10.5194/wcd-6-995-2025

To identify targeted circulation regimes, Spuler et al.
(2024a) extend the baseline VAE architecture in two ways
to develop a method called Regression Mixture Model Vari-
ational Autoencoder (RMM-VAE). One is to fit a Gaussian
mixture model (i.e. a mixture of several Gaussian distribu-
tions) into the reduced space to identify probabilistic circu-
lation regimes, instead of a single multivariate Gaussian dis-
tribution. The method thereby combines dimensionality re-
duction and probabilistic clustering in a coherent statistical
model (orange arrows in Fig. 3). In contrast, other conven-
tional methods for identifying weather regimes implement
dimensionality reduction and clustering separately and often
conduct a “hard”, as opposed to a probabilistic, cluster as-
signment of individual days. The probabilistic cluster assign-
ment implemented in the RMM-VAE method retains more
information on transitional states between clusters.

The second modification introduced in the targeted VAE
method is to use the encoder of the architecture to predict
the chosen target variable, which, in our case, is precipitation

Weather Clim. Dynam., 6, 995-1014, 2025
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Figure 3. Graphical illustration of the variational autoencoder architecture underlying the CMM-VAE method. Normalized geopotential
height data is input into the encoder which is a neural network of three dense layers of decreasing dimensionality. In the latent space, the
method fits k£ multivariate Gaussian distributions with means p and standard deviations ¢ and the cluster assignments ¢; of individual days
(orange arrows), as well as a regression to the target variable ¢+ which is used to regularize the latent space (green arrows). The decoder
mirrors the encoder in architecture and reconstructs the original input data from the model fit in the latent space.

over Morocco. The predicted target variable is then used to
inform (i.e. regularize) the latent space to obtain clusters that
contain a more coherent response in terms of the target vari-
able (green arrows in Fig. 3). Spuler et al. (2024a) show that
this regularization organises the latent space in terms of the
target variable, that is disentangles the reduced dimension as-
sociated with changes in the target variable. This leads to the
identification of circulation regimes that are more coherent
in terms of their precipitation response. These modifications
to the original VAE architecture are introduced by deriving a
modified loss function of the architecture.

The CMM-VAE method extends the RMM-VAE method
in the following way. The underlying loss function derived
for the RMM-VAE method required the target variable to be a
scalar Gaussian, which limits the applicability of the method.
Here we derive a modification of the loss function which en-
ables the application of the method to higher-dimensional
categorical target variables and is therefore called CMM-
VAE (Categorical Mixture Model — Variational Autoen-
coder). Instead of a linear regression in the prediction com-
ponent of the encoder, the CMM-VAE method fits a higher-
dimensional logistic regression. Furthermore, the subsequent
regularization of the latent space is modified. Instead of im-
plementing the regularization as a regression from the con-
tinuous target variable to the latent space, which is how the
loss function of the RMM-VAE is derived, the CMM-VAE
method predicts the categorical cluster assignment from the
(also categorical) target variable. This enables the regular-
ization of the latent space using a categorical target variable.
The loss function derived for the CMM-VAE architecture,
as well as a more detailed explanation of differences to the
RMM-VAE method, can be found in Appendix A.

The encoder and decoder of the CMM-VAE architecture
were implemented using three dense neural network layers

Weather Clim. Dynam., 6, 995-1014, 2025

of decreasing dimensionalities (256, 128 and 64) and a ReLU
activation function. The architecture was implemented us-
ing the Python library keras (Chollet et al., 2015). The mod-
els were iteratively trained for 150 epochs with a batch size
of 128 and evaluated on different train-test splits in a k-
fold cross-validation approach. The best-performing weights
were then used to encode the entire dataset. A latent space of
dimensionality 15 was selected.

2.3 Predictability metrics

2.3.1 Predictive skill of regimes in subseasonal hindcast
experiments

The skill of subseasonal dynamical reforecasts in predict-
ing the occurrence of the (targeted) circulation regimes is
analysed using a lower-resolution reforecast experiment us-
ing the 4713 cycle of the ECMWF IFS (CY47R3_LR) de-
veloped by Roberts et al. (2023) ranging back to 1980. This
lower-resolution reforecast was shown to predict circulation
regimes over the region sufficiently well to justify the trade-
off between lower resolution and extended time period.

The 11-member ensemble forecasts of geopotential height
at 500 hPa up to lead times of 47d, initialized on the 1st,
8th, 15th and 22nd of each month, were downloaded through
MARS for the period 1980-2020. Reforecasts covering the
extended winter period November to March were selected
(i.e. start dates from 22 September to 22 March). The refore-
casts were pre-processed to match ERAS data: after selecting
the region over which the reanalysis data was analyzed (20—
80° N/50° W-30° E) and re-gridding reforecasts to a resolu-
tion of 2.5° x 2.5°, the climatological mean was subtracted,
and the result was divided by the standard deviation across
grid cells. Both the mean and standard deviation were calcu-
lated for each day of the year and lead time independently

https://doi.org/10.5194/wcd-6-995-2025
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across ensemble members. Finally, for each ensemble mem-
ber, a rolling window mean of 5d was calculated to corre-
spond to the window length chosen in the reanalysis data.

