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Thesis Abstract 
The ability to flexibly respond to an ever-changing environment charged with 

emotional information is essential for effective adaptation and mental health. The 

Neurovisceral Integration Model (NIM) posits that shared brain areas overlap to 

support autonomic, emotion, and cognitive regulatory processes, with heart rate 

variability (HRV) serving as an index of adaptive emotional responding. While prior 

research has predominantly investigated heart-brain interactions and flexible 

emotional responses at rest, the principal aim of this thesis was to examine the 

relationship between HRV and neural and trait affect correlates across both rest and 

adaptive emotion contexts. In Papers 1 and 2, we demonstrated that task-related and 

resting HRV exhibited associations with functional coupling of brain areas and 

dynamic neural networks closely linked to adaptive emotional responding in both 

younger and older adults. Relatedly, in Paper 3, we found both task-based and resting 

HRV, but not other emotional disposition variables (i.e., rumination and valence bias), 

to tentatively predict attentional shifts related to valence aspects of affective flexibility. 

Collectively, findings from these papers provide some support that HRV reflects 

adaptive, context-appropriate emotional responding and critically highlight the 

importance of assessing HRV with associated neural and emotional disposition 

correlates to elucidate key mechanisms supporting adaptive emotional responding. 

More broadly, a clearer understanding of HRV and associated flexible emotional 

responses across contexts has wider implications for HRV as a complementary target 

for the prevention and/or management of psychological disorders characterised by 

emotion dysregulation, such as anxiety and depression.  
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Chapter 1. General Introduction to Thesis 
 

1.1 Adaptive Emotional Responding 
In an ever-evolving world, the ability to respond flexibly to dynamic emotional 

stimuli and events in accordance with contextual demands is essential for adaptive 

emotional responding (Aldao et al., 2015; Fox, 2022). Due to the multifarious and 

complex nature of emotion, various definitions of emotional phenomena exist in the 

literature, however, it is generally acknowledged that emotion involves changes in 

behaviour and bodily responses, alongside subjective experiences, towards internal 

and external events (Frijda, 1986). Our daily lives are inherently emotional given the 

nature of the cues and stressors we encounter, with responses producing a cascade 

of changes at both subjective (i.e., emotional states/expressions, thoughts) and 

biological (i.e., changes in heart rate, neural activity) levels. In turn, effective 

coordination and communication between the brain and body is essential for 

adaptation and has important implications for both mental and physical health. The 

current thesis focuses on adaptive emotional responding, which encompasses various 

processes underlying and supporting flexible emotional responses, including emotion 

regulation and affective flexibility.  

 

1.2 Emotion Regulation 
Emotion regulation is a complex and multifaceted process referring to the 

modification of the intensity, valence, expression, timing, and/or duration of emotions 

in a contextually appropriate and goal-directed manner (Gross, 1998, 2015; 

Thompson, 1994). The inability to effectively regulate emotional responses is 

associated with psychopathology (Berenbaum et al., 2003; Mennin & Farach, 2007), 

including anxiety and depression (Cisler et al., 2010; Joormann & Stanton, 2016). 

Emotion regulation can either be explicit or implicit (Braunstein et al., 2017; Gyurak et 

al., 2011) and automatic or controlled (Braunstein et al., 2017) depending on the 

degree of cognitive resources required and the nature of the goal or context. Although 

earlier research considered certain emotion regulation strategies (i.e., cognitive 

reappraisal) to be more adaptive and other strategies (i.e., expressive suppression, 

rumination) more maladaptive, recent work has shifted to endorse a ‘flexibility’ 

perspective, acknowledging that whether a strategy is considered (mal)adaptive is 
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highly dependent on the context and goals (Aldao et al., 2015; Kashdan & Rottenberg, 

2010; Westphal et al., 2010).  

Emotion regulation strategies have typically been assessed via experimental 

paradigms involving the presentation of an emotion eliciting stimulus and instructions 

to either increase, decrease, or maintain an emotional response (Johnstone et al., 

2007; Ochsner et al., 2002; Urry et al., 2009). One of the most studied emotion 

regulation strategies is cognitive reappraisal which involves the deliberate modification 

of an emotional response through reinterpretation of its meaning or relevance (Gross 

& John, 2003; Gross, 2015). The neural underpinnings of emotion regulation, including 

specific brain areas and neural networks, have been extensively outlined in prior 

reviews and meta-analyses (Buhle et al., 2014; Kohn et al., 2014; Morawetz & Basten, 

2024; Morawetz et al., 2020; Ochsner et al., 2012). In particular, lateral regions of the 

prefrontal cortex, such as the ventrolateral prefrontal cortex (vlPFC) and dorsolateral 

prefrontal cortex (dlPFC) appear to support more cognitively demanding, voluntary 

emotion regulation, whereas more implicit, automatic emotion regulatory processes 

appear to recruit the medial prefrontal cortex (mPFC) (Braunstein et al., 2017; Phillips 

et al., 2008). Moreover, elevated activation in prefrontal areas has been shown to 

decrease activation in subcortical regions, such as the amygdala (Johnstone et al., 

2007; Urry et al., 2006), a key neural region involved in the processing of emotional 

and salient information (Janak & Tye, 2015). Additionally, research has further 

suggested that due to strong anatomical connections between the amygdala and 

mPFC, regulatory processes can be facilitated by higher order neural regions involved 

in cognitive control (i.e., vlPFC, dlPFC) conveying control messages via the 

ventromedial prefrontal cortex (vmPFC) to the amygdala (Buhle et al., 2014). Overall, 

various neural regions and effective coordination of cortical-subcortical circuitry 

facilitate emotion regulatory processes.  

 

1.3 Affective Flexibility 
A process closely coupled to, and underlying, emotion regulation is cognitive 

flexibility related to the processing of emotional material, ‘affective flexibility’, which is 

defined as the degree to which an individual can flexibly shift attention both to and 

from emotional information (Gross & Thompson, 2007; Malooly et al., 2013). For 

example, in certain situations, such as walking alone in the dark at night, it may be 

considered adaptive to exhibit heightened attention towards potentially negative or 
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dangerous information, as this could facilitate effective detection of possible threats to 

help ensure one reaches their destination safely. Nonetheless, the same level of 

heightened or sustained attention towards information of this nature may be 

considered less adaptive, or even maladaptive, in safer contexts and/or if experienced 

for a prolonged period. Affective flexibility stems from the more general process of 

cognitive flexibility, with mental set shifting and inhibition of prepotent responses 

(executive function) underlying both processes. Consequently, research has 

examined flexibility using experimental paradigms that involve switching between two 

different task sets or rules for the same type of sequentially presented stimuli (Monsell, 

2003). Shifting from one rule to another, in comparison to repeating the same rule, 

recruits increased cognitive resources due to inhibition of the previous rule and 

updating to the current rule, producing differences in response times (i.e., a ‘switch 

cost’) (Monsell, 2003). A paradigm that has frequently been employed is an affective 

switching task whereby individuals are instructed to categorise negative and positive 

emotional images according to either an affective (valence: positive or negative) or 

non-affective (number of humans: 1 or fewer or 2 or more) rule. A small body of work 

has investigated the relationship between affective flexibility and various psychological 

variables related to emotion regulation and mental health using this task, including 

rumination (Genet et al., 2013), reappraisal (Malooly et al., 2013), resilience (Genet & 

Siemer, 2011; Grol & De Raedt, 2018), trait anxiety and worry (Twivy et al., 2021), and 

depressive symptoms (Wen & Yoon, 2019). Ultimately, most of these studies report 

findings for switch costs pertaining to attentional shifts in the rule type, in turn reflecting 

cognitive flexibility in the context of emotion. However, there are trials in which the 

valence of the emotional image changes, but the rule is held constant, which appears 

to capture attentional shifts related to affective information. The degree to which 

individual differences in pure valence switch costs on this task relate to individual 

differences is less clear. 

 

1.4 Emotional Disposition Factors and Rigid Emotional Responding 
Emotion dysregulation and rigid emotional responding are prominent features 

across psychological disorders, such as anxiety and depression (Cisler et al., 2010; 

Joormann & Stanton, 2016). Indeed, both anxiety and depression have been 

associated with a greater tendency to exhibit heightened attention towards negative 

emotional information, alongside difficulties disengaging attention from negatively 
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valenced stimuli (Bar-Haim et al., 2007; Mogg et al., 1995; Koster et al., 2011), and in 

the case of anxiety, a greater tendency to subsequently avoid negative emotional 

information (Mogg et al., 2004). Individual differences in emotional disposition can 

increase the risk of onset or progression of anxiety and/or depression, including trait 

neuroticism and rumination (Hsu et al., 2015; Kotov et al., 2010; McLaughlin & Nolen-

Hoeksema, 2011). Trait neuroticism is a stable disposition characterised by increased 

negative affect and emotional reactivity (Ormel et al., 2013), while trait rumination is a 

rigid and maladaptive form of negative thinking that refers to excessive thoughts that 

are negative, deliberate, and perseverative (Nolen-Hoeksema, 2000; Treynor et al., 

2003). Of note, rumination is multifaceted and contains three distinct dimensions: 

brooding, reflective, and depressive rumination (Treynor et al., 2003). Brooding 

rumination reflects the tendency to passively compare one’s current situation with 

unachieved standards and is viewed as a more maladaptive form of thinking, whereas 

reflective rumination is considered more adaptive due to a focus on problem solving 

(Treynor et al., 2003).  

In a similar vein, a growing number of studies have examined associations 

between an individual’s response to emotional ambiguity, or ‘valence bias’, with 

various factors relevant to mental health and emotion regulation. One thread of 

research has operationalised valence bias as the relative dominance of positive 

versus negative ratings in response to emotionally ambiguous stimuli (i.e., surprise 

faces) (Neta et al., 2009; 2023; Harp et al., 2021). Specifically, a greater trait-like 

negativity bias has been associated with anxiety and depressive symptoms (Park et 

al., 2016; Petro et al., 2021) and stress reactivity in those reporting lower reappraisal 

use (Raio et al., 2021). Collectively, individual differences in trait rumination, 

neuroticism, and valence bias have been linked to the onset and maintenance of 

anxiety and depression. However, emotional experiences are generally accompanied 

by physiological changes, with effective coordination of the autonomic nervous system 

facilitating adaptive responses. Therefore, flexible emotional responding can not only 

be measured at the psychological level, but also on a biological level. Specifically, 

Heart Rate Variability (HRV), a physiological phenomenon referring to the variation in 

time intervals (interbeat or ‘RR’ intervals) between consecutive heartbeats, has 

increasingly been recognised as a peripheral metric of adaptive autonomic and 

emotion regulatory ability (Appelhans & Luecken, 2006).  
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1.5 Heart Rate Variability 
The interplay between the heart and the brain can be captured by a 

physiological phenomenon termed HRV. While the average heart rate for a healthy 

human adult typically falls within a range of 60-100 beats per minute (BPM) at rest, 

the time intervals between each heartbeat do not tick at a rigid rate like that of a 

metronome, but instead vary in a dynamic manner. This variation in the heart period 

is characterised by the healthy balance and flexible interplay of two branches that 

comprise the autonomic nervous system (ANS): the excitatory sympathetic nervous 

system (SNS) and the inhibitory parasympathetic nervous system (PNS). Both 

sympathetic and parasympathetic divisions directly innervate the heart via the stellate 

ganglia and vagus nerve respectively, in turn influencing the activity of the sinoatrial 

node (i.e., the heart’s pacemaker) (Berntson et al., 1997). Correspondingly, the SNS 

and PNS work antagonistically to produce changes in physiological arousal pertaining 

to the context, such that an elevation in heart rate could reflect either increased 

sympathetic dominance and/or vagal withdrawal in the form of reduced 

parasympathetic inhibition (Appelhans & Luecken, 2006; Berntson et al., 1997). 

Notably, the arms of the ANS differ in their temporal influence on the heart period. 

Changes in heart rate through the SNS, primarily via norepinephrine 

neurotransmission, occur more slowly (i.e., peak effect on heart rate after 4 seconds 

with an associated baseline return of approximately 20 seconds), in comparison to the 

PNS which produces more efficient changes in heart rate predominantly via 

acetylcholine (i.e., peak effect on heart rate is approximately 0.5 seconds with a much 

quicker return to baseline of ~1 second) (Appelhans & Lucken, 2006; Berntson et al., 

1997). While both branches influence heart rate, parasympathetic influence is 

particularly dominant during rest (Berntson et al., 1997) and significantly modulates 

heart rate (Katona et al., 1982). In turn, the fast, dynamic (dis)engagement of the PNS 

on cardiac activity helps to facilitate flexible physiological responses to environmental 

demands (Appelhans & Luecken, 2006). Correspondingly, higher resting levels of HRV 

therefore reflect an adaptable and highly responsive ANS that is sensitive to contextual 

demands, whereas lower resting HRV may be indicative of a more rigid and inflexible 

ANS when confronted with environmental challenges. 

Cardiac traces, and consequently HRV, can be captured via various recording 

techniques, with current empirical research typically using signals acquired from either 

electrocardiographic (ECG) or photoplethysmography (PPG) recordings (Task Force, 
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1996; Laborde et al., 2017). An ECG signal reflects electrical activity in the heart and 

is recorded via leads and electrodes that are typically applied to an individual’s chest. 

HRV derived from an ECG signal provides higher accuracy for beat detection 

compared to PPG due to measurement of the full QRS complex (i.e., ventricle 

depolarisation), and the ability to extract RR intervals from the clear, upward spikes of 

the R wave (Laborde et al., 2017). On the other hand, a PPG signal, usually measured 

via a pulse oximeter attached to the fingertip or earlobe, is a non-invasive, albeit more 

distal, technique of obtaining a cardiac trace, that uses both a light source and photo 

detector to record fluctuations in blood volume at the surface of the skin (Allen, 2007). 

The pulse signal is divided into two components: AC and DC (Allen, 2007; Korhonen 

& Yli-Hankala, 2009). The PPG waveform captures beat-to-beat changes in blood 

volume (AC) which is placed over a slower, more variable (DC) baseline with a range 

of lower frequency components representing thermoregulation, SNS activity, and 

respiratory influences (Allen et al., 2007). While PPG is more susceptible to artefacts 

(e.g., motion), it does not allow for as precise handling of noise in the signal, and 

curved pulse wave peaks present a greater challenge to extract RR intervals relative 

to ECG signals (Laborde et al., 2017), HRV recordings from ECG and PPG signals 

are closely coupled (Lin et al., 2014; Pinheiro et al., 2016; Selvaraj et al., 2008), with 

one study demonstrating discrepancies between ECG and PPG of below 6% for the 

majority of HRV measures (Jeyhani et al., 2015). Critically, given practical and current 

technological constraints of using ECG in a magnetic resonance imaging (MRI) 

scanning environment, for studies assessing simultaneous MRI data and HRV in the 

scanner, acquiring a pulse trace via PPG to derive HRV metrics has been a practical 

approach (Chang et al., 2013; McIntosh et al., 2024).  

Currently, there are three major analytical approaches to obtain various HRV 

parameters: time-domain, frequency-domain, and non-linear measures. Firstly, time-

domain HRV metrics directly use the intervals between consecutive heartbeats over 

the duration of a continuous cardiac trace for calculation (Kleiger et al., 1992). The 

most frequently adopted time-domain HRV measures across empirical research are 

the root mean square of successive differences (RMSSD), the standard deviation of 

all normal-to-normal RR (NN) intervals (SDNN), and the percentage of intervals > 50 

milliseconds (ms) different from the preceding interval (PNN50). Of these metrics, the 

RMSSD (measured in ms) is considered a more robust index of HRV, predominantly 

reflecting parasympathetic influences on the heart period (Kleiger et al., 2005), and is 
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a metric that is typically less susceptible to other physiological influences, most notably 

respiration (Hill et al., 2009). By contrast, frequency-domain HRV measures quantify 

cyclic fluctuations in the cardiac signal via either Fast Fourier Transform (FFT) or 

Autoregressive (AR) methods to estimate the absolute or relative power of different 

frequency bands (Kleiger et al., 2005). Oscillations in the cardiac trace can be 

segregated into four main frequency bands: ultra-low frequency (ULF), very low 

frequency (VLF), low frequency (LF) and high frequency (HF) (Shaffer & Ginsberg, 

2017; Task Force, 1996). High-Frequency HRV (HF-HRV) primarily captures 

parasympathetic activity through either the absolute or relative power of the HF band 

and is heavily influenced by respiration (0.15 - 0.4 Hz; approximately 9 to 24 breaths 

per minute; Task Force, 1996). The RMSSD and HF-HRV are commonly adopted 

measures of resting HRV, with both metrics demonstrating a strong positive correlation 

(r = 0.93; Goedhart et al., 2007; Laborde et al., 2017), alongside reasonable stability 

over short (Bertsch et al., 2012; Borges et al., 2018; although see: Uhlig et al., 2020) 

and longer (> 1 year) time periods, including in both adults with and without a history 

of depression (Seidman et al., 2024). Finally, non-linear HRV indices focus on 

capturing and quantifying the structure and/or complexity of the RR intervals, with 

measures including standard deviations in Poincaré plots (Brennan et al., 2001), 

detrended fluctuation analysis (Peng et al., 1995), and recurrence plot analysis 

(Webber & Zbliut, 1994). However, the value of non-linear relative to traditional (time- 

and frequency-domain) HRV techniques in relation to psychophysiological and clinical 

variables remains unclear, subsequently leading to recommendations that non-linear 

indices should be adopted as complementary measures with other established HRV 

metrics (Laborde et al., 2017; Sassi et al., 2015). Taken together, HRV is a 

physiological phenomenon that reflects the adaptability and flexibility of the ANS. 

Nevertheless, HRV is a measure that goes beyond ‘just beats’ and has important 

implications for physical and mental health. 

 

1.6 More Than Just Beats? Heart Rate Variability and Adaptive Emotional 
Responding 

HRV is a psychophysiological marker that reflects adaptability of autonomic 

activity in the face of environmental challenges, with higher HRV signalling an 

increased ability to engage in context appropriate, goal-directed and flexible emotional 

responding (Thayer et al., 2012). As previously outlined, adaptive emotional 
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responding captures both emotional flexibility, the ability to (dis)engage attention to 

and from positive and negative emotional information (Gross & Thompson, 2007; 

Malooly et al., 2013), and emotion regulation, the ability to up- and down-regulate 

positive and negative affect (Johnstone et al., 2007; Ochsner et al., 2002; Urry et al., 

2009). A wealth of psychological research has reported HRV to be linked to adaptive 

emotional responding. Individuals with higher resting HRV demonstrate both adaptive 

top-down and bottom-up modulation of attention to emotional stimuli (Park & Thayer, 

2014), exhibit effective recognition of threat versus safety as reflected by context 

appropriate startle reflexes (Ruiz-Padial & Thayer, 2014), alongside successful safety 

learning and better fear extinction (Pappens et al., 2014). Moreover, individuals with 

higher HRV self-report fewer emotion regulation difficulties (Visted et al., 2017; 

Williams et al., 2015) and increases in HRV have been observed during successful 

emotion regulation (Butler et al., 2006; Ingjaldsson et al., 2003). By contrast, 

individuals with lower resting HRV have been shown to exhibit reduced adaptive, 

context-appropriate emotional responding in the form of increased hypervigilance to, 

and difficulties disengaging from, negative threat stimuli (Park et al., 2013; Park & 

Thayer, 2014), increased attentional avoidance of negative emotional information 

(Grol & De Raedt, 2020), and an elevated autonomic stress response in relation to 

mild fearful stimuli (Gaebler et al., 2013; Park et al., 2014; Park & Thayer, 2014). 

Furthermore, individuals with lower HRV have also been found to demonstrate 

deficient safety learning and slower extinction in relation to fear learning (Pappens et 

al., 2014; Wendt et al., 2015), slower recovery from stress (Weber et al., 2010), and 

self-report greater emotion regulation difficulties (Visted et al., 2017; Williams et al., 

2015). In turn, individuals with lower HRV are also generally at a higher risk of 

developing and experiencing psychopathology, including anxiety and depression 

(Beauchaine & Thayer, 2015; Chalmers et al., 2014; Dell-Acqua et al., 2020; Koch et 

al., 2019). HRV has been found to interact with emotional disposition factors too, with 

higher resting HRV associated with increased positive valence bias (Madison et al., 

2021; Osnes et al., 2023), and lower trait neuroticism (Čukić & Bates, 2015; Shepherd 

et al., 2015; albeit findings are mixed and not entirely robust, see: Ode et al., 2010; 

Sloan et al., 2017). Thus, HRV appears to closely reflect processes linked to adaptive 

emotional responding, with higher HRV promoting more flexible, context-appropriate 

emotional responding, and lower HRV linked to more rigid, inflexible emotional 

responding. Accordingly, several psychophysiological frameworks have been 
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developed to help elucidate the mechanisms by which HRV serves as an index of 

adaptive emotional responding. 

 

1.7 The Intricate Connection Between the Brain and the Heart: 
Psychophysiological Frameworks 

The interdependence of the brain and the heart has been documented since 

the 19th century, in which French physiologist Claude Bernard, was one of the first to 

systematically examine and highlight the intricate connection between both organs 

(Bernard, 1867). Charles Darwin cited and further highlighted Bernard’s pioneering 

work in ‘Expressions of the Emotions in Man and Animals’, noting bidirectional heart-

brain reactivity and their connection via the vagus nerve (Darwin, 1872). The vagus 

nerve is the 10th cranial nerve in the human body which directly innervates the heart 

amongst other major organs, including the lungs and the gastrointestinal tract 

(Kaniusas et al., 2019). Given its widespread influence, the vagus nerve forms a 

crucial component of the ANS, particularly the parasympathetic arm, supporting vital 

interactions between the brain and the body (de Lartigue, 2016). Advances have been 

made in recent years to further expand upon the mechanisms by which the heart and 

the brain communicate, but more specifically, how coupling between the heart and the 

brain may facilitate flexible affective, cognitive, and behavioural responses. While the 

field is still in its infancy, several frameworks have been developed to elucidate the 

connection between the heart and the brain with HRV as an outcome metric of brain-

heart communication (Grossman & Taylor, 2007; Laborde et al., 2018; Porges, 2001, 

2003, 2007; Smith et al., 2017; Thayer & Lane, 2000, 2009). The most prominent 

models informing biopsychosocial and neuroimaging research are the Neurovisceral 

Integration Model (NIM; Smith et al., 2017; Thayer & Lane, 2000, 2009) and Polyvagal 

Theory (Porges, 2001, 2003, 2007). Polyvagal theory (Porges, 2001, 2003, 2007) 

heavily focuses on the evolutionary development of vertebrate neuroanatomy and 

neurophysiological systems to explain how the ANS and associated neural circuitry 

evolved to facilitate adaptive behaviours in response to, and in accordance with, 

dynamic environmental challenges. On the other hand, from a functional 

neuroanatomy and a computational neuroscience perspective, the NIM (Smith et al., 

2017; Thayer & Lane, 2000, 2009) outlines a reciprocal hub of neural regions that 

overlap to support autonomic, cognitive, and emotional regulatory processes. While 

both frameworks posit resting HRV to serve as an index of autonomic flexibility, for 
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conceptual replication purposes and given the greater focus on neural networks, the 

NIM was the central framework for the research outlined in the present thesis.  

 

1.8 The Neurovisceral Integration Model 
The NIM (Smith et al., 2017; Thayer & Lane, 2000, 2009) has served as a 

prominent and influential framework for a broad range of research examining 

associations between HRV and adaptive emotional, cognitive, and autonomic 

responding. At the heart of the model is a complex and reciprocal hub of neural regions 

that functionally overlap to support autonomic (i.e., heart rate), affective, and cognitive 

regulatory processes. Many of these shared brain areas form the Central Autonomic 

Network (CAN; Benarroch, 1993). Specifically, neurovisceral circuitry encompasses 

higher cortical regions (e.g., (v)mPFC, anterior cingulate cortex, orbitofrontal cortex), 

subcortical limbic areas (e.g., amygdala, hypothalamus, anterior and posterior insula), 

and brainstem structures (e.g., periaqueductal gray, the nucleus ambiguus, the locus 

coeruleus, the rostral and caudal ventrolateral medulla). 

A recent extension to the NIM (Figure 1), informed by computational 

neuroscience and recent findings from functional neuroanatomical research, outlined 

an eight-level vagal hierarchy of neurovisceral circuitry, detailing relevant 

neuroanatomical loci and networks that underlie adaptation according to the 

organism’s current and/or future metabolic needs and the environmental context 

(Smith et al., 2017). The hierarchy spans lower-level regional networks (i.e., nucleus 

ambiguuus, periaqueductal gray, (hypo)thalamic nuclei) that mainly regulate 

processes related to an organism’s current metabolic needs, such as intra-cardiac 

control, coordinated cardiovascular control (i.e., baroreceptor reflex), and coordination 

of brainstem nuclei for cross-organ and coordinated visceromotor and skelemotor 

control. Higher levels and networks of the vagal hierarchy (i.e., amygdala, insula, 

posterior and anterior cingulate cortex, medial and dorsal lateral prefrontal cortex) 

integrate information from lower levels to support awareness of current somatic, 

visceral, and cognitive or attentional responses, and the recruitment of regulatory 

processes pertaining to sensory input and past experience, alongside increasing, 

maintaining, or suppressing internal representations in accordance with an individual’s 

goals (i.e., recruitment of executive control network regions) (Smith et al., 2017). 

Therefore, higher-order vagal networks not only focus on current metabolic needs, but 

also involve the control of energy expenditure based on both present and anticipated 
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future metabolic needs according to an individual’s social and emotional goals, 

supporting context-appropriate responding.  

Importantly, the connection between the heart and the brain is bidirectional, 

such that information can flow top-down from the brain to the heart and vice versa 

(Smith et al., 2017). In relation to higher-order emotion and self-regulatory processes, 

the NIM posits that distinct areas of the prefrontal cortex (i.e., mPFC), exert tonic 

inhibitory control over subcortical cardioacceleratory regions (i.e., amygdala). 

Coordinated output of the CAN is directed via preganglionic sympathetic and 

parasympathetic neurons via the stellate ganglia and vagus nerve respectively to the 

sinoatrial node, influencing variable changes in the time intervals between heart beats, 

known as HRV (Thayer & Lane, 2000, 2009). Consequently, this cortico-subcortical 

circuit, alongside other neurovisceral circuitry at lower levels of the vagal hierarchy (as 

outlined above), facilitates the flexible regulation of autonomic, affective and cognitive 

processes, with HRV serving as an index of the functioning of this circuitry (Thayer & 

Lane, 2000, 2009; Smith et al., 2017). Correspondingly, the NIM predicts that higher 

resting HRV reflects more effective cortical-subcortical control, with the prefrontal 

cortex exerting inhibitory influence over subcortical regions to support flexible, context-

appropriate emotional responding (Thayer & Lane, 2000, 2009; Smith et al., 2017). 

HRV is therefore considered a metric of adaptive emotional responding, and effective 

self-regulation more broadly (Appelhans & Luecken, 2006; Balzarotti et al., 2017; 

Holzman & Bridgett, 2017). 
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1.9 Neurovisceral Integration: Neuroimaging Findings 

An ever-expanding body of structural and functional neuroimaging research 

has found supporting evidence for the NIM with circuitry overlapping brain areas 

involved in adaptive emotional responding (Maier & Hare, 2017; Sakaki et al., 2016; 

Schumann et al., 2021; Steinfurth et al., 2018; for meta-analyses and reviews see 

Holzman & Bridgett, 2017; Thayer et al., 2012). Evidence from structural neuroimaging 

studies has reported correlations between HRV and cortical thickness of the right 

anterior midcingulate cortex (Winkelmann et al., 2017), rostral anterior cingulate 

cortex, and lateral orbitofrontal cortex (Yoo et al., 2018). Furthermore, structural 

correlations have been reported between the right amygdala with dorsal medial 

prefrontal cortex (dmPFC) and dorsal anterior cingulate cortex (dACC) into 

Figure 1. Neurovisceral Integration Model 8-Level Vagal Hierarchy. The connection between the brain and 
the heart is bidirectional. The brain transmits prediction-error signals to the heart in a top-down fashion 
and the heart can send information to the brain in a bottom-up manner. The 8-level vagal hierarchy 
contains cardiac systems and lower-level brainstem nuclei that facilitate coordinated cardiovascular 
control at subordinate levels of the hierarchy. Higher levels of the hierarchy integrate information from 
lower-level systems to facilitate awareness of somatic, visceral, cognitive and/or attentional responses. 
The highest levels of the hierarchy contain higher-order processes associated with greater metabolic 
demand (i.e., regulatory processes and goal-directed behaviour). Figure inspired by model presented in 
Smith et al. (2017). Heart and brain illustrations featured and adapted to create this figure were accessed 
via Canva with original source contribution via Pixabay. 
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supplementary motor areas, with those with higher resting HRV exhibiting stronger 

right amygdala-dmPFC and dACC structural correlations (Wei et al., 2018). Evidence 

from functional magnetic resonance imaging (fMRI) studies provides further support 

for the NIM. A meta-analysis by Thayer et al. (2012) reported significant associations 

between HRV and cerebral blood flow in the amygdala and mPFC (overlapping rostral 

and subgenual anterior cingulate areas) across studies employing emotional and 

cognitive tasks. Corroborating this, more recent empirical papers have reported higher 

resting HRV to be associated with stronger resting mPFC-amygdala functional 

connectivity, key brain areas facilitating emotion regulation (Nashiro et al., 2023; 

Sakaki et al., 2016).  

While findings have vastly been correlational in nature, a few studies have 

established more causal links between HRV and neural function underlying flexible 

emotional responding. Recent studies have examined how increasing baseline levels 

of HRV via interventions such as HRV biofeedback (Lehrer & Gevirtz, 2014), may alter 

the activity and interconnectivity of brain areas implicated in the NIM. Both heart rate 

and breathing tend to resonate or synchronise at around 6 breaths per minute (0.1 Hz) 

(Steffen et al., 2017), thus breathing at this resonance frequency enhances the 

amplitude of heart rate oscillations, in turn further elevating HRV (Vaschillo et al., 

2006). HRV biofeedback interventions typically involve participants receiving training 

to breathe slowly at their own resonance frequency (often falling between 4.5 to 6 

breath cycles per minute) (Lalanza et al., 2023; Lehrer & Gevirtz, 2014). Findings from 

biofeedback studies have found that increases in HRV affect brain areas facilitating 

autonomic and emotion regulatory function (Schumann et al., 2021; Nashiro et al., 

2023). Specifically, elevations in HRV strengthened functional connectivity between 

the left vmPFC and the amygdala, insula, middle cingulate cortex, and lateral 

prefrontal regions. Moreover, via a 5-week biofeedback paradigm, Nashiro et al. 

(2023) demonstrated that increases in heart rate oscillations were related to stronger 

left amygdala-mPFC functional connectivity at rest and enhanced the down-regulation 

of somatosensory brain areas during an explicit emotion regulation task. Thus, 

evidence from recent research supports the notion of a causal link between HRV and 

changes in brain areas underlying adaptive emotional responding. 

Critically, many of the brain areas identified in neuroimaging studies overlap 

with regions that support explicit/voluntary and implicit/automatic emotion regulation 

(Braunstein et al., 2017; Buhle et al., 2014; Morawetz et al., 2020). Nevertheless, 
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fewer studies have examined HRV and associated neural activity and/or connectivity 

concurrently during contexts requiring adaptive emotional responding or self-

regulation (Maier & Hare, 2017; Min et al., 2024; Steinfurth et al., 2018) and studies 

assessing both HRV and neural activity concurrently are even more scarce 

(Guendelman et al., 2024). Specifically, higher HRV has been correlated with greater 

(d)mPFC activation during the reappraisal of negative (Steinfurth et al., 2018; 

Guendelman et al., 2024) and positive (Min et al., 2024) images. Moreover, higher 

HRV was associated with reductions in activity in areas overlapping the default mode 

network (DMN), including mPFC, posterior cingulate gyrus, and angular gyrus during 

repeated and passive viewing of emotional images, possibly reflecting more 

spontaneous, automatic emotion regulation and/or quicker dissipation of emotional 

arousal in individuals with higher HRV (Min et al., 2024). Taken together, findings 

suggest that individuals with higher HRV are better able to recruit brain regions and 

neural circuitry supporting flexible and context-appropriate emotional responding. 

 

1.10 Rest Versus Task fMRI and the Dynamic Nature of the Brain 
As reviewed above, previous studies have predominantly examined HRV and 

associated neural functional connectivity and/or activity during periods of ‘rest’, that is 

where the participant lies in the scanner with instructions to stay still and either close 

their eyes or focus on a fixation crosshair presented on a screen. Resting-state 

paradigms are often described as capturing ‘intrinsic’ functional connectivity and 

resting-state connectivity has previously been reported to demonstrate increased 

heritability  relative to connectivity derived from tasks (Ge et al., 2017). However, 

accumulating evidence suggests that resting-state paradigms may not be optimal for 

the detection of trait or state individual differences pertaining to emotion or cognition 

(Finn et al., 2021; Greene et al., 2018). In fact, the state of ‘rest’ could be considered 

a ‘task’ in and of itself, with various unconstrained internal-state factors contributing to 

a diverse range of cognitive states (Shah et al., 2016), including mind-wandering and 

self-generated thoughts (Gorgolewski et al., 2014; Smallwood & Schooler, 2015), and 

drifts in sleep-wakefulness stages (Tagliazucchi & Laufs, 2014). Therefore, the notion 

that rest is a passive and/or neutral state that is free from bias is inherently flawed and 

presents a unique challenge in the form of introducing biases that are difficult to 

measure and prevent (Finn, 2021). Alternatively, demands imposed by engagement in 

tasks may help to constrain underlying neural functional connectivity, reducing 
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variance linked to internal state factors, alongside increasing the relative sensitivity to 

capture and detect individual differences of interest (Finn, 2021; Finn & Bandettini, 

2021). Recent evidence has reported that task-based relative to resting functional 

connectivity was a stronger predictor of fluid intelligence (Greene et al., 2018) and 

functional connectivity observed during a naturalistic task paradigm (e.g., movie 

watching) was reported to effectively predict cognition and emotion (Finn & Bandettini, 

2021).  

Relatedly, many neuroimaging studies in the literature currently adopt 

neuroanalytical techniques that assume temporal stationarity of the brain to assess 

HRV and neural connectivity and/or activity. Nonetheless, evidence from resting and 

task-based fMRI studies emphasise the inherently dynamic nature of the brain, with 

functional connectivity between neural regions and networks demonstrating dynamic 

shifts and temporal variations (Braun et al., 2015; Calhoun et al., 2014; Chang & 

Glover, 2010; Hutchison et al., 2013; Preti et al., 2017). Research has reported 

associations with neural network dynamics and cognitive flexibility (Chen et al., 2016; 

Douw et al., 2016; Kupis et al., 2021), depression and rumination (Kaiser et al., 2016; 

2019), and changes following emotional elicitation and affective/cognitive challenges 

(Gaviria et al., 2021a; 2021b). 

A more dynamic approach to examining HRV and associated neural circuitry 

may promote the identification of transient network states that support and/or 

potentially alter flexible emotional responses across various contexts that could 

otherwise be overlooked with the application of conventional, static neuroanalytical 

techniques. A few empirical studies have investigated both HRV and transient neural 

connectivity with the sliding window technique (Chand et al., 2020; Chang et al., 2013; 

Schumann et al., 2021), in which dynamic functional connectivity is measured through 

application of a sliding time window at a fixed length that correlates changes in 

functional connectivity between pairs of brain regions (Hindriks et al., 2016; Preti et 

al., 2017). While this technique is both popular and informative, it is limited by its 

reliance on arbitrarily fixed time windows (Preti et al., 2017). An alternative approach, 

Co-Activation Pattern (CAP) analysis (Liu & Duyn, 2013; Liu et al., 2018) overcomes 

the requirement to select specific time windows and associated parameters, and 

instead uses a clustering method to separate fMRI data into spatially distinct patterns 

of co-activation to generate separable brain states throughout the scan. Each brain 

state or ‘CAP’ is accompanied with temporal metrics, including frequency (i.e., number 
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of times a brain state is expressed) and average duration (i.e., mean duration or ‘dwell 

time’ in which a particular brain state is maintained) which can be used as indicators 

of neural ‘flexibility’ in a given context. Overall, while evidence from neuroimaging 

studies provides support for the NIM, many of these studies have assessed the 

relationship between HRV and brain activity and/or connectivity using resting-state 

paradigms and with techniques that assume stationarity of the brain. Therefore, 

examining HRV and associated neural circuitry during contexts that require flexible 

emotional responding, alongside the application of dynamic neuroanalytical 

techniques, may facilitate further, and a more direct, evaluation of the NIM. 

 

1.11 Rest Versus Task-Related HRV and Adaptive Emotional Responding 
In a similar vein, HRV research has primarily focused on associations between 

resting HRV and measures of emotional responding, with less focus on recording HRV 

during tasks that require adaptive emotional responses and regulation. Indeed, prior 

studies suggest that resting HRV and phasic HRV changes during tasks are positively 

coupled (Butler et al., 2006; Park et al., 2014). However, fewer studies have 

aggregated HRV across the entire duration of the task, herein referred to as ‘task-

based’ or ‘task-related’ HRV. Strong positive associations have been reported between 

resting HRV measures and HRV recorded during stress (Wang et al., 2009), a 

challenging working memory task (Heffner et al., 2022), and active emotion regulation 

(Guendelman et al., 2024). Taken together, while resting HRV appears to capture an 

individual’s general emotion regulation ability, phasic HRV changes or task-based 

HRV appear to more directly reflect autonomic flexibility and the ability to adapt or 

exert regulatory effort. Since the recent extension of the NIM outlines higher-order 

vagal circuitry that is ‘online’ during goal-directed behaviour and active regulatory 

processes (Smith et al., 2017), and considering that HRV is proposed to be an index 

of adaptive autonomic and self-regulatory function (Appelhans & Luecken, 2006), then 

measuring both HRV and concomitant neural activity not only at rest, but during 

contexts that require flexible emotional responding will put higher-order circuitry of the 

NIM to the test, alongside providing further insight into, and amplifying the ability to 

detect, neural regions and circuitry that support adaptive emotion (regulatory) 

processes as a function of HRV. 
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1.12 Overall Thesis Aim and Overview of Papers 
1.12.1 Overall Aim of the Thesis 

As reviewed above, the NIM (Smith et al., 2017; Thayer et al., 2000, 2009) is 

one of the most influential theoretical frameworks informing neuroimaging and 

psychological research examining HRV and emotion over the last 20 years. At the 

heart of the NIM framework, resting HRV is posited to serve as a metric of optimal 

prefrontal functioning and effective heart-brain coupling, such that higher HRV reflects 

greater adaptability to environmental changes and more effective self-regulation, 

including emotion regulation (Appelhans & Luecken, 2006; Balzarotti et al., 2017). 

Nevertheless, most research has focused on the relationship between HRV and neural 

functional connectivity and/or activity with resting-state paradigms, as opposed to 

contexts that require the engagement of emotion regulatory processes or flexibility. 

The recent extension to the NIM outlines an 8-level vagal hierarchy, with higher levels 

proposed to facilitate coordination of external perception/attention, memory and bodily 

state, regulatory processes (i.e., enhancement, maintenance, or suppression of 

representations), and goal-directed behaviour (Smith et al., 2017). While resting-state 

research has been informative for elucidating key neurovisceral circuitry as a function 

of HRV, the evaluation and examination of higher vagal control levels requires 

examination of HRV and neural/behavioural responses in contexts that directly 

increase metabolic demand and thus recruit proposed neural regions forming part of 

higher-order vagal control circuitry. Alongside recent criticisms of resting-state 

paradigms (Finn, 2021), it appears imperative that further neuroscientific and 

psychological research assesses both HRV and associated adaptive emotional 

responses at neural, psychological, and behavioural levels, during contexts that 

require emotion flexibility and regulation. In doing so, this will provide a clearer 

understanding of the degree to which HRV predicts adaptive emotional responses 

across contexts with associated findings leading to the development of further, 

testable predictions that will help to refine the current neurovisceral framework and its 

proposed mechanisms. This could also potentially inform alternative techniques or 

treatment options for boosting adaptive emotional responding to prevent the onset or 

progression of psychopathology, such as anxiety and depression.  

The principal aim of this thesis was to examine the degree to which HRV serves 

as a metric, and facilitates, adaptive emotional responding at the neural and 
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behavioural level. Three stand-alone papers contributed to this overall aim which are 

briefly outlined in the following sections. 

 

1.12.2 Chapter 2, Paper 1: Task-Related HRV and Amygdala-mPFC Functional 
Connectivity During Voluntary Emotion Regulation in Younger and Older Adults 

The NIM outlines shared neural regions proposed to support both autonomic 

and emotion regulatory processes (Thayer et al., 2000, 2009). A growing body of 

neuroimaging studies provide supporting evidence for the NIM and links between 

resting HRV and brain areas underlying adaptive emotion regulation, including the 

mPFC and amygdala (Mather & Thayer, 2018; Nashiro et al., 2023; Sakaki et al., 2016; 

Schumann et al., 2021; Steinfurth et al., 2018; Thayer et al., 2012). However, the 

degree to which HRV is associated with neurovisceral circuitry during contexts that 

require adaptive emotion regulation is comparatively scarce, with fewer studies 

assessing both HRV and neural functional connectivity or activity in emotional contexts 

concurrently. Given that the NIM emphasises the role of effective prefrontal functioning 

and cortical-subcortical coupling as supporting self-regulatory processes reflected by 

higher HRV, examining HRV and neural circuitry during contexts requiring active 

engagement of emotion regulatory processes is therefore likely to further current 

understanding of heart-brain function in supporting adaptive emotion regulation. 

Correspondingly, Paper 1 aimed to examine whether task-related HRV was 

associated with amygdala-mPFC functional connectivity during a voluntary emotion 

regulation task in a sample of younger and older adults. Furthermore, for conceptual 

replication and comparative purposes, task-related HRV and corresponding 

amygdala-mPFC functional connectivity, from resting-state fMRI data acquired 1-2 

weeks prior to the session in which the emotion regulation fMRI data and task-based 

HRV was obtained, was also assessed. Based on prior findings (Sakaki et al., 2016), 

it was hypothesised that individuals with higher task-related HRV would demonstrate 

stronger functional coupling between the amygdala and mPFC during emotion and 

resting-state contexts. Participants engaged in a cognitive reappraisal task, receiving 

instructions to either enhance (increase), suppress (decrease), or maintain (view), 

negative affective pictures in the MRI scanner. HRV measures were derived from a 

finger pulse signal throughout the scan. 
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1.12.3 Chapter 3, Paper 2: Task-Related and Resting HRV and Associated 
Dynamic Co-Activation of Neural Networks During Emotion and Resting 
Contexts 

Following on from Paper 1, alongside research primarily focusing on examining 

HRV and neural connectivity and/or activity during rest, most of these studies have 

also typically adopted relatively ‘static’ neural functional connectivity approaches. 

However, the dynamic and non-stationary nature of the brain and the involvement of 

wider neural networks has been increasingly recognised (Allen et al., 2014; Chang & 

Glover, 2010; Liu & Duyn, 2013; Preti et al., 2017). A dynamic approach to examining 

HRV and associated neural circuitry may promote the identification of transient neural 

network states that support and/or alter flexible emotional responding across various 

contexts which could potentially otherwise be overlooked with the application of 

traditional static neural methods. 

Therefore, the primary aim of Paper 2 was to examine the relationship between 

task-related and resting HRV and co-active neural network states during emotion and 

resting-state contexts. Two samples of younger adults were derived from the openly 

available Amsterdam Open MRI Collection (AOMIC) dataset (Snoek et al., 2021). CAP 

analysis (Liu & Duyn, 2013; Liu et al., 2018) is a clustering method that separates fMRI 

data into spatially distinct patterns of co-activation to generate different brain states 

that are each accompanied with temporal metrics. We performed CAP analyses with 

seed regions of interest in areas closely linked to emotion processing: right and left 

amygdala and the bed nucleus of the stria terminalis (Baas et al., 2004; Grogans et 

al., 2024). It was hypothesised that individuals with lower task-based and resting HRV 

would exhibit increased occurrences and a significantly longer average duration in 

salience network co-active states. Moreover, trait neuroticism, a stable disposition 

linked to elevated negative affect and emotional reactivity (Ormel et al., 2013), is 

associated with a greater risk of onset and progression of anxiety and depression 

(Kootker et al., 2016; Kotov et al., 2010). Both HRV and neuroticism demonstrate 

associations with attentional (dis)engagement of negative emotional information, but 

the relationship between these two trait markers remains unstable (Čukić & Bates, 

2015; Ode et al., 2010; Shepherd et al., 2015; Sloan et al., 2017). Thus, a secondary 

aim of this study was to assess the relationship between HRV and trait neuroticism, 

alongside their potential interaction, in predicting co-active dynamic networks during 

emotion and rest. It was hypothesised that younger adults with higher self-reported 
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trait neuroticism would exhibit a higher average duration and greater occurrences of 

salience-related and default mode network co-active states during both contexts, but 

with associations predicted to be weaker in individuals with higher rest and/or task-

related HRV. Participants engaged in an emotion processing task which involved 

matching one of two picture stimuli to a target image, which was either a face depicting 

a fearful or angry expression (emotion) or a neutral oval shape presented in either a 

horizontal or vertical position. While the emotion matching task does not directly 

assess emotion flexibility, effective engagement in the task is facilitated by processes 

akin to flexibility (i.e., inhibition of processing emotional information when switching to 

matching neutral stimuli in control blocks). Task-based and resting HRV metrics were 

derived from pulse signals acquired via a finger pulse oximeter during both the emotion 

task and resting-state scan. 

