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ABSTRACT: Initialized hindcasts inherit knowledge of the observed climate state, so studies of multidecadal trends in
seasonal and decadal hindcast models have focused on the ensemble mean when benchmarking against observed trends.
However, this neglects the role of short-time-scale variability in contributing to long-term trends, and hence trend errors.
Using a single-model coupled hindcast ensemble, we generate a distribution of 10000 hindcast trends over 1981-2022 by
randomly sampling a single ensemble member in each year. We find that the hindcast model supports a wide range of
trends in various features of the large-scale climate, even when sampled at leads of just 1-3 months following initialization.
The spread in hindcast global surface temperature trends is equivalent to approximately a sixth of the total observed warm-
ing over the same period, driven by large seasonal variability of temperatures over land. The hindcasts also lend support
for observed poleward jet shifts, but the magnitude of the shifts varies widely across the ensemble. Our results show that a
fair comparison of hindcast trends to observations should consider the full range of model trends, not only the ensemble
mean. More broadly, we argue that the hindcast trend distribution offers a largely untapped tool for studying multidecadal
climate trends in a very large ensemble, through exploiting existing hindcast data.

SIGNIFICANCE STATEMENT: We show that seasonal forecast models support a wide range of long-term trends in
various climate features, from global surface temperature to shifts of the jet streams. This is important because trends
in these models are often compared to observed trends to test the model’s performance. However, comparisons have
typically used the model ensemble mean, neglecting the contribution of short-time-scale variability to long-term trends.
We argue that accounting for the full range of model trends is necessary to avoid misdiagnosing trend errors in the
models, particularly for features that are sensitive to atmospheric circulation variability, such as regional trends in the

extratropics.

KEYWORDS: Climate change; Ensembles; Hindcasts; Internal variability; Trends

1. Introduction

Predictive skill in dynamical models has extended beyond
seasonal time scales to include certain features on decadal
scales (Kushnir et al. 2019). Although individual simulations
typically span only months or a few years, multidecadal trends
over sequences of seasonal predictions have also been ex-
plored. Differences in long-term trends between hindcast
models and observations—referred to as model trend errors—
have been linked to low forecast skill in regions where trends
differ (Choi et al. 2016; Krakauer 2019; Shao et al. 2021;
Becker et al. 2022), including the effect of tropical Pacific
trend errors on ENSO prediction (Shin and Huang 2019;
L’Heureux et al. 2022; Becker et al. 2022). Recently, trend

Denotes content that is immediately available upon publica-
tion as open access.

P Supplemental information related to this paper is available
at the Journals Online website: https://doi.org/10.1175/JCLI-D-24-
0367.s1.

Corresponding author: Rhidian Thomas, r.h.thomas@reading.
ac.uk

DOI: 10.1175/JCLI-D-24-0367.1

errors in seasonal hindcasts have also been suggested to shed
light on differences between the observed trends and those in
freely evolving, uninitialized climate models (Beverley et al.
2024).

An important aspect that has been overlooked is the spread
of trends in initialized hindcasts that can arise through inter-
nal variability, with each of the cited studies above focusing
on the ensemble-mean hindcast trend. In an ensemble of un-
initialized climate simulations using a single model, trends in
individual realizations will differ from each other due to dif-
ferences in internally generated variability. Since the phasing
of this variability is not coherent across the ensemble, it is av-
eraged out in the ensemble mean, leaving the forced model
trend (e.g., Deser et al. 2012).

On the other hand, hindcasts are initialized from observed
conditions, so the initial phasing of internal variability in each
ensemble member is inherited from the observed state. Slow
modes of variability, such as in the ocean circulation, change
little over the forecast window and remain coherent across
the ensemble. This is shown in Figs. 1c and 1d, which show
time series derived from the hindcast dataset that we use in
this paper. These are given at both 1-month lead and 7-month
lead (blue and green shading, respectively) and compared
with the equivalent free-running model (orange). Whereas
the phasing of ocean variability varies between members of
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FIG. 1. In the hindcasts, mean state biases are reduced and coupled variability is constrained by the observed sys-
tem. DJF SAT bias in (a) the free-running model, HaddGEM3-GC2, and (b) the DePreSys3 hindcasts at 1-month
lead. The bias is calculated as the time-mean difference between the model and ERAS5 (model minus reanalysis). The
time mean is taken over the same period as the trend calculations (DJF 1981/82-2022/23). Hatching indicates where
greater than 20% of the ensemble members disagree on the sign of the bias. Time series plots of (c) the Atlantic mul-
tidecadal variability (AMV) index (Trenberth and Shea 2006) and (d) the Nino-3.4 index (Trenberth 1997), each for
DJF. ERAS is in black and the five free-running members are in orange. Green shading indicates the 5%-95% range
of values in the hindcast ensemble. A 10-yr centered rolling mean is applied to the AMYV index.

the uninitialized ensemble, the hindcasts remain broadly in
phase with the observed evolution (black line) at up to
7-month lead time. The hindcast ensemble-mean trend there-
fore contains both the model’s forced trend and a component
due to slow coupled modes that is coherent with observed
variability.

Deviations of the hindcast ensemble-mean trend from the
observed trend have thus been interpreted as model trend er-
rors (Beverley et al. 2024). However, the memory of the ini-
tial conditions is lost more quickly in the atmosphere, where
small differences at initialization lead to ensemble dispersion
at seasonal verification lead times. This short-time-scale vari-
ability is not coherent across the hindcast ensemble and is
averaged out in the ensemble mean, but it could be an impor-
tant contributor to observed trends (and hence ensemble-
mean trend errors). In this paper, we introduce a method to
quantify the full range of trends that is possible in an initial-
ized hindcast ensemble through sampling individual members
in each year. We show that variability on seasonal time scales
can lead to nontrivial differences in various multidecadal cli-
mate trends across the Met Office Decadal Prediction System,
version 3 (DePreSys3), hindcast ensemble (Dunstone et al.
2016). This means that a fair comparison to observed trends
should use the full distribution of possible hindcast trends,
rather than only the ensemble-mean trend.

The main focus of this paper is on the spread of trends in
the DePreSys3 prediction system over 1981-2022, a period
covering most of the satellite era. We also compare to trends
in five freely evolving simulations run using the same model
as DePreSys3 (HadGEM3-GC2, see section 2) and covering
the same time period. It is relatively uncommon to have

hindcasts and directly comparable free-running simulations from
the same model, so these provide a valuable comparison even
though the ensemble size is limited. The full-field initialization
strategy used in DePreSys3 may also reduce the development
of some mean-state biases seen in the free-running model
(cf. Figs. 1a,b). There is some evidence that mean state biases
in the control period can affect the response of a model to
external forcing (Simpson et al. 2021), so the reduced biases
could lead to improved trends in the hindcasts. These compar-
isons could be used to identify trends that are especially af-
fected by the initialization in order to target future studies.
Details of the models used and the generation of the trend
ensemble are in section 2. Zonal-mean trends in temperature
and zonal winds are presented in sections 3 and 4. Section 5
discusses hindcast trends in surface air temperature. Each
results section will compare ensemble-mean trends in the
hindcasts to trends in observations or reanalyses. Then, by
presenting the full ensemble spread, we will demonstrate
where comparing only to the ensemble means can give a mis-
leading picture. Finally, concluding remarks are in section 8.

2. Methods
a. Hindcast data

Monthly hindcast data are used from DePreSys3, the third it-
eration of the Met Office decadal prediction system (Dunstone
et al. 2016). DePreSys3 uses the HadGEM3-GC2 coupled model
(Williams et al. 2015; Senior et al. 2016). HadGEM3-GC2 incor-
porates the Met Office Unified Model (UM) global atmospheric
v6 dynamical core, run here at N216 resolution (0.83° X 0.56°,
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approximately 60 km in the midlatitudes). The atmospheric
model has 85 levels in the vertical and an 85-km model top with
a well-resolved stratosphere. The land surface model is JULES
(Best et al. 2011). HadGEM3-GC2 uses the Global Ocean ver-
sion 5.0 configuration of the NEMO ocean model (Megann et al.
2014), run at an eddy-permitting horizontal resolution of 0.25°
and with 75 vertical levels. The sea ice model is CICE (Rae et al.
2015).

Initial conditions are derived from an assimilation run in
which the model fields are nudged toward full-field analyses
(relaxation time scale in square brackets): in the atmosphere,
6-hourly temperature, zonal winds, and meridional winds,
from ERA-Interim (until 2019; Dee et al. 2011)/ERAS (after
2019; Hersbach et al. 2020) (6 h); monthly salinity and tem-
perature in the ocean from the Met Office Statistical Ocean
Reanalysis (MOSORA,; Smith et al. 2015) (10 day); and
monthly HadISST (Rayner et al. 2003) sea ice concentration
(1 day) (Dunstone et al. 2016). During the assimilation run,
nonnudged fields (e.g., snow cover and soil moisture) are free
to evolve in response to the nudged parameters. This nudging
strategy aims to reduce the shock that could arise if initialized
using instantaneous fields at the launch time. Simulations are
launched biannually on the 1 November and 1 May for every
year since 1960, although the work presented here focuses on
the data-rich period since the introduction of satellite obser-
vations in 1980.

An ensemble of 40 members for each start date is gener-
ated by feeding different seeds to a stochastic physics scheme
which perturbs the model physics tendencies (Bowler et al.
2009). Simulations last between 13 and 66 months. External
forcing in DePreSys3 is time-varying, following CMIPS histor-
ical forcing until 2005 and RCP4.5 thereafter.

b. Free-running model data

The hindcasts are compared to five free-running members
of the same HadGEM3-GC2 model with historical forcing
(“GC2”). These continuous model integrations have identical
spatial resolution and external forcing as DePreSys3, differing
only in being uninitialized. Members are initialized from dif-
ferent points along the preindustrial control run in 1850.
Comparing with these like-for-like simulations isolates the ef-
fect of initialization on the modeled trends.

¢. Reanalysis data

We compare trends in the models to those in three modern
atmospheric reanalyses: ERAS (Hersbach et al. 2020), JRA-
55 (Kobayashi et al. 2015), and the Japanese Reanalysis for
Three Quarters of a Century (JRA-3Q) (Kosaka et al. 2024).
Monthly mean data are used for all datasets between June
1981 and February 2023. ERAS is retrieved at 1° horizontal
grid resolution and the two JRA reanalyses at 1.25°. Although
reanalysis trends can be susceptible to biases or discontinu-
ities (see below), we use them here for dynamical consistency
between the temperature and circulation trends.

Caution is necessary when interpreting trends in reanalyses
due to changes in the assimilated observing systems over time
(Bengtsson et al. 2004). In JRA-3Q, different SST forcing
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datasets are used before and after June 1985: Centennial In
Situ Observation-Based Estimates SST, version 2 (COBE-
SST2), before and Merged Satellite and In Situ Data Global
Daily SST (MGDSST) after (Kosaka et al. 2024). The change
in dataset could affect trends that span the changeover date,
particularly for variables that are sensitive to the lower
boundary conditions (e.g., surface air temperature). We find
no evidence of a sharp discontinuity in 1985 for the variables
considered here (not shown); additionally, the JRA-55 dataset
is included for comparison, which uses the COBE-SST?2 forc-
ing dataset throughout (Kobayashi et al. 2015). The overall
similarity between trends in JRA-3Q and JRA-55 builds con-
fidence in the use of JRA-3Q.

Kosaka et al. (2024) note that surface air temperature
(SAT) observations assimilated in JRA-55 and JRA-3Q over
ocean may be influenced by biased ship observations (Simmons
et al. 2004); when calculating global mean SAT in the JRA
reanalyses, they therefore use analysis fields over land and
the background forecast field over ocean. This paper adopts
the same approach for the JRA reanalyses. Without this
step, the analysis global SAT trends are approximately 20%
weaker than in ERAS (Simmons 2022; not shown).

d. Trend analysis

Seasonal-mean trends are presented for DJF and JJA. DJF
trends are calculated from DJF 1981/82 to DJF 2022/23, and
JJA trends are calculated from 1981 to 2022. Both May and
November start dates are exploited to study trends at leads of
1-3 months (“1-m lead”) and 7-9 months (“7-m lead”).

Multidecadal trends are constructed by randomly selecting
a single member for each start date (i.e., one member out of
40 is chosen each year, and these are stitched together to form
a time series). Hindcast labeling is arbitrary; no special rela-
tionship exists between the ith member for one start date and
the ith member for another. This allows a free choice of all
40 members for each start date between 1981 and 2023. The
selection process is repeated 10000 times to generate a distri-
bution of time series consistent with the hindcast predictions
(Kelder et al. 2020; Kay et al. 2022). In the following sections,
“ensemble” is used to refer to this distribution of 10000 42-yr
sequences (“members”), rather than to the 40-member en-
semble for each forecast run.

Linear trends for each of the 10000 time series are calcu-
lated using least squares regression. Significance in the reanal-
yses is calculated using a two-tailed ¢ test with null hypothesis
of zero trend. The test uses an effective sample size that ac-
counts for lag-1 autocorrelation (Santer et al. 2000); as the
trends are calculated here using seasonal-mean data, this ef-
fect is generally small. To account for multiple testing in the
reanalyses, only those regions where the local test statistic
passes the false discovery rate criterion (Wilks 2016), with a
global control level of & = 0.1, are stippled in Figs. 2 and 4.
DePreSys3 and GC2 output is conservatively regridded to the
coarser 1° resolution for comparison with ERAS. The JRA re-
analyses are not regridded as no point-by-point comparison is
made with the other datasets. Only data above the surface are
used for all pressure-level variables.

Unauthenticated | Downloaded 10/31/25 12:13 PM UTC



5544

JOURNAL OF CLIMATE

VOLUME 38

DJF temperature trends, 1981/82-2022/23

Hindcasts 1m

¢)  Hindcasts 7m d) Free-running

E = E"

= - %
=

Pressure (hPa)

sy

f) above mlnus ERA5

7 \\\%

h) above mlnus ERA5

Il |

9) above mlnus ERA5

Pressure (h

45°N 90°N 90°S 45°S

90°S 45°S 0° 45°N 90°N 90°S 45°S 0° 45°N 90°N 90°S 45°S 0° 0° 45°N 90°N
Latitude Latitude Latitude Latitude
-0.75 -0.60 —0.45 -0.30 -0.15 0.15 0.30 0 45
K / decade

FIG. 2. DJF zonal-mean temperature trends (1981/82-2022/23) for (a) ERAS, the hindcast ensemble mean for (b) 1-m lead and (c) 7-m
lead, (d) the free-running GC2 ensemble mean, and (e) JRA-55. Stippling on (a) and (e) indicates a trend significantly different from zero
at the 5% level after accounting for multiple testing (see methods). Stippling on (b)—(d) indicates where at least 80% of the model mem-
bers agree on the sign of the trend. (f)—(h) Differences of the plots in (b)—(d) from the ERAS trend in (a). Stippling on (f) and (g) indicates
where the hindcast mean is more than 25 away from the ERAS mean, where S is the standard error on the ERAS regression. On both

rows, solid contours show the corresponding climatological values with spacing of 10 K.

3. Zonal-mean temperature

We begin by presenting the zonal-mean temperature trends
in ERAS, JRA-55, and the model ensemble means (DJF is
shown in Fig. 2 and JJA is shown in Fig. S1 in the online
supplemental material). This will provide the context for later
sections where the zonal circulation and surface temperature
trends are examined in more detail.

Both reanalyses show moderate warming of the troposphere
between *45° (Figs. 2a,e and Figs. Sla,e) and strong warming
near the Arctic surface in DJF (Figs. 2a,e). This general struc-
ture is captured well by the hindcast ensemble mean at both
lead times (Figs. 2b,c and Figs. S1b,c), although the magnitude
of the Arctic warming is weaker in the hindcast ensemble
mean than the reanalyses. Figures 2f-2h and Figs. S1f-S1h
show the ensemble-mean model trend errors relative to ERAS.
A striking feature of GC2 is its warm trend bias in the tropical tro-
posphere (Fig. 2h and Fig. S1h), in common with other coupled
models (e.g., Mitchell et al. 2020). By contrast, ensemble-mean
trend errors in the tropics and midlatitudes are substantially
reduced in the hindcasts at both 1-m lead and 7-m lead. The
drift over the hindcast runs appears to be small, so that the
trend error at 7-m lead is similar to 1-m lead.

The spread of trends in the 1-m hindcasts is shown in Fig. 3,
defined as the standard deviation of trends across the ensem-
ble. The spread is relatively small in the tropics, highlighting
the tight constraint on the tropical troposphere provided by

the initial conditions. By contrast, the spread is much larger
in the polar regions, indicating that variability on seasonal
time scales has a larger impact on trends at higher latitudes.
Importantly, high-latitude regions that show notable trend
errors in the hindcast ensemble mean, such as the Arctic
lower troposphere and the polar stratosphere in both hemi-
spheres (Figs. 2f,g), also show a wide spread of trends be-
tween members (Fig. 3). When we compare reanalysis
trends in the Arctic lower troposphere and stratosphere to
the hindcasts, the reanalyses are within the 95% confidence
intervals of the ensemble (not shown). While the ensemble
mean may be sufficient for diagnosing temperature trend
errors at low latitudes, Fig. 3 shows that a fair comparison
in the extratropics should use the full range of hindcast
trends.

4. Zonal-mean zonal winds

Figure 4 shows zonal wind trends in ERAS and the model
ensemble means. In ERAS, the trend over the satellite era is
toward a poleward shift of the jets in both hemispheres and
seasons (Figs. 4a,e), with the deep structure of the midlatitude
wind trends indicating the influence of transient eddies. The
exception is the boreal summer jet, where wind trends in the
midlatitudes are generally weak (Fig. 4¢).

The ensemble-mean hindcast trends are shown in Figs. 4b,
4c, 4f, and 4g. Various features of the ERAS trend are well
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FIG. 3. Spread of zonal-mean temperature trends in the 1-m hindcasts, defined as the standard deviation of trends
across the hindcast ensemble. The spread is shown for (a) DJF (1981/82-2022/23) and (b) JJA (1981-2022). Solid con-
tours show the climatological temperature, with spacing 10 K as in Fig. 2. Note the logarithmic color scaling.

reproduced by the 1-m hindcast ensemble mean, such as the
strong easterly trends in the subtropics. The deep acceleration
on the poleward side of the austral winter jet is also well rep-
resented in the hindcast ensemble mean at 1-m lead (Fig. 4f).
By comparison, neither the widespread subtropical easterly
trends nor the deep westerly trends in austral winter are seen
in the free-running ensemble mean (Figs. 4d,h). Even in the

Zonal wind trends,
b) Hindcasts 1m

ensemble mean, the hindcasts are therefore better able to re-
produce reanalysis zonal wind trends.

Next, we discuss the spread of wind trends across the model
ensembles. Figure 5 summarizes meridional jet shifts using
the zonal indices of Woollings et al. (2023), with positive values
indicating poleward shifts. At 1-m lead, the hindcast ensemble
means show poleward jet shifts in both hemispheres and seasons,

1981/82-2022/23
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FIG. 4. Zonal-mean zonal wind trends for (a),(e) ERAS, the DePreSys3 hindcast ensemble mean at (b),(f) 1-m lead and (c),(g) 7-m
lead, and (d),(h) the free-running ensemble mean (GC2). (top) DJF trends. (bottom) JJA trends. Solid contours show the corresponding
climatologies with dashed lines indicating negative values and a spacing of 5 m/s. Stippling follows (a)—(d) in Fig. 2; note that none of the
ERAS5 grid points show significant trends after controlling for the false discovery rate, as described in the methods. Boxes in (a) and (e) in-
dicate the regions used to calculate the zonal wind indices of Fig. 5. DJF trends are calculated over 1981/82-2022/23, and JJA trends are
calculated over 1981-2022.
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FIG. 5. Jet shifts as measured by trends in the zonal wind indices of Woollings et al. (2023). Each zonal index is the difference in zonal
wind trend between the poleward and equatorward sides of the climatological jet, averaged over seven levels between 200 and 700 hPa.
The latitude bands used to define each index vary by season and hemisphere, as shown by the boxes in Figs. 4a and 4e. Poleward shifts cor-
respond to positive trends in the index in each hemisphere. Zonal index trends in the (a) SH and (b) NH and (c) the average over both

hemispheres for DJF; (d)-(f) as in (a)—(c), but for JJA. Blue and gr

een shading shows the trends in the hindcasts at 1-m lead and 7-m

lead, respectively. Reanalysis trends are shown in black, with the gray shading indicating the 95% confidence interval around each prod-
uct. The free-running GC2 members are shown by the orange triangles.

as seen in Fig. 4. Beyond the ensemble mean, however, a much
wider range of trends is possible in the hindcasts. While poleward
shifts still dominate, a nonnegligible sample of members in each
hemisphere and season exhibits equatorward shifts.

A notable case is austral summer (Fig. 5a). Circulation trends
in this season are influenced by changes in stratospheric ozone
over the satellite era (e.g., Gillett and Thompson 2003; Son et al.
2010; Seviour et al. 2017). Changes in ozone concentration are
nonlinear in time (Banerjee et al. 2020), although the linear
trend here is consistent with depletion dominating in the satellite
era overall. The ensemble-mean trend in GC2 is a poleward shift
of the austral summer jet, consistent with the forced response to
ozone depletion. The hindcast jet shift distributions are similar
at 1-m lead and 7-m lead, with both showing a poleward shift in
the ensemble mean. Even so, 8% of the hindcast trends at 1-m
lead (and 11% at 7-m lead) show an equatorward shift of the
austral summer jet, despite identical external forcing. In other
words, around a tenth of hindcast members show trends in the
austral summer jet opposite to the externally forced response
due to variability on seasonal time scales. This finding is consis-
tent with the large role for internal variability in austral summer
jet shifts identified by Seviour et al. (2017). The hindcasts are
somewhat more confident in poleward shifts in the winter jets,
though 8% and 4% of the 1-m hindcasts show equatorward

shifts in boreal and austral winter, respectively. Even where the
hindcasts are relatively confident in the sign of the trend, its
magnitude can vary substantially between members.

This has implications when comparing trends in hindcast
models with observed trends. The black vertical lines in Fig. 5
denote reanalysis trends, and gray shading indicates the
95% confidence interval on these. In each season and hemi-
sphere, the magnitude of the reanalysis trends differs from
the hindcast ensemble means. However, the reanalysis trends
clearly fall within the spread of hindcast trends, particularly at
1-m lead, and the reanalysis trends themselves are considerably
uncertain as indicated by the wide confidence intervals. Failing
to account for either the spread in hindcast trends or the rean-
alysis trend uncertainty thus gives an incomplete comparison.
For example, the mean boreal winter jet shift is weaker in the
1-m hindcasts than in the reanalyses (0.42 m s~ ' decade ™", com-
pared to 0.68 m s~ ! decade ! in ERAS5, Fig. 5b)—but roughly a
quarter of the hindcasts actually shows a stronger poleward
shift than in the reanalyses. Diagnosing an equatorward trend
error in the model in this case neglects the role that variability
on seasonal time scales, largely intrinsic atmospheric variabil-
ity, can play in influencing multidecadal wind trends.

Despite the wide array of jet shift trends in the hindcasts,
some firm conclusions can still be drawn. Averaged over both
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FIG. 6. Area-weighted SAT trends for (top) DJF 1981/82-2022/23 and (bottom) JJA 1981-2022. Trends are averaged (a),(d) globally,
(b),(e) over land, and (c),(f) over ocean. Colors, symbols, and shading are as in Fig. 5. Note the different x axes in each panel.

hemispheres, the hindcasts at 1-m lead robustly show a pole-
ward shift of the jets in both DJF and JJA (Figs. 5c.f); only
2% of members fail to show an average poleward shift in DJF
and less than 1% in JJA. An average poleward shift globally
may hide a weak or equatorward shift in one hemisphere.
Accounting for this, we find that 85% of 1-m lead members
show concurrent poleward shifts in both hemispheres for DJF
and 96% for JJA.

In summary, the DePreSys3 hindcasts broadly lend support
to the emergence of poleward zonal-mean jet shifts on the
global scale identified by Woollings et al. (2023). However,
they also support a wide range of jet shifts for each specific
hemisphere and season, including some which are of the op-
posite sign. The spread in multidecadal hindcast trends arises
from variability on seasonal time scales, and failing to account
for this can lead to incorrect conclusions regarding trend er-
rors in initialized hindcasts.

5. Surface air temperature

Figures 6a and 6d show trends in averaged global SAT
(GSAT) for DJF and JJA, respectively. The reanalysis GSAT
trends between 0.17 and 0.20 K decade ™! in DJF are well cap-
tured by the 1-m lead hindcasts, whereas the reanalysis trends
are on the upper edge of the 1-m hindcast distribution in JJA.
In both seasons, regression uncertainty on the reanalysis trends
is comparable to the spread in hindcast trends over both lead
times (not shown). By 7-m lead, the hindcasts drift toward
larger trends in each season. Even at 1-m lead, a nonnegligible
spread of hindcast GSAT trends is seen, with a 5%-95% range
of 0.17-0.20 K decade™" in DJF and 0.15-0.18 K decade™

in JJA. Over the satellite era, this equates to a difference of
0.12 K of warming in DJF and 0.11 K in JJA between hindcast
members at the 5th and 95th percentiles, equivalent to around
a sixth of the mean warming over the same period or approxi-
mately a tenth of the warming since preindustrial times (Gulev
et al. 2021).

Figures 6b, 6e, 6¢c, and 6f show SAT trends averaged over
land and ocean, respectively. Initialization of the ocean means
that the spread of oceanic SAT trends is relatively narrow in
the hindcasts, at both 1-m lead and 7-m lead. The spread is
much larger over land in both seasons. The variance in global
SAT trends Tyjopal is denoted (TT = Var(T lobal) This can
be expressed as a weighted sum of the trend variances over

land 07 andocean o -
ocean
2 2 2 2 2
O-Tgk,ml L 0'7- + fOo-Tﬂcc + szfOCOV(Tland’ ocean) (1)

where f; and fp are the fractional areas of land and ocean, re-
spectively (fL + fo = 1), and the final term on the right-hand
side is the covariance between SAT trends over land and
ocean across the ensemble. The relative contributions of each
term in the 1-m hindcasts are shown in Table 1. The largest

TABLE 1. Fractions of the total variance in GSAT trends
explained by each term in 1 for the 1-m hindcasts. Variances are

expressed as fractions of the total variance O'ZTI o (ie., chTH = 1).
slobal obl
Season f[% 0%_1 d féa%-(,w 2foOCOV(Tland7 ocean)
DJF 0.87 0.16 -0.03
JIA 0.50 0.27 0.23
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FIG. 7. Difference in SAT and SLP trends for the 200 1-m hindcast members with the (top) warmest and (bottom)
coolest GSAT trends in each season. Differences are shown relative to the 1-m hindcast ensemble mean. Only signifi-
cantly different trends are shaded, using a two-tailed ¢ test at the 5% level. Differences in SLP trend are shown in con-
tours, with solid contours indicating a positive difference in the 200-member subset relative to the ensemble mean.

term in both seasons is the land term, accounting for half the
total variance in JJA and the majority in DJF. The ocean con-
tribution is larger in JJA, but it is still only slightly more than
half as large as the land term. Finally, while the covariance in
land and ocean SAT trends is negligible in DJF, it is reason-
ably large in JJA, so that SAT trends over land and ocean are
positively correlated.

The spatial patterns associated with the spread of GSAT
trends are illustrated in Fig. 7. Figure 7a shows the difference
in SAT and SLP trends in the 200 1-m hindcast members with
the largest DJF GSAT trends minus the ensemble mean.
Compared to the ensemble mean, members with the largest
GSAT trends are characterized by strong warming of the
mid-high latitude continents, particularly Eurasia and North
America in the NH. These regional warming differences are
consistent with the westerly flow advecting relatively mild oce-
anic air over the continental landmasses. The spread in hindcast
warming over land is large for the same reason that monthly var-
iability in hemispheric temperatures is dominated by land: the
heat capacity of the land surface is much smaller than the ocean
surface, and hence, its temperature (and the overlying SAT) can
adjust much more rapidly in response to changes in the large-
scale circulation (Wallace et al. 1996). Wallace et al. (1995)
demonstrated that this “cold ocean, warm land” phenomenon
explains half of the month-to-month variance in NH SAT
anomalies over the 20th century; the spread in multidecadal
hindcast trends arises through sampling of this variance.

Figure 7b shows the corresponding plot for JJA. This
appears to indicate a greater role for the tropical Pacific than
in DJF, consistent with the larger oceanic contribution to the
spread in JJA GSAT trends in Table 1. The largest GSAT
trends in JJA are particularly associated with warming of high
southern latitudes, consistent with greater variability in surface
temperatures in the winter hemisphere. In both seasons, small

GSAT trends are associated with similar circulation patterns,
but opposite in sign (Figs. 7c,d). Hence, while not the dominant
factor in the long-term anthropogenically driven GSAT trend,
these results highlight that variability on seasonal time scales can
noticeably modulate hemispheric and global SAT trends over
multidecadal time periods (Iles and Hegerl 2017).

As shown in the previous section for zonal winds, the spread
in hindcast trends has implications for diagnosing trend errors
using the ensemble mean. Figure 8 shows SAT trends in ERAS
and JRA-55 (Figs. 8a and 8b) and the hindcast ensemble means
at 1-m lead and 7-m lead (Figs. 8c.e, respectively). The ensemble-
mean hindcast trend errors relative to ERAS5 are shown in
Figs. 8d and 8f. Figure S2 shows the corresponding plots for
JJA. Over ocean, the trend errors are generally small; the spa-
tial correlation between the ERAS trend and the 1-m lead
hindcasts over ocean is 0.89 for DJF and 0.63 for JJA (p < 0.01).
Many features of the reanalysis trends over ocean are well
captured by the hindcast ensemble means, including weak or
negative trends in the tropical east Pacific and Southern Ocean
(Fig. 8c and Fig. S2c¢).

On the other hand, the pattern of hindcast trend errors
over land generally resembles the GC2 trend errors (cf. Figs.
8d.f and Figs. S2d,f with Fig. 8h and Fig. S2h). The ensemble-
mean trend patterns over land remain much smoother in the
DePreSys3 hindcasts than in the reanalyses. However, as
shown above, this smooth ensemble mean obscures significant
regional spread between members in land SAT trends. Sev-
eral of the land regions with large trend error, such as central
Eurasia and northern North America, are also regions with a
large spread between members, as shown in Fig. 7. Internal
variability is therefore an important factor to consider for
SAT trends over land, underlining the importance of using
the full range of hindcast trends when diagnosing trend errors
relative to observations or reanalyses.
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F1G. 8. DJF SAT trends (1981/82-2022/23) for (a) ERAS and (b) JRA-55, the hindcast ensemble mean at (c) 1-m
lead and (e) 7-m lead, and (g) the free-running ensemble mean. Hatching on these plots is the inverse of the stippling
on the ensemble-mean trends of Figs. 2 and 4 (here, hatching hides nonsignificant points, defined as before).
(d),(f),(h) Differences of the plots in (c), (e), and (g) from the ERAS trend in (a). As in Fig. 2, stippling on
(d), (f), and (h) indicates where the hindcast mean is more than 2S away from the ERAS mean, where S is the stan-

dard error on the ERAS regression.

6. North Atlantic Oscillation

We now include a brief analysis of trends in the North
Atlantic Oscillation (NAO) as an example of a regional circu-
lation structure that has received much attention, both in
terms of recent trends (Blackport and Fyfe 2022; Eade et al.
2022) and also in the seasonal predictions based on these
hindcasts (Dunstone et al. 2016, 2023). NAO-like circulation

patterns are already seen to contribute to the spread in SAT
trends, as seen in Fig. 7.

Figure 9a shows trends in the winter NAO anomaly index cal-
culated following Dunstone et al. (2016). The winter NAO index
has a weak positive trend between 1981 and 2022 (p = 0.76 in
ERAYS), falling within the hindcast range at both lead times and
even within the five-member uninitialized ensemble. The spread
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FIG. 9. Trends in (a) the DJF winter NAO anomaly index (calculated following Dunstone et al. 2016) and (b) the
JJA SNAO anomaly index (calculated following Dunstone et al. 2016). Colors and symbols are as in Fig. 5. Trends
are calculated over 1981/82-2022/23 for DJF and 1981-2022 for JJA.

of hindcast trends is large, such that trends of either sign are
clearly possible within the ensemble. Previous work has drawn
attention to the winter NAO trend over the longer period since
1950, which is at the upper edge of the trends simulated by free-
running CMIP6 models (Blackport and Fyfe 2022), and includes
a particularly large positive trend between the 1960s and 1990s
(Eade et al. 2022). As our trends begin in 1981/82, we are unable
to test the model’s ability to capture trends beginning in the
mid-twentieth century. Over the more recent period considered
here, we find that both the uninitialized model and the hindcasts
are capable of capturing the modest winter NAO trend.

A much stronger reanalysis trend is seen in the summer NAO
(SNAO; Fig. 9b). Here, the 95% confidence intervals on the
reanalysis regressions all lie entirely below zero, and the re-
gressions achieve higher statistical significance than in winter
(e.g., p = 0.07 in ERAS). Fewer than 4% of hindcast mem-
bers at 1-m lead and 3% of hindcast members at 7-m lead
have as strong a negative trend as the reanalysis. Interestingly,
the hindcast SNAO trend distribution is largely insensitive to
lead time. This may reflect the poor seasonal predictability of
the European summer climate (Patterson et al. 2022). Recent
work has also pointed to the importance of aerosol forcing in
summer circulation trends over the European sector (Dong
and Sutton 2021); aerosol forcing is identical in the hindcasts
at both lead times and in the free-running GC2 simulations,
which may explain their similar trend distributions.

In summary, the hindcasts support a wide range of positive
and negative trends in the NAO indices in both seasons.
While long-term trends in the winter NAO have received con-
siderable attention in the literature, we find that both the
hindcasts and the free-running GC2 model are able to capture
observed trends between 1981 and 2022. However, the trend
toward negative SNAO over the same period is further to-
ward the edge of the hindcast trend distributions, which may
point to model deficiencies.

7. Discussion

The hindcast trends in previous sections are constructed by
randomly sampling individual ensemble members in each

year, with each segment of the time series sampled indepen-
dently of the previous segments. To determine whether this
approach yields physically plausible time series, we perform
statistical tests to assess the consistency between the boot-
strapped hindcast time series and the observed climate.
Following Kelder et al. (2020), we calculate the mean, stan-
dard deviation, skewness, and kurtosis of the hindcast time
series and test whether the corresponding reanalysis values
fall within their 5%-95% confidence intervals. The test is
performed for a selection of the quantitative metrics pre-
sented above: jet indices, NAO indices, and GSAT. Since
the trends sample year-to-year variability in the hindcasts,
consistency in the standard deviation, skewness, and kurtosis
builds confidence that the spread of trends is physically
plausible.

Figure S3 shows the statistical moments for the jet indices
used in section 4. The hindcasts show mean biases of varying
sizes relative to the reanalyses in each season and hemisphere.
Despite this, the higher statistical moments in the reanalyses are
all within the 5%-95% confidence intervals for both the 1-m
lead and 7-m lead hindcasts, with the exception of the kurtosis
in DJF NH. Likewise, the statistical moments of the NAO and
SNAO distributions are well captured by the hindcasts at both
lead times (Fig. S4). The hindcast jet and NAO trends thus
sample variability that is consistent with the observed climate.

The statistical moments for the GSAT time series are
shown in Fig. S5. The hindcasts are biased cold relative to the
reanalyses in both seasons. Unlike for the jet indices and
NAO, however, the higher moments of the reanalysis GSAT
time series are not consistently well captured. Focusing on the
1-m hindcasts, none of the reanalysis products fall within the
5%-95% confidence intervals in DJF, and in JJA, only one
product falls within the interval for the standard deviation
and none for the kurtosis. This suggests that caution is neces-
sary when interpreting the spread in hindcast GSAT trends.
However, we also note that the spread between the reanalyses
is much larger for GSAT than for the jet and NAO indices;
for example, the DJF GSAT standard deviation in ERAS is
20% larger than the average of the JRA products (17% larger
in JJA). In both seasons, the standard deviation values of the
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1-m hindcasts are intermediate between the ERAS and JRA
values. Hence, while the hindcast GSAT time series do not
achieve strict statistical consistency with the reanalyses, the
poor agreement between the different reanalysis products
limits our ability to conclude that the hindcast trends are
physically implausible.

8. Conclusions

This study has outlined a method for exploring the full
range of multidecadal trends in an ensemble of interannual
hindcasts (DePreSys3; Dunstone et al. 2016). Part of the moti-
vation was to explore where the spread of hindcast trends is
large and cannot be neglected and where the conventional
ensemble-mean approach may be appropriate. The main re-
sults are as follows:

e The 1-m hindcasts broadly support the emergence of pole-
ward zonal-mean jet shifts on the global scale (Woollings et al.
2023), with 85% of members showing concurrent poleward
shifts in both hemispheres in DJF and 96% in JJA. However,
the magnitude of the shifts varies substantially across the en-
semble, even in hemispheres and seasons where the trend is
thought to be strongly forced; for example, between 8% and
11% of hindcast members show an equatorward shift of the
austral summer jet, despite shared ozone forcing and a strong
poleward shift in the ensemble mean.
The spread in 1-m hindcast GSAT trends is 0.03 K decade !,
equivalent to approximately a sixth of the total trend over
1981-2022 or a tenth of the observed warming since pre-
industrial times (Gulev et al. 2021). In DJF, 87% of the
spread in GSAT trends occurs over land, which can
change temperature quickly in response to the advection
of mild oceanic air by the atmospheric circulation (Wallace
et al. 1995). Comparisons to observed SAT trends, partic-
ularly for trends over extratropical land regions, should
therefore use the full range of hindcast trends where
possible.

e Variability in the hindcast time series is statistically consistent
with the reanalyses for the jet and NAO indices, building confi-
dence in the physical plausibility of the hindcast trends. The
hindcast GSAT time series are statistically distinct from the
reanalyses; however, while we should be cautious in inter-
preting the spread of GSAT trends, we also note substantial
uncertainty in the statistical moments of the reanalyses.

e Seasonal variability leads to a wide spread in tropospheric
temperature trends at high latitudes, particularly in the Arctic
winter. By contrast, the range of tropical temperature trends
in the hindcasts is much smaller, with smaller deviations from
the ensemble-mean trend.

The overarching theme of our work has been to demon-
strate the potential for short-time-scale variability to contrib-
ute to multidecadal trends in a variety of climate metrics.
Variability on seasonal time scales is likely to be mostly atmo-
spheric in origin, although fast coupled processes may also
contribute. Accordingly, the spread of trends is particularly
large for trends in atmospheric circulation features (e.g., the
zonal-mean jets and NAO, Figs. 5 and 9), consistent with
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the low forced signal of the circulation relative to internal
noise (Shepherd 2014). However, the dynamics also drive a
nonnegligible spread in temperature trends, particularly at higher
latitudes, on regional scales, and over land (Figs. 3, 6, and 7). The
importance of internal atmospheric variability for multidecadal
trends is well established in studies of climate change (e.g., Deser
et al. 2012; Jain et al. 2023), but it appears to have been less
emphasized for understanding trends in seasonal forecast
models; to our knowledge, ours is the first study that has
taken this approach. This study demonstrates that account-
ing for the spread of trends is both possible and necessary
when comparing trends in forecast models to observations,
with implications for studies that have drawn conclusions
based on ensemble-mean trend errors.

More broadly, hindcasts offer a largely untapped resource
for studying the influence of short-time-scale variability on
long-term climate trends. The contribution of atmospheric
variability to multidecadal trends has typically been studied
using atmospheric models forced by prescribed SSTs. How-
ever, the lack of physical coupling in atmosphere-only models
can lead to underestimates of low-frequency extratropical var-
iability (Barsugli and Battisti 1998; Mori et al. 2024), and the
oceanic influence on the atmosphere is not always directly
mediated by SST anomalies (Sutton and Mathieu 2002). Gen-
erating large model ensembles also remains computationally
expensive, even in an uncoupled configuration. We have
shown that a very large model ensemble of plausible multide-
cadal trends can be generated using existing coupled hindcast
data, of the type that is routinely archived by operational cen-
ters. The hindcast trend ensemble offers a complementary
view to prescribed SST ensembles, allowing for some faster
coupled processes in addition to purely atmospheric variabil-
ity. The very large ensemble size also means that the condi-
tional subsampling of hindcast members (as in Fig. 7), which
is useful for building physical understanding of mechanisms,
can yield robust statistics even for rare manifestations of
internal variability that appear in the tails of the trend distri-
bution. The hindcast trend ensemble introduced here may
therefore provide a useful tool for contextualizing emerging
trends in the climate system.
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