Following these pre-processing steps, the reforecasts were
projected onto the circulation regimes calculated in the re-
analysis data. For the two linear methods, PCA and CCA,
data for each ensemble member, lead time and initialization
date was projected onto the principal component or canonical
covariates pre-computed on reanalysis data. Subsequently,
the k-means clustering fitted on reanalysis data was applied
to the projected reforecasts to predict cluster assignments
of reforecasts. For the variational autoencoder method, the
VAE trained on reanalysis data was used to predict the latent
space, cluster assignment and reconstruction of reforecasts
for each ensemble member, lead time and initialization date.

The forecast skill of the circulation regimes in subseasonal
dynamical reforecasts was evaluated using (1) the Brier skill
score extended to a multi-category forecast and (2) the area
under the Receiver Operating Characteristic (ROC-AUC).
The Brier score is a strictly proper scoring rule defined
as BS = %Z,Ilv:lz;'-l:l(éinj — pj)?* (Gneiting and Raftery,
2007), where m is the number of forecast categories and
N is the number of timesteps. §;; is the Kronecker delta
which equals 1 if the observation i at timestep n corre-
sponds to category j, and O otherwise, and p; the fore-
cast probability of category j. Based on the Brier score,
the Brier skill score was calculated with respect to the skill
score of a climatological forecast in the following way:
BSS =1 — BS_forecast / BS_climatology. To compare the
performance across methods, the score was calculated over
all regimes since the predictive skill of individual regimes
cannot be directly compared between methods due to the
non-correspondence of individual regimes. The ROC curve
shows the hit rate of the forecast over the false alarm rate as
a function of the threshold (that a forecast must exceed to
define a hit) extended to a multi-category forecast.

2.3.2 Conditional predictability in reanalysis data
based on information theory

For the characterisation of the MJO, the real-time multi-
variate (RMM) MJO index was used (Wheeler and Hen-
don, 2004). This index is based on the first two principal
components of combined fields of daily anomalies in 15° S—
15° N outgoing longwave radiation, zonal winds at 850 and
200 hPa, and the removal of the interannual variability by lin-
ear regression against the SST time series reflecting ENSO,
which gives an RMM1 and RMM2 index. These two indices
can be plotted in a phase diagram, where an amplitude larger
than 1 represents the occurrence of an MJO event, and the
angle assigns a day to MJO phases 1 to 8, which reflect the
propagation of the MJO from Africa over the Indian Ocean
and the Maritime Continent to the Western Pacific. MJO in-
dices were accessed from the Australian Bureau of Meteo-
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rology and calculated based on Gottschalck et al. (2010) and
Wheeler and Hendon (2004).

To investigate the tropospheric impacts of weak and strong
polar vortex states, the zonally averaged zonal wind at 60° N
and 100 hPa was calculated from December to March and di-
vided into terciles over the entire season to reflect weak, neu-
tral and strong vortex conditions based on ERAS reanalysis
data. The pressure level of 100 hPa was chosen to capture the
downward impact of the stratospheric variability. This vari-
able and index has been used in previous studies, including
Charlton-Perez et al. (2018).

Subseasonal teleconnections from both the MJO and SPV
are themselves known to be modulated by seasonal modes of
variability such as the QBO and ENSO (Lee et al., 2019;
Toms et al., 2020). While these are not directly investi-
gated here, the seasonal intermittency of the subseasonal
teleconnections is assessed using a block-bootstrapping ap-
proach which provides an estimate of the robustness of the
subseasonal teleconnection across seasons (Roberts et al.,
2023). Furthermore, the modulation of the SPV by the MJO
(Garfinkel et al., 2014) is not assessed.

The predictability of the (targeted) regimes given these
teleconnections was then evaluated based on information the-
ory, an approach which has been applied in climate science
and machine learning (DelSole, 2004; Fang et al., 2024;
Runge et al., 2012). In particular, the conditional entropy and
mutual information between the regimes and the two subsea-
sonal teleconnections are evaluated (Murphy, 2022). Given
two variables X and Y, their individual entropies H (X) and
H(Y) measure the average uncertainty inherent in the pos-
sible outcomes of the variable (Murphy, 2022), calculated
as follows H(X) = =) .xp(x)logp(x). Here, Y is taken
to be the regime and X the phase or tercile of the large-
scale driver (MJO or SPV). Based on previous literature,
we assume that knowing the phase or tercile of the large-
scale driver (i.e. X) will give us information about, or re-
duce the uncertainty in Y. This can be formalized as the
metric of conditional entropy H(Y|X) that quantifies the
amount of uncertainty remaining about the target variable Y
given that X is observed, and therefore provides an estimate
of conditional predictability. Given two discrete variables,
their conditional entropy is calculated as follows: H(Y|X) =
Epoo[H(p(Y1X)]= =3, p(x)>_, p(ylx)log p(ylx). Sub-
tracting the conditional entropy from the uncertainty inherent
in the variable Y gives a symmetric measure of information
shared between two variables, that is, their mutual informa-
tion: I(X,Y)=H(Y)—HY|X)=H(X)— H(X|Y). Here,
mutual information is adjusted to account for the mutual in-
formation that would be detected between two independent
sets of clusters (Vinh et al., 2010).