 

1.12.4 Chapter 4, Paper 3: Associations Between Individual Differences in 
Emotional Disposition (Valence Bias and Rumination) and Task-Related and 
Resting HRV with Affective Flexibility   

While the first two papers assessed adaptive emotional responses in the form 

of emotion regulation (reappraisal of negative emotional information; Paper 1) and 

adaptive emotional processing (shifting attention to and from negative emotional 

information; Paper 2), Paper 3 focused on emotion flexibility in the form of attentional 

switch costs based on adaptive (dis)engagement to and from positive and negative 

emotional information. Previous studies have examined ‘affective flexibility’, the 

degree to which an individual flexibly shifts attention to and from emotional material, 

using an affective switching task, which involves categorising positive and negative 

emotional pictures according to either an affective (valence) or non-affective (number 

of humans) rule (Genet et al., 2013; Malooly et al., 2013). Various studies have 

focused on the relationship between psychological variables, including rumination and 

HRV (Genet et al., 2013; Grol & De Raedt, 2020), and switch costs based on the rule 

(i.e., switching from an affective to a non-affective rule or vice versa when the valence 

of the image is held constant). However, for the purposes of this paper, we opted to 

focus more closely on attentional shifts pertaining to the ‘affective’ aspect of the task, 

specifically switch costs based on changes in the valence of the emotional image (i.e., 

where the emotional image changed from a positive valence to a negative valence or 

vice versa when the trial categorisation rule was held constant). We think that these 
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switch costs more closely capture affective flexibility. We adopted three stable trait-

like variables that are posited to reflect (in)flexible emotional responding: valence bias 

(ratings of emotionally ambiguous stimuli), trait rumination, and HRV. Inclusion of 

these measures permitted the examination of both psychological (i.e., rumination, 

affective bias ratings) and physiological (HRV) indices of flexible emotional disposition.  

The overall aim of Paper 3 was to examine the degree to which measures of 

trait affect (valence bias and rumination) and both resting and task-related HRV 

predicted affective flexibility in both an online (Study 1) and laboratory (Study 2) 

context. We hypothesised a higher trait-like negativity bias to be correlated with 

greater switch costs when shifting attention away from images with a negative valence, 

particularly in an affective context. This hypothesis was based on studies that report 

individuals with anxiety and depression exhibit difficulties disengaging from negative 

valenced stimuli (Bar-Haim et al., 2007; Mogg et al., 1995; Koster et al., 2011), and in 

turn, trait-like negativity biases have been associated with anxiety and depressive 

symptoms (Park et al., 2016; Petro et al., 2021). Regarding attentional shifts pertaining 

to rule type, a secondary prediction was that greater negativity bias would significantly 

predict elevated switch costs when shifting attention from affective towards non-

affective aspects of negative information. With relation to trait rumination, it was 

hypothesised that individuals with higher trait rumination, particularly brooding 

rumination, would have greater switch costs when the valence of the image switched 

from negative to positive, especially in an affective rule context. With relation to HRV 

in Study 2, we anticipated that individuals with higher (resting and task-based) HRV 

would exhibit reduced switch costs in their response time when shifting attention from 

negative towards positive valence images (greater affective flexibility), but higher 

switch costs in response time when shifting attention from positive towards negative 

valence images (greater affective inflexibility). Based on prior work (Genet et al., 

2013), we also hypothesised rumination (particularly brooding rumination) to be linked 

to higher switch costs towards non-affective aspects of negative information, and lower 

switch costs when shifting attention towards non-affective aspects of positive 

information. Affective flexibility was measured using an established task paradigm 

(Genet et al., 2013; Malooly et al., 2013) and both valence and rule switch costs were 

calculated. Trait-like valence bias was operationalised as the relative dominance of 

negative versus positive ratings in response to emotionally ambiguous (i.e., surprise 



  23 

faces) stimuli. A pulse signal was acquired via a finger pulse oximeter throughout the 

emotion tasks and a rest period in the laboratory (Study 2). 
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2.1 Abstract 
The Neurovisceral Integration Model posits that shared neural networks support the 

effective regulation of emotions and heart rate, with heart rate variability (HRV) serving 

as an objective, peripheral index of prefrontal inhibitory control. Prior neuroimaging 

studies have predominantly examined both HRV and associated neural functional 

connectivity at rest, as opposed to contexts that require active emotion regulation. The 

present study sought to extend upon previous resting-state functional connectivity 

findings, examining task-related HRV and corresponding amygdala functional 

connectivity during a cognitive reappraisal task. Seventy adults (52 older and 18 

younger adults, 18–84 years, 51% male) received instructions to cognitively 

reappraise negative affective images during functional MRI scanning. HRV measures 

were derived from a finger pulse signal throughout the scan. During the task, younger 

adults exhibited a significant inverse association between HRV and amygdala-medial 

prefrontal cortex (mPFC) functional connectivity, in which higher task-related HRV was 

correlated with weaker amygdala-mPFC coupling, whereas older adults displayed a 

slight positive, albeit non-significant correlation. Furthermore, voxelwise whole-brain 

functional connectivity analyses showed that higher task-based HRV was linked to 

weaker right amygdala-posterior cingulate cortex connectivity across older and 

younger adults, and in older adults, higher task-related HRV correlated positively with 

stronger right amygdala-right ventrolateral prefrontal cortex connectivity. Collectively, 

these findings highlight the importance of assessing HRV and neural functional 

connectivity during active regulatory contexts to further identify neural concomitants of 

HRV and adaptive emotion regulation. 

 

Keywords: Heart Rate Variability; Neurovisceral Integration Model; Amygdala; Medial 

Prefrontal Cortex; Functional Connectivity  
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2.2 Introduction 
The ability to flexibly respond to ongoing and complex changes in our 

environment, in both a timely and contextually appropriate manner, is crucial for 

successful adaptation to environmental challenges and emotion regulation (Aldao et 

al., 2015; Thompson, 1994). Responses to such situational demands generates a 

cascade of changes at both subjective (e.g., emotional states, expressions) and 

physiological (e.g., elevations or reductions to heart rate, sweating, heightened neural 

responding) levels. Heart Rate Variability (HRV), physiologically defined as the 

variation in time intervals between consecutive heart beats, has increasingly been 

employed as an objective, peripheral measure to capture individual differences in 

adaptive autonomic responding and self-regulatory capacity, including emotion 

regulation (Appelhans & Luecken, 2006). 

Resting HRV reflects the predominance of the parasympathetic branch of the 

autonomic nervous system (ANS). Both the sympathetic and parasympathetic 

branches directly innervate the heart via the stellate ganglia and vagus nerve 

respectively (Berntson et al., 1997). Dynamic interplay between both branches 

produces complex variations in the heart rate period that is captured by HRV, but it is 

the fast, modulatory impact of the parasympathetic nervous system (via the vagus 

nerve) that reportedly exhibits the strongest influence on the heart's pacemaker (i.e., 

sinoatrial node) and subsequent variation in heart rate, particularly at rest (Berntson 

et al., 1997). Greater variation in the time intervals between successive heart beats 

(Root Mean Square of Successive Differences, RMSSD) and dominance of high 

frequency (HF) heart rate oscillations (HF-HRV) are HRV parameters that capture the 

predominance of the parasympathetic branch of the ANS (Shaffer & Ginsberg, 2017). 

Typically, higher levels of HRV at rest indicate a more adaptive and responsive 

cardiovascular system, supporting fast and flexible alterations in physiological 

responses to effectively manage stressors, as well as maintaining homoeostasis 

(Shaffer & Ginsberg, 2017; but see Kogan et al. (2013) for discussion on the quadratic 

nature of HRV). 

Several models discuss the role of HRV in adaptive psychophysiological 

responding (Grossman & Taylor, 2007; Laborde et al., 2018; Porges, 2007, 2011; 

Smith et al., 2017; Thayer & Lane, 2000, 2009).  In particular, the Neurovisceral 

Integration Model (NIM; Smith et al., 2017; Thayer & Lane, 2000, 2009) outlines a 

complex and reciprocal network of neural regions that overlap to support autonomic, 
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cognitive and affective regulatory processes. At the heart of the NIM is the ‘central 

autonomic network’ (CAN; Benarroch, 1993) which encompasses higher cortical 

structures (e.g., ventromedial prefrontal cortex, anterior cingulate cortex), subcortical 

limbic regions (e.g., central nucleus of the amygdala, hypothalamus), and brainstem 

structures (e.g., periaqueductal gray, parabrachial nucleus), forming a vital, 

coordinated network that facilitates autonomic function and regulation (Benarroch, 

1993; Thayer et al., 2009a). The NIM posits that the prefrontal cortex exerts tonic 

inhibitory control over subcortical structures, and by extension the vagus nerve. As 

such, resting HRV is proposed to serve as an index of the effective functioning of 

inhibitory cortical-subcortical connectivity and Central Nervous System-Autonomic 

Nervous System integration, in turn promoting adaptive self-regulation (Thayer & 

Lane, 2000, 2009; Thayer et al., 2009a). 

A growing body of neuroimaging research lends support for the NIM and the 

link between resting HRV and emotion regulation-related brain function (Mather & 

Thayer, 2018; Sakaki et al., 2016; Schumann et al., 2021a; Steinfurth et al., 2018). A 

prior meta-analysis highlighted significant and consistent associations between HRV 

and cerebral blood flow in the mPFC (including rostral and subgenual anterior 

cingulate regions) and the amygdala across several studies (Thayer et al., 2012). 

Importantly, despite reported reductions in resting HRV with age (Agelink et al., 2001; 

Russoniello et al., 2013), both older and younger adults with relatively higher resting 

HRV exhibited stronger resting medial prefrontal cortex (mPFC)-amygdala functional 

connectivity (Nashiro et al., 2022; Sakaki et al., 2016). Higher HRV has also been 

linked to stronger resting amygdala-ventrolateral prefrontal cortex (vlPFC) connectivity 

in younger adults (Sakaki et al., 2016). Relatedly, a study conducted by Kumral et al. 

(2019) found that younger adults with higher resting HRV had stronger bilateral 

ventromedial prefrontal cortex (vmPFC) connectivity, with this vmPFC seed 

demonstrating further extended functional connectivity with several CAN regions. 

Increasing resting HRV via biofeedback interventions (e.g., slow breathing, Lehrer & 

Gevirtz, 2014) has been reported to elevate resting-state functional connectivity of the 

vmPFC to neural regions implicated in emotional processing and the NIM, including 

the amygdala, middle cingulate cortex, anterior insula, and lateral PFC (Schumann et 

al., 2021a). Interestingly, fewer studies have assessed HRV and associated neural 

activity during tasks that require emotional or self-regulatory processes. Higher resting 

HRV has previously been linked to increased vmPFC activation during an effortful self-
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control dietary task in younger adults (Maier & Hare, 2017). Moreover, while engaging 

in a voluntary emotion regulation task, younger adults with higher resting HRV more 

effectively recruited the dorsal medial prefrontal cortex to modulate amygdala 

responses via reappraisal (Steinfurth et al., 2018). 

Collectively, prior research supports the notion that HRV serves as a measure 

of effective, inhibitory cortical-subcortical connectivity, with the PFC and amygdala 

showing consistent associations with HRV (Thayer et al., 2012). Relatedly, mPFC-

amygdala interconnectivity has been reported to facilitate successful emotion 

regulation (Etkin et al., 2011). It has been suggested that medial regions of the 

prefrontal cortex support automatic or implicit forms of emotion regulation, whereas 

more lateral regions facilitate explicit emotion regulation (Braunstein et al., 2017; 

Phillips et al., 2008). Others propose that higher order, cognitive control regions (i.e., 

ventrolateral and dorsolateral prefrontal cortex) impart control messages to the 

amygdala via the vmPFC given stronger anatomical connections between the 

amygdala and mPFC (Buhle et al., 2014). Indeed, many of the brain areas identified 

in HRV neuroimaging studies overlap with regions that support implicit and explicit 

emotion regulation (Braunstein et al., 2017; Buhle et al., 2014; Morawetz et al., 2020; 

Wager et al., 2008). 

Nonetheless, it is evident that previous research has largely assessed both 

HRV and neural functional connectivity predominantly at rest. Resting-state paradigms 

have recently received criticism in the literature, especially in relation to the utility, 

interpretability, and reliability of neural findings observed under resting-state contexts 

(Finn, 2021). Indeed, the state of ‘rest’ is increasingly being recognised as a ‘task’ in 

and of itself, with many unconstrained, internal state factors contributing to diverse 

cognitive states (Finn, 2021), including mind wandering and self-generated thoughts 

(Gorgolewski et al., 2014; Smallwood & Schooler, 2015), and drifts in sleep-

wakefulness stages (Tagliazucchi & Laufs, 2014). Recent evidence has highlighted 

the potential advantage of demands imposed by task engagement, and how such 

demands may constrain underlying neural functional connectivity to reduce variance 

related to aforementioned internal state factors, in turn increasing sensitivity to detect 

individual differences of interest (Finn & Bandettini, 2021). 

Relatedly, whilst resting HRV has most commonly been assessed in prior work, 

fewer studies have assessed HRV during tasks. A growing body of research has 

examined phasic changes in HRV, including phasic HRV changes in reactivity to, and 
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recovery from, task-related stressors and events relative to baseline HRV levels 

(Butler et al., 2006; Denson et al., 2011; Park et al., 2014; Segerstrom & Nes, 2007; 

for a review see: Laborde et al., 2018). Empirical evidence supports the notion that 

phasic HRV increases are indicative of self-regulatory effort and emotion regulation 

success (Butler et al., 2006; Denson et al., 2011; Ingjaldsson et al., 2003; Park et al., 

2014; Segerstrom & Nes, 2007). Crucially, resting levels of HRV has been found to 

modulate such phasic HRV increases (Park et al., 2014). For instance, women with 

higher resting HRV experienced greater phasic HRV increases during successful 

voluntary emotion regulation via reappraisal and emotional suppression in comparison 

to those with lower resting HRV (Butler et al., 2006). Phasic HRV increases have also 

been linked to greater activation in the subgenual anterior cingulate cortex, a region 

involved in emotion regulation (Lane et al., 2013). In a similar vein, strong positive 

associations have been reported between resting HRV and HRV assessed during 

stress (Wang et al., 2009) and a challenging working memory task (Heffner et al., 

2022). Collectively, empirical evidence suggests that individuals with higher resting 

HRV are more likely to demonstrate phasic HRV increases when challenged by stimuli 

or events that require self-regulatory effort, reflecting more adaptive responding to task 

demands and successful emotion regulation. 

Overall, since the NIM emphasises the role of inhibitory cortical-subcortical 

circuitry in supporting adaptive self-regulation, examining HRV and associated 

functional connectivity in contexts that require active engagement of emotion 

regulatory processes may help to further our understanding of heart-brain function in 

supporting emotion regulation. The current study sought to extend prior resting-state 

functional connectivity findings by assessing pulse-derived HRV and neural functional 

connectivity whilst participants actively engaged in a voluntary emotion regulation task 

in the scanner. As the pulse signal was acquired during the scan only, we aggregated 

HRV across the emotion regulatory context to derive task-related HRV. Based on 

empirical evidence from prior studies linking higher resting HRV to greater phasic HRV 

during emotion regulation (Butler et al., 2006; Denson et al., 2011), any phasic HRV 

increases during the reappraisal task in the current study would likely be captured as 

elevated task-related HRV when aggregated across the entire duration of the task. 

Also, considering that HRV is positively correlated within individuals across contexts 

(Heffner et al., 2022; Wang et al., 2009), the relative rank order of task-related HRV 

metrics across individuals during a reappraisal task should be similar to that observed 
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during rest (i.e., individuals with lower resting HRV will likely exhibit lower task-based 

HRV compared to those with higher resting, and thus higher task-based, HRV). 

Extrapolating from prior resting-state HRV studies, considering the shared role of the 

mPFC in HRV control and emotion regulation, we hypothesised that task-related HRV 

would be positively associated with stronger functional connectivity between the 

amygdala and the mPFC. The mPFC seed region used in the present study was 

previously adopted as a region of interest in Sakaki et al. (2016) and demonstrated 

robust associations with resting HRV. Specifically, we predicted that individuals with 

higher task-related HRV would exhibit stronger positive amygdala-mPFC functional 

connectivity during a cognitive reappraisal task. Given that pulse recordings were 

obtained concurrently in the scanning session with the reappraisal task, our primary 

focus was to examine the relationship between HRV and amygdala connectivity in an 

emotion regulation context, adopting a functional connectivity analysis similar to that 

performed on resting-state data (e.g., calculating functional connectivity during the 

reappraisal task). However, for conceptual replication and comparative purposes, we 

further assessed task-related HRV and associated resting-state functional connectivity 

acquired during an initial scanning session that took place 1-2 weeks prior to the 

session where the task-related HRV measures were obtained. For transparency, 

further details and results are presented in the Supplementary Material. 

 

2.3 Method 
2.3.1 Participants 

Participants in the current study were derived from a larger sample of 91 

subjects (71 older adults, 20 younger adults) previously recruited as part of an ageing 

research project (Lloyd et al., 2021; https://openneuro.org/datasets/ds002620)1. 

Participants were recruited via the University of Reading's Older Adult Research Panel 

and through local poster and newspaper advertisements in Reading. Participants 

received financial compensation (£7.50 per hour) for their participation. From the 

overall sample, 74 participants (55 older adults, 19 younger adults) had both emotion 

regulation task-based functional magnetic resonance imaging (fMRI) and pulse data. 

 
1 The original research project sought to examine associations between neural function, cognitive 
function, and emotion regulation within an older adult population. A smaller sample of younger adults 
matched for gender and education level were recruited as an additional control for age in the original 
study. 

https://openneuro.org/datasets/ds002620
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Figure 2 illustrates the participant selection and exclusion process. Following 

exclusion, 70 participants (52 older and 18 younger adults, aged 18–84 

years, M age = 58.27 years, SD = 20.33; 51% male) were considered for analyses 

(see Table 1 for details per age group). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

All participants were right-handed and reported no history of neurological 

disorder. Medical history and medication details were obtained for the older adults 

only. Of the older adults included in the study (N = 52), 15 disclosed taking regular 

medication for blood pressure and/or cardiovascular health: statins (N = 8), 

angiotensin-converting enzyme inhibitors (N = 2), angiotensin receptor blockers 

(N = 2), calcium channel blockers (N = 2) and beta-blockers (N = 1). The remaining 

37 participants did not report use of medication related to cardiovascular health. 

Furthermore, 21 participants reported having experienced a cardiovascular health 

condition: high blood pressure (N = 12), high cholesterol (N = 6) and mini-stroke 

(N = 3). Given that we did not observe significant differences in task-related HRV 

between those taking cardiovascular medication (t(50) = −0.46, p = .647, d = −0.14) 

and those who disclosed a history of cardiovascular disease 

(t(50) = −0.70, p = .485, d = −.20), with participants who did not report use of 

Figure 2. Participant Selection and Exclusion Process. Participants were selected from a larger pool 
of subjects recruited as part of a wider ageing study. 
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cardiovascular medication and/or a history of cardiovascular disease, we opted to 

retain these older adults in the analyses. 

The research study from which the current sample was derived was carried out 

in accordance with the Declaration of Helsinki (1991, p.1194). The study's procedures 

were given a favourable ethical opinion of conduct by the University of Reading's 

Research Ethics Committee and NHS Research Ethics Service. Participants provided 

written informed consent prior to their participation. 

 

2.3.2 Materials and Procedure 
2.3.2.1 Cognitive Reappraisal Task 

Participants engaged in a voluntary emotion regulation task during the scan, 

which followed an established cognitive reappraisal paradigm employed by previous 

research (e.g., van Reekum et al., 2007). Cognitive reappraisal is an antecedent-

focused strategy that requires an individual to reinterpret or alter the meaning of an 

emotional event (Gross & John, 2003). A detailed description of the reappraisal task 

and stimuli can be found in Lloyd et al. (2021). 

The cognitive reappraisal task comprised 96 trials in total, in which 72 negative 

and 24 neutral pictures obtained from the International Affective Picture System (IAPS; 

Lang et al., 2008) were presented. On a given trial, participants were instructed to 

either “suppress” (decrease), “enhance” (increase), or “maintain” their emotional 

response and attend to the image presented (neutral images were always paired with 

the “maintain” instruction)2. The “suppress” instruction in this task involved imagining 

an outcome less negative than the participant's original thoughts and/or feelings 

towards the image to reduce the intensity of any emotions experienced, as opposed 

to (expressive) suppression, a response-focused strategy that involves controlling 

emotion-expressive behaviours (Gross & John, 2003). The “enhance” instruction 

required imagining a worse or more negative outcome to increase the intensity of any 

emotions experienced. In the “maintain” condition, participants were instructed to 

simply attend to the image and sustain their emotional response. Following the 

presentation of the picture and engagement in the relevant auditory regulation 

 
2 Participants received training and practice on the task prior to scanning to ensure that the regulatory 
strategies were used as intended (see Lloyd et al. (2021) for further details and the full instructions 
provided during the practice session). Furthermore, the words “suppress” and “enhance” were selected 
as opposed to “decrease” and “increase” to ensure that the auditory instruction for these conditions was 
distinctive. 
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instruction, a rating screen appeared for a fixed duration of three seconds, during 

which participants were asked to rate the intensity of their emotion in response to each 

image on a four-point scale (1 = neutral, 2 = somewhat negative, 3 = quite negative, 

4 = very negative). Responses were recorded via a 4-button MR-compatible button 

box held in the participant's right hand and the button order was counterbalanced 

between subjects (1 = neutral, 4 = very negative or vice versa). 

The scanning procedure was distributed across four identical runs, with 24 trials 

in each run. The duration of each run was approximately seven minutes, with rest 

breaks offered between runs, leading to an overall task duration of approximately 

30 minutes. 

 

2.3.3 Data Reduction and Analysis  
2.3.3.1 HRV Processing and Analysis 

A pulse signal was continuously recorded via an MRI-compatible pulse 

oximeter clip attached to the participant's left finger throughout the scanning session, 

including breaks (sampling rate = 50 Hz). The pulse oximeter was integrated with the 

Siemens Magnetom Trio MRI scanner, from which the raw pulse signal was 

subsequently extracted. 

The raw pulse files underwent visual inspection for quality and usability prior to 

pre-processing and were formatted to read into LabChart software (version 8.1.11; AD 

Instruments, Oxford, UK). Initial manual edits within LabChart involved trimming the 

beginning and/or end of the file where flatlines and/or obvious calibration and motion-

related noise were visually detected. Subsequently, LabChart files were converted and 

exported into LabChart text files to ensure compatibility with Kubios HRV Analysis 

software (version 2.2; Biosignal Analysis and Medical Imaging Group, University of 

Kuopio, Finland; Tarvainen et al., 2014). Further processing of the pulse signal and 

calculation of HRV measures were performed within Kubios. Taking into consideration 

variation in breaks between runs and tasks, alongside the quality of the pulse signal, 

participants had somewhat varying durations of pulse signal for analysis (range 17–

76 min, M duration = 51 min). Occasionally, the automated peak detection feature 

either misplaced or missed the pulse peak, thus resulting in manual corrections to 

either place or (re)move markers to the peak of the pulse waveform. Following manual 

corrections, data were artefact-corrected using the “low” threshold setting (350 ms) 
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across all participants to retain as many natural variations between heart beats as 

possible. 

The Root Mean Square of Successive Differences (RMSSD), measured in 

milliseconds, and High-Frequency HRV (HF-HRV), defined using a frequency band of 

0.15–0.40 Hz, measured in absolute power (ms2, Fast Fourier Transform) were 

calculated within Kubios. Both measures were natural log transformed (ln) to correct 

for positive skew within RStudio (version 1.4.1106) using the ‘log’ command from 

the base package (v3.5.2). Despite variation in pulse duration, this did not 

demonstrate a significant correlation with either raw RMSSD (r = −0.04, p = .747) or 

natural log transformed RMSSD (r = 0.03, p = .839) values across participants 

(N = 70). Whilst RMSSD and HF-HRV metrics reflect parasympathetic vagal control, 

the RMSSD is a primary and robust measure of vagal tone (Kleiger et al., 2005), that 

is generally less susceptible to physiological noise, including respiratory influence (Hill 

et al., 2009). Also, given that both natural log transformed HRV measures exhibited a 

strong positive association in the current study (r = 0.98, p < .001), we proceeded with 

the (ln)RMSSD as our primary HRV metric for all analyses. 

 

2.3.3.2 MRI Procedure and Image Acquisition 
Participants were invited to attend two different sessions within the Centre for 

Integrative Neuroscience and Neurodynamics (CINN) at the University of Reading. 

Structural and blood oxygenation level dependent (BOLD) functional imaging data 

were acquired using a 3T Siemens Magnetom Trio MRI scanner with a 12-channel 

head coil (Siemens Healthcare, Erlangen, Germany). The first session comprised an 

initial scanning protocol to obtain anatomical T1-weighted (T1w) structural scans, 

localisers and a resting-state scan (MRI acquisition details provided in Supplementary 

Material). Participants also engaged in several cognitive tasks outside of the scanner 

which are summarised elsewhere (Lloyd et al., 2021). The overall duration of the first 

session was approximately three hours (one hour scanning time). Participants were 

invited back for a second session which took place a few days (two weeks maximum) 

after the first session. For each participant, a 3D structural MRI was obtained via a T1-

weighted sequence (Magnetization Prepared Rapid Acquisition Gradient Echo 

(MPRAGE)), repetition time (TR) = 2020 ms, echo time (TE) = 3.02 ms, inversion time 

(TI) = 900 ms, flip angle 9°, field of view (FOV) = 250 × 250 × 192 mm, 

resolution = 1 mm isotropic, acceleration factor = 2, averages = 2, acquisition 
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time = 9 min, 7 s). Participants also performed two tasks whilst in the scanner: the 

cognitive reappraisal (emotion regulation) task and an emotional faces processing 

task. The emotion regulation fMRI data were obtained in four blocks of identical 

procedure, using an echo planar imaging (EPI) sequence (211 whole-brain volumes, 

30 sagittal slices with P>A phase encoding, slice thickness = 3.0 mm, slice 

gap = 33%, TR = 2000 ms, TE = 30 ms, flip angle = 90°, FOV = 192 × 192 mm2, 

resolution = 3 mm isotropic, acquisition time = 7 min 10 s per block). The participant's 

pulse was recorded throughout the scan. The overall duration of the second session 

was approximately two hours (one hour scanning time). Structural and emotion 

regulation fMRI task data are publicly available on OpenNeuro:  

https://openneuro.org/datasets/ds002620/versions/1.0.0.  

 

2.3.3.3 MRI Data Pre-Processing 
Functional imaging data were pre-processed and analysed using FMRIB's 

Software Library (FSL, version 6.0; www.fmrib.ox.ac.uk/fsl; Jenkinson et al., 2012; 

Woolrich et al., 2009; Smith et al., 2004) and Analysis of Functional NeuroImages 

(AFNI, version 19.3.03; http://afni.nimh.nih.gov/afni; Cox, 1996). Initial pre-processing 

steps included: skull stripping (non-brain removal) using FSL's brain extraction tool 

(BET; Smith, 2002), motion correction using MCFLIRT (Jenkinson et al., 2002), field-

map correction to correct for potential magnetic field inhomogeneity distortions, spatial 

smoothing using a Gaussian kernel with a full-width half maximum (FWHM) of 5 mm 

and high-pass temporal filtering (Gaussian-weighted least squares straight line fitting 

with sigma = 50 s). Each subject's functional image was first co-registered to their high 

resolution T1-weighted image using linear boundary-based registration (BBR) and 

subsequently normalised to the Montreal Neurological Institute (MNI) 152 T1 2 mm 

template using a 12 degrees of freedom affine transformation via FMRIB's Linear 

Image Registration Tool (FLIRT). 

Application of individual-level Independent Component Analysis (ICA) via FSL's 

Multivariate Exploratory Linear Optimized Decomposition into Independent 

Components (MELODIC; Beckmann & Smith, 2004) separated the fMRI BOLD signal 

into a set of spatial maps (independent components) representing neural signal and/or 

noise. Independent components containing structured temporal noise, including 

scanner and hardware artefacts, physiological artefacts (respiratory and/or cardiac 

noise), and motion-related noise were identified via visual inspection and removed 

https://openneuro.org/datasets/ds002620/versions/1.0.0
http://www.fmrib.ox.ac.uk/fsl
http://afni.nimh.nih.gov/afni
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using the FSL command line tool ‘fslregfilt’ for each emotion regulation task run 

(Griffanti et al., 2017). An average percentage of 72.07% components were removed 

across the four runs. This aligns with previous research that has typically identified 

>70% noise versus signal components in standard sequences at 3T (Griffanti et al., 

2017). 

Following ICA filtering, low bandpass filtering was applied to the fMRI data using 

AFNI's ‘3dBandpass’ tool (Cox, 1996) to further remove confounding signals below 

0.009 Hz and above 0.1 Hz. Prior to analysis, each subject's corresponding mean 

functional timeseries image was added back to the bandpass filtered data using 

‘fslmaths’ to ensure compatibility with FSL's FMRI Expert Analysis Tool (FEAT). 

Average framewise displacement (FD) for each participant and task run was 

calculated using the realignment parameters generated after initial motion correction 

with FSL's MCFLIRT (Power et al., 2012) and after denoising (i.e., following ICA and 

low bandpass filtering) using FSL's ‘fsl_motion_outliers’ to assess changes in motion. 

Participants or task runs were not initially excluded for exceeding a set mean FD 

threshold for several reasons. The exclusion of participants with higher motion can 

introduce selection bias, as greater movement in the scanner may be a marker that 

correlates with relevant (sociodemographic or clinical) variables of interest, which in 

turn risks data becoming missing not at random (Nebel et al., 2022). Furthermore, 

there is still not a universally accepted FD threshold in which volumes or functional 

data are considered as being contaminated by excess motion, especially as the 

sensitivity of this threshold is likely to vary as a function of subject and/or acquisition 

factors (Pham et al., 2023). Importantly, FD is calculated prior to further denoising 

techniques, which risks the premature removal of functional volumes, task runs, and/or 

subjects that may exhibit lower motion-related noise following further processing 

(Pham et al., 2023). Correspondingly, in the current study, average FD across all task 

runs was minimal following denoising (M = 0.02 mm, SD = 0.01 mm, range = 0.01–

0.05 mm), and no single volume across subjects exceeded 0.2 mm, suggesting that 

motion had been reduced using the outlined techniques. 

 

2.3.3.4 Functional Connectivity Analysis  
Regions of interest (ROIs) were separate right and left amygdala seeds, and 

an area of the mPFC previously found to be correlated with HRV (Sakaki et al., 2016). 

Separate amygdala ROIs were selected given recent discrepancies in amygdala 
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lateralisation with the mPFC as a function of HRV (Nashiro et al., 2022; Sakaki et al., 

2016), and also observed lateralisation effects highlighted in previous research 

concerning emotion processing and regulation (Baas et al., 2004; Yang et al., 2020). 

Amygdala ROI masks were defined using the Harvard-Oxford Subcortical Probability 

atlas and thresholded at 80% probability (right amygdala: 114 voxels, 912 mm3, centre 

of gravity: x = 24, y = −3, z = −18; left amygdala: 95 voxels, 760mm3, centre of 

gravity: x = −23, y = −5, z = −18). The mPFC ROI contained voxels from the anterior 

cingulate cortex (ACC) and paracingulate gyrus thresholded at 25% probability 

(Harvard-Oxford atlas; 263 voxels, 2104mm3, centre of gravity: x = −1, y = 47, z = 8). 

This mPFC area has previously been associated with memory positivity in older adults 

(Sakaki et al., 2013) but was more recently employed as a seed ROI in Sakaki et al. 

(2016), in which higher HRV was correlated with stronger amygdala coupling with this 

mPFC sub-region. Relatedly, both the ACC and mPFC have been shown to facilitate 

down-regulation of the amygdala (Etkin et al., 2011). All ROI masks (right and left 

amygdala, mPFC) were first transformed to each participant's native functional space 

using FSL's Apply FLIRT Transform ‘ApplyXFM’ and binarised. Subsequently, the 

mean time series for each ROI was extracted from the four separate emotion 

regulation runs for each participant using ‘fslmeants’. 

Separate first-level regression analyses were performed for each ROI using 

FEAT (Woolrich et al., 2001). Similar to a functional connectivity analysis typically 

performed on resting-state data, individual models included the mean time series 

extracted from the specific ROI and regressors of no interest, specifically: FSL's six 

standard head-motion parameters3, and average white matter and ventricular (CSF) 

signal. Average signal from white matter and CSF was extracted from masks 

generated via segmentation of each participant's high resolution T1w image using 

FMRIB's Automated Segmentation Tool (FAST; Zhang et al., 2001). 

Inclusion of global signal regression (GSR) has received scrutiny in the 

literature and remains a controversial pre-processing technique (Murphy et al., 2009; 

Murphy & Fox, 2017; Uddin, 2017). Although GSR is effective at removing global 

sources of noise, including physiological and motion artefacts (Li et al., 2019), the 

 
3 Note that inclusion of the six rigid-body motion parameters compared to the extended 24 motion 
parameters (i.e., the six motion parameters, their derivatives, and the squares of these) in the single 
subject models made a negligible difference to the spatial maps and timecourses at both the lower-level 
and fixed effects FEAT level. 
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global signal is not wholly comprised of noise and its topography has been associated 

with important physiological, cognitive, and age differences (Bolt et al., 2022; Li et al., 

2019; Nomi et al., 2022). Importantly, in task-based contexts, global signal is highly 

correlated with the task paradigm (Mayer et al., 2019). Given the controversy and lack 

of consensus surrounding GSR, we did not include GSR as a regressor in the model. 

Furthermore, the task design was not included as a regressor in the model. It 

is recognised that not including the task design as a regressor in task-based functional 

connectivity analyses can result in spurious correlations and systematic inflation of 

functional connectivity estimates due to task-induced coactivations (Cole et al., 2019). 

Whilst techniques such as finite impulse response (FIR) task regression have been 

recommended to reduce the influence of spurious or inflated results corresponding to 

task-evoked activations (Cole et al., 2019), this approach may not be as effective when 

applied to relatively fast event-related fMRI designs. Crucially, the overarching aim of 

the present study was to examine HRV and associated neural functional connectivity 

in a voluntary emotion regulation context. Since the visual presentation of the images 

and emotion regulatory processes were designed to be perfectly confounded in the 

reappraisal task, and HRV is also closely related to, and considered a metric of, 

regulatory ability, if task activation events that mainly reflect variation in emotion 

regulatory processes were to be regressed from the data, any brain coactivation with 

HRV would then be derived from residualised data, without the emotion regulatory 

context. Moreover, not regressing the task design has been reported to increase the 

reliability of functional connectivity measures (Cho et al., 2021). For these reasons, 

task design was not included as a regressor in the models. 

Prior to group-level analyses, a second-level fixed effects analysis using FSL's 

FEAT was applied to the emotion regulation task-based fMRI data to collapse the ROI 

connectivity maps across the four task runs4. This generated mean positive and 

negative functional connectivity maps for input to higher-level analyses. 

 

2.3.3.5 Amygdala-mPFC Functional Connectivity Analyses 
Beta values (mean positive parameter estimates) from right and left amygdala 

connectivity maps were extracted using FSL's Featquery, with the mPFC seed as the 

 
4 Two participants were missing the final run of the emotion regulation task (run 4), so ROI connectivity 
maps were averaged across the three available task runs (runs 1-3) for these participants. 
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reference mask. The corresponding beta values served as an index of amygdala-

mPFC connectivity strength. 

Multiple regression analyses were employed to examine associations between 

task-related HRV and amygdala-mPFC functional connectivity strength in the whole 

sample. Separate multiple regression models were tested with (i) right amygdala-

mPFC connectivity and (ii) left amygdala-mPFC connectivity values as dependent 

variables. A segregation in age (years) was observed between the older and younger 

adults, leading to a natural formation of two separate age groups (see Fig. S2 in the 

Supplementary Material). We therefore entered age as a categorical predictor in the 

regression models. The following predictors were entered into the regression model: 

age group (1 = older adults, 0 = younger adults), (ln)RMSSD (centered), and a HRV x 

age interaction term5. In each model, age group and HRV were entered first (step 1), 

followed by the HRV x age interaction predictor (step 2). Standardised beta 

coefficients are reported for all predictors in the Results. 

 

2.3.3.6 Whole-Brain Functional Connectivity Analyses 
Given the heterogeneous neurological profiles often observed in ageing brains 

(Chen et al., 2016), and the larger sample of older adults in the current study, we 

performed whole-brain functional connectivity analyses for all ROIs across the whole 

sample, including age as a blocking factor in the analyses, and further performed 

separate whole-brain analyses restricted to the older adult sample only. This allowed 

us to be more inclusive in our search for functionally-relevant regions associated with 

HRV that may have been excluded or otherwise missed using a ROI approach. 

Furthermore, the decision to run separate whole-brain connectivity analyses restricted 

to adults in the older age group was primarily driven by the unequal number of older 

relative to younger adults (and the comparative small sample size of the younger adult 

group), along with the strong effect of biological age on HRV (Agelink et al., 2001; 

Russoniello et al., 2013). 

Whole-brain group analyses for each seed region were performed using 

FMRIB's Local Analysis of Mixed Effects (FLAME; Woolrich et al., 2004). The general 

linear model (GLM) included four explanatory variables: group mean and three 

 
5 To reduce the influence of multicollinearity that can occur between the original variables and the 
subsequent interaction that is comprised of those variables, the HRV x age interaction term was 
calculated by multiplying the centered (ln)RMSSD scores by the dummy coded age group. 



  50 

predictors, HRV (lnRMSSD, centred), age (effect coded using +1 and −1 to define 

older and younger adult groups respectively) and a HRV by age interaction term 

(lnRMSSD centred x age group). Seven contrasts were entered into the model: group 

mean, HRV, age and the HRV by age interaction term (positive and negative contrasts 

for each EV). Clusters surviving a threshold of Z > 3.1 and correction for multiple 

comparisons with Gaussian random field theory (cluster significance: p = 0.05-

corrected) were identified (Worsley, 2001). The locations of significant clusters that 

survived correction were labelled using the Harvard Oxford Cortical Structural and 

Subcortical atlases in MNI space within FSL. Mean beta values from significant 

clusters that emerged as a main effect of HRV were extracted for visualisation 

purposes. 

 

2.4 Results 
2.4.1 Descriptive Statistics 

Table 1 summarises general descriptives for the whole sample and for older 

and younger adult age groups separately. HRV significantly differed by age group, 

such that older adults demonstrated significantly reduced HRV as indexed by lower 

(ln)RMSSD values (M = 3.92, SD = 0.55), in comparison to younger adults 

(M = 4.29, SD = 0.44), F(1,66) = 6.06, p = .016, ηp2 = 0.08. However, there was no 

significant difference in (ln)RMSSD values between females (M = 4.07, SD = 0.52) 

and males (M = 3.96, SD = 0.57) across the whole sample, F(1,66) = 0.09, p = .764, 

ηp2 = 0.00, nor was there a significant interaction between age group and sex on 

(ln)RMSSD values, F(1,66) = 0.15, p = .698, ηp2 = 0.00. Thus, no significant 

differences in HRV related to sex were observed in the present study (see Fig. S1 in 

the Supplementary Material). Additionally, there was a significant difference in the 

mean RR interval (t(68) = 2.06, p = .044, d = 0.56), but no significant difference in 

mean heart rate (t(18) = −1.64, p = .117, d = −0.68) between older and younger 

adults. 

Moreover, in relation to self-reported ratings of negative emotional intensity, 

older and younger adults reported significantly greater negative emotional intensity 

after the enhance (increase) regulatory instruction (M = 2.78, SD = 0.39) relative to 

the maintain (attend) instruction (M = 2.60, SD = 0.33) in response to negative images 

(t(69) = 4.76, p <.001, d = 0.57). Counterintuitively, negative emotional intensity 

ratings were slightly higher for the suppress (decrease) regulatory instruction 
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(M = 2.62, SD = 0.35) in comparison to the maintain instruction in response to 

negative pictures, but there was no significant difference in the ratings between these 

conditions (t(69) = −0.52, p = .602, d = −0.06). Overall, findings suggest that 

participants actively engaged in the reappraisal task and followed instructions to 

regulate, but reappraisal did not appear to significantly reduce negative affect beyond 

the control (maintain) condition6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
6 To target a more implicit metric of emotional reactivity, we examined differences in amygdala 
activation between the main regulatory conditions. Given that task events were not modelled in the 
present study, the findings reported here have been derived from analyses on the full dataset that 
formed part of a previous study (Lloyd et al., 2021). Using FSL's FeatQuery, the average % change in 
amygdala signal between the different regulatory conditions was extracted for left and right amygdala 
respectively (amygdala seed regions were the same as those adopted in the functional connectivity 
analyses in the present study). One-sample t-tests were conducted on the amygdala reactivity 
difference scores between regulatory conditions against zero. Following a similar pattern to self-
reported negative emotional intensity, there was a significant change in amygdala reactivity between 
enhance (increase) and maintain (attend) conditions while responding to negative images across 
older and younger adults (for right amygdala: t(69) = 3.67, p < .001, d = 0.44; for left 
amygdala: t(69) = 2.50, p = .015, d = 0.30), in which right and left amygdala activation was greater 
after enhance relative to maintain, thus suggesting effective up-regulation, particularly of the right 
amygdala. No significant difference in amygdala activation emerged for suppress (decrease) relative 
to maintain in response to negative images (right amygdala: t(69) = 0.60, p = .548, d = 0.07; left 
amygdala: t(69) = −0.12, p = .904, d = −0.01), therefore no significant down-regulation of right or left 
amygdala reactivity was observed following the suppress regulatory instruction. For enhance relative 
to suppress in response to negative images, there was a significant difference in amygdala reactivity 
in which amygdala activation was significantly greater after enhance versus suppress across older 
and younger adults (right amygdala: t(69) = 3.58, p <.001, d = 0.43; left 
amygdala: t(69) = 2.72, p = .008, d = 0.33). 



  52 

Table 1.  
Participant characteristics (age, sex, HRV-related metrics, amygdala-mPFC connectivity and self-reported negative 
emotional intensity ratings for each task condition) across the whole sample and each age group. Data is provided in 
means and standard deviations (in parenthesis).  
 Whole Sample  

(18-84 years) 
Older Adults  
(55-84 years) 

Younger Adults 
 (18-35 years) 

 (N = 70) (N = 52) (N = 18) 
Demographics    

Age (years) 58.27 (20.33) 69.34 (8.08) 26.28 (4.75) 

Sex (%) 49% F/51% M 44% F/56% M 61% F/39% M 
lnRMSSD (ms) 4.01 (0.54) 3.92 (0.55) 4.29 (0.44) 

Heart Rate (BPM) 67.60 (17.64) 64.61 (9.78) 76.24 (29.48) 

RR Interval (ms) 937.73 (156.19) 959.80 (141.43) 873.97 (182.24) 

fMRI Variables    

Right Amygdala-mPFC 

Connectivity (PE) 

0.03 (0.13) 0.02 (0.11) 0.05 (0.16) 

Left Amygdala-mPFC 

Connectivity (PE) 

0.03 (0.11) 0.02 (0.10) 0.05 (0.11) 

Emotion Intensity Ratings    

Enhance 2.78 (0.39) 2.75 (0.41) 2.88 (0.31) 

Suppress 2.62 (0.35) 2.58 (0.37) 2.73 (0.28) 

Attend (Negative) 2.60 (0.33) 2.56 (0.33) 2.73 (0.30) 

Attend (Neutral) 1.26 (0.41) 1.26 (0.30) 1.28 (0.63) 

 
 
2.4.2 HRV and Amygdala-mPFC Functional Connectivity Analysis  
2.4.2.1 HRV and Right Amygdala-mPFC Functional Connectivity 

Neither age (β = −0.12, t = −0.94, p = .350) nor task-related HRV 

(β = −0.02, t = −0.14, p = .886) contributed significantly to the overall regression 

model, F(2,67) = 0.45, p = .637, explaining only 1.3% of the variance in right 

amygdala-mPFC functional connectivity. Entering the HRV x age interaction term into 

the model improved the proportion of variance explained in right amygdala-mPFC 

connectivity (ΔR2 = 0.13, F(3,66) = 3.62, p = .018). The interaction between task-

related HRV and age significantly predicted right amygdala-mPFC functional 

connectivity strength (β = 0.86, t = 3.14, p = .003). Follow-up regression models 

indicated that the younger adults appeared to drive this interaction, such that younger 

adults with higher task-based HRV exhibited significantly weaker right amygdala-

mPFC functional connectivity (β = −0.54, t = −2.54, p = .022), whereas older adults 
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demonstrated a slight positive, albeit non-significant, association between HRV and 

right amygdala-mPFC connectivity during the task (β = 0.17, t = 1.24, p = .222) 

(Figure 3a).  

 

2.4.2.2 HRV and Left Amygdala-mPFC Functional Connectivity  
Similar to the right amygdala-mPFC functional connectivity findings, task-

related HRV (β = −0.03, t = −0.26, p = .797) and age (β = −0.09, t = −0.73, p = .466) 

did not contribute significantly to the overall model, F(2,67) = 0.27, p = .764, and 

explained very minimal variance (0.8%) in left amygdala-mPFC functional connectivity 

strength. However, when the HRV x age interaction term was entered into the model, 

this slightly improved the proportion of variance explained in left amygdala-mPFC 

connectivity (ΔR2 = 0.08), although the overall model remained non-

significant, F(3,66) = 2.07, p = .112. The HRV x age interaction was found to predict 

left amygdala-mPFC connectivity strength (β = 0.67, t = 2.38, p = .020). Follow-up 

regression models per age group revealed younger adults to drive this significant 

interaction, whereby greater task-based HRV significantly predicted weaker left 

amygdala-mPFC functional connectivity in younger adults 

(β = −0.51, t = −2.37, p = .031). Conversely, a non-significant, weak positive 

association between task-related HRV and left amygdala-mPFC connectivity strength 

was observed in older adults (β = 0.10, t = 0.74, p = .461) (Figure 3b)7. 

 

 

 

 

 

 

 

 

 

 

 
7 Average FD values (across the four task runs) derived from the realignment parameters following 
MCFLIRT (natural log-transformed to correct for non-normal distribution, Shapiro-Wilk p < .001) and a 
FD by age interaction were not found to significantly predict either right or left amygdala-mPFC 
functional connectivity strength and therefore do not change the nature of the findings reported here 
(data not shown). 
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2.4.3 Whole-Brain Functional Connectivity Analyses 
2.4.3.1 Right Amygdala Whole-Brain Functional Connectivity 

Significant clusters surviving correction as a main effect of HRV for the right 

amygdala whole-brain functional connectivity analyses are displayed in Table 2. 

Across adults in both the older and younger age groups, higher task-related HRV was 

associated with weaker right amygdala connectivity between the right angular gyrus 

(extending into right superior lateral occipital cortex), and bilateral posterior cingulate 

gyrus (Z > 3.1, p = 0.05-corrected). A scatterplot displaying beta values extracted from 

the bilateral posterior cingulate gyrus cluster with task-based HRV are displayed 

in Figure 4. No other clusters survived correction for the positive HRV contrast, nor for 

positive or negative HRV by age interaction contrasts across the whole sample. 

