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ARTICLE INFO ABSTRACT

Reliable soil property maps are essential for environmental modeling, yet conventional mapping methods remain
costly and time-consuming. We developed a machine learning framework that integrates the Soil-Landscape
Estimation and Evaluation Program (SLEEP) with gradient boosting to predict soil properties at regional
scales and multiple depths. Our approach addresses multicollinearity through a recursive feature selection al-
gorithm. We applied this framework to a tropical region characterized by a ~700-km longitudinal gradient of
contrasting topography, climate, and vegetation (~98,000 km? NE Brazil), where scarce soil physicochemical
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1. Introduction

Soils are a key component in many landscape models that focus on
providing solutions to global environmental issues such as food and
water scarcity, unsustainable energy production, and biodiversity losses
(Bouma and McBratney, 2013). For a more comprehensive under-
standing of the role of soils in addressing these global challenges, as well
as their interactions with other environmental factors, it is necessary to
map the spatial distribution of soil properties robustly. Soil mapping is
complex and highly resource-intensive (Li and Heap, 2014; Mendon-
ca-Santos and dos Santos, 2006), and the majority of the existing maps
were produced using conventional soil survey protocols (Hartemink
et al., 2012), which remains the primary approach to capture soil spatial
variability. However, this surveying approach has been criticized for
being heuristically dependent on the practical knowledge of pedologists,
and for deriving interpretations using sometimes insufficient or incom-
plete datasets (Scull et al., 2003).

Digital Soil Mapping (DSM) is a quantitative approach to mapping
soil properties using statistical relationships between soil observations
and environmental variables. It was formalized with the SCORPAN
model, which considers factors such as soil properties, climate, vegeta-
tion, topography, and spatial position to guide the selection of covariates
in DSM (McBratney et al., 2003) to produce models capable of inter-
polating and extrapolating data with high resolution (Scull et al., 2003).
DSM reduces survey costs and improves access to soil data by leveraging
advances in remote sensing, geospatial analysis, and machine learning
(ML) (Kempen et al., 2012; Lagacherie and McBratney, 2006). It has
been widely applied to map soil attributes such as texture, organic
carbon, and pH at regional to continental scales (e.g., Ballabio et al.,
2016; Guevara et al., 2018).

DSM has been widely used across the world to reduce soil mapping
costs over large areas (e.g., Toth et al., 2017; Guevara et al., 2018;
Padarian et al., 2017; Teng et al., 2018). The methodological core of
DSM includes mathematical models capable of performing both in-
terpolations and extrapolations of soil properties across multiple scales
(Barros et al., 2013; Laurent et al., 2017; Saxton and Rawls, 2006;
Tomasella et al., 2000; Wang et al., 2018; Zeraatpisheh et al., 2019).
These models can predict the distribution of a given soil property hor-
izontally, e.g., over the topsoil of a landscape, or vertically, i.e., along
soil profiles. In soil science, spatial extrapolations are usually made by
(i) applying a conceptual model to the survey area to simulate the dis-
tribution of soil patches (Scull et al., 2003), (ii) using geostatistical in-
terpolations (Li and Heap, 2014), (iii) delimiting geographical
subdivisions where environmental processes follow a relatively homo-
geneous pattern, such as the facets, described by Ziadat et al. (2015), or
(iv) by applying pedotransfer functions (PTFs) to basic properties
available for each soil location. PTFs are predictive statistical models,
typically regression equations, that use basic soil information to esti-
mate soil properties that are costly to measure, such as water retention
characteristics and bulk density (Barros and de Jong van Lier, 2014).

There is an ever-growing need for soil data, e.g., for research and
applications related to environmental solutions, especially in the tropics
where soil data are scarce and soils exhibit the highest global diversity
(Minasny and Hartemink, 2011; Scharlemann et al., 2014; Orgiazzi
et al., 2016). The hydro-thermal behavior of tropical soils is quite
different compared to temperate soils, often due to their distinct min-
eralogies and soil-forming processes (Ito and Wagai, 2017; Nobrega
et al., 2020). In Brazil, various polynomial PTFs have been calibrated at
both national (Tomasella et al., 2000) and sub-national scales (Barros
et al., 2013; Oliveira et al., 2002) for estimating soil properties such as
hydraulic conductivity, water retention characteristics and bulk density.
However, high uncertainties are expected when conducting both hori-
zontal and vertical soil properties extrapolations, especially for vertical
extrapolations because data on soil profiles across extensive terrain ex-
tents are rarely available (Yost and Hartemink, 2020).

ML techniques have been increasingly applied as an approach to
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circumvent issues typical of conventional soil mapping methods and
those issues that are due to the complexity caused by modeling the soil
with ever-increasing amounts of information stored in databases on soil
parameters and covariates (Wadoux et al., 2020). If trained properly, ML
techniques allow for more accurate predictions of soil parameters,
whereas other approaches with underlying assumptions on statistical
distributions may not be applicable or even fail to produce sensible
values (Taghizadeh-Mehrjardi et al., 2016). However, many ML studies
used for soil mapping do not predict soil properties at different depths (e.
g., van der Westhuizen et al., 2023; Bao et al., 2024; Hateffard et al.,
2024; Qu et al., 2024; Sun et al., 2024). When depth predictions are
made, it is common to follow standardized output specifications, such as
those defined by GlobalSoilMap (Ballabio et al., 2016; Rahmati et al.,
2018), which uses six fixed depth intervals within the 0-200 cm soil
depth. However, this approach is inconsistent with established soil
classification systems, consequently limiting the pedological interpre-
tation of the results (Wadoux et al., 2020).

ML approaches in digital soil mapping (DSM) offer improved esti-
mates of soil parameters, with the accuracy strongly influenced by the
choice of soil maps and pedotransfer functions (PTFs) (Montzka et al.,
2017). For instance, Gupta et al. (2021) demonstrated that a ML
approach involving various soil and environmental covariates improved
predictions of saturated hydraulic conductivity compared to traditional
PTF-based methods. They generated a final dataset with a spatial reso-
lution of 1 km by using a random forest algorithm and data from 821
sites distributed around the world; however, with only ~12 % of these
data from the tropics. Indeed, soil maps for the tropics often exhibit a
coarse exaggeration of soil properties. This occurs because the common
statistical techniques applied to perform extrapolations are heavily
dependent on how dense the collection of soil profiles is, and this is
generally sparse due to financial and time limitations.

The possibility of using high-resolution environmental covariates
offers new opportunities for adding local information into soil property
modeling. In hydrology, for example, the Soil and Water Assessment
Tool (SWAT; Arnold et al., 1998) employs the Soil-Landscape Estima-
tion and Evaluation Program (SLEEP; Ziadat et al., 2015), which goes
beyond a simple point-by-point approach by aggregating pixels into
more homogeneous areas according to topographic features. This sub-
division reduces noise from abrupt terrain changes and captures the
influence of landscape context on soil formation more effectively.
However, relying on these covariates alone, i.e., without ML, often in-
volves simple regressions that struggle to account for both gradual and
abrupt soil variability (Wadoux et al., 2020). The use of ML techniques,
such as random forest (RF) or gradient boosting models (GBMs), has
improved the prediction accuracy of soil organic matter and total N
when compared to geostatistical methods, and further gains have been
achieved when these approaches are combined (Auzzas et al., 2024;
Nozari et al., 2024; Tziachris et al., 2019). While geostatistics uses
spatial autocorrelation to refine local estimates, ML captures complex
interactions among environmental variables, thereby improving overall
model robustness and predictive performance.

In this study, we address the growing need for improved soil models
that capture the spatial variability of physical and chemical properties in
the tropics by developing a bespoke machine learning framework.
Applied across a ~700-km longitudinal gradient in Brazil with con-
trasting topography, climate, and vegetation, our approach targets a
long-standing gap in tropical soil observations within global soil data-
bases. We hypothesize that our framework can accurately capture both
vertical and horizontal variability in soil properties in a large tropical
region with highly contrasting environmental conditions and land use. It
combines SLEEP with calibrated GBMs to produce high-resolution
(30m) predictions across multiple depths. The framework was devel-
oped to enable the generation of soil maps that support: (1) assimilation
of legacy soil data in their native format; (2) fine-scale prediction of key
soil properties; (3) identification of environmental drivers for each
pedological feature, and; (4) generation of soil datasets for
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environmental modeling.

2. Materials and methods
2.1. Methodology workflow

We developed and applied our modeling framework by integrating
SLEEP and a calibrated GBM, which we tested for a 700-km longitudinal
gradient in Northeast Brazil (see Section 2.2). The stage-wise additive
trees of GBMs can capture higher-order interactions between soil
properties and climate, vegetation, and topographic predictors without
the need for additional feature engineering (e.g., transformations).
GBMs also adapt to depth-dependent heteroscedasticity while main-
taining linear scalability for 30 m resolution predictions across large
datasets, such as the 100 million pixels used in this study. Our meth-
odology comprises a three-step process that starts with the collection
and pre-processing of six topographical, ten climate, and two vegetation
parameters acquired from different data sources ranging from remotely
sensed datasets to meteorological stations (see Section 2.3). These in-
dependent variables are correlated with soil physical and chemical
properties, referred to as basic soil properties, as described in Table 1
and Section 2.4, to allow for their subsequent horizontal and vertical
predictions.

We used SLEEP to create a non-distributed grid formed by facets,
which, in this study, are treated as the smallest spatial units representing
homogeneous conditions where soil formation factors may produce
similar soil types. To define these facets, SLEEP first creates preliminary
versions of these facets by delineating watersheds. Each watershed is
divided into multiple catchments, and then the facets are defined by the
division of the catchments into two parts, i.e., each side of their main
drainage stream (Ziadat et al., 2015). The size of the catchments is
determined by a user-defined threshold assigned during stream defini-
tion. The smaller this threshold, the denser the stream network, resulting
in a greater number of delineated catchments and facets. Once the facets
are created, SLEEP aggregates them based on their slope similarity in a
process called facet classification, which ultimately creates contiguous
patches, which are clusters of facets that share similar slope character-
istics and are treated as unified mapping units. The patches allow SLEEP
to reduce the number of facets by grouping them into a single mapping
unit. This approach reduces the processing time when working with
large areas and avoids the ‘salt-and-pepper’ noise in the mapping pro-
cess. Next, we estimated the ten basic soil properties (indicated in
Table 1) in each patch at multiple depths by calibrating one model for
each basic soil property using ML instead of traditional SLEEP multiple
regressions because they can capture a wider range of data distributions
(see Section 2.5). The calibration mechanism is composed of a recursive
feature selector and a randomized searcher, which were configured to
perform a 2-fold cross-validation (see Section 2.6). At the end of this
step, all patches are turned into virtual soil profiles, i.e., simulated soil
patches with their own depth-dependent simulated physical and
chemical properties, and the uncertainty was calculated for each esti-
mated soil property (see Section 2.7). Finally, in the third step, we used
the dataset composed of virtual profiles to generate PTF-estimated soil
parameters (see Section 2.8).

2.2. Study area

The study area is in Northeast Brazil; it covers an area of approx.
98,000 kmz, and closely follows the domain of the state of Pernambuco
(Fig. 1). This region exhibits a longitudinal gradient of contrasting
topography, climate and vegetation. The elevation ranges from approx.
0 to over 1150 m a.s.l. in a variable gradient from East to West. This
region is influenced by three meteorological phenomena, namely
Frontal Systems (FS), Upper Tropospheric Cyclonic Vortices (UTCV),
and the Intertropical Convergence Zone (ITC) (Salgueiro et al., 2016).
There are three predominant climate types (Koppen'’s classification) in
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Table 1
Summary of variables and parameters with their corresponding descriptions and
units.

Variable Type  Description Unit

AAT T Prefix used to denote accumulated variables -

ASPECT T Downslope direction at each cell °

CTIL T Compound Topographic Index -

CURV T Surface curvature at each cell -

DEM T Digital elevation model m

PCTSLP T Surface slope at each cell %

LST \% Land surface temperature K

NDVI A Normalized difference vegetation index -

RHAV C Mean air relative humidity fraction

(0-1)

PCPMM C Mean total monthly precipitation mm

PCPSKW C Skew coefficient for daily precipitation in mm
month

PCPSTD C Standard deviation for daily precipitation in ~ mm
month

SOLARAV C Mean daily solar radiation for month MJ m?

day!

TMPMN C Mean daily minimum air temperature °C

TMPMX C Mean daily maximum air temperature °C

TMPSTDMN C Standard deviation for daily minimum air °C
temperature

TMPSTDMX C Standard deviation for daily maximum air °C
temperature

WNDAV C Mean daily wind speed in month ms!

CS B Coarse sand content %

FS B Fine sand content %

L_MAX B Number of soil layers -

SB B Sum of bases (Ca®*, Mg?*, K™ and Na™) cmol, kg~!

SOL_CBN B Organic carbon content %

SOL_CLAY B Clay content %

SOL_ROCK B Rock fragments content %

SOL_SAND B Sand content %

SOL_SILT B Silt content %

SOL_Z B Depth from soil surface to bottom of the soil ~ mm
layer

R, P Volume fraction of gravel em® em

Ry P Weight fraction of gravel gg!

01500 P Water content at —1500 kPa m®m~?

033 P Water content at —33 kPa m®m~2

Os P Saturated water content m®m~3

Or P Residual water content m®m3

PN P Normal density gem™®

PR P Gravel density gem ™3

OM P Organic matter %

SN1 P Non-sand content fraction

SOL_AWC P Available water capacity of the soil layer mm mm™!

SOL_BD P Moist bulk soil density gem™®

SOL_K P Saturated hydraulic conductivity mm hr!

USLE_K P USLE equation soil erodibility (K) factor -

v P Matric potential kPa

a P Parameter of van Genuchten (1980) usually m!
expressing inverse length (pressure head)

nand m P Shape-fitting parameters of van Genuchten -

(1980)

In column 2: T = topography, V = vegetation, C = climate, B = basic property,
and P = pedotransfer function parameter.

the study area: hot semi-arid (steppe) climate (BSh; 61.4 % of the area),
tropical with dry summer (As; 32.7 %) and tropical monsoon (Am;
4.9 %); the remaining 1 % is composed of areas with a tropical climate
with dry winter (Aw; 0.1 %), and humid subtropical with dry winter and
hot summer (Cwa; 0.3 %), temperate summer (Cwb; 0.3 %), or dry and
hot summer (Csa; 0.3 %) (Alvares et al., 2013). Precipitation has a high
spatial variability (Souza et al., 2021) with the annual mean precipita-
tion rates reaching approx. 2000 mm in the East and decreasing west-
wards to less than 400 mm. As for the vegetation, near the coast, the
predominant land-uses are Atlantic rain forest and rainfed croplands (a
mosaic of sugarcane plantations and fruticulture) (Souza Jr et al., 2020).
Approaching the middle transition, around longitude 36° 47, high alti-
tudes contribute to microclimatic conditions that favor rainfed corn and
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Fig. 1. Spatial distribution of the surveyed soil profiles across a longitudinal gradient of environmental conditions over the study area.

bean cultivation, and mixed natural vegetation formations. With rainfall
decreasing, the vegetation changes to a seasonally dry tropical forest, i.
e., the Brazilian Caatinga. Pastures become a common land-use activity,
and the soil gets shallower and rocky (Souza Jr et al., 2020). According
to the Brazilian and FAO system of soil classification, the dominant soils
are, respectively, Argissolos, i.e., Acrisols and Lixisols (25 % of the area),
Neossolos, i.e., Leptosols, Arenosols, Regosols, or Fluvisols (32 %) and
Planossolos, i.e., Planosols and Solonetz (16 %), Latossolos, i.e., Ferral-
sols (9 %) and Luvisolos, i.e., Luvisols (9 %) (Aratijo Filho et al., 2014).
The geology maps for the state of Pernambuco show predominantly
(90 %) pre-Cambrian rocks belonging to the Sao Francisco Craton and
the Borborema Province, and the remaining area is mainly composed of
Paleomesozoic sedimentary basins and Mesocenezoic coastal basins
(Torres and Pfaltzgraff, 2014).

2.3. Input data collection

We selected the input parameters based on their widely known role
on soil formation. Elevation data: we collected data from the

TOPODATA database (http://www.dsr.inpe.br/topodata), which is a
bias-corrected version of the data produced by the NASA SRTM (Shuttle
Radar Topography Mission) for the Brazilian territory made by the
National Institute for Spatial Research (INPE) at 1 arc-second (approx.
30 m) (de de Morisson Valeriano and de Fatima Rossetti, 2012).

Soil data: we digitized georeferenced data regarding morphological
(number and depth of soil horizons), physical (particle size distribution),
and chemical (Ca®*, Mg?", K*, Na* and C) soil properties, acquired from
the ZAPE (Agroecological Zoning of the state of Pernambuco) project of
the Brazilian Agricultural Research Corporation (EMBRAPA) (Silva
et al., 2001). This legacy soil database comprises 223 soil profiles
distributed over the study area (Fig. 1).

Meteorological data: we obtained data for air temperature (°C), air
relative humidity (%), solar radiation (MJ m2 day’l), wind speed (m
s™1), and precipitation (mm) from the 1961-2016 period through two
open-access databases: daily precipitation data from the Water and
Climate Agency of Pernambuco (APAC; http://www.apac.pe.gov.
br/meteorologia/monitoramento-pluvio.php), and the other meteoro-
logical parameters from the National Water Agency of Brazil (ANA; https
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://www.snirh.gov.br/hidroweb/). The preprocessing of these data is
detailed in the Supplementary Material (Section 1 of the Supplementary
Material).

Remotely sensed data: we obtained data regarding NDVI
(Normalized Difference Vegetation Index) from MOD13A3 (monthly
composition and 1 km spatial resolution) (Didan, 2015), and LST (Land
Surface Temperature) from MOD11A2 (8-day composition and 1 km

spatial resolution) (Wan et al., 2015) from https://earthdata.nasa.gov/
(Greenbelt, 2019).

2.4. Soil survey data description

Our soil dataset includes the total number of soil horizons (L_MAX),
but for modeling purposes in this study we will refer to it as the number
of soil layers since we did not validate the model’s efficacy in dis-
tinguishing horizons through further field experiments. Thus, a soil layer
here refers to a vertical depth interval used to represent distinct soil
properties within the soil profile. The database also contains each soil
layer’s depth from the land surface (SOL_Z; mm), soil clay content (<
0.002 mm; SOL_CLAY; %), silt (> 0.002 and < 0.05 mm; SOL_SILT; %),
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sand (> 0.05 and < 2 mm; SOL_SAND; %), rock fragments (> 2 mm;
SOL_ROCK; %), organic carbon (SOL_CBN; %), and sum of bases (sum of
Ca%*, Mg?*, K* and Na*; SB; cmol. kg™1). In this study, we define the
rock parameter as the proportion of rock fragments greater than 2 mm
(ABNT, 1995; FAO, 2006). The sand fraction was divided into fine (>
0.05 and < 0.2 mm; FS) and coarse sand (> 0.2 and < 2 mm; CS)
(Table 1). All particle classification followed the Brazilian technical
standards described in ABNT (1995), and physical and chemical ana-
lyses were performed as described in Embrapa (1997).

Soil profiles exhibit an average depth of 1228 + 613 mm, ranging
from 120 to 2550 mm. The number of soil layers varies from one to
seven. Rock fragments (> 2 mm) exhibit 4.4 + 11 % of total content. If
we only consider particles < 2 mm, the average soil texture has the
following composition: sand (55 + 19 %), clay (27 + 14 %), and silt
(18 + 9 %) (Fig. S1 in the Supplementary Material).

2.5. Inputs for the preprocessing workflow

The core of our modeling framework combines SLEEP and a cali-
brated GBM. Soil data were modeled in SLEEP by creating facets (see

Starting settings
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¥ N N
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\ \

Soil
data

Fill sinks
Flow direction
Flow accumulation
Catchment delineation
Drainage line
Longest flow path

ASPECT
AATASPECT
PCTSLP T
AATPCTSLP al TN
CURV
AATCURV

Facets
creation

Facets Zonal
classification statistics

TMPMX
TMPMN
TMPSTDMX

TMPSTDMN
PCPMM
PCPSTD

Measured

NDVI (MOD13)
parameters

LST (MOD11)

PCPSKW
RHAV
SOLARAV
WNDAV

ML modeling

Fig. 2. Processing scheme of the integration of the SLEEP algorithm and the Gradient Boosting Models. The description of the parameters can be found in Table 1.
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Section 2.1), for which basic soil properties, i.e., L MAX, SOL_Z, SOL -
CLAY, SOL_SILT, SOL_SAND, CS, FS, SOL_ROCK, SOL_CBN, and SB, were
calculated.

SLEEP requires three inputs: (i) a digital elevation model (DEM), (ii)
a shapefile containing the data observed for each soil profile, and (iii)
the auxiliary data including meteorological and vegetation data in raster
format (Fig. 2). In this algorithm, we extracted the drainage network
following Tarboton et al. (1991) by setting the size of the catchments to
0.001 % of the total study area, i.e., on average 1803 pixels per catch-
ment, which was obtained based on a visual evaluation of different
thresholds with a focus on providing a balance between satisfactory
spatial resolution and processing efficiency. We aggregated the facets
based on their slope similarity using the clustering technique IsoCluster
(Richards, 2013) to create patches.

Finally, we modified the way the basic properties were modeled,
replacing the original SLEEP algorithm’s simple multiple linear regres-
sion with GBMs. GBM is an ensemble learner that consists of a set of
decision trees composed of weak predictive models (WPM) often prone
to overfitting, but, when combined, produce highly accurate outputs
(Friedman, 2001). Each of these trees is a rule-based system, whose
terminal nodes can either be a WPM, i.e., leaf node, or an if-then-else
rule, i.e., regular node, applied to an input variable. The trees are
created through an iterative sequence of improvements of WPMs using
boosting, while simultaneously optimizing, via minimization of a loss
function using gradient-based optimization (Natekin and Knoll, 2013).

For GBM processing, two datasets were produced: (i) one composed
of only the information from the patches that overlie the observed data
for each profile to be used as the dataset for fitting, and (ii) consisting of
all available input information for every patch in the study area to be
used as the dataset for prediction. The dataset for fitting was split using

ML outputs \
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the Holdout method at 20 %, e.g., Whitney (1971), creating two
sub-datasets, where 80 % of the records were used for model calibration
(training dataset), and the remaining 20 % for model verification
(verification dataset) (Fig. S2 in the Supplementary Material).

The sampling technique used in this process is a variation of the k-
fold cross-validation (Wong, 2015), which ensures stratified folds with a
balanced distribution of each target class. For continuous dependent
variables without predefined classes, a quantile-based discretization
function (qcut function in Python; The pandas development team, 2024)
was applied to discretize these variables into equal-sized groups based
on sample quantiles, allowing the entire data distribution to be sampled.

The GBMs had four basic parameters derived from the DEM (Table 1)
as input features, namely the downslope direction (ASPECT), the Com-
pound Topographic Index (CTI), the surface curvature (CURV) and slope
(PCTSLP), as well as 12 auxiliary data series from remote sensing (NDVI,
LST) and meteorological stations (see Table 1). As targets, they had eight
basic soil properties (labeled as Type B in Table 1, see "ML outputs’ in
the upper half of Fig. 3). GBM was used as a multiclass classifier to
simulate the number of soil layers, i.e., L MAX, and a regressor for the
other targets. In the GMB model, SOL_ROCK was not directly estimated
but was computed as a residual component of sand, silt and clay, which
were not rescaled to sum to 100 % as inputs. Coarse sand (CS) and fine
sand (FS) were normalized to sum up to 100 %.

2.6. Model calibration and validation

To calibrate the hyperparameters, we submitted all our GBMs to a
Recursive Feature Selector (RFS; Guyon et al., 2002) followed by ran-
domized 2-fold cross-validation to optimize hyperparameter selection.
The RFS here is an input feature selection algorithm that fits a model and

L_MAX SOL_Z
vy
SOL_SAND I SOL_ROCK i SB i SOL_CBN SOL_CLAY SOL_SILT

PTF outputs

Pedotransfer
modeling

N N

SOL_AWC

Q

Belk et al (2007) Saxton and

Rawls (2006)

Benites et al (2006)

Tomasella et al (2000)
Oliveira et al (2002)
Barros et al (2013)

Sharpley and
Williams (1990)

Fig. 3. Processing workflow of all model outputs. The top half of this figure explains the machine learning processing of the basic soil characteristics, whereas the
bottom half summarizes the PTF-derived products. The description of the parameters can be found in Table 1.
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eliminates the weakest ranked inputs recursively, considering each
iteration a smaller set of features until the best combination is found. We
determined the optimal cross-validation splitting strategy for our
model’s calibration by performing a small-scale test using all data and
one variable, i.e., L MAX, with different fractions of data splits for
validation (10, 15, 20, 25, and 30 %) combined in a factorial design with
different levels of data slicing for cross-validation (2, 3, 4, 5, and 10
folds). All tested data splits, and cross-validation configurations for both
RFS and hyperparameters calibration resulted in accuracy between 0.96
and 0.97, with 20 % data split and 2-fold cross-validation yielding an
accuracy of 0.97 (Eq. 1). Therefore, we used the 2-fold calibration to
reduce computing demand. This means that 50 % of the calibration data
were used to test each hyperparameter combination’s impact. With this
configuration, the full simulation ran for 232 h (~10 days) on a super-
computer with 120 cores distributed across 10 Intel i7 processors
(3.2-3.33 GHz), 80 GB DDR3 RAM (1333 MHz), 10 TB HDD storage,
and 20 Gigabit network cards. The modeling algorithm is freely avail-
able at GitHub and is compatible with Python 2.7.15 and 3.6.9. For
details, see Miranda et al. (2022).

The performance indices used in all calibrations were the accuracy
(Eq. 1) for the classifier, i.e., for L MAX, and the coefficient of deter-
mination (%) (Eq. 2) for the regressors. For model verification, the most
efficient models were evaluated using the testing dataset, and the same
performance indices plus the Root Mean Square Error (RMSE) (Eq. 3)
and Percent Bias (PBIAS) (Eq. 4) were applied. This final verification
allowed us to evaluate the potential of the best models to perform
extrapolations.

(TP + TN)

Accuracy = (TP FP + EN 1 TN) W

2= 2 (obs ;ﬁ) x (sim — sim) N
\/E (obs — obs)? x \/Z (sim — sim)?

RMSE — M N

PBIAS = % 100 "

TP, FP, FN, and TN in Eq. 2 represent True Positives, False Positives,
False Negatives, and True Negatives, respectively, in a contingency
table. The variable obs in Eqs. 24 refers to the observed parameter value
for a given soil layer, while sim represents the simulated value, with
the overbar indicating their average values.

In this study, the classification problem involves distinguishing be-
tween soil properties based on observed and simulated values. However,
due to an imbalance in class representation, where certain soil condi-
tions, e.g., a specific texture class or rock presence are underrepresented,
the model may become biased toward the dominant class, leading to
poor detection of minority cases. To mitigate this issue, we applied the
Synthetic Minority Oversampling Technique (SMOTE) to balance the
class distribution. SMOTE generates synthetic samples for the under-
represented soil properties, ensuring they contribute more effectively to
the model training process. This technique promotes balanced learning
and improves the detection of minority soil conditions. Details of this
technique can be found in Chawla et al. (2002). To calibrate the
hyperparameters, we created a set of possible values for each parameter.
Details for this procedure can be found in Section 3 of the Supplemen-
tary Material. The calibrated models were applied to predict basic
properties for each patch, creating 64,415 virtual soil profiles. The entire
predicted dataset was converted to a raster format, and each raster is a
different soil attribute. All outputs are available from Miranda et al.
(2025).

Soil Advances 4 (2025) 100064
2.7. Sensitivity and uncertainty analysis

The model sensitivity to input data was calculated as the importance,
i.e., a weighted factor of each selected property for the most accurate
GBMs. The importance (w) ranges from 0 to 1, where 1 reflects the
highest weight a given input can receive in a model, and 0 the lowest.
The sum of all weights is 1 for each model. More specifically, w values
reflect indirectly how much the performance metric changes every time
a given input is used to split a node in the whole model (Natekin and
Knoll, 2013).

For the uncertainty analysis of the modeled variables, the selected
inputs for each model and patch used in the predictions were classified
into two categories (e), i.e., whether they extrapolated the calibration
range of values (1) or not (0), as summarized in the following equation:

U = Z(ei X W), 5)

i=0

where uy is the uncertainty of each model; patch, e;, is the binary cate-
gory that reflects the extrapolation and wj is its importance in the model
(weight) of a given selected input i. As uy gets close to 1, extrapolation is
greater indicating higher associated uncertainty. The opposite occurs
when it approaches 0, which means that all inputs used for a given
prediction were in the range of values used for calibration.

2.8. Application and comparison of pedotransfer functions

All data from the virtual soil profiles were submitted to a series of
pre-established PTFs (see bottom-half of Fig. 5) to generate four soil
properties: SOL K (saturated hydraulic conductivity; mm hr'), SOL_BD
(moist bulk density; g cm™>), SOL_AWC (available water capacity; mm
mmfl), and USLE K (factor K from the USLE equation; unitless). SOL_K
was modeled using the equations described in Saxton and Rawls (2006)
and Belk et al. (2007), and USLE K using Sharpley et al. (1993) (equa-
tion groups S1-S3 described in Table S2 in the Supplementary Material).
SOL_AWC was calculated with the equations from Saxton and Rawls
(2006), Tomasella et al. (2000), Oliveira et al. (2002) and Barros et al.
(2013) as described in equation groups S4-S9 in Table S3 in the Sup-
plementary Material. Saxton and Rawls (2006) produced PTFs using a
soil dataset from extensive soil sampling across the entire United States.
Tomasella et al. (2000) used a similar database for Brazil, while Barros
et al. (2013) used data for the Northeast region of Brazil only. Finally,
Oliveira et al. (2002) created PTFs with data that originated strictly from
the state of Pernambuco.

All SOL_AWC models require SOL BD as an input. Thus, SOL_BD
derived from Saxton and Rawls (2006) was coupled with their corre-
sponding SOL_AWC model, while SOL_BD from Benites et al. (2007) was
used in the models of Tomasella et al. (2000), Oliveira et al. (2002) and
Barros et al. (2013). To distinguish between PTF sources, subscripts
were assigned to variables as follows: BK for Belk et al. (2007), BR for
Barros et al. (2013), OL for Oliveira et al. (2002), SR for Saxton and
Rawls (2006), and TM for Tomasella et al. (2000). Additionally,
SOL Kggr/pr and SOL _Kggr,Tv refer to SOL K estimated using Saxton and
Rawls (2006)’s PTF, where 0g, 033, and 01500 were derived from Barros
et al. (2013) and Tomasella et al. (2000), respectively.

We compared our SOL K results derived from Saxton and Rawls
(2006) to the dataset generated by Gupta et al. (2021), who generated
high-resolution, i.e., 1 km, global SOL K values using a ML framework.
We chose Saxton and Rawls (2006) because it is a widely used PTF. That
way we avoided bias caused by comparing Gupta et al. (2021)’s results
to SOL K estimates derived from PTFs that were specific to our area of
study, such as from Barros et al. (2013) and Oliveira et al. (2002).
Nevertheless, we made available all results of all PTFs and their com-
binations, e.g., using the SOL_K model from Saxton and Rawls (2006)
using the field capacity model from Barros et al. (2013), at https
://zenodo.org/deposit/5918544 (Miranda et al., 2025). To enable the
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SOL_K comparison, we cropped the dataset from Gupta et al. (2021) to
our spatial extent and resampled our dataset to Gupta et al. (2021)’s
spatial resolution. We also compared the clay fraction obtained in this
study with the one used by Gupta et al. (2021), provided by Hengl
(2018), because this is an important component of many SOL_K models,
including the one by Saxton and Rawls (2006) (Table S2 in the Sup-
plementary Material). We calculated mean SOL K and clay fraction as a
weighted mean for each grid cell for Gupta et al. (2021)’s SOL_K and
respective soil depth since our SOL K values are representative for the
entire soil layer. For the SOL K dataset from Gupta et al. (2021) and clay
fraction from Hengl (2018), we calculated the vertical value mean using
the trapezoidal rule suggested by Hengl et al. (2017). This approach was
chosen because the SOL K values were predicted at discrete soil depths
rather than being representative of the midpoint of the predefined depth
intervals.

3. Results and discussion
3.1. Model performance

The spatial modeling produced 64,415 patches with an average area
of 1.35 + 4.54 km?, and an average density of 0.75 patches per km?.
Each one of these was considered as a virtual soil profile for which GBM
outputs were calculated. In this study, the models demonstrated a
consistent ability to perform such extrapolations, as the performance of
the models during the verification was similar to that found by the
calibration algorithm (Table 2). The r? and PBIAS values varied from
0.79 t0 0.98, and from —1.39 to 1.14, respectively. Among all models for
the prediction of percentages of each soil parameter, the lowest r2 value
was found for the modeled SOL _SILT at 0.79 (Table 2). We believe that
the large number of predictors, each with similar importance, for the
SOL_SILT model (Table 3) may have caused prediction redundancies and
probably degraded the model strength by increasing its variance, even
though we applied a RFS algorithm for feature selection.

When comparing the simulated and observed reference datasets
(Table S4 in the Supplementary Material), some differences are expected
because the soil survey data used as observed dataset (Section 2.4) was
not systematically sampled. Therefore, there will be locations with
simulated interpolated soil properties exhibiting values that exceed
those in the observed dataset. The largest relative differences between
simulated and observed values were for SOL_ROCK (44.4 %), SB
(53.1 %), CS (103.3 %), and FS (31.9 %). Despite the lack of systematic
sampling, these differences would be expected to be modest, as the
observed dataset covers the entire study area and diverse environments
(Fig. 1). We attribute these large differences in SOL_ROCK to the fact
that this parameter was calculated as the residual of all soil separates
(see Fig. S4 in the Supplementary Material). That is, it was the only
parameter that was not directly modeled from independent covariates.
As for CS and FS, they were directly modeled but had to be resampled to
sum to 100 %. Rather than applying the same approach to texture pa-
rameters, we opted to sacrifice SOL_ROCK’s prediction accuracy. Its

Table 2
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spatial variance produced a high number of zeros (38.5 % of total
values) compared to other parameters (<0.01 %), resulting in insuffi-
cient variance for accurate modeling. Although 21.98 % of SB pre-
dictions ranged between 0.1 and 3.84 cmol, kg~! and no zeros, they
exhibited a higher concentration near zero, similar to SOL_ROCK.
Finally, 51.49 % of the 135,934 virtual profiles exhibited some degree of
uncertainty. Most uncertainty values were below 15 %, while the
highest values (50-60 %) were observed for L, MAX, SOL_SAND, and SB
(Fig. 4). We would like to highlight that our approach to estimate un-
certainty relies on identifying extrapolations beyond the calibration
range and does not fully account for model structural uncertainty or the
propagation of cumulative errors.

The models developed in this study used a dataset of in situ obser-
vations from a range of different climate types, vegetation covers and
topographical characteristics. The diversity in this dataset ensured suf-
ficient variance for the GBM, as evidenced by the model metrics
(Table 2), and was a key factor in the successful application of the
framework. These results show that our framework is highly transferable
to other tropical regions with similar environmental modulators.
Furthermore, it can be adapted for regions with different characteristics,
provided that multiple variations of a single parameter are used without
violating the assumption of multicollinearity.

3.2. Environmental modulators

Results showed that simulated soil properties the most influential
environmental modulators were climate, topography, and vegetation
(Fig. 5). This consistently reflects broader soil-forming processes,
including climate-driven weathering, erosion, and vegetation-soil
feedback. A better understanding of how these environmental factors
affect physical and chemical soil properties can help manage their
changes in response to future climate conditions or land use modifica-
tions, such as deforestation (Badia et al., 2016). In our study area, the
properties related to topographic and climatic conditions were domi-
nant predictors for all soil properties, whereas the weights for covariates
related to vegetation were slightly greater for soil property estimates
related to sand, i.e., SOL_SAND, CS, and FS. Topography is consistently
included as an input variable in our models (Fig. 5) because it is a key
factor in soil formation in Northeast Brazil (Oliveira et al., 2018). The
topographic conditions (see Table 1) comprise slope, which may affect
the quantity of soil deposition or erosion; aspect, which drives the di-
rection of surface and subsurface runoff, and relative exposure of soils to
sunlight; and finally curvature, which changes water flow velocity,
controlling erosion and deposition processes (Barbieri et al., 2009;
Patton et al., 2018).

The model weights for the L MAX model were largest for NDVI
(18 %) and terrain elevation (DEM, 13 %) as its main inputs. Elevation is
well related to climate conditions (Badia et al., 2016), which impact the
speed at which parent materials weather and erode, and hence the rate
of soil development, e.g., via accumulation of organic matter on top of
the soil. As for NDVI, it most likely indirectly reflects the vertical

Calibrated values for the hyperparameters n_estimators (NE), max_depth (MD), min_samples_split (MSS) and min_samples_leaf (MSL) of the Gradient Boosting Models
(GBM), for each estimated soil property and their corresponding calibration performance. The description of the variables can be found in Table 1.

Output variable Calibrated hyperparameters Calibration Verification

NE MD MSS MSL Accuracy® or r2® Accuracy® or r?® RMSE PBIAS
L_MAX 1325 23 41 70 0.91® 0.96® - -
SOL_Z (mm) 4445 3 36 7 0.92® 0.98® 73.19 0.02
SOL_SAND (%) 2521 87 73 6 0.77® 0.91® 6.27 1.14
SOL_CLAY (%) 1518 38 85 12 0.78® 0.93® 4.48 0.29
SOL _SILT (%) 1624 85 15 3 0.76®™ 0.79® 4.77 -1.36
SOL_CBN (%) 1265 27 17 43 0.78® 0.91® 0.14 —-3.39
SB (cmol, kg™ 1) 1026 46 23 2 0.82® 0.95® 1.79 2.97
CS (%) 2893 38 40 63 0.92® 0.98® 2.46 1.04
FS (%) 2282 3 7 13 0.89® 0.97® 2.03 -0.03
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Fig. 5. Proportional weights (w, as in Eq. 5) of the different input variables for

modeling each basic soil parameter. The weights for ‘basic parameters’ repre-

sent the influence of other basic soil parameters on the predicted parameter.

The description of the variables can be found in Table 1.
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variability of soil properties, as soils formed under forests tend to be
weathered to greater depth. This occurs because forests grow in higher
rainfall areas (Bonan, 2008) and have deeper rooting systems that often
create biopores, facilitating internal drainage.

Our model for SB was mainly influenced by relative humidity (19 %)
and wind speed (14 %). These variables are known for controlling the
intensity of biochemical reactions, and wind erosion (Ravi et al., 2004),
respectively. Wind erosion can remove and redistribute topsoil nutrients
(Zobeck et al., 1989), affecting local soil nutrient levels, especially in
arid and semi-arid regions, as seen in the western region of our study
area, where soils are dry and covered by sparse vegetation (Miranda
et al., 2020; Ravi et al., 2004). Regarding precipitation, although it may
be an important climate factor for soil formation in other regions (e.g.,
Dixon et al.,, 2016), its characteristics, i.e., PCPSTD and PCPMM,
together weighted only 12 % of the variance in SB in our model.

Regarding the overall importance of the model inputs, key parame-
ters are CTL, L MAX, SOL Z, and SOL_SAND (Table 3). The key role of
CTI can be explained by its ability to encapsulate the terrain structure
(Gessler et al., 1995; Moore et al., 1993). The influence of SOL_Z on
SOL_SAND and SOL SILT was relatively strong, suggesting that soil
depth plays a critical role in determining sand and silt distribution. The
prevalence of sand in surface layers is well-documented, particularly in
soils prone to erosion due to their lower structural stability (Valentin
and Bresson, 1992). Furthermore, vegetation cover, represented by
NDVI, emerged as a key predictor of SOL_SAND. High vegetation density
often indicates advanced soil weathering or lower sand content, as soils
beneath dense forests in high-rainfall regions tend to be more leached
and clay-rich (Souza et al., 2016), a pattern observed in the eastern part
of our study area.

3.3. Hydraulic parameters predictions via PTFs

The bulk density estimates SOL_BDgg (Saxton and Rawls, 2006) and
SOL_BDgy, (Benites et al., 2007) were similar, with a mean difference of
only 0.09 g cm ™ (Table 4). While both models produced an acceptable
range of values, SOL_BDgg yielded a small percentage of very high es-
timates, with 0.85 % of SOL_BDgg values exceeding 1.8 g cm~2 when
considered as a weighted average across all soil layers. Although Benites
et al. (2007) reported SOL_BD values as high as 2.25 g cm ™2 in Brazil, we

Table 4

Descriptive statistics of all calculated pedotransfer functions (PTF) data using
basic soil properties derived from Gradient Boosting Models. Table 1 contains
the description of acronyms that represent the soil hydraulic properties in col-
umn 1.

PTF outputs Mean (SD) Minimum Maximum Invalid
values (%)

SOL_BDgr (g 1.54 (0.09) 1.01 2.60 0
cm ™)

SOL_BDg,, (g 1.45 (0.07) 1.12 1.76 0
cm™3)

SOL_AWCgg (mm 0.11 (0.01) 0.01 0.18 0
mm™Y)

SOL_AWCgr (mm 0.05 (0.03) 0.001 0.17 0.75
mm 1)

SOL_ AWCpy (mm  0.03 (0.01) 0.001 0.13 5.01
mm’l)

SOL_AWCq, (mm  0.07 (0.01) 0.01 0.16 0
mm™Y)

SOL Kgg (mm 11.17 (14.24) 0.003 932.54 0
hrh)

SOL Kgg/pr (mm 1101.28  (350.5) 10.41 1900.21 0
hr )

SOL Kgg/tm (mm 26.72 (26.58) 0.001 219.47 12.07
hrhH

SOL Kpg (mm 63.85 (333.9) 8.85 12112 0
hr™)

USLE K (unitless)  0.22 (0.03) 0.01 0.41 0
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recommend caution when interpreting values above ~2 g cm™. With
regards to SOL_AWC, the equation by Oliveira et al. (2002), SOL_AWCg,
which was calibrated strictly using data from our study area, was the
only equation that did not ‘saturate’ when PTFs were applied. Since we
evaluate and map soils in a region similar to that of Oliveira et al.
(2002), our results highlight the common tendency of PTFs to exhibit
overfitting, becoming over-adjusted to the specific datasets that are used
for their calibration (De Vos et al., 2005).

Two of the four SOL K estimates were derived from variations of
Saxton and Rawls (2006) (Tables S1 and S2 in the Supplementary Ma-
terial). The difference between them depends on the calculation of the
inputs 0s, 033 and 01500, Which differ from the approaches originally
proposed by Saxton and Rawls (2006), SOL Kgg, i.e. those by Barros
et al. (2013), SOL Kgg/pr, and the one by Tomasella et al. (2000),
SOL Kgg/rv- Maximum values ranged from 219.47 (SOL_Kgg/m) to
1900.21 mm h™! (SOL _Ksg,Br)- The approach that generates SOL_Kgk is
the simplest; it only uses SOL_Z as input, and therefore it does not exhibit
differences for soils with different textures and the same depths. A small
number of invalid values was found only for SOL_AWCgg, SOL_AWCry,
and SOL _Kgg, v due to inaccurate extrapolations, i.e., out of the a priori
parameter range expected or acceptable for these parameters or PTFs, of
6, and n. For USLE K the applied model expects values varying from 0.1
to 0.5 (Sharpley et al., 1993). However, we found values below this
range because our simulated dataset included soils with high
coarse-sand content.

The SOL K dataset from Gupta et al. (2021) predominantly exhibited
higher values than our SOL K estimates using the PTF from Saxton and
Rawls (2006) (Fig. 6A). Differences in SOL K exceeded 100 mm h™! (as
indicated by red dashed rectangles in Fig. 6A), and the highest con-
centration of differences is approximately fivefold (Fig. 6B). For the
region with the most humid climate (Am climate in Fig. 1, dashed
rectangle 4 in Fig. 6A), we also found a higher clay content (up to 50 %)
in our dataset (Fig. 6C) when compared to the data from Hengl (2018)
used as an input by Gupta et al. (2021), which we identify as one of the
reasons for the SOL K differences between the datasets for this specific
area, despite a lack of overall apparent correlation between clay fraction
differences and differences in SOL _K for the entire study region (Fig. 6D).
The semi-arid areas with some of the highest differences in SOL K
(Fig. 6A, rectangles 1-3) also exhibit some of the shallowest soils
(Fig. 6E). Although we cannot draw a direct relationship between the
SOL K differences and soil depth, it is important to note that deeper soils
in this region hold greater clay fractions (Fig. 6F). The dataset by Gupta
etal. (2021) follows a standardized soil layer protocol with a total depth
of 200 cm for all grid cells, whereas our results were produced following
a methodology designed to provide pedological meaning with a more
realistic number of soil layers and respective soil profile depths. The
impact of these differences goes beyond the disparities in saturated
hydraulic values, which themselves carry high uncertainties (Zhang and
Schaap, 2019). Estimates of hydraulic properties, even when in a real-
istic range, can be highly misleading if the soil layers and depth are
being assumed spatially homogeneous (Dai, Shangguan, et al., 2019). A
better representation of soil profile characteristics in models, such as soil
profile depth (Brunke et al., 2016), will lead to more realistic soil maps,
as we have shown here, and consequently improve the performance of
land surface models (Dy and Fung, 2016; Kearney and Maino, 2018), for
example.

We note that only 12 % of the measurements used to train the ML
algorithm that generated Gupta et al. (2021)’s dataset were located in
the tropics and none in our study area, and that the soil datasets used in
their methodology are likely to be substantially different from the one
we generated in our study, particularly regarding clay fraction. Also, our
comparison of SOL K values was based on the prediction of SOL K using
the PTF from Saxton and Rawls (2006), which predicted the lowest
SOL K values among the PTFs used in this study (Table 4). This set of
PTFs was developed using data from North America, which can lead to
high errors and uncertainty when used in other regions (Vereecken
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Fig. 6. Differences in saturated hydraulic conductivity (SOL_K) and clay fraction between the data generated and used by Gupta et al. (2021) and results in this study,
and total soil depth from our study. The maps (panels A, C, and E) highlight some areas (within dashed rectangles) where the SOL K differences were the greatest, and
the top and right margins exhibit the distribution of the latitudinal and longitudinal means, respectively. The density estimates in panels B, D, and F were calculated
using the kde2d function available in the MASS package (Venables and Ripley, 2003) in the R language (R Core Team, 2017).

etal., 2016). Nevertheless, our ML framework was able to generate a soil
map with high accuracy (mean r? > 0.9, Table 2) and low mean un-
certainty (< 10 %, Fig. 4), thus capturing the variability of basic soil
properties that drive most common PTFs. Note that Lehmann et al.
(2021) showed that tropical soils can have a higher SOL K than soils
from temperate climates due to the predominance of kaolinite clays over
illite clays, for example, in many tropical regions. From a soil hydraulic
point of view, kaolinite clays behave more like sandy soils than clay
soils. However, based on the dominant clay type data provided by Ito
and Wagai (2017); see also Lehmann et al., (2021) in Pernambuco the
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prevalence of low activity clays, such kaolinite, is relatively low. This
sets this area apart from other South American tropical regions such as
the Amazon rainforest. Lehmann et al. (2021) point out that clay
mineral-informed pedotransfer functions and machine learning algo-
rithms trained with datasets including different clay types and soil
structure formation processes may improve soil hydraulic properties
prediction. In that case it is important to consider that not all tropical
clay types are necessarily kaolinite.
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4. Conclusions

In this study, we produced robust soil property maps using a data-
driven ML framework based on integration of a covariance model
(SLEEP) with decision trees (GBM), for a tropical region with highly
variable topography, climate, and vegetation characteristics that is not
well represented in global soil property datasets. Good model perfor-
mance is reflected in our models’ statistics that present r> and PBIAS
values varying from 0.79 to 0.98, and from —1.39 to 1.14, respectively.
Decision tree methods are highly advantageous because they are free of
strict assumptions and can simultaneously handle diverse variables,
scales, distributions, and relationships. We explored this characteristic
in detail in this study, by employing multiple freely available datasets
with an extensive array of data types (e.g., number of soil layers and
chemical composition) to improve the soil information in our study area.
GBM models can be considered semi-black-box models due to the
complexity introduced by combining multiple individual trees, which
often limits their direct interpretability. We addressed this challenge by
incorporating a feature selector during calibration, which enabled us to
perform uncertainty analyses and identify the primary environmental
modulators of various soil properties.

Our results are especially important for soil management in response
to climate change, land-use changes, and environmental degradation,
such as deforestation and desertification, at multiple spatial scales. Our
machine learning framework offers enhanced flexibility, enables regular
short-term map updates, and supports the integration of future eco-
nomic and environmental modelling (e.g., https://super.hawgs.tamu.
edu/), while drastically reducing capital investments compared to in
situ surveys and mapping. We believe that these promising findings will
enhance all modelling efforts that require detailed soil information and
encourage the development of new frameworks and datasets for soil
sciences. Our new dataset can be further used to create a new portfolio of
applications, such as agricultural zoning and environmental manage-
ment strategies.
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