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Phylogenetically informed predictions
outperform predictive equations in real and
simulated data

Jacob D. Gardner 1,3, Joanna Baker 1,3, Chris Venditti 1 &
Chris L. Organ 2

Inferring unknown trait values is ubiquitous across biological sciences—whe-
ther for reconstructing the past, imputing missing values for further analysis,
or understanding evolution. Models explicitly incorporating shared ancestry
amongst species with both known and unknown values (phylogenetically
informed prediction) provide accurate reconstructions. However, 25 years
after the introduction of such models, it remains common practice to simply
use predictive equations derived from phylogenetic generalised least squares
or ordinary least squares regression models to calculate unknown values.
Here, we use a comprehensive set of simulations to demonstrate two- to three-
fold improvement in the performance of phylogenetically informed predic-
tions compared to both ordinary least squares and phylogenetic generalised
least squares predictive equations. We found that phylogenetically informed
prediction using the relationship between two weakly correlated (r = 0.25)
traits was roughly equivalent to (or even better than) predictive equations for
strongly correlated traits (r = 0.75). A critique and comparison of four pub-
lished predictive analyses showcase real-world examples of phylogenetically
informed prediction. We also highlight the importance of prediction intervals,
which increase with increasing phylogenetic branch length. Finally, we offer
guidelines to making phylogenetically informed predictions across diverse
fields such as ecology, epidemiology, evolution, oncology, and palaeontology.

Prediction is the very heart of what defines science1. It flows directly
from hypotheses and theories as the arbiter of evidence. Researchers
predict trait values for various reasons. For example, we might want
to impute missing values of a dataset intended for further analysis
(e.g.2–4). We may also want to make general inferences to glean
knowledge about the adaptation and evolution of trait variation
amongst species. In evolutionary biology specifically, and historical
sciences more generally, we are often interested in retrodictions—
predictions about past events5–7.

Whatever our motivations, phylogenetic comparative methods
(PCMs) have revolutionised our understanding of evolutionary

biology, offering profound insights into the patterns and processes
shaping biodiversity8–10. Phylogenetic comparative methods also pro-
vide a principled way to predict unknown values11. Owing to common
descent, data drawn from closely related organisms are more similar
than data drawn from distant relatives12. Among PCMs, phylogeneti-
cally informed prediction using regression techniques has emerged as
an essential tool11–15 (see Box 1) to predict unknown values given both
information on shared ancestry and an underlying evolutionary rela-
tionship between traits. For example, phylogenetically informed pre-
diction has been used to predict the time spent feeding in extinct
hominins using the relationship between feeding time and molar size
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BOX 1

Phylogenetically informed prediction

In the context of ordinary least squares (OLS) regression, the relationship between the dependent variable (Y) and independent variables (X) is
modelled with Eq. (1):

Y =β0 +β1X1 +β2X2 + . . . +βnXn + ε ð1Þ

where β0 is the intercept and β1, β2,…, βn are the coefficients for the independent variables. The error term ε, describes the residual variance. The
coefficients areestimatedbyminimising the sumof the squareddifferences between theobservedvalues and the valuespredictedby themodel.
Mathematically, this involves solving for β in Eq. (2):

Y =Xβ+ ε ð2Þ

where Y is the vector of observed values, X is thematrix of independent variables, and β is the vector of coefficients. Once themodel is fitted and
the coefficients are estimated, predictions for the dependent variable can be made using Eq. (3):

Ŷ = β̂0 + β̂1X1 + β̂2X2 + . . . + β̂nXn ð3Þ

Phylogenetic generalised least squares regression (PGLS) extends theOLS framework by incorporating the phylogenetic variance-covariance
matrix V into the error term to account for the non-independence of observations. The coefficients in PGLS regression are estimated by again
solving for β in Eq. (2), but here ε � Nð0,VÞ and the GLS estimator β̂= XTV�1X

� ��1ðXTV�1YÞ accounts for the phylogenetic relationships13.
Coefficients of both OLS and PGLS models are often used to generate predictive equations—from which unknown values of y are simply

calculated given the value of the independent variable(s) (y = α +βx).
However,phylogenetically informedpredictionexplicitly incorporates thephylogenetic position of theunknown species relative to thoseused

to inform the regression model. In this scenario, phylogenetically informed predictions for a species h can be made using Eq. (4):

Ŷh = β̂0 + β̂1X1 + β̂2X2 + . . . + β̂nXn + εu: ð4Þ

Thesepredictions use both the estimated coefficients and εu = VT
ihV

�1
� ��1

ðY � ŶÞ, whereVT
ih is an × 1 vector of phylogenetic covariances for all

species iother than speciesh. Therefore, aphylogenetically informedprediction is computedby adjusting thepredictionoff the regression line by
εu—a prediction residual. This method was first described by Garland & Ives11 using independent contrasts on a tree re-rooted at the node of
interest, with various implementations having been introduced since (see Box 2).

Below, we illustrate a hypothetical example using two correlated continuously varying traits (yellow and pink bars) related to the tips of a
phylogenetic tree. The variance-covariance matrix V includes the shared branch lengths between taxa (measured in proportion of total tree
height). OLS (green line) and PGLS (orange line) regressionmethods can yield different slopes in the relationship. Green and orange points show
estimates of the missing pink trait (?) when calculated from OLS and PGLS regression equations. However, by explicitly incorporating phylo-
genetic information, in this case the phylogenetically informed prediction (blue circle) pulls the estimate away from both calculations made by
the predictive equations and closer to its sister taxa (grey points). Figure modified from Organ7.
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in living species (along with measurements from fossil individuals)16.
Phylogenetically informed prediction explicitly addresses the non-
independence of species data by calculating independent contrasts12,
using a phylogenetic variance-covariance matrix to weight data in
phylogenetic generalised least squares13,15 (PGLS), or by creating a
random effect in a phylogenetic generalised linear mixed model14

(PGLMM). Each of these approaches includes phylogeny as a funda-
mental component of the statistical model and thus yield equivalent
results11,14. Organ et al.6 further advanced phylogenetically informed
prediction by developing a Bayesian application, which enabled the
sampling of predictive distributions for further analysis and was
implemented on extinct species for the first time. Importantly, the
direct incorporation of phylogenetic relationships allows the option to
predict unknown values from only a single trait, using the shared
evolutionary history of the trait among known taxa. For example, it
would be possible to predict the molar size of extinct species with no
dental fossil record using extant variation in molar size along with a
phylogenetic tree—this is, of course, only possible in the context of
phylogenetically informed prediction. Methods for phylogenetically
informed predictions have been used to great success: since their
inception, we have seen genomic and cellular traits reconstructed for
dinosaurs6,17, a trait database built with phylogenetic imputation
spanning tens of thousands of tetrapod species2, and a map of the
global geographical distribution of tree functional diversity18.

However, 25 years on from the initial introduction of these
methods11 and despite the recognised pervasiveness of phylogenetic
signal in continuous datasets19,20, the use of predictive equations,
which involve only the resulting coefficients of regression models
(see Box 1), to calculate morphologies, behaviours, and ecologies of
species dominates the literature. They persist to the extent that
papers are devoted to providing predictive equations21–27—and even
entire books have been dedicated to deriving predictive equations
from allometric relationships28,29. Calculating unknown trait values
from predictive equations (i.e., the regression coefficients) by
themselves excludes information on the phylogenetic position of the
predicted taxon. Using predictive equations in the absence of a
predicted taxon’s phylogenetic position still perseveres, despite the
demonstration that phylogenetically informed predictions are likely
to be much more accurate11,30 and the knowledge that data produced
by evolution without accounting for phylogenetic structure will
suffer from pseudo-replication, misleading error rates, and spurious
results31,32. In recent years, there has been an influx of papers using
predictive equations from PGLS models in an attempt to account for
shared ancestry (e.g.21,33–35). The parameters of a phylogenetic
regression model are explicitly interpretable only in combination
with the underlying phylogeny, and thus calculating unknown values
using such predictive equations are also likely to be inaccurate and
biased—and while it is probable that they are more so than non-
phylogenetic regression equations (Box 1), this has never been
explicitly demonstrated.