Conditional entropy provides an estimate of the average
conditional predictability of the regional dynamical drivers
given the large-scale teleconnections over lead times, irre-
spective of the specific model chosen to make this predic-
tion. However, under distributional assumptions, conditional
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entropy has been shown to provide a lower bound to mean
squared error achievable in a regression model aiming to pre-
dict Y from X (Vinh et al., 2010). Since conditional entropy
does not take into account the uncertainty in the atmospheric
regimes themselves, both conditional entropy and adjusted
mutual information were evaluated. In contrast to metrics
such as momentary information transfer proposed by Runge
et al. (2012), evaluating mutual information and conditional
entropy here does not disentangle the information transfer
from X to Y at a specific lead time 7 from the information
transfer at lead time T — € combined with autocorrelation of
Y during the time €. However, disentangling this difference
is not considered relevant for our present purpose.

3 Results

3.1 Characteristics of the circulation regimes and their
informativeness of precipitation over Morocco

Figure 4 shows the circulation regimes identified by the dif-
ferent methods, alongside the odds ratio of extreme precip-
itation at each grid cell during the days assigned to the re-
spective regimes.

The PCA + k-means method identifies the regimes ex-
pected from previous literature: the two phases of the NAO
(regimes 1 and 3), Scandinavian Blocking (regime 2), an At-
lantic low and the Atlantic Ridge (regimes 4 and 5) (Falkena
et al., 2020; Michelangeli et al., 1995). The negative phase of
the NAO is associated with a moderate increase in the prob-
ability of extreme precipitation, which is in line with exist-
ing literature that finds a correlation between the NAO— and
wet conditions over Morocco due to a southward shift of the
North Atlantic storm tracks (Driouech et al., 2021; Tramblay
et al., 2012).

The CMM-VAE method also identifies the negative phase
of the NAO and finds it to be associated with a moderate in-
crease in extreme precipitation (CMM-VAE regime 2). How-
ever, CMM-VAE identifies another dynamical pattern asso-
ciated with an even higher increase of extreme precipitation
over Morocco (CMM-VAE regime 1): this regime is related
to a Scandinavian Blocking alongside a localized low around
the western coast of the Iberian Peninsula and Morocco. The
dynamical pattern represented by this additional regime is
consistent with the geopotential height anomalies during ex-
treme precipitation events analysed in previous publications
(Chaqdid et al., 2023; Toreti et al., 2010). Dynamically, it
relates to (south-)westerly mid-tropospheric flow and associ-
ated moisture transport from the Atlantic found to drive pre-
cipitation over Morocco (Dayan et al., 2015; Khouakhi et al.,
2022). The associated low-level zonal wind and streamfunc-
tion anomalies shown in Appendix B indicate a split jet
configuration. In contrast, the non-targeted PCA + k-means
regimes do not show this additional pattern and do not re-
solve an increase in extreme precipitation associated with the
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Scandinavian Blocking regime as it lacks the resolution of
the localized low off the coast of the Iberian Peninsula.

Aside from disentangling this additional regime modu-
lating extreme precipitation over Morocco, the CMM-VAE
method identifies regimes similar to those found in the non-
targeted PCA + k-means clustering approach: the NAO+
and Atlantic Ridge regimes look relatively similar, while the
CMM-VAE method identifies a slightly southward shifted
Scandinavian Blocking regime that is associated with a pos-
itive geopotential height anomaly over the entire Mediter-
ranean region. The targeted regimes are statistically well sep-
arated and show an overall only slightly reduced persistence
compared to the non-targeted regimes (see Appendix B).

The CCA + k-means method projects the geopotential
height data into a subspace which is maximally correlated
with precipitation over Morocco, thereby identifying targeted
clusters which are associated with an increase in extreme pre-
cipitation over Morocco but which show less structure in the
rest of the atmospheric phase space.

