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 A B S T R A C T

This study evaluates and compares three automated classification methods for Landscape Character Assessment 
(LCA) to assess their suitability for consistent, objective, and scalable mapping. We applied One-pass Multi-
view Clustering (OPMC), Self-Organising Feature Map (SOFM) clustering, and Swin Transformer Segmentation 
Clustering (STSC) to classify Landscape Character Types in Bannau Brycheiniog National Park, Wales, UK. Their 
outputs were compared against an Expert-based Manual Classification (EBMC) using pixel-by-pixel accuracy 
assessment. To interpret model outputs, we used SHapley Additive exPlanations (SHAP) analysis to quantify the 
influence of key landscape character elements on classification outcomes. STSC showed the highest agreement 
with EBMC, followed by SOFM and OPMC. Across all models, geology, historic landscape, and soil type 
were the most influential variables, while habitat and landform contributed less. The automated methods 
demonstrated strong spatial coherence and boundary delineation comparable to expert-based mapping. Our 
findings demonstrate the potential of automated approaches to improve the consistency, efficiency, and 
objectivity of LCA and support their integration into scalable landscape characterisation frameworks for 
planning and management applications. Our source code and datasets are available on GitHub.
1. Introduction

Effective resource planning and environmental management in-
creasingly require action at the landscape scale (Mücher et al., 2010; 
Warnock and Griffiths, 2015), particularly in the face of biodiversity 
loss, climate change, and rising demands for food and land (Buller et al., 
2012). Landscapes are commonly defined as ‘‘distinct, recognisable, 
and consistent patterns of elements that make one landscape different 
from another’’. They present a combination of tangible physical reality 
and how they are perceived and valued by people (Déjeant-Pons, 
2006). Landscape Character Assessment (LCA) provides a structured 
approach for classifying, describing, and assessing landscapes based 
on their physical and cultural attributes and their development over 
time (Griffiths, 2018). It integrates biophysical and cultural elements 
to identify Landscape Character Types (LCTs), typically through expert 
interpretation and synthesis of mapped layers (Warnock and Griffiths, 
2015; Van Eetvelde and Antrop, 2009). While manual LCA methods are 
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effective at local scales, they can be time-consuming, subjective, and 
difficult to scale across larger or more varied regions (Simensen et al., 
2018).

A successful LCA depends on a thorough understanding of the 
unique features, patterns, and dynamics of the landscape in question 
(Mücher et al., 2003). Landscape types often serve as the spatial 
framework for future management and planning efforts (Brown and 
Brabyn, 2012). The primary task enabling landscape mapping is to 
define character types that exhibit a reasonable degree of internal 
consistency in terms of their biophysical, cultural, and aesthetic charac-
teristics (Capotorti et al., 2012). Due to the inherently multidisciplinary 
nature of landscape studies, encompassing geography, geomorphology, 
ecology, history, archaeology, and landscape architecture, different 
classification methods tend to prioritise different elements (Fairclough 
et al., 2018). This often leads to variability in the mapped outputs. For 
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landscape typologies to gain broader acceptance, they must be devel-
oped through repeatable procedures with clearly defined classification 
rules (Collier et al., 2012).

Advances in multivariate statistics and GIS overlay techniques have 
facilitated automated LCTs classification (Brabyn, 2009; Uzun et al., 
2011; Warnock and Griffiths, 2015). However, challenges remain in 
achieving reproducibility and transferability, particularly when data 
availability varies or when applied to ecologically and culturally dif-
ferent landscapes (Sayre et al., 2014). Until recently, the LCA method-
ology largely remained an expert-led technique, relying on the visual 
interpretation of patterns in key attributes (Fairclough and Herring, 
2016). Although LCA is theoretically transferable (Griffiths, 2018), its 
practical implementation depends heavily on the selection, quality, and 
consistency of input data. Transferability also remains constrained by 
differences in cultural and environmental contexts (Trop, 2017).

Automated classification techniques, including those based on ma-
chine learning and deep learning, offer considerable potential to ad-
dress the limitations of traditional LCA. By enabling consistent and 
automated processing of complex spatial data, these approaches can 
reduce subjectivity and improve the reproducibility of classification 
outputs, potentially making them more objective than expert-led meth-
ods (Carvalho et al., 2019). Such techniques have already been widely 
applied in a range of disciplines, including soil science (Wang et al., 
2020; Zhao et al., 2023), agriculture (Li et al., 2022), land management 
(Cui et al., 2023), ecology (Amani et al., 2023; Zhao et al., 2024), 
and landscape studies. Within this field, unsupervised classification 
methods are especially prominent. These methods group samples based 
on inherent similarities in the data, allowing for the identification 
of novel patterns without the need for prior labels or training data 
(Huang et al., 2023). In contrast, supervised classification relies on 
labelled training samples to learn known patterns and then classify 
new, unlabelled data accordingly (Antrop and Van Eetvelde, 2000).

The Expert-based Manual Classification (EBMC) used as a reference 
in this study was produced through the visual interpretation of multiple 
map layers, as described in Warnock and Griffiths (2015). This method 
involves the successive overlay of broad-scale physical elements, such 
as geology, soils, and topography, followed by further subdivision using 
cultural elements like settlement patterns, land use, woodland cover, 
and farm types, to delineate final landscape character types. While 
traditional LCA emphasises expert interpretation and perceptual di-
mensions, automated methods can identify the underlying biophysical 
template that provides the foundation for landscape character (Fager-
holm et al., 2013). These approaches are complementary: data-driven 
methods establish objective baseline frameworks, while expert-based 
methods add perceptual interpretation.

In this study, we explore the potential of automated methods for 
landscape character classification, using Bannau Brycheiniog National 
Park (BBNP) in Wales, UK, as a case study. The park’s varied and 
distinctive landscapes provide an ideal setting for testing scalable, 
data-driven approaches. We applied three machine learning models: 
One-pass Multi-view Clustering (OPMC), Self-Organising Feature Map 
(SOFM) clustering, and a semi-supervised deep learning model, Swin 
Transformer Segmentation Clustering (STSC), to identify LCTs. These 
models operate without predefined labels, relying instead on the in-
trinsic patterns in spatial and environmental data.

The objective of this study is to evaluate the effectiveness and lim-
itations of these automated classification methods by comparing their 
outputs against the expert-based reference map. We assess the models’ 
accuracy, spatial coherence, and ability to capture key landscape ele-
ments, with the aim of determining their suitability as scalable tools 
for landscape monitoring, conservation planning, and decision-making 
in protected areas such as BBNP.
2 
2. Study area and data sources

2.1. Study area

This study was conducted using Bannau Brycheiniog National Park 
(BBNP) in south-central Wales as the study area. Covering 1347 km2

(520 square miles), BBNP features a varied landscape of mountains, 
rivers, and forests (Fig.  1). Much of the park is upland terrain, rising 
to 886 m. The Usk River flows through its meadows and woodlands, 
creating a mosaic of habitats that support rich biodiversity. Beyond its 
ecological value, the park also holds cultural significance, containing 
numerous historical sites.

2.2. Data description

LCA relies on accurately identifying and mapping the heterogeneity 
of both natural and human-made characters, typically referred to as 
Landscape Character Elements (LCEs) (Turner and Gardner, 2015). 
Seven LCEs were used in this study: altitude, geology, soil type, land-
form, vegetation, habitat, and historic landscape (Table  1). Together, 
these datasets encompass 60 variables, as listed in Appendix  A. Altitude 
data at 12.5 m resolution were obtained from NASA EARTHDATA 
(ALO, 2010). Geological information was sourced from the British 
Geological Survey at a 1:50,000 scale (BGS Digital Data Licence No. 
2023/098; BGS, 2023). Soil type data came from the National Soil Map 
of England and Wales at a 1:250,000 scale, provided by the UK Soil 
Observatory and Cranfield University. Landform and historic landscape 
datasets were obtained from Natural Resources Wales. Vegetation and 
habitat data were sourced from the Living Wales project, offering a 
10 m resolution (Owers et al., 2021). All datasets were projected to a 
common coordinate system and resampled to a uniform 30 m resolution 
using the Nearest Neighbour method.

With the increasing capability of GIS and the availability of ‘big 
data’, it is now possible to critically evaluate and prioritise the variables 
that contribute most to landscape variation. To assess multicollinear-
ity among LCEs, we used two commonly applied metrics: Variance 
Inflation Factor (VIF) and Tolerance (TOL) (James et al., 2013). VIF 
quantifies how much the variance of a regression coefficient is in-
flated due to correlation with other variables. A VIF of 1 indicates 
no correlation, while values greater than 1 suggest increasing level 
of multicollinearity. A VIF above 10 is typically considered indicative 
of serious multicollinearity (Torres et al., 2020). TOL, defined as the 
reciprocal of VIF, provides a complementary measure. Low TOL values, 
especially in combination with high VIF values, signal potential multi-
collinearity problems. A widely used threshold for concern is 𝑉 𝐼𝐹 > 10
and 𝑇𝑂𝐿 < 0.1 (Myers, 1990). The VIF and TOL were computed as 
follows, 

𝑉 𝐼𝐹𝑗 =
1

𝑇𝑂𝐿
= 1

(1 − 𝑅2
𝑗 )

(1)

where 𝑅2
𝑗  represents the unadjusted coefficient of determination for 

regressing the 𝑗th independent variable on the remaining ones.
Table  1 confirms the absence of multicollinearity among the vari-

ables describing LCEs in this study, apart from historic landscape. 
All spatial data processing was conducted using ESRI ArcGIS Desktop 
10.8.2, while multicollinearity analysis was carried out in MATLAB.

3. Methods

Following the collinearity analysis, the study progressed through 
two main analytical steps (Fig.  2):

(i) Automatic classification and validation: LCTs were identi-
fied using two unsupervised clustering models, One-pass Multi-view 
Clustering (OPMC) and Self-Organising Feature Map (SOFM), and one 
semi-supervised deep learning model, Swin Transformer Segmentation 
Clustering (STSC). The performance of these automated methods was 
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Fig. 1. Location of the study area: (a) National Parks in the UK and the location of the Bannau Brycheiniog National Park; (b) Habitat type of the Bannau Brycheiniog National 
Park.
Table 1
Landscape variables and multicollinearity analysis.
 Variable name Resolution Time Elements source VIF TOL 
 Altitude Raster, 

12.5 m
2023 NASA EARTHDATA 

(https://search.asf.alaska.edu/#/)
4.42 0.23 

 Geology Vector, 
1:50,000

2016 BGS Geology 
(https://www.bgs.ac.uk/datasets/
bgs-geology-50k-digmapgb/)

9.06 0.11 

 Soil type Vector, 
1:250,000

2005 UK Soil Observatory, Cranfield 
(https://data.catchmentbasedapp
roach.org/datasets/theriverstrust)

7.24 0.14 

 Landform Vector, 
1:250,000

2017 Land map 
(https://datamap.gov.wales/)

8.34 0.12 

 Vegetation Raster, 
10 m

2021 Living Wales 
(https://earthtrack.aber.ac.uk/
livingwales/maps.html)

5.99 0.17 

 Habitat Raster, 
10 m

2022 Living Wales 
(https://earthtrack.aber.ac.uk/
livingwales/maps.html)

4.42 0.23 

 Historic landscape Vector, 
1:250,000

2017 Land map 
(https://datamap.gov.wales/
layers/inspire-nrw)

10.37 0.10 
then systematically compared against expert-based manual classifica-
tion (EBMC). Cluster Validity Indices (CVI), specifically the Silhouette 
Coefficient (SC) and Davies–Bouldin (DB) index, were applied to deter-
mine the optimal number of clusters (k) for each method and assess 
clustering quality.

(ii) Results analysis: (a) SHapley Additive exPlanations (SHAP) 
were used to evaluate the contribution of each LCE to model outputs; 
(b) A reference LCT map was developed from EBMC, map layers, and 
field data, to serve as the ground reference for evaluating the accuracy 
of automated classification results.

3.1. Development of LCT classification models

3.1.1. Classification models
Three clustering models were selected to present different para-

digms in automated landscape classification. OPMC represents tradi-
tional multi-view clustering approaches that integrate expert knowl-
edge through variable classification. SOFM represents neural network-
based unsupervised learning methods with self-organising capabili-
ties. Finally, STSC represents the latest deep learning approaches that 
3 
combine unsupervised clustering with supervised spatial relationship 
learning. This selection provides comprehensive coverage of the major 
methodological approaches currently available for automated land-
scape classification, from established traditional methods to cutting-
edge deep learning techniques. Despite the methodological differences, 
all three approaches are directly comparable as they begin with iden-
tical unlabelled input data and generate landscape classifications with-
out human-provided labels. All cluster analyses were performed using 
MATLAB.

The OPMC algorithm processes all variables once through multiple 
expert-defined perspectives, making use of complementary information 
to improve clustering accuracy (Liu et al., 2021b). By integrating 
insights from different views, it outperforms single-view approaches 
in both robustness and precision. In this study, ten experts in land-
scape, geography, and land management classified variables as either 
‘‘essential’’ or ‘‘non-essential’’ (Appendix  C). During each iteration, the 
algorithm computed similarities or distances between data samples, 
assigned samples to the closest clusters, and updated cluster definitions. 
This process uncovered the underlying structure of the data more 
effectively. OPMC is particularly suitable for analysing large areas and 

https://search.asf.alaska.edu/#/
https://www.bgs.ac.uk/datasets/bgs-geology-50k-digmapgb/
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https://datamap.gov.wales/
https://earthtrack.aber.ac.uk/livingwales/maps.html
https://earthtrack.aber.ac.uk/livingwales/maps.html
https://earthtrack.aber.ac.uk/livingwales/maps.html
https://earthtrack.aber.ac.uk/livingwales/maps.html
https://datamap.gov.wales/layers/inspire-nrw:NRW_LANDMAP_Historic_Landscape
https://datamap.gov.wales/layers/inspire-nrw:NRW_LANDMAP_Historic_Landscape
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Fig. 2. Flowchart describing the main methodological steps and their sequence as applied in this research.
delivers stable, high-quality clustering results. The clustering process is 
guided by the following formula, 

min
𝑌 ,{𝐶𝑣}𝑉𝑣=1 ,{𝑊𝑣}𝑉𝑣=1

1
𝑉

𝑉
∑

𝑣=1
‖𝑋𝑣 − 𝑌 𝐶𝑣𝑊𝑣‖

2
𝐹

𝑠.𝑡. 𝑊𝑣𝑊
𝖳
𝑣 = 𝐼𝑘, 𝑦

(𝑖) ∈ {𝑒1, 𝑒2,… , 𝑒𝑘}

(2)

where 𝑋(𝑣) is the 𝑣th view, 𝑌𝑣 is the hard partition matrix with each 
row being an orthonormal basis of 𝑘-dimension space. 𝐶𝑣 is a centroid 
matrix and its 𝑗th row represents the 𝑗th centroid of 𝐻𝑣.

The SOFM is a neural network-based clustering algorithm that 
projects high-dimensional data into a lower-dimensional space through 
a process of self-organisation (Olga and Ross, 2020; Zhang et al., 2010). 
Unlike the centroid-based algorithm, SOFM relies on a competitive 
learning mechanism (Kohonen, 2013). During training, the network 
structure and weights automatically adjust to reflect the data distri-
bution, with training ending once the clusters become clearly defined 
(Foody, 1999). SOFM is especially useful for handling complex and 
high-dimensional datasets. In this study, MATLAB’s Neural Network 
Toolbox was used to implement SOFM. Parameters were set with a 
learning rate of 0.1 for the initial ordering phase and 0.02 for the fine-
tuning phase. The training process included 5000 steps for ordering and 
50,000 steps for tuning. The propagation and updating of weights in the 
SOFM follow the following computation process, 
𝑚𝑖(𝑡 + 1) = 𝑚𝑖(𝑡) + ℎ𝑐𝑖(𝑡)[𝑥(𝑡) − 𝑚𝑖(𝑡)] (3)

where ℎ𝑐𝑖(𝑡) is the neighbourhood function, resembling the kernel 
applied in usual smoothing processes. The subscript c is the index of 
a particular node (winner) in the grid, namely, the model 𝑚𝑐 (𝑡) with 
the smallest Euclidean distance from 𝑥(𝑡).

The STSC model combines K-means clustering with the Swin Trans-
former, a state-of-the-art deep learning architecture for image segmen-
tation, representing a semi-supervised approach to landscape classifica-
tion. In the first stage, K-means clustering groups the data into distinct 
clusters based on their features, creating initial pseudo-labels for land-
scape elements without requiring external ground truth annotations 
(Hartigan and Wong, 1979). In the second stage, these automatically 
generated pseudo-labels are used to train the Swin Transformer (Liu 
et al., 2021a; Huang et al., 2025a), enabling it to learn complex 
patterns and spatial relationships within the dataset through supervised 
learning techniques. This two-stage hybrid method is qualified as semi-
supervised because it generates its own training labels from unlabelled 
data, allowing for efficient processing of large datasets while maintain-
ing comparability with fully unsupervised methods. The mathematical 
formulation of this process is described as follows, 

𝐽 =
𝑛
∑

𝑘
∑

𝑟𝑖𝑗 (𝑥𝑖 − 𝜇𝑗 )
2 (4)
𝑖=1 𝑗=1

4 
where, 𝑗 represents the sum of squared distances from each sample 
point to its centre of mass, 𝑘 represents the number of clusters. 𝜇𝑗
denotes the category to which the 1st sample belongs, and 𝑟𝑖𝑗 is 1 when 
the data point 𝑥𝑖 is classified to 𝜇𝑗 , and 0 otherwise.

In our study, the EBMC serves as the ground reference to compare 
the outcomes of automated classifications against, as it represents the 
established standard practice in LCA. The EMBC used in this study was 
conducted by co-author Steven Warnock following the standardised 
methodology (Warnock and Griffiths, 2015). This ensures methodolog-
ical consistency and provides an authoritative reference against which 
automated methods can be reliably evaluated.

3.1.2. CVI-based clustering validation
Validating clustering results is essential in LCA, mainly because the 

number of clusters must be defined in advance. This is contradictory 
to unsupervised learning, where there is no clear ‘‘correct’’ number of 
clusters. Instead of focusing on exact labels, validation should assess 
whether the clustering meaningfully separates the data (Fraley and 
Raftery, 2002). In this study, we followed two key principles: keeping 
differences within each LCT as small as possible, and avoiding too 
many categories while still capturing important differences (Zhao et al., 
2023). To evaluate model performance, we used the Clustering Validity 
Index, specifically the Silhouette Coefficient (SC) and Davies–Bouldin 
(DB) index.

The SC measures the average distance from sample 𝑖 to other sam-
ples within the same cluster. It ranges from −1 to 1, with values closer 
to 1 indicating more compact and well-separated clusters, reflecting 
better clustering quality (Rousseeuw, 1987). In this analysis, SC is 
represented as follows, 

𝑆𝐶 = 1
𝑁

𝑁
∑

𝑖=1

𝑑𝑖𝑠𝑀𝑒𝑎𝑛𝑜𝑢𝑡(𝑖) − 𝑑𝑖𝑠𝑀𝑒𝑎𝑛𝑖𝑛(𝑖)
max{𝑑𝑖𝑠𝑀𝑒𝑎𝑛𝑜𝑢𝑡(𝑖), 𝑑𝑖𝑠𝑀𝑒𝑎𝑛𝑖𝑛(𝑖)}

(5)

where, 𝑑𝑖𝑠𝑀𝑒𝑎𝑛𝑖𝑛 is the average distance between the point and other 
points in the class, 𝑑𝑖𝑠𝑀𝑒𝑎𝑛𝑜𝑢𝑡 is the average distance between the point 
and non-class points, 𝑁 is the total number of points clustered.

The DB index is used to assess the quality of clustering results, 
with lower values indicating better separation between clusters (Davies 
and Bouldin, 1979; Halkidi et al., 2001). It measures how similar each 
cluster is to the others, based on the distance between cluster centres 
and the spread of points within each cluster. A DB index close to zero 
means that clusters are compact and well-separated, which suggests a 
good clustering outcome. The formula for calculating the DB index is 
shown below, 

𝐷𝐵 = 1
𝐾

𝐾
∑

max
𝑖≠𝑗

(

𝑑𝑙 + 𝑑𝐽
𝑑

)

(6)

𝑖,𝑗=1 𝑖,𝑗
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Table 2
Accuracy assessment metrics.
 Definition Metrics Description  
 NMI is a measure used to evaluate network 
partitioning performed by community finding 
algorithms.

𝑁𝑀𝐼(𝑋, 𝑌 ) = 2∗𝐼(𝑋,𝑌 )
𝐻(𝑋)+𝐻(𝑌 )

where 𝐼(𝑋, 𝑌 ) represents the mutual information between 𝑋 and 𝑌 , 
while 𝐻(𝑋) and 𝐻(𝑌 ) denote the entropy of 𝑋 and 𝑌  respectively.

 

 FS combines precision and recall in a single metric, 
the value of F-score ranges from 0 to 1, with 
closer to 1 indicating better model performance.

𝐹𝑆 = (1 + 𝛽2) 𝑃𝑅×𝑅𝐸
𝛽2𝑃𝑅+𝑅𝐸

where 𝑃𝑅 denotes the Precision value, 𝑅𝐸 represents the Recall value.  

 ACC is a metric used to evaluate the performance 
of classification models.

𝐴𝐶𝐶 = 𝑇𝑃+𝑇𝑁
𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁

where TP (True Positive) refers to the number of pair of points that 
belong to the same clusters in both the true labels and the predicted 
labels; TN (True Negative) represents the number of samples correctly 
classified as negative; FP (False Positive) indicates the number of 
samples incorrectly classified as positive; and FN (False Negative) stands 
for the number of samples wrongly classified as negative.

 

 PR measures the proportion of samples that are 
actually positive among all samples predicted as 
positive.

𝑃𝑅 = 𝑇𝑃
𝑇𝑃+𝐹𝑃

 

 RE reflects the proportion of samples that are 
actually positive and are predicted as positive by 
the model.

𝑅𝐸 = 𝑇𝑃
𝑇𝑃+𝐹𝑁

 

 ARI measures the similarity between the clustering 
result and the true labels; it adjusts Rand Index by 
randomly sampling the data.

𝐴𝑅𝐼 = 𝑅𝐼−𝐸[𝑅𝐼]
max(𝑅𝐼)−𝐸[𝑅𝐼]

𝑅𝐼 = 𝑇𝑃+𝑇𝑁
𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁

 

where 𝑑𝑙 is the average distance between each point in the 𝑖th cluster 
and the centroid of the 𝑖th cluster. 𝑑𝐽  is the average distance between 
each point in the 𝑗th cluster and the centroid of the 𝑗th cluster. 𝑑𝑖,𝑗 is 
the Euclidean distance between the centroids of the 𝑖th and 𝑗th clusters.

3.2. Explaining analysis

Although machine learning is known for its high accuracy and 
strong performance (Wang et al., 2020), it is often considered a ‘‘black 
box’’ approach due to a lack of information on how it makes deci-
sions (Huang et al., 2024). The SHapley Additive Explanations (SHAP) 
method tackles this issue (Lundberg and Lee, 2017). Based on game 
theory, SHAP calculates how much each input feature (in our case, an 
LCE) contributes to the model’s output, treating each feature as a player 
in a team. We used the SHAP analysis to measure the contribution 
of each LCE to the outputs of the three automated models and the 
reference classification. We plot the SHAP values for all elements across 
all samples to show which elements are most important for each model. 
The analysis is carried out using Python 3.7 with the shape library as 
follows, 

𝜙𝑖 =
∑

𝑆⊆𝑁∖{𝑖}

|𝑆|!(|𝑁| − |𝑆| − 1)!
|𝑁|!

[𝑓 (𝑆 ∪ {𝑖}) − 𝑓 (𝑆)] (7)

where, 𝜙𝑖 denotes the SHAP value for feature 𝑖, representing its contri-
bution to the classification, 𝑁 denotes the set of all features, 𝑆 denotes 
a subset of 𝑁 that does not include feature 𝑖, 𝑓 (𝑆) denotes the model’s 
classification when only the features in subset 𝑆 are present.

3.3. Accuracy assessment

The quality of machine learning classification is often evaluated 
by how closely the model’s results match the expected outcomes or 
known categories, often referred to as ‘ground reference’ (Halkidi et al., 
2001). In this study, we use the EBMC map as the ground reference. 
We performed an accuracy assessment to test how well the models 
assign similar cells to the same cluster and separate different zones into 
distinct clusters.

Several evaluation metrics were applied: accuracy (ACC), norma-
lised mutual information (NMI), precision (PR), recall (RE), F-score 
(FS), and adjusted rand index (ARI) (Halkidi et al., 2002). ACC shows 
how many samples were correctly classified. NMI measures the agree-
ment between clustering and the ground reference. PR shows the 
proportion of correct positive predictions, while RE shows how many 
actual positives were correctly identified. FS combines PR and RE into 
one score. ARI adjusts for chance and considers both false positives 
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and false negatives. The definitions of these six metrics are provided in 
Table  2. Each metric ranges from 0 to 1, with higher values indicating 
better clustering performance.

All geospatial data and analysis codes are publicly available through 
the BBNP_LCA GitHub repository. Custom MATLAB scripts for coordi-
nate system unification are provided in the ‘/lib’ directory.

4. Results

4.1. Cluster validation

In the CVI-based cluster validation, the optimal number of clusters 
(k) for each model was determined by identifying the point where the 
SC reached its maximum and the DB reached its minimum. Fig.  3 shows 
the average SC and DB values across five clustering and validation 
iterations for each model. Fig.  3(b) then shows that DB values decline 
sharply at first and then level off gradually. Since a higher SC (range 
[0,1]) and a lower DB (range [0,∞]) indicate better clustering, the 
results suggest that the OPMC and KM models outperform SOFM in 
both metrics, particularly when k exceeds 8. Among the three models, 
OPMC consistently achieves the best clustering performance, with the 
highest SC (0.4410) and lowest DB (1.0712). The optimal number of 
clusters was found to be k = 16 for SOFM and k = 20 for both KM and 
OPMC.

4.2. Landscape character types generated by the four models

We applied the OPMC and SOFM models to perform clustering 
analysis on spatial data, resulting in 20 LCTs for OPMC and 16 LCTs 
for SOFM, as shown in Fig.  4(a–b). The STSC model, using K-means-
generated pseudo-labels, produced 20 LCTs, displayed in Fig.  4(c). The 
EBMC identified 21 LCTs (Fig.  4(d). In Fig.  4(a–c), the LCT distributions 
appear more fragmented due to the pixel resolution of the input data. 
In contrast, Fig.  4(d) shows more cohesive LCTs with clearly defined 
boundaries drawn by experts. Despite methodological differences, all 
four models produce highly similar spatial patterns. For example, in 
the zoomed-in area 1, the ridge of Fan Brycheiniog is clearly delineated 
by all models; in area 2, the morphology of Pen y Fan is consistently 
captured; and in area 3, both the mountain and its surrounding lower 
slopes are accurately distinguished.

Fig.  B.8 compares the area distribution of LCTs across the four 
models. The standard deviation analysis reveals that OPMC, SOFM, and 
STSC exhibit relatively uniform LCT areas, with STSC showing the most 
balanced distribution (standard deviation: 336.33 km2). In the OPMC 
results (Fig.  B.8(a)), types 10, 12, and 16 dominate, each exceeding 125 

https://github.com/TingtingHwang/BBNP_LCA
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Fig. 3. Validation results for SC and DB: (a) SC validation; (b) DB validation. The best clustering results are obtained when the value of SC is at its highest and at the same time 
the value of DB is at its lowest. Combining the values of SC and DB, the best clustering results are obtained for OPMC when k = 20, SOFM when k = 16, and KM when k = 20.
km2, while type 1 covers only 12.02 km2. In SOFM (Fig.  B.8(b), types 
1 and 11 are largest, each around 175 km2. In STSC (Fig.  B.8(c)), types 
2, 4, and 20 are most widespread, each over 125 km2. In EBMC (Fig. 
B.8(d)), types 2 and 9 make up 44.3% of the total area, while type 17 
is the smallest at 1.82 km2.

We compared pixel-by-pixel classifications from our four models 
to explore how LCTs from each method align with one another. An 
extended Sankey plot generated using ChiPlot is shown in Fig.  5. 
Overall, the results show considerable consistency and clustering across 
models. For example, OPMC_LCT10, STSC_LCT20, EBMC_LCT2, and 
SOFM_LCT11 share similar geographic patterns, as do OPMC_LCT12, 
STSC_LCT4, EBMC_LCT9, and SOFM_LCT1.

The machine learning models — OPMC, STSC, and SOFM — show 
clearer clustering flows, while the EBMC results are more diverse, 
showing weaker and more dispersed flows. Notably, strong bidirec-
tional correspondence is observed between OPMC and STSC. For in-
stance, OPMC_LCT10 maps primarily to STSC_LCT20 (7.86%), and 
OPMC_LCT12 to STSC_LCT4 (8.07%). From STSC to EBMC, STSC_LCT4 
maps to EBMC_LCT9 (5.44%) and STSC_LCT20 to EBMC_LCT2 (4.75%). 
Similarly, SOFM_LCT1 corresponds to EBMC_LCT9 (6.56%) and
SOFM_LCT11 to EBMC_LCT2 (4.95%).

4.3. Contribution characteristics of LCEs based on SHapley Additive expla-
nations

Fig.  6 presents the overall explanatory contribution of each LCE 
across the four classification models, SHAP to assess the importance of 
each element in shaping Landscape Character Types. The contribution 
rankings reveal distinct patterns: geology, historic landscape, and soil 
type consistently show higher contributions across all models, while 
habitat and landform contribute comparatively less in terms of SHAP 
value distribution relative to the centre (SHAP = 0). Both the OPMC 
and EBMC models display a balanced spread of contributions, with 
positive and negative values distributed on either side of the centre. 
6 
The STSC model shows SHAP values predominantly on the right side of 
the centre, indicating strong and consistent positive contributions. The 
SOFM model, however, has SHAP values mostly to the left, suggesting 
more negative contributions and lower confidence in feature influence.

Fig.  6(a–c) show that the SHAP values for OPMC, SOFM, and 
STSC are more widely spread, indicating greater variability and uncer-
tainty in feature dependency. Notably, the SOFM model shows weak 
dependence on features like soil type, possibly due to imbalanced 
training or less effective element selection. Meanwhile, OPMC and 
STSC demonstrate stronger and more consistent contributions from 
geology and landform, while also maintaining balanced contributions 
from historic landscape and soil type. In Fig.  6(d), representing the 
EBMC model, shows a more stable and concentrated SHAP value distri-
bution. This likely reflects the consistency and prior knowledge used in 
manual classification, particularly for features such as geology and soil 
type. The relatively lower SHAP values for historic landscape and soil 
type suggest these features were considered less important in manual 
classification compared to automated models.

Fig.  D.9 provides a focused comparison of the contributions of geol-
ogy, historic landscape, and soil type across the four models. Geology 
emerges as the most influential element overall, with particularly high 
SHAP values in the OPMC and EBMC models, indicating that these 
models rely heavily on geological features for classification. Although 
geology is slightly less influential in the SOFM and STSC models, it 
still shows a notable impact. The importance of historic landscape 
varies more across models. OPMC and STSC assign relatively high 
SHAP values to this element, suggesting a stronger influence on their 
classification outcomes. In contrast, SOFM and EBMC display lower 
SHAP values for the historic landscape, indicating that it plays a lesser 
role in those models. While historic landscape generally contributes 
less than geology, its role is more pronounced in the OPMC and STSC 
models.

https://www.chiplot.online/
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Fig. 4. Visual comparison of landscape character classification results across automated and expert-based methods. (a) OPMC Results (b) SOFM Results (c) STSC Results (d) EBMC 
(Expert) Results. Inset areas: 1-Fan Brycheiniog, 2-Pen y Fan, 3-East BBNP.
4.4. Similarity measurement

Fig.  7 shows the results of the accuracy assessment of OPMC, SOFM, 
and STSC models against the EBMC. Higher values across these metrics 
indicate better alignment with the EBMC results. All three models — 
OPMC, SOFM, and STSC — achieved high scores for ACC, NMI, FS, 
PR, and AR, with ACC and NMI values nearing 0.85, suggesting strong 
overall consistency. However, notable variation was observed in PR and 
RE values, particularly in the SOFM model, which displayed an inverse 
trend compared to OPMC and STSC.

Overall, the OPMC and STSC models outperformed SOFM across 
all six evaluation metrics. STSC stood out in particular, achieving the 
highest scores for Accuracy (0.845), Normalised Mutual Information 
(0.974), and Recall (0.947), indicating strong agreement with the 
expert-based classification. While OPMC performed best in terms of 
Precision, it scored lower in Recall. SOFM delivered more balanced 
results overall but ranked slightly lower than the other two models in 
7 
most metrics. In conclusion, STSC is the most consistent model and is 
well-suited for applications requiring balanced performance, whereas 
OPMC may be preferred when higher precision is the main priority.

4.5. Landscape interpretation of dominant cluster types

To address the landscape meaning of data-driven clusters, we con-
ducted detailed environmental composition analysis for each auto-
mated cluster type. Through pixel-by-pixel percentage analysis, we 
obtained the distribution characteristics of all 60 environmental vari-
ables (Appendix  A) for each cluster type across the three automated 
methods.

The automated clusters exhibit coherent environmental signatures 
that correspond to recognisable landscape types. Clusters dominated 
by specific geological substrates, elevation ranges, and soil types con-
sistently co-occur with particular vegetation patterns and historic land 
use signatures, creating environmentally coherent landscape units. 
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Fig. 5. Mutual flow relationships for LCT results from the four models: (a) OPMC; (b) SOFM; (c) STSC; (d) EBMC. The nodes in each column correspond to the LCTs, with their 
height indicating the area occupied by each type. Different colours represent the flows between various designated types, while the width indicates their magnitude.

Fig. 6. Beeswarm plots of global interpretability for four models: (a) OPMC; (b) SOFM; (c) STSC; (d) EBMC. Each row of the graph represents an element and is sorted by the 
average absolute value of SHAP. A point in the graph represents a sample, with the greener colour representing a greater element contribution and the purple colour representing 
a lesser element contribution.

Fig. 7. Results of accuracy assessment for OPMC, SOFM, and STSC with EBMC, respectively.
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Table 3
Comparison of landscape character type descriptions between automated and expert classifications.
 Automated type Key variable composition Expert type Expert description  
 STSC_LCT20 61.3% elevation 250–350 m + 68% Devonian 

Argillaceous Rock + 78% Prehistoric-Medieval 
historic landscape + 65% Cultivated Terrestrial 
Vegetation + 94% Dissected lowland plateau + 
92.5% Freely draining acid loamy soils + 
57.7% Improved Grassland.

EBMC_LCT2: Wooded Hills & 
Slopes

Gently rolling hills on argillