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Trait macroevolution in the presence of
covariates

Mark Pagel & Andrew Meade

Statistical characterisations of traits evolving on phylogenies combine the
contributions of unique and shared influences on those traits, potentially
confusing the interpretation of historical events ofmacroevolution. The Fabric
model, introduced in 2022, identifies historical events of directional shifts in
traits (e.g. becoming larger/smaller, faster/slower over evolutionary time) and
of changes in macroevolutionary ‘evolvability’ or the realised historical ability
of a trait to explore its trait-space. Here we extend themodel to accommodate
situations inwhich the trait is correlatedwith oneormore covarying traits. The
Fabric-regressionmodel identifies a unique component of variance in the trait
that is free of influences from correlated traits, while simultaneously esti-
mating directional and evolvability effects. We show in a dataset of 1504
Mammalian species that inferences about historical directional shifts in brain
size and in its evolvability, having accounted for body size, differ qualitatively
from inferences about brain size alone, including findingmany new effects not
visible in the whole trait. A class of fundamental macroevolutionary questions
awaits testing on the variation uniquely attributable to traits, and the ability to
accommodate statistically one or more covariates opens the possibility of
bringing the formal methods of causal inference to phylogenetic-comparative
studies.

Phylogenetic comparativemethods allow researchers to characterise
the macroevolution of species’ traits over the historical timeframe of
a phylogenetic tree, where we take macroevolution here to mean the
origin and evolution of the major differences among species1. Mac-
roevolutionary statistical models have been designed to identify
trends2,3 and episodic bursts of trait evolution4,5 or posit the exis-
tence of global (tree-wide) or local optima towards which traits are
drawn6–9. Most rely on one or a small number of homogeneous
processes assumed to describe trait evolution throughout the
tree2–4,6–9 or in other cases, a heterogenous distribution of effects is
explored5. The Fabricmodel1, introduced in 2022, identifies historical
instances of two distinct evolutionary phenomena that affect the
phenotype as it evolves along the branches of the phylogenetic tree:
directional shifts such as phenotypes getting larger/smaller or
becoming faster/slower, and changes in evolvability or the capacity
of a trait to explore its trait-space or niche. Both effects can occur

anywhere in the tree, and the model identifies their occurrence,
polarity and strength throughout the phylogeny.

The Fabric model, along with many other macroevolutionary
models, was designed to study a single trait in isolation. Frequently, it
will be the case that traits co-vary across taxa with other traits, such as
observed in, but not limited to, the allometric relationships that many
morphological, physiological, demographic and life history traits have
with body size. These relationships likely identify multivariate
phenotypes10 of adaptive interest in their own right. But the presence
of covariation can make it difficult to separate macroevolutionary
changes in some focal trait of interest that may be attributable to
changes in its covariates, from independent changes to the trait that
might occur in response to some other unknown or unmeasured
influence—variance shared with covariates can obscure or even mask
evolutionary changes that occur independently. The Fabric-regression
model estimates the same two evolutionary processes as described for

Received: 24 October 2024

Accepted: 6 May 2025

Check for updates

School of Biological Sciences, University of Reading, Reading, UK. e-mail: m.pagel@reading.ac.uk

Nature Communications |         (2025) 16:4555 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-7287-8865
http://orcid.org/0000-0001-7287-8865
http://orcid.org/0000-0001-7287-8865
http://orcid.org/0000-0001-7287-8865
http://orcid.org/0000-0001-7287-8865
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-59836-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-59836-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-59836-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-025-59836-6&domain=pdf
mailto:m.pagel@reading.ac.uk
www.nature.com/naturecommunications


the Fabric model while simultaneously accounting for the variance an
evolving trait shares with other traits, leaving the trait’s unique varia-
tion for macroevolutionary characterisation. Its use brings perspec-
tives on trait evolution not available to the Fabric model and other
single-trait models, or not always studied in multivariate approaches,
and it can return descriptions of trait evolution that are not visible
when the trait is studied on its own.

The Fabric-regression model’s null expectation (like that of the
Fabric model) is that trait evolution can be described statistically as a
random walk that follows a neutral Brownian process. The funda-
mental parameter of a Brownian process is its variance, denoted by the
parameter σ2. It is a measure of the size of the infinitesimally small
randomsteps that comprise the randomwalk, and these steps are used
statistically as a metaphor for gradual evolution. A small Brownian
variance means that the random steps of evolution are small and vice
versa. After some period of time t, a neutral Brownian process that is
re-run many times will yield a range of outcomes that is symmetrical
about its starting point and has variance σ2t. This is another way of
saying that neutral Brownian processes are not directional—their
expected change is zero, but do provide a measure of a trait’s
exploratory ability.

The Fabric and Fabric-regressionmodels identify departures from
this null model of trait evolution in the form of directional and evol-
vability changes. We summarise these two processes here, having
described them previously1. Directional shifts, denoted by the para-
meter β, record instances of traits either increasing (β > 0) or
decreasing (β < 0) over some period of time t along the interior or tip
branches of the phylogeny. They correspond to changes that exceed
what would be expected from the random (directionless) walk of
Brownianmotion; the null value is β =0. Directional changes can occur
anywhere in the tree and do not imply or entail any alteration in
evolvability, that is, in the variance of evolutionary change. This is true
even when the directional changes occur rapidly in evolutionary time
and appear as bursts or pulsed episodes of change1,4,11. Instead, along
with others12,13 we have previously shown1 how even these apparent
bursts of change do not require any special evolutionary mechanism:
they are small enoughwhenmeasuredovermacroevolutionary time to
be compatible with selection acting on the variance that is available
within populations, or even with neutral drift. This process can go on

indefinitely without exhausting the supply of variants if selection is not
too strong14,15, and studies show that genetic variation in fitness is
plentiful in wild populations16.

We take the Brownian variance to be an estimate of the realised
evolvability of the trait. It is ameasure of a trait’s observed or historical
exploratory capacity as an outcome of the macroevolutionary process
(this is in contrast to its use in quantitative genetics17,18 where evolva-
bility is understood as the capacity of a trait residing within a popu-
lation to respond to selection, typically as reflected by its genetic or
mutational variance). Changes to the realised evolvability are denoted
in the Fabric-regression model by the parameter υ (upsilon), which
alters the evolutionary (Brownian) variance locally in parts of the tree
according to υσ2. Changes to evolvability do not alter the mean value
of a trait. The default or null value for υ = 1; a value of υ> 1 signals an
increase in the variance such as might be expected if, for example,
some key innovation, change to a developmental mechanism or per-
haps an environmental change permits or even encourages a greater
variety of some trait among a monophyletic group of species, or
possibly because the underlying genetic mutation rate has increased,

thereby producing more variants per unit time; a value of υ < 1 indi-
cates the reverse.

As with directional effects, the magnitude of the evolvability
changes can vary throughout the tree, and they can follow any pattern
over the long term. By comparison, early burst models2 posit a para-
metric trend of rapidly increasing evolutionary variance early in a
clade, with the pace of increase slowing over time but never reaching
an equilibrium; a more general version of this model allows the evo-
lutionary variance to accelerate or decelerate throughout the tree19.
Models of pulsed change4 rely on a specific pulse process with its own
variance and macroevolutionary models of the Ornstein–Uhlenbeck
(OU) process propose that a trait’s evolutionary variance is small when
it is sitting far from its optimum, reflecting strong selection towards
the optimum, but then increases to a value roughly in linewith thatof a
Brownian process as it approaches equilibrium at the evolutionary
optimum where it is held in place by stabilising selection7.

The Fabric-regression model can be written as

Y i =α +β1Xi1 + . . .βjX ij +
X
k

βikΔtik + ei ð1Þ

where the Y i are the observed data for the trait of interest on the ith
species (i = 1…n), the Xij are the values of the j covariates, and the βj

are their associated regression coefficients. As we have described
previously in ref. 1, the summation on the right-hand side of Eq. 1 is
over one or more local directional shifts in the trait value that occur
along the k branches leading from the root of the phylogeny to the
observed value of the trait at the tip of the phylogeny for the ith
species. We denote these as βik to distinguish them from the
regression coefficients. Theymeasure the inferred amount of change
in the magnitude of the trait from the ancestral to the descendant
state in the kth branch along the path leading to species i (and to any
other of the species that descend from that branch, e.g. β1k and β2k

would be identical if species 1 and 2 are both descendants of branch
k). The ei are� N 0, υσ2

� �
and constitute the variance of the Brownian

process.
The log-likelihood of this model (for simplicity, written with a

single covariate) is

where Y and X are vectors of length i corresponding, respectively, to
the trait data and a covariate in the i species,α is the estimated value of
the trait at the root, the summations are over the i species and then
separately for each species over the k directional effects that occur in
the branches along the path length leading from the root to the tips of
the tree. In principle, any number of covariates (X) can be included,
and each would receive its own βj parameter.