Overall, we find that the CMM-VAE is able to identify a
regime representation of dynamical conditions over the re-
gion that is more informative of precipitation extremes over
Morocco by disentangling a dynamical driver not identified
in conventional PCA + k-means regimes. Informativeness is
here diagnosed using the skill of the regimes in predicting the
target variable. In contrast to CCA, the CMM-VAE method
identifies more structure overall in the atmospheric phase
space, and therefore regimes which are more persistent and
statistically robust (see Appendix B).

To further quantify the informativeness of the regimes of
precipitation over Morocco, we construct a forecast of ex-
treme precipitation and precipitation clusters based on the
regime occurrence and the associated conditional probability
of the target variable. We compare the skill of this forecast
for the different methods (Fig. 5). The higher the skill, the
stronger the link between circulation regimes and precipita-
tion over Morocco.

We find that the CMM-VAE method outperforms
PCA + k-means and CCA + k-means in terms of predicting
both the precipitation clusters (Fig. 5, left) as well as the
exceedance of 95th percentile precipitation (Fig. 5, right),
hence identifying circulation regimes that are more infor-
mative of the extreme precipitation over Morocco and con-
firming the analysis of odds ratios shown in Fig. 4. The skill
is overall higher for predicting the precipitation cluster as-
signment compared to the threshold exceedance of 95th per-
centile precipitation.

The regime number for further investigation, k =5, was
selected on the basis of the robustness of cluster centers to
subsampling analyzed in Spuler et al. (2024a). In sensitivity
checks performed, it was found that the principal results pre-
sented in this paper are not sensitive to the choice of cluster
number.
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Figure 4. Identified circulation regimes (top rows) and corresponding odds ratios of extreme precipitation (bottom rows) for the three different
methods with the number of clusters specified as k = 5. The regime frequencies are given in percent. The odds ratio of extreme precipitation
corresponds to the ratio of the probability of the climatological 95th percentile of precipitation at the grid cell conditional on that circulation
regime, divided by the unconditional probability of 95th percentile of precipitation (i.e. 0.05). The regimes are ordered in decreasing order
of total precipitation during the days assigned to this cluster by the respective method.
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Figure 5. Informativeness of the regimes of exceedance of the 95th percentile of total precipitation over Morocco (b) and precipitation
clusters shown in Fig. 2 (a), evaluated using the Brier Skill Score. 95 % confidence interval computed based on bootstrap procedure with
n=>50.
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3.2 How well are the circulation regimes predicted in
subseasonal hindcasts?

We now investigate the skill of dynamical subseasonal hind-
casts in predicting the circulation regimes. The previous sec-
tion showed that the CMM-VAE method identifies regimes
that are more informative of the local-scale impact, namely
extreme precipitation over Morocco. The aim of the analy-
sis performed in this section is to investigate if the CMM-
VAE regimes are as predictable as those identified with the
conventional PCA 4 k-means approach. Together with the
enhanced informativeness of the target variable, this would
provide evidence that the CMM-VAE method can identify
more suitable representations of regional dynamical drivers
that can help improve predictions of precipitation over Mo-
rocco across a range of timescales.

The forecast skill of the different regimes in subseasonal
hindcasts is assessed using two evaluation metrics: the Brier
Skill Score (BSS) and the Area Under the Curve of the Re-
ceiver Operator Characteristic (ROC-AUC). The ROC-AUC
shows the hit rate of the forecast over the false alarm rate as a
function of a threshold extended to a multi-category forecast
and has a similar interpretation to the resolution term of the
BSS. Results are shown in Fig. 6.

The targeted CMM-VAE regimes are found to be as
predictable in terms of both BSS and ROC-AUC as the
non-targeted regimes identified using PCA + k-means. The
CCA + k-means regimes are overall less predictable in both
metrics. Skill drops below zero, i.e. below climatological
skill, due to the imperfect climatological calibration of the
reforecasts in all methods.

The BSS can be further decomposed into terms repre-
senting the reliability, i.e. calibration or conditional bias, the
resolution of the forecast, and the observational uncertainty
(Stephenson et al., 2008). We analyse this decomposition for
the different regimes to understand the similar performance
of CMM-VAE and PCA + k-means regimes in terms of over-
all skill score (see Appendix C). We find that the CMM-VAE
regimes perform slightly worse in terms of resolution but
slightly better than PCA + k-means regimes in terms of re-
liability, i.e. the reliability and resolution of both methods
are within the confidence interval of the respective other and
there is a small difference in the mean.

3.3 Teleconnections between subseasonal modes of
variability and circulation regimes in reanalysis
data

In this section, we investigate the predictability of the tar-
geted regimes in reanalysis data, given two known subsea-
sonal teleconnections relevant to the region: the MJO and
variability in the SPV. Predictability here is understood in the
information theoretical sense as the amount of information
shared between two sets of variables — subseasonal modes of
variability and the targeted circulation regimes. This is as-
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sessed by first analyzing changes in the conditional probabil-
ities of regime occurrence, and then building on this to eval-
uate adjusted mutual information and conditional entropy of
the two sets of variables as information theoretical measures
of predictability. This analysis provides insight into whether
the predictability of the targeted circulation regimes in sub-
seasonal reforecasts is also physically interpretable in terms
of large-scale dynamical drivers.

3.3.1 Teleconnections from the stratospheric polar
vortex

Figure 7 shows the change in the probability of the different
circulation regimes, following weak, neutral or strong states
of the polar vortex (labeled —1, 0 and 1 respectively). The
circulation regimes are ordered as in Fig. 4, i.e. by the occur-
rence of precipitation in each regime, from high to low.

We find that the influence of the SPV on precipitation
over Morocco appears to be primarily modulated via the
NAO with an increase in the probability of the NAO— (PCA
regime 1 and CMM-VAE regime 2) following weak SPV
states. On the other hand, the conditional probability of Eu-
ropean blocking and the Atlantic Ridge regime (CMM-VAE
regimes 5 and 3) is reduced following weak vortex states.
This result is in line with established findings on weaker SPV
states leading to an equatorward shift of the tropospheric
eddy-driven jet and associated storm tracks (Kidston et al.,
2015; Kretschmer et al., 2018). The localized low associ-
ated with a Scandinavian Blocking (CMM-VAE regime 1),
on the other hand, does not appear to be significantly modu-
lated by the SPV. The CCA + k-means regimes appear to be
less strongly modulated by the SPV, although we find a slight
increase in the probability of the regime associated with the
strongest increase in extreme precipitation following weak
vortex states which is in line with the dynamical mechanisms
found for the PCA + k-means and CMM-VAE regimes.

To quantify this difference in conditional predictability of
the regimes given teleconnection from the SPV, we analyze
the mutual information between the different regimes and
SPV states, as well as the conditional entropy of the regimes
given the SPV state. These metrics provide an information
theoretical assessment of predictability that is here aggre-
gated across regimes. Results are shown in Fig. 8.

We find that conditional entropy, which quantifies the av-
erage uncertainty in the targeted circulation regime remain-
ing given the state of the polar vortex is known, is similar for
the PCA + k-means and CMM-VAE regimes and higher for
the CCA regimes. Mutual information between the regimes
and SPV states, which also takes into account the uncertainty
in the regimes themselves, is highest for the PCA + k-means
regimes and lowest for the CCA regimes. The difference be-
tween conditional entropy and mutual information is due to
the fact that the entropy of the PCA + k-means regimes ap-
pears to be larger than that of the CMM-VAE regimes which
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Figure 6. Brier Skill Score (a) and ROC AUC (b) for circulation regime assignment predicted by the subseasonal hindcasts. Confidence
interval based on a bootstrapping procedure with n = 100.
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Figure 7. Change in conditional probability of the different circulation regimes (= absolute difference between conditional and unconditional
probability, i.e. if a regime occurs around 10 % of days and shows a 10 % increase here, it becomes twice as likely) given or following weak
(—1), neutral (0) and strong (1) states of the stratospheric polar vortex for lags up to 47 d. Statistically significant changes in the conditional
probability are indicated using a black rectangle around the cell. These are calculated using a block-bootstrapping approach that samples
entire DJFM seasons from the data with n = 1000.

can vary depending on the lead time analysed in the hind- 3.3.2 Teleconnections from the Madden-Julian
casts. oscillation

These results show that the CMM-VAE and PCA + k-
means regimes are more predictable given knowledge of the
SPV compared to the CCA + k-means regimes, hence cap-
turing the downward impact of this stratospheric teleconnec-
tion better. The downward impact of the SPV assessed by
these two metrics is found to decrease somewhat monotoni-
cally over time.

Figure 9 shows the change in probability of the different cir-
culation regimes following different phases of the MJO. The
results highlight the oscillatory nature of the MJO, with the
impact of different MJO phases on individual regimes prop-
agating over lead times. Furthermore, large and significant
changes in the conditional probabilities of individual regimes
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Figure 8. (a) Conditional entropy, i.e. the average uncertainty in the circulation regime given that the state of the polar vortex is known,
averaged across the regimes. Lower values are better. (b) Adjusted Mutual Information. i.e. shared information between the circulation
regime and the state of the stratospheric polar vortex which in addition to conditional entropy also accounts for the uncertainty in the regimes

themselves, averaged across regimes. Higher values are better.

are found even at lead times up to 47 d, whereas stratospheric
impacts tend to decay earlier (see Fig. 7).

CMM-VAE regime 2 and PCA regime 1, which are as-
sociated with a negative NAO pattern, are modulated most
strongly by the MJO, with a decrease in occurrence proba-
bility following MJO phases 1-4 and an increase following
phases 6-8. This is consistent with teleconnections between
the MJO and NAO reported in the literature on the North At-
lantic region (Cassou, 2008), as well as Morocco specifically
(Gadouali et al., 2020). CMM-VAE regime 1, which is asso-
ciated with the highest increase in the probability of extreme
precipitation over Morocco, shows some modulation by the
MJO.