Here, we unequivocally demonstrate the superior performance
of phylogenetically informed predictions compared to predictive
equations derived from both OLS and PGLS regression models using
an extensive set of simulations from ultrametric trees (where all
species terminate at the same time) and non-ultrametric trees
(where tips vary in time). We combine our simulations with appli-
cation to four real-life datasets incorporating both living and fossil
diversity: primate neonatal brain size, avian body mass, bush-cricket
(katydid) calling frequency, and non-avian dinosaur neuron number.
We provide a systematic critique by quantifying the prediction
performance of all three approaches (phylogenetically informed
prediction, OLS predictive equations, and PGLS predictive equa-
tions). We then provide a roadmap for using prediction within
comparative studies in fields ranging from ecology and epidemiol-
ogy to evolution and palaeontology.

Results and discussion
Simulations
The performance of phylogenetically informed prediction on
ultrametric trees. Here, we assess the performance of phylogeneti-
cally informed predictions compared to OLS and PGLS-derived pre-
dictive equations under different evolutionary scenarios. Following
the original formulation of phylogenetically informed prediction11

(Box 1), we frame our analyses in the context of simple bivariate
regression. However, it is important to note that these approaches can
be generalised to incorporate any number of independent variables—
and for phylogenetically informed prediction, this includes prediction
from the phylogeny alone.We beginwith a sample of 1000 ultrametric
trees (Fig. 1a, Supplementary Fig. 1a, e), all with n = 100 taxa and with
varying degrees of balance (Fig. 1a), reflecting real datasets (see case
studies). Balance is the degree to which subsets of a tree are symme-
trical in length or size36. For each tree, we simulate continuous
bivariate data with three different correlation strengths (r =0.25, 0.5,
and 0.75) using a bivariate Brownian motion model37, resulting in
3000 simulated datasets. We then predict the dependent trait value
for 10 randomly selected taxa from each dataset using all three
approaches and calculate prediction errors by subtracting predicted
values from the original, simulated values. Additionally, we repeat this
procedure for trees with 50, 250, and 500 taxa to account for and
quantify the effect of varying tree size.

All three approaches across all trees and simulated correlation
strengths have median prediction errors close to 0, suggesting low bias
across methods (Fig. 1a–d; Supplementary Data 1). We calculate the
variance (σ2) of the prediction error distributions to summarise the
overall performance of each method, where smaller σ2 (narrower dis-
tributions) indicate that a method is consistently more accurate across
the 1000 simulations and thus has greater overall performance. For
ultrametric trees, phylogenetically informed predictions perform about
4–4.7× better than calculations derived from OLS and PGLS predictive
equations (Fig. 1a–d)—that is, the σ2 for phylogenetically informed
prediction (e.g., σ2 = 0.007 when r=0.25) is about 4–4.7× smaller than
that for predictions made from either OLS (σ2 = 0.03 when r=0.25) or
PGLS (σ2 = 0.033) equations (see Supplementary Data 1 for variances in
error distributions). The improved performance of phylogenetically
informed prediction is observed for each set of correlation coefficients,
and performance naturally improves with more strongly correlated
data. Phylogenetically informed predictions from only weakly corre-
lated datasets (r=0.25, σ2 =0.007) have about 2× greater performance
even when compared to predictive equations from more strongly cor-
related datasets (r=0.75, σ2 = 0.015 and 0.014 for PGLS and OLS pre-
dictive equations, respectively; Supplementary Data 1).

These distributions of errors encompass multiple predictions
made from 1000 simulated phylogenies. Themedian prediction errors
from such distributions are therefore not useful for comparing accu-
racy. To compare the prediction accuracy among the three approa-
ches, we calculated the difference in the absolute prediction errors for
each of the predictive equations and those for the phylogenetically
informed predictions (i.e., error difference = absolute OLS or PGLS
predictive equation error−absolute phylogenetically informed pre-
diction error). If the error difference is positive, then the phylogen-
etically informed prediction has the more accurate prediction. The
OLS and PGLS predictive equations are more accurate if the error
difference is negative. In about 96.5–97.4% of the 1000 ultrametric
trees, the phylogenetically informed predictions are closer to the
actual values than the estimates from PGLS predictive equations (i.e.,
the median error difference of each tree is positive in 96.5–97.4% of
trees). Phylogenetically informed predictions are more accurate than
OLS predictive equations in 95.7–97.1% of trees. To test if these error
differences statistically differ from 0, we performed intercept-only
linear models (equivalent to one-sample t-tests) on the median error
difference from each tree (n = 1000 median error differences each to
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compare the phylogenetically informed prediction errors with the
PGLS and OLS predictive equation errors; see Methods for model
details). Differences in the median prediction error between OLS and
PGLS-derived predictive equations and phylogenetically informed
predictions are positive on average across the 1000 ultrametric trees,
which decrease with increasing correlation (average estimated error
difference = 0.05–0.073, p-values < 0.0001; Supplementary Data 2). In
other words, predictive equations have greater prediction errors and
are less accurate than phylogenetically informed predictions.

The median absolute error in the phylogenetically informed
predictions from each ultrametric tree is independent of tree stem-
miness defined as the accumulation of speciation events towards the
tips (p-values > 0.05; Supplementary Data 3). The degree of tree
balance explains less than 1% of the variation in the median absolute
error of the phylogenetically informed predictions for two correla-
tions (Colless’s and Sackin’s metrics: p-values < 0.05, adjusted
R2 < 0.006 and 0.003 when r = 0.25 and 0.75, respectively; Supple-
mentary Data 3). Tree shape, including degree of balance and
stemminess, does not affect the median absolute error in the PGLS
predictive equations (p-value > 0.2). The predictive performance of
all approaches improves as the number of taxa in the trees increases
from 50 to 500, with phylogenetically informed predictions per-
forming about 3.3–3.7× better than predictive equations in small
trees (n = 50 taxa) to about 6–7× better in large trees (n = 500 taxa)
(Supplementary Data 4). Phylogenetically informed predictions
remain more accurate than predictive equations across different tree
sizes, with the difference in median absolute error decreasing as the
number of taxa increases (average estimated error difference =
0.053–0.087when n = 50 taxa and 0.027–0.042when n = 500 taxa, p-
values < 0.0001; Supplementary Data 5); all methods improve accu-
racy with larger sample sizes.

We also simulated datasets for two end-member cases: a com-
pletely balanced tree (where each branch has equal numbers of terminal
nodes, Supplementary Fig. 1a) and an imbalanced tree (where the
number of species originating at each node changes through the tree,
Supplementary Fig. 1e). For both trees, phylogenetically informed pre-
dictions perform about 3.5× and 1.2–1.5× better, respectively, than OLS
or PGLS predictive equations across correlation strengths (Supple-
mentary Fig. 1a–h; Supplementary Data 6). Phylogenetically informed
prediction performsmarginally worse in the imbalanced tree compared
to the balanced one but has substantially greater performance than
either predictive equation (Supplementary Fig. 1e–h). Both predictive
equations also have greater prediction errors and are less accurate on
average than phylogenetically informed predictions on completely
balanced and imbalanced ultrametric trees (average estimated error
difference = 0.008–0.047, p-values <0.0001; Supplementary Data 7).

Predicting extinct taxa. To assess the performance of predicting trait
values for extinct taxa, we simulate datasets from a distribution of
1000 non-ultrametric trees with 100 taxa under low and high extinc-
tion rates (Fig. 1e,i). We then predict all extinct taxa based only on the
traits observed in extant taxa and compare the prediction errors
among the three methods. These simulations are also repeated over
tree sizes of 50, 250, and 500 taxa. Phylogenetically informed pre-
diction performs about 2.4–2.7× better than predictive equations in
trees with lower extinction rates (Fig. 1e–h) and performs better
regardless of the simulated correlation coefficient (Supplementary
Data 1). The phylogenetically informed predictions are closer to the
actual values than the estimates from PGLS predictive equations in
91.5–92.7% of the 1000 non-ultrametric trees with low extinction.
Phylogenetically informed predictions are also more accurate than
OLS predictive equations in 91.9–93% of trees. Predictive equations