Equations 1 and 2 can be interpreted as defining species-specific
optima given by the combination of the values of the covariates and
independently by the

P
kβikΔtik , and to which the model assumes

species adapt instantaneously in macroevolutionary time. The cov-
ariates describe, via their regression coefficients, how species’ optima
differ as a function of differences in these measured variables. Unlike
some OU models20,21 we do not characterise the evolution of the vari-
ables X but treat them as fixed. The βik defined optima that deviate
from those defined by the covariates and are presumed to arise in
response to unknown, independent and to-be-discovered influences
on the Y i. For example, one might wish to test for an association
between the βik and some environmental or behavioural variable.

logL Yð Þ /
X
i

log Y i

� �� α + β1X i1 +
X
k

βikΔtik

 !" #0
Vυ

�1 log Y i

� �� α +β1Xi1 +
X
k

βikΔtik

 !" #
ð2Þ
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The relationships between the covariates and Y defined by the βj

parameters can be allowed to vary among taxa or clades via the
addition of appropriate categorical codes to X along with their inter-
actions with the covariates. The remaining residual error comprising
the eiof Eq. 1measures variation in species Y i values around theoptima
defined in Eq. 2 and, as mentioned, is used to estimate the Brownian
varianceof themodel. This variancewill includeunknowncomponents
reflecting the historical strength of stabilising selection, but also var-
iation arising fromother unmeasured influences on the species’ values.

The matrix V υ in Eq. 2 is the expected variance-covariance matrix
of the residual errors (the ei from Eq. 1), given Brownian motion and
any changes to evolvability. Conventionally, this matrix is given by the
phylogeny, and the expected variance under Brownian motion after
time t is σ2υt. The model of Eq. 2 fits the covariates and the directional
and evolvability changes simultaneously and is not equivalent to
conducting a phylogenetically corrected regression of a trait onto its
covariate or covariates, extracting residuals and then studying them in
the original Fabric model or by some other means. Instead, the
directional and evolvability effects can modify the relationship of the
covariates to the Y variable to the extent that they compete to explain
its variance.

The number, placement and magnitudes of both the directional
and evolvability parameters are not fixed in advance but discovered
statistically from patterns in the species’ data and the structure of the
tree. Let Φ be the unknown vector of the parameters of the model of
trait evolution comprising the nominal root α, the regression coeffi-
cient(s) βj, the vector of directional change parameters β, and the
vector of variance-scaling parameters υ. We estimate the posterior
density ofΦ in a Bayesian Reversible-JumpMarkov chainMonte Carlo
(RJ-MCMC)22 setting that allows the number of directional and evol-
vability parameters that depart from their default values β=0, υ= 1ð Þ to
vary around a stationary set fromone iteration to the next (stationarity
is defined in the usual way as no average change in the likelihood or
average values of parameters over a large number of independent
iterations of the Markov chain). The posterior density is written as

P ΦjDð Þ /
Z

L DjΦð Þp Φð ÞdðΦÞ ð3Þ

where L DjΦð Þ is given by Eq. 2, the p Φð Þ are the prior distributions of
the parameters of the model of trait evolution, and the Monte Carlo
integration is over d Φð Þ. We choose the p Φð Þ to be compatible biolo-
gically with the processes they represent (“Methods”, see ref. 1).

Our particular interest in developing the Fabric-regression
approach is to identify the βik and evolvability changes and to study
how they differ from the univariate characterisation of the same trait,
but the method can also be used to study the multivariate space
defined by Y and X . In this latter regard, the model joins a variety of
other multivariate phylogenetic comparative methods that have been
proposed including the investigation of differences in slopes of the
regression line among clades23, the contribution of punctuational
evolution24, a multivariate OU model21 and multivariate characterisa-
tion of the phenotypic space10.

In this work, we apply the Fabric and Fabric-regression models to
study brain-size evolution in 1504 mammalian species using a dataset
compiled in a previous study25, and arrayed on a phylogeny from the
Time Tree of Life26. The strong association between brain and body
size raises the possibility that much of the variation in brain size arises
from pressures imposed by having a larger body, including but not
limited to physiological, life history and behavioural differences
among species of different size. We use these data as a familiar
example with which to illustrate features of the model, rather than to
test any new hypotheses about brain evolution. Our intent is to show
how studying traits alone vs after having accounted for their covaria-
tionwith other variables can yield qualitatively different outcomes and

insights about, in this case, themacroevolutionary history of brain-size
evolution. Accordingly, we focus on the number and polarity
ðβ <0or >0; υ< 1 or > 1Þ of the directional and evolvability parameters
the method discovers throughout the tree, contrasting results for
whole-brain and brain-size having accounted for its allometric asso-
ciation with body-size. We find that inferences about brain size, having
accounted for body size, differ qualitatively from those derived when
brain size is studied alone, including many new effects that are not
visible in the whole trait.

Results
We estimated the Fabric and Fabric-regression models using a RJ-
MCMC approach (“Methods”). Simulation studies (ref. 1, Supplemen-
tary Note 1, and Supplementary Tables 1 and 2) confirm that the
method estimates parameters well, discriminates between the direc-
tional and evolvability changes and themodels are identifiable.We also
estimated simple phylogenetic generalised least-squares (PGLS)
regression models for predicting brain size from body size using an
MCMC framework to estimate their parameters. Drawing on previous
work on brain-size evolution in the mammals25 we included linear and
quadratic effects of body-size in the Fabric-regression and PGLS
regression models.

Marginal likelihoods of the models calculated using stepping-
stones27 favoured the Fabric-regression model with linear and
quadratic effects of body size over the same model but including
only the linear component of body size (Table 1, BayesFactors
averaged over 18 independent Markov chains = 25), and over the
PGLS model including the linear and quadratic effects of size
(BayesFactors > 230).

The PGLS model with linear and quadratic effects returns an R2 of
�0.86 (Table 1, phylogenetically corrected and average of the pos-
terior distributions from 18 Markov chains) for the relationship
between log10(brain size) and log10(body size). The linear regression
coefficient was 0.69 ± 0.0004, but the quadratic coefficient was
−0.023 ± 0.00006, indicating that increases in brain size slow as body
size increases, as has been reported previously25. Including the direc-
tional and evolvability effects of the Fabric-regression model R2

increases to �0.91 (Fig. 1a, b and Supplementary Data 1), meaning the
directional and evolvability effects account for roughly 5% of the var-
iance in whole brain size and 36% of the variance that remains in brain-
size after accounting for variance associated with body-size.

The linear and quadratic effects of the Fabric-regression model
are both smaller than their corresponding values in the PGLS regres-
sion (Table 1, t-tests > 100, p< 1 × 10�8, two-tailed), suggesting that
some of the parametric formof the linear and quadratic effectsmaybe
brought about by cladeoreven species-specificdirectional effects, and
illustrates why fitting all of the parameters simultaneously is impor-
tant. Together, these two coefficients yield an instantaneous rate of
change (slope) of brain size against body size evaluated at the average
body size of dðbrain sizeÞ

dðbody sizeÞ j�x =0:56 where the average log10(body size) in
this dataset is 2.79. This is very close to the 0.55 value reported for the
average of n = 116 brain-body regressions fitted within-genera28 where
any quadratic effect would be expected to be small, and to the linear
PGLS model reported here and to one previously fitted to a smaller
sample of brain and body-size data3 (see also supporting information
to ref. 25).

Numbers of directional and evolvability shifts differ in whole-
brain vs independent-brain and are distinct processes
In what follows, we shall refer to independent brain size to denote that
the variation being studied in the Fabric-regression model is inde-
pendent of variation in its covariates. This independent variation is not
equivalent to studying the variation in residuals from a PGLS regres-
sion line because the parameters of the Fabric-regressionmodel (body
size, body size2, the directional shifts and the changes to evolvability)
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are estimated simultaneously, not in a two-step process, and as seen
above they change the values of the regression coefficients (βj).

Directional changes
The Fabric model applied to whole brain data found 244 instances of
directional phenotypic shifts in brain size widely scattered throughout
the phylogeny (Fig. 2a; “Methods”: model fitting and posterior data and
Selection of Model Parameters; Supplementary Data 2). This corre-
sponds to a directional shift occurring in approximately 8.4% of bran-
ches, slightly higher than the 7.7%we reportedpreviously1 for body size,
and corresponds to one directional shift appearing somewhere in the
tree approximately every 750,000 years throughout the 176 million-
year history of the Mammalian clade on the Time-tree-of-life.

The Fabric-regressionmodel, now studying the evolution of brain-
size simultaneously accounting for linear and quadratic components
of changes to body-size, yields just 68 instances of directional shifts, a
71% reduction in the frequency of changes observed in whole brains
(Fig. 2a), and corresponding to a change in independent brain size
roughly every 2.6 million years: evidently there have been far fewer
directional selective forces acting specifically on independent brain
size than on whole brain or its covariates. The majority of the 68
directional changes in independent-brain size (n = 44, 64%) were not
apparent in whole brain—they occur in branches in which therewas no
significant overall change in whole brain size (Table 2, left panel), and
only 24 are common to both analyses. Had brain size been studied on
its own, these independent directional changes would have been
missed. Equally, many apparent changes to brain size when studied on
its own would have arisen from its relationship with body size. This
illustrates the potential for methods that do not account for

covariation to mischaracterise the rate of adaptation, timings and
inferred optima of evolving traits.

Independent brain size can move in the opposite direction to
whole brain (Table 2, right panel): 13 or roughly 20% of the directional
changes in independent brain size differ in sign from those observed
empirically in the same 68 cases for whole brain. For example, whole
brain size increases significantly in the Black-footed tree-rat (Mesem-
briomys gouldii, βik =0.55), but its independent brain size significantly
decreases (βik = −0.22). When the data are in logarithmic form a
directional change translates in the unlogged data to the ratio of the
descendant to the ancestral state, which here implies a 100.55 or 3.55-
fold increase in whole brain size during the 8.25 million years in the
branch leading to this species, but a 40% reduction in independent
brain size: Black-footed tree-rats appear to have got bigger but
simultaneously less ‘brainy’ at some point in the past.