Results for the conditional entropy and adjusted mutual
information shown in Fig. 10 highlight that the PCA 4 k-
means and CMM-VAE regimes capture the dynamical tele-
connection mechanisms between MJO and circulation over
the Mediterranean region slightly better than CCA + k-
means regimes, and hence are more predictable given knowl-
edge of the MJO phase. In contrast to the teleconnection from
the SPV, predictability from the MJO oscillates over lead
times, and for the CMM-VAE regimes shows the lowest level
of conditional entropy (highest level of mutual information)
for lead times of 47 d.

4 Discussion and Conclusions

This paper introduces a novel method, the Categorical Mix-
ture Model Variational Autoencoder (CMM-VAE), to iden-
tify regional dynamical drivers of a chosen impact variable
in the form of targeted circulation regimes. Compared to two
well-established linear methods for identifying circulation
regimes, we find the targeted CMM-VAE regimes are more
informative of the impact variable of interest while maintain-
ing their predictability in subseasonal hindcasts and dynam-

Weather Clim. Dynam., 6, 995-1014, 2025

ical interpretability. Applying the method to study drivers of
precipitation over Morocco, we find that the method is able to
disentangle an additional circulation pattern as a dynamical
driver of extreme precipitation.

Through a regularized variational autoencoder architecture
and modified loss function, the CMM-VAE method extends
the method previously presented in Spuler et al. (2024a) to
a higher-dimensional categorical target variable. This new
method enables the identification of probabilistic circula-
tion regimes targeted to spatial patterns of extreme precip-
itation over Morocco. The identified regimes are compared
to regimes identified using Principal Component Analysis
and k-means clustering (PCA + k-means) as a baseline non-
targeted method, and Canonical Correlation Analysis and k-
means clustering (CCA 4 k-means) as a linear targeted clus-
tering method.

The CMM-VAE method identifies a probabilistic parti-
tioning of the atmospheric phase space that better disen-
tangles dynamical patterns modulating extreme precipita-
tion over Morocco (Fig. 4), thereby enhancing the infor-
mativeness of the resulting regimes (Fig. 5). The additional
regime identified by the CMM-VAE method, which is not
found in the PCA or CCA + k-means regimes, is associated
with a Scandinavian blocking together with a localised cut-
off low off the coast of Morocco. This dynamical pattern
is consistent with previous literature investigating dynamical
drivers of extreme precipitation over Morocco and the West-
ern Mediterranean (Chaqdid et al., 2023; Toreti et al., 2010).

Investigating the skill of dynamical subseasonal hindcasts
in predicting the circulation regimes, we find that the tar-
geted CMM-VAE regimes are as predictable as the base-
line non-targeted PCA + k-means regimes in subseasonal
hindcasts, and more predictable than the regimes identified
using CCA 4 k-means (Fig. 6). This is a significant result
compared to previous studies, which showed a trade-off be-
tween identifying locally informative patterns and regimes
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Figure 9. As in Fig. 7 but for MJO phases.
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Figure 10. As in Fig. 8 but for MJO phases.

that are predictable at subseasonal lead times (Bloomfield
et al., 2021). The results imply that in this region, the CMM-
VAE method is able to identify a representation of regional
dynamical drivers that balances and even resolves the trade-
off between informativeness of local impacts and subsea-
sonal predictability. The lower predictability of the targeted
CCA + k-means regimes can be attributed to the fact that the
method projects the data into a correlated subspace but does
not capture the structure in the rest of the phase space as well
(see Fig. 4).
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The ability of this probabilistic machine learning method
to strike a balance between local informativeness and pre-
dictability of the targeted regimes can be attributed to several
factors. One is the efficiency of neural networks in identify-
ing a non-linear transformation function that encodes the in-
formation in a more informative reduced space and therefore
enables the subsequent regularisation, i.e. targeting, of the di-
mensionality reduction. The second is that the loss function
derived using variational inference represents the different
objectives of targeted clustering — such as representation of
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the full phase space and informativeness of the target variable
—in a coherent statistical model that can be jointly optimized.

All methods for identifying regimes studied here require
choosing the region over which to cluster atmospheric cir-
culation, as well as the number of clusters k, a priori. The
North Atlantic region was chosen based on previous litera-
ture highlighting the importance of dynamical drivers from
the North Atlantic, but regimes were also analysed for cir-
culation anomalies over a smaller Mediterranean region. The
number of clusters was chosen based on the sensitivity of
the cluster centres to sub-sampling analysed in Spuler et al.
(2024a), but results for other cluster numbers were also com-
puted (e.g. Fig. 5). We find that the improved informativeness
of the CMM-VAE regimes, as well as their equal predictabil-
ity in subseasonal hindcasts, are robust to both the choice of
k as well as the choice of region.