Repeating this analysis in the older adult sample only, a significant main effect 

of HRV emerged, such that higher task-related HRV was positively correlated with 

stronger functional connectivity between the right amygdala and the right inferior 

frontal gyrus, a cluster forming part of the right ventrolateral prefrontal cortex (vlPFC). 

R 

X = -1 

Y = -4 R 

X = -1 

Y = -4 

A)  B)  

Figure 3. HRV and Amygdala-mPFC Functional Connectivity During the Reappraisal Task. A) mPFC seed 
(top) and right amygdala seed (bottom). Significant HRV x age interaction for right amygdala-mPFC 
connectivity strength. In younger adults (light green), higher task-based HRV significantly predicted 
weaker connectivity between the right amygdala and mPFC, whereas a slight positive, albeit non-
significant, association between task-related HRV and right amygdala-mPFC connectivity was observed 
in the older adults (purple). B) mPFC seed (top) and left amygdala seed (bottom). Significant HRV x age 
interaction for left amygdala-mPFC connectivity strength. Similar to the right amygdala connectivity 
findings, in younger adults, greater task-related HRV significantly predicted weaker left amygdala-mPFC 
connectivity, whereas a non-significant, weak positive association between HRV and left amygdala-mPFC 
connectivity was observed in the older adults during the reappraisal task. HRV, heart rate variability; 
mPFC, medial prefrontal cortex; (ln)RMSSD, natural log transformed root mean square of successive 
differences. 
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A scatterplot displaying beta values extracted from this right vlPFC cluster with task-

based HRV are displayed in Figure 4. Moreover, for the HRV negative contrast, higher 

task-related HRV was associated with weaker right amygdala connectivity with several 

regions, including bilateral superior lateral occipital cortex extending into left angular 

and supramarginal gyrus, and bilateral precuneus. 

 

2.4.3.2 Left Amygdala Whole-Brain Functional Connectivity 
No significant clusters survived correction as a function of HRV for left 

amygdala functional connectivity in the whole sample (Z > 3.1, p = 0.05-corrected), 

suggesting that task-based HRV did not covary with left amygdala whole-brain 

functional connectivity across older and younger adults throughout the reappraisal 

task. 

When the left amygdala voxelwise whole-brain search was restricted to adults 

in the older age sample, a significant positive main effect of HRV was observed, in 

which higher task-related HRV was correlated with stronger left amygdala connectivity 

with the right inferior frontal gyrus (vlPFC) and more extensively with the right 

precentral gyrus (Z > 3.1, p = 0.05-corrected). Furthermore, significant clusters also 

survived correction for the negative HRV contrast, such that higher task-based HRV 

correlated with reduced left amygdala – left lateral occipital cortex connectivity. Other 

brain regions that survived correction as a main effect of HRV for the left amygdala 

whole-brain functional connectivity analyses in the older adults are displayed in Table 

3. 
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Figure 4. Significant Voxelwise Whole-Brain Functional Connectivity Clusters as a Function of  HRV 
During the Reappraisal Task. A) Significant bilateral PCC cluster that survived correction as a main effect 
for the negative HRV contrast in the right amygdala whole-brain analysis (Z > 3.1, p = 0.05-corrected). B) 
Significant right inferior frontal gyrus (vlPFC) cluster that survived correction as a main effect for the 
positive HRV contrast in the right amygdala whole-brain analysis restricted to the older adult sample (Z > 
3.1, p = 0.05-corrected). C) Scatterplot displays the inverse association between task-based HRV 
((ln)RMSSD) values and standardised beta values depicting right amygdala-bilateral PCC connectivity 
strength in the whole sample during the reappraisal task in older and younger adults (N = 70). Note that 
the different colours assigned to older (purple) versus younger (light green) adult age groups are depicted 
for display purposes only. D) Scatterplot displays the positive association between task-related HRV ((ln) 
RMSSD) values and standardised beta values depicting right amygdala-right vlPFC connectivity strength 
in the older adult sample (controlling for age). PCC, posterior cingulate cortex; HRV, heart rate variability; 
vlPFC, ventrolateral prefrontal cortex; (ln)RMSSD, natural log transformed root mean square of 
successive differences. 

R 
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Table 2.  
Neural Regions and Local Maxima for Right Amygdala Whole-Brain Connectivity   

    MNI Coordinates  

Region H Cluster 
Size 

BA x y z Z 

        
HRV + (older and younger adults)        

No significant results        
HRV - (older and younger adults)        

Angular Gyrus extending into Superior 
Lateral Occipital Cortex R 103 

 
39 
 

40 -58 16 5.89 

White Matter R   36 -52 10 4.27 

Superior Lateral Occipital Cortex  R   56 -66 24 3.30 

Posterior Cingulate Gyrus R 87 23 6 -40 32 5.12 

 R   2 -42 34 4.59 

 L   0 -38 26 4.29 
 R/L   0 -40 30 4.06 

 L   -4 -48 34 3.59 

HRV x Age Interaction + (older and younger adults)        

No significant results        

HRV x Age Interaction – (older and younger adults)        

No significant results        

HRV + (older adults)        

Inferior Frontal Gyrus  R 111 46 46 32 14 4.16 

 R   52 34 10 3.82 

Frontal Pole R   48 44 2 3.76 
 R   58 38 12 3.76 

Inferior Frontal Gyrus R  45 54 24 12 3.49 

 R  44 52 20 12 3.25 

HRV - (older adults)        

 

Superior Lateral Occipital Cortex extending 

into Angular Gyrus  

L 359 
 
39 -38 -62 46 4.86 

 L   -36 -76 36 4.43 
 L   -36 -70 34 4.35 

Supramarginal Gyrus L   -50 -46 46 4.33 

Angular Gyrus extending into Supramarginal 

Gyrus 
L  

 
-44 -48 38 4.26 
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2.4.3.3 MPFC Whole-Brain Functional Connectivity 
No clusters survived correction as a main effect of HRV for the mPFC seed in 

a voxelwise whole-brain search in the whole sample, nor when the analysis was 

restricted to adults in the older age group (Z > 3.1, p = 0.05-corrected). Therefore, 

task-related HRV did not significantly predict functional connectivity of this particular 

area of the mPFC during reappraisal. 

 

 

 

 

 

 

 

 

 L   -44 -54 44 4.24 

Precuneus R/L 159 7 2 -74 60 5.41 
 R/L   0 -64 48 3.90 

Superior Lateral Occipital Cortex R   10 -78 54 3.33 

 Neural regions that demonstrated associations with right amygdala as a function of task-related HRV (Z = 3.1; 

cluster significance: p < 0.05, corrected). Local maxima are listed for clusters containing more than one peak. 

Cluster size refers to the number of voxels contained within a specific cluster. Coordinates (MNI space) represent 
location of clusters and their maximum Z-scores (bold) and the location of local maxima within significant clusters 

and their associated Z-statistic. The Harvard Oxford Structural Cortical and Subcortical atlases within FSL were 

used to label significant clusters. BA refers to the Brodmann Area for each cluster. The ‘R’ package label4MRI 

(v1.2) was used to generate the BA label based on the MNI coordinates. H = hemisphere (L = left, R = right). 
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Table 3.  
Neural Regions and Local Maxima for Left Amygdala Whole-Brain Connectivity   

    MNI 
Coordinates 

 

Region H Cluster 
Size 

BA x y z Z 

        
HRV + (older and younger adults)        

No significant results        
HRV - (older and younger adults) 

No significant results 
  

 
    

HRV x Age Interaction + (older and younger adults)        

No significant results        

HRV x Age Interaction – (older and younger adults)        

No significant results        

HRV + (older adults)        
Inferior Frontal Gyrus  R 78 44 48 12 30 4.10 

Precentral Gyrus R  6 38 0 32 3.99 

 

Precentral Gyrus extending into Middle 

Frontal Gyrus 

R  
 

8 44 8 34 3.71 

Precentral Gyrus R  6 46 4 28 3.65 

 R   48 6 32 3.39 

 R  8 32 0 34 3.28 

HRV - (older adults)        

Superior Lateral Occipital Cortex L 156 39 -42 -68 44 4.25 
 L   -48 -78 36 4.14 

 L   -38 -68 40 3.87 

 L   -40 -70 36 3.83 

Angular Gyrus L   -44 -56 46 3.66 

Angular Gyrus extending into Posterior 

Supramarginal Gyrus 
L  

 
-48 -52 42 3.59 

 Neural regions that demonstrated associations with left amygdala as a function of task-related HRV (Z = 3.1; cluster 

significance: p < 0.05, corrected). Local maxima are listed for clusters containing more than one peak. Cluster size 

refers to the number of voxels contained within a specific cluster. Coordinates (MNI space) represent location of 
clusters and their maximum Z-scores (bold) and the location of local maxima within significant clusters and their 

associated Z-statistic. The Harvard Oxford Structural Cortical and Subcortical atlases within FSL were used to label 

significant clusters. BA refers to the Brodmann Area for each cluster. The ‘R’ package label4MRI (v1.2) was used 

to generate the BA label based on the MNI coordinates. H = hemisphere (L = left, R = right).  
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2.5 Discussion 
The principal aim of the present study was to examine the relationship between 

HRV and neural functional connectivity whilst older and younger adults engaged in a 

voluntary emotion regulation task. Based on the NIM (Smith et al., 2017; Thayer & 

Lane, 2000, 2009), we hypothesised that higher task-related HRV would be positively 

associated with stronger functional coupling between the amygdala and mPFC in an 

active regulatory context. In older adults, we observed a slight positive, but non-

significant, association between HRV and amygdala-mPFC connectivity. Conversely, 

and inconsistent with the NIM framework, younger adults displayed a stronger, inverse 

association, whereby higher task-related HRV was linked to reduced functional 

connectivity between the amygdala and mPFC. Furthermore, in a voxelwise whole-

brain search, we discovered that older and younger adults with higher task-based HRV 

exhibited weaker right amygdala-PCC connectivity. Interestingly, in older adults, higher 

HRV during reappraisal was associated with stronger coupling between the right 

amygdala and right vlPFC. Our findings indicate that task-related HRV covaries with 

amygdala functional connectivity during emotion regulation, and more crucially 

highlight the importance of assessing both HRV and brain function during an active 

emotion regulatory context. 

Functional connectivity between the amygdala and mPFC is proposed to 

support adaptive emotion regulation, with resting HRV posited to serve as a peripheral 

index of prefrontal inhibitory control (Thayer & Lane, 2000, 2009; Thayer et al., 2009a). 

In line with this proposition, prior studies have reported positive associations between 

resting HRV and amygdala-mPFC connectivity strength irrespective of age (Nashiro 

et al., 2022; Sakaki et al., 2016). However, within the context of the emotion regulation 

task, we found significant interactions between age and task-related HRV to predict 

both right and left amygdala coupling with the mPFC. The direction of the effect was 

unexpected, with the younger adults driving the interaction, but in whom higher task-

based HRV was linked to weaker, rather than a strong positive, coupling between the 

amygdala and mPFC. Medial prefrontal areas have been suggested to support 

automatic/implicit emotion regulation, while lateral regions of the prefrontal cortex 

have been implicated in explicit or voluntary emotion regulatory processes requiring 

greater cognitive control (Braunstein et al., 2017; Phillips et al., 2008). Moreover, the 

mPFC has been classified as one of the main nodes of the default mode network 
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(DMN), a neural hub underlying introspective-related mental processes during rest, 

including emotional and self-referential processing (Andrews-Hanna et al., 2010; 

Buckner & Carroll, 2007; Raichle et al., 2001). Regions comprising the DMN are 

generally suppressed while actively engaging in cognitive tasks (Raichle et al., 2001). 

It is therefore likely that this particular region of the mPFC is more heavily recruited 

during rest compared to an active task context that requires individuals to reappraise. 

Thus, prior findings indicating stronger resting amygdala-mPFC connectivity as a 

function of higher resting HRV may reflect more implicit/automatic emotion regulation 

in the absence of an emotion regulation task that targets more explicit/controlled 

regulatory processes (Braunstein et al., 2017; Sakaki et al., 2016). Indeed, during rest, 

we found a sub-threshold cluster within the mPFC close to our ROI that demonstrated 

increased functional connectivity with the left amygdala as a function of higher task-

related HRV across older and younger adults (see Figure S3 in the Supplementary 

Material). Recently, Nashiro et al. (2022) also found that increases in resting HRV via 

biofeedback were correlated with stronger left, but not right, amygdala coupling with 

the mPFC at rest. Furthermore, prior work has found inverse amygdala-mPFC 

coupling when using reappraisal to decrease negative affect in a student-aged 

population (Lee et al., 2012). Hence, the inverse association reported here in younger 

adults may be driven by the decrease conditions throughout the task. However, given 

the short trial durations in the current study, an event-related connectivity analysis 

would be susceptible to fit too much noise and thus render any findings unreliable. 

Whilst our findings potentially suggest that the regulatory context can affect both the 

laterality and directionality of amygdala-mPFC functional connectivity associations 

with task-based HRV, future work should aim to replicate these findings using a task 

paradigm with longer trial durations to allow for a more targeted event-related 

connectivity analysis. 

Moreover, higher task-related HRV was significantly associated with weaker 

right amygdala connectivity between the right angular gyrus and bilateral PCC across 

the emotion regulation task in both age groups. The angular gyrus and PCC also form 

major nodes of the DMN (Raichle et al., 2001). Weaker resting-state functional 

connectivity between the right amygdala and PCC has previously been linked to 

greater reappraisal success (i.e., effective down-regulation of negative emotion) in 

younger adults (Uchida et al., 2015), whereas increased amygdala-PCC resting-state 

functional connectivity has been observed following exposure to an acute stressor 
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(Veer et al., 2011). More recently, Baez-Lugo et al. (2021) reported that greater right 

amygdala-PCC functional connectivity following exposure to videos containing highly 

negative emotional content (i.e., people suffering) was significantly correlated with 

higher rumination, anxiety, and stress in elderly individuals (Baez-Lugo et al., 2021). 

Critically, those older adults who self-reported more frequent negative thoughts after 

watching the negative emotional videos were those who also exhibited stronger right 

amygdala-PCC connectivity. At a trait level, lower resting HRV has been linked to both 

increased rumination and emotion dysregulation (Visted et al., 2017; Williams et al., 

2017). Relatedly, individuals with lower resting HRV have been reported to exhibit 

phasic HRV suppression in response to fearful distractor stimuli under conditions of 

both low and high cognitive load, thus displaying an autonomic stress response to 

relatively trivial threat cues (Park et al., 2014). Conversely, individuals with higher 

resting HRV appear to exert greater self-regulatory effort as indicated by phasic HRV 

enhancement in the face of fearful distractors under conditions of low cognitive load, 

and no presence of phasic HRV suppression under conditions of high cognitive load 

(Park et al., 2014). Therefore, even under relatively stressful conditions of the task, 

individuals with higher HRV did not demonstrate an autonomic stress response, 

whereas those with lower HRV experienced difficulties with engaging self-regulatory 

processes to effectively cope with task demands. Collectively, the observation of 

weaker right amygdala-PCC connectivity in older and younger adults with overall 

elevated task-related HRV in our study may therefore reflect an increased ability to 

effectively engage with the emotion regulation task at hand. 

Finally, consistent with the NIM’s proposal that higher HRV reflects more 

effective cortical-subcortical functioning, we found that older adults with greater task-

related HRV exhibited stronger functional connectivity between the amygdala and right 

vlPFC in a reappraisal context. This finding is particularly interesting since Sakaki et 

al. (2016) reported a similar association between resting HRV and resting amygdala-

vlPFC connectivity in younger, but not older adults, suggesting that younger adults 

with relatively higher resting HRV were more likely to spontaneously recruit neural 

regions involved in explicit emotion regulation. Considering empirical evidence that 

has reported phasic HRV increases to reflect greater self-regulatory effort and emotion 

regulatory success (Butler et al., 2006; Denson et al., 2011; Segerstrom & Nes, 2007), 

overall elevated task-related HRV when directly challenged by stimuli designed to elicit 

negative emotions may also indicate a greater ability to actively engage brain regions 
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underlying successful voluntary emotion regulation. The vlPFC has increasingly been 

identified as a pivotal neural region involved in emotion regulatory processes (Wager 

et al., 2008; Zhao et al., 2021), and is an area in which age-related differences have 

been reported during reappraisal (Opitz et al., 2012; Winecoff et al., 2011). The vlPFC, 

and lateral prefrontal cortex more broadly, is particularly vulnerable to structural and 

functional atrophy in healthy ageing (Fjell et al., 2009; Raz et al., 2004). The present 

finding suggests that higher task-related HRV in older age, at least in a voluntary 

emotion regulation context, may support increased engagement, and possibly 

functional preservation, of lateral prefrontal cortex, specifically the right vlPFC, 

facilitating effective reappraisal of negative emotions. Although the left vlPFC has been 

more frequently reported in reappraisal studies (Berboth & Morawetz, 2021; Buhle et 

al., 2014), involvement of the right vlPFC here may be characterised by dominance of 

the right hemisphere in supporting inhibitory-related processes for affective, cognitive, 

and physiological regulation more broadly (Lane et al., 2009; Thayer et al., 2009b; 

2012). Irrespective of any laterality, our findings build on the extant literature on 

prefrontal mechanisms in reappraisal by highlighting that elevated task-related HRV 

is associated with positive coupling between the amygdala and vlPFC, which may 

have implications for psychological wellbeing and resilience in later life. 

A few important limitations should be considered when interpreting our findings. 

Our sample comprised a larger pool of adults in the older age relative to the younger 

age group, leading to an unequal age distribution. Although age was included as a 

predictor in our regression models, the small sample of younger adults rendered any 

findings specific to the younger group as possibly spurious and requiring replication in 

a larger sample. Moreover, as previously outlined, the reappraisal task contained trials 

of a relatively short duration which does not lend itself as an optimal design for a more 

targeted, event-related connectivity analysis. While non-regression of the task design 

has previously been shown to increase reliability of functional connectivity measures 

(Cho et al., 2021), in the absence of including the task design to explicitly model 

regulatory events, and without direct comparison with a non-emotional task, the 

current findings may not specifically reflect emotion regulation or emotional 

processing. Similarly, while the resting-state connectivity findings produced a cluster, 

albeit sub-threshold, in the mPFC that was close to our seed region of interest and not 

observed during the emotion regulation task, this is based on visual inspection of the 

data. Indeed, without directly comparing HRV associations with functional connectivity 
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during the emotion regulation task and at rest, it remains unclear whether connectivity 

patterns as a function of task-related HRV are significantly different between these two 

contexts. 

Furthermore, HRV was derived from a finger pulse oximeter whilst participants 

were lying down in the scanner and whilst engaging in emotion-related tasks, 

predominantly reappraisal. Both factors have previously been shown to elevate heart 

rate and HRV (Butler et al., 2006; Cacioppo et al., 1994), and the use of 

photoplethysmography to derive HRV metrics, especially RMSSD (Schumann et al., 

2021b), could have further resulted in an elevated HRV estimate. However, given that 

HRV metrics tend to demonstrate strong positive correlations across contexts (Heffner 

et al., 2022; Wang et al., 2009) and resting HRV modulates phasic HRV changes 

during emotion regulation (Butler et al., 2006; Segerstrom & Nes, 2007), the relative 

rank order of task-related HRV across subjects in the present study are likely to be 

similar to those observed outside of the scanner at rest. Additionally, other lifestyle 

factors known to influence HRV measures, including smoking status, general 

fitness/activity level, caffeine intake, and body mass index (Hayano et al., 1990; 

Karason et al., 1999; Sammito & Böckelmann, 2016) were not obtained, therefore we 

cannot rule out the influence of these factors on the current findings. Future research 

should aim to acquire reliable heart rate recordings to derive HRV metrics both inside 

and outside of the scanner (Schumann et al., 2021b) and during rest and whilst 

performing tasks for calculation of phasic HRV changes (reactivity and recovery 

measures relative to baseline). Relatedly, aggregation of HRV measures across 

contexts to capture variance that more strongly represents ‘trait-like’ HRV may also be 

insightful (see Bertsch et al., 2012). 

Whilst our study augments prior findings which have heavily relied on 

associations between HRV and functional connectivity during rest by assessing heart-

brain function in an active emotion regulatory context, the current study and the 

majority of prior work have typically relied on relatively static functional connectivity 

techniques. Although a few studies have examined transient HRV changes and 

functional connectivity using dynamic functional connectivity (dFC) techniques such 

as the sliding window approach (Chand et al., 2020; Chang et al., 2013; Schumann et 

al., 2021a), this method is limited by its reliance on arbitrary selection of truncated time 

windows to assess both functional connectivity and HRV, with the latter particularly 

affected by the shorter duration of the measurement period (Shaffer & Ginsberg, 2017; 
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Task Force, 1996). It would therefore be fruitful for future research to employ novel 

and alternative dFC methods that overcome existing constraints (e.g., co-activation 

pattern analysis; Liu et al., 2013; 2018) to determine associations between HRV and 

dynamic neural networks underlying adaptive and flexible regulation across the 

lifespan. 

In conclusion, the current study extends prior resting-state findings by 

highlighting that task-related HRV covaries with amygdala-cortical functional 

connectivity in the context of a voluntary emotion regulation task. While the amygdala-

mPFC findings did not align with the NIM, task-based covariation between functional 

connectivity of amygdala-vlPFC and task-based HRV provide some support for the 

notion that higher HRV reflects stronger cortical-subcortical integrity. This circuitry may 

facilitate adaptive emotion regulation which could have implications for wellbeing and 

resilience in later life. Collectively, our findings accentuate the importance of assessing 

neurovisceral circuitry during active regulatory contexts to further elucidate core neural 

mechanisms involved in supporting adaptive self-regulation as a function of HRV more 

broadly. 
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Supplementary Material 
S1. Resting-state fMRI Details 
S1.1 Resting-state fMRI Data Acquisition 

Resting-state fMRI data were acquired using an echo planar imaging (EPI) 

sequence (200 whole-brain volumes, 56 sagittal slices, with P>A phase encoding, slice 

thickness = 3.0mm, slice gap = 0%, TR = 3000 ms, TE = 30 ms, flip angle = 90°, FOV 

= 192 x 192 mm2, resolution = 3 mm isotropic, acquisition time = 10 minutes, 11 

seconds).  

 

S1.2 Resting-state Scan Procedure 

Participants were asked to maintain their gaze on a fixation cross in the middle 

of screen presented on a white background. The total duration of the resting-state 

scan was 10 minutes and 11 seconds. 

 

S1.3 Resting-state fMRI Pre-processing 

Resting-state functional imaging data were preprocessed and analysed using 

FMRIB’s Software Library (FSL, version 6.0; Jenkinson et al., 2012; Woolrich et al., 

2009; Smith et al., 2004) and Analysis of Functional NeuroImages (AFNI, version 

19.3.03; http://afni.nimh.nih.gov/afni; Cox, 1996), akin to the preprocessing and 

analytical procedure applied to the emotion regulation fMRI task-based data. These 

initial pre-processing steps included: skull stripping (non-brain removal) using FSL’s 

brain extraction tool (BET; Smith, 2002), motion correction using MCFLIRT (Jenkinson 

et al., 2002), spatial smoothing using a Gaussian kernel with a full-width half maximum 

(FWHM) of 5 mm and high-pass temporal filtering (Gaussian-weighted least squares 

straight line fitting with sigma = 50 s). Each subject’s native image was normalised to 

the standard Montreal Neurological Institute (MNI) space via co-registration to their 

high resolution T1-weighted image. Application of FSL’s MELODIC Independent 

Components Analysis (ICA; Beckmann & Smith, 2004) separated the fMRI BOLD 

signal into a set of spatial maps (independent components) representing neural signal 

and/or noise. An average of 53.17% components were removed across participants’ 

resting-state fMRI data. Following ICA filtering, low bandpass filtering was applied 

using AFNI’s ‘3dBandpass’ tool (Cox, 1996) to further remove confounding signals 

below 0.009 Hz and above 0.1 Hz. Prior to analysis, each subject’s corresponding 

http://afni.nimh.nih.gov/afni
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mean functional timeseries image was added back to the bandpass filtered data using 

fslmaths to ensure compatibility with FSL’s FMRI Expert Analysis Tool (FEAT).  

 

S1.4 Participants, rsfMRI Pre-Processing and Analytical Pipeline 

Of the original sample of 96 participants, a total of 77 participants (58 old and 

19 young adults) had resting-state fMRI and pulse data. Following quality checks of 

the rsfMRI and task-related HRV data (including: scanner interference, registration 

issues, RMSSD values > 200ms), a total of 55 participants (41 old and 14 young 

adults) were included in the final analyses. The same analytical steps applied to the 

emotion regulation task-based fMRI data were also performed on the resting-state 

fMRI data. We conducted both a region of interest functional connectivity analysis to 

assess the extent to which task-based HRV (obtained during the second session scan) 

predicted amygdala-mPFC functional connectivity during rest (acquired in the first 

session). We also examined resting-state whole-brain functional connectivity in the 

right and left amygdala and the mPFC seeds using FEAT (Woolrich et al., 2004). 

Clusters surviving a threshold of Z > 3.1 and correction for multiple comparisons with 

Gaussian random field theory (cluster significance: p = 0.05-corrected) were identified 

(Worsley, 2001). 
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Figure S1. A series of violin plots to display task-related HRV as indexed by (ln)RMSSD values for age 
group, sex and age group by sex (whole sample, N = 70). A) Violin plot displays the significant difference 
between older (purple, N = 52) and younger (light green, N = 18) adults’ HRV as indexed by (ln)RMSSD 
values (F(1,66) = 6.06, p = .016, ηp

2 = 0.08). Older adults were observed to have significantly lower task-
related HRV compared to younger adults. B) Violin plot displays the (ln)RMSSD values for males (blue) 
and females (pink) across the whole sample. There was no significant difference in task-based HRV 
between males and females (F(1,66) = 0.09, p = .764, ηp

2 = 0.00). C) Violin plot displays the (ln)RMSSD 
values for males (blue) and females (pink) per age group. No significant age group by sex interaction for 
(ln)RMSSD values was found (F(1,66) = 0.15, p = .698, ηp

2 = 0.00). The square represents the mean 
(In)RMSSD value and the whiskers represent ± 1 standard error around the mean. (ln)RMSSD; natural 
log transformed root mean square of successive differences. 

* p = .016 
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S2. HRV and Resting-state Amygdala-mPFC Functional Connectivity Analyses 
Multiple regression analyses were employed to examine associations between 

HRV and resting-state amygdala-mPFC functional connectivity strength in the whole 

sample (N = 55). Separate multiple regression models were tested with (i) right 

amygdala-mPFC connectivity and (ii) left amygdala-mPFC connectivity values as 

dependent variables. The following predictors were entered into the regression model: 

age group (1 = older adults, 0 = younger adults), (ln)RMSSD (centered), and a HRV x 

age interaction term. In each hierarchical regression model, age group and HRV were 

entered first (step 1), followed by the HRV x age interaction predictor (step 2) using 

the enter method. Standardised beta coefficients are reported for all predictors. 

 

HRV and Resting-state Right Amygdala-mPFC Functional Connectivity 

At step 1, neither the main effect of age (β = 0.19, t = 1.30, p = .198) or task-

based HRV (β = 0.08, t = 0.53, p = .596) were found to be significant predictors of the 

Figure S2. The scatterplot displays the natural gap in age (years) between older (purple) and younger 
(light green) adults with natural log transformed RMSSD values ((ln)RMSSD) presented on the y axis.  



  77 

regression model, explaining only 3.20% of the variance in resting-state right 

amygdala-mPFC functional connectivity (F(2,52) = 0.85, p = .431). Entering the HRV 

x age interaction term did not significantly improve the proportion of variance explained 

in right amygdala-mPFC functional connectivity (ΔR2 = 0.01) and the overall 

regression model remained non-significant (F(3,51) = 0.80, p = .498). Thus, the 

interaction between task-related HRV and age (β = 0.26, t = 0.84, p = .404) was not 

found to significantly predict right amygdala-mPFC resting-state functional 

connectivity.  

 

HRV and Resting-state Left Amygdala-mPFC Functional Connectivity 

Similar to the right amygdala-mPFC resting-state functional connectivity 

findings, neither the main effect of age (β = -0.11, t = -0.74, p = .463) or task-based 

HRV (β = 0.10, t = 0.69, p = .491) were found to be significant predictors of the overall 

regression model and only explained 2.90% of the variance in resting-state left 

amygdala-mPFC functional connectivity (F(2,52) = 0.78, p = .462). When the HRV x 

age interaction term was subsequently entered into the model, this did not significantly 

improve the proportion of variance explained in left amygdala-mPFC resting-state 

connectivity (ΔR2 = .001) and the overall regression model remained non-significant 

(F(3,51) = 0.52, p = .668). Therefore, the interaction between HRV and age (β = 0.06, 

t = 0.18, p = .855) was not found to significantly predict left amygdala-mPFC resting-

state functional connectivity. 
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Table S1 
Neural Regions and Local Maxima for Right Amygdala Whole-Brain Resting-state Functional Connectivity as 
a Function of Task-Related HRV  
    MNI Coordinates  

Region H Cluster 
Size 

BA x y z Z 

 
HRV + (older and younger adults) 

No significant results 

  
 

    

 

HRV - (old and young adults) 

 

  
 

    

Precentral Gyrus extending into Postcentral 

Gyrus 

 
R 

 
83 

 
4 

 
8 

 
-26 

 
66 

 
4.19 

 R  4 12 -28 68 4.13 
 R  6 8 -22 64 3.96 

 R  4 14 -34 64 3.52 

 

HRV x Age Interaction + (older and younger adults) 
  

 
    

No significant results        

 
HRV x Age Interaction - (older and younger adults) 

No significant results 

  

 

    

HRV + (older adults) 

No significant results 
  

 
    

HRV - (older adults) 

No significant results 
  

 
    

Neural regions that demonstrated associations with right amygdala during rest as a function of task-related HRV across 
the whole sample (N = 55) and old adult sample only (N = 41), Z = 3.1; cluster significance: p < 0.05, corrected). Local 

maxima are listed for clusters containing more than one peak. Cluster size refers to the number of voxels contained within 

a specific cluster. Coordinates (MNI space) represent location of clusters and their maximum Z-scores (bold) and the 

location of local maxima within significant clusters and their associated Z-statistic. The Harvard Oxford Structural Cortical 

and Subcortical atlases within FSL were used to label significant clusters. BA refers to the Brodmann Area for each cluster. 

The ‘R’ package label4MRI (v1.2) was used to generate the BA label based on the MNI coordinates. H = hemisphere (L = 

left, R = right). 
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Table S2  
Neural Regions and Local Maxima for Left Amygdala Whole-Brain Resting-state Functional Connectivity as a 
Function of Task-Related HRV 

    MNI Coordinates  

Region H Cluster 
Size 

BA x y z Z 

 

HRV + (older and younger adults) 

No significant results 

  
 

    

 

HRV - (older and younger adults) 

No significant results 

  
 

    

 

HRV x Age Interaction + (older and younger adults) 
  

 
    

No significant results        

 
HRV x Age Interaction - (older and younger adults) 

No significant results 

  

 

    

HRV + (older adults) 

 
  

 
    

Lingual Gyrus R 80 19 12 -42 -10 4.17 

 R  19 10 -50 -4 3.97 
 R  19 12 -52 -8 3.68 

 R  19 20 -46 -8 3.43 

HRV - (older adults) 

No significant results 
  

 
    

Neural regions that demonstrated associations with left amygdala during rest as a function of task-related HRV across the 

whole sample (N = 55) and old adult sample only (N = 41), Z = 3.1; cluster significance: p < 0.05, corrected). Local maxima 

are listed for clusters containing more than one peak. Cluster size refers to the number of voxels contained within a specific 

cluster. Coordinates (MNI space) represent location of clusters and their maximum Z-scores (bold) and the location of local 

maxima within significant clusters and their associated Z-statistic. The Harvard Oxford Structural Cortical and Subcortical 

atlases within FSL were used to label significant clusters. BA refers to the Brodmann Area for each cluster. The ‘R’ package 

label4MRI (v1.2) was used to generate the BA label based on the MNI coordinates. H = hemisphere (L = left, R = right). 

 



  80 

 
  

Table S3 
Neural Regions and Local Maxima for MPFC Whole-Brain Resting-state Functional Connectivity as a Function 
of Task-Related HRV  
    MNI Coordinates  

Region H Cluster 
Size 

BA x y z Z 

 

HRV + (older and younger adults) 

No significant results 

  
 

    

 

HRV - (older and younger adults) 
No significant results 

  
 

    

 

HRV x Age Interaction + (older and younger adults) 
  

 
    

No significant results        

 
HRV x Age Interaction - (older and younger adults) 

  
 

    

 

White matter extending into Superior 
Lateral Occipital Cortex 

L 
 

79 
 

 
 -32 -64 20 4.43 

 L  39 -30 -74 26 4.20 

 L  39 -34 -70 28 3.90 

HRV + (older adults) 

No significant results 
  

 
    

HRV - (older adults) 

No significant results 
  

 
    

Neural regions that demonstrated associations with the mPFC during rest as a function of task-related HRV across the 

whole sample (N = 55) and old adult sample only (N = 41), Z = 3.1; cluster significance: p < 0.05, corrected). Local 

maxima are listed for clusters containing more than one peak. Cluster size refers to the number of voxels contained 

within a specific cluster. Coordinates (MNI space) represent location of clusters and their maximum Z-scores (bold) and 

the location of local maxima within significant clusters and their associated Z-statistic. The Harvard Oxford Structural 

Cortical and Subcortical atlases within FSL were used to label significant clusters. BA refers to the Brodmann Area for 

each cluster. The ‘R’ package label4MRI (v1.2) was used to generate the BA label based on the MNI coordinates. H = 

hemisphere (L = left, R = right). 
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Figure S3. Sub-threshold frontal medial cluster which was positively coupled with the left amygdala as a 
function of higher task-related HRV during rest, but did not survive correction for multiple comparisons (Z 
= 3.95). The solid green cluster represents the mPFC seed region of interest used in all analyses (Sakaki 
et al., 2013, 2016). A) Frontal medial cluster displayed when Z thresholded at > 2.3. B) Frontal medial 
cluster displayed when Z thresholded at > 3.1. 
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Chapter 3. 
 

 

 

Heart rate variability and neural co-activation patterns during emotion 
processing and at rest 

 
 

 

Tupitsa, E., & Van Reekum, C. M. (In Preparation). Heart rate variability and neural 

co-activation patterns during emotion processing and at rest.  
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3.1 Abstract 
The Neurovisceral Integration Model (NIM) posits that heart rate variability (HRV) is a 

metric of adaptive emotional responding and mental health. Shared neural networks 

support autonomic, affective, and cognitive function. However, most studies have 

examined the heart-brain relationship during rest in comparison to contexts requiring 

active engagement. The present study sought to examine HRV, trait neuroticism, and 

co-active brain networks during an active emotion processing context and at rest. Two 

samples (sample 1 emotion task N = 92, rest N = 87; replication sample 2 emotion 

task N = 93, rest N = 90) were derived from a wider pool of younger adults from the 

Amsterdam Open Magnetic Resonance Imaging Collection (AOMIC). Participants 

engaged in an emotion matching task and a resting-state scan during which a finger 

pulse signal was recorded to derive task-related and resting HRV measures. Co-

Activation Pattern (CAP) analyses with right and left amygdala and bed nucleus of the 

stria terminalis (BNST) seeds were conducted for the emotion matching task and 

resting-state data across both samples. In sample 2, a higher average duration of co-

activation between left amygdala and BNST with CAPs reflecting visual attention 

network states was positively correlated with task-related and resting HRV across both 

the emotion task and at rest, reflecting a potential link between elevated HRV and 

enhanced exteroceptive visual attention across contexts. Moreover, during emotion 

processing, higher HRV predicted increased occurrences of a core DMN CAP at low, 

but not high, neuroticism levels as a function of left amygdala/BNST in sample 2, 

possibly indicating more flexible (dis)engagement of the DMN in accordance with 

task/contextual demands. Higher occurrences of a CAP reflecting co-activation 

between the salience network and right amygdala/BNST was associated with higher 

resting HRV in sample 1, which may suggest a greater propensity to dynamically 

switch between interoceptive and exteroceptive states during rest. Collectively, these 

findings highlight low replicability of CAP temporal metrics during emotion and rest 

contexts across two samples and critically accentuate the significance of assessing 

HRV and associated neural function across contexts to identify key neural vagal 

control circuitry underlying adaptive emotional responding.  

 

Keywords: Heart Rate Variability; Neurovisceral Integration Model; Amygdala; BNST; 

Co-Activation Pattern Analysis 
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3.2 Introduction 

The ability to rapidly and flexibly respond to ongoing environmental changes in 

a contextually appropriate manner is critical for self-regulation and effective adaptation 

(Aldao et al., 2015). Environmental challenges produce changes at both a subjective 

(i.e., emotional state) and physiological (i.e., heart rate) level, thus requiring effective 

coordination of the mind and body to facilitate contextually appropriate responses. 

More specifically, advances have been made in recent years to understand the 

mechanisms by which two major human organs, the heart and the brain, communicate 

and coordinate with one another to promote such flexibility. In particular, the 

Neurovisceral Integration Model (NIM; Smith et al., 2017; Thayer & Lane, 2000, 2009) 

is a prominent and influential theoretical framework which delineates a neural network 

that comprises the brainstem, subcortical, and cortical structures, originating from the 

Central Autonomic Network (CAN; Benarroch, 1993), that partially overlap with areas 

involved in autonomic, affective, and cognitive responding. Specifically, this model 

outlines mechanisms by which the brain influences the rhythm of the heart, proposing 

that effective top-down inhibition via prefrontal-subcortical pathways, particularly the 

medial prefrontal cortex (mPFC) and amygdala, facilitate successful adaption and 

emotional flexibility in response to challenges (Smith et al., 2017). In turn, heart rate 

variability (HRV), a physiological phenomenon capturing time intervals between 

consecutive beats, is posited to serve as an objective and peripheral metric of this 

effective cortical inhibition (Thayer & Lane, 2000, 2009). Optimal and efficient 

functioning of this network reflected by higher resting HRV promotes more effective 

assessment of, and responses to, environmental challenges, adept discrimination of 

threat versus safety, and flexible autonomic, emotional, and cognitive responses in 

accordance with environmental demands. 

Accumulating research evidence supports the NIM and HRV as an index of 

adaptive emotional responding. Evidence from neuroimaging studies has consistently 

found HRV to be linked to effective prefrontal functioning and strength of prefrontal-

subcortical circuitry (Koenig et al., 2021; Kumral et al., 2019; Sakaki et al., 2016; 

Schumann et al., 2021; Thayer et al., 2012; Tupitsa et al., 2023). Individuals with 

higher resting HRV have been found to demonstrate better top-down and bottom-up 

modulation of responses towards emotional stimuli (Park & Thayer, 2014) and 

successful self- and emotion regulation (Appelhans & Luecken, 2006; Balzarotti et al., 

2017). Conversely, individuals with lower resting HRV have been reported to exhibit 
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increased hypervigilance to, and difficulties engaging from, negative or threatening 

information (Park et al., 2013; Park & Thayer, 2014), self-report increased emotion 

dysregulation (Visted et al., 2017; Williams et al., 2015), and are at an increased risk 

of developing and experiencing psychological disorders, including anxiety and 

depression (Beauchaine & Thayer, 2015; Chalmers et al., 2014; Dell’Acqua et al., 

2020; Koch et al., 2019).  

Individuals with anxiety disorders have been reported to have lower resting 

HRV, reflecting an impaired central autonomic network that manifests as ineffective 

inhibition of the sympathetic nervous system, excessive and uncontrollable worrying, 

and an inability to discriminate threat from safety (Chalmers et al., 2014; Cheng et al., 

2022; Tomasi et al., 2023). Similarly, neuroticism, a stable disposition characterised 

by elevated negative affect and emotional reactivity (Ormel et al., 2013) is also 

considered to be a risk factor for the onset and progression of psychopathology, 

including anxiety and depression (Kootker et al., 2016; Kotov et al., 2010). Greater 

emotional reactivity in high trait neurotic individuals has previously been linked to 

altered fronto-limbic activity and/or connectivity, and differences in structural integrity 

of areas underlying emotion processing and regulation (Bjørnebekk et al., 2013; 

Cremers et al., 2010; Silverman et al., 2019). Furthermore, individuals with high trait 

neuroticism exhibited increased dominance of salience and emotion-processing 

neural hubs in functional network organisation (Servaas et al., 2015) and 

demonstrated slower amygdala recovery following negative emotional images 

(Schuyler et al., 2014). Many of the neural regions outlined as being altered as a 

function of trait neuroticism overlap with those outlined in the NIM and relate to 

changes in attentional (dis)engagement.  

Taken together, HRV and anxiety/neuroticism appear to be linked to attentional 

(dis)engagement of negative or threatening information. However, the interconnection 

between HRV and neuroticism is less clear. A few studies have reported direct inverse 

associations between HRV and trait neuroticism (Čukić & Bates., 2015; Shepherd et 

al., 2015), whereas other studies have reported less consistent or no direct 

correlations (Ode et al., 2010; Sloan et al., 2017), suggesting that potential links may 

be more nuanced. Indeed, Ode et al. (2010) found that elevated resting HRV 

significantly predicted higher reported negative emotions and stress in daily life at low 

levels of trait neuroticism, but predicted fewer negative outcomes when trait 

neuroticism was high (Ode et al., 2010). Relatedly, trait anxiety was discovered to 
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moderate associations between HRV and threat bias (Miller et al., 2023). The extent 

to which trait neuroticism serves as a moderator of potential associations between 

HRV and co-active brain states across different contexts is currently unknown.  

Relatedly, fewer neuroimaging studies have examined HRV and associated 

neural networks during emotional contexts and/or transient changes via application of 

dynamic functional connectivity (dFC) approaches (Chang et al., 2013, Chand et al., 

2020; Schumann et al., 2021). During rest, transient increases in HRV were linked to 

dFC changes in the ventromedial prefrontal cortex (vmPFC) (Schumann et al., 2021), 

and the dorsal anterior cingulate cortex (dACC) and amygdala (Chang et al., 2013) 

with all regions exhibiting stronger connectivity with key areas involved in emotional 

and cognitive processing. Nevertheless, prior studies have typically used a sliding 

window approach to assess transient functional connectivity changes (Allen et al., 

2014; Lurie et al., 2020), a technique that is limited to the selection of a small number 

of regions of interest and their pairwise associations over time (Liu et al., 2013). 

Alternative neuroanalytical methods such as ‘Co-Activation Pattern’ (CAP) analysis 

(Liu & Duyn, 2013; Liu et al., 2018) overcome some of these limitations while providing 

the opportunity to examine the flexible nature of the heart-brain relationship. 

The CAP technique diverges from other functional and effective connectivity 

methods, such as psychophysiological interactions (PPI; Friston et al., 1997) and 

dynamic causal modelling (DCM; Friston et al., 2003) which utilise fMRI timecourses 

across the duration of the scan to estimate connectivity between brain regions, by 

focusing on single fMRI volumes at individual time points as the basic unit of analysis 

(Liu et al., 2018). Assuming non-stationarity of the brain, CAP is based on the notion 

that co-activation of functionally related neural regions and networks are unlikely to 

exhibit stationary activity and are instead characterised by brief and transient moments 

of co-(de)activation (Liu & Duyn, 2013). Therefore, adopting a data-driven and frame-

wise approach, CAP relies on the selection of the strongest, or ‘peak’, amplitudes of 

activation across the whole brain (seed-free approach) or in particular seed regions 

(seed-based approach) to examine which other voxels/brain regions demonstrate 

synchronous co-activation (Tagliazucchi et al., 2016). CAP analysis comprises three 

main steps: (1) standardise each voxel’s time course to generate Z scores; (2) cluster 

all time points or time points belonging to a specific seed exceeding a set high signal 

activation threshold; (3) voxel-wise average spatial maps of selected time points to 

generate CAPs or brain states (Liu & Duyn, 2013; Liu et al., 2018). Computational 



  87 

studies have reported that voxel-wise averaging spatial maps only in the fMRI volumes 

exhibiting peak BOLD activity produces networks with spatial similarity to those 

obtained by conventional temporal correlation-based functional connectivity (Cifre et 

al., 2020; Tagliazucchi et al., 2012). Critically, alongside spatial information, CAP 

produces temporal metrics regarding each CAP or brain state, including temporal 

information such as dwell time (i.e., the duration in which a certain brain state is 

sustained) and frequency (i.e., the number of occurrences of a particular brain state 

across the functional scan). While techniques such as DCM have the ability to 

establish more causal interpretations related to the direction of connectivity patterns, 

CAP relies on few assumptions and produces more stable brain states in contrast to 

those acquired via sliding window analyses (Chen et al., 2015). Moreover, by focusing 

on only the most salient time points of activity, CAP further reduces the requirement 

for widespread comparisons which may in turn increase statistical power, especially 

in small samples (Georgiopoulos et al., 2024). 

 Importantly, prior research has typically utilised resting-state fMRI paradigms 

and relied on resting HRV measures to assess brain-heart interactions. However, if 

neurovisceral circuitry and HRV do indeed reflect adaptive emotional responding, then 

examining HRV and concomitant neural activity during contexts or situations that 

require flexible emotional responses will potentially provide further insight into, and 

increase the ability to detect, neural regions and networks that facilitate adaptive 

emotional responding as a function of HRV. 

The aim of the current study was to examine resting and task-based HRV with 

associated co-active brain states during rest and an emotion processing task in a large 

sample of younger adults from the Amsterdam Open MRI (Magnetic Resonance 

Imaging) Collection (AOMIC; Snoek et al., 2021). While the emotion matching task is 

not specifically designed to assess emotion flexibility, effective engagement in this task 

still requires a certain degree of flexibility, particularly the ability to shift from processing 

emotional stimuli (i.e., matching angry/fearful faces) to processing neutral stimuli (i.e., 

matching oval shapes). Correspondingly, flexibility in the current context was reflected 

by an individual’s ability to inhibit the processing of emotional information when 

switching to matching neutral stimuli in the control blocks, that is, the individual should 

no longer be actively searching for emotional stimuli during these blocks. Since HRV 

is considered to be a metric of adaptive emotional responding (Appelhans & Luecken, 

2006), HRV and associated co-active brain states were expected to be expressed in 
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this attentional ‘goal’ shift between conditions. Therefore, it was predicted that 

individuals with lower task-based HRV would exhibit an increased duration (dwell time) 

and greater occurrences of salience-related co-active brain states throughout the 

emotion processing task, reflecting sustained vigilance towards negative emotional 

faces throughout the duration of the task. Relatedly, the same relationship was 

predicted for lower resting HRV with dwell time and occurrences of salience-network 

states, albeit with the expectation that associations would be weaker than that 

observed during the emotion processing task (given the absence of external emotional 

stimuli). 

A secondary aim of the current study was to further examine the relationship 

between HRV and trait neuroticism, a disposition linked to increased risk of developing 

anxiety, alongside their potential interaction as predictors of co-active brain states 

during rest and emotion contexts. Given the complex and inconsistent relationship 

between HRV and trait neuroticism, the hypotheses outlined were more exploratory in 

nature. Specifically, we predicted that higher trait neuroticism would demonstrate 

significant associations with increased dwell time and greater occurrences (counts) of 

salience-related and self-referential default mode network (DMN) co-active brain 

states during rest or the emotion matching task (e.g., Hamilton et al., 2011; Qiao et al., 

2020; Servaas et al., 2015), with such an association expected to be weaker in 

individuals with higher rest and task-based HRV. 

 

3.3 Method 
3.3.1 Pre-Registration 

This project was pre-registered via the Open Science Framework (OSF) prior 

to formal data analysis. The research aims, predictions, methods, data processing and 

analysis scripts can be accessed via the associated OSF project: https://osf.io/xph3y.  

 

3.3.2 Participants 
Participants were derived from the wider AOMIC Population of Imaging 

Psychology 2 (PIOP2) dataset containing 242 younger adult subjects (Snoek et al., 

2021). All participants were University students from either the Amsterdam University 

of Applied Sciences or the University of Amsterdam, recruited via university websites, 

Facebook, and poster advertisements placed around the University grounds. The 

authors of the original dataset initially excluded participants according to several 

https://osf.io/xph3y
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criteria, including: scanner-related artefacts and corruption where relevant correction 

could not be applied, insufficient data quality resulting in pre-processing failures, 

absence of a structural scan, and/or incidental findings, leaving a total sample of 226 

subjects (for full details of the exclusion criteria, see Snoek et al., 2021). From the 

overall sample, 216 participants had either task or resting-state fMRI data and 

accompanying physiology (pulse trace) data. Figure 5 illustrates the participant 

selection and exclusion process for both task and rest analyses. 

As outlined in the pre-registration, the original analytical plan was to perform 

CAP analyses across the full sample of participants with clean (emotional processing 

task and resting-state) fMRI and pulse data. However, as highlighted in the pre-

registration, a few of the steps applied using the TbCAPs toolbox (Bolton et al., 2020) 

can impose high computational demands (i.e., consensus clustering step). Thus, it 

was noted in the pre-registration that analytical decisions may be altered to 

accommodate this. Indeed, technical errors were encountered at the consensus 

clustering step due to insufficient cluster capacity and exceeding memory limits 

enabled within MATLAB when running analyses across the full sample. With 

accommodations to memory and capacity that was obtainable, we opted to run a split-

sample to circumvent technical issues pertaining to cluster capacity. Crucially, the split 

sample also provided a unique opportunity to observe whether spatial clusters and 

corresponding temporal metrics for each CAP replicated across two samples from the 

same dataset. 

 Following exclusion, participants with emotion matching task fMRI and pulse 

data (N = 185) were split into two separate samples via stratified sampling which 

considered balanced groups by sex. Consequently, the split sample resulted in 92 

participants in sample 1 and 93 participants in sample 2 for the emotion matching task 

analyses, and following further exclusion of participants without resting-state 

fMRI/pulse data, 87 participants in sample 1 and 90 participants in sample 2. The 

original study procedures were given a favourable ethical opinion of conduct by the 

corresponding faculty’s ethics committee (PIOP2 EC number: 2017-ECT-7568) and 

all participants gave informed consent prior to their participation. 
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Figure 5. Participant Selection and Exclusion Process for the Emotion Matching Task and Resting-State 
fMRI Data. Following visual inspection and relevant data processing, 185 participants were found to have 
clean pulse and fMRI emotion matching task data. Stratified sampling was performed on the sample of 
185 participants with the sample_frac function from the dplyr package in R, resulting in N = 92 participants 
in Sample 1 and N = 93 participants in Sample 2 for the emotion matching task CAP analyses. Per 
separate sample, participants with missing or noisy resting-state pulse and/or fMRI data (based on 
exclusion criteria outlined in the flow chart) were excluded, resulting in N = 87 participants in Sample 1 
and N = 90 participants in Sample 2 for the resting-state CAP analyses. 
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3.3.3 Materials and Procedure 
3.3.3.1 Neuroticism 

The NEO Five-Factory Inventory (NEO-FFI; McCrae & Costa, 1987) measured 

five core personality traits (agreeableness, conscientiousness, extraversion, 

neuroticism, openness to experience, and openness to experience). The total sum 

score on the neuroticism subscale was used as a metric of trait neuroticism. Individual 

questionnaire items were not openly accessible; therefore Cronbach’s alpha scores 

are not reported here (refer to Snoek et al., 2021 for information regarding cross-

correlations between the different NEO-FFI subscales). 

 

3.3.3.2 Emotion Matching Task 
The emotion matching task adopted an established paradigm developed by 

Hariri et al. (2000). On a given trial, participants were instructed to match one of two 

stimuli (positioned in the bottom right- and left-hand sides of the screen) to a target 

stimulus (always presented in the top centre of the screen). Specifically, during the 

‘emotion’ condition, participants saw three images on the screen: an emotional target 

face centred above two emotional probe faces situated in the bottom right- and left-

hand sides of the screen respectively. The ‘control’ condition followed the same format, 

but with neutral oval shapes. Participants were asked to match the emotional 

expression depicted by the target face (anger or fear), or the orientation of the target 

oval (horizontal or vertical) by selecting one of the two probe stimuli that was congruent 

with the target stimulus as quickly as possible. Responses were recorded via a button 

press with the index finger of the participant’s left or right hand using an MRI-

compatible, four button fibre optic response pad. Response times were measured in 

seconds. Both the target and probe stimuli disappeared following a response or after 

a duration of 4.8 seconds if no response was given. The following trial always 

appeared five seconds after the onset of the present trial, with a blank screen 

presented between the trials. The emotion matching task followed a block design, with 

control and emotion blocks consistently presented in alternating order (i.e., control, 

emotion, control...). Each block contained the presentation of six stimuli with a total 

duration of five seconds (approximately 30 seconds per block). Four blocks of each 

emotion type were presented, resulting in eight blocks and 48 stimuli in total. The same 

stimuli always belonged to each block, but the order of presentation within each block 
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was randomised across participants. The task had an approximate duration of 4 

minutes and 30 seconds (Snoek et al., 2021). 

The images of facial expressions presented during the emotion blocks were 

derived from the NimStim Face stimulus set (Tottenham et al., 2009) which depicted 

either stereotypical ‘anger’ or ‘fear’ expressions. The target face and one of the two 

probe options portrayed the same facial expression on a given trial. The stimuli 

presented contained both male and female faces, alongside faces from different ethnic 

categories (Asian, Black, and White). However, within a single trial, faces were 

matched such that they always belonged to the same sex (male or female) and ethnic 

category (Asian/Black or White). For the control blocks, oval shape stimuli were 

generated by pixelating the face stimuli used in the emotion condition and matched for 

colour and size accordingly. The orientation was displayed as horizontal (long side 

horizontally aligned) or vertical (long side vertically aligned) and within a single trial, 

two ovals (the target oval and one of the probe options) were aligned in the same 

position. All stimuli were presented on a grey background (RGB: [248, 248, 248]) on a 

Cambridge Electronics BOLDscreen 32 IPS LCD screen (120 Hz refresh rate) that 

was positioned at 113 cm distance from the mirror mounted on top of the head coil 

(Snoek et al., 2021). 

 

3.3.3.3 Resting-State 
Participants were instructed to allow their thoughts to run freely while 

maintaining their gaze on a fixation cross positioned in the middle of the screen on a 

grey background (RGB: [150, 150, 150]). Eye tracking was also measured during the 

scan, but this was not a key measure of interest in the current study. The scan had an 

approximate duration of eight minutes.  

 

3.3.3.4 Data Acquisition  
Relevant acquisition and scanning procedures are outlined below (refer to 

Snoek et al., 2021 for more details). MRI data were acquired using a Philips Achieva 

dStream 3T MRI scanner and a 32-channel SENSE head coil. A 3D-structural image 

using a T1-weighted (T1w) sequence was obtained for each participant 

(Magnetization-Prepared Rapid Acquisition with Gradient Echo (MPRAGE)), repetition 

time (TR) = 8.5 ms, echo time (TE) = 3.9 ms, flip angle = 8°, field of view (FOV) = 188 

x 240 x 220 mm, resolution = 1 mm isotropic, acceleration factor = 2.5 (right to left), 2 
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(feet to head), number of signals (repetitions) = 2, acquisition direction = axial, 

acquisition time = 6 minutes, 3 seconds. Functional MRI data were acquired using a 

gradient echo-based echo planar imaging (GE-EPI) sequence (135 whole-brain 

volumes for emotion task scan, 240 whole-brain volumes for resting-state scan), 37 

slices, slice gap = 0.3 mm, TR = 2000 ms, TE = 28 ms, flip angle = 76.1°, FOV = 240 

x 240 x 122 mm, resolution = 3 mm isotropic. Acquisition time for the emotion-matching 

scan varied slightly across participants, with an approximate duration of 4 minutes 30 

seconds, whereas acquisition time for the resting-state scan was more consistent with 

an approximate duration of 8 minutes. 

 

3.3.3.5 General Procedure 
Prior to participation in the study, all participants were informed of the research 

aims, the standard MRI procedures and associated safety protocols, the general 

experimental procedure, and relevant privacy and data sharing policies. All 

participants provided informed consent and underwent an MRI screening checklist 

prior to any formal testing. A maximum of four participants were tested on a given day, 

with the testing session typically taking place between 8:30am-1pm. Whilst two 

participants began with the MRI protocol, the other two completed self-report 

questionnaires concerning demographic (age, biological sex, height, weight, 

handedness, and place of education) and psychometric information (including the 

NEO-FFI). The MRI procedure included an initial survey scan, a T1w anatomical scan, 

and engagement in several functional scans: a working memory task, resting-state 

scan, diffusion weighted imaging scan, a stop-signal task, and the emotion matching 

task (in this order). The MRI session had a duration of approximately 1 hour.  

 

3.3.4 Data Processing and Analysis  
3.3.4.1 Pulse Processing 

Raw physiology files downloaded from OpenNeuro were exported to RStudio 

(v1.4.1006) to isolate the cardiac trace and to calculate the time of the signal (seconds) 

based on the sampling rate (496 Hz). Files were trimmed to reflect the start of the 

resting-state or emotion matching task scan using the task onset time stamp provided 

in the appropriate corresponding event (.json) file. Subsequently, data files were 

exported into Kubios HRV Premium software (version 3.5.0; Biosignal Analysis and 
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Medical Imaging Group, University of Kuopio, Finland; Tarvainen et al., 2014) for 

further processing and HRV analysis. 

Separate samples of the pulse signal from the emotion matching task and 

resting-state scan were processed and analysed for each participant. The PPG setting 

within Kubios was applied to the data wherein the pulse peak detection feature 

appends beat markers to the pulse waveform using a matched filtering approach. 

Where the beat detection feature either misplaced or missed placing beat markers, 

manual corrections were applied to the signal to either place or (re)move markers to 

a suitable location on the pulse waveform. Automatic noise correction (alongside 

manual corrections) was primarily used across participants’ data to reduce the 

influence of noise and artefacts in the signal (i.e., ectopic, extra or missed beats, 

motion, and technical noise/interference). In cases where automatic noise correction 

was too stringent (i.e., unnecessary over-interpolation of beats) or did not adequately 

account for noise in the signal, threshold and/or manual correction was applied. In 

order to retain as much natural variation in the signal as possible, and in light of recent 

recommendations for the application of lower threshold settings for correcting noise in 

cardiac traces in younger adult populations, threshold correction settings between 

‘very low’ - ‘medium’ (0.45 - 0.25 seconds) were applied in accordance with noise 

severity and artefacts observed in the participant’s data (Alcantara et al., 2020). 

Moreover, in cases where the automatic noise detection feature identified particularly 

noisy epochs within the signal that could not be cleaned using available correction 

methods, the longest duration of clear pulse signal either preceding or following the 

noise epoch(s) was retained for analysis. Adhering to Kubios guidelines, pulse signal 

requiring 5% or more of the beats to be interpolated were excluded from further 

analysis. Several measures, including the Root Mean Square of Successive 

Differences (RMSSD; measured in milliseconds) were derived. In this study, we opted 

to proceed with the RMSSD as the HRV metric since it is a robust measure of 

parasympathetically mediated HRV that has also been reported to be less influenced 

by other physiological factors, importantly respiration (Hill et al., 2009; Kleiger et al., 

2005). A natural log transformation was applied to the RMSSD (herein referred to as 

(ln)RMSSD) to correct for positive skew using the log command from the base 

package (v3.5.2) in RStudio (version 1.4.1106). 
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3.3.4.2 fMRIPrep Processing 
The task and rest fMRIPrep derivative files were downloaded from OpenNeuro 

(dataset: ds002790, https://openneuro.org/datasets/ds002790). Snoek et al. (2021) 

performed initial pre-processing of the anatomic and functional data using fMRIPrep 

version 1.4.1 (RRID:SCR_016216) (Esteban et al., 2019; 2020), a Nipype based tool 

(RRID:SCR_002502) (Gorgolewski et al., 2011). T1w volumes were corrected for 

intensity non-uniformity via N4BiasFieldCorrection v2.1.0 (Tustison et al., 2010) and 

skull-stripped using antsBrainExtraction.sh v2.1.0 (OASIS template). The tool recon-

all from FreeSurfer v6.0.1 (RRID:SCR_001847) (Dale et al., 1999) was used to 

reconstruct brain surfaces, and refinement of the estimated brain mask was performed 

using a custom variation of the method to reconcile ANTs-derived and FreeSurfer-

derived segmentations of the cortical gray-matter of Mindboggle (RRID:SCR_002438) 

(Klein et al., 2017; Snoek et al., 2021). Data were normalised to the ICBM 152 

Nonlinear Asymmetrical template version 2009c (MNI152NLin2009cAsym; 

RRID:SCR_008796; Fonov et al., 2009) through nonlinear registration via the 

antsRegistration tool of ANTs v2.1.0 (RRID:SCR_004757; Avants et al., 2008) using 

the brain-extracted versions of the T1w volume and the template. T1w segmentation 

of cerebrospinal fluid (CSF), white matter (WM) and gray matter (GM) was performed 

using ‘fast’ (FSL v5.0.9; RRID:SCR_002823; Zhang et al., 2001). 

Slice-time correction was not applied to the functional data. Both task and 

resting-state functional images underwent motion correction via ‘mcflirt’ (FSL v5.0.9; 

Jenkinson et al., 2002) using the average volume after an initial first-pass motion 

correction procedure as the reference volume and normalised correlation as the image 

similarity cost function. The authors also opted to use ‘fieldmap-less’ distortion 

correction via antsRegistration (ANTs) which involved co-registering the functional 

image to the subject’s corresponding T1w image with intensity inverted (Huntenburg, 

2014; Wang et al., 2017) constrained with an average fieldmap template (Treiber et 

al., 2016). Following distortion-correction, co-registration to the subject’s 

corresponding T1w image was performed using boundary-based registration (BBR; 

Greve & Fischl, 2009) with 6 degrees of freedom via ‘bbregister’ (FreeSurfer v6.0.1). 

The motion correction transformations, field distortion to correct for warp, BOLD-to-

T1w transformation and T1w-to-MNI-template warp were all concatenated and applied 

in a single step through antsApplyTransforms (ANTs v2.1.0) using Lanczos 

interpolation. 

https://openneuro.org/datasets/ds002790
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The CompCor (Behzadi et al., 2007) method was used to extract physiological 

noise regressors, with principal components estimated for both temporal (tCompCor) 

and anatomical (aCompCor) variants. The brain mask was eroded to create a mask 

that only captured subcortical structures, excluding signal related to cortical areas. 

Subsequently, six tCompCor components were calculated by including the top 5% 

variable voxels within the subcortical mask. With relation to aCompCor, six 

components were calculated within both the intersection of the subcortical mask and 

the union of WM and CSF masks in the subject’s T1w space following their projection 

to the native space per functional run. A measure of framewise displacement (FD; 

Power et al., 2014) per functional run was also calculated using the implementation of 

Nipype.  

Many internal operations of fMRIPrep use Nilearn (RRID:SCR_001362; REF), 

principally within the BOLD-processing workflow. For more details of the pipeline see: 

https://fmriprep.org/en/1.4.1/workflows.html. 

 

3.3.4.3 Post-fMRIPrep Processing 
The fMRIPrep functional images were downloaded and visually inspected for 

quality prior to any further processing carried out in the current study. Correspondingly, 

functional images were skull-stripped using the subject’s corresponding brain mask 

per each functional run (via ‘fslmaths’ command). Following this, nuisance regression 

was performed via FSL’s ‘fsl_regfilt’ tool, with the following regressors included in the 

model: 24 motion parameters (three translational and three rotational parameters, 

their temporal derivatives, and the quadratic terms of both (Satterthwaite et al., 2013)), 

top five WM and top five CSF components identified via aCompCor (Behzadi et al., 

2007; Muschelli et al., 2014), and three discrete cosine regressors. The top 5 WM and 

CSF components via the aCompCor method were regressed from the data instead of 

the global signal regression approach since the former technique does not depend 

upon regressing gray matter from gray matter signals, reducing the risk of false or 

increased negative correlations (Murphy et al., 2009). Functional data were smoothed 

with a Gaussian kernel (full width at half maximum of 4 mm) and split into individual 

3D NIFTI volume files for input to the TbCAPs toolbox (Bolton et al., 2020). 

 

  

 

https://fmriprep.org/en/1.4.1/workflows.html.
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3.3.4.4 Co-Activation Pattern (CAP) Analysis 
Seed-based CAP analyses were conducted to derive brain states and 

spatiotemporal dynamics of amygdala- and bed nucleus of the stria terminalis (BNST)-

related networks. CAP analysis is a data-driven neuroanalytical technique that relies 

on fewer statistical assumptions than other techniques (e.g., sliding window analysis) 

and is potentially more effective in its assessment of transient changes in co-activation 

patterns due to higher temporal resolution (i.e., at the level of individual fMRI volumes; 

Liu et al., 2018). CAP analyses were conducted using the ‘TbCAPs’ toolbox (Bolton et 

al., 2020) for i) right versus left amygdala and BNST seed regions and ii) emotion task 

versus resting-state scan for both samples. Separate right and left central extended 

amygdala seeds (amygdala and BNST) were selected due to reported amygdala 

lateralisation effects in both prior HRV and emotion literature (Baas et al., 2004; Sakaki 

et al., 2016; Tupitsa et al., 2023), alongside observed reactivity differences in the 

amygdala relative to the BNST as a function of neuroticism (Grogans et al., 2024). 

Both central extended amygdala and BNST seed region masks were derived from 

Tillman et al. (2018) and subsequently normalised and resampled to the MNI 2009c 

Non-Linear Asymmetric template. A union seed-based approach was implemented 

across analyses to identify volumes that exceeded an activation threshold of Z > 0.8 

for either the (R/L) central extended amygdala, (R/L) BNST, or a combination of both, 

ensuring only volumes pertaining to these specific salience regions were selected for 

further analysis. Volumes with a framewise displacement threshold of higher than 0.5 

mm were scrubbed. 

Retained volumes of co-active areas were clustered into spatially distinct brain 

states across time and participants by K-means clustering. Specifically, consensus 

clustering (Monti et al., 2003) was performed for K values 2-11, over 20 folds with each 

fold using 80% of the data per individual K value to determine the optimal number of 

brain states. The optimal number of brain states was determined by the proportion of 

ambiguously clustered pairs (PAC; Șenbabaoğlu et al., 2014). Given two data points, 

a robust cluster number should reflect these data points either consistently being 

clustered together or clustered separately across the specified number of folds, with 

lower PAC values indicating a more consistent and robust cluster number (Bolton et 

al., 2020). A stability value is derived via 1-PAC, in which higher values indicate more 

consistent and robust clusters (Bolton et al., 2020). Correspondingly, an optimum 

cluster value of 4 was identified based on visual inspection of the PAC values for the 
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right amygdala and BNST CAP analysis on sample 1’s emotion matching task data. 

Notably, while K-means clustering is commonly adopted in fMRI research, there is 

controversy in relation to the optimal criteria for selecting the appropriate cluster 

number. As prior research has outlined, while the extraction of two clusters provides a 

limited representation of neural network patterns that can be generated (Chen et al., 

2015; Liu & Duyn, 2013), a higher cluster number is often linked to fewer data time 

points (e.g., fMRI volumes) contributing to the brain states which can negatively impact 

the stability of the findings (Li et al., 2024). The PAC values varied across the different 

CAP analyses and samples, however, to aid interpretation of results and replicability, 

we opted to retain the same optimal, trade-off cluster value (K = 4) for extracting CAPs 

across all analyses. 

The key temporal measures of interest per CAP calculated within each 

participant were: (1) occurrences which reflected the total number (N) of volumes 

exceeding the set threshold per brain state across the duration of the scan and (2) 

average duration which represented the mean time duration a given brain state was 

sustained in seconds (OccurrencesCAP / Number of EntriesCAP * TR). 

 

3.3.4.5 Statistical Analysis 
Multiple hierarchical regression analyses were conducted to examine 

associations between HRV and temporal metrics of each CAP for both samples. 

Separate multiple regression models were conducted for right versus left amygdala 

and BNST seed regions and emotion versus rest. The following predictors were 

entered into the model: age, body mass index (BMI), number of frames retained, 

(ln)RMSSD, total neuroticism score, and a HRV x neuroticism interaction term. 

Predictors were entered in the following order: age, BMI, frames retained (step 1), 

HRV (step 2), neuroticism score (step 3), and HRV x neuroticism interaction predictor 

(step 4). Standardised beta coefficients of the predictors and uncorrected p-values are 

reported in the Results. 

While the pre-registration originally outlined frequentist analyses with traditional 

null hypothesis significance testing, supplementary Bayesian linear regressions were 

performed as complementary analyses to determine the relative magnitude of support 

for the alternative versus null hypothesis. Bayesian regressions were conducted using 

JASP (version 0.19.3; JASP Team, 2025). JASP’s default priors were used: Beta-

Binomial model prior (a = 1, b = 1) and the default Jeffreys-Zellner-Siow prior with an 
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r scale of 0.354 (Love et al., 2019; Rouder & Morey, 2012). While the frequentist 

regressions rely on the p-value falling below the 0.05 threshold to reject the null 

hypothesis, we also report the Bayes Factor (BF) which serves as a metric of the 

strength of evidence for either the null or alternative hypothesis. BF values can be 

reported as either increased support for the alternative hypothesis (BF10) or increased 

support for the null hypothesis (BF01). To enhance interpretability of the findings, we 

reported BF10 in the case of a significant finding as indicated by the frequentist 

regression analyses with evidence suggesting greater support for the alternative 

hypothesis, and BF01 where a non-significant finding was observed with evidence 

suggesting increased support for the null hypothesis. The following labels were used 

to interpret the magnitude of support: 1-3 as anecdotal, 3-10 as moderate, 10-30 as 

strong, 30-100 as very strong, and > 100 as decisive evidence (Jeffreys, 1961; van 

Doorn et al., 2021). 

 

3.4 Results 
3.4.1 Descriptive Statistics 

Table 4 summarises the key descriptives for each sample. There were no 

significant differences between the samples on any of the main predictors or key 

variables of interest. 

 

3.4.2 Associations Between HRV and Trait Neuroticism 
Pearson correlations revealed that there was no significant association 

between either task-based HRV (Sample 1, r = 0.02, p = .858; Sample 2, r = -0.10, p 

= .352) or resting HRV (Sample 1, r = -0.02, p = .856; Sample 2, r = -0.08, p = .429) 

and trait neuroticism.  
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a Note that the number of volumes refers to the average number of volumes/frames retained for the 
CAP analyses (i.e., volumes exceeding set threshold of amygdala and BNST seed activation). The 
volumes are greater for the resting-state versus emotion matching task fMRI data due to a longer 
resting-state scan duration (i.e., 240 versus 135 total fMRI volumes to sample from for the resting-state 
versus emotion matching task data).  

Table 4. 
Descriptive Statistics Per Sample for the Emotion Matching Task and Resting-State Analyses  
 Sample 1  

(Emotion Matching 
Task; N = 92) 

Sample 2  
(Emotion Matching 

Task; N = 93) 

Sample 1 
(Resting-State; N 

= 87) 

Sample 2 
(Resting-State; N 

= 90) 
Demographics     

Age (years) 21.72 (1.66) 21.94 (1.81) 21.76 (1.68) 21.91 (1.79) 
Sex (%) 51% F/ 48% M/ 1% 

Unknown 
57% F/ 43% M 51% F / 48% M/ 1% 

Unknown 
58% F/ 42% M 

BMI  22.65 (2.65) 22.59 (2.85) 22.63 (2.67) 22.52 (2.86) 
Neuroticism 31.12 (8.01) 31.06 (8.10) 31.07 (7.98) 31.33 (8.01) 
lnRMSSD(ms) 4.13 (0.51) 4.04 (0.53) 4.10 (0.53) 4.00 (0.51) 
Heart Rate (BPM) 64.06 (10.14) 64.15 (9.11) 63.48 (10.80) 63.48 (9.41) 
RR Interval (ms) 958.78 (146.97) 954.30 (136.74) 970.00 (153.55) 966.08 (144.46) 
fMRI Variables*     
Right Amygdala 
Right BNST Total 
Volumes (N) 

49.82 (3.68) 49.14 (3.71) 89.48 (4.98)a 88.53 (5.59) 

Right Amygdala 
Right BNST CAP 1 
Volumes (N) 

14.02 (3.51) 13.87 (3.26) 23.22 (4.49) 25.41 (5.48) 

Right Amygdala 
Right BNST CAP 2 
Volumes (N) 
 

12.39 (3.29) 13.73 (3.51) 23.07 (4.74) 24.48 (5.15) 

Right Amygdala 
Right BNST CAP 3 
Volumes (N) 
 

11.82 (2.76) 10.84 (3.63) 22.69 (5.37) 19.94 (4.86) 

Right Amygdala 
Right BNST CAP 4 
Volumes (N) 
 

11.59 (3.32) 10.70 (3.43) 20.51 (4.33) 18.70 (4.42) 

Left Amygdala Left 
BNST Total Volumes 
(N) 
 

48.96 (4.61) 49.22 (3.28) 89.17 (5.03) 88.61 (4.83) 

Left Amygdala Left 
BNST CAP 1 
Volumes (N) 
 

13.10 (3.01) 13.15 (3.46) 25.61 (5.74) 23.72 (4.97) 

Left Amygdala Left 
BNST CAP 2 
Volumes (N) 
 

12.67 (3.32) 12.61 (3.34) 21.92 (4.81) 23.70 (4.62) 

Left Amygdala Left 
BNST CAP 3 
Volumes (N) 
 

11.97 (3.82) 12.40 (3.41) 21.72 (4.46) 21.42 (5.10) 

Left Amygdala & 
BNST CAP 4 
Volumes (N) 
 

11.22 (3.29) 11.05 (3.07) 19.92 (3.97) 19.77 (4.93) 
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3.4.3 CAP Characteristics  
Four distinct brain states were identified for each seed-based CAP analysis and 

per sample. The CAP number indicates the order of the CAPs in relation to the total 

variance explained per each CAP analysis (right and left amygdala/BNST) and 

sample, with CAP 1 reflecting the brain state with the most variance explained. 

However, for ease of visual interpretation, individual CAPs generated per analysis and 

per sample were clustered together into more general brain states and labelled 

according to relevant prior literature. 

With relation to the emotion matching task (Figure 6), CAPs comprising state 1 

were characterized by heightened activation in the lateral occipital cortex (superior 

and inferior divisions), bilateral superior parietal lobe, temporal occipital fusiform 

cortex, bilateral middle and inferior frontal gyri, and precentral gyri, with co-

deactivation mainly in anterior medial prefrontal cortex (more consistent in sample 2) 

and precuneus. This brain state was consistent with a visual attention/task 

engagement network (Uddin et al., 2019). Furthermore, CAPs contributing to state 2 

followed neural co-activation patterns reflecting the ‘core’ DMN, marked by greater 

activation in the paracingulate gyrus and frontal pole, with more extended anterior 

cingulate and posterior cingulate cortex co-activation in sample 1 as a function of left 

amygdala and BNST, paired with deactivation in occipital cortex regions (Andrews-

Hanna et al., 2010). State 3 CAPs appeared to predominantly reflect a mixture of 

salience-related and somatosensory network regions, with co-activation in the 

juxtapositional lobe (formerly known as the supplementary motor area), frontal and 

opercular cortex, and insula, alongside co-deactivation in occipital cortex areas and 

the superior frontal gyrus (Uddin et al., 2019). However, the most similar network state 

in sample 1 was CAP 4 for left amygdala and BNST which appeared to involve more 

salience-related states over somatosensory regions, including co-activation of the 

anterior cingulate and posterior cingulate cortex, and precuneus. Finally, the CAPs 

under state 4 appeared to reflect a similar pattern to that of the extended face 

processing network (Haist & Anzures, 2017; Haxby et al., 2000; Ishai, 2008; Jamieson 

et al., 2024), with co-activation of bilateral amygdala, the temporal occipital fusiform 

cortex (encompassing the fusiform gyrus, and lateral occipital cortex (inferior and 

superior divisions) and deactivation in the superior frontal gyrus, paracingulate gyrus, 

angular gyrus and posterior and anterior cingulate cortex (default mode and salience 

network nodes). 
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For the resting-state CAP analyses (Figure 7), state 1 involved co-activation of 

the occipital cortex and superior parietal lobe with co-deactivation in the posterior 

cingulate cortex, precuneus and superior frontal gyrus, reflecting a visual attention 

CAP (Uddin et al., 2019). State 2 was characterised by co-activation in the superior 

frontal and paracingulate gyrus (dorsal medial prefrontal cortex) and frontal pole with 

simultaneous co-deactivation in the cuneal cortex extending into precuneus (with the 

latter region more prominent in sample 2 as a function of left amygdala and BNST), 

reflecting the dorsal medial DMN (Andrews-Hanna et al., 2010). Furthermore, state 3 

was marked by increased co-activation of the posterior cingulate cortex, precuneus 

and frontal medial cortex and co-deactivation of supramarginal gyrus, insula and 

inferior frontal gyrus, a pattern consistent with the core DMN (Andrews-Hanna et al., 

2010). Finally, in state 4, co-activation of the anterior cingulate cortex, insula, and 

juxtapositional lobe was paired with co-deactivation mainly in occipital regions, 

reflecting a salience network (Uddin et al., 2019). 
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Figure 6. Emotion Matching Task Co-Activation Patterns (CAPs). Four CAPs displayed per sample 1 (S1) 
and sample 2 (S2) and categorised into general brain states. Activations (warm colours) and deactivations 
(cool colours) for each Z-scored CAP are thresholded at 2.3 and displayed in MNI 2009c non-linear 
asymmetric space. The four brain states were identified as the following: 1) Visual Attention Network with 
heightened activation in the occipital cortex, lateral occipital cortex (superior and lateral divisions), 
precentral, middle frontal and inferior frontal gyri, and de-activation in the precuneus and paracingulate 
gyrus; 2) “Core” Default Mode Network with co-activation in paracingulate gyrus, frontal pole, anterior 
cingulate and posterior cingulate regions and co-deactivation in occipital regions; 3) Salience Network with 
increased activation in the juxtapositional lobe, insula, and frontal and opercular cortex alongside 
deactivation in the superior frontal gyrus and occipital regions; 4) Extended Face Processing Network with 
co-activation of bilateral amygdala, temporal occipital fusiform cortex (fusiform gyrus), and lateral occipital 
cortex (inferior and superior), alongside co-deactivation in superior frontal gyrus, angular gyrus, and 
posterior and anterior cingulate cortex. 
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Figure 7. Resting-State Co-Activation Patterns (CAPs). Four CAPs displayed per sample 1 (S1) and 
sample 2 (S2) and categorised into general brain states. Activations (warm colours) and deactivations 
(cool colours) for each Z-scored CAP thresholded at 2.3 are displayed in MNI 2009c non-linear asymmetric 
space. The four brain states included: 1) Visual Attention Network with co-activation of the occipital cortex 
and superior parietal lobe alongside co-deactivation in the posterior cingulate cortex, precuneus, and 
superior frontal gyrus; 2) Dorsal Medial Default Mode Network involving co-activation of dorsomedial 
prefrontal cortex, superior frontal gyrus, paracingulate gyrus, angular gyrus, and frontal pole, with further 
co-activation in precuneus and posterior cingulate in sample 2 and co-deactivation in the cuneus, with 
further co-deactivation in the juxtapositional lobe in sample 2; 3) Core Default Mode Network with co-
activation in the posterior cingulate cortex, precuneus, and frontal medial cortex and co-deactivation of 
supramarginal gyrus, insula, and inferior frontal gyrus; 4) Salience Network including co-activation of the 
anterior cingulate cortex, insula, and juxtapositional lobe with co-deactivation in occipital cortex regions. 
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3.4.4 Emotion Matching Co-Activation Patterns 
3.4.4.1 Right Amygdala and Right BNST 

Neither task-based HRV nor self-reported trait neuroticism significantly 

predicted the occurrences or average duration of any of the CAPs derived from the 

right amygdala and BNST CAP seed region analyses in either of the samples during 

the emotion processing task. 

 

3.4.4.2 Left Amygdala and Left BNST 
In sample 1, although the overall regression model was not significant (R2 

change = 0.05, F(5, 90) = 1.75, p = .132 Model 3), after entering trait neuroticism into the 

model, frequentist regression analyses showed that trait neuroticism predicted the 

average duration of CAP 3, a visual network state, such that individuals with higher 

trait neuroticism appeared to spend a lower average duration of time in this visual 

network state co-active with the left amygdala and left BNST throughout the task (β = 

-0.22, t = -2.09, p = .039). However, neither the model with control variables (age, BMI, 

total volumes retained in CAP analysis per participant) and the addition of task-related 

HRV (R2 change = 0, F(4, 90) = 1.05, p = .386 Model 2) nor the full model including 

control variables, task-related HRV, trait neuroticism and the interaction between HRV 

and neuroticism (R2 change = 0.01, F(6, 90) = 1.59, p = .161 Model 4) showed HRV (β = 

0.01, t = 0.05, p = .957), or the interaction term (β = -0.09, t = -0.89, p = .374), to 

predict the average duration of CAP 3. Akin to the frequentist model, Bayesian 

analyses indicated moderate evidence in support of the null for the model including 

control variables, HRV and trait neuroticism (BF01 = 6.33), whereas anecdotal support 

emerged for trait neuroticism as a sole predictor of the average duration of this visual 

CAP (BF10 = 1.97). Moderate to strong support for the null hypothesis emerged for 

task-related HRV (BF01 = 4.44) as a sole predictor and the other models including 

control variables with task-related HRV and the interaction between HRV and 

neuroticism (BF01 = 15.73 Model 2; BF01 = 10.18 Model 4).  

Comparatively, in sample 2, for the equivalent visual network brain state (CAP 

1), the frequentist regression model indicated that task-related HRV predicted the 

average duration of co-activation between this visual network CAP and left amygdala 

and left BNST. Specifically, while adding task-based HRV to the model did not result 

in a significant change in the variance explained for the average duration of CAP 1 (R2 

change = 0.04, F(4, 92) = 2.08, p = .090 Model 2), higher task-based HRV was associated 
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with a greater average duration of this visual network state (β = 0.21, t = 2.00, p = 

.049). Nevertheless, unlike in sample 1, trait neuroticism (R2 change = 0.01, F(5, 92) 

= 1.87, p = .107 Model 3) did not significantly predict the average duration of this visual 

network that was co-active with left amygdala and left BNST trait (β = 0.11, t = 1.02, p 

= .313). Akin to sample 1, the interaction between HRV and neuroticism (R2 change = 

0.02, F(6, 92) = 1.89, p = .093 Model 4) did not predict the average duration of CAP 1 (β 

= 0.14, t = 1.36, p = .177). Bayesian analyses revealed unconvincing support for task-

based HRV as a sole predictor of the average duration of CAP 1 (BF10 = 0.74) and 

moderate evidence for the null for trait neuroticism as a sole predictor (BF10 = 4.26) 

and across models (BF01 = 3.31 Model 2; BF01 = 5.18 Model 3; BF01 = 5.56 Model 4). 

Therefore, while there was some weak evidence that trait neuroticism (sample 1), and 

to a lesser extent, task-based HRV (sample 2) predicted the average duration of a 

visual network that was co-active with left amygdala and left BNST, the main predictor 

results were not replicated across each sample respectively.  

Finally, within sample 2, entering trait neuroticism into the frequentist regression 

model contributed to a significant change in the variance explained for CAP 2 

occurrences, a brain state reflecting a core DMN pattern (R2 change = 0.05, F(5, 92) 

= 2.49, p = .037 Model 3). Higher trait neuroticism was linked to fewer occurrences of 

this core default mode state throughout the emotion matching task (β = -0.23, t = -

2.18, p = .032). While the model including task-related HRV (R2 change = 0, F(4, 92) 

= 1.86, p = .125 Model 2) did not find HRV to predict the occurrences of this core DMN 

state (β = 0.05, t = 0.46, p = .649), the interaction between HRV and neuroticism 

interaction significantly explained the variance in the occurrences of this CAP (R2 

change = 0.05, F(6, 92) = 3.04, p = .010 Model 4; β = -0.23, t = -2.27, p = .026). 

Specifically, the simple slope of HRV on CAP 2 occurrences appeared to be 

approaching significance at low levels of neuroticism (β = 0.24, t = 1.74, p = .085), 

such that higher HRV predicted increased occurrences in this core DMN CAP at low, 

but not high levels of neuroticism (β = -0.26, t = -1.52, p = .132). Bayesian analyses 

indicated anecdotal support for trait neuroticism as a sole predictor of DMN 

occurrences (BF10 = 2.09) and the full model including control variables, HRV, trait 

neuroticism and their interaction term (BF10 = 2.00). Support for the model including 

control variables, task-related HRV and trait neuroticism was unclear (BF10 = 0.60) 

and moderate support for the null was found for the model with only control variables 

and task-related HRV (BF01 = 9.33 Model 2).  
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On the other hand, this pattern of findings was not replicated in sample 1 for 

the equivalent core DMN brain state (CAP 1). Frequentist regression models 

containing control variables and where task-based HRV (R2 change = 0, F(4, 90) = 

0.30, p = .876 Model 2), trait neuroticism (R2 change = 0.02, F(5, 90) = 0.50, p = .733 

Model 3), and their interaction term (R2 change = 0, F(6, 90) = 0.43, p = .857 Model 4) were 

added, showed none of the predictors of interest to demonstrate associations with the 

occurrences of CAP 1 in this sample. Bayesian regressions indicated moderate 

support for task-related HRV (BF01 = 3.98) and anecdotal support for trait neuroticism 

(BF01 = 2.55) with relation to the null. Strong to extreme support (BF01 = 50.68 Model 2; 

BF01 = 65.25 Model 3; BF01 = 128.08 Model 4) was found for the null across the models. 

 

See Figure 8 for a visual depiction of these results. 
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Figure 8. HRV and Trait Neuroticism Findings from the Emotion Matching Task CAP Analyses. A) In 
sample 1, higher trait neuroticism was associated with a lower average duration of CAP 3, a visual 
attention brain state, as a function of the left amygdala/BNST. B) In sample 2, higher task-related HRV 
correlated with a higher average duration of CAP 1 as a function of the left amygdala/BNST, a brain state 
overlapping the spatial pattern of the visual attention CAP observed in sample 1. C) Higher trait neuroticism 
predicted fewer occurrences of CAP 2, a brain state reflecting a core DMN state that was found to be co-
active with the left amygdala/BNST in sample 2. D) An interaction between task-related HRV and trait 
neuroticism predicted the occurrences of this core DMN state in sample 2, such that higher task-based 
HRV was linked to fewer occurrences of this CAP for individuals with lower, but not higher, trait neuroticism. 
Original units for temporal CAP metrics were number of volumes (‘Occurrences’) and average duration in 
seconds (‘Average Duration’). Standardised residuals (controlling for mean centered age, BMI, total 
number of retained fMRI volumes in the CAP analysis, and either task-related HRV or trait neuroticism 
depending on the relevant predictor) are displayed for visualisation purposes in A-C. The HRV by trait 
neuroticism interaction plot was created using the interactions package in R with high and low neuroticism 
groups reflecting a  ± 1SD split. 
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3.4.5 Resting-State Co-Activation Patterns 
3.4.5.1 Right Amygdala and Right BNST 

In sample 1, while adding resting HRV to the frequentist regression model with 

control variables did not produce a significant change in variance explained (R2 

change = 0.08, F(4, 85) = 2.38, p = .058 Model 2), resting HRV emerged as a significant 

predictor of the average duration of CAP 2, a neural pattern reflecting the dorsal medial 

DMN. Higher resting HRV was linked to a lower average duration of this default sub-

system brain state during rest (β = -0.28, t = -2.64, p = .010). Neither the models that 

included trait neuroticism (R2 change = 0.02, F(5, 85) = 2.31, p = .052 Model 3) nor the 

HRV by trait neuroticism interaction term (R2 change = 0.01, F(6, 85) = 2.00, p = .076 

Model 4) showed trait neuroticism (β = -0.15, t = -1.38, p = .172) or the interaction term 

(β = 0.08, t = 0.71, p = .478) to predict the average duration of medial DMN co-

activation with right amygdala and right BNST. Bayesian analyses mirrored the 

frequentist models, showing moderate evidence for HRV as a sole predictor (BF10 = 

4.90) of the average duration of CAP 2, but anecdotal evidence for a null effect in the 

model including control predictors and resting HRV (BF01 = 1.96 Model 2). Anecdotal to 

moderate evidence emerged for the null for trait neuroticism as a sole predictor (BF01 

= 2.13) and the other models (BF01 = 2.17 Model 3 ; BF01 = 3.99 Model 4).  

Comparatively, in sample 2, frequentist models that included HRV (R2 change 

= 0.01, F(4, 89) = 2.75, p = .033 Model 2), followed by trait neuroticism (R2 change = 0, 

F(5, 89) = 2.18, p = .065 Model 3) and their interaction (R2 change = 0.01, F(6, 89) = 

1.88, p = .095 Model 4) did not indicate any of the predictors of interest to demonstrate 

an association with the average duration of the equivalent dorsal medial DMN state 

(CAP 1) (resting HRV: β = 0.08, t = 0.78, p = .437; trait neuroticism: β = 0.01, t = 0.08, 

p = .941; resting HRV x trait neuroticism interaction: β = 0.07, t = 0.67, p = .506). 

Bayesian analyses suggested moderate support for the null in the case of resting HRV 

(BF01 = 3.78) and trait neuroticism (BF01 = 4.53) as sole predictors and  the model 

including control variables and resting HRV (BF01 = 8.93 Model 2). Strong support for the 

null emerged in the case of the other models that included trait neuroticism and the 

HRV by neuroticism interaction term (BF01 = 21.76 Model 3; BF01 = 41.16 Model 4). Thus, 

while there was some evidence to suggest HRV predicted the average duration of 

dorsal medial DMN in sample 1, this finding was not replicated in sample 2. 

Contrary to our hypothesis that resting HRV would predict reduced salience 

network occurrences, in sample 1, while adding resting HRV to the frequentist 
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regression model containing control variables did not result in a significant change in 

the variance explained (R2 change = 0.05, F(4, 85) = 2.41, p = .056 Model 2), HRV was 

found to significantly predict the occurrences of CAP 4, a salience network state. 

Higher resting HRV was significantly associated with increased occurrences of this 

salience network state that was co-active with right amygdala and right BNST (β = 

0.22, t = 2.08, p = .041). When adding trait neuroticism (R2 change = 0, F(5, 85) = 

1.94, p = .097 Model 3) and the HRV by trait neuroticism interaction term (R2 change = 

0.03, F(6, 85) = 2.05, p = .068 Model 4) to the model, neither trait neuroticism  (β = 0.04, 

t = 0.38, p = .704) nor the interaction between HRV and neuroticism (β = -0.17, t = -

1.57, p = .121) were found to significantly predict CAP 4 occurrences. The Bayesian 

regression for the model including control variables and resting HRV indicated 

moderate evidence for a null effect (BF01 = 3.54), but some weak, anecdotal support 

for resting HRV as a sole predictor of CAP 4 occurrences (BF10 = 1.20). Also, mirroring 

the frequentist regression models, moderate evidence was found for the null for trait 

neuroticism as a sole predictor (BF01 = 4.43) and the other models including trait 

neuroticism and the interaction between HRV and neuroticism (BF01 = 4.22 Model 3; BF01 

= 3.54 Model 4). Thus, while resting HRV appeared to predict the occurrences of co-

activation between the salience network and right amygdala and right BNST, this 

association is fairly tentative and unlikely to be robust. 

This finding was not replicated in sample 2 for the equivalent salience network 

state (CAP 4). In the frequentist regression model combining control variables and 

resting HRV (R2 change = 0, F(4, 89) = 1.60, p = .183 Model 2), HRV was not found to 

significantly predict CAP 4 occurrences (β = 0.06, t = 0.60, p = .549). The subsequent 

models that included trait neuroticism (R2 change = 0.02, F(5, 89) = 1.57, p = .176 Model 

3) and the HRV by neuroticism interaction term (R2 change = 0.02, F(6, 89) = 1.63, p 

= .149 Model 4) did not indicate either of these predictors to demonstrate associations 

with CAP 4 occurrences (trait neuroticism: β = -0.13, t = -1.21, p = .232; HRV x trait 

neuroticism interaction: β = 0.15, t = 1.35, p = .180). Bayesian analyses revealed 

moderate evidence for resting HRV (BF01 = 3.58) and anecdotal evidence for trait 

neuroticism (BF01 = 1.34) in support of the null, reinforcing the frequentist regression 

models that neither of these variables solely predicted CAP 4 occurrences. Moderate 

evidence for a null association was found for all other models, failing to replicate the 

resting HRV pattern of findings observed in sample 1, however, replicating the lack of 

associations between trait neuroticism and the interaction between HRV and trait 
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neuroticism in relation to CAP 4 occurrences (BF01 = 6.71 Model 2; BF01 = 8.62 Model 3; 

BF01 = 9.17 Model 4).  