Evolvability changes
Unlike the frequency of directional changes, which declines for inde-
pendent brain size, the frequency of changes in evolvability increases.
We observe 180 evolvability changes in whole-brain but 228 in inde-
pendent brain size (Fig. 2b), and just 47 of these occur in the same
branch of the tree (Table 3, left panel, χ21 = 88:4, p<0:0001). This
leaves 181 of the changes in independent-brain size evolvability that
are not present in thewhole-brainmeasure: accounting for covariation
of brain size with body size has unmasked an increased realised evol-
vability of independent-brain size that is not apparent in whole-brain
data. As with directional changes, changes to evolvability can differ in
polarity between whole-brain and independent brain (Table 3, right
panel). Among the 228 instances of changes in evolvability of

Fig. 1 | Outcomes of simple PGLS and Fabric-regression models. a Observed
brain size vs predicted brain size as derived from two models: magenta dots are
predictions from a phylogenetic least squares regression model with linear and
quadratic components (phylogenetically corrected R2 ~ 0.86); yellow dots are

predictions derived from the Fabric-regression model including directional and
variance scaling effects and mostly fall closer to the regression line (phylogeneti-
cally corrected R2 ~ 0.91); b residuals from the two models in (a) showing the nar-
rower range of the residuals from the Fabric-regression model.

Table 1 | Marginal likelihoods, correlations and parameter estimates of the modelsa

Model Marginal likelihood ± SD Phylogenetic R2 Linear regression coefficient Quadratic regression coefficient

PGLS linear 1158 ± 0.004 0.85 ±0.0001 0.56 ± 0.0002 –

PGLS linear + quadratic 1194 ± 0.01 0.86 ±0.0002 0.69 ± 0.0004 −0.023 ±0.00006

Fabric-regression (linear) 1423 ± 18 0.90 ±0.017 0.56 ± 0.0007 –

Fabric-regression linear + quadratic 1447± 19 0.91 ± 0.011 0.67± 0.0009 −0.019 ±0.0001
aAll values are means ± SD of 18 independent Markov chains.
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independent brain size, around a quarter show the opposite empirical
pattern in whole-brain.

Directional and evolvability changes are distinct processes
We have emphasised that directional shifts do not necessarily
require any change to the Brownian variance of evolution. They can
arise from selection acting on the variance available within popula-
tions. In this important sense, they are distinct from shifts in evol-
vability which, by definition, involve either an increase or a decrease
in the evolutionary exploratory behaviour of the null Brownian
process while saying nothing about the direction of change: the
neutral Brownian process has a mean expected change of zero,
whatever the value of σ2.

Still, it is an open and fundamental question of macroevolution
whether changes in macroevolutionary exploratory behaviour are
often linked to directional change. Across all species, there are slightly
more pairs of branches than expected by chance inwhich a directional
shift in whole brain size occurs in parallel with a change in evolvability
(Table 4, left panel, χ21 = 27:59,p<0:0001

�
. But even in this instance,

there are 210 instances of a directional change occurring on its own
and a further 146 in which evolvabilities change without a directional
change in brain size.

The two processes do not even show this weak linkage in the case
of changes in independent brain size (Table 4, right panel,
χ21 = 1:52,n:s:): directional shifts in independent brain size, both getting
larger and smaller, occur independently of any change to theBrownian
variance. Independent brain size in the bats (Order Chiroptera)
decreases around 3.1-fold (~70% reduction) along the long branch
leading to the common ancestor of this Order. This is followed by an
approximately 4-fold decrease in the Brownian variance within the
Order compared to other Mammals (υ =0.26). But in a subset of 51
species of the fruit bats (Sub-Order Macro-Chiroptera), independent
brain size nearly doubles (~1.8-fold increase) with no concomitant
change to evolvability.

The making of a relatively big (or small) brain: two case studies
Residuals calculated from a phylogenetically corrected regression
identify species with relatively large or small values of some trait,

having accounted for variance shared with covariates. But the residual
does not reveal when during the history of the species the change or
changes occurred that led to that outcome, and can mask other
effects; the same is true of measures such as the encephalisation
quotient29 that rely on the ratio of brain to some function of body size.
The Fabric-regression makes it possible to pinpoint those events or
events and to ask whether the pattern of changes differs among spe-
cies. We give two examples.

Homo sapiens’ residual brain size as measured from the PGLS
regression line including the linear and quadratic components of body
size is 0.80, the largest in this dataset, in line with conventional
thinking that humans have the largest relative brain size of any mam-
mal. The Fabric-regression model identifies two large directional
increases in independent brain size in H. sapiens’ history, one in the
branch leading to the New and Old World monkeys (Catarrhini and
Platyrrhini, directional βik =0.47, 2.95-fold increase) and then the
second in the branch leading toH. sapiens from our common ancestor
with the chimpanzees (directional βik = 0.52, 3.3-fold increase; the two
β values do not need to sum to the value of the residual).

The Asian Elephant (Elephas maximus) also has a relatively large
brain with a residual from the same PGLS regression line of 0.49. But
unlike H. sapiens, there is just a single large directional change
reconstructed in independent brain size in its history—at least as
reflected by the extant species—and it occurred along the branch
leading to the African and Asian elephants from their common
ancestor with the small Hyrax (Procavia) species. This is the largest
directional change in independent brain size along a single branch
(βik =0.90, a 7.94-fold increase in independent-brain size) in the data
set, even larger than the final event of encephalisation in humans.

The difference between these two cases suggests that humans
share some features (and possibly causes) of our relatively large brains
with other monkey species (excluding Prosimians), and a component
that is unique to the Hominins. Elephants’ relatively large brains might
be linked to a single event, unique to them; alternatively, fossil taxa
could reveal that the extant elephants share this increased encephali-
sation with one or more directional changes that occurred in a larger,
now mostly extinct, group. This example points to the important
contribution that fossils can make and more generally calls attention

a b

Fig. 2 | Phylogenies showing placement of directional and evolvability effects.
a The position of directional effects in whole brain (red dots) and independent-
brain (blue dots); b the position of changes to evolvability in whole (red squares)

and independent brain size (blue squares). Black symbols in both panels indicate
branches in which an effect occurred in the whole-brain and in the
independent-brain.
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to how differences in the timings and patterns of change between
different groups of species could guide research that attempts to link
different brain structures to life history, development, other aspects of
morphology or the environment.

Discussion
We find qualitatively different patterns of macroevolutionary beha-
viour in independent-brain size compared to whole brain, including
differences in the direction of change and the polarity of evolvability.
Directional shifts in independent brain size are far less common than in
whole brain, but changes to evolvability—the majority towards
increased evolvability—are more common. These results seem to
suggest that while specific directional forces acting on independent
brain size are few, the variation in brain size that is independent of
body size reflects adaptations to an ever-expanding range of forms
over macroevolutionary time. Where the whole brain might include
many sources of variation, the variation in the independent compo-
nent may implicate any of the numerous functionally-specific regions
of the brain andmay reflect the influence of specific ecological factors,
although how best to characterise brain size given its relationship to
body size remains contentious30,31.

Many of the traits studied in phylogenetic-comparative analyses
have allometric relationships to body size raising the prospect that
traits other than brain size will show similar qualitative differences
when studied alone vs in concert with body size. More generally, the X
matrix of Eqs. 1 and 2 can include variables such life history traits, or
latitudinal and climatic effects that might need to be accounted for in
studies of productivity. Categorical factors that identify differences
among species in diet ormating system,or used to test for interactions
between categorical variables and covariates can also be included inX

either alone or alongside morphological traits. Fossil taxa can be
incorporated into the tree either as branches that go extinct before the
present, or to specify ancestral states. Their use can enhance con-
fidence in relationships inferred from extant taxa alone32.

The ability to accommodate one or more covarying traits in sta-
tistical comparative analyses means that researchers can use the for-
mal methods of causal inference to gauge support for hypothesised
causal pathways, while accounting for conditioning, confounding and
colliding variables33. In trying to understand whether selected ecolo-
gical variables, such as sociality anddiet34,might affect brain size, body
size is a conditioning variable. In this setting a rooted phylogeny—a
form of directed acyclic graph—acts as powerful inferential aide by
bringing a real or hypothesised arrow of time to the setting. The
approach would be to identify on the branches of the phylogeny
changes in diet or sociality and then link them todirectional changes in
brain size conditioning upon body size.

If accounting for the influence of covariates unveils new compo-
nents of variation that conventionally go unseen, a class of macro-
evolutionary questions beckons to be tested on independent trait
variation.We showed that directional and evolvability shifts are weakly
linked in the case of whole brains but not linked for independent brain
size. This result is an example of a farmore general macroevolutionary
question regarding the factors that may lead to phylogenetic radia-
tions of species. One definition35 proposes that radiations comprise
“the evolution of ecological and phenotypic diversity within a rapidly
multiplying lineage” that descends from a common ancestor. A study
of mantellid frogs (Mantellidae) does something close to this by
including speciation rates alongside estimates of phenotypic diversity
in comparisons among chosen clades36. The evolvability parameter,
υ> 1, provides a statistical definition of increased phenotypic diversity,

Table 4 | Association between evolvability and directional changes

Whole-brain evolvability change Independent-brain evolvability change

Directional shift in whole
brain size

Absent Present Total Independent-brain direc-
tional shift

Absent Present Total

Present 210 (228.9) 34 (15.1) 244 Present 60 (62.7) 8 (5.3) 68

Absent 2514 (2509.2) 146 (165.8) 2660 Absent 2616 (2613.3) 220 (222.7) 2836

Total 2724 180 2904 Total 2676 228 2904

Note: test of association between evolvability and directional changes in whole brain size χ21 = 27:59
� �

and independent brain size χ21 = 1:52
� �

; numbers expected by chance in parentheses.

Table 3 | Presence and absence of evolvability changes, υ, in whole and independent brain size, and differences in polarity of
evolvability changes

Whole-brain evolvability change Whole-brain evolvability change

Independent-brain evolvability change Absent Present Total Independent-brain evolvability change <0 >0 Total

Present 181 47 228 >1 30 146 176

Absent 2543 133 2676 �1 28 24 52

Total 2724 180 2904 Total 58 170 228

Note: the right panel is for the subset of 228 evolvability changes in independent brain size.

Table 2 | Presence and absence of directional shifts and differences in the direction of change in whole and independent
brain size

Directional shift in the whole brain Directional shift in the whole brain

Directional shift in independent-brain Absent Present Total Directional shift in independent-brain <0 >0 Total

Present 44 24 68 >0 9 33 42

Absent 2616 220 2836 <0 22 4 26

Total 2660 244 2904 Total 31 37 68

Note: the right panel is for the subset of 68 directional shifts in independent brain size.
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and using the υ> 1 test either alone or in conjunction with tests of
speciation rates couldput thiswidely usedmacroevolutionary concept
on a testable empirical footing, and without having to specify in
advance which clades might be ‘radiating’.

Quantitfying what we mean by radiation is important36,37: a test of
phenotypic diversity would not class the 298 species of the Chiroptera
clade in this dataset as a radiation because their phenotypic diversity
has declined ðυ � 0:24Þ, and this includes reduced diversity in body
size1,5. Reduced diversity in brain and body size might not be repre-
sentative of othermeasures of this clade’s evolution, butweemphasise
the value of attempting to operationalise changes to phenotypic
diversity statistically. Using an empirically-derived measure such as υ,
it is straightforward to askwhether directional shifts in traits are linked
to changes in evolvability and whether this holds for variation in
independent trait values (that is, variation having removed the effects
of covariates). More generally, do directional shifts tend to precede,
follow or bear no relationship to evolvability? Studies document how
Brownian variances can vary with, for example, developmental38 or
trophic behaviours39, but this central question of macroevolution
regarding the causal direction linking directional and evolvability
changes has not, to our knowledge, been investigated systematically.
Applying statistical criteria to either whole or independent traits, and
in a setting that allows both kinds of effect to evolve anywhere in the
tree, could test this notion rigorously.

Many other macroevolutionary hypotheses await empirical
testing with independent trait values. Elsewhere we1 have shown
how Mammalian body size seems to evolve punctuationally or in
bursts along branches of the Mammal phylogeny, and we have
shown that the rate of accumulation of these punctuational episodes
is close to constant throughout the many millions of years of
Mammalian evolution. Others report that perhaps half of all Primate
speciation events yield evidence of accelerated changes in brain and
body size24. Is this punctuational pattern widespread taxonomically
and does it hold once the effects of covariates such as body size are
accounted for? Is it linked to the number of directional changes that
occur along a path leading to a species such as we investigated forH.
sapiens and the elephants? Equally, evolvability changes seem to
have a strong bias towards greater than towards lesser evolvability
within clades, and this holds true here for both brain size and
independent brain size (Table 2). Perhaps this is what we expect
from a constantly shifting environment in which species must
compete for their existence1,40 ? More traits need to be tested to
establish this pattern’s generality.

The existence of large numbers of instances of increased evolva-
bility throughout the tree and rightup to thepresent forbothwhole and
independent trait size (Fig. 1b) suggests that neither species’ brain sizes
nor their independent brain sizes are settlingdownaround stable global
or even local optima. Instead, clades seem to be expanding their
exploratory capacities in response to an ever-expanding range of
opportunities such as might be represented in the ‘blunderbuss’
pattern41. Rapid temporal fluctuations in the selective environment are
common42, rendering optima highly ephemeral, so much so that one
study of cetacean body size likened the surface of the adaptive land-
scape to that of a “turbulent ocean”43. This is a point with independent
empirical44,45 and theoretical45 support, even when fossil taxa are avail-
able to augment the historical signal43, and it is this turbulence that the
directional effects (βik) can potentially discover43. Arnold46 (p435),
summarising over twenty years of modelling macroevolutionary phe-
nomena, adopts the view that models of “trait means chasing a perpe-
tually moving adaptive peak provides a strong basis for understanding
adaptive evolution”, and that Brownian motion provides a good char-
acterisation of an expanding range of adaptive peaks45,46.

Darwin feared that one day someone might find a complex trait
that had not evolved according to his notions of gradualism, saying, “If
it could bedemonstrated that any complex organ existed, which could

not possibly have been formed by numerous, successive, slight mod-
ifications, my theory would absolutely break down. But I can find no
such case.”Macroevolution sits in the privileged position of observing
traits evolving over time periods long enough to witness events rele-
vant to Darwin’s daring hostage to fortune. And it is statistical models
of macroevolution such as developed in recent years (e.g.
refs. 6,20,21,24,46,47) that allow us to ask if what we observe on
a macroevolutionary timescale is compatible with Darwin’s
microevolutionary mechanism1,48. Without this goal the study of
macroevolution risks being little more than a phenomenological
undertaking.

Methods
Data
The brain- and body-size data are available from Venditti et al. 25.

Model estimation
Let Φ be a vector of the parameters of the model of trait evolution
including the nominal root, μ, the vector of directional change para-
meters, β, the vector of evolvability parameters, υ. We estimate the
posterior density ofΦ in a Bayesian RJ-MCMC22 setting that allows the
number of directional and evolvability parameters that depart from
their default values to vary around a stationary set from one iteration
of the chain to the next. The posterior density is written as in Eq. 3 in
the main text, repeated here:

P ΦjDð Þ /
Z

L DjΦð Þp Φð ÞdðΦÞ

where L DjΦð Þ is given by Eq. 2 (main text), the p Φð Þ are the prior
distributions of the parameters of themodel of trait evolution, and the
Monte Carlo integration is over dðΦÞ.

Priors
We choose the p Φð Þ to be compatible biologically with the processes
they represent (see ref. 9). In practice choice of a prior arises from a
series of preliminary analyses in which a range of prior distributions is
tried, looking for evidence that a prior does not constrain the posterior
set of parameters while simultaneously not being overly lenient and
allowing biologically unrealistic values (Supplementary Note 2, Sup-
plementary Fig. 1, and Supplementary Tables 3 and 4). We apply a
Gamma prior to the evolvability parameters υ ~ Gamma (α,β), where
α = 1.2 and β = 5. This produces a right-skeweddistributionwith a lower
limit of zero and a mode of 1, the default value. Values of the variance
scalars become less probable the further they are from 1. As a prior on
the directional effects, we assume |β| ~ Gamma (α,β), where α = 3.2 and
β=0:2, giving a right-skewed distribution with a lower limit of zero, a
mean of ≈0.64 and a standard deviation of 0.36. Priors on the linear
and quadratic regression coefficients were ~N(0, 2) and ~N(0,1). The
prior on σ2 was U(0,1).

Model fitting and posterior data
We find the set of parameters inΦ using an RJ-MCMC procedure that
we have employed elsewhere to search high-dimensional spaces49,50.
The stationary Markov chain yields posterior distributions of direc-
tional and variance-scaling parameters at each node or branch of the
tree (someor evenmanyof the nodes andbrancheswill never receive a
parameter and thereby be centred at their null values).

We ran the Markov chain of Eq. 3 (main text) until it reached a
stationary state, then drew 1000 posterior samples from the stationary
chain at widely spaced intervals to ensure a low (r ~ 0.1) autocorrelation
among successive sampled iterations. The parameter values we report
for the directional and evolvability effects are means averaged over
these 1000samples, havingadjusted the sample size for autocorrelation.
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Selection of model parameters
For inferences about the numbers and locations of directional and
evolvability parameters throughout the tree, we drew on six inde-
pendent RJ-Markov chains and selected as significant only those
parameters that appeared in all six chains at frequencies greater
than expected by chance1. This procedure ensures that parameters
are chosen based on their consistency in appearing in themodel and
not on their magnitudes. Among the 15 pairs of runs from the six
independent chains, directional parameter values intercorrelated
on average >0.99 and evolvability parameters >0.95. Where we
report the occurrence and polarity of directional and evolvability
effects, these will be identical across all six runs used for inference.
In a small number of examples where we report the magnitude of an
effect, we have taken the value from one of the runs chosen at ran-
dom rather than averaging across the six runs. This maintains a
direct link between the data and results, but any of the runs would
have led to the same conclusions.

Measurement error
Trait data may contain errors of measurement, and their effect, if
present, will tend to bemostprominent in the terminal branches of the
phylogeny, where they may be indistinguishable from real directional
and evolvability changes. The Fabric and Fabric-regression models do
not estimate errors of measurement, but instead, we advocate
checking directional and evolvability effects that occur in terminal
branches or clades for evidence of unusual or unexpected trait values.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data used here are previously published in the literature cited in the
Methods (ref. 25) and are available in Supplementary Datafile 1.

Code availability
The Fabric and Fabric-regression models are available in the Bayes-
Traits software package: http://www.evolution.reading.ac.uk/
BayesTraits.html.
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