We also investigate and explain this predictability in terms
of subseasonal teleconnections relevant to the region, the
MIJO and variability in the SPV. Conditional predictabil-
ity given these teleconnections is analysed based on mu-
tual information and conditional entropy, two information-
theoretical measures of predictability. In line with the analy-
sis of predictive skill in subseasonal hindcast data, the CMM-
VAE regimes show similar levels of conditional predictabil-
ity as the non-targeted PCA + k-means regimes. Conditional
predictability of the regimes given the SPV is higher dur-
ing strong or weak, as opposed to neutral, vortex states, and
decays over subseasonal lead times. The conditional pre-
dictability of the regimes given the MJO, on the other hand,
shows a clear oscillation across subseasonal lead times. This
result highlights potential windows of opportunity for sub-
seasonal forecast skill in predicting precipitation extremes
over Morocco.

Furthermore, the regimes disentangle distinct dynamical
mechanisms through which extreme precipitation over Mo-
rocco is modulated by the MJO and variability in the SPV.
The results suggest that the impact of both the MJO and
SPV on precipitation over Morocco is mediated primarily via
the NAO, while the CMM-VAE regime associated with a lo-
calised geopotential low pattern and Scandinavian Blocking,
which is the one associated with the highest increase in the
probability of extreme precipitation, does not show a strong
link to the SPV and is somewhat modulated by the MJO.
This result highlights that the targeted CMM-VAE regimes
— which are statistically optimised based on the local-scale
variable — also represent physical processes that are modu-
lated by large-scale drivers and can be used to understand the
modulation of the frequency of precipitation extremes over
Morocco by low-frequency modes of internal variability in
the climate system.

While the focus of this paper is on predictability and
teleconnection relationships at subseasonal lead times, these
findings are relevant to seasonal timescales and studies of re-
gional climate change. In subsequent work, targeted regimes
could be investigated in future climate projections and used
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to condition bias adjustment and downscaling approaches
(Dorrington et al., 2022; Maraun et al., 2010; Spuler et al.,
2024b). The method could be further tested in applications to
other regions and target variables, and refined using recently
proposed modifications to the loss function of the model
to improve its performance in predicting extremes (Wessel
et al., 2025). Furthermore potential amplifying effects with
local drivers of precipitation could be investigated. Finally,
the conditional predictability of the regimes given the MJO
and SPV could be investigated in hindcast data and used to
identify windows of forecast opportunity for extreme precip-
itation over Morocco.

Appendix A: Details of the CMM-VAE method

The two regularized variational autoencoder methods, the
Regression-Mixture Model Variational Autoencoder (RMM-
VAE), introduced in Spuler et al. (2024a), and the CMM-
VAE method introduced in this paper differ with respect to
the way in which the latent space is regularized using the
target variable. While in the RMM-VAE architecture, the tar-
get variable ¢ is used to directly regularize the latent space z
(central panel in Fig. A1), this is not possible when working
with higher dimensional categorical target variables. In the
CMM-VAE architecture, we therefore instead regularize the
cluster assignment ¢ using the target variable ¢. The regular-
ization here means that the cluster assignment c is predicted
from the target variable ¢, and that this prediction is used as
a prior on the cluster assignment c. This is visualised in the
graphical model shown in the right panel of Fig. Al.

This graphical model corresponds to the following decom-
positions of the inference and generative distributions.

q(z,c,t|x) =q(z]x) * g (c|x) * q(t]x)
and
p(z,x,¢,t) = p(x|z) * p(z|c) * p(clt) * p(t) (A1)

With these decompositions, we can now follow the standard
procedure for Bayesian variational inference to derive the
following loss function for the CMM-VAE architecture:

L(x) =— Dxi(q¢(z, ¢, 1|x)|po(x,z,1,¢))
Z;% (c*12) [E%(zlx) [log po (x|2)]
—Egyein [DKL (q¢>(ZIx)|p(z|c"))]
~Eqgi0 | Dt (4510 pa(c1n) | ]

— Dxi(q¢(1]x)| p(2)). (A2)

The loss function can be interpreted as follows: g(ck|x) is
the probability of an input datapoint being part of cluster k,
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Figure A1l. Representation of the statistical models underlying a regular variational autoencoder as graphical models used to derive the loss
functions for the considered architectures, RMM-VAE and CMM-VAE. x represents the input z500 space, z — the identified latent space, ¢ —
the cluster assignments of individual data points, and ¢ — the target variable. u and o are the parameters of the Gaussian distributions fitted
into the latent space, my is the prior on the cluster occurrence frequency and 6 are the parameters of the non-linear decoder.
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Figure A2. Graphical illustration of the layers implemented in the CMM-VAE architecture. For each layer, the number of input and output
dimensions are respectively shown in the first and second number in brackets.

predicted from the encoder network. g (z|x) gives the proba-
bility distribution of latent space z given input data x, param-
eterized as a multivariate Gaussian with mean y and standard
deviations o, also predicted from the encoder network, and
q(t]x) is the prediction of the precipitation class given input
x. p(z|cb) is the latent variable as predicted from the cluster
assignment ¢, p(x|z) the latent space predicted from the de-
coder network, and p(ck |t) the cluster assignment predicted
from the target variable which is used as prior to the cluster
assignment.

The first term of the loss function corresponds to the re-
construction loss of the dimensionality reduction, the second
term to cluster coherence, i.e. penalizes the distance of points
in the latent space from their assigned cluster center. The
third term can be interpreted as the regularization loss, and
the last term as the prediction loss of the target variable ¢.

For a more detailed explanation of variational autoen-
coders and variational inference applied to study atmospheric
circulation and the way in which the regularization acts on
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the latent space, we refer to Spuler et al. (2024a), where this
type of architecture is first used to study target circulation
regimes.

Appendix B: Further evaluation of the dimensionality
reduction and statistical robustness of (targeted) regimes

In terms of reconstructing the original input space (Fig. B1,
left), the CMM-VAE method performs best by far, while
CCA performs worst. This finding is in line with the results
presented in Spuler et al. (2024a) for the RMM-VAE method.

In terms of the regime separability and persistence
(Fig. B1, center and right), the non-targeted PCA + k-means
method performs best and CCA performs worst according
to both metrics, with a silhouette score being around O,
indicating overlapping and statistically non-robust clusters,
and the lowest regime persistence. The CMM-VAE method
show a similar regime persistence compared to PCA in some

Weather Clim. Dynam., 6, 995-1014, 2025
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Figure B2. Mean anomalies in the zonal wind at 850 hPa (a) and streamfunction calculated from zonal and meridional wind at 850 hPa (b)

during days associated with CMM-VAE regime 1.

regimes, and a slightly lower persistence in others, indicat-
ing that the underlying dynamical processes modulating the
target variable are not as persistent. In terms of regime sep-
arability, The CMM-VAE method shows a slightly lower
silhouette score compared to the PCA + k-means method.
However, a slight reduction would be expected from prob-
abilistic clusters as the silhouette score does not consider
regime probabilities and is calculated on the basis of the as-
signment of a data point to the most likely cluster.

Overall, these results are found to be consistent with the
results presented for the RMM-VAE method in Spuler et al.
(2024a) and are therefore included in the appendix here for
completeness purposes.

Appendix C: Extended forecast evaluation

The Brier Score can be decomposed into terms representing
the reliability/probabilistic calibration, resolution and obser-
vational uncertainty of the forecast (Wilks, 2019):

Weather Clim. Dynam., 6, 995-1014, 2025
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Computing this analytical decomposition requires binning
the forecast probabilities (which calculating the Brier score
does not), which makes the results more unstable than the ac-
tual score. The results for n = 12 bins are shown in Fig. CI.
The reliability represents the squared difference from the di-
agonal and assesses the probabilistic calibration, or condi-
tional bias, of the forecast (lower is better), while the reso-
lution term represents the difference from the climatological
occurrence frequency of the regime — the larger the differ-
ence of the forecast to a climatological forecast, the higher
the resolution term.

We find that CMM-VAE performs worse than PCA in
terms of resolution but better than PCA in terms of reliabil-
ity. An interesting difference between PCA and CMM-VAE
methods is the non-probabilistic vs probabilistic cluster as-
signment. This means that the two methods are affected dif-
ferently by the choice of binning and, therefore, the overall

https://doi.org/10.5194/wcd-6-995-2025



F. R. Spuler et al.: Learning informative dynamical drivers

Resolution
(a) Method
0.35 1 —— PCA
—— CCA

0.30 A —— CMM-VAE
§ 025
=
=
9 020
Q
-4

0.15 A

0.10 4

0.05

0.00 A

10 20 30 40
Leadtime

1011

Reliability / Probabilistic Calibration

Method
— PCA
— CCcA
0.25 1 —— CMM-VAE

0.30 4 (b)

0.20 4

Reliability

0.15 4

/‘\_/\/\,/\v

0.10
0.05 W

0.00

10 20 30 40
Leadtime

Figure C1. Decomposition of the Brier Skill Score in terms of resolution and reliability as described in the text above.

skill score shown in Fig. 6 might be the more robust metric
to use here. Second, the forecasts in this study are evaluated
against a single “true” observed cluster (for the CMM-VAE
method, this corresponds to the cluster that is assigned the
highest probability), which might represent a disadvantage
for the resolution of the CMM-VAE method.
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