Finally, in sample 1, while the overall frequentist regression model was not 

significant (R2 change = 0.06, F(5, 85) = 1.46, p = .212 Model 3), trait neuroticism 

significantly predicted the average duration of CAP 3, a core DMN state. Contrary to 

our hypothesis, elevated trait neuroticism predicted a lower average duration of this 

default mode brain state (β = -0.24, t = -2.24, p = .028). The linear models combining 

control predictors with resting HRV (R2 change = 0.02, F(4, 85) = 0.55, p = .700 Model 

2) and the HRV by trait neuroticism interaction term (R2 change = 0.02, F(6, 85) = 1.48, 

p = .195 Model 4) did not find either resting HRV (β = -0.14, t = -1.28, p = .205 Model 3) or 

the HRV by neuroticism interaction term (β = 0.14, t = 1.24, p = .220 Model 4) to 

significantly predict the average duration of CAP 3. Akin to the frequentist regression 

approach, Bayesian analyses generated moderate evidence in favour of the null for 

the model including control variables and trait neuroticism (BF01 = 10.00), but 

anecdotal evidence for trait neuroticism as a sole predictor of the average duration of 

the core DMN state (BF10 = 1.88). Anecdotal support for the null emerged for resting 

HRV (BF01 = 2.27) as a sole predictor and the other models indicated moderate to 

strong evidence for the null, suggesting that neither resting HRV or an interaction 

between HRV and trait neuroticism predicted the average duration of CAP 3 (BF01 = 

31.81 Model 2; BF01 = 11.78 Model 4).  

 In sample 2, the equivalent brain state depicting the core DMN pattern was 

CAP 3. None of the models containing control variables with the addition of resting 

HRV (R2 change = 0, F(4, 89) = 0.43, p = .788 Model 2), trait neuroticism (R2 change = 

0, F(5, 89) = 0.39, p = .855 Model 3), and their interaction term (R2 change = 0.01, F(6, 

89) = 0.44, p = .850 Model 4), indicated any of the key variables of interest to significantly 

predict the average duration of the core DMN co-active with right amygdala and right 

BNST (resting HRV: β = -0.02, t = -0.20, p = .840; trait neuroticism: β = 0.06, t = 0.50, 

p = .620; HRV x trait neuroticism interaction: β = 0.10, t = 0.84, p = .403). Bayesian 

analyses suggested moderate evidence for the null with respect to resting HRV (BF01 

= 4.51) and trait neuroticism (BF01 = 4.43) as sole predictors of the average duration 

of CAP 3. Strong to extreme evidence for the null hypothesis was observed across 

models (BF01 = 40.91 Model 2; BF01 = 79.53 Model 3; BF01 = 122.51 Model 4), suggesting a 

non-replication of the trait neuroticism finding in sample 1, while replicating null 
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findings for resting HRV and the HRV by neuroticism interaction as predictors of the 

average duration of this core DMN CAP.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. HRV and Trait Neuroticism Findings from the Resting-State CAP Analyses. A) The right 
amygdala and BNST seed region CAP analyses in sample 1 revealed higher resting HRV to be associated 
with a reduction in the average duration of CAP 2, a neural pattern reflecting the dorsal medial prefrontal 
cortex default mode subsystem network. B) Greater resting HRV was found to predict increased 
occurrences of CAP 4, a salience network state, as a function of right amygdala/BNST co-activation in 
sample 1. C) Higher trait neuroticism was linked to a lower average duration of CAP 3, a core DMN brain 
state as a function of right amygdala/BNST in sample 1. D) As a function of left amygdala/BNST seeds, 
elevated resting HRV was associated with fewer occurrences of a dorsal medial DMN CAP in sample 1. 
E) In sample 2, higher resting HRV predicted a greater average duration of CAP 2, a visual attention 
network state, as a function of the left amygdala and BNST. F) An interaction between resting HRV and 
trait neuroticism predicted the average duration of CAP 3, such that individuals with lower trait neuroticism 
and decreased resting HRV spent a longer time in this core DMN brain state as a function of the left 
amygdala and BNST. Original units for temporal metrics were number of volumes (‘Occurrences’) and 
average duration in seconds (‘Average Duration’). Standardised residuals (controlling for mean centered 
age, BMI, number of volumes, and either resting HRV or trait neuroticism depending on the relevant 
predictor) are displayed for visualisation purposes. The HRV by trait neuroticism interaction plot was 
created using the interactions package in R with high and low neuroticism groups reflecting a ± 1SD split. 
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3.4.5.2 Left Amygdala and Left BNST 

In sample 1, the frequentist linear regression model (R2 change = 0.06, F(4, 85) 

= 3.09, p = .020 Model 2) indicated that adding resting HRV to the model resulted in a 

significant change in the variance explained in CAP 3 occurrences, a dorsal medial 

DMN brain state that was co-active with left amygdala and left BNST. Specifically, 

higher resting HRV predicted fewer occurrences of this dorsal medial default state (β 

= -0.25, t = -2.38, p = .020). This followed the same pattern observed in this sample 

for the average duration of the equivalent CAP derived from the right amygdala and 

right BNST seed region CAP analyses. However, adding trait neuroticism to the model 

resulted in a change in variance explained that was close to 0 (R2 change = 0, F(5, 

85) = 2.46, p = .040 Model 3), with trait neuroticism not found to significantly predict CAP 

3 occurrences (β = 0.03, t = 0.25, p = .805. The full model including the HRV by trait 

neuroticism interaction (R2 change = 0.01, F(6, 85) = 2.14, p = .058 Model 4) did not 

significantly predict CAP 3 occurrences either (β = 0.08, t = 0.79, p = .430). Bayesian 

analyses indicated anecdotal evidence in favour of the model including control 

variables and resting HRV (BF10 = 1.44) and resting HRV as a sole predictor (BF10 = 

1.39) of CAP 3 occurrences. However, moderate evidence in support of the null 

emerged for trait neuroticism as a sole predictor (BF01 = 4.10) and anecdotal evidence 

for the null for the models where trait neuroticism was added (BF01 = 1.67 Model 3) and 

the HRV and neuroticism interaction term (BF01 = 2.95 Model 4).  

Compared to sample 1, in sample 2, the frequentist regression models 

indicated none of the predictors to explain variance in the occurrences of the 

equivalent dorsal medial DMN state (CAP 1). Models including control variables where 

resting HRV was added (R2 change = 0, F(4, 89) = 0.72, p = .580 Model 2), followed by 

inclusion of trait neuroticism (R2 change = 0, F(5, 89) = 0.58, p = .714 Model 3), and the 

full model with the addition of the HRV and neuroticism interaction term (R2 change = 

0.01, F(6, 89) = 0.61, p = .723 Model 4) suggested that resting HRV (β = 0.01, t = 0.11, 

p = .916), trait neuroticism (β = 0.03, t = 0.24, p = .814) and their interaction (β = -0.01, 

t = -0.87, p = .387) did not significantly predict CAP 1 occurrences. Bayesian analyses 

further reinforced moderate evidence for a null association for resting HRV (BF01 = 

4.53) and trait neuroticism (BF01 = 4.43) as sole predictors and strong to very strong 

support for the null hypothesis across models (BF01 = 25.90 Model 2 ; BF01 = 55.20 Model 

3 ; BF01 = 84.35 Model 4). 
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In sample 2, the frequentist linear regression model (R2 change = 0.08, F(4, 89) 

= 2.20, p = .076 Model 2) showed resting HRV to significantly predict the average 

duration of CAP 2, a visual network brain state that was co-active with left amygdala 

and left BNST. Higher resting HRV predicted a longer average duration of this visual 

network state during rest (β = 0.29, t = 2.76, p = .007). Including trait neuroticism in 

the model did not significantly improve the variance explained (R2 change = 0, F(5, 

89) = 1.75, p = .133 Model 3) nor was trait neuroticism a significant predictor of the 

average duration of CAP 2 (β = 0.02, t = 0.18, p = .855). Additionally, including the 

HRV and neuroticism interaction term in the model (R2 change = 0, F(6, 89) = 1.44, p 

= .209 Model 4) did not significantly predict average duration of this visual network state 

either (β = 0.01, t = 0.08, p = .938). Bayesian regressions showed moderate evidence 

for resting HRV as a sole predictor of CAP 2 duration (BF10 = 6.32), but anecdotal 

evidence for the null hypothesis in the model combining control variables and resting 

HRV (BF01 = 2.68 Model 2). Moderate evidence in support of the null was observed for 

trait neuroticism as a sole predictor (BF01 = 4.50) and moderate to strong evidence 

emerged in support of a null effect for the model that included trait neuroticism as a 

predictor (BF01 = 6.27 Model 3) and following inclusion of the HRV and neuroticism 

interaction term (BF01 = 13.75 Model 4). 

However, in sample 1, the frequentist linear model (R2 change = 0, F(4, 85) = 

2.11, p = .087 Model 2) did not find resting HRV (β = -0.03, t = -0.26, p = .794) to 

significantly predict the average duration of the equivalent brain state reflecting a 

visual network pattern (CAP 2). Moreover, models adding trait neuroticism (R2 change 

= 0.01, F(5, 85) = 1.83, p = .116 Model 3) and the HRV by neuroticism interaction (R2 

change = 0.01, F(6, 85) = 1.59, p = .162 Model 4) did not find either of these predictors 

(trait neuroticism: β = -0.10, t = -0.87, p = .389; HRV x trait neuroticism: β = -0.07, t = 

-0.66, p = .510) to be linked to the average duration of this visual network that was co-

active with left amygdala and left BNST. Bayesian analyses reinforced anecdotal to 

moderate support for the null for resting HRV (BF01 = 4.45) and trait neuroticism (BF01 

= 2.74) as sole predictors and across models (BF01 = 2.96 Model 2; BF01 = 5.11 Model 3; 

BF01 = 9.40 Model 4).  

In sample 2, the frequentist regression model in which resting HRV was added 

(R2 change = 0.03, F(4, 89) = 0.75, p = .561 Model 2) and subsequently where trait 

neuroticism was included (R2 change = 0, F(5, 89) = 0.61, p = .696 Model 3) revealed 

neither resting HRV (β = -0.17, t = -1.56, p = .123) or trait neuroticism (β = -0.03, t = -
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0.25, p = .807) to significantly predict the average duration of CAP 3, a core DMN state 

co-active with left amygdala and left BNST. However, while the overall model was not 

significant (R2 change = 0.05, F(6, 89) = 1.26, p = .285 Model 3), the HRV by neuroticism 

interaction term predicted the average duration of core DMN co-activation in sample 

2 (β = 0.24, t = 2.10, p = .039). Specifically, the interaction showed that at low levels 

of trait neuroticism, lower HRV resulted in a greater average duration of CAP 3 (β = -

0.39, t = -2.61, p = .011) but not at higher trait neuroticism (β = 0.06, t = 0.37, p = .711). 

Indeed, the Bayesian regression model revealed strong support for the null when 

considering the full model including control variables, resting HRV, trait neuroticism, 

and the HRV by neuroticism interaction term (BF01 = 20.28), but the interaction term 

as a sole predictor indicated anecdotal support as a predictor of the average duration 

of CAP 3 (BF10 = 1.29). Anecdotal to moderate evidence for the null was observed for 

resting HRV (BF01 = 1.37) and trait neuroticism (BF01 = 4.53) as sole predictors, and 

strong to very strong evidence for the full models (BF01 = 24.75 Model 2; BF01 = 52.73 

Model 3). Thus, while there does seem to be some support for an interaction between 

resting HRV and trait neuroticism for predicting the average duration of the core DMN 

state, this finding is unlikely to be robust. 

Comparatively, in sample 1, for the equivalent core DMN state (CAP 1), the 

frequentist linear model (R2 change = 0, F(6, 85) = 0.73, p = .626 Model 4) did not show 

the interaction between resting HRV and trait neuroticism to predict the average 

duration of this brain state (β =0.02, t = 0.14, p = .888). Moreover, the models in which 

resting HRV (R2 change = 0.04, F(4, 85) = 1.07, p = .379 Model 2) and trait neuroticism 

(R2 change = 0, F(5, 85) = 0.89, p = .495 Model 3) were added did not suggest either 

resting HRV or trait neuroticism to predict the average duration of this core DMN state 

that was co-active with left amygdala and left BNST (resting HRV: β =0.19, t = 1.74, p 

= .085; trait neuroticism: β = 0.05, t = 0.45, p = .655). Bayesian analyses reinforced 

anecdotal to moderate evidence for the null when considering resting HRV (BF01 = 

1.49) and trait neuroticism (BF01 = 3.87) as sole predictors, and strong to very strong 

support for the null hypothesis across full models (BF01 = 14.33 Model 2; BF01 = 29.04 

Model 3; BF01 = 59.23 Model 4). 

 Refer to Figure 9 for a visual depiction of these findings. 
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3.5 Discussion 
Most research has focused on interactions between the heart and the brain at 

rest, with fewer studies assessing transient temporal connectivity changes of 

neurovisceral circuitry and HRV during contexts that require flexible emotional 

responding. The present study used CAP analyses to examine HRV, self-reported trait 

neuroticism, and associated co-active neural networks in two samples of younger 

adults derived from the AOMIC PIOP 2 dataset. Crucially, since HRV has been 

considered to reflect adaptive emotional responding (Appelhans & Luecken, 2006; 

Thayer & Lane, 2000, 2009), this study examined the degree to which both task-

related and resting HRV predicted temporal metrics (i.e., occurrences and average 

duration) of neural networks that were co-active with the amygdala and BNST during 

an emotion processing task and at rest.  

During the emotion processing task, a network encompassing neural regions 

related to visual attention, including bilateral lateral occipital cortex (superior and 

inferior divisions), middle and inferior frontal gyri (more extensive bilateral co-

activation in sample 1 with slightly higher threshold in right middle frontal gyri), and 

superior parietal lobe (SPL), emerged in both samples. Prior research has found areas 

of the ventral visual system, such as the lateral occipital cortex and inferior frontal 

gyrus (IFG), to exhibit stronger functional connectivity with the amygdala in response 

to emotional (angry and fearful) faces versus control (shape) stimuli, highlighting the 

involvement of these regions in facilitating emotion processing (Labuschagne et al., 

2024). The IFG is involved in emotion processing (Adolphs, 2002) and emotion 

regulation (Kohn et al., 2014; Messina et al., 2015; Wager et al., 2008), with left 

IFG/ventrolateral prefrontal cortex (vlPFC) commonly observed in emotion regulation 

studies (Berboth & Morawetz, 2021; Buhle et al., 2014), and right IFG/vlPFC linked to 

(emotional) inhibitory control (Aron et al., 2004; Lieberman et al., 2007) and task-

related HRV (Tupitsa et al., 2023). This CAP also contained the SPL, which forms part 

of the dorsal attention network and facilitates the orientation of attention (Corbetta & 

Shulman, 2002). Considering the neural regions found to be co-active with moments 

in which amygdala/BNST were particularly active during the task, it could be that this 

CAP reflected increased visual attention and engagement while performing the task 

across samples. In sample 1, although anecdotal evidence emerged for trait 

neuroticism as a sole predictor of the average duration of this CAP, the model including 

control variables, HRV and trait neuroticism indicated moderate support for no overall 
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association. Moreover, moderate support for no association was found in sample 2, 

highlighting that trait neuroticism did not appear to predict the average duration of this 

visual CAP in this sample. Additionally, in sample 2, while there was an indication that 

higher task-related HRV as a sole predictor was linked to a lower average duration of 

this CAP, the support for this association was weak. 

A similar brain state emerged in sample 2 during rest, characterised by co-

activation of bilateral ventral visual areas and SPL (with slightly more extensive right-

lateralised co-activation), with simultaneous co-deactivation of bilateral PCC, 

precuneus and mPFC (core DMN areas). According to prior research, 

visual/oculomotor and salience network activation during rest may constitute an 

increased ‘exteroceptive’ state, reflecting greater attention and vigilance in an eyes 

open resting-state paradigm, in contrast to eyes closed paradigms, in which neural 

activation and connectivity of areas such as the mPFC promote an ‘interoceptive’ state 

(Costumero et al., 2020; Riedl et al., 2014; Zhang et al., 2015). Higher resting HRV 

has been linked to more effective attentional maintenance in younger adults 

(Siennicka et al., 2019) and this pattern of findings may suggest individuals with higher 

HRV demonstrated more sustained engagement of exteroceptive visual attention 

during rest. Evidence revealed moderate support for HRV as a sole predictor of this 

co-activation duration in sample 2, however, such an association between HRV and 

this visual network was not supported in sample 1. Thus, while there might be some 

indication that higher trait neuroticism predicted less sustained engagement of visual 

attention in an emotional processing context (sample 1), and elevated HRV predicted 

more sustained engagement of visual attention across emotional and rest contexts 

(sample 2), the pattern of these findings is supported by fairly weak and inconsistent 

evidence. 

Furthermore, in sample 2, tentative evidence emerged for a potential interaction 

between trait neuroticism and HRV during the emotion task in relation to occurrences 

of CAP 2, a neural network pattern consistent with the core DMN (Andrews-Hanna et 

al., 2010). The DMN is a neural hub underlying various processes, including self-

reflection and self-generated thoughts, autobiographical memory, and mind-

wandering (Andrews-Hanna et al., 2010; Buckner & Caroll, 2007; Raichle, 2015). 

While the DMN can be considered a single neural hub, it has been parcellated into 

three underlying sub-networks: the ‘core’ DMN (PCC and anterior mPFC), the 

dorsomedial prefrontal cortex (dmPFC, the temporoparietal junction, temporal pole, 
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and lateral temporal cortex), and the medial temporal lobe system (vmPFC, posterior 

inferior parietal lobe, parahippocampal cortex, and hippocampal formation) (Andrews-

Hanna et al., 2010). In both samples, the ‘core’ DMN CAP during the task contained 

extensive clusters in bilateral PCC and anterior mPFC that were co-active with left 

amygdala and BNST. It was expected that higher trait neuroticism and lower task-

related HRV would be linked to increased occurrences and/or a higher average 

duration of the DMN, given its involvement in self-referential processing and prior 

evidence suggesting persistent dominance (i.e., increased average dwell time) and 

activation of the DMN linked to increased anxiety (Qiao et al., 2020; Zeidan et al., 

2014). Unexpectedly, higher task-related HRV predicted increased occurrences of this 

core DMN CAP in individuals with low, but not high, trait neuroticism during the task. 

Increased DMN activation has been shown to support cognitive transitions that are 

dependent on the prominence of context representations (Crittenden et al., 2015; 

Smith et al., 2018). Specifically, increased activation in core and medial temporal lobe 

subsystems of the DMN has been observed during cognitively demanding switches 

on task trials and switches between rest and task engagement (Crittenden et al., 2015; 

Smith et al., 2018). Therefore, it is possible that individuals with lower trait neuroticism 

and elevated task-related HRV more effectively switched and disengaged during the 

task, potentially throughout the less emotionally salient control blocks and/or brief 

periods of rest, as reflected by more frequent occurrences of the core DMN. However, 

this would require a targeted analysis examining CAP occurrences for emotion versus 

control blocks to establish whether this particular brain state was expressed more 

frequently during control trials or brief rest periods. Crucially, this finding is also highly 

speculative considering that Bayesian analyses provided anecdotal support for the 

interaction between HRV and trait neuroticism as a sole predictor in sample 2, and 

strong evidence to support no association in sample 1. 

Resting-state CAP analyses revealed that, in sample 1, higher resting HRV 

predicted increased occurrences of a neural pattern comprised of bilateral ACC, 

insula, and juxtapositional lobe co-active with the right amygdala and right BNST. Both 

the ACC and anterior insula are considered central nodes of the salience network 

(Seeley et al., 2007; Uddin et al., 2019), a neural hub facilitating integration and 

identification of autonomic and interoceptive signals, alongside adjusting arousal and 

directing attention to salient information (Uddin, 2015). The salience network, primarily 

via the dorsal anterior insula, also facilitates dynamic and automatic shifts between 
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the DMN and central executive network, flexibly directing attention to and from internal 

and external environmental cues (Uddin, 2015). On the basis that lower resting HRV 

is often observed in individuals with anxiety (Chalmers et al., 2014; Cheng et al., 2022; 

Tomasi et al., 2023), and both anxiety and neuroticism have been linked to greater 

dominance of salience/emotion processing neural hubs, including overactivation in 

salience-related areas (Massullo et al., 2020), it was hypothesised that lower resting 

HRV would predict greater occurrences or a higher average duration of the salience 

network. Thus, the pattern of findings observed in sample 1 is in an opposite direction 

to that of our original hypothesis. However, as confirmed by Bayesian analyses, there 

was anecdotal evidence to support resting HRV as a sole predictor of the occurrences 

of this salience network CAP, and in sample 1, moderate evidence for no association 

was uncovered for HRV as a predictor, reinforcing a lack of robust findings observed 

across the samples. That said, while this is likely a spurious finding, it is interesting 

that an association between HRV and the salience network was observed during rest, 

as opposed to an emotion processing context in which salient emotional information 

(angry and fearful face stimuli) was presented. Nevertheless, transient HRV changes 

have previously been linked to altered functional connectivity in salience network 

nodes at rest (Chang et al., 2013). Increased occurrences of the salience network 

during rest may also reflect the eyes open nature of the resting-state paradigm, with 

previous research reporting the primary visual cortex to be strongly coupled with the 

salience network during an eyes open paradigm, suggesting greater engagement of 

external attention systems (Costumero et al., 2020).  

Moreover, during rest, a neural network pattern consistent with the dmPFC 

subsystem of the DMN (Andrews-Hanna et al., 2010) emerged in both samples, 

comprising bilateral dmPFC, SFG, angular gyrus, and frontal pole. The dmPFC DMN 

subsystem is typically engaged in relation to self-referential judgements and inferring 

the mental states of others (Andrews-Hanna et al., 2010). A meta-analysis found core 

DMN regions and the dmPFC subsystem to exhibit increased activation during 

rumination (Zhou et al., 2020). In particular, the dmPFC has been reported to activate 

in response to induced anxiety in healthy individuals (Mechias et al., 2010) and has 

exhibited positive coupling with the amygdala as a function of heightened anxiety 

(Robinson et al., 2012; Vytal et al., 2014). The current study findings revealed higher 

resting HRV to predict a lower average duration of co-activation of this CAP with right 

amygdala and right BNST and fewer occurrences of co-activation of the equivalent 
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CAP with left amygdala and left BNST in sample 1. Indeed, lower resting HRV has 

been linked to increased hypervigilance and difficulties disengaging from negative or 

threatening information (Park et al., 2013; Park & Thayer, 2014) and anxiety (Chalmers 

et al., 2014; Cheng et al., 2022; Tomasi et al., 2023), whereas higher resting HRV 

reflects more adaptive emotional responding and regulation (Appelhans & Luecken, 

2006; Balzarotti et al., 2017). Taken together, a lower average duration and reduced 

occurrences of amygdala co-activation with this network featuring a large dorsal 

medial cluster in the frontal cortex could potentially reflect a lower state of anxiety, an 

increased ability to regulate anxious feelings, and/or reduced introspection and 

inference about mental states in the absence of a task. Nevertheless, as indicated by 

complementary Bayesian analyses, these findings are highly speculative and greater 

evidence to support a null association was observed in sample 2. Also, given the lack 

of a concurrent measure of self-reported state anxiety, there is not adequate 

supporting evidence in this study to indicate whether the current findings align with 

prior literature linking enhanced amygdala and dorsal medial prefrontal coupling with 

heightened anxiety. 

Finally, neuroticism is a shared risk factor for developing anxiety and 

depression (Kootker et al., 2016; Kotov et al., 2010). Higher average DMN dwell time 

has been associated with increased self-reported anxiety (Qiao et al., 2020), and DMN 

dominance (relative to a task-positive network) with elevated maladaptive depressive 

rumination (Hamilton et al., 2011). An interaction emerged between resting HRV and 

trait neuroticism in sample 2, whereby individuals with reduced resting HRV and lower 

trait neuroticism exhibited an increased average duration of the core DMN state co-

active with left amygdala and left BNST. Increased amygdala-PCC (Veer et al., 2011; 

Wang et al., 2018) and amygdala-precuneus (Maron-Katz et al., 2016) resting-state 

functional connectivity has been observed following acute stress. Additionally, higher 

task-related HRV has been linked to weaker right amygdala functional coupling with 

the PCC during reappraisal in older and younger adults (Tupitsa et al., 2023). 

Therefore, it could be that individuals with lower neuroticism and higher HRV are 

experiencing less stress and/or sustaining other brain states linked to exteroceptive 

attention, whereas individuals with reduced resting HRV and lower trait neuroticism 

may have a greater propensity to focus their attention inwardly to internal milieu. While 

anecdotal support was found for the interaction term as a sole predictor, the full model 

was not supported and no support for an association was observed in sample 1 either, 
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so again, this finding should be interpreted with caution. Also, in the absence of eye 

tracking measures to assess the degree of visual scanning or exploration and/or 

participant thoughts (i.e., via explicit thought sampling), it remains unclear as to 

whether internal versus external focus facilitated this pattern of findings.   

Collectively, the current findings do not provide clear or consistent support for 

our original hypotheses in accordance with the NIM framework and prior literature. The 

weak and inconsistent nature of the findings is likely to be closely linked to the 

temporal metrics (i.e., occurrences and average duration) derived from the CAPs, as 

opposed to the spatial clusters that comprise each CAP state. Clusters forming the 

key neural networks that emerged across emotion processing and resting-state 

contexts appeared to demonstrate strong overlap between the samples, suggesting a 

fairly robust spatial similarity of the CAPs. Indeed, a notable feature of the CAP 

technique is its ability to derive stable, co-active neural networks using only the time 

points (fMRI volumes) exhibiting the highest threshold of activation, with CAP states 

displaying equivalently high spatial similarity and stability as networks obtained from 

conventional, temporal correlation-based connectivity approaches (Cifre et al., 2020; 

Tagliazucchi et al., 2012). By comparison, while the spatial maps were fairly robust, 

where tentative associations were observed for either HRV or trait neuroticism with 

temporal metrics, such correlations were weak, with complementary Bayesian 

analyses mainly indicating anecdotal support for sole predictors, and inconsistent, 

wherein if HRV or neuroticism predicted the occurrences or average duration of a 

particular CAP, this same pattern was not supported or was in the opposite direction, 

in the other sample. Therefore, it is highly probable that the key findings raised in this 

study are spurious and should be interpreted with caution. 

Wider literature has highlighted inconsistencies in temporal metrics (i.e., dwell 

time, frequency and persistence) of the DMN in CAP studies examining major 

depressive disorder, suggesting that differences may emerge due to heterogeneity in 

sample characteristics, data processing methods, and limitations pertaining to 

statistical power (An et al., 2024). In this study, the samples did not appear to show 

differences in key variables of interest and both physiology and fMRI data adhered to 

the same processing protocols. However, limited statistical power may be a 

contributing factor when considering the weak and inconsistent associations between 

HRV and trait neuroticism with the CAP temporal metrics. While a decision to split the 

sample into two groups was implemented for replication purposes and to account for 
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practical and technical constraints that were encountered, this resulted in a relatively 

small number of participants being assigned to each sample. It has been 

acknowledged that many neuroimaging studies are underpowered and that 

substantially larger sample sizes are required to reliably examine inter-individual 

differences in mental health and cognitive phenotypes (Button et al., 2013; Marek et 

al., 2022). Small sample size is likely a contributing factor to the instability of findings 

reported here. With respect to the observed robustness of the spatial maps, by 

selecting only the time points with the most salient activity, the CAP clustering 

procedure reduces the requirements for widespread comparisons, which can 

consequently increase statistical power in small samples (Georgiopoulos et al., 2024). 

Thus, this may also partly explain the difference observed in the robustness of the 

spatial maps in contrast to the temporal metrics. It will be imperative for future research 

to examine relationships between HRV and/or emotional disposition with co-active 

neural networks in larger, representative samples. 

A few other limitations should be considered when interpreting the current 

findings. A temporal fMRI resolution of two seconds is likely to be inadequate for 

assessing indirect transient changes in neuronal activity and therefore may also have 

impacted the relative measurement sensitivity of the CAP temporal metrics. Relatedly, 

while the emotion processing task reliably activates the amygdala (key seed region of 

interest in the current study) and still requires a degree of flexible emotional 

responding (i.e., the ability to shift from processing emotional to neutral stimuli and 

vice versa), the task followed a block design which more reliably assesses emotional 

processing as opposed to flexibility. An event-related design with more frequent shifts 

in response to emotion versus neutral information would have required more flexibility 

in the form of switching and thus would potentially increase the sensitivity of the 

temporal metrics of the various brain states too. Beyond block versus event-related 

designs, it would be fruitful for future research to utilise tasks specifically designed to 

assess affective flexibility (i.e., the affective flexibility task; Genet et al., 2013; Malooly 

et al., 2013) to further elucidate dynamic brain states underlying adaptive emotional 

responding and potential associations with HRV and anxiety/depression in non-clinical 

and/or clinical populations. Finally, while BMI was included as a relevant control 

variable in the present study, information on other lifestyle/health factors such as 

caffeine intake, smoking status, physical fitness/activity, and medications including 

beta-blockers and anti-depressants reported to influence HRV were not available and 
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consequently not controlled for (Hayano et al., 1990; Sammito & Böckelmann, 2016). 

Therefore, we cannot rule out the potential influence some of these factors may have 

had on the HRV findings in the current study. 

In conclusion, the present study investigated and uncovered neural networks 

that were co-active with the amygdala and BNST during emotion processing and rest 

in younger adults. While the spatial maps of the brain states across contexts were 

fairly robust for both samples, associations between HRV and trait neuroticism and 

the occurrences and average duration of neural networks co-active with the amygdala 

and BNST produced anecdotal and inconsistent findings. There was tentative 

evidence to suggest that task-related and resting HRV predicted the average duration 

of visual attention network states co-active with amygdala and BNST in one sample, 

potentially reflecting a greater ability to engage with, and monitor, external visual 

information across contexts. Relatedly, higher resting HRV and occurrences of co-a 

salience network CAP at rest, and interactions between HRV and trait neuroticism in 

predicting occurrences of core DMN states during emotion processing, albeit weak 

and inconsistent findings, possibly indicate flexible regulation of attention processes, 

especially in individuals with higher HRV and low trait neuroticism. This study 

reinforces the importance of assessing heart-brain interactions across contexts, and 

more critically, highlights the need for replication in larger, representative samples to 

elucidate key vagal control circuitry that facilitates flexible and context-appropriate 

emotional responding. 
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Supplementary Material 
 
  

Figure S4. Histograms displaying the distributions for resting (left, purple) and emotion matching (right, 
green) HRV in Sample 1 (top row) and Sample 2 (bottom row). (ln)RMSSD, natural log transformed root 
mean square of successive differences. 

Figure S5. Histograms displaying the distributions for neuroticism scores for the resting (left) and emotion 
matching task (right) data in Sample 1 (top row) and Sample 2 (bottom row). NEO-FFI, NEO-Five Factory 
Inventory. 
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Chapter 4. 
 

 

 

Heart rate variability, but not trait rumination or valence bias, predicts valence 
related attentional shifts during an affective switching task 
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4.1 Abstract 
The ability to flexibly engage with, and disengage from, emotional information in our 

environment, termed ‘affective flexibility’, facilitates adaptive emotional responding 

and effective emotion regulation. Individual differences in trait affect have been shown 

to impact affective flexibility, which in turn has implications for mental health and overall 

wellbeing. Trait rumination, valence bias, and heart rate variability (HRV), a non-

invasive and objective index reflecting emotion regulatory ability, all tap into, and 

potentially reflect, dispositional levels of (in)flexible emotional responding. The present 

research sought to examine associations between trait-like affect and HRV with 

affective flexibility performance in both an online (N = 72; Study 1) and laboratory (N 

= 73; Study 2) context. Affective flexibility was assessed using an established task 

switching paradigm in which participants categorised emotional pictures according to 

either an affective (valence) or non-affective (number of humans) rule. Trait-like 

valence bias was operationalised as the relative dominance of positive versus 

negative ratings of emotionally ambiguous stimuli (surprise faces). In Study 2, a pulse 

signal was recorded during a rest period and throughout the affective flexibility and 

valence bias tasks to derive resting and task-based HRV metrics. Across studies, 

neither trait-like valence bias or brooding and reflective trait rumination significantly 

predicted affective flexibility. In Study 2, higher task-related HRV was tentatively 

associated with slower response times when shifting attention towards positive 

valence images on trials where the non-affective rule repeated, whereas greater 

resting HRV showed some indication of being linked to slower response times when 

shifting attention from positive towards negative valence images, specifically in the 

presence of an affective trial rule. This research reinforces the notion that inflexibility 

may not always be maladaptive and extends prior work by highlighting potential 

associations between rest and task-related HRV to specific attentional shifts pertaining 

to valence (emotion) as opposed to more cognitive aspects of affective flexibility. 

 

Keywords: Affective flexibility, heart rate variability, neurovisceral integration model, 

rumination, valence bias 
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4.2 Introduction 

The ability to flexibly engage and disengage with complex stimuli and events in 

an environment characterised by rapid and dynamic change is essential for adaptive 

self-regulation (Aldao et al., 2015). A limited set of cognitive control processes 

(executive function) facilitate adaptive responses in accordance with an individual’s 

goals and contextual demands. These processes include inhibition of prepotent 

responses, mental set shifting, and the active updating and monitoring of information 

in working memory (Miyake et al., 2000). Both mental set shifting and inhibition 

underlie cognitive flexibility, the ability to alter goals and shift both thoughts and 

behaviour in a contextually appropriate manner (Lezak, 2004). Research has typically 

assessed cognitive flexibility using experimental paradigms that involve switching 

between two different task sets or rules on the same type of sequentially presented 

stimuli (Monsell, 2003). The switch from one rule to another (versus repeating the 

same rule) requires increased cognitive resources due to inhibition of the previous rule 

and updating to the current rule, typically resulting in slower response times and an 

increased susceptibility to make errors on switch trials relative to trials in which the 

rule is repeated, recorded as a ‘switch cost’ (Monsell, 2003). While general cognitive 

flexibility has clinical relevance and implications for mental health and emotion 

regulation (Eysenck et al., 2007; Grant & Chamberlain, 2023), it is the flexible control 

of emotional information, that is the degree to which an individual can flexibly shift 

attention to and from, emotional material, a phenomenon termed ‘affective flexibility’, 

that has been posited to be more closely coupled to emotion regulation (Gross & 

Thompson, 2007; Malooly et al., 2013).  

A small body of research has examined associations between affective 

flexibility and various psychological variables related to emotion regulation and mental 

health, including rumination (Genet et al., 2013), depressive symptoms (Wen & Yoon, 

2019), worry and anxiety (Twivy et al., 2021), reappraisal ability following stress 

(Malooly et al., 2013), and resilience (Genet & Siemer, 2011; Grol & De Raedt, 2018). 

An early study by Genet and Siemer (2011) assessed affective flexibility with a 

paradigm whereby participants were instructed to categorise word stimuli in relation to 

an affective rule (i.e., positive or negative valence) or a non-affective, emotionally 

neutral rule (i.e., adjective or noun). Lower switch costs, reflected by faster response 

times and thus more efficient switching between the emotional and non-emotional rule 

instruction, was associated with greater trait resilience. The affective task switching 



  137 

paradigm was subsequently adapted and modified to incorporate emotional picture 

stimuli, with participants instructed to categorise emotional images of a positive or 

negative valence according to an affective rule (i.e., positive versus negative valence) 

or a non-affective rule (i.e., one or fewer versus two or more humans) (Genet et al., 

2013; Malooly et al., 2013). Using this task, Genet et al. (2013) reported that greater 

switch costs (i.e., lower flexibility) when shifting attention away from affective aspects 

of negative emotional material was linked to higher reported rumination in daily life, 

whereas greater switch costs (lower flexibility) when switching from affective aspects 

of positive emotional material predicted less reported rumination use. Similarly, more 

efficient switching (greater flexibility) from affective to non-affective aspects of positive 

emotional material, and slower switching (lower flexibility) from non-affective to 

affective aspects of negative emotional material was associated with greater use of 

maladaptive emotion regulation strategies, such as rumination and catastrophising 

(Grol & De Raedt, 2021). Furthermore, Twivy et al. (2021) reported that slower shifts 

of attention (lower affective flexibility) from non-affective towards affective aspects of 

positive emotional stimuli correlated with higher levels of trait anxiety, and faster 

attentional shifts (greater affective flexibility) from affective to non-affective aspects of 

negative emotional material was associated with increases in both trait anxiety and 

worry over a 7-week period. Importantly, of the studies directly comparing general 

cognitive flexibility with affective flexibility switch costs, either no correlations or 

correlations with a small effect size were observed (Genet et al., 2013; Genet & 

Siemer, 2011; Malooly et al., 2013), suggesting that affective flexibility explains unique 

variance (Twivy et al., 2021) and may reflect a distinct process above and beyond 

general cognitive flexibility (Grol & De Raedt, 2021). In addition, these findings 

demonstrate that higher or lower affective flexibility may not always be (mal)adaptive 

per se. For example, more efficient attentional shifts towards non-affective aspects of 

negative emotional material may reflect attentional avoidance of emotional aspects of 

negative emotional information (Twivy et al., 2021). Thus, context appears to play an 

important role when considering whether affective flexibility is (mal)adaptive (Genet et 

al., 2013; Godara et al., 2023). Relatedly, while the addition of valence adds a 

contextual and emotional component to the paradigm in comparison to pure cognitive 

flexibility measures, the focus of prior studies using this task has also mainly been 

based on switch costs pertaining to the rule (i.e., shifts in attention based on the 

relative focus of an affective versus non-affective rule instruction in the presence of 
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positive or negative emotional material). However, this task contains trials in which the 

valence shifts but the rule is held constant, alongside trials characterised by a shift in 

both the valence and the rule. The degree to which individual differences interact with 

attentional shifts pertaining to valence, regardless of the rule on this task, is less clear.  

Adaptive responses to dynamic events and stimuli in the environment rely on 

the flexible shift of attention to and from both positive and negative emotional 

information. For example, in certain situations, such as walking alone late at night, 

heightened attention to potentially dangerous or threatening information may be 

adaptive, such that it could promote the effective detection of potential threats to 

ensure one reaches their destination safely. However, the same level of heightened or 

sustained attention towards negative emotional information may become less adaptive 

or even maladaptive in safer contexts and if experienced for a prolonged period. 

Indeed, a static attentional bias to either negative or positive stimuli may prevent an 

individual from being able to flexibly respond to dynamic changes in the environment 

and adapt to different goals accordingly (Godara et al., 2023), resulting in a more rigid 

and inflexible profile of emotional responding (i.e., affective inflexibility). Psychological 

disorders such as depression and anxiety have been linked to a greater tendency to 

attend to negative emotional information and difficulties disengaging attention from 

negatively valenced stimuli (Bar-Haim et al., 2007; Mogg et al., 1995; Koster et al., 

2011). In a similar vein, an evolving body of research has examined how an individual’s 

response to emotionally ambiguous information, or ‘valence bias’, is linked to mental 

health and wellbeing (Neta et al., 2009; 2023; Neta & Brock, 2021; Park et al., 2016; 

Petro et al., 2021; Raio et al., 2021). A greater trait-like negativity bias towards 

emotionally ambiguous information has been associated with anxiety (Neta et al., 

2017; Park et al., 2016), depressive symptoms (Petro et al., 2021), negative affect 

(Neta & Brock, 2011) and stress reactivity (Raio et al., 2021).  

Relatedly, rumination, a rigid and maladaptive form of negative thinking, is also 

considered a transdiagnostic factor underlying both anxiety and depression (Hsu et 

al., 2015; McLaughlin & Nolen-Hoeksema, 2011). Rumination is defined as the 

experience of excessive thoughts that are negative, deliberate, and perseverative 

(Nolen-Hoeksema, 2000; Treynor et al., 2003). While prior research has examined the 

relationship between rumination and affective flexibility (Genet et al., 2013), rumination 

is considered a multifaceted form of perseverative cognition, comprised of at least 

three distinct dimensions: brooding, reflective, and depressive rumination (Treynor et 
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al., 2003). Whereas brooding rumination reflects the tendency to passively compare 

one’s current situation with unachieved standards and is viewed as a more 

maladaptive form of repetitive thinking, reflective rumination is the tendency to 

purposefully engage in cognitive problem solving and is regarded a more adaptive 

form of thinking that may help to alleviate depressive symptoms (Treynor et al., 2003). 

Brooding rumination has previously been associated with attention towards negative 

information (Duque et al., 2014; Joorman et al., 2006; Owens & Gibb, 2017) and may 

therefore be a stronger predictor of affective inflexibility in comparison to reflective 

rumination, which is considered a more adaptive form of rumination. The extent to 

which different facets of rumination may uniquely predict affective (in)flexibility is yet 

to be examined. 

Overall, it appears that a disposition to more rigid responding, such as 

ruminative thinking and/or a negativity bias towards emotionally ambiguous 

information, have implications for overall health and wellbeing. Importantly, flexible 

emotional responding can also be observed at the biological level. Considering the 

intricate connection between the heart and the brain, the Neurovisceral Integration 

Model (NIM; Smith et al., 2017; Thayer & Lane, 2000, 2009) proposes that shared 

neural regions functionally overlap to support autonomic, affective, and cognitive 

regulatory processes. Specifically, effective, top-down, inhibitory function of prefrontal 

areas (i.e., medial prefrontal cortex) over subcortical structures (i.e., amygdala) can 

be indexed by an objective, non-invasive metric known as heart rate variability (Thayer 

et al., 2012). HRV refers to the physiological phenomenon in which the time intervals 

between consecutive heartbeats vary. Given the involvement of prefrontal structures 

in supporting emotion regulation/flexibility and executive function, the NIM proposes 

that resting HRV serves as an index of prefrontal functioning and can thus be 

considered an indicator of adaptive self-regulation and cognitive control (Thayer & 

Lane, 2000, 2009; Thayer et al., 2009). Prior empirical research and meta-analyses 

support associations between HRV and top-down self-regulation, emotion regulation, 

executive function, and affective flexibility (Appelhans & Luecken, 2006; Grol & De 

Raedt, 2020; Holzman & Bridgett, 2017; Mather & Thayer, 2018; Thayer et al., 2009), 

with higher resting HRV facilitating effective adaptation to environmental demands. 

Prior studies have shown that individuals with greater resting HRV tend to have 

higher wellbeing and exhibit more flexible emotional responses, including more 

effective top-down and bottom-up modulation of responses in relation to emotional 
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stimuli (Park & Thayer, 2014) and greater emotion regulation ability (Thayer & Lane, 

2000; Appelhans & Luecken, 2006). On the other hand, individuals with lower resting 

HRV self-report higher emotion regulation difficulties (Visted et al., 2017; Williams et 

al., 2015) and have also been found to demonstrate increased hypervigilance to, 

alongside difficulties disengaging from, negative threat stimuli (Park et al., 2013; Park 

& Thayer, 2014). Other research focusing on affective flexibility found lower resting 

HRV to be correlated with more efficient shifting of attention to non-affective aspects 

of negative emotional material, reflecting increased avoidance of negative emotional 

information (Grol & De Raedt, 2020). Furthermore, evidence from a few studies 

suggests a potential interconnection between HRV and valence bias (Madison et al., 

2021; Osnes et al., 2023). Higher resting and task-based HRV have previously been 

found to predict a greater positivity bias, whereby women with higher HRV interpreted 

both neutral and ambiguous vocal stimuli as positive (Madison et al., 2021). More 

recently, a study employing the Reading the Mind in the Eyes test reported that 

individuals with greater resting HRV demonstrated an increased preference for 

selecting positive items on the test, in turn reflecting a higher tendency of interpreting 

negative visual stimuli as positive, regardless of the correct response (Osnes et al., 

2023). However, while some studies have examined both resting HRV and phasic 

HRV changes (Butler et al., 2006; Denson et al., 2011; Park et al., 2014), fewer studies 

have examined both rest and task-related measures of HRV in relation to adaptive 

emotional responding (Guendelman et al., 2024; Tupitsa et al., 2023). Indeed, phasic 

HRV increases have been linked to higher self-regulatory effort and successful 

emotion regulation (Butler et al., 2006; Denson et al., 2011; Park et al., 2014). Since 

HRV is considered a metric of adaptive emotional responding, it therefore seems 

imperative to not only assess HRV during periods of rest, but to critically examine HRV 

during contexts that actively require flexible emotional responding.   

Taken together, rumination, valence bias, and HRV all tap into, and have 

implications for (in)flexible responding and psychopathology. While various measures 

of emotional disposition and flexibility exist, we opted to focus on the outlined 

measures for several reasons. Firstly, prior research highlights and provides 

supporting evidence for a close link between rumination and flexible emotional 

responding (Genet et al., 2013; Grol & De Raedt, 2021) and trait rumination has been 

reported to demonstrate strong associations with psychopathology relative to other 

cognitive styles/emotion regulation strategies (Aldao et al., 2010). Nonetheless, the 
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degree to which different facets of rumination may differentially predict the ability to 

flexibly engage with and disengage from emotional information is less known. 

Moreover,  valence bias, operationalised as interpretations of emotionally ambiguous 

(dual-valence) stimuli, is a fairly stable individual difference measure exhibiting high 

test-retest reliability (Neta et al., 2009) which has been linked to mental health (Harp 

et al., 2024) and has implications for adaptive emotional responding (Neta et al., 

2023). In comparison to the other two measures, HRV is a biological, non-invasive, 

and more objective measure of flexibility that has also previously been linked to 

affective flexibility (Grol & De Raedt, 2020) and is considered a biomarker of mental 

illness (Beauchaine & Thayer, 2015). Critically, adopting all three measures in the 

present research permitted examination of psychological (rumination, valence bias) 

and physiological (HRV) indexes of flexible emotional responding. The overall aim of 

the present studies was to examine whether the aforementioned individual difference 

factors could predict affective flexibility performance on an established affective 

switching task. Study 1 was conducted using an online sample with the aim to assess 

the degree to which valence bias and self-reported trait rumination could predict 

affective flexibility switch costs in relation to changes in the trial valence and rule. 

Study 2 sought to further examine the relationship between these individual 

differences and affective flexibility, with an additional and primary focus on the extent 

to which resting and task-related HRV measures could predict affective flexibility 

performance in a laboratory setting. 

 

4.3 Study 1 
4.3.1 Aims and Hypotheses  

The primary aim of Study 1 was to examine whether valence bias, that is trait-

like biases in the ratings of emotionally ambiguous information (surprise facial 

expressions), could predict affective flexibility performance (Genet et al., 2013; 

Malooly et al., 2013). Since prior research has mainly focused on attentional shifts 

pertaining to rule type when the valence of the image is held constant, the current 

study sought to focus more closely on the ‘affective’ aspect of the task, specifically 

when the valence of the emotional images switch (i.e., when the image valence shifted 

from positive to negative, regardless of a shift or repetition in the rule type). Difficulties 

disengaging attention from negatively valenced stimuli is a key characteristic of 

anxiety and depression (Bar-Haim et al., 2007; Mogg et al., 1995; Koster et al., 2011), 



  142 

and in turn, an increased trait-like negativity bias has been linked to both anxiety and 

depressive symptoms (Park et al., 2016; Petro et al., 2021). Therefore, it was predicted 

that a higher negativity bias would be positively associated with greater switch costs 

(lower flexibility) when shifting attention away from images with a negative valence 

towards those with a positive valence, particularly in an affective rule context. With 

relation to attentional shifts based on rule type, a secondary prediction was that greater 

negativity bias would be correlated with greater switch costs (lower flexibility) when 

shifting attention from affective towards non-affective aspects of negative information. 

Moreover, the current study aimed to assess and conceptually replicate associations 

between rumination and affective flexibility. Previous research has reported 

associations between affective flexibility and rumination levels in daily life (Genet et 

al., 2013). However, it is unclear whether certain facets of trait rumination, such as 

brooding and reflective rumination, differentially predict affective flexibility, especially 

when the valence of information switches. Correspondingly, it was hypothesised that 

individuals with higher trait rumination, particularly higher brooding rumination, would 

exhibit greater switch costs when the valence of the image switched from negative to 

positive, especially in an affective rule context. In line with prior research (Genet et al., 

2013), it was anticipated that individuals with higher trait rumination, particularly 

brooding rumination, would exhibit greater switch costs (lower flexibility) when shifting 

attention from affective towards non-affective aspects of negative information, and 

lower switch costs (greater flexibility) when shifting attention from affective towards 

non-affective aspects of positive information.  

 

4.3.2 Method 
4.3.2.1 Participants 

A total of 120 participants8 initially accessed the online experiment and were 

recruited using convenience sampling through three online recruitment platforms: 

Prolific (https://prolific.co), the SONA Systems recruitment platform (https://sona-

systems.com) at the University of Reading, or via various social media platforms (i.e., 

 
8 An a-priori power analysis for a hierarchical multiple linear regression based on R2 increase with 3 
predictors (negativity bias and brooding and reflective facets of trait rumination, with 4 predictors in 
total) assuming a medium effect size (f2 = 0.15) and power of 0.80, indicated a necessary sample size 
of 77 participants. Accounting for 10% attrition, we aimed to recruit 85 participants. The effect size was 
determined based on a similar design and power analyses carried out by Grol and De Raedt (2018) 
and Twivy et al. (2021). Power analyses were calculated using G*Power (v3.1). 

https://prolific.co/
https://sona-systems.com/
https://sona-systems.com/
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Twitter/X, Facebook, and Instagram). Of these participants, 85 completed the online 

experiment. Participants were excluded for falling below 60% accuracy on clear 

valence negative trials (n = 4) and for missing or losing more than 50% of trials on the 

affective flexibility task (n = 9). The final sample contained 72 participants (M age = 

29.51 years, SD = 13.87, range = 18-75 years; gender identity: 47 female, 25 male; 

ethnicity: 41 White, 15 Latinx, 10 Asian, 3 Black/African/Caribbean, 1 Middle Eastern, 

1 Multi-ethnic, 1 Unknown; Nationality: 42 European, 12 North American, 7 Asian, 4 

African, 4 Australasian, 3 South American; Handedness: 65 right-handed, 7 left-

handed). Any individual over the age of 18 years was eligible to participate in the online 

study. Participants recruited from Prolific received £7.50 for their participation and 

those recruited from SONA received course credit. Other participants were volunteers 

recruited by word of mouth with no form of compensation. All participants provided 

virtual informed consent prior to accessing the online experiment. Information 

concerning past or present experience of mental health conditions (anxiety and 

depression) was not obtained, or controlled for, in the current sample. This study was 

given a favourable ethical opinion of conduct by the University of Reading’s Research 

Ethics Committee (reference: 2021-028-CvR). 

 

4.3.2.2 Materials and Procedure 
4.3.2.2.1 Trait Rumination 

Trait rumination was assessed using the Ruminative Response Scale Short-

Form (RRS; Treynor et al., 2003), a self-report scale containing 10 items assessing 

two facets of rumination: brooding and reflective, alongside total rumination. Each item 

is rated on a 4-point Likert scale from 1 (“Almost never”) to 4 (“Almost always”). Scores 

range from 10 to 40, with higher scores indicating higher self-reported rumination. 

Internal consistency for the whole scale (Cronbach’s a = 0.80) and brooding (a = 0.74) 

and reflective (a = 0.70) subscales was acceptable or good. 

 

4.3.2.2.2 Valence Bias Task 
The valence bias task (Harp et al., 2021; Neta et al., 2009; Neta et al., 2013; 

Neta et al., 2023) involved participants viewing images of human faces that either 

signalled an expression of a clear positive (happy), clear negative (angry), or an 

ambiguous (surprise) valence and rating each expression as either positive or 
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negative. A total of 48 faces (24 ambiguous and 24 clear valence) were presented 

across main trials, with 14 discrete identities (7 females, ages 21-30 years) from the 

NimStim database (Tottenham et al., 2009) and 20 discrete identities (10 females, 20-

30 years) from the Karolinska Directed Emotional Faces database (KDEF; Goeleven 

et al., 2008). The practice block contained 12 faces (4 faces per discrete (angry, happy, 

ambiguous) valence category) with a further 6 identities from the NimStim (3 females) 

and 6 identities from the KDEF (3 females) that were different to those presented in 

the main trials (see Table S8 for further information about the stimuli in the 

Supplementary Material).  

On a given trial, a black central fixation cross on a white background was 

presented for 1,500 ms, followed by an image of a face for 500 ms. The image of the 

face remained on the screen until either a response had been recorded or a response 

limit of 2000 ms elapsed. Participants recorded their response by pressing either the 

‘A’ or ‘L’ key on their keyboard to indicate whether the image was positive or negative. 

The task instructions encouraged participants to respond as quickly as possible and 

to go with their gut feeling. 

Participants engaged in a practice block that comprised 12 trials prior to 

proceeding to the main task. There were 48 main trials in total, split across two task 

blocks with each block containing 24 trials. Per block, 12 ambiguous (surprise) and 12 

clear valence (six positive (happy) and six negative (angry) faces) images were 

presented. Participants were randomly assigned to a pseudorandom 

(counterbalanced) presentation order across the two blocks of faces and the cue-

response key mapping was counterbalanced across participants (e.g., A = negative, L  

= positive, or vice versa). Valence bias was calculated as the percentage of trials in 

which a negative response was recorded across all ambiguous trials within each 

subject. For example, if a participant provided negative ratings for all images 

displaying a surprise facial expression, then their negative valence bias score would 

be 100%. 

 

4.3.2.2.3 Affective Flexibility Task 
Affective flexibility was assessed using a previously established affective task 

switching paradigm (Genet et al., 2013; Malooly et al., 2013) which involved sorting 

emotional images according to either an ‘affective’ (i.e., indicating whether the image 

was positive or negative) or a ‘non-affective’ (i.e., indicating whether there were  ≤ 1 
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or ≥ 2 people depicted in the image) category rule (see Figure 10). Importantly, across 

some of the trials the emotional valence of the image repeated (i.e., remained positive 

or negative across consecutive trials) or switched (i.e., changed from a negative to a 

positive valence image, or vice versa). The category rule also either repeated or 

switched. Across the main trials, a total of 160 emotional images from the International 

Affective Picture System (IAPS; Lang et al., 2008) were presented, with 40 images 

selected per main category: negative valence with one or fewer people, positive 

valence with one or fewer people, negative valence with two or more people, and 

positive valence with two or more people. Images were balanced in terms of normative 

ratings for arousal, such that there was no significant difference in self-reported 

arousal for negative (M = 5.20, SD = 0.78) compared to positive (M = 5.20, SD = 0.68) 

IAPS images (t(158) = 0, p = .999)). An additional 20 IAPS images, representative of 

those shown in the experimental blocks, were selected and presented during the 

practice blocks (see Supplementary Material for IAPS codes).  

On a given trial, a blank, black screen (250 ms) followed by the appearance of 

a white central fixation cross (250 ms) always preceded the presentation of the 

emotional image. The emotional picture appeared in the centre of the screen with 

visual cues situated on the left- and right-hand side of the image which represented 

the relevant task rule. Specifically, the symbols ‘+’ and ‘-’ represented the affective 

categorisation rule whereas ‘≤ 1’ and ‘≥ 2’ represented the non-affective categorisation 

rule. Both the emotional image and respective cues remained on the screen until either 

a response was made or if the maximum response limit of 5000 ms elapsed. The 

background colour of the screen (grey or white frame) further reflected the 

categorisation rule (i.e., affective rule = white frame, non-affective rule = grey frame, 

or vice versa). Participants recorded their response by pressing either the ‘A’ or ‘L’ key 

with their index finger, in which the ‘A’ key always represented the left-hand cue and 

the ‘L’ key the right-hand cue. Participants were instructed to respond quickly but to 

also be as accurate as possible. 

Participants engaged in four guided practice blocks. The first two practice 

blocks comprised four separate affective and non-affective sort rule trials respectively. 

The remaining practice blocks consisted of six mixed affective and non-affective sort 

rule practice trials that were pseudorandomised. Following the practice trials, 

participants engaged in two blocks of main trials that consisted of 160 trials each (320 

trials in total) with a self-paced break offered in between blocks. Across trials, there 



  146 

were 16 different trial conditions in total: trials in which the emotional valence of the 

image and task rule both repeated (e.g., a negative affective trial preceded by a 

negative affective trial), trials in which the valence of the image changed but the task 

rule repeated (e.g., a negative affective trial preceded by a positive affective trial), trials 

in which the valence of the image remained the same but the task rule switched (e.g., 

a negative affective trial preceded by a negative non-affective trial), and trials where 

both the valence of the image and task rule switched (e.g., a negative affective trial 

preceded by a positive non-affective trial). The total number of trials for each of the 16 

trial conditions ranged between 13-30 trials. The main trials were presented in a 

pseudorandom order (Malooly et al., 2013). Participants were assigned to one of eight 

different versions of the task, in which the different combination of cue to key mappings 

and rule (affective/non-affective) to background frame colour (grey/white) mappings 

were counterbalanced. Within a specific version of the task, the response key mapping 

and task rule to background frame colour mapping were held constant throughout the 

duration of the task. 

Affective flexibility was assessed using switch costs, calculated as the 

difference in mean reaction time (RT) between repetition and switch trials. Separate 

main switch costs were calculated based on repetitions and switches in emotional 

valence and rule type respectively. For emotional valence, four main RT-based switch 

costs were calculated in relation to a shift in the valence of the image: positive to 

negative with an affective category rule, positive to negative with a non-affective 

category rule, negative to positive with an affective category rule, and negative to 

positive with a non-affective category rule. For example, a positive switch cost in an 

affective rule context was calculated by subtracting the mean RT on trials where a 

positive image repeated in the presence of an affective rule from the mean RT where 

the emotional valence of the image shifted from negative to positive in the presence 

of an affective rule. Furthermore, in line with prior research (Malooly et al., 2013), four 

RT-based switch costs were calculated in relation to a switch in task rule: affective 

positive, affective negative, non-affective positive, and non-affective negative switch 

costs. For example, negative non-affective switch costs were calculated by subtracting 

the mean RT on trials where the non-affective rule repeated in the presence of 

negative emotional images from the mean RT on trials where the task rule switched 

from affective to non-affective when the image was negative. Generally, greater switch 
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costs indicate less efficient/slower shifting of attention and thus reflect lower overall 

flexibility. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
4.3.2.2.4 Attentional (‘Bot’) Check 

Given the prevalence of ‘bots’ in online research, we incorporated a simple 

visual search task in the experimental procedure to verify participant responses and 

to serve as an additional attentional and validity check. The task was directly cloned 

from Gorilla’s openly available ‘bot check’ tasks (www.gorilla.sc; Anwyl-Irvine et al., 

2020). Participants were instructed to find and select an image of a cat amongst 

images of dogs. The task involved two trials, and on each trial, four images were 

presented at a random position on the screen. Images on both trials were the same, 

with one image of a cat (target image) three images of dogs (non-target images). 

A) B) 

Figure 10. Affective Flexibility Task. A) A positive valence switch trial (affective context). The first trial 
contains a negative valence image which then switches to a positive valence image in the subsequent trial 
(‘SWITCH’ from negative to positive in an affective rule context). A positive valence image is then 
presented in the next trial (‘REPETITION’ of a positive valence image in an affective rule context). B) A 
negative valence switch trial (non-affective context). A positive valence picture is displayed with the non-
affective rule, which switches to a negative valence image with the non-affective rule in the subsequent 
trial (‘SWITCH’ from positive towards negative image in a non-affective rule context). The following trial 
displays a negative valence image with a non-affective rule (‘REPETITION’ of negative valence image in 
a non-affective rule context). Images displayed in this Figure are from the International Affective Picture 
System (IAPS).  

http://www.gorilla.sc/


  148 

Accuracy was assessed. The majority of participants (97.22) achieved 100% accuracy 

and passed the check (i.e., correct responses registered on both trials).9 

 

4.3.2.2.5 Procedure 

Participants responded to online study advertisements via Prolific, Sona, and 

various social media platforms (Twitter/X, Instagram, and Facebook). The online 

experiment was accessed through a secure link that directed participants to the 

experiment page built with Gorilla Experiment Builder (Anwyl-Irvine et al., 2020). The 

study could only be accessed using a desktop computer or laptop (phone and tablet 

devices were restricted). Consenting participants first responded to several 

demographic questions (including age, gender identity, ethnicity, nationality, education 

level, and handedness) and completed questionnaires that assessed general mood 

and stress exposure over the last two weeks (self-report measures not described 

here). Following this, participants engaged in the valence bias task and responded to 

further questionnaires that measured resilience and use of different emotion regulation 

strategies. Subsequently, participants performed a quick visual attention (visual 

search) task, completed the RRS questionnaire, and engaged in the affective flexibility 

task. At the end of the study, participants engaged in a five-minute recovery period to 

alleviate potential negative mood or feelings of distress that could have been evoked 

by the affective flexibility task. Participants were presented with a variety of positively 

valenced soothing images from the Project Soothe database (Wilson et al., 2018; 

www.projectsoothe.com) and rated their mood prior to, and after, exposure to the 

images via the Positive and Negative Affect Schedule-NOW (PANAS-NOW; data are 

not reported here). Upon completion of the study, participants were fully debriefed on 

the purpose of the research study. Overall, the experiment took one hour to complete. 

 

 

 

 

 
9 One participant provided incorrect responses on both trials but indicated in the debrief feedback that 
they encountered technical difficulties during this task whereby the images failed to load. This was 
reflected in their responses which indicated they had clicked on a blank image to proceed. Another 
participant encountered similar loading delays, but only on one trial. Given that both participants 
encountered technical difficulties as opposed to selecting the wrong image, these participants were 
retained for further analyses. 

http://www.projectsoothe.com/


  149 

4.3.2.3 Data Processing and Preliminary Data Analysis 
4.3.2.3.1 Valence Bias 

Only the first response on a given trial was retained for analysis. Missing/timed-

out trials (n = 117) and trials with a RT less than 250 ms (n = 8) were removed prior to 

analysis. Trials with a RT greater than three standard deviations from the mean RT 

within each subject and within each trial category (i.e., positive clear valence, negative 

clear valence, and ambiguous valence) were also calculated and removed (n = 19 

trials across the sample). Following initial task processing, accuracy of responses to 

the clearly valenced stimuli (i.e., trials with angry and happy face stimuli) was 

assessed. We opted to exclude participants with an accuracy falling below 50% on 

either positive or negative clear valence trials (n = 4 participants falling below 50% 

accuracy on positive clear valence trials). All participants in the final sample (N = 72) 

had an overall clear valence accuracy over 60% which follows accuracy cut-offs 

adopted in prior studies (Harp et al., 2021; Neta et al., 2013; Petro et al., 2018).  

 

4.3.2.3.2 Affective Flexibility 
Practice trials (n = 20) and the first trial from each block (n = 2) were removed 

prior to processing and analysis (total n = 318 main trials for each participant). 

Subsequently, trials that were missing/timed out (n = 212 across the sample), had an 

average image load lag exceeding 2000 ms (n = 87), and with RTs below 250 ms (n = 

168) were removed. Only trials that were preceded by a correct trial were retained for 

main analyses as an incorrect response on a previous trial is likely to cause post-error 

slowing and, from the participant’s point of view, may lead to ambiguity regarding 

whether the current trial is a repetition or switch (Grol & De Raedt, 2020). Nine 

participants were excluded for losing over 50% of their trials on the affective flexibility 

task. The average percentage of trials lost in the final sample (N = 72) was 13.28% 

(SD = 8.60, range = 0.63% - 48.74%), with an average of 273.82 (SD = 31.68, range 

= 140-316) main trials retained for analyses. Furthermore, in line with previous studies 

(Genet et al., 2013; Grol & De Raedt, 2020; Malooly et al., 2013; Twivy et al., 2021), 

RTs that were 2.5 standard deviations above or below the mean RT within each 

participant and the specific trial condition were identified and replaced with the upper 

and lower cutoff values respectively (M trials = 6.35, SD = 2.39, range = 2-12). 

Non-parametric Wilcoxon signed-rank tests were conducted due to skewed 

variables across all global switch and repetition trials for valence and rule category. 
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Accuracy for trials where valence repeated (M = 93.93, SD = 5.10) was slightly higher 

than trials where valence switched from positive to negative or vice versa (M = 93.38, 

SD = 4.64), but this difference was non-significant, Z = -1.89, p = .059. Furthermore, 

accuracy was significantly higher on trials where the rule repeated (M = 94.42, SD = 

3.81) compared to when the rule switched (M = 92.82, SD = 5.99), Z = -3.46, p < .001. 

With relation to response times, there was a significant difference in RT for global 

repetition and switches in valence, such that RTs on switch trials were significantly 

longer in duration (M = 1527.67, SD = 219.22) compared to repetition trials (M = 

1489.46, SD = 311.76), Z = -4.73, p < .001. However, unexpectedly, for global 

repetitions and switches based on the rule category, RTs were of a longer duration for 

repetition (M = 1641.76, SD = 346.43) versus switch (M = 1580.59, SD = 332.46) trials, 

Z = -4.48, p <.001. Therefore, we cannot rule out the possibility of a speed-accuracy 

trade-off for rule category, in which participants were faster to respond to trials where 

the rule switched from affective to non-affective (or vice versa) alongside lower 

accuracy for these trials. 

 

4.3.3 Results 
Multiple hierarchical regression models were used to examine whether trait-like 

negativity bias and self-reported brooding and reflective facets of trait rumination 

predicted key affective flexibility switch costs based on shifts in valence and in rule 

instruction. The following predictors were entered into the model in a stepwise order: 

age (years; step 1), negativity bias (step 2), and brooding and reflective rumination 

subscale scores (step 3). All predictors were mean centered. Standardised beta 

coefficients are reported in the Results. Bonferroni corrections were performed to 

account for multiple tests (p = 0.00625 (0.05/8)). 

 

4.3.3.1 Descriptive Statistics 
Table 5 displays the descriptives for negativity bias, self-reported brooding and 

reflective rumination, and key valence and rule switch costs of interest from the 

affective flexibility task. 

One-way ANOVAs and, in the case of violence of homogeneity (based on 

Levene’s median test), Welch’s ANOVA tests were conducted to assess whether there 

were any systematic differences for key variables based on recruitment platform 

(Social Media N = 29, Sona N = 13, Prolific N = 30). No significant differences were 
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observed for negative valence bias, brooding and reflective rumination subscales, or 

for the key affective flexibility switch costs based on recruitment method. Age was the 

only variable to demonstrate a significant difference based on recruitment platform 

FWelch(2, 25.78) = 8.92, p = .001). Games-Howell post-hoc tests were performed to 

account for unequal variances, which revealed the average age of participants 

recruited via social media (M = 38, SD = 17.17) to be significantly higher in comparison 

to both Sona (M = 23.31, SD = 10.35, p = .004) and Prolific (M = 24, SD = 4.63, p < 

.001). Thus, participants recruited from social media were slightly older on average in 

comparison to the other recruitment platforms. However, since age was not a variable 

of interest in the present study and included in the linear models as a relevant control 

variable, and no other systematic differences were detected as a function of 

recruitment method across the other key variables, recruitment platform was not 

considered in further analyses. 
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Table 5. 
Descriptive Statistics for Key Sample Characteristics (Study 1). Data is provided in means and standard 
deviations (in parenthesis).  
 Data (N = 72) 
Negativity Bias (%) 72.54 (18.82) 

Brooding Ruminationa 12.32 (3.36) 

Reflective Ruminationa 12.32 (3.21) 

Total Ruminationb 24.64 (5.75) 

Accuracy Global Valence Repeat (%) 93.93 (5.10) 

Accuracy Global Valence Switch (%) 93.38 (4.64) 

Accuracy Global Rule Switch (%) 94.42 (3.81) 

Accuracy Global Rule Repeat (%) 92.82 (5.99) 
RT Global Valence Repeat (ms) 1489.46 (311.76) 

RT Global Valence Switch (ms) 1527.67 (319.22) 

RT Global Rule Repeat (ms) 1641.76 (346.43) 

RT Global Rule Switch (ms) 1580.59 (332.46) 

Positive Valence Switch Cost (Non-Affective Context; ms) 142.47 (162.45) 

Positive Valence Switch Cost (Affective Context; ms) 45.87 (165.65) 

Negative Valence Switch Cost (Non-Affective Context; ms) 5.05 (170.15) 
Negative Valence Switch Cost (Affective Context; ms) -80.57 (199.29) 

Non-Affective Switch Cost (Negative Valence; ms) 73.02 (204.62) 

Affective Switch Cost (Negative Valence; ms) 159.32 (226.27) 

Non-Affective Switch Cost (Positive Valence; ms) 164.58 (188.82) 

Affective Switch Cost (Positive Valence; ms) 139.23 (202.18) 
a Score range for RRS brooding and reflective rumination subscales = 5-20 ; b Score range for RRS total rumination 

scale = 10-40 
 

4.3.3.2 Affective Flexibility Switch Costs: Valence 
In general, the average RT on trials where the valence of the image switched 

was slightly slower in comparison to trials where the valence of the image repeated, 

apart from conditions contributing to the negative valence affective switch cost, in 

which the average RT for when negative images repeated was slower (M = 1390.88, 

SD = 362.05) in comparison to trials in which the image switched from a positive to a 

negative valence (M = 1310.31, SD = 314.81) when the affective rule repeated, (t(71) 

= -3.43, p = .001, survived Bonferroni-correction). The only other significant valence 

cost surviving correction for multiple comparisons was the positive valence non-

affective switch cost. Pairwise comparisons between main switch and repeat trial 

conditions used for the calculation of key valence switch costs with associated 
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uncorrected p-values are presented in Table S6 in the Supplementary Material. See 

Figures 11a-d for mean RTs per repeat and switch condition used to calculate switch 

costs based on valence. 

 

4.3.3.3 Affective Flexibility Switch Costs: Rule 
The average RT on trials where the trial rule switched was consistently slower 

than when the trial rule repeated for all of the main rule switch costs of interest. The 

only switch cost that did not survive correction for multiple comparisons was the non-

affective rule negative switch cost (t(71) = 3.03, p = .003). Pairwise comparisons 

between main switch and repeat trial conditions used for the calculation of key rule 

switch costs with associated uncorrected p-values are presented in Table S6 in the 

Supplementary Material. See Figures 11e-h for mean RTs per repeat and switch 

condition used to calculate switch costs based on valence. 

 

4.3.3.4 Affective Flexibility Valence Switch Cost Regression Analyses 
Table 6 displays the hierarchical regression results for age, negativity bias, and 

rumination on the various affective flexibility switch costs based on valence. Neither 

negativity bias or self-reported rumination, were found to significantly predict affective 

flexibility based on the key switch costs of interest. Age (control variable) was found to 

significantly predict negative valence switch costs in an affective context, such that 

older participants appeared to demonstrate less efficient shifts from positive to 

negative emotional information (when the categorisation rule was affective) in 

comparison to those of a younger age (β = -0.26, t = -2.22, p = .030). However, this 

finding did not survive correction for multiple comparisons. Furthermore, adding 

negativity bias did not result in a significant change in R2 = 0.01, F(2, 69) = 2.63, p = 

.079, nor did inclusion of the two rumination subscales in a subsequent step, R2 

change = 0.01, F(4, 67) = 1.54, p = .202.  
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Valence Switch Costs 

Rule Switch Costs 
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Figure 11. Mean Reaction Times for Key Valence and Rule Repeat Versus Switch Conditions (Study 1). 
A) Mean RT for trials where there was a repetition of a positive valence image on consecutive trials (repeat) 
and trials where there was a switch from a negative valence to a positive valence picture (switch) when 
the trial rule was non-affective. B) Mean RT for trials where there was a repetition of a positive valence 
image on consecutive trials (repeat) and trials where there was a switch from a negative valence to a 
positive valence picture (switch) when the trial rule was affective. C) Mean RT for trials where there was a 
repetition of a negative valence image on consecutive trials (repeat) and trials where there was a switch 
from a positive valence to a negative valence picture (switch) when the trial rule was non-affective. D) 
Mean RT for trials where there was a repetition of a negative valence image on consecutive trials (repeat) 
and trials where there was a switch from a positive valence to a negative valence image (switch) when the 
trial rule was affective. E) Mean RT for trials where there was a repetition of a non-affective rule (repeat) 
and trials where there was a switch from an affective rule to a non-affective rule (switch) with images of a 
negative valence. F) Mean RT for trials where there was a repetition of an affective rule (repeat) and trials 
where there was a switch from a non-affective to an affective rule (switch) with images of a negative 
valence. G) Mean RT for trials where there was a repetition of a non-affective rule (repeat) and trials where 
there was a switch from an affective rule to a non-affective rule (switch) with images of a positive valence. 
H) Mean RT for trials where there was a repetition of an affective rule (repeat) and trials where there was 
a switch from a non-affective to an affective rule (switch) with images of a positive valence. Error bars 
reflect ± 1 standard error around the mean. 
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Table 6.  
Hierarchical Regression Analyses for Age, Negativity Bias, and Trait Rumination on Affective Flexibility Valence 
Switch Costs (Study 1) 
Model Predictor b 95% CI β t p R2 R2 

Change 
F p 

Positive Valence Switch Cost (Non-Affective Context) 
Step 1 Age 0.05 -2.74, 2.84 0 0.04 .970 0 0 0.01 .970 
Step 2 Age 0 -2.80, 2.80 0 0 1 0.01 0.01 0.28 .756 
 Negativity Bias -0.78 -2.80, 1.29 -0.09 -0.75 .457     
Step 3 Age -0.30 -3.31, 2.70 -0.03 -0.20 .841 0.04 0.04 0.75 .563 
 Negativity Bias -0.49 -2.59, 1.61 -0.06 -0.46 .645     
 Brooding Rumination 1.33 -13.09, 15.75 0.03 0.18 .854     
 Reflective Rumination -10.34 -24.84, 4.17 -0.20 -1.42 .160     
Positive Valence Switch Cost (Affective Context) 
Step 1 Age -0.08 -2.93, 2.77 -0.01 -0.05 .956 0 0 0 .956 
Step 2 Age 0.01 -2.83, 2.85 0 0.01 .993 0.02 0.02 0.82 .443 
 Negativity Bias 1.34 -0.75, 3.44 0.15 1.28 .204     
Step 3 Age -0.69 -3.69, 2.32 -0.06 -0.46 .650 0.08 0.06 1.48 .218 
 Negativity Bias 1.66 -0.44, 3.76 0.19 1.58 .119     
 Brooding Rumination -2.72 -17.12, 11.68 -0.06 -0.38 .708     
 Reflective Rumination -11.20 -25.69, 3.29 -0.22 -1.54 .128     
Negative Valence Switch Cost (Non-Affective Context) 
Step 1 Age -0.49 -3.41, 2.43 -0.04 -0.33 .740 0 0 0.11 .740 
Step 2 Age -0.51 -3.46, 2.43 -0.04 -0.35 .729 0 0 0.12 .888 
 Negativity Bias -0.39 -2.56, 1.78 -0.04 -0.36 .721     
Step 3 Age -0.45 -3.66, 2.77 -0.04 -0.28 .783 0 0 0.07 .992 
 Negativity Bias -0.36 -2.61, 1.88 -0.04 -0.32 .748     
 Brooding Rumination 1.24 -14.16, 16.64 0.03 0.16 .873     
 Reflective Rumination -1.02 -16.52, 14.48 -0.02 -0.13 .896     
Negative Valence Switch Cost (Affective Context) 
Step 1 Age -3.68 -6.99, -0.37 -0.26 -2.22 .030 0.67 0.07 4.92 .030 
Step 2 Age -3.63 -6.96, -0.30 -0.25 -2.18 .033 0.07 0.01 2.63 .079 
 Negativity Bias 0.76 -1.70, 3.21 0.07 0.62 .541     
Step 3 Age -3.36 -6.97, 0.25 -0.23 -1.86 .068 0.08 0.01 1.54 .202 
 Negativity Bias 0.97 -1.55, 3.49 0.09 0.77 .444     
 Brooding Rumination 6.73 -10.57, 24.03 0.11 0.78 .440     
 Reflective Rumination -7.96 -25.37, 9.45 -0.13 -0.91 .365     

 
 

4.3.3.5 Affective Flexibility Rule Switch Cost Regression Analyses 

Table 7 shows the hierarchical regression findings for age, negativity bias, and 

rumination on the key affective flexibility switch costs based on rule type. None of the 

overall models were significant, nor did the negativity bias or the two self-reported 

facets of rumination significantly predict any of the affective flexibility switch costs of 

interest. 
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Table 7. 
Hierarchical Regression Analyses for Age, Negativity Bias, and Trait Rumination on Affective Flexibility Rule Switch 
Costs (Study 1) 

Model Predictor b 95% CI β t p R2 R2 
Change 

F p 

Non-Affective Switch Cost (Negative Valence) 
Step 1 Age -1.43 -4.93, 2.07 -0.10 -0.81 .418 0.10 0.01 0.66 .418 
Step 2 Age -1.30 -4.78, 2.18 -0.09 -0.75 .458 0.20 0.03 1.39 .255 
 Negativity Bias 1.87 -0.70, 4.43 0.17 1.45 .150     
Step 3 Age -1.53 -5.30, 2.25 -0.10 -0.81 .422 0.22 0.01 0.87 .487 
 Negativity Bias 1.67 -0.97, 4.30 0.15 1.26 .212     
 Brooding Rumination -5.95 -24.05, 12.14 -0.10 -0.66 .514     
 Reflective Rumination 7.42 -10.79, 25.63 0.12 0.81 .419     
Affective Switch Cost (Negative Valence) 
Step 1 Age -1.22 -5.10, 2.66 -0.08 -0.63 .533 0.08 0.01 0.39 .533 
Step 2 Age -1.22 -5.13, 2.70 -0.07 -0.62 .538 0.08 0 0.20 .824 
 Negativity Bias 0.06 -2.82, 2.95 0.01 0.04 .966     
Step 3 Age -0.10 -4.29, 4.09 -0.01 -0.05 .962 0.21 0.04 0.76 .555 
 Negativity Bias 0.28 -2.65, 3.20 0.02 0.19 .850     
 Brooding Rumination 16.36 -3.71, 36.43 0.24 1.63 .108     
 Reflective Rumination -8.27 -28.46, 11.94 -0.12 -0.82 .417     
Non-Affective Switch Cost (Positive Valence) 
Step 1 Age 2.08 -1.12, 5.29 0.15 1.30 .200 0.02 0.02 1.68 .200 
Step 2 Age 2.15 -1.08, 5.37 0.16 1.33 .188 0.03 0.01 1.14 .324 
 Negativity Bias 0.94 -1.44, 3.31 0.09 0.79 .434     
Step 3 Age 2.12 -1.39, 5.64 0.16 1.21 .232 0.03 0 0.56 .695 
 Negativity Bias 0.95 -1.50, 3.41 0.10 0.77 .442     
 Brooding Rumination -0.03 -16.87, 16.82 0 -0 .997     
 Reflective Rumination -0.49 -17.44, 16.47 -0.01 -0.06 .954     
Affective Switch Cost (Positive Valence) 
Step 1 Age -0.29 -3.76, 3.19 -0.02 -0.17 .869 0 0 0.03 .869 
Step 2 Age -0.16 -3.60, 3.29 -0.01 -0.09 .928 0.03 0.03 1.18 .314 
 Negativity Bias 1.94 -0.60, 4.48 0.18 1.53 .132     
Step 3 Age -0.40 -4.14, 3.33 -0.03 -0.22 .830 0.05 0.01 0.83 .511 
 Negativity Bias 2.17 -0.44, 4.78 0.20 1.66 .101     
 Brooding Rumination 0.98 -16.92, 18.88 0.02 0.11 .913     
 Reflective Rumination -8.20 -26.22, 9.81 -0.13 -0.91 .367     

 
 

4.3.4 Study 1 Discussion 
The main aim of Study 1 was to examine the extent to which affect bias and 

facets of trait rumination could predict key valence and rule switch costs on an affective 

switching task in an online sample. In relation to main effects of valence, RTs were 

generally of a longer duration on trials in which the valence of the image switched 

versus a repetition of valence, however, the only switch costs surviving correction for 

multiple comparisons were positive valence (non-affective) and negative valence 

(affective). Interestingly, there was also an exception to the latter valence switch cost, 

in which the average RT for trials in which the image switched from a positive to a 

negative valence was faster in comparison to the average RT when negative images 

repeated. This suggests that individuals were generally quicker to disengage from 
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images of a positive valence in order to orient attention towards images of a negative 

valence when the trial rule instructed focus on emotional aspects of the images. All 

rule switch costs indicated a higher overall RT on switch versus repeat trials, with non-

affective negative rule switch costs being the only switch cost to not survive correction 

for multiple comparisons. Critically, in relation to our hypotheses, neither brooding or 

reflective facets of self-reported trait rumination, nor negative valence bias, were found 

to predict key affective flexibility switch costs of interest based on shifts in either 

valence or rule. These findings do not provide supporting evidence for the current 

study hypotheses, in which a higher negativity bias was predicted to be positively 

associated with greater switch costs when shifting attention from negative towards 

positive valence images (especially in an affective context). Critically, the lack of 

associations between trait rumination and rule-based switch costs do not replicate 

prior findings, in which higher rumination use has been linked to lower flexibility when 

shifting attention from affective towards non-affective aspects of negative information 

and greater flexibility for attentional shifts from affective towards non-affective aspects 

of positive emotional material (Genet et al., 2013). 

While valence bias and trait rumination are important and reliable measures of 

emotional disposition, neither of these metrics capture physiological underpinnings of 

flexibility. Responses to emotional cues and stressors not only generate a cascade of 

changes at a subjective, cognitive, psychological level (i.e., emotional states, 

appraisals) but also at a physiological level (i.e., elevated or reduced heart rate) (Urry 

& Gross, 2010). Effective communication between the brain and body is critical for 

facilitating emotion flexibility. HRV is a biological, non-invasive measure of adaptive 

emotional responding (Appelhans & Luecken, 2006) that has previously been linked 

to affective flexibility (Grol & De Raedt, 2020) and has also been regarded as a 

biomarker of mental illness (Beauchaine & Thayer, 2015). Prior research has 

examined associations between resting HRV (Grol & De Raedt, 2020) and phasic HRV 

changes in response to a stressor (Grol & De Raedt, 2021) in relation to affective 

flexibility rule switch costs, however, less is known about potential links between HRV 

and attentional shifts dependent on valence. 
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4.4 Study 2  
4.4.1 Aims and Hypotheses 

Akin to the primary aims of Study 1, Study 2 examined individual differences in 

trait affect (trait rumination and valence bias) in relation to affective flexibility, but in a 

more controlled laboratory environment and with the addition of HRV, a non-invasive, 

biological marker of adaptive emotional responding and mental health (Appelhans & 

Luecken, 2006; Beauchaine & Thayer, 2015). Critically, this second study in the 

laboratory sought to examine individual differences in both resting and task-related 

HRV measures in relation to valence and rule switch costs on the affective flexibility 

task. It was hypothesised that individuals with higher resting and task-based HRV 

would exhibit reduced switch costs in their RT (higher flexibility) when shifting their 

attention from emotional images with a negative valence towards those with a positive 

valence (i.e., more efficient attentional disengagement from negative information). In 

a similar vein, it was also predicted that individuals with higher HRV may exhibit 

greater switch costs (lower flexibility) when switching attention from images with a 

positive valence towards those with a negative valence (e.g., more likely to have their 

attention held by positive emotional information). Furthermore, on the basis that HRV 

has previously demonstrated closer associations with positivity biases (Madison et al., 

2021; Osnes et al., 2023), this second study focused on trait-like positivity (relative to 

negativity) biases. It was hypothesised that there would be an association between 

resting and task-related measures of HRV and trait-like valence bias, such that 

individuals with elevated levels of resting and task-based HRV would demonstrate a 

greater positivity bias in the face of emotionally ambiguous information. The measure 

of valence bias captured using the valence bias task is operationalised as the 

proportion of positive versus negative ratings towards emotionally ambiguous stimuli. 

On this basis, the positivity bias metric is the inverse of the negativity bias metric and 

vice versa. Therefore, in relation to affective flexibility, the same hypotheses were 

made as in study 1, but in the inverse direction. On this basis, it was predicted that a 

higher positivity bias would be associated with lower switch costs (greater flexibility) 

when shifting attention away from images with a negative valence towards those with 

a positive valence, particularly in an affective rule context. Furthermore, for attentional 

shifts based on rule type, a secondary prediction was that a greater positivity bias 

would be correlated with lower switch costs when shifting attention from affective 

towards non-affective aspects of negative information. Finally, it was hypothesised that 
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individuals with higher trait rumination, particularly elevated brooding rumination, 

would exhibit greater switch costs when the valence of the image switched from 

negative to positive, especially in an affective rule context. In line with prior research 

(Genet et al., 2013), it was anticipated that individuals with higher trait rumination, 

particularly higher brooding rumination, would exhibit greater switch costs (i.e., lower 

flexibility) when shifting attention from affective towards non-affective aspects of 

negative information, and lower switch costs (i.e., greater flexibility) when shifting 

attention from affective towards non-affective aspects of positive information. 

 

4.4.2 Method 
4.4.2.1 Participants 

A total of 87 participants were recruited using convenience sampling10. 

Participants were excluded due to data loss relating to technical issues (n = 2), poor 

quality or noisy pulse signal (n = 8), pressing inaccurate keys during the valence bias 

task (n = 2), and missing more than 50% of trials on the affective flexibility task (n = 

2). The final sample comprised 73 participants (M age = 21.78 years, SD = 5.40, range 

= 18-48 years; sex at birth: 60 female, 13 male; gender identity: 59 female, 13 male, 

1 non-binary; ethnicity: 33 White, 21 Asian, 11 Multi-ethnic, 5 Black/African/Caribbean, 

3 not specified; nationality: 57 European, 12 Asian, 1 African, 3 Dual-nationality;  

handedness: 65 right-handed, 8 left-handed). Most participants in the sample were 

Psychology students recruited from the university SONA recruitment system in 

exchange for course credits. A few participants were volunteers recruited by word of 

mouth with no form of compensation. All participants provided written informed 

consent prior to participation. This research study was carried out in accordance with 

the Declaration of Helsinki (1991, p. 1194). This study was given a favourable ethical 

opinion of conduct by the University of Reading’s Research Ethics Committee 

(reference: 2023-178-CvR).  

 

 

 
10 An a-priori power analysis for a hierarchical multiple linear regression based on R2 increase with 3 
predictors (rest and task-based HRV, and positivity bias, with 5 predictors in total) assuming a medium 
effect size (f2 = 0.15) and power of 0.80, indicated a necessary sample size of 77 participants. 
Accounting for 10% attrition, we aimed to recruit 85 participants. The effect size was determined based 
on a similar design and power analyses carried out by Grol and De Raedt (2018) and Twivy et al. (2021). 
Power analyses were calculated using G*Power (v3.1). 
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4.4.2.2 Materials and Procedure 
Methods employed in this study were similar to Study 1 with a few changes to 

accommodate the laboratory setting. Both the valence bias and affective flexibility 

tasks were built and presented with E-Prime version 3.0 software (Psychology 

Software Tools, Inc., Sharpsburg, Pennsylvania, USA). Due to the finger pulse sensor 

attached to the index finger of the participant’s non-dominant hand to record cardiac 

signals, different letter keys were assigned as response buttons for both tasks. 

Specifically, ‘A’ (right) and ‘L’ (left) keys were switched to ‘B’ (right) and ‘M’ (left) keys 

to accommodate a one-handed response. Furthermore, given potential ambiguity in 

relation to valence and/or number of humans present in some of the IAPS images 

presented in the AF task, 6 practice pictures and 17 main trial pictures were changed 

in the laboratory version of this task (see Table S9 in the Supplementary Material for 

further details). As in Study 1, selected main trial images were balanced in terms of 

normative ratings for arousal, such that there was no significant difference in self-

reported arousal for negative (M = 5.24, SD = 0.78) compared to positive (M = 5.19, 

SD = 0.69) IAPS images (t(158) = 0.41, p = .685)). An optional mood recovery period 

was also offered in this study which involved watching a compilation of funny, viral 

internet videos of cats and dogs. Videos of this nature have previously been found to 

elicit both amusement and happiness in adults (Gilman et al., 2017). A few different 

questionnaires were also assessed in this study but are not reported here. 

 

4.4.2.2.1 Trait Rumination 
Trait rumination was assessed using the Ruminative Response Scale Short-

Form (RRS; Treynor et al., 2003). Internal consistency for the whole scale (Cronbach’s 

a = 0.77) and brooding (a = 0.66) and reflection (a = 0.71) subscales was acceptable 

or good in the current study. 

 

4.4.2.2.2 Procedure 
Informed consent was obtained at the start of the experiment prior to 

participation. Participants completed a few initial questionnaires regarding 

demographic information (age, sex at birth, gender identity, ethnicity, nationality, 

education, handedness, physical and mental health conditions and medication), their 

general mood, and symptoms of anxiety and depression. Subsequently, participants 
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completed an 8-minute resting baseline period where they watched a video of nature 

scenes and were instructed to breathe naturally and to stay as still as possible with 

both of their feet on the ground and the palms of their hands facing upwards. A finger 

pulse sensor was secured to the participant’s index finger with a Velcro band to record 

a resting baseline of the heart rate period. Participants then completed a few more 

questionnaires regarding their emotional flexibility and ruminative thoughts prior to the 

emotion tasks. All participants completed the valence bias task followed by the 

affective flexibility task. Following completion of the tasks, participants were given the 

opportunity to engage in an optional mood recovery period, of which 30.10% of 

participants in the included sample chose to engage with this. Finally, participants 

completed a final questionnaire to assess their current mood and were debriefed on 

the purpose of the research study. The study took approximately 1 hour and 15 

minutes to complete (not including the 5–10-minute recovery period).  

 

4.4.2.3 Data Processing and Preliminary Data Analysis 
4.4.2.3.1 HRV Processing and Analysis  

A pulse signal was recorded using a finger pulse oximeter secured with a velcro 

band to the index finger of the participant’s non-dominant hand via the PowerLab 26T 

data acquisition system (AD Instruments, Oxford, UK) connected to a Dell computer 

running LabChart (version 8; AD Instruments, Oxford, UK) software (sampling rate = 

1000 Hz). The pulse trace was measured continuously throughout a resting baseline 

period, during a short break in which participants completed a few questionnaires prior 

to the emotion tasks (not signal of interest), and during both emotion tasks. LabChart 

files containing the time (seconds), pulse trace, and events were exported to text files 

and imported into Kubios HRV Premium Software (version 3.5.0; Biosignal Analysis 

and Medical Imaging Group, University of Kuopio, Finland; Tarvainen et al., 2014) for 

further processing and HRV analysis.  

Separate samples of the pulse signal from the resting baseline period, valence 

bias, and affective flexibility tasks were processed and analysed for each participant. 

Kubios’ PPG setting was selected whereby the pulse peak detection feature applies 

beat markers to the pulse waveform via a matched filtering approach. In cases where 

the beat detection feature misplaced or missed beats, manual corrections were 

applied to either place or (re)move markers to the appropriate location on the pulse 

waveform. The automatic correction noise feature (alongside manual correction) was 
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primarily used across subjects to reduce the influence of noise and artefacts in the 

signal, including ectopic, extra or missed beats, arrhythmias, motion, and technical 

noise/interference. In the instance where automatic correction did not adequately 

adjust for noise or was too stringent (i.e., unnecessary interpolation of beats), 

threshold and/or manual correction was implemented. Considering recent evidence 

recommending the application of less stringent settings for correcting noise in cardiac 

traces, especially in younger adult populations, and to preserve as much natural 

variation in the signal as possible, threshold correction settings between ‘very low’ - 

‘medium (0.45 - 0.25 seconds) were typically selected in accordance with the severity 

of the artefacts observed in the participant’s data (Alcantara et al., 2020). Furthermore, 

where automatic noise detection identified noise epochs within the signal and these 

could not be corrected using manual or automatic/threshold correction settings, then 

the longest, continuous duration of clear pulse signal either preceding or following the 

noise epoch(s) was retained for analysis. In line with Kubios guidelines, pulse signals 

requiring 5% or more of the beats to be interpolated, alongside those with poor quality 

pulse signal that could not be adequately corrected, were excluded from further 

analysis (n = 8 participants). Several metrics, including the Root Mean Square of 

Successive Differences (RMSSD), measured in milliseconds, were calculated within 

Kubios. We opted to use the RMSSD as our main HRV variable given that it is a robust 

measure of parasympathetic vagal control that is less influenced by physiological 

noise, such as respiration (Hill et al., 2009; Kleiger et al., 2005) The RMSSD was 

natural log transformed (ln) to correct for positive skew within RStudio (version 

1.4.1106) using the ‘log’ command from the base package (v3.5.2). 

 

4.4.2.3.2 Valence Bias 

Missing/timed-out trials (n = 65) and trials with a RT less than 250 ms (n = 2) 

were removed prior to analysis. Trials with a RT greater than three standard deviations 

from the participants’ mean RT per trial category (i.e., positive clear valence, negative 

clear valence, and ambiguous valence) were also calculated and removed (n = 17). 

Following initial task processing, accuracy of responses to the clearly valenced stimuli 

(i.e., trials with angry and happy face stimuli) was assessed. Participants with an 

accuracy falling below 50% on either positive or negative clear valence trials were 

excluded (n = 2 participants excluded due to 0% accuracy as a result of mixing up 

button responses). All participants in the final sample (N = 73) had an overall clear 
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valence accuracy over 60% which aligns with accuracy cut-offs adopted in prior 

studies (Harp et al., 2021; Neta et al., 2013; Petro et al., 2018). 

 

4.4.2.3.3 Affective Flexibility 
Practice trials (n = 20) and the first trial from each block (n = 2) were removed 

prior to processing and analysis (total n = 318 main trials). Subsequently, trials that 

were missing/timed out (n = 113) or with RTs below 250 ms (n = 8) were also removed. 

Importantly, only trials that were preceded by a correct response on the previous trial 

were included in analyses. The reasons for doing so aligned with previous studies 

(Grol & De Raedt, 2020), such that an incorrect response on a previous trial is likely 

to cause post-error slowing and, from the participant’s point of view, may lead to 

ambiguity regarding whether the current trial is a repetition or switch. Two participants 

were excluded for losing over 50% of their trials on the affective flexibility task. The 

average percentage of trials lost in the final sample (N = 73) was 14.16% (SD = 10.21, 

range = 2.5%-48.74%), with an average of 272.99 (SD = 32.47, range = 163-310) 

main trials retained for analyses. Furthermore, also in line with previous studies (Genet 

et al., 2013; Grol & De Raedt, 2020; Malooly et al., 2013; Twivy et al., 2021), RTs that 

were 2.5 standard deviations above or below the mean RT within each participant and 

the specific trial condition were identified and replaced with the upper and lower cutoff 

values respectively (M trials = 6.53, SD = 2.69, range = 0-12).  

Non-parametric Wilcoxon signed-rank tests were employed (due to non-normal 

distribution) across global switch and repetition trials for valence and rule category. 

Slightly higher accuracy was observed for trials where valence repeated (M = 93.40%, 

SD = 5.35) in comparison to when valence switched (M = 92.46%, SD = 5.64), Z = -

2.27, p = .023. Moreover, accuracy was significantly higher for trials where the 

category rule repeated (M = 93.91%, SD = 4.84) in comparison to trials where the rule 

switched (M = 91.84%, SD = 6.39), Z = -4.84, p < .001. For valence, RTs were 

significantly longer in duration when the valence switched (M = 1407.25, SD = 283.01) 

compared to when valence repeated across trials (M = 1356.12, SD = 269.90), Z = -

5.42, p < .001. However, RTs were slightly and unexpectedly slower for repetition (M 

= 1497.59, SD = 303.36) versus switch (M = 1452.98, SD = 290.93) trials) rule 

category trials, Z = -3.96, p < .001. Therefore, while participants had greater accuracy 

on trials where the valence or rule category switched, the RT when the trial rule 

category switched was significantly, albeit slightly, shorter in duration compared to a 
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repetition of the rule category. This is not in line with prior studies that typically report 

the opposite pattern (Grol & De Raedt, 2020; Twivy et al., 2021), but does however 

replicate the same pattern of findings observed in Study 1. While we cannot rule out 

potential speed-accuracy trade-off from influencing switch costs pertaining to shifts in 

category rule, the overall global difference in RT is fairly small. 

 

4.4.2.3.4 Regression Models 
Multiple hierarchical regression analyses assessed whether resting and task-

related HRV, trait-like positivity bias, and brooding and reflective facets of self-reported 

trait rumination predicted key affective flexibility switch costs based on a shift in 

valence and in rule. Given the greater risk of multicollinearity with three separate HRV 

measures recorded across three contexts: rest, valence bias, and affective flexibility, 

the two emotion task HRV variables were aggregated to form a single ‘task-based’ 

HRV variable based on the average of the two task measures (for a discussion on 

aggregating HRV measures, see: Bertsch et al., 2012). The following predictors were 

entered into the model in a stepwise order: age (years; step 1), resting and task-based 

HRV (step 2), positivity bias (step 3), and brooding and reflective rumination (step 4). 

All predictors were mean centered. Standardised beta coefficients are reported in the 

Results. Bonferroni corrections were performed to account for multiple tests (p = 

0.00625 (0.05/8)). 

 

4.4.3 Results 
4.4.3.1 Descriptive Statistics 

Table 8 summarises descriptives for resting and task-based HRV, rest and task-

based heart rate, rest and task-based RR interval, positivity bias, trait rumination, and 

key valence and rule switch costs of interest from the affective flexibility task. 
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Table 8. 
Descriptive Statistics for Key Sample Characteristics (Study 2). Data is provided in means and standard 
deviations (in parenthesis).  
 Data (N = 73) 
Resting lnRMSSD (ms) 3.41 (0.64) 

Resting HR (BPM) 82.30 (10.47) 

Resting RR Interval (ms)  741.22 (97.84) 
Task-based lnRMSSD (ms) 3.53 (0.61) 

Task-based HR (BPM) 80.48 (9.25) 

Task-based RR Interval (ms) 755.99 (90.01) 

Positivity Bias (%) 29.87 (19.61) 

Brooding Ruminationa 12.04 (3.03) 

Reflective Ruminationa 11.64 (3.44) 

Total Ruminationb 23.68 (5.52) 

Accuracy Global Valence Repeat (%) 93.40 (5.35) 
Accuracy Global Valence Switch (%) 92.46 (5.64) 

Accuracy Global Rule Repeat (%) 93.91 (4.84) 

Accuracy Global Rule Switch (%) 91.84 (6.39) 

RT Global Valence Repeat (ms) 1356.12 (269.90) 

RT Global Valence Switch (ms) 1407.25 (283.01) 

RT Global Rule Repeat (ms) 1497.59 (303.36) 

RT Global Rule Switch (ms) 1452.98 (290.93) 
Positive Valence Switch Cost (Non-Affective Context; ms) 168.04 (220.92) 

Positive Valence Switch Cost (Affective Context; ms) 78.51 (197.60) 

Negative Valence Switch Cost (Non-Affective Context; ms) 30.14 (180.90) 

Negative Valence Switch Cost (Affective Context; ms) -54.19 (196.53) 

Non-Affective Switch Cost (Negative Valence; ms) 22.27 (195.59) 

Affective Switch Cost (Negative Valence; ms) 244.45 (233.49) 

Non-Affective Switch Cost (Positive Valence; ms) 205.55 (208.21) 

Affective Switch Cost (Positive Valence; ms) 116.00 (243.19) 
a Score range for RRS brooding and reflective rumination subscales = 5-20 ; b Score range for RRS total rumination scale 

= 10-40 

 

4.4.3.2 HRV and Positivity Bias 
Pearson correlations revealed that while there was a strong positive correlation 

between rest and task-related measures of HRV (r = .92, p < .001), there was no 

significant association between either rest (r = -.04, p = .717) or task-related (r = -.015, 

p = .897) HRV and trait-like positivity bias.  
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4.4.3.3 Affective Flexibility Switch Costs: Valence 
In general, the average RT on trials where the valence of the image switched 

was slightly slower in comparison to trials where the valence of the image repeated. 

However, as observed in Study 1, the exception to this general pattern was found in 

the conditions contributing to the negative valence affective switch cost, in which the 

average RT for when negative images repeated was slower (M = 1232.52, SD = 

329.45) in comparison to trials in which the image switched from a positive to a 

negative valence (M = 1178.33, SD = 254.48) when the affective rule repeated across 

trials, although this difference in RT does not survive correction for multiple 

comparisons (t(72) = -2.36, p = .021). The only switch cost surviving correction for 

multiple comparisons was the positive valence non-affective switch cost. Pairwise 

comparisons between main switch and repeat trial conditions used for the calculation 

of key valence switch costs with associated uncorrected p-values are presented in 

Table S7 in the Supplementary Material. See Figures 12a-d for mean RTs per repeat 

and switch condition used to calculate switch costs based on valence. 

 
4.4.3.4 Affective Flexibility Switch Costs: Rule 

The average RT on trials where the trial rule switched was consistently slower 

than when the trial rule repeated for all of the main rule switch costs of interest. Again, 

akin to the main effect observed in Study 1, the only switch cost not surviving 

correction for multiple comparisons was the non-affective rule negative switch cost 

(t(72) = 0.97, p = .334. Pairwise comparisons between main switch and repeat trial 

conditions used for the calculation of key rule switch costs with associated uncorrected 

p-values are presented in Table S7 in the Supplementary Material. See Figures 12e-

h for mean RTs per repeat and switch condition used to calculate switch costs based 

on valence. 
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Figure 12. Mean Reaction Times for Key Valence and Rule Repeat Versus Switch Conditions (Study 2). 
A) Mean RT for trials where there was a repetition of a positive valence image on consecutive trials (repeat) 
and trials where there was a switch from a negative valence to a positive valence picture (switch) when 
the trial rule was non-affective. B) Mean RT for trials where there was a repetition of a positive valence 
image on consecutive trials (repeat) and trials where there was a switch from a negative valence to a 
positive valence picture (switch) when the trial rule was affective. C) Mean RT for trials where there was a 
repetition of a negative valence image on consecutive trials (repeat) and trials where there was a switch 
from a positive valence to a negative valence picture (switch) when the trial rule was non-affective. D) 
Mean RT for trials where there was a repetition of a negative valence image on consecutive trials (repeat) 
and trials where there was a switch from a positive valence to a negative valence image (switch) when the 
trial rule was affective. E) Mean RT for trials where there was a repetition of a non-affective rule (repeat) 
and trials where there was a switch from an affective rule to a non-affective rule (switch) with images of a 
negative valence. F) Mean RT for trials where there was a repetition of an affective rule (repeat) and trials 
where there was a switch from a non-affective to an affective rule (switch) with images of a negative 
valence. G) Mean RT for trials where there was a repetition of a non-affective rule (repeat) and trials where 
there was a switch from an affective rule to a non-affective rule (switch) with images of a positive valence. 
H) Mean RT for trials where there was a repetition of an affective rule (repeat) and trials where there was 
a switch from a non-affective to an affective rule (switch) with images of a positive valence. Error bars 
reflect ± 1 standard error around the mean.  
  

Valence Switch Costs 

Rule Switch Costs 

A) B) C) D) 

E) F) G) H) 
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4.4.3.5 Affective Flexibility Valence Switch Cost Regression Analyses 
Table 9 summarises the hierarchical regression analyses for age, HRV, and 

positivity bias on affective flexibility performance for switch costs based on valence. 

Key predictors of interest (resting and task-related HRV, positivity bias, and brooding 

and reflective rumination) were not found to significantly predict positive valence 

switch costs in the presence of an affective rule nor negative valence switch costs in 

the presence of a non-affective rule. While the overall model was not significant (R2 = 

0.06, F(3, 72) = 1.48, p = .228 Model 2), task-related HRV was found to predict unique 

variance in positive valence switch costs in a non-affective context (β = 0.64, t = 2.07, 

p = .042 Model 2), in which individuals with higher task-based HRV were slower to switch 

from negative to positive valence images when the instruction was non-affective. This 

finding was specific to task-related HRV and not found for resting HRV (β = -0.57, t = 

-1.86, p = .068 Model 2). Task-related HRV remained the only predictor of positive 

valence switch costs when positivity bias (β = -0.02, t = -0.19, p = .852 Model 3) and 

brooding (β = 0.21, t = 1.60, p = .115 Model 4) and reflective rumination (β = -0.02, t = -

0.18, p = .859 Model 4) facets were added as predictors, albeit this did not survive 

correction for multiple comparisons. Given insignificance of the overall model and the 

high multicollinearity between the HRV predictors (with resting HRV in the opposite 

direction), this finding is likely spurious and should be interpreted with caution. With 

relation to negative valence switch costs in the presence of an affective rule, entering 

rest and task-based HRV into the model significantly contributed to the overall 

variance explained (R2 = 0.12, F(3, 72) = 3.03, p = .035 Model 2). Specifically, albeit not 

surviving correction for multiple comparisons, resting HRV predicted negative valence 

switch costs in an affective context, with higher resting HRV associated with slower 

switching from positive towards negative valence images in the presence of an 

affective rule instruction (β = 0.65, t = 2.17, p = .033 Model 2) but task-related HRV did 

not (β = -0.48, t = -1.60, p = .115). The inclusion of positivity bias resulted in the overall 

model becoming insignificant and therefore did not contribute a significant change in 

the variance explained (R2 = 0.12, F(4, 72) = 2.34, p = .063 Model 3). Positivity bias was 

not a significant predictor of negative valence switch costs in the presence of an 

affective rule (β = -0.07, t = -0.60, p = .548 Model 3). Resting HRV remained the only 

significant predictor (β = 0.63, t = 2.12, p = .038 Model 3). Finally, while resting HRV 

remained a predictor (β = 0.65, t = 2.12, p = .038 Model 4), neither brooding (β = -0.10, t 

= -0.77, p = .445 Model 4) or reflective (β = 0.07, t = 0.49, p = .624 Model 4) rumination 
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significantly predicted negative valence switch costs in the presence of an affective 

rule instruction, and thus did not significantly contribute to a change in the variance 

explained (R2 = 0.13, F(6, 72) = 1.63, p = .152 Model 4). See Figure 13 for a visual 

depiction of these findings. 

 

 

Table 9. 
Hierarchical Regression Analyses for Age, HRV, Positivity Bias, and Trait Rumination on Affective Flexibility Valence 
Switch Costs (Study 2) 
Model Predictor b 95% CI β t p R2 R2 

Change 
F p 

Positive Valence Switch Cost (Non-Affective Context) 
Step 1 Age 1.58 -8.10, 11.26 0.04 0.33 .745 0 0 0.11 .745 
Step 2 Age 3.33 -6.45, 13.10 0.08 0.68 .499 0.06 0.06 1.48 .228 
 Resting HRV -195.45 -405.38, 14.48 -0.57 -1.86 .068     
 Task-based HRV 231.87 8.79, 454.95 0.64 2.07 .042     
Step 3 Age 3.22 -6.69, 13.13 0.08 0.65 .519 0.06 0 1.10 .363 
 Resting HRV -196.76 -408.68, 15.17 -0.57 -1.85 .068     
 Task-based HRV 232.82 7.87, 457.76 0.64 2.07 .043     
 Positivity Bias -0.25 -2.92, 2.42 -0.02 -0.19 .852     
Step 4 Age 1.87 -8.11, 11.85 0.05 0.37 .709 0.10 0.04 1.23 .300 
 Resting HRV -192.12 -406.45, 22.22 -0.56 -1.79 .078     
 Task-based HRV 230.44 4.86, 456.02 0.64 2.04 .045     
 Positivity Bias -0.11 -2.78, 2.56 -0.01 -0.08 .935     
 Brooding 

Rumination 
15.60 -3.87, 35.07 0.21 1.60 .115     

 Reflective 
Rumination 

-1.55 -18.85, 15.75 -0.02 -0.18 .859     

Positive Valence Switch Cost (Affective Context) 
Step 1 Age 0.84 -7.83, 9.50 0.02 0.19 .848 0 0 0.04 .848 
Step 2 Age -1.60 -10.14, 6.94 -0.04 -0.37 .710 0.10 0.10 2.66 .055 
 Resting HRV -2.71 -186.10, 180.64 -0.01 -0.03 .977     
 Task-based HRV -103.39 -298.27, 91.49 -0.32 -1.06 .294     
Step 3 Age -1.66 -10.32, 7.01 -0.05 -0.38 .704 0.10 0 1.97 .109 
 Resting HRV -3.42 -188.58, 181.75 -0.01 -0.04 .971     
 Task-based HRV -102.88 -299.42, 93.66 -0.32 -1.05 .300     
 Positivity Bias -0.14 -2.47, 2.20 -0.01 -0.12 .908     
Step 4 Age -1.26 -10.13, 7.62 -0.03 -0.28 .778 0.11 0.01 1.37 .239 
 Resting HRV -14.29 -204.93, 176.36 -0.05 -0.15 .882     
 Task-based HRV -94.83 -295.48, 105.81 -0.29 -0.94 .349     
 Positivity Bias -0.12 -2.49, 2.26 -0.01 -0.10 .923     
 Brooding 

Rumination 
-1.99 -19.31, 15.33 -0.03 -0.23 .819     

 Reflective 
Rumination 

-3.88 -19.27, 11.50 -0.07 -0.50 .616     

Negative Valence Switch Cost (Non-Affective Context) 
Step 1 Age -7.77 -15.49, -0.05 -0.23 -2.01 .049 0.05 0.05 4.03 .049 
Step 2 Age -8.59 -16.57, -0.61 -0.26 -2.15 .035 0.07 0.01 1.61 .195 
 Resting HRV 37.94 -133.50, 209.39 0.14 0.44 .660     
 Task-based HRV -65.93 -248.11, 116.26 -0.22 -0.72 .473     
Step 3 Age -8.62 -16.71, -0.52 -0.26 -2.12 .037 0.07 0 1.19 .323 
 Resting HRV 37.62 -135.50, 210.73 0.13 0.43 .666     
 Task-based HRV -65.69 -249.44, 118.06 -0.22 -0.71 .478     
 Positivity Bias -0.06 -2.24, 2.12 -0.01 -0.06 .954     
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4.4.3.6 Affective Flexibility Rule Switch Cost Regression Analyses 
Table 10 shows the hierarchical regression analyses for age, HRV, positivity 

bias, and rumination on affective flexibility when considering switch costs based on 

the rule (affective versus non-affective) type. None of the overall models were 

significant and none of the key predictors of interest (age, resting and task-related 

HRV, positivity bias, and brooding and reflective trait rumination) were significantly 

associated with the key affective flexibility switch costs of interest based on trial rule 

instruction. 

  

Step 4 Age -8.90 -17.22, -0.59 -0.27 -2.14 .036 0.07 0 0.82 .560 
 Resting HRV 44.58 -133.99, 223.15 0.16 0.50 .620     
 Task-based HRV -70.82 -258.76, 117.12 -0.24 -0.75 .455     
 Positivity Bias -0.07 -2.29, 2.15 -0.01 -0.07 .948     
 Brooding 

Rumination 
1.65 -14.57, 17.87 0.03 0.20 .840     

 Reflective 
Rumination 

2.41 -12.00, 16.82 0.05 0.33 .740     

Negative Valence Switch Cost (Affective Context) 
Step 1 Age -7.42 -15.86, 1.02 -0.20 -1.75 .084 0.04 0.03 3.07 .084 
Step 2 Age -7.33 -15.77, 1.10 -0.20 -1.75 .087 0.12 0.08 3.03 .035 
 Resting HRV 197.19 16.09, 378.29 0.65 2.17 .033     
 Task-based HRV -153.84 -346.28, 38.61 -0.48 -1.60 .115     
Step 3 Age -7.63 -16.17, 0.90 -0.21 -1.79 .079 0.12 0.01 2.34 .063 
 Resting HRV 193.58 11.20, 375.95 0.63 2.12 .038     
 Task-based HRV -151.20 -344.77, 42.39 -0.47 -1.56 .124     
 Positivity Bias -0.70 -2.99, 1.60 -0.07 -0.60 .548     
Step 4 Age -7.24 -15.97, 1.50 -0.20 -1.65 .103 0.13 0.01 1.63 .152 
 Resting HRV 199.38 11.74, 387.01 0.65 2.12 .038     
 Task-based HRV -156.03 -353.52, 41.45 0.49 -1.58 .119     
 Positivity Bias -0.78 -3.12, 1.55 -0.08 -0.67 .505     
 Brooding 

Rumination 
-6.57 -23.61, 10.48 -0.10 -0.77 .445     

 Reflective 
Rumination 

3.73 -11.41, 18.87 0.07 0.49 .624     
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Table 10. 
Hierarchical Regression Analyses for Age, HRV, Positivity Bias, and Trait Rumination on Affective Flexibility Rule 
Switch Costs (Study 2) 
Model Predictor b 95% CI β t p R2 R2 

Change 
F p 

Non-Affective Switch Cost (Negative Valence) 
Step 1 Age -2.34 -10.89, 6.22 -0.06 -0.54 .588 0 0 0.30 .588 
Step 2 Age -1.64 -10.51, 7.23 -0.05 -0.37 .713 0.01 0.01 0.29 .835 
 Resting HRV -50.99 -241.53, 139.56 -0.17 -0.53 .595     
 Task-Based HRV 70.83 -131.65, 273.32 0.22 0.70 .488     
Step 3 Age -1.94 -10.92, 7.04 -0.05 -0.43 .667 0.02 0.01 0.30 .880 
 Resting HRV -54.61 -246.55, 137.33 -0.18 -0.57 .572     
 Task-based HRV 73.48 -130.25, 277.21 0.23 0.72 .474     
 Positivity Bias -0.70 -3.11, 1.72 -0.07 -0.58 .567     
Step 4 Age -2.62 -11.78, 6.55 -0.07 -0.57 .571 0.03 0.02 0.37 .894 
 Resting HRV -57.48 -254.29, 139.34 -0.19 -0.58 .562     
 Task-based HRV 76.29 -130.85, 283.44 0.24 0.74 .465     
 Positivity Bias -0.59 -3.04, 1.86 -0.06 -0.48 .630     
 Brooding 

Rumination 
9.21 -8.67, 27.09 0.14 1.03 .307     

 Reflective 
Rumination 

-3.14 -19.02, 12.75 -0.06 -0.40 .694     

Affective Switch Cost (Negative Valence) 
Step 1 Age 3.96 -6.24, 14.16 0.09 0.78 .441 0.01 0.01 0.60 .441 
Step 2 Age 2.80 -7.69, 13.29 0.07 0.53 .596 0.03 0.02 0.75 .525 

Figure 13. Scatterplots of Valence Switch Costs Demonstrating Associations with HRV. A) Scatterplot 
displaying task-based HRV and positive valence switch costs in a non-affective context where values have 
been adjusted for mean centred age, resting HRV, positivity bias, and brooding and reflective rumination 
scores (Model 4). B) Scatterplot displaying resting HRV and negative valence switch costs in an affective 
context where values have been adjusted for mean centered age, task-based HRV, positivity bias, and 
brooding and reflective rumination scores (Model 4). Standardised residuals are plotted for visual display 
purposes. HRV, heart rate variability; (ln)RMSSD, natural log transformed root mean square of successive 
differences. 
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 Resting HRV 130.00 -95.24, 355.23 0.36 1.15 .254     
 Task-based HRV -154.18 -393.52, 85.16 -0.40 -1.29 .203     
Step 3 Age 2.31 -8.28, 12.90 0.05 0.44 .665 0.04 0.01 0.72 .581 
 Resting HRV 124.05 -102.32, 350.42 0.34 1.09 .278     
 Task-based HRV -149.85 -390.12, 90.43 -0.39 -1.24 .218     
 Positivity Bias -1.14 -3.99, 1.71 -0.10 -0.80 .427     
Step 4 Age 3.76 -6.91, 14.42 0.09 0.70 .485 0.08 0.04 0.96 .458 
 Resting HRV 112.11 -116.98, 341.19 0.31 0.98 .332     
 Task-based HRV -141.91 -383.02, 99.21 -0.37 -1.18 .244     
 Positivity Bias -1.25 -4.10, 1.60 -0.11 -0.87 .385     
 Brooding 

Rumination 
-14.81 -35.62, 6.00 -0.19 -1.42 .160     

 Reflective 
Rumination 

-1.53 -20.01, 16.96 -0.02 -0.17 .870     

Non-Affective Switch Cost (Positive Valence) 
Step 1 Age 0.43 -4.74, 13.41 0.11 0.95 .344 0.01 0.01 0.91 .344 
Step 2 Age 5.67 -3.65, 14.98 0.15 1.21 .229 0.04 0.03 0.95 .422 
 Resting HRV -3.38 -203.40, 196.64 -0.01 -0.03 .973     
 Task-based HRV 60.52 -152.03, 273.06 0.18 0.57 .572     
Step 3 Age 5.51 -3.94, 14.95 0.14 1.16 .249 0.04 0 0.72 .578 
 Resting HRV -5.31 -207.16, 196.54 -0.02 -0.05 .958     
 Task-based HRV 61.93 -152.32, 276.17 0.18 0.58 .566     
 Positivity Bias -0.37 -2.91, 2.17 -0.04 -0.29 .772     
           
Step 4 Age 4.39 -5.17, 13.95 0.11 0.92 .363 0.07 0.03 0.84 .543 
 Resting HRV 6.11 -199.22, 211.44 0.02 0.06 .953     
 Task-based HRV 54.10 -162.01, 270.20 0.16 0.50 .619     
 Positivity Bias -0.30 -2.86, 2.25 -0.03 -0.24 .813     
 Brooding 

Rumination 
10.86 -7.79, 29.52 0.16 1.16 .249     

 Reflective 
Rumination 

2.18 -14.40, 18.75 0.04 0.26 .794     

Affective Switch Cost (Positive Valence) 
Step 1 Age -0.94 -11.60, 9.72 -0.02 -0.18 .861 0 0 0.03 .861 
Step 2 Age -3.16 -13.86, 7.54 -0.07 0.59 .558 0.07 0.07 1.75 .166 
 Resting HRV -50.54 -280.38, 179.30 -0.13 -0.44 .662     
 Task-based HRV -56.01 -300.25, 188.22 -0.14 -0.46 .649     
Step 3 Age -2.62 -13.42, 8.18 -0.06 -0.49 .629 0.08 0.01 1.49 .216 
 Resting HRV -44.05 -274.87, 186.79 -0.12 -0.38 .705     
 Task-based HRV -60.75 -305.77, 184.27 -0.15 -0.50 .622     
 Positivity Bias 1.25 -1.66, 4.15 0.10 0.86 .394     
Step 4 Age -1.94 -12.97, 9.09 -0.04 -0.35 .727 0.09 0.01 0.13 .354 
 Resting HRV -61.66 -298.59, 175.28 -0.16 -0.52 .605     
 Task-based HRV -47.75 -297.12, 201.62 -0.12 -0.38 .703     
 Positivity Bias 1.28 -1.67, 4.22 -0.10 -0.87 .390     
 Brooding 

Rumination 
-3.71 -25.23, 17.82 -0.05 -0.34 .732     

 Reflective 
Rumination 

-6.19 -25.31, 12.93 -0.09 -0.65 .520     

 

 

4.4.4 Study 2 Discussion 
In accordance with our findings in Study 1, neither brooding or reflective facets 

of trait rumination or valence bias significantly predicted key affective flexibility switch 

costs pertaining to shifts in valence or rule type. Interestingly, while not surviving 
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correction for multiple comparisons, findings from Study 2 suggest that both task-

related and resting HRV appear to be associated with affective flexibility, specifically 

attentional shifts pertaining to valence. Contrary to our hypothesis, higher task-related 

HRV was tentatively associated with greater switch costs (i.e., lower affective 

flexibility) when shifting attention from negative towards positive valence images when 

a non-affective rule instruction (number of humans present in the image) repeated 

across trials. However, this finding should be interpreted with caution given non-

significance of the overall model and the risk of high multicollinearity between task-

related and resting HRV producing spurious (and opposing) effects for these 

predictors. Nevertheless, some evidence, albeit not surviving correction for multiple 

comparisons, was found for our hypothesis concerning higher HRV being linked to 

greater attentional capture relating to positive emotional information, in which 

individuals with elevated resting HRV were demonstrated greater switch costs (i.e., 

lower affective flexibility) when shifting attention from positive to negative valence 

images when the affective task rule instruction repeated across trials (i.e., heightened 

focus on the emotional aspects of the image). Contrary to previous findings that have 

reported a link between lower resting HRV and more efficient switching (greater 

flexibility) from affective to non-affective aspects of negative emotional images (Grol 

& De Raedt, 2020), Study 2 did not uncover significant findings for either resting or 

task-related HRV metrics and affective flexibility switch costs pertaining to shifts in the 

affective or non-affective rule instruction. Findings from Study 2 also replicated main 

effects observed for the affective flexibility task in Study 1. Specifically, RTs were 

generally of a longer duration on trials in which the valence of the image switched in 

comparison to when the valence repeated, however, the only switch cost surviving 

correction for multiple comparisons was the positive valence non-affective switch cost. 

Furthermore, akin to Study 1, the only main effect diverging from this overall RT pattern 

was the negative valence affective switch cost, in which the average RT for trials where 

images switched from a positive to a negative valence was faster in comparison to the 

average RT when negative images repeated. This highlights that across two separate 

samples, individuals were generally quicker to disengage from positive valence 

images when the trial rule focused on emotional (affective) aspects of the images. All 

rule-related switch costs indicated a higher overall RT on switch versus repeat trials, 

although as observed in Study 1, non-affective negative rule switch costs did not 

survive correction for multiple comparisons. 
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Taken together, findings from Study 2 replicate the lack of associations between 

trait rumination and valence bias found in Study 1, and more critically, provide some 

indication that individual differences in HRV appear to be more closely coupled with 

attentional flexibility pertaining to shifts in valence. These findings contribute to, and 

complement, a wider research concept which outlines that affective (in)flexibility may 

not always be (mal)adaptive, with context (in this case valence) playing an important 

role (Parsons et al., 2016). 

 
4.5 General Discussion 

The present research sought to conceptually replicate and extend prior findings 

in the literature by examining associations between valence bias, facets of trait 

rumination, and HRV with performance on an established affective switching task in 

online (Study 1) and laboratory-based (Study 2) studies. While previous research 

employing the affective flexibility task paradigm has primarily focused on attentional 

shifts pertaining to changes in the trial rule (i.e., categorising images according to 

affective versus non-affective rules), which assesses cognitive flexibility in the context 

of emotion (i.e., the valence of the image), the present studies further examined 

attentional shifts relating to valence on trials where the trial rule was held constant, 

which, we argue, captures affective flexibility. Across both studies, neither brooding or 

reflective facets of trait rumination, nor trait-like negative or positive valence biases 

significantly predicted affective flexibility switch costs based on either shifts in valence 

or trial rule. In Study 2, while no associations emerged between resting and task-

related HRV and trait-like positivity bias, HRV appeared to predict switch costs on the 

affective flexibility task that were specific to attentional shifts based on changes in 

valence, although these associations did not survive correction for multiple 

comparisons.  

HRV is a psychophysiological phenomenon that is proposed to serve as an 

objective, non-invasive metric of adaptive emotional responding (Appelhans & 

Luecken, 2006) and is also considered to be a transdiagnostic biomarker of mental 

health (Beauchaine & Thayer, 2015). Higher levels of resting HRV have been found to 

facilitate flexible top-down and bottom-up attentional modulation (Park & Thayer, 

2014), effective self and emotion regulation (Butler et al., 2006; Denson et al., 2011; 

Ingjaldsson et al., 2003), and positivity biases (Madison et al., 2021; Osnes et al., 

2023). While most research has typically focused on assessing HRV at rest, other 
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studies have also assessed changes in phasic HRV, reporting increases in phasic 

HRV in the context of high self-regulatory effort or emotion regulation (Butler et al., 

2006; Denson et al., 2011; Park et al., 2014). Furthermore, higher resting HRV is linked 

to greater phasic/task-related HRV (Guendelman et al., 2024; Park et al., 2014). Since 

higher resting HRV has previously been associated with biases towards positive 

information (Osnes et al., 2023), in the context of the affective flexibility task, it was 

expected that individuals with higher rest and task-related HRV would demonstrate 

greater affective flexibility in the form of more efficient switching from negative towards 

positive valence information, as well as higher inflexibility when shifting attention from 

images with a positive to a negative valence (e.g., greater attentional capture of 

positive emotional information).  

Contrary to our first hypothesis, higher task-related HRV appeared to be linked 

to greater switch costs (i.e., lower flexibility) when shifting attention away from negative 

and towards positively valenced images. While this finding did not survive correction, 

is likely spurious and should be interpreted with caution, this would suggest that 

individuals with higher HRV during emotional contexts (across both the affective 

flexibility and valence bias tasks) were slower to disengage their attention from images 

of a negative valence when the non-affective rule (i.e., identifying the number of 

humans in the image) repeated across trials. This finding may be explained in the 

context of negative attentional avoidance, in which individuals with elevated task-

related HRV appeared to spend a longer time on trials with negative valenced images 

when instructed to focus on the non-emotional aspects of the images, whereas those 

with lower task-related HRV were quicker to disengage and proceed to the next trial, 

possibly reflecting underlying attentional avoidance towards negative emotional 

information. Indeed, Grol & De Raedt (2020) reported that individuals with lower 

resting HRV exhibited greater affective flexibility in the form of faster attentional shifts 

towards non-affective aspects of negative pictures, a pattern that has also been linked 

to higher worry and anxiety over a 7-week period (Twivy et al., 2021). Moreover, during 

a decision-making task that involved the presentation of IAPS images, it was 

documented that individuals with reduced resting HRV demonstrated a tendency to 

avoid negative emotional pictures compared to those with higher HRV (Katahira et al., 

2014). Collectively, these findings could be contextualised through the vigilance-

avoidance model of anxiety (Mogg et al., 2004) and links between elevated anxiety 

and a higher tendency to avoid negative emotional information (Cisler & Koster, 2010). 



  176 

The vigilance-avoidance model proposes that individuals with higher anxiety more 

quickly orient their attention to potentially threatening stimuli initially, but this is 

subsequently followed by later avoidance in comparison to those with lower anxiety 

(Mogg et al., 2004). Interestingly, the current finding emerged on trials in the context 

of the non-emotional rule. This would suggest that even when instructed to focus on 

non-emotional aspects of negative valence images, individuals with lower task-related 

HRV were quicker to disengage from these trials. It could be that individuals with lower 

task-based HRV found the negative IAPS images more aversive and were therefore 

motivated to respond more quickly, even when instructed to focus on non-affective 

elements. This explanation would somewhat align with research that has found 

individuals with lower HRV to exhibit an elevated autonomic stress response to 

relatively trivial threat cues under both low and high load cognitive conditions (Park et 

al., 2014). Nevertheless, without accompanying self-reported ratings of the images, it 

is difficult to confirm whether this was the case in the present research. Taken together, 

while the current finding potentially aligns with previous research linking low HRV to 

negative attentional avoidance, this finding is not likely to be robust (i.e., did not survive 

correction for multiple comparisons) and is likely spurious (i.e., given opposing strong 

directions of task-related versus resting HRV predictors), thus this warrants further 

replication and validation.  

Moreover, individuals with higher resting HRV exhibited slower attentional shifts 

(i.e., lower affective flexibility) from positive towards negative valence images on trials 

where the affective (emotion) trial rule repeated, although this finding also did not 

survive correction for multiple comparisons. Individuals with higher resting HRV 

potentially had their attention held to a greater extent by the positive valence images, 

resulting in slower attentional disengagement when instructed to focus on emotional 

aspects of negative valence images. Interestingly, as a main effect, for trials in which 

the image switched from a positive to a negative valence image, RTs were slightly 

faster across the sample on average in comparison to when a negative affective 

valence image repeated, suggesting a slightly quicker engagement on trials where the 

image shifted from a positive to a negative valence. Considering this, it is interesting 

that this switch cost is greater (and in the expected direction) for those with higher 

HRV and reduced in those with lower HRV. This finding, albeit tentative, complements 

a small body of literature that has reported coupling between higher HRV and biased 

processing of positive emotional information (Madison et al., 2021; Osnes et al., 2023). 
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Indeed, higher resting HRV has been linked to positive appraisals of neutral and 

ambiguous vocal stimuli in women (Madison et al., 2021) and an increased tendency 

to interpret negatively valenced facial expressions more positively (Osnes et al., 

2023). While the current finding may suggest individuals with higher resting HRV are 

slower, and those with lower resting HRV are quicker, to disengage from positive 

emotional images on the affective flexibility task, in Study 2, we found no supporting 

evidence for associations between either resting or task-related HRV and trait-like 

positivity bias in the current study. Unfortunately research examining HRV and valence 

bias is still fairly limited, with current and previous research relying on student 

populations and different measures of positivity bias (i.e., ambiguous auditory stimuli, 

Madison et al., 2021; RMET, Osnes et al., 2023). Thus, examining HRV, affective 

flexibility, and measures of trait affect that control for different stimulus modalities (i.e., 

visual, auditory) could be an interesting avenue for future research. 

Finally, in both the online (Study 1) and laboratory-based (Study 2) studies, no 

associations were uncovered for either depressive or reflective trait rumination, nor for 

total rumination score, and key valence or rule switch costs on the affective switching 

task. Rumination is a form of perseverative cognition, characterised by negative, 

repetitive, and recurrent thoughts relating to oneself, feelings, and upsetting events or 

experiences (Treynor et al., 2003). Regarding specific facets of trait rumination, it was 

anticipated that brooding rumination would exhibit closer coupling with affective 

(in)flexibility given its correspondence with negative attentional biases and since it is 

a more maladaptive form of ruminative thinking which lacks the more intentional 

pondering and problem-solving elements that capture reflective rumination (Duque et 

al., 2014; Joorman et al., 2006; Owens & Gibb, 2017). Rumination has previously been 

linked to affective flexibility and attentional shifts based on the rule (Genet et al., 2013; 

Grol & De Raedt, 2021). Specifically, slower attentional shifts when shifting attention 

away from emotional elements of negative images was linked to greater self-reported 

daily rumination use, whereas slower attentional shifts from focusing on emotional 

aspects of positive images was correlated with reduced rumination (Genet et al., 

2013). Similarly, Grol & De Raedt (2021) found that faster attentional switches towards 

non-emotional aspects of positive images was correlated with elevated use of 

maladaptive emotion regulation strategies (including rumination). Nevertheless, both 

studies assessed rumination tendencies in response to specific unpleasant events on 

a given day (RRS; Genet et al., 2013) or in response to a specific same day stressor 
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(i.e., rumination subscale of the Cognitive Emotion Regulation Questionnaire; 

Garnefski & Kraaij, 2006; Grol & De Raedt, 2021), whereas the present study 

assessed more general, trait rumination with no reference to a specific event or 

stressor. Therefore, it could be that state-like ruminative tendencies may be more 

closely related to the dynamic nature of affective flexibility in comparison to more 

generic, trait-level measures of rumination. Indeed, similar observations have been 

found for state and trait anxiety. While both trait anxiety and daily worry have 

previously been linked to affective flexibility (Twivy et al., 2021), more recently, trait 

anxiety was not found to be associated with affective task switching across two studies 

(Van Bockstaele et al., 2024). Given potential discrepancies in sensitivity of state-like 

and trait-like measures of emotional disposition, future studies should consider 

potential state versus trait differences in emotional disposition measures in relation to 

affective flexibility. 

There are a few limitations of the current studies. Firstly, both studies did not 

include measures of either cognitive flexibility (i.e., general mental set shifting in the 

absence of emotional information) or working memory, thus we cannot rule out the 

influence of general cognitive ability on the current study findings. However, of the 

findings demonstrating significance, these appeared to be specific to switch costs 

pertaining to attentional shifts in the valence of the images, as opposed to more 

cognitively demanding attentional shifts based on the rule type. 

Furthermore, although switch costs are commonly calculated to index affective 

flexibility (Genet et al., 2013; Grol & De Raedt, 2020, 2021; Malooly et al., 2013; Twivy 

et al., 2020), difference scores have been reported to be inherently unreliable 

(Draheim et al., 2016; Hughes et al., 2014). Also, switch costs do not adequately 

capture or control for individual differences in speed versus accuracy (Barulli et al., 

2023; Hughes et al., 2014). Indeed, across both of our studies, valence and rule switch 

costs typically demonstrated a higher standard deviation than the average RT, a 

pattern that has also been recorded in prior studies adopting the same affective 

flexibility task (Grol & De Raedt, 2020, 2021; Twivy et al., 2020). Moreover, 

associations found between HRV and valence switch costs did not survive correction 

for multiple comparisons, and the multicollinearity between rest and task-based HRV 

measures likely produced spurious findings in relation to task-related HRV and positive 

valence switch costs in a non-affective rule context. Therefore, considering the 

unreliability of switch costs measures and the lack of robust associations observed, 
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the current study findings should be interpreted with caution and require further 

replication and validation with more reliable measures to index flexibility, such as rate 

residual or bin scores (Hughes et al., 2014). Relatedly, considering the correlational 

nature of these findings, it would be fruitful for future research to assess whether 

altering HRV, either via transcutaneous vagus nerve stimulation (Machetanz et al., 

2021) or HRV biofeedback (Lehrer & Gevirtz, 2014), impacts affective flexibility, and 

whether such changes contribute to unique variance explained by valence or rule 

switch costs in the affective flexibility task. Finally, other lifestyle factors known to have 

an impact HRV, including exercise, body mass index, and smoking status (Hayano et 

al., 1990; Karason et al., 1999; Sammito et al., 2024; Sammito & Böckelmann, 2016) 

were not obtained or controlled for, thus we cannot rule out aforementioned factors as 

not having influenced the present study findings. 

To conclude, the current findings highlight tentative associations between 

resting and task-related measures of HRV and closer coupling with affective flexibility 

in relation to shifts in valence, as opposed to more cognitively demanding shifts 

pertaining to changes in trial rule. Moreover, the present studies further extend prior 

literature by demonstrating that neither brooding or reflective facets of trait rumination 

or trait-like valence bias appear to predict affective flexibility in respect to either 

attentional shifts in valence or rule. This research critically reinforces the importance 

of considering the emotional context, and offers further evidence to support the notion 

that affective inflexibility may not always be maladaptive. 
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Figure S6. Histograms displaying the distributions for total rumination and brooding and reflective 
subscale scores. Study 1 (top panel). Study 2 (bottom panel). RRS; Ruminative Response Scale.  

Figure S7. Histograms displaying the distributions for negative valence bias (left, Study 1) and positive 
valence bias (right, Study 2). Valence bias is operationalised as the percentage of negative or positive 
ratings towards emotionally ambiguous stimuli respectively. 
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Table S4 
Correlation Matrix Showing Associations Between Rumination (Total, Brooding, and 
Reflective) and Negativity Bias (Study 1) 
  Total 

Rumination 
Brooding 

Rumination 
Reflective 

Rumination 
Negativity 

Bias 
Total 
Rumination 

r -    
p    

Brooding 
Rumination 

r .881 -   
p <.001   

Reflective 
Rumination 

r .868 .530 -  
p <.001 <.001  

Negativity 
Bias 

r .111 .024 .173 
- p .355 .842 .146 

 

 

 

 

 

 

 

 

 

 

Figure S8. Histograms displaying the distributions for resting (left) and task-based (right) HRV in Study 2. 
(ln)RMSSD, natural log transformed root mean square of successive differences. 



  187 

Table S5 
Correlation Matrix Showing Associations Between HRV (Resting and Task-Based), Rumination (Total, 
Brooding, and Reflective) and Positivity Bias (Study 2) 
  Resting 

HRV 
Task-
Based 
HRV 

Total 
Rumination 

Brooding 
Rumination 

Reflective 
Rumination 

Positivity 
Bias 

Resting HRV r -      
 p      
Task-Based HRV r  .924 -     
 p <.001     
Total Rumination r -.151 -.112 -    

p .203 .346    
Brooding 
Rumination 

r -.076 -.071 .833 -   
p .524 .549 <.001   

Reflective 
Rumination 

r -.176 -.117 .873 .458 -  
p .137 .324 <.001 <.001  

Positivity Bias r -.043 -.015 0 -.068 .059 - 
p .717 .897 .997 .568 .620 

 
 
Table S6 
Pairwise Comparisons for Main Switch and Repeat Trial Conditions Used for Calculation of Key Valence and Rule 
Switch Costs (Study 1) 
Switch Cost Pairwise Comparison M RT SD RT M 

Difference 
t(71) p d 

Positive 
Valence 
Switch Cost 
(Non-Affective 
Context) 

NegNonAff_PosNonAff 1489.21 318.62 

142.47 7.44 <.001 0.88 PosNonAff_PosNonAff 1346.74 311.27 

Positive 
Valence 
Switch Cost 
(Affective 
Context) 

NegAff_PosAff  
 

1378.944 308.49 

45.87 2.35 .022 0.23 PosAff_PosAff 1333.07 319.20 

Negative 
Valence 
Switch Cost 
(Non-Affective 
Context) 

PosNonAff_NegNonAff  1624.11 360.66 

5.05 0.25 .802 0.03 
NegNonAff_NegNonAff 1619.07 374.04 

Negative 
Valence 
Switch Cost 
(Affective 
Context) 

PosAff_NegAff 1310.31 314.81 

-80.57 -3.43 .001 -0.40 
NegAff_NegAff 1390.88 362.05 

Non-Affective 
Switch Cost 
(Negative 
Valence) 

NegAff_NegNonAff  1692.09 385.87 

73.02 3.03 .003 0.36 NegNonAff_NegNonAff 1619.07 374.04 

NegNonAff_NegAff 1550.20 357.69 159.32 5.98 <.001 0.70 
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Affective 
Switch Cost 
(Negative 
Valence) 

NegAff_NegAff 1390.88 362.05 

Non-Affective 
Switch Cost 
(Positive 
Valence) 

PosAff_PosNonAff 1511.32 332.24 

164.58 7.40 <.001 0.87 PosNonAff_PosNonAff 1346.74 311.27 

Affective 
Switch Cost 
(Positive 
Valence) 

PosNonAff_PosAff 1472.30 331.64 

139.23 5.84 <.001 0.69 PosAff_PosAff 1333.07 319.20 

Trial condition names are formatted as ‘PreviousTrial_CurrentTrial’; Pos, Positive Valence Image; Neg, Negative 
Valence Image; Aff, Affective Rule Instruction; NonAff, Non-Affective Rule Instruction 

 
 
 
 
 
 

Table S7 
Pairwise Comparisons for Main Switch and Repeat Trial Conditions Used for Calculation of Key Valence and Rule 
Switch Costs (Study 2) 
Switch Cost Pairwise Comparison M RT SD RT M 

Difference 
t(72) p d 

Positive 
Valence 
Switch Cost 
(Non-Affective 
Context) 

NegNonAff_PosNonAff 1374.44 335.40 

168.04 6.50 <.001 0.76 PosNonAff_PosNonAff 1206.41 260.77 

Positive 
Valence 
Switch Cost 
(Affective 
Context) 

NegAff_PosAff  
 

1295.48 321.70 

78.51 3.39 .001 0.40 PosAff_PosAff 1216.98 290.48 

Negative 
Valence 
Switch Cost 
(Non-Affective 
Context) 

PosNonAff_NegNonAff  1504.57 303.58 

30.14 1.42 .159 0.17 
NegNonAff_NegNonAff 1474.43 329.44 

Negative 
Valence 
Switch Cost 
(Affective 
Context) 

PosAff_NegAff 1178.33 254.48 

-54.19 -2.36 .021 -0.28 
NegAff_NegAff 1232.52 329.45 

Non-Affective 
Switch Cost 
(Negative 
Valence) 

NegAff_NegNonAff  1496.70 342.57 

22.27 0.97 .334 0.11 NegNonAff_NegNonAff 1474.43 329.44 

NegNonAff_NegAff 1476.97 358.87 244.45 8.95 <.001 1.05 
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Affective 
Switch Cost 
(Negative 
Valence) 

NegAff_NegAff 1232.52 329.45 

Non-Affective 
Switch Cost 
(Positive 
Valence) 

PosAff_PosNonAff 1411.96 302.24 

205.55 8.44 <.001 0.99 PosNonAff_PosNonAff 1206.41 260.77 

Affective 
Switch Cost 
(Positive 
Valence) 

PosNonAff_PosAff 1332.98 260.96 

116 4.08 <.001 0.48 PosAff_PosAff 1216.98 290.48 

Trial condition names are formatted as ‘PreviousTrial_CurrentTrial’; Pos, Positive Valence Image; Neg, Negative 
Valence Image; Aff, Affective Rule Instruction; NonAff, Non-Affective Rule Instruction 

 
 
 
 

Table S8 
Picture Stimuli Used in the Valence Bias and Affective Flexibility Tasks (Study 1)  

VALENCE BIAS TASK 
(Example Trials) 

Positive 11F_HA_O 26M_HA_O AM20HAS AF24HAS 

Negative 10F_AN_C 39M_AN_C AF15ANS AM02ANS 

Ambiguous 13F_SP_O 25M_SP_O AF29SUS AM11SUS 

VALENCE BIAS TASK 
(Main Trials) 

Positive 

01F_HA_O 03F_HA_O 07F_HA_O 08F_HA_O 

24M_HA_O 28M_HA_O 36M_HA_O 37M_HA_O 

AF06HAS AF08HAS AM01HAS AM14HAS 

Negative 

01F_AN_C 03F_AN_C 08F_AN_C 09F_AN_C 

20M_AN_C 28M_AN_C 36M_AN_C 37M_AN_C 

AF07ANS AF14ANS AM10ANS AM28ANS 

Ambiguous 

01F_SP_O 02F_SP_O 06F_SP_O 07F_SP_O 

08F_SP_O 09F_SP_O 20M_SP_O 23M_SP_O 

24M_SP_O 27M_SP_O 28M_SP_O 36M_SP_O 

AF01SUS AF02SUS AF03SUS AF13SUS 

AF30SUS AF34SUS AM06SUS AM12SUS 

AM13SUS AM18SUS AM34SUS AM35SUS 

AFFECTIVE FLEXIBILITY TASK 
(Practice Trials) 

Positive (one or fewer people) 1540 2050 5760 7250 

8330    

Positive (two or more 

people) 

1340 2057 4603 8371 

8461    

Negative (one or fewer people) 2717 3181 3225 9571 

9911    

Negative (two or more people) 3350 6415 6540 9250 

9433    

 
AFFECTIVE FLEXIBILITY  

(Main Trials) 

 

Positive (one or fewer people) 

 

1440 

 

1463 

 

1500 

 

1510 

1710 1722 2055.2 2071 

2650 4250 4574 5260 

5450 5460 5470 5480 

5600 5628 5700 5814 

5849 5910 7260 7270 

7289 7330 7350 7400 
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7430 7470 7480 8034 

8120 8170 8300 8350 

8500 8501 8510 8531 

Positive (two or more 

people) 

2080 2091 2150 2154 

2160 2170 2208 2209 

2216 2224 2310 2331 

2340 2345 2391 2398 

2540 2550 4542 4599 

4609 4610 4614 4622 

4623 4626 4641 5621 

5830 5833 7502 8341 

8370 8380 8420 8490 

8496 8497 8540 8600 

Negative (one or fewer people) 1275 2095 2276 2375.1 

2399 2710 2722 2750 

2800 2981 3180 3220 

3230 3300 3550 6200 

6260 6300 6570.1 9000 

9001 9007 9008 9040 

9041 9140 9180 9265 

9280 9290 9320 9331 

9340 9342 9470 9471 

9561 9570 9630 9830 

Negative (two or more people) 2053 2141 2205 2278 

2312 2352.2 2455 2590 

2694 2700 2703 2718 

2799 2900.1 3301 4621 

6211 6212 6213 6242 

6315 6360 6555 6560 

6571 6821 6838 9220 

9253 9341 9400 9415 

9420 9421 9435 9495 

9592 9910 9920 9921 
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Table S9  
Picture Stimuli Used in the Valence Bias and Affective Flexibility Tasks (Study 2) 

VALENCE BIAS TASK 
(Example Trials) 

Positive 11F_HA_O 26M_HA_O AM20HAS AF24HAS 

Negative 10F_AN_C 39M_AN_C AF15ANS AM02ANS 

Ambiguous 13F_SP_O 25M_SP_O AF29SUS AM11SUS 

VALENCE BIAS TASK 
(Main Trials) 

Positive 

01F_HA_O 03F_HA_O 07F_HA_O 08F_HA_O 

24M_HA_O 28M_HA_O 36M_HA_O 37M_HA_O 

AF06HAS AF08HAS AM01HAS AM14HAS 

Negative 

01F_AN_C 03F_AN_C 08F_AN_C 09F_AN_C 

20M_AN_C 28M_AN_C 36M_AN_C 37M_AN_C 

AF07ANS AF14ANS AM10ANS AM28ANS 

Ambiguous 

01F_SP_O 02F_SP_O 06F_SP_O 07F_SP_O 

08F_SP_O 09F_SP_O 20M_SP_O 23M_SP_O 

24M_SP_O 27M_SP_O 28M_SP_O 36M_SP_O 

AF01SUS AF02SUS AF03SUS AF13SUS 

AF30SUS AF34SUS AM06SUS AM12SUS 

AM13SUS AM18SUS AM34SUS AM35SUS 

AFFECTIVE FLEXIBILITY TASK 
(Practice Trials) 

Positive (one or fewer 

people) 

2050 2306 7250 7325 

8330    

Positive (two or more 

people) 

1340 2057 2352 4603 

8371    

Negative (one or fewer 

people) 

3181 3017 3225 9571 

9911    

Negative (two or more 

people) 

6415 6540 9045 9428 

9433    

 
AFFECTIVE FLEXIBILITY  

(Main Trials) 

 

Positive (one or fewer 

people) 

 

1463 

 

1500 

 

1510 

 

1710 

1722 1811 2040 2055.2 

2070 2071 2650 2660 

4250 4574 5260 5450 

5460 5470 5600 5628 

5629 5700 5814 5849 

5910 7270 7289 7330 

7350 7400 7430 7508 

8034 8120 8200 8300 

8350 8500 8510 8531 

Positive (two or more 

people) 

2080 2091 2150 2154 

2160 2170 2208 2209 

2216 2224 2310 2331 

2340 2345 2391 2398 

2540 2550 4542 4599 

4609 4610 4622 4623 

4626 4641 5621 5830 

5833 7502 8341 8370 

8380 8420 8461 8490 

8496 8497 8540 8600 

Negative (one or fewer 

people) 

1275 2276 2375.1 2399 

2710 2722 2750 2981 

3180 3230 3300 3550 
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6020 6200 6260 6300 

6570.1 9000 9007 9008 

9040 9090 9140 9180 

9181 9265 9280 9290 

9320 9331 9340 9342 

9470 9471 9560 9561 

9570 9630 9830 9912 

Negative (two or more 

people) 

2141 2205 2278 2312 

2352.2 2455 2694 2700 

2703 2718 2799 2900.1 

3301 4621 6211 6212 

6213 6242 6315 6360 

6555 6560 6571 6821 

6838 9220 9250 9253 

9400 9404 9415 9420 

9421 9435 9495 9520 

9592 9910 9920 9921 

 

Codes highlighted in yellow highlight differences in the picture stimuli used in the valence 

bias and affective flexibility tasks in comparison to Study 1 
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Chapter 5. Thesis General Discussion 
The overarching aim of the current thesis was to examine associations between 

HRV and emotional disposition factors with neural and performance-based indices of 

adaptive emotional responding. The NIM posits that HRV serves as an index of 

effective prefrontal inhibitory control and central nervous system-autonomic nervous 

system coordination (Thayer & Lane, 2000, 2009). More recently, an extension to the 

NIM outlined an 8-level vagal hierarchy, in which higher levels of neurovisceral circuitry 

involving the prefrontal cortex are proposed to support more complex coordination of 

attentional, regulatory, and goal-directed processes (Smith et al., 2017). However, 

research has predominantly focused on resting HRV and neural functioning at rest, 

that is, in the absence of contexts requiring adaptive emotional responding. To address 

this, the current body of research examined the relationship between HRV and 

emotional disposition factors with concurrent neural and performance-based indices 

of adaptive emotional responding across emotion and resting contexts. 

 

5.1 Review of the Studies 
5.1.1 Paper 1 

While neuroimaging studies have previously examined associations between 

resting HRV and neurovisceral circuitry at rest (Kumral et al., 2019; Sakaki et al., 2016; 

Schumann et al., 2021), fewer studies have investigated HRV and associated neural 

functional connectivity concomitantly during contexts that require adaptive emotional 

responding. Consequently, the main aim of Paper 1 was to examine the association 

between task-related HRV and amygdala-mPFC functional connectivity strength 

during a reappraisal task in younger and older adults from a wider ageing dataset. A 

secondary aim of the paper was to conceptually replicate prior resting-state findings 

(Sakaki et al., 2016), assessing the link between task-related HRV and resting 

amygdala-mPFC functional coupling. Participants engaged in a reappraisal paradigm 

which involved reinterpreting negative (and neutral) emotional pictures to either 

increase, decrease, or maintain their emotional response. Task-based HRV was 

derived from a finger pulse signal acquired during the scan.  

Partial support was found for the NIM and our first hypothesis, such that a slight 

positive, albeit non-significant, association between HRV and amygdala-mPFC 

connectivity emerged in older adults. However, younger adults exhibited a stronger, 

inverse association, in which higher task-related HRV was associated with reduced 
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amygdala-mPFC functional connectivity strength during the reappraisal task. 

Moreover, in relation to resting-state functional connectivity, we uncovered a sub-

threshold cluster within the mPFC that was spatially close to, but did not overlap with, 

our mPFC seed which demonstrated increased coupling with the left amygdala as a 

function of higher task-related HRV across the whole sample, however, this finding did 

not survive correction for multiple comparisons. Wider voxelwise whole-brain analyses 

of the task-related fMRI revealed that elevated task-based HRV was correlated with 

weaker right amygdala-PCC connectivity across both age groups and stronger right 

amygdala-right vlPFC connectivity in older adults, reflecting higher task engagement 

and effective recruitment of neural circuitry underlying emotion regulation. Taken 

together, findings from Paper 1 extend prior work, and more critically, reinforce the 

importance of testing neurovisceral circuitry in active emotion contexts to further 

identify neural concomitants of HRV and adaptive emotional responding. 

 

5.1.2 Paper 2 
Alongside studies predominantly focusing on resting HRV and neural functional 

connectivity/activity at rest, with the exception of a few studies (Chand et al., 2020; 

Chang et al., 2013; Schumann et al., 2021), most research has further assumed 

stationarity of the brain, adopting relatively static neuroanalytical techniques to 

examine heart-brain interactions. Consequently, the primary aim of Paper 2 was to 

apply co-activation pattern analysis to examine both task-related and resting HRV with 

associated transient temporal changes in co-active neural networks during an emotion 

processing task and at rest to identify shared versus context-specific neural networks. 

Furthermore, trait neuroticism is a stable emotional disposition metric that closely 

reflects emotion (in)flexibility, however, the relationship between HRV and trait 

neuroticism remains unclear and inconsistent, as is the extent to which both individual 

difference measures potentially interact to predict temporal dynamics of co-active 

neural networks across contexts. Correspondingly, a secondary aim of Paper 2 was 

to examine associations between HRV and trait neuroticism alongside potential 

interactions in relation to temporal dynamics derived from co-active neural patterns 

during emotion processing and rest. Two samples of younger adults were derived from 

the open access AOMIC neuroimaging dataset. The emotional matching task involved 

matching one of two stimuli to a target stimulus (emotion condition: angry or fear facial 

expressions, control condition: horizontal or vertical orientation of oval shapes). Both 
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task-based and resting HRV measures were extracted from a pulse signal that was 

acquired during the emotion processing and resting-state fMRI scans respectively.  

During the emotion matching task, higher trait neuroticism (sample 1) predicted 

a lower average duration, whereas elevated task-related HRV (sample 2) predicted a 

higher average duration, of a brain state involving co-activation between left amygdala 

and BNST with a visual attention network. Relatedly, elevated resting HRV was linked 

to a greater average duration of a similar ventral visual dominant brain state with left 

amygdala and BNST during rest in sample 2. These findings potentially indicate that 

individuals with higher HRV are engaging in more exteroceptive visual attentional 

processes across contexts. An interaction emerged between task-related HRV and 

trait neuroticism during the emotional processing task, such that higher task-related 

HRV predicted increased occurrences of a core DMN state co-active with left 

amygdala and BNST in individuals with lower, but not higher trait neuroticism (sample 

2). This was in the opposite direction to our hypothesis, whereby we anticipated high 

trait neuroticism to be linked to more self-referential DMN processing (i.e., increased 

occurrences and average duration). That being said, this finding conceptually aligns 

with prior work reporting increased activation in core DMN areas during cognitive 

switches within tasks and from breaks to task engagement (Crittenden et al., 2015; 

Smith et al., 2018), suggesting that individuals with lower trait neuroticism and higher 

task-based HRV were possibly more able to flexibly (dis)engage throughout the task. 

During rest, individuals with higher resting HRV more frequently entered a state 

of co-activation between right amygdala and BNST with regions consistent with the 

salience network (sample 1). While we had hypothesised that lower HRV would be 

linked to increased occurrences or a higher average duration of salience network co-

activation reflecting sustained vigilance, this finding corroborates a prior research 

study reporting salience-related regions to be linked to transient HRV changes (Chang 

et al., 2013), and, in this context, may in fact reflect a greater preparedness to 

dynamically switch between interoceptive and exteroceptive states during an eyes-

open resting-state paradigm (Costumero et al., 2020). In the same sample, higher 

resting HRV correlated with a lower average duration of right amygdala and BNST, 

and lower occurrences of left amygdala and BNST, co-activation with a dmPFC DMN 

state. Finally, higher trait neuroticism predicted a lower average duration of co-

activation between right amygdala and BNST with a core DMN state (sample 1), and 

a significant HRV by neuroticism interaction emerged in sample 2, such that 
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individuals with lower neuroticism and higher resting HRV demonstrated a lower 

average duration of a similar core DMN state with left amygdala and BNST (sample 

2).  

Overall, while findings concerning the transient temporal metrics exhibited low 

replicability across both samples and Bayesian analyses indicated anecdotal and fairly 

weak support for such associations, in line with Paper 1, this paper further reinforces 

the importance of examining task-related and resting HRV across contexts to elucidate 

shared, and disparate, neurovisceral regions supporting adaptive emotional 

responding according to the context and associated demands. 

 

5.1.3 Paper 3 
Whereas the first two papers investigated adaptive emotional responses in the 

form of emotion regulation (reappraisal of negative emotional information; Paper 1) 

and adaptive emotional processing (attentional shifting to and from negative and 

neutral emotional information; Paper 2), Paper 3 focused on affective flexibility in the 

form of flexible attentional (dis)engagement to and from positive and negative 

emotional information. The primary aim of Paper 3 was to examine the degree to which 

psychological (valence bias and trait rumination) and physiological (HRV) metrics of 

emotional disposition predicted affective flexibility in both an online (Study 1) and 

laboratory (Study 2) context. In both studies, participants engaged in an affective 

switching task and a valence bias task. The affective flexibility task involved 

categorising positive and negative emotional images according to either an emotional 

(valence) or non-emotional (number of humans) rule. Switch costs were calculated 

based on shifts in valence (i.e., trials where the valence of the image changed from 

positive to negative or vice versa accompanied by a repetition in the trial rule) and rule 

(i.e., trials where the rule changed from affective to non-affective or vice versa 

accompanied by a repetition in the valence of the image). The valence bias task 

involved providing positive or negative ratings in response to facial expressions of a 

clear or emotionally ambiguous valence. Task-based and resting HRV measures were 

derived from a pulse signal acquired during the emotion tasks and a rest period (Study 

2). 

We hypothesised that higher negativity biases and trait rumination would 

significantly predict greater affective inflexibility when shifting attention away from 

images with a negative valence towards those with a positive valence, especially when 



  197 

the affective trial rule repeated (valence prediction). Based on prior findings (Genet et 

al., 2013), it was anticipated that higher trait rumination, especially brooding 

rumination, would predict greater switch costs (lower flexibility) when shifting attention 

from affective aspects of negative emotional information, and lower switch costs 

(greater flexibility) when shifting attention from affective towards non-affective aspects 

of positive information. No significant associations emerged between either valence 

bias or trait (brooding or reflective) rumination with affective flexibility switch costs 

based on shifts in valence or trial rule. providing no supporting evidence for our 

hypotheses or prior findings (Genet et al., 2013). The lack of replication, at least in the 

case of rumination, may be explained by state versus trait differences in measures of 

emotional disposition, with state-like variables perhaps more closely capturing 

variance associated with the dynamic nature of affective flexibility. Moreover, in Study 

2, contrary to our hypothesis, higher task-related HRV was tentatively associated with 

a greater switch cost (i.e., affective inflexibility) when shifting attention towards positive 

valence images on trials where the non-affective rule repeated. We also found some 

support for our hypothesis that individuals with elevated resting HRV would exhibit 

greater switch costs (i.e., affective inflexibility) when shifting attention from positive 

towards negative valenced images when the affective rule repeated, although neither 

of these findings survived correction for multiple comparisons. While it is important to 

consider the potential spurious nature of these findings, HRV appeared to be more 

closely coupled to switch costs based on shifts in emotion (valence) as opposed to 

attentional shifts pertaining to greater cognitive demand (trial rule). Collectively, these 

findings reinforce the notion that context matters, and critically highlight that affective 

(in)flexibility may not always be (mal)adaptive.  

 

5.2 Comparison of Findings to the Wider Literature 
5.2.1 Comparison with Prior HRV, Neuroimaging, and Adaptive Emotional 
Responding Studies 

The NIM proposes that higher-order prefrontal cortical structures exert control 

over subcortical cardioacceleratory regions (i.e., amygdala) at rest, with stronger 

integrity of the prefrontal cortex and cortical-subcortical circuitry indexed by greater 

resting HRV (Thayer & Lane, 2000, 2009). Prior work has supported this notion, with 

higher HRV linked to cerebral blood flow in the amygdala and mPFC (Thayer et al., 

2012), stronger resting-state amygdala-mPFC functional connectivity (Nashiro et al., 
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2023a; Sakaki et al., 2016), and greater structural covariance in dmPFC (Wei et al., 

2018). In Paper 1, there was a slight positive, albeit non-significant, association 

between higher task-based HRV and amygdala-mPFC functional connectivity strength 

in older adults during the reappraisal task. Moreover, a sub-threshold cluster in mPFC 

was observed at rest that demonstrated increased functional connectivity with the left 

amygdala as a function of higher task-related HRV across the whole sample. In Paper 

2, we reported clusters in mPFC to form part of core DMN brain states, with these 

mPFC areas demonstrating partial spatial overlap with the mPFC seed region of 

interest in Paper 1. Interestingly, no main effects of HRV were found for DMN core 

state, but significant interactions between HRV and neuroticism emerged. Higher task-

related HRV predicted increased occurrences during emotional processing, and a 

reduced average duration at rest, of co-activation between the left amygdala and 

BNST with core DMN states in individuals with lower but not higher trait neuroticism. 

Collectively, these findings tentatively support the notion that HRV can serve as an 

index of prefrontal functioning and corroborates links between HRV and amygdala-

PFC circuitry in supporting adaptive emotional responding across emotional and 

resting contexts.  

The extension to the NIM outlined an 8-level vagal hierarchy in which brain 

regions forming the DMN (i.e., mPFC, PCC) and executive control network (i.e., 

dorsolateral prefrontal cortex, parietal cortex) regions are proposed to facilitate 

processes associated with greater metabolic demand, such as regulation and goal-

directed behaviour (Smith et al., 2017). Consequently, through application of both 

static and dynamic neuroanalytical techniques, the current research extends prior 

findings, highlighting the pivotal role emotional context plays in shaping associations 

between HRV and neural circuitry reflecting adaptive emotional responding. For 

example, while we found partial support for an association between task-related HRV 

and amygdala-mPFC connectivity strength, in younger adults, the inverse effect was 

observed, such that higher task-based HRV correlated with weaker amygdala-mPFC 

functional connectivity during reappraisal. While prior research has found higher HRV 

to be associated with greater (d)mPFC during reappraisal of negative and positive 

images (Guendelman et al., 2024; Min et al., 2024; Steinfurth et al., 2018), reappraisal 

has been reported to not require engagement of (v)mPFC in order to control amygdala 

activity (Berboth & Morawetz, 2021; Buhle et al., 2014). It is likely that other areas, 

such as lateral prefrontal cortex, become more relevant to HRV and adaptive 
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emotional responding in contexts requiring higher cognitive (metabolic) demands and 

goal-directed behaviour. We found higher task-related HRV to be positively coupled 

with stronger right amygdala-right vlPFC connectivity in older adults during an active 

emotion regulatory context, highlighting that when more explicit emotion regulation is 

required, older adults with higher HRV were able to recruit emotion regulation related 

circuitry to support engagement in the task. Additionally, in Paper 2, the IFG/vlPFC 

was co-active with other brain areas linked to visual attention (i.e., occipital cortex and 

SPL) as a function of left amygdala and BNST in which higher task-related HRV was 

linked to a longer average duration of this brain state throughout the emotional 

processing task in younger adults. Indeed, the IFG has not only been reported to be 

involved in emotion processing (Adolphs, 2002), but also in emotion regulation (Kohn 

et al., 2014; Messina et al., 2015; Wager et al., 2008), with left IFG/vlPFC consistently 

identified as supporting reappraisal (Berboth & Morawetz, 2021; Buhle et al., 2014).  

The current research also contributes further insight into HRV and associations 

with flexible emotional processing and affective flexibility. Findings from both Papers 

2 and 3 show some initial patterns that indicate HRV may potentially be more closely 

coupled with flexible allocation of attention in emotional contexts. In particular, Paper 

2 applied a novel neuroanalytical technique to derive transient temporal metrics from 

data-driven brain states such as occurrences (i.e., number of times a brain state was 

expressed throughout the duration of the scan) and average duration (i.e., mean 

duration a brain state was sustained for). Correspondingly, these metrics appear more 

relevant to the concept of flexibility compared with relatively static functional 

connectivity metrics that assess average connectivity strength over the scan. For 

instance, in individuals with lower, but not higher trait neuroticism, greater task-related 

HRV predicted increased occurrences of a core DMN state co-active with left 

amygdala and BNST. If adopting a static connectivity approach, this brain state may 

have been expressed as having overall higher connectivity strength or increased 

activation, but the associated temporal dynamic metric provides crucial context for 

interpreting how fluctuations in this brain state may constitute adaptive responding 

throughout the scan. Indeed, higher frequency of co-activation between the amygdala 

and DMN appears to align with research that has reported increased activation in core 

DMN areas during cognitive switches between tasks and between engaging in tasks 

and breaks (Crittenden et al., 2015; Smith et al., 2018). Moreover, during rest, 

individuals with elevated resting HRV more frequently entered salience network 
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states, which may reflect a greater preparedness to dynamically switch between 

interoceptive and exteroceptive states (Costumero et al., 2020). While fairly weak 

evidence was uncovered to support these associations and results were not replicated 

across both samples, they provide some indication that HRV influences flexibility of 

neural states overlapping neurovisceral circuitry, with higher HRV underlying more 

frequent occurrences of DMN and salience network during emotional processing and 

rest respectively. 

Critically, the NIM posits that shared neural regions overlap to support 

autonomic, emotional, and cognitive regulatory processes (Thayer & Lane, 2000, 

2009). Indeed, previous studies have found higher HRV to be associated with greater 

executive functioning and cognitive performance (Magnon et al., 2022; Thayer et al., 

2009). HRV has also previously been associated with affective flexibility, such that 

lower switch costs (higher flexibility) when shifting attention from affective to non-

affective aspects of negative emotional information was associated with reduced 

resting HRV (Grol & De Raedt, 2020). In Paper 3, we did not find associations between 

HRV and switch costs pertaining to more cognitively demanding attentional shifts 

based on the trial rule, but instead found associations with attentional shifts related to 

the valence of the emotional images. Interestingly, higher task-related HRV was 

associated with less efficient shifting of attention from images with a negative valence 

in the presence of a non-affective rule, and higher resting HRV correlated with less 

efficient shifting of attention from positive valence images on trials when the affective 

rule repeated, although these findings did not survive correction for multiple 

comparisons. On the surface, these findings do not support the overlap between 

emotion and cognition as proposed by the NIM and could be considered somewhat 

contradictory given that higher HRV is related to lower affective flexibility in the case 

of both findings. However, in this context, higher attentional capture towards negative 

images during the task (i.e., potentially reflecting a lower tendency to avoid negative 

emotional information in those with lower HRV which has relevance to the vigilance-

avoidance model of anxiety; Mogg et al., 2004), and positive images during rest (i.e., 

potentially reflecting a positivity bias as observed in prior work in individuals with higher 

HRV; Madison et al., 2021; Osnes et al., 2023), may actually be considered adaptive 

emotional responding. These findings contribute to the wider literature which 

emphasises the importance of context (i.e., valence, current goals) to establish 

whether (in)flexibility is considered (mal)adaptive (Parsons et al., 2016).  
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5.2.2 Comparison with Prior Emotional Disposition Studies  
The NIM, amongst other psychophysiological frameworks, posit that HRV is an 

index of adaptive self-regulatory ability (Appelhans & Luecken, 2006; Thayer & Lane, 

2000, 2009), and, in turn, (HF-)HRV has been proposed to be transdiagnostic marker 

of psychopathology (Beauchaine & Thayer, 2015). Trait neuroticism and rumination 

are both emotional disposition factors that have been linked to increased risk of onset 

of anxiety and depression (Hsu et al., 2015; Kootker et al., 2016; Kotov et al., 2010; 

McLaughlin & Nolen-Hoeksema, 2011). Moreover, anxiety and depressive symptoms 

have been linked to negativity biases in response to emotional ambiguity, and 

reductions in HRV have been reported in anxious and depressed individuals 

(Beauchaine & Thayer, 2015; Chalmers et al., 2014; Dell-Acqua et al., 2020; Koch et 

al., 2019). Interestingly, results from the current work indicated neither resting or task-

based HRV during emotional contexts to be associated with a range of trait-like 

emotional dispositional factors linked to the risk of onset of anxiety and depression, 

including self-reported trait neuroticism in two samples of younger adults (Paper 2), 

nor trait rumination or valence bias in a sample containing predominantly younger 

adults (Paper 3, Study 2). These findings diverge from prior work reporting direct 

associations between HRV and trait neuroticism (Čukić & Bates, 2015; Shepherd et 

al., 2015) and rumination (Carnevali et al., 2018). Nonetheless, there have been mixed 

and inconsistent findings between HRV and both neuroticism and rumination in 

previous studies (Aldao et al., 2010; Ode et al., 2010; Sloan et al., 2017), which 

suggests that the relationship between HRV and other emotional disposition factors is 

likely more nuanced. Indeed, Ode et al. (2010) reported a significant interaction 

between HRV and trait neuroticism, such that greater HRV was beneficial in 

individuals with higher neuroticism, predicting less problematic daily outcomes, 

however, at lower levels of neuroticism, higher HRV was not necessarily beneficial 

and somewhat problematic. In the current work, significant interactions emerged 

between HRV and neuroticism to predict temporal metrics of co-activation states 

linked to the DMN across emotion and resting contexts. Specifically, we observed 

higher HRV at lower trait neuroticism levels to predict increased occurrences of a brain 

state reflecting the DMN, whereas in those with higher trait neuroticism, higher HRV 

predicted fewer occurrences of this network during the emotion processing task. Given 

prior work reporting increased DMN activation in supporting cognitive transitions 

(Crittenden et al., 2015; Smith et al., 2018), this could reflect an increased ability to 
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(dis)engage the DMN during an emotion processing task in individuals with lower trait 

neuroticism and higher HRV, reflecting adaptive emotional responding. With relation 

to resting-state, the HRV by neuroticism interaction appeared to be driven by low trait 

neuroticism, such that lower HRV predicted a higher average duration of the DMN, 

whereas higher HRV predicted a lower average duration of this state during rest. In 

this context, individuals with lower trait neuroticism and higher HRV may have been 

experiencing less stress and/or sustaining other brain states linked to exteroceptive 

attentional engagement as opposed to focusing their attention internally. On the other 

hand, for higher trait neuroticism, resting HRV did not appear to have much of an 

influence on average duration of the DMN. Overall, this work and previous studies 

suggest more nuanced and complex interactions between HRV and trait emotional 

disposition variables which warrant further investigation. 

Notably, while the current research did not find direct associations between 

HRV and other emotional disposition factors, across all papers, we found resting and 

task-based HRV measures to predict concomitant functional connectivity strength of 

brain areas and temporal dynamics of co-active neural states underlying adaptive 

emotional responses (Papers 1-2), alongside the observation of HRV being the only 

individual difference metric to tentatively predict attentional shifts in response to 

emotional material relative to other trait-like markers of emotional disposition (Paper 

3). This provides some support for the NIM’s assertion of HRV being a measure of 

adaptive autonomic and emotion regulatory responding (Appelhans & Luecken, 2006; 

Thayer & Lane, 2000, 2009), although in the case of the latter paper, findings reinforce 

the notion that inflexibility may indeed constitute an adaptive attentional response 

depending on the context. Taken together, HRV may capture unique and/or additional 

variance underlying adaptive emotional responses over and above other measures of 

emotional disposition. 

 

5.3 Limitations of the Research 
5.3.1 Correlational Nature of the Findings 

While the papers forming this thesis make valuable contributions to the 

literature by assessing HRV in contexts requiring various degrees of adaptive 

emotional responding, the findings between HRV and other emotional disposition 

variables (i.e., trait neuroticism, rumination, and valence bias) with neural (i.e., 

functional connectivity and temporal metrics of co-active brain states) and 
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performance-based (affective flexibility) measures of adaptive emotional responding 

are correlational in nature. Thus, while we have identified associations between HRV 

and adaptive emotional responding across different contexts, the direction of such 

findings is unclear. For example, in Paper 1, does higher HRV strengthen and reinforce 

functional connectivity between the amygdala and vlPFC in older age in a reappraisal 

context, or is it the preservation of amygdala-vlPFC connectivity in the first instance 

that promotes more effective emotional responding during the task, which in turn 

elevates task-related HRV? HRV is a non-invasive and malleable metric that can be 

altered either via HRV biofeedback (Lehrer & Gevirtz, 2014; Lehrer et al., 2020) or 

transcutaneous vagus nerve stimulation (Machetanz et al., 2021). Indeed, research 

has already taken initial steps to investigate similar research questions in a more 

causal manner via implementation of HRV biofeedback interventions to change resting 

HRV levels. These studies have shown that altering HRV results in changes in neural 

circuitry at rest (Nashiro et al., 2023a; Schumann et al., 2021) and during emotion 

regulation (Nashiro et al., 2023a), alongside improvements in cognitive performance 

(Nashiro et al., 2023b). Correspondingly, it would be interesting to examine HRV 

changes and the impact this has on affective flexibility, especially given observed 

specificity of valence relative to rule switch costs in Study 2 of Paper 3. Relatedly, the 

direct manipulation of HRV may facilitate identification of an ‘optimum’ level of HRV 

(for a discussion on the quadratic nature of HRV, see Kogan et al., 2013) and how this 

may change, or be influenced by, either individual differences in emotional disposition 

and/or contexts with varying emotional/cognitive demands. Consequently, such 

evidence may support the use of HRV as a complementary intervention to target 

emotion dysregulation, a feature underlying various psychopathology, including 

anxiety and depression (Cisler et al., 2010; Joormann & Stanton, 2016). Overall, the 

adoption of biofeedback and/or vagus nerve stimulation interventions to further test 

the NIM and investigate HRV as an index of adaptive emotional responding will be a 

continued and fruitful avenue for future research.  

 

5.3.2 Sample Characteristics 
The papers comprising this thesis primarily sampled younger (healthy) adults 

who were predominantly White and European. HRV has been found to differ based on 

ethnicity (Hill et al., 2015) and ethnic differences have also been reported to influence 

findings between resting cerebral blood flow and HRV in relation to affect (Thayer & 
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Koenig, 2019). Moreover, sex has been reported to influence HRV (Koenig & Thayer, 

2016). While the presented papers were relatively balanced in terms of biological sex 

(Papers 1 and 2), the studies forming Paper 3 contained a higher proportion of 

participants who identified as female (Study 1 and 2) and who were assigned female 

sex at birth (Study 2). Most of the participants recruited across the presented papers 

were also healthy younger adults, therefore our findings likely capture ‘normal’ or 

average variation in HRV and metrics of adaptive emotional responding.  

 

5.3.3 Single Time-Domain HRV Measure and Confounding Factors 
Across all papers, the root mean square of successive differences (RMSSD) 

served as a metric of both resting and task-based HRV. The RMSSD is a frequently 

used time-domain HRV measure in wider neuroimaging and psychological research 

and has been described as a robust measure of parasympathetic tone (Kleiger et al., 

2005) which is generally less susceptible to physiological sources of noise, especially 

respiration (Hill et al., 2009). For these reasons and conceptual replication purposes, 

we proceeded with RMSSD as a single measure of HRV throughout the current body 

of research. However, it is unclear whether findings in the current work would be 

replicated using other frequency-domain (i.e., High-Frequency HRV) and non-linear 

indices of HRV. It is acknowledged that there are dynamic, non-linear processes within 

the ANS that influence both heart rate and HRV, with the inherent variation of such 

non-linear systems facilitating quick and flexible autonomic responses to 

environmental challenges (Beckers et al., 2006; Shaffer & Ginsberg, 2017). Thus, non-

linear HRV methods may provide further insight into adaptive emotional responding 

beyond traditional time-or frequency-domain HRV measures (de la Torre-Luque et al., 

2017). However, given caution in the literature regarding non-linear metrics (Sassi et 

al., 2015) there have been recommendations to adopt such measures as 

complementary indicators of HRV, along with more traditional, established HRV 

metrics (Laborde et al., 2017). Furthermore, many confounding stable and transient 

factors have been found to influence HRV parameters, including, but not limited to, 

smoking status, general fitness/activity level, caffeine intake, and BMI (Hayano et al., 

1990; Karason et al., 1999; Sammito & Böckelmann, 2016; Zimmermann-Viehoff et 

al., 2016; for a full list see: Laborde et al., 2017). Given that Papers 1 and 2 used 

existing datasets to perform secondary data analyses, these studies were not 

specifically designed to measure HRV and by extension, did not consider assessing 
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confounding factors that influence HRV. Moreover, in the case of Study 2 in Paper 3, 

we did not collect information pertaining to a wide range of physical health factors such 

as height, weight, exercise, smoking status, and sleep given time constraints with data 

collection and to reduce risk of participant burden or fatigue when accounting for the 

other tasks and questionnaires already included in the protocol. Therefore, it will be 

important for future studies assessing HRV and adaptive emotional responding to 

control for both stable and transient factors influencing HRV.   

 

5.3.4 Statistical Power and Reliability 
A final limitation to consider when interpreting the findings across studies in this 

thesis is low statistical power. All studies comprised of relatively small sample sizes 

and in the case of the final empirical chapter, despite attempting to account for 10% 

participant attrition, the sample size for both studies fell below the recommended 

sample N to detect effects of a medium size as indicated by corresponding power 

analyses. It is acknowledged that neuroimaging studies examining associations 

between neural functioning and inter-individual differences in mental health or 

cognitive phenotypes typically involve small sample sizes (Button et al., 2013; Marek 

et al., 2022). In turn, smaller sample sizes have been reported to increase sampling 

variability and are linked to a heightened risk of detecting unstable or inflated 

associations/effects (Marek et al., 2022). Larger sample sizes reduce both sampling 

variability and facilitate the ability to detect small to large effect sizes (e.g., Pearson 

correlation r = 0.2-0.8; Marek et al., 2022; Schönbrodt & Perugini, 2013; Varoquaux, 

2018). Therefore, given that the studies in this thesis were generally underpowered 

and considering the potential for increased instability of effects in small sample sizes 

and cross-sectional research, it will be important for future research to replicate current 

findings and examine relationships between HRV, neural functioning and affective 

flexibility in larger, representative samples. 

Nonetheless, although increasing sample size is important, research quality 

and the reliability of key measures has been considered to be even more crucial for 

statistical power (Makowski et al., 2025). Measurements with poorer test-retest 

reliability require greater sample sizes to reach adequate statistical power (Hedge et 

al., 2018; Parsons et al., 2019). The studies in this thesis utilised both resting and task-

related measures of HRV that were acquired while participants were in the MRI 

scanner (Papers 1 and 2) or in the laboratory (Paper 3, Study 2). An early review by 
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Sandercock et al. (2005) documented temporal instability of HRV measures in the 

form of significant variability in test-retest reliability, leading to HRV being reported as 

a time unstable measure. On the other hand, recent research has reported HRV 

metrics, especially time-domain measures such as the RMSSD, to be robust across 

laboratory and home settings and sitting versus standing positions (intra-class 

correlations (ICC) often higher than 0.75) (Besson et al., 2025). Furthermore, 

Schumann et al. (2021) reported no systematic difference in HRV based on laboratory 

versus MRI settings and HRV measures exhibited good stability across conditions and 

signals (ECG, PPG) as indicated by high ICC values (above 0.80). Relatedly, HRV 

has been reported to exhibit good reliability across task conditions (reaction time task, 

spontaneous breathing and controlled breathing), however, trait variance was found 

to increase from 49% to 75% when aggregating across measurement occasions 

(Bertsch et al., 2012). Given that the studies in this thesis did not obtain HRV measures 

in the same individuals across multiple time points, it is unclear whether the HRV 

metrics exhibit both good stability over time and whether test-retest reliability differs 

based on condition (rest versus task). Future studies should aim to assess and report 

the reliability of HRV metrics across multiple time points and conditions alongside 

considering aggregating HRV across measurement periods to increase trait variance 

(Bertsch et al., 2012).  

Alongside HRV, the current research employed a mixture of self-reported 

measures of trait neuroticism and rumination, and assessed behavioural measures of 

affective flexibility in the form of switch costs. Self-report measures have been found 

to demonstrate increased stability in the form of test-retest reliability in comparison to 

experimental/task metrics (Enkavi et al., 2019; Pennington et al., 2025). Interestingly, 

while test-retest reliability is typically considered when creating self-report 

questionnaires, the stability of individual difference variables obtained via 

experimental tasks has generally been neglected (Parsons et al., 2019). Wider 

research has reported that behavioural tasks are typically characterised by high within-

subject variability with robust main effects of task at the group level, but low between-

subject variability (Hedge et al., 2018). This low between-subject variability produces 

low reliability for individual differences (Enkavi et al., 2019; Hedge et al., 2018; 

Pennington et al., 2025). Similarly, behavioural measures that rely on difference 

scores have been reported to be inherently unreliable (Draheim et al., 2016; Hughes 

et al., 2014) given associations between the conditions used to calculate the difference 
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score and generally high within-subject versus low between-subject variability (Enkavi 

et al., 2019; Caruso, 2004). A combination of these factors likely underlies the inability 

to replicate prior findings in Paper 3 and also the lack of associations observed 

between self-reported individual differences in trait rumination with behavioural switch 

costs on the affective flexibility task. Future research should assess test-retest 

reliabilities of experimental tasks, especially when utilising dependent variables as an 

index of individual differences (Pennington et al., 2025) and also consider alternative 

flexibility measures, such as rate residual or bin scores (Hughes et al., 2014), to 

increase the reliability of flexibility measures, in turn enhancing statistical power. 

 

5.4 Implications of the Research and Future Directions 
The work of this thesis complements prior research and provides further insight 

into HRV as a predictor of adaptive emotional responding at the neural and 

psychological level. Collectively, these studies reinforce the importance of 

investigating heart-brain interactions in emotional contexts to elucidate key 

neurovisceral circuitry and mechanisms that support adaptive emotional responding 

at higher levels of the vagal hierarchy. This research further supports the utility of task 

fMRI data more generally for highlighting shared and state-specific connectivity and 

brain states. Since recent research has advocated for the use of more naturalistic 

paradigms (i.e., movie watching) to constrain the variance in a manner that increases 

sensitivity to capture and detect individual differences over pure resting-state 

paradigms (Finn, 2021; Finn & Bandettini, 2021), it may be beneficial for future work 

to employ naturalistic paradigms to study HRV and neurovisceral circuitry. 

Critically, the current research has broader implications for the potential utility 

of HRV as a non-invasive and objective psychophysiological marker for promoting 

more effective and appropriate emotional responding across contexts. In all three 

papers, HRV was consistently linked to neural and performance-based indices of 

adaptive emotional responding, and in the case of Paper 3, was found to be the sole 

predictor of attentional shifts pertaining to the valence of emotional material. HRV 

provides insight into the neurobiological underpinnings of adaptive emotional 

responding while also overcoming limitations linked to self-reported emotion regulation 

or flexibility, such as social desirability bias or misunderstanding of questionnaire items 

(Seeley et al., 2015; Visted et al., 2017). Relatedly, HRV is a malleable metric that can 

be altered using biofeedback or vagus nerve stimulation methods. Therefore, since 
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HRV appears to reflect adaptive emotional responding, it could potentially be used as 

a complementary target for the prevention or management of emotion dysregulation 

which is usually a feature of psychological disorders, such as anxiety and depression 

(Cisler et al., 2010; Joormann & Stanton, 2016). Notably, HRV also has implications 

for physical health and has been found to predict cardiovascular disease markers 

(Thayer et al., 2010). Thus, HRV could serve as a potential complementary treatment 

target for physical and mental health comorbidities, (e.g., links between cardiovascular 

disease risk and depression; Hare et al., 2014). 

Despite important contributions and implications of the current work, research 

examining concurrent heart-brain associations across contexts requiring adaptive 

emotional responding remain relatively scarce. While the present findings provide 

some supporting evidence for the NIM during active emotion regulation and flexible 

emotional processing, findings were fairly weak and not as robust as anticipated and 

the directionality of these findings remains unclear. Therefore, a clear and critical 

avenue for future research will be the adoption of causal experimental designs, via 

HRV biofeedback or transcutaneous vagal nerve stimulation, to assess the degree to 

which individual differences in HRV predict emotion flexibility across various contexts. 

Existing studies have started to implement HRV biofeedback interventions to observe 

how HRV changes impact neural circuitry during rest and emotion contexts (Nashiro 

et al., 2023a; Schumann et al., 2021), however, the biofeedback intervention periods 

have been relatively short (i.e., 5 to 8 weeks). Future work should assess the longer-

term impact of HRV changes and the subsequent influence this has on relevant indices 

of adaptive emotional responding, alongside interaction effects with other emotional 

disposition variables. Relatedly, (HF-)HRV is proposed to be a transdiagnostic 

biomarker of psychopathology, however, if HRV is to be considered a potential 

complementary target for emotion dysregulation underlying psychological disorders, it 

will be critical to assess the impact of biofeedback interventions in relevant clinical 

samples across tasks with varying contextual demands (i.e., emotion regulation, 

affective switching). Additionally, the consideration of various sample characteristics, 

including but not limited to, age, biological sex, gender identity, and ethnicity, alongside 

other confounding factors that have been reported to influence HRV metrics, will be 

important to determine how these factors influence observed associations between 

HRV and adaptive emotional responding. 
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5.5 Conclusion 
The principal aim of this thesis was to examine the degree to which individual 

differences in HRV could predict both neural and performance-based indices of 

adaptive emotional responding. Collectively, the research studies lend some support 

for the notion that HRV reflects adaptive emotional responding, demonstrating that 

resting and task-related HRV show tentative associations with both neural and 

attention-related measures of emotion flexibility. The current work contributes to an 

evolving body of neuropsychological research examining heart-brain interactions, 

critically highlighting the importance of assessing such associations during contexts 

that actively require adaptive emotional responding to elucidate key neurovisceral 

circuitry and attentional processes that support flexible emotional responses. Critically, 

this research reinforces the importance of context and associated demands, showing 

that inflexibility may not always be maladaptive. This work enhances our 

understanding of HRV interactions with neural and performance-based measures of 

adaptive emotion across contexts and has potential implications for the consideration 

of HRV as a complementary target for managing psychological disorders 

characterised by emotion dysregulation, such as anxiety and depression. It will be 

crucial for future work to implement causal and longitudinal experimental designs, 

alongside the recruitment of clinical populations, to further assess HRV, trait emotional 

disposition, and adaptive emotional responding across various contexts. 
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