Fig. 1 | Performance ofphylogenetically informedprediction againstpredictive
equations. a–dDistributions of prediction errors (actual—predicted values) from a
set of 1000 simulated ultrametric trees (n = 100 tips) under three correlation
coefficients (r = 0.25, 0.5, and 0.75). e–l Distributions of prediction errors from
1000 non-ultrametric trees (n = 100 tips) with low (e–h) and high (i–l) extinction
rates. Boxplots elements are as follows: centre line, median; box limits, first and
third quartiles; whiskers, 1.5 × inter-quartile range; points, outliers. Colours

represent the three prediction methods (OLS: ordinary least squares predictive
equations, green; PGLS: phylogenetic generalised least squares predictive equa-
tions, orange; phylogenetically informed predictions, blue). Tighter distributions
near zero indicatemore accurate predictions overall than thosemore skewed away
from zero (measured by the variance in prediction errors, σ2). Phylogenetically
informed predictions are more accurate than other methods. Medians and var-
iances of distributions can be found in Supplementary Data 1.
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have higher absolute errors and are statistically less accurate on
average than phylogenetically informed predictions (average esti-
mated error difference = 0.026–0.044, p-values < 0.0001; Supple-
mentary Data 2). The median absolute errors in the phylogenetically
informed predictions are not associated with the degree of balance
and stemminess (p-values > 0.05) except when data are strongly cor-
related (r =0.75) where absolute error and tree balance are correlated;
however, balancemetrics explain only 0.77% of the variation inmedian
absolute error (Colless’s and Sackin’s metrics: p-values = 0.0031,
adjusted R2 = 0.00774; Supplementary Data 3). The degree of tree
balance explains ~ 0.5% to 1% of the variation in median absolute error
of PGLS predictive equations (Colless’s and Sackin’s metrics: p-
values < 0.05, adjusted R2 = ~ 0.005 and 0.01 when r =0.25 and 0.75,
respectively; Supplementary Data 3). Stemminess explains only 0.41%
of the variation in median absolute error of PGLS equations when the
data are strongly correlated (r = 0.75; p-value = 0.023, adjusted
R2 = 0.0041; Supplementary Data 3). Phylogenetically informed pre-
dictions perform about 2× better than predictive equations on small
trees (n = 50 taxa) to about 4× better on large trees (n = 500 taxa)
(Supplementary Data 4) and are more accurate than predictive equa-
tions across different tree sizes (average estimated error difference =
0.029–0.044 when n = 50 taxa and 0.019–0.03 when n = 500 taxa, p-
values < 0.0001; Supplementary Data 5).

The performance of all three methods reduces as simu-
lated extinction level increases (Fig. 1i–l) owing to decreasing sta-
tistical power (i.e., fewer extant taxa to inform predictions). Many
predictions in this scenario are phylogenetic extrapolations, a
situation in which the target taxon falls outside the phylogenetic
coverage of the extant taxa and therefore have limited shared evo-
lutionary history with the extant taxa in the dataset. Regardless, a
little phylogenetic information is better than none: phylogenetically
informed prediction still performs 1.2–1.4× better overall than pre-
dictive equations (Fig. 1i–l; Supplementary Data 1). In 75.9–77.7% of
1000 non-ultrametric trees with high extinction, the phylogenetically
informed predictions are closer to the actual values than the esti-
mates from PGLS predictive equations. Phylogenetically informed
predictions are also more accurate than OLS predictive equations in
75.5–78.8% of trees. These differences in absolute error are sig-
nificantly greater than 0 on average (average estimated error dif-
ference = 0.014–0.026, p-values < 0.0001; Supplementary Data 2). In
trees with high extinction, balance explains 0.3–3% of the variation in
the median absolute error of phylogenetically informed predictions
(Colless’s metric: p-value < 0.05, adjusted R2 = 0.003–0.03; Sackin’s
metric: p-value < 0.05, adjusted R2 = 0.005–0.03 across datasets
where r = 0.25, 0.5, and 0.75; Supplementary Data 3), while there is no
association with stemminess (p-value > 0.05; Supplementary Data 3).

When we retain deeper evolutionary history by predicting 20% of
all taxa (i.e., retaining dependent values for some extinct taxa), the
performance of phylogenetically informed prediction in the high-
extinction trees increases dramatically by about 5× overall (σ2 in the
distribution of phylogenetically informed prediction errors = 0.0078,
0.0063, and 0.0037 for r = 0.25, 0.5, and 0.75, respectively; Supple-
mentaryData 8). Predictive equations perform relatively poorly (σ2 for
OLS = 0.034, 0.026, and 0.016, and PGLS =0.062, 0.049, and 0.03;
Supplementary Data 8). Predictive equations are also considerably less
accurate in such scenarios, with calculations from PGLS equations
beingworse thanOLS (average estimated error difference=0.077–0.11
for PGLS equations and 0.044–0.067 for OLS, p-values < 0.0001;
Supplementary Data 9). In an extreme-extinction scenario (pectinate
or ladder-like tree, e.g., Supplementary Fig. 1i), performance is greatest
when using phylogenetically informed prediction (Supplementary
Data 6). However, there is a drastic reduction in the performance of
predictions made from PGLS predictive equations compared to those
derived from OLS equations. The PGLS equations are also much more
inaccurate compared to the phylogenetically informed predictions

than OLS equations (average estimated error difference = 0.19–0.27
for PGLS equations and 0.075–0.11 for OLS, p-values < 0.0001; Sup-
plementary Data 7). The PGLS regression line is estimated using shared
ancestry. Using only the estimated PGLS regression parameters
ignores the phylogenetic component of the model and therefore can
severely misinform predictions (Box 1).

Prediction uncertainty, prediction intervals, and branch lengths.
For all approaches, it is possible to assess the uncertainty around each
individual prediction by calculating a prediction interval: a range of
values within which an estimate is likely to fall given some criterion for
confidence (e.g., 95%). A prediction interval is calculated using a
combination of the underlying model variance and the expected var-
iance in the prediction11 (see Methods). In contrast to prediction
intervals derived from OLS regression, the expected variance in the
phylogenetically informed prediction accumulates with time, accord-
ing to Brownian motion. As expected, and in line with previous simu-
lation studies on ultrametric trees30, phylogenetically informed
prediction intervals increase with the target taxon’s terminal branch
length across all tree types (Fig. 2, Supplementary Fig. 2). The more
time a taxon has had to diverge from its sister taxa, the less certain we
are about its prediction. As stated by Garland and Ives11 (pg. 350), “… if
the hypothetical species were attached infinitely close to the sister tip,
then the prediction intervals would diminish to 0.” In line with this, we
find that the range of prediction errors in the phylogenetically
informed predictions also increases with terminal branch lengths
across our simulations (Fig. 2, Supplementary Fig. 2). The more
uncertain we are about a prediction, the less accurate we are likely to
be. When divergences from sister taxa are shortest, phylogenetically
informed prediction will tend to be more accurate (Box 1). Prediction
intervals and prediction errors derived from OLS regressions do not
vary with terminal branch lengths because phylogenetic information is
not considered. Increasing prediction intervals with longer terminal
branches is not a cause for concern—instead, it is necessary and
important information to incorporate when making predictions. The
level of certainty about a taxon’s evolutionary history is entirely
ignored by predictive equations.

The impact of branch lengths on the uncertainty of our estimates
therefore highlights a potential problem. For example, the dominance
of parsimony methods in palaeontological studies means that branch
lengths are often not considered and autapomorphies are routinely
ignored (these are used to determine terminal branch lengths). It is
possible to compute a “generic” prediction interval from a PGLS
regression without knowing a target taxon’s phylogenetic position. In
this case, the generic prediction interval effectively assumes the pre-
dicted taxon to be attached to the root of the tree with a terminal
branch length equal to the average lengthof the branches leading from
the root to each tip11 (i.e., it is the phylogenetic average). However, we
can improveon these genericprediction intervals andmitigate the lack
of branch length information by setting all branch lengths to be equal
across the entire tree (e.g., all branch lengths = 1; see Case study 3
below). Although an arbitrary assumption, using equal branch lengths
retains the phylogenetic structure needed to account for shared
ancestry in the predictions. To assess the performance of this strategy,
we took the same set of trees from the ultrametric (Fig. 1a) and non-
ultrametric low-extinction simulations (Fig. 1e) and transformed all
branches to equal a length of 1 (Supplementary Fig. 3). Even when
assuming equal-length branches, phylogenetically informed predic-
tions have greater overall model performance (Supplementary
Data 10) and are more accurate (Supplementary Data 11) than both
predictive equations.

In any context in which a prediction is to be made, it is therefore
important that researchers present them alongside prediction inter-
vals. Phylogenetically informed predictions provide us with estimates
of values that are explicitly framed in an evolutionary context—the
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uncertainty surrounding our estimates is not only expected, but
important. That is, phylogenetically informed predictions along with
appropriately calculated prediction intervals (seeMethods) are amore
truthful representation of evolutionary reality than any single point
estimate could provide.

Predicting from biased data. In the previous simulations, the target
taxa were either randomly selected across the tree or were restricted
to the extinct taxa. However, missing data in real-world applications
are often non-randomly distributed across the tree of life38,39, as we
also find with our case studies (see Case study 1 below). We therefore
ran two additional sets of simulations for the ultrametric trees and
non-ultrametric trees with low extinction in which we restricted
missing data to the lower quartile of the predicted trait (seeMethods).
As expected, we recovered a negative bias across all the simulations;
however, phylogenetically informed predictions are less biased than
the predictive equations (Fig. 3). Phylogenetically informed prediction
performs about 1.6–4.9× better than predictive equations in ultra-
metric trees and about 1.3–3× better than predictive equations in non-

ultrametric trees with low extinction (Supplementary Data 12). Phylo-
genetically informed prediction is also more accurate than both pre-
dictive equations (estimated average error difference = 0.066–0.11 in
ultrametric trees and 0.069–0.14 in non-ultrametric trees with low
extinction, p-values < 0.0001; Supplementary Data 13).

These results further demonstrate the improved performance of
phylogenetically informed prediction even in the case of non-random
missing data, emphasising the necessity of accounting for shared
ancestry when making predictions from real data.

Case studies
Our simulations reflect a standard for inferring unknown values where
we have directly measured and known values for every trait of every
species—both living and extinct. Each species is directly incorporated
into the phylogenetic tree. However, in most scenarios—especially
when seeking to infer characteristics of extinct taxa—we are unlikely to
have such detailed information. Here, we use four case studies to
highlight ways of overcoming commonly encountered issues faced by
those reconstructing the unknown from real biological data: only

Fig. 2 | Phylogenetically informed prediction intervals and error increase with
terminal branch lengths. a–c Prediction intervals (log10-transformed) of phylo-
genetically informed predictions (blue points) increase with terminal branch lengths
(log10-transformed), whereas ordinary least squares (OLS) prediction intervals do not
(green points), across set of 1000 simulated ultrametric trees (Fig. 1a) under three
correlation coefficients (r=0.25, 0.50, and 0.75). d–f Range in phylogenetically

informed prediction errors (blue points) increase with terminal branch lengths (log10-
transformed) across set of ultrametric trees, whereas OLS-derived errors do not
(green points). g–i Phylogenetically informed prediction intervals increase with
terminal branch lengths of target extinct taxa across set of 1000 non-ultrametric trees
(low extinction, see Fig. 1e). j–l Range in phylogenetically informed prediction errors
increase with terminal branch lengths across set of non-ultrametric trees.
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moderate phylogenetic signal (neonatal brain size in primates40),
incomplete phylogenetic trees (bird body mass23), no branch length
information (bush-cricket carrier frequency41), or data and model
uncertainty (dinosaur neuron number21). In each case, we discuss the
behaviour and interpretation of phylogenetically informedpredictions
in relation to true evolutionary scenarios.

Case study 1: Phylogenetic signal and model performance. Infer-
ences about how neonatal primate brain size has evolved have funda-
mental implications for development, intelligence, and obstetrics42–44.
Neonatal brain size is strongly linked to adult brain size, to the extent that
adult female brain size has previously been used as a proxy for neonatal
brain size45. The relationship between neonatal brain size and adult brain
size estimated using PGLS across 44 extant primates40 is significantly
positive (y-intercept (α) =−0.207, p-value for y-intercept (pα) = 0.009,

slope (β) = 0.89, p-value for slope (pβ) < 0.001), using a recently built and
time-calibrated phylogenetic tree for primates46 (see Supplementary
Methods). The adjusted R2 of the model is 0.923. There is only moderate
phylogenetic signal in these data (λ=0.56; here and throughout we use
Pagel’s λ47 to refer to the strength of phylogenetic signal). Moderate or
low phylogenetic signal has previously been used as a justification for
using non-phylogenetic regressions to generate predictive models23,48,49.
However, “limited phylogenetic dependence” is different from complete
phylogenetic non-independence. It is better to incorporate some level of
phylogenetic information than to ignore it completely.

We used phylogenetically informed prediction to reconstruct the
neonatal brain size of 29 extinct species included in the phylogenetic
tree (Fig. 4a, b). To assess model performance in the same way as our
simulations, we used a self-validation approach to infer the neonatal
brain size of each taxon in the model given its phylogenetic position

Fig. 4 | Predicting neonatal brain size from adult brain size in primates.
a Phylogenetic tree of primates including all taxa fromwhich the predictivemodels
are derived (black, n = 254) and all taxa forwhich imputedneonatal brain size (pink,
n = 30). Silhouettes at the tips are not to scale, are purely for illustrative purposes,
and are all obtained from phylopic.org. b A plot of the data used in the model
overlaid with the predicted values from the phylogenetic inference model in pink.
c Distributions of prediction errors (actual−predicted values) from our self-
validation analysis (n = 45 taxawith known neonatal and adult brain sizes) using the

three different inference methods (OLS: ordinary least squares predictive equa-
tions, green; PGLS: phylogenetic generalised least squares predictive equations,
orange; phylogenetically informed predictions, blue). Boxplots elements are as
follows: centre line,median; box limits,first and thirdquartiles; whiskers, 1.5 × inter-
quartile range; points, outliers. Tighter distributions near zero indicate more
accurate predictions than distributions skewed away from zero σ2 = 0.012 for OLS
predictive equation, 0.015 for PGLS predictive equation, and 0.008 for phylogen-
etically informed prediction).

Fig. 3 | Performanceofphylogenetically informedpredictionagainstpredictive
equations on biased data. a–d Distributions of prediction errors (actual−pre-
dicted values) from a set of 1000 simulated ultrametric trees (n = 100 tips) under
three correlation coefficients (r = 0.25, 0.5, and 0.75) with missing taxa exclusively
from the lower quartile of thepredicted trait. e–hDistributions of prediction errors
from 1000 non-ultrametric trees (n = 100 tips) with low (e–h) extinction rates.
Boxplot elements are as follows: centre line, median; box limits, first and third
quartiles; whiskers, 1.5 × inter-quartile range; points, outliers. Colours represent the

three predictionmethods (OLS: ordinary least squares predictive equations, green;
PGLS: phylogenetic generalised least squares predictive equations, orange; phy-
logenetically informed predictions, blue). Tighter distributions near zero indicate
more accurate predictions overall than those more skewed away from zero (mea-
sured by the variance in prediction errors, σ2). Predictions are negatively skewed
(larger than the actual values), but phylogenetically informed predictions are more
accurate and less biased than other methods. Medians and variances of distribu-
tions can be found in Supplementary Data 12.
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(see Methods). We also calculated neonatal brain size for all extinct
species using both the PGLS (parameters as above) andOLS predictive
equations. As in our simulations on trees of similar structure (Fig. 1e),
the performance of phylogenetically informed prediction far outstrips
that of both predictive equations which both perform simi-
larly (Fig. 4c).

Notably, PGLS predictive equations result in a strong, observable
bias—with median prediction errors shifted away from zero (median =
0.06). This is compared to a much smaller bias observed using OLS
predictive equations (median = 0.01), whereas the phylogenetically
informed predictions are centred effectively on zero. That is, we
observe a bias in both predictive equations that is much stronger in
equations derived from PGLS regression (Box 1).

This case study represents a situation in which we have directly
measurable trait data, a large sample of taxa, and where all species
(both measured and unknown) are included within a robust phyloge-
netic framework. It is therefore as close as we are likely to get to our
simulated scenarios using real data.

Case study 2: Incomplete phylogenetic trees. Whole papers and
books have been published devoted to providing equations for
predicting body size for various groups of animals23,25,29. Here, we
predict body mass from humerus length for a total of 247 extant
birds23 matched to the Time Tree of Life50,51. This dataset has pre-
viously been used to predict the body masses of other extinct birds
using a suite of non-phylogenetic predictive equations22,52. There is a
strongly significant positive relationship between humerus length
and body mass using both OLS (α = −1.08, pα < 0.001, β = 2.02,
pβ < 0.001, R2 = 0.93) and PGLS models (α = −1.09, pα = 0.009, β =
2.07, pβ < 0.001, R2 = 0.875, λ = 0.815).

We obtained humerus measurements for a total of 41 fossil
taxa22, which were not included in the tree. In an ideal world, we
would construct a tree that includes all taxa of interest; although,
this is not always practical or even possible. However, rather than
abandoning phylogenetic information altogether, it is possible to
use the information we do have—taxonomic affiliation and, at
least for fossils, temporal information—to maximise the accuracy
of our inferences. This is possible in even the most drastic of
circumstances where we lack a phylogenetic tree altogether: it is
possible to construct phylogenetic frameworks purely from
taxonomic information using standard tools for phylogenetic
analysis53. Here, we have a robust phylogenetic tree available for
living bird species50,51 that we used as the basis for our phylogeny.
For each species, we used taxonomic information and temporal

ranges to manually insert them into the tree. To do this, we
identified the closest living relative in the tree, starting at the
lowest possible taxonomic level (genus) and inserted the extinct
taxon into the tree as a tip diverging either along the branch
leading to its closest relatives or as a polytomy at the base of a
clade (e.g., Fig. 5; see Methods and Supplementary Methods).

Suchmanual manipulation can impose structure on the topology
where none exists. Furthermore, the greater our uncertainty regarding
phylogenetic placement, the further back in the tree the taxon will be
positioned (e.g., the base of a family, order, etc.). All else being equal,
the more taxa we insert, the more likely it is that some branch lengths
in the tree will be longer than they should be. As we are studying an
evolving system, a longer branch has more evolutionary potential (in
terms of change per unit time; Fig. 2). We find that prediction intervals
increase alongside increasing branch length (Fig. 5, r =0.81, p < 0.001),
in line with our simulation results across trees with and without
extinction (Fig. 2, Supplementary Fig. 2). Whilst phylogenetically
informed prediction may provide answers with wider prediction
intervals, they aremore likely to reflect true evolutionary outcomes. As
noted by Garland and Ives11 (pg. 357): “what phylogeny taketh away,
phylogeny giveth back.”.

Case study 3: No branch-length information. In our previous case
study, we highlighted the importance of phylogenetic structure, not-
ing that prediction intervals increasewith branch length. However, it is
often the case—especially in cladistic analyses or in taxonomy-based
trees—that we have no branch length information. Nonetheless, it is
still possible to use such datasets for phylogenetically informed pre-
diction (Supplementary Fig. 3, Fig. 6).

Here, we use a published dataset and tree41 for 94 species of
bush-crickets (or katydids) to study the relationship between the size
of a specialised structure on the wing known as the stridulatory file
and carrier frequency41,54. However, the tree inferred using parsi-
mony methods has no branch lengths. There are various approaches
for assigning branch lengths to a phylogenetic tree for use in com-
parative analysis55,56, though largely this choice is arbitrary with
regards to the inferences made from regression models55. Here, we
use the common approach of setting equal branch lengths21,57,58 (i.e.,
all branch lengths = 1, Fig. 6a), and insert 18 species as polytomies
into the tree based on family and sub-family membership (Supple-
mentaryMethods).We then used all threemethods to predict the call
frequency for these taxa.

The estimated non-phylogenetic relationship between file length
and call frequency is equivalent to that recovered previously41

(α = 1.66, pα <0.001, β = −1.04, pβ <0.001, R2 = 0.66). The phylogenetic
relationship is very similar (α = 1.62, pα <0.001, β= −0.97, pβ <0.001,
R2 = 0.53), but there is strong phylogenetic signal in this dataset
(Pagel’s λ = 0.821). When we compare the pairwise differences among
the predictions made by the three different methods (Fig. 6b), it
becomes apparent that phylogenetically informed prediction pro-
duces values that span a greater range of variation in comparison to
the predictive equations. Predictions made from OLS and PGLS
regression equations are both drawn from a single slope and thus
differ from each other only negligibly (Fig. 6b). On the other hand,
phylogenetically informed prediction tends to differ from both OLS
and PGLS predictions—although, the effect is less pronounced in PGLS
(Fig. 6b). The reason why phylogenetically informed predictions
appear more different is because we are not forcing each point to fall
along a single line. This is a closely related but distinct point from our
simulations and the previous case study (Figs. 2 and 5). In those
instances, we demonstrated that the prediction intervals of a single
estimate increase with branch length, whereas here we show that the
variation among estimates increases. In both scenarios, we can attri-
bute the variance to the fact that we are examining an imperfect,
evolving relationship.

Fig. 5 | Variance associated with phylogenetically informed prediction increa-
ses along branch lengths. The scatter plot depicts the relationship between
branch length and the variance associated with the predictions from our second
case study. Inset, part of the phylogenetic tree (n = 43)with branches of extinct taxa
(and corresponding points) coloured by the variance associated with their phylo-
genetically informed prediction for body mass. Silhouettes are not to scale.
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For themost part, prediction accuracywill be largely unaffected—
but, depending on the units of branch lengthmeasurement along with
those of the traits being studied, prediction variance can affect
interpretations16,56 and drastically affect prediction intervals (Fig. 2).
For example, where we have poorly estimated variance (e.g., in trees
with equal branch lengths or in trees inferred exclusively from tax-
onomy), it would be difficult to drawmeaningful conclusions from any
tests relying on robust estimates of prediction variance (e.g., outlier
tests16). It will therefore always be preferable to include dating infor-
mation from fossils or molecular clocks where possible, to minimise
variance inflation or reduction from incorporating incorrect
information.

The carrier frequency is one of just a few characteristics that
needs to be known to reconstruct the soundof a stridulating insect26,41.
It is certainly an exciting prospect to reconstruct the sounds of the
past, yet previous attempts to do so used predictive equations that
lack evolutionary information26,59. Here, we reconstruct the calling
frequency in two extinct species (Fig. 6). For Pseudotettigonia amoena,
we reconstruct a mating call frequency of 9.97 kHz (log10 prediction =
0.99, 95% PI[0.568,1.430]) compared with previous estimates of 10.5
kHz derived from the same morphology41. For Archaboilus, we esti-
mate a value of 4.78 kHz (log10 prediction = 0.679, 95% PI[0.321,1.037])
compared with 4.99 kHz41. However, Archaboilus is exemplary of
phylogenetic extrapolation, a problematic scenario often encountered
when reconstructing values for extinct taxa (Fig. 1i–l, see also Fig. 4 in
which two species fall outside the euprimate clade). In the case of
Archaboilus, this species is not a bush-cricket, rather belonging to an
extinct family (Haglidae). This problemwill be exacerbated by the lack
of branch length information—taxa that fall outside the range of extant
phylogenetic diversity are more likely to have long branches and
therefore greater uncertainty in predictions (Figs. 2 and 5).

Case study 4: Data andmodel choice. Our previous two case studies
exemplify situations in which we have uncertain or incomplete phy-
logenetic information.However, what about the data that goes into the
analysis in the first place? Here, we present a case study seeking to

reconstruct the number of neurons in the brains of an extinct dinosaur
from brain size to highlight this potential issue.

Recent research suggests that large theropod dinosaurs, such as
Tyrannosaurus rex, were likely to have been highly intelligent24 based
on inferred telencephalic neuron number derived fromOLS predictive
equations. A recently published critique of the original research21

challenges the idea that large-bodied theropod dinosaurs had exces-
sively large neuron counts using PGLS predictive equations. This case
study therefore represents a unique opportunity in which we can
assess the impact of phylogenetically informed prediction on biolo-
gical conclusions.

Here, we use a dataset of 254 sauropsid species21 matched to the
Time Tree of Life51, cropped to only include species in the dataset.
For T. rex, we use the brain size data provided by Caspar et al.21. We
then grafted T. rex onto the tree using recent estimates of dinosaur
divergence times60 (see Supplementary Methods). Previous
researchers have noted the difference in brain-body size relation-
ships and neuron densities between birds and other non-avian
sauropsids21,24,61. This scenario therefore also represents an oppor-
tunity to demonstrate the use of multiple regression models to
predict unknown trait values: we are not limited to the simple
bivariate relationships demonstrated thus far. In this case, we used a
phylogenetic analysis of covariance to estimate a separate slope and
intercept in the relationship between neuron count and brain mass
for avian and non-avian sauropsids, in line with both Caspar et al.21

and Herculano-Houzel24 (Fig. 7).
Our phylogenetically informed prediction results largely align

with themain conclusions drawn by Caspar et al.21 (Fig. 7). It is unlikely
that T. rex had neuron numbers indicative of any spectacular

Fig. 6 | Predictions drawn from a single equation are missing a dimension of
variation. a Predictions of call frequency were made on a tree with no branch-
length information, where all branches were fixed to one and all taxa were inserted
as polytomies (total n = 112). Extinct taxa aremarked with †. Archaboilus, marked in
yellow, belongs to a different family to all other species in the tree. Species with no
call frequency data are marked with pink (n = 18). b Distributions of pairwise dif-
ferences between each of the three methods being compared (OLS: ordinary least
squares predictive equations, green; PGLS: phylogenetic generalised least squares
predictive equations, orange; phylogenetically informed predictions, blue),
demonstrating hidden variation in the estimates that cannot be observed using
simple equations.

Fig. 7 | Predicting telencephalon neuron number from brain mass for Tyr-
annosaurus rex. The relationship between telencephalon neuron number and
brain mass (both logged) was estimated across a sample of 202 sauropsid species
using both ordinary least squares (OLS, green) and phylogenetic generalised least
squares (PGLS, orange) regressionmodels.We thenpredicted the neuron count for
T. rex using both model equations (see text, green and orange triangles) as well as
phylogenetic inference (blue triangles), assuming the relationship in T. rex aligns
with non-avian sauropsids. This was done using two alternative brain size mea-
surements: firstly, if the brain takes up 42% of the braincase (triangle pointing
upwards) and secondly, if the brain takes up 31% of the braincase (triangle pointing
downwards). Altering the ratio obtains qualitatively similar conclusions, but the
inferredvalues simply ‘slide’upordown the regression line. The twomeasureswere
calculated as an average across 3 different specimens, but results are qualitatively
identical when each specimen is considered separately. A separate slope was esti-
mated for avian taxa (grey points, dashed lines).
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intelligence or cognition. The OLS regression equation
(log10neuron count = 7:77 +0:93½log10brain� � -0:52½non-avian��
0:13½non-avian : log10brain) predicts T. rex to have had ~771 million
neurons, although there is a great deal of uncertainty in this estimate
(log10 prediction = 8.885, 95% PI[8.378,9.391]). By virtue of the shal-
lower slope, the PGLS regression equation (log10neuron count =
7:74+0:84½log10brain� � 0:56½non-avian� � 0:13½non-avian :

log10brain) produces a much smaller estimate of ~422 million (log10
prediction = 8.626, 95% PI[8.339,8.912]). When we account for the
phylogenetic position using phylogenetically informed prediction, we
see yet again a smaller estimate of ~378 million with wider prediction
intervals (log10 prediction= 8.564, 95% PI[8.005,9.112]). The increase in
the width of the prediction intervals reflects the fact that T. rex falls
along a very long branch outside of modern birds.

However, this is just onepart of the story. The equations above are
from a model using brain masses converted from volumes assuming
that the brain takes up 31% of the endocranial volume (%EV). However,
%EV is variable among taxa ranging from 30% in the tuatara62, 31–42%
in crocodilian species21, to up to 100% in modern birds, and people
have used various values to calculate dinosaur brain size. Changing the
%EV in our calculations simply ‘slides’ our predictions up and down the
relevant regression slope (e.g., Fig. 7). However, recent studies suggest
that brain development in non-avian dinosaurs, including theropod
species like T. rex is highly divergent compared to both crocodilians
and modern birds63. Therefore, we cannot currently say with any cer-
tainty what value (or range of values) is most likely to represent the
percentage of the endocranial volume taken up by the brains of
dinosaurs.

The most striking difference in the estimate of neuron number
between the two original papers21,24 comes not from the methods, but
rather from the taxonomic treatment of the missing species. That is,
whether non-avian theropod dinosaurs like the T. rex are estimated
using an avian or non-avian scaling relationship. Unsurprisingly, when
T. rex is predicted according to the steeper scaling relationships
observed in birds (dashed lines, Fig. 7), the inferred neuron number is
much larger using allmethods21,24. However,T. rex is anextreme caseof
both data and phylogenetic extrapolation under the avian treatment,
falling outside the range of observed data for the avian group. In terms
of relative brain size, T. rex falls somewhere in between modern birds
and non-avian sauropsids21, and most importantly, falls at the bound-
aries of extant variation (Fig. 7). Taken together, this means that
however we treat this species, our estimate is fraught with uncertainty
—uncertainty that is, at least, partially reflected in the extraordinarily
wide prediction intervals for allmethods, which range across orders of
magnitude.

Using statistically appropriate methods provides us with a more
accurate depiction of extinct taxa, but it can only get us so far. The
ways in which we define brain size and evolutionary relationships of an
animal can produce predictive models that drastically differ (Fig. 7). In
the absence of additional data or analyses, the best way to treat
dinosaurs—and particularly theropod dinosaurs like tyrannosaurids
with unusually large brain regions64—remains unclear. We agree with
the conclusions outlined by Caspar et al.21: making inferences about
complex biological characteristics such as cognition and behaviour are
likely to remain difficult and are better considered within multi-
dimensional integrative empirical frameworks.

Recommendations and future directions
It may be obvious that OLS equations are inadequate for making pre-
dictions in comparative biological studies because they do not model
evolutionary history. Why PGLS equations are insufficient is more
subtle. It is true that PGLS equations model the evolutionary structure
of comparative data but using them to predict values for a taxon
assumes it is “phylogenetically average”. That is, its location on the tree
is unknown and it is implicitly placed at the root. Phylogenetically

informed predictions, on the other hand, are much more powerful
because the taxon’s location in the tree is used as additional
information.

In Box 2, we provide a primer for making phylogenetically
informed predictions to infer trait values. Although phylogenetically
informedprediction is, on average,muchmore accurate and precise, it
is no holy grail. No method is. And, as with all statistical models,
assumptions, context, and a priori expectations should guide the
design and interpretation for prediction in comparative analysis. Yet
even in worst-case scenarios, where there is no phylogenetic signal in
the traits of interest, phylogenetically informed prediction will do no
worse than other predictive methods. Edge cases also include phylo-
genetic extrapolation (Figs. 1 and 6) where predictions are made out-
side of a comparative framework (i.e., prediction of outgroups). More
commonly, taxa are related in ways that substantially improve our
ability to make predictions in evolutionary and comparative studies.
This framework is especially important for long-isolated lineages
where uncertainty accumulates with terminal branch lengths
(Figs. 2 and 5, Supplementary Fig. 2). The case studies we highlight
showcase specific and commonproblems researchers are likely to face
when inferring unknown values, ranging from phylogenetic uncer-
tainty tomodel construction. Researchers must consider all aspects of
the system they are interested in studying before embarking on
attempts to make predictions.

Reconstructing trait values is a fundamental and ubiquitously
important tool across biological sciences. Examples include predic-
tions and retrodictions to estimate unknown values for traits6,17,65,66 or
to test for exceptional evolutionary singularities16, as well as imputa-
tions, and extrapolation. Our results show that evolutionary history
substantially improves prediction of continuous traits in evolving
systems, which in turn, clarifies and constrains evolutionary
hypotheses.

Methods
Simulation
To simulate trees, we used a version of the Bellman–Harris model67

from the R68 package TreeSimGM69, which samples waiting times
until speciation and extinction from a specified distribution for a
given number of extant taxa (sim.taxa function) or duration of time
(sim.age function). Themodel allows for symmetric (cladogenic) and
asymmetric (budding) modes of speciation. We first simulated 1000
ultrametric trees (sim.taxa, n = 100 taxa), sampling speciation times
from an exponential distribution with a rate of 1 without extinction
(extinction rate of 0) while allowing for asymmetric speciation
(Fig. 1a). The 1000 ultrametric trees had varying tree shapes,
including different degrees of balance and stemminess. Balance (and
imbalance) refers to the degree at which the tree subsets are sym-
metrical in length or size. Stemminess refers to the number of spe-
ciation events concentrated at the tips (high stemminess) or toward
the root (low stemminess). This protocol resulted in trees reflective
of those made from real datasets (see case studies). We also simu-
lated completely balanced and imbalanced ultrametric trees, repre-
senting both extremes in tree shape. To simulate the completely
balanced tree (Supplementary Fig. 1a), we allowed the waiting times
to speciation to be shorter, on average, than extinction (sim.taxa,
n = 128 taxa, exponential distribution: speciation and extinction rates
of 0.4 and 0.5, respectively) and only allowed for symmetric spe-
ciation. For the imbalanced tree (Supplementary Fig. 1e), we set the
waiting times to extinction to be as long as the age of the tree while
allowing for asymmetric speciation, creating a highly imbalanced
ultrametric tree (sim.age, age = 2, exponential distribution: specia-
tion and extinction rates of 0.02 and 2, respectively, resulting in
100 taxa).

To assess the performance of predicting extinct taxa, we simu-
lated 1000 non-ultrametric trees with low extinction rates (sim.taxa,

Article https://doi.org/10.1038/s41467-025-61036-1

Nature Communications |         (2025) 16:6130 10

www.nature.com/naturecommunications


n = 100 extant taxa; Fig. 1e), sampling speciation and extinction times
from an exponential distribution with rates of 1 and 0.2, respectively.
We also simulated 1000 non-ultrametric trees with high extinction
rates (sim.taxa, n = 100 extant taxa, exponential distribution: spe-
ciation and extinction rates of 1 and 0.9, respectively; Fig. 1i). In
addition, we simulated an extreme scenario in which extinction was
constant, creating a pectinate or ladder-like tree (sim.age, age = 50,
exponential distribution: speciation and extinction rates of 0.5 and 1,
respectively, resulting in 100 taxa total; Supplementary Fig. 1i). We
simulated all trees to end with 100 extant taxa (except the com-
pletely balanced tree, which had 128 extant taxa). The simulations
with extinction yielded trees with more than 100 total taxa. To make
these simulations consistent with the ultrametric trees, we randomly
down sampled the number of total taxa to 100. Given the demon-
strated relationship between branch length and prediction variance
(Fig. 2 and Supplementary Fig. 2), we further standardised all ultra-
metric and non-ultrametric trees to a length of 1.

For each tree, we simulated two phylogenetically structured
continuously correlated traits under a multivariate Brownian motion
model (expected amount of change is distributed normally with mean

0 and variance proportional to the branch lengths of the simulated
trees), using the function sim.corrs in the R package phytools10. We
simulated three sets of datasets with correlation coefficients of 0.25,
0.5, and 0.75. Because the characters were simulated along phylo-
genies, they are expected to covary according to their respective
phylogenies, and our estimation of phylogenetic signal is high with an
average λ = 1 in all the datasets, where λ refers to Pagel’s lambda47,
which varies between 0 = no phylogenetic signal and 1 = high phylo-
genetic signal).

For the ultrametric trees, we randomly removed the dependent
trait for 10 taxa (10% of the tips) and stored the actual values. We
removed all the dependent traits of the extinct taxa in the non-
ultrametric trees. Then, we predicted the values of the removed
dependent traits using a maximum likelihood PGLS regression model
that accounts for phylogenetic non-independence in the prediction70.
All of our phylogenetically informed predictions are performed in R68,
and we provide the source code for the full method in Supplementary
Code 1. We estimated phylogenetic signal using Pagel’s λ for each
simulated dataset to account for phylogenetic non-independence. We
compared the maximum likelihood estimates of the phylogenetically

BOX 2

A roadmap to successful phylogenetic prediction

1.Consider the data:Understanding the data is paramount for successful predictivemodelling. Does the trait of interest varywithmultiple traits?
Taxonomic group? Time? It is possible to incorporate multiple variables into phylogenetic prediction (e.g., Case study 4). The power phylogeny
plays to improve predictions increases with noisy data because there is more residual variance to explain. Does it have strong phylogenetic
signal? Strength of phylogenetic signal will be especially important for univariate predictions. A strong relationship (Fig. A) will provide better
predictions than a weak or highly variable one (Fig. B), but the phylogeny will play a smaller role.
2.Consider the tree:A tree encompassing the taxonomic diversity of not only the species in the data but of thosewewant to predict is important.
The accuracy of predictions will diminish as taxa becomemore distantly related to those fromwhich predictions are derived (e.g. compare pink
taxa in Fig. C). Phylogenetic extrapolation—predicting species that fall outside the phylogenetic diversity of the group altogether (e.g., Case
studies 1 and 3) should be avoided. A tree with branch lengths (temporal, molecular, etc.) is desirable, but not essential (Fig. 6; Supplemen-
tary Fig. 3).
3. Decide on an approach: We use maximum-likelihood PGLS models for phylogenetic prediction. However, there are many approaches to
incorporate phylogenetic information directly into predictive modelling—including alternative statistical frameworks such as Restricted Max-
imumLikelihood (REML) andBayesian approaches6. In our analyses, we use treeswith branch lengths transformedboth by Pagel’s λ and κ47, but it
is possible to incorporate various types of tree transforms into predictive models—so long as these act homogenously across all branches (e.g.,
Ornstein-Uhlenbeck72). There are various packages, functions, andprograms for phylogenetic prediction (of all types, including imputations from
only a single trait, eigenvector, structural equation, andmissing forest approaches not discussed further here).Hereweprovide a non-exhaustive
list: R:Phylopars90; PhyloPars91; BayesTraits6; R:phytools92; R:MCMCglmm14; R:picante93; BayesModelS94; R:missForest95; R:MPSEM96; R:VIM97;
R:mice98; R:BHPMF99; R:phylosem100.
4. Interpret the results: No prediction method is without error. Phylogenetic prediction explicitly reveals the expected variance around an
estimate. Whilst it might sometimes seem preferable to obtain a point value, such variance represents evolutionary reality and can be quantified
using prediction intervals. Prediction intervals increase not only with time, but with increasing phylogenetic distance (Figs. 2, 5, Supplementary
Fig. 2). It is important to remember that predicting is not just about accuracy—but also honesty.
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informed predictions to those estimated using equations derived from
OLS and PGLS regressions. We fit OLS and PGLS regression models to
the data (excluding taxa with removed dependent traits) using the
functions lm and pgls in the base and caper71 R packages, respectively.
To determine the accuracy of the three prediction methods (phylo-
genetically informed, OLS, and PGLS), we took the difference in the
estimated prediction from the actual value of each taxon. We calcu-
lated the prediction error (actual−predicted) of all predicted taxa for
every tree and for each method. We compared the distribution of
prediction errors among the three methods for each tree type and
dataset (Figs. 1 and 3, Supplementary Figs. 1 and 3). As a measure of
overall predictive performance, we compared the fold decrease in the
variance of prediction errors between the predictive equations and
phylogenetically informedprediction (overall performance= σ2 inOLS
or PGLS predictive equation errors divided by σ2 in phylogenetically
informed prediction errors). Medians and variances in prediction
errors for each method, tree type, and dataset can be found in our
Supplementary Data 1, 4, 6, 8, 10, and 12. The analyses on the sets of
ultrametric trees and non-ultrametric trees with low extinction were
repeated for different tree sizes (n = 50, 250, and 500 taxa; Supple-
mentary Data 4).

To compare the accuracy of phylogenetically informed predic-
tions against OLS and PGLS predictive equations, we calculated the
difference in the absolute prediction errors between each predictive
equation and the phylogenetically informed predictions (error differ-
ence = absolute prediction error for OLS or PGLS equations—absolute
prediction error for phylogenetically informed prediction). We took
the absolute values of the prediction errors because the errors can be
positive or negative. Prediction error differences were calculated
separately for OLS and PGLS equations, both compared against the
phylogenetically informed prediction error. If the prediction error
difference is positive, then the predictive equation has the larger error
and is less accurate (i.e., phylogenetically informed prediction is more
accurate). The predictive equations are more accurate if the error
difference is negative. We then calculated the median error difference
for every simulated tree, resulting in 1000 differences in prediction
error (3,000 total across the three correlations: r = 0.25, 0.5, and 0.75)
each for OLS and PGLS equations. To test if phylogenetically informed
predictions are more accurate than OLS and PGLS equations, we ran
intercept-only models on the median prediction error differences
against a mean of 0—amounting to a one-sample t test, assessing
whether themedian errordifferences are significantlydifferent from0.
The results of these analyses can be found in our Supplementary
Data 2, 5, 7, 9, 11, and 13.

A common strategy for predicting taxa without known phyloge-
netic information (e.g., uncertain phylogenetic position, no branch
lengths, etc.) is to forceall branch lengths to the same length. To assess
the impact this strategy has on the accuracy of phylogenetically
informed predictions, we took the set of ultrametric and non-
ultrametric trees with low extinction (Fig. 1a,e) and scaled all bran-
ches to a length of 1 using the κparameter47 (κ =0). It is also possible to
incorporate different types of tree transforms into phylogenetically
informed prediction, as long as all branches are scaled homogenously
(e.g., Ornstein-Uhlenbeck72). Trees were scaled using the rescale
function in the R package phytools10. Retaining the original datasets,
we then used the maximum likelihood phylogenetically informed
prediction method described above and recalculated the prediction
errors.

To test the effects of tree shape on prediction accuracy, we cal-
culated the following three metrics for the distributions of simulated
ultrametric and non-ultrametric trees: Colless’s imbalance metric73,
Sackin’s imbalance metric74, and Rohlf et al. (1990)’s stemminess
metric75. The imbalancemetrics were calculated using the collessI and
sackinI functions in the package treebalance36. The stemminess metric
was calculated using R code from Humphreys et al.76 (Supplementary

Code 1). We ran linear models testing the effects of each tree shape
metric on the absolute values of the prediction errors for the phylo-
genetically informed predictions and PGLS predictive equations
(Supplementary Data 3).

Along with prediction error, we also calculated phylogenetically
informed prediction intervals for our simulations and case studies,
according to the GLS approach by Garland and Ives11. Prediction
intervals provide a range of values thatwe can estimate under a certain
probability (e.g., 95%) will encompass the new observation. These
intervals are like confidence intervals, except they include both the
underlying model variance and the expected variance around the
prediction. Unlike prediction intervals derived from OLS regression,
phylogenetically informed prediction intervals explicitly incorporate
phylogenetic informationof the target taxon into the calculation of the
prediction variance. Phylogenetically informed prediction intervals
are, therefore, expected to increase with the terminal branch length of
the target taxon, according to Brownian motion, whereas those from
OLS regression will not. Prediction intervals in a PGLS regression fra-
meworkcan alsobe calculated assuming the target taxon is attached to
the root of the tree and has a branch length equal to the average length
from the root to each tip (“generic” prediction intervals in Garland and
Ives11). We calculated these generic PGLS prediction intervals (also
referred to here as ‘prediction intervals from PGLS predictive equa-
tions’), along with the OLS and phylogenetically informed prediction
intervals and assessed how they varied with the terminal branch
lengths of the target taxa.

In order to facilitate comparison across approaches, we derive all
prediction intervals based on variances calculated using a Student’s
t-distribution (α =0.05). This is in line with the base statistics packages
that are commonly used to perform non-phylogenetic OLS regression
analysis68. We note that in a phylogenetic context, it may be more
intuitive to derive prediction intervals using variances calculated using
z-distribution77 but this makes no qualitative difference to any of the
conclusions we draw from our results, especially at larger sample sizes
(n > 30 taxa).

Real datasets and trees
Our first case study set out to predict neonatal brain size from adult
brain size in primates. We use a published brain size dataset for 44
extant primates40 and added values for Homo neanderthalensis from
additional sources78,79. All taxa are included in the recently published
meta-tree analysis of Euarchonta46; we use a dated sample of 100of the
most parsimonious trees80 (Supplementary Methods). For our pre-
diction analyses, we used themedian tree from this sample, calculated
using the Kendall-Colijn metric81. We obtained adult brain size for an
additional 29 primate species included in this tree (Fig. 4a), including
18 hominins79 and 11 other species throughout the order82–87. These
29 species have no data on neonatal brain size and were therefore the
species for which we predicted unknown values (Fig. 4b).

Our second case study set out to predict avian body mass from
humerus length. We use a published dataset of 318 extant birds with
bodymass and humerus length23. Of these, wematched 247 species to
the Time Tree of Life51 (downloaded in February 202488). We used a
published dataset of humerus lengths for 41 extinct birds22 as the
species for which we predicted unknown values. However, the Time
Tree of Life contains only extant taxa—and so in this case, none of our
predicted species were found in the tree. For each of the species, we
therefore identified the closest living relatives in the full time tree
based on taxonomic information and manually inserted a branch as a
sister taxon or into a polytomy at the base of the relevant clade. The
date of divergence was set as the first appearance date in the fossil
record and extended the branch to its last appearance date. For
example, Plesiocathartes kelleri is identified as belonging to the order
Leptosomiformes in the Paleobiology Database89. We therefore placed
this P. kelleri as a sister taxon to ananchor species,Leptosomusdiscolor,
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diverging at themaximumage of the clade and extended the branch to
the minimum age of the fossil as reported in the original dataset22. A
full description of the placements for all 41 taxa can be found in the
Supplementary Information (Supplementary Methods).

Our third case study set out to predict the mating call carrier
frequency of bush-crickets (katydids). We use a published dataset
comprising wingmeasurements and carrier frequencies for 94 species
along with a corresponding phylogenetic tree41. The paper fromwhich
the data and tree was obtained also provided a set of wing measure-
ments for 18 species (living, museum, and extinct) that were not
included in the phylogenetic tree. As with the second case study, we
inserted each of the 18 species into the tree based on taxonomic
information (see Supplementary Methods).

Our final case study set out to predict the telencephalic
neuron number of the extinct theropod dinosaur, T. rex. To do
this, we used a published dataset of 260 sauropsids21 which
represents a recently updated version of another recent dataset24.
These previous datasets either used a composite tree by splicing
together various group-level phylogenies21—or no tree at all24. We
simplify the procedure—and avoid complications associated with
mis-matched node ages in the phylogenetic tree by using the
Time Tree of Life, which includes 254 species in the dataset. We
then grafted T. rex into this phylogeny based on the dates infer-
red in a recently published analysis of dinosaurian divergence
dating and phylogeny60 (see Supplementary Methods).

The full datasets and corresponding phylogenetic trees for each
of the four case studies can be found in our Supplementary Informa-
tion (Supplementary Data 14).

Case study predictions
For each case study, we make predictions for all three approaches as
described for our simulations. We fit OLS and PGLS regression models
to the data using the functions lm and pgls in the base68 and caper71 R
packages, respectively, and estimate values for missing taxa using
predictive equations derived frombothmodels.We thenpredicted the
values for missing taxa using a PGLS regression model that simulta-
neously accounts for phylogenetic non-independence in the
prediction70—we did this using a custom R script for which we provide
the source code in Supplementary Code 1. In both PGLS models we
estimate phylogenetic signal using Pagel's λ47.

For the first case study (neonatal brain size), we conducted an
additional set of self-prediction analyses to validate the model. To do
this, we ran the PGLS model on the full dataset but removed the resi-
dual value for each species (one at a time) and adjusted the phyloge-
netic weighting as appropriate. This allowed us to obtain predictions
for all species included in the model. As with all our analyses, this was
performed inRbywayof amodified versionof the function used inour
phylogenetically informed predictions70—the full code is provided in
Supplementary Code 1.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All datasets analysed during the current study are included in this
published article (and its supplementary information files). The full
datasets and corresponding phylogenetic trees for each of the four
case studies can be found in the Supplementary Information (Sup-
plementary Data 14) and were obtained from the following sources:
Case Study 1—Wisniewski et al. (2022) Proc. R. Soc. B.46, Gómez-Robles
et al. (2024) Nat. Ecol. Evol.40; Case Study 2—Hedges et al. (2015) Mol.
Biol. Evol.51, Field et al. (2013) PLOSONE.23, Crouch et al. (2019) Proc. R.
Soc. B.22; Case Study 3—Montealegre-Z et al. (2017) J. Evo. Bio.41; Case

Study 4—Caspar et al. (2024) The Anat. Rec.21, Hedges et al. (2015)Mol.
Biol. Evol.51

All datasets generated for our simulation analyses can be created
using code provided in the Supplementary Information (see Code
Availability).

Code availability
All analyses were performed in openly available software as cited. We
provide the full R code and associated statistical results used to gen-
erate the simulations as supplementary files. We also provide addi-
tional custom R code used for the imputation aspect of this research.
All code is provided in Supplementary Code 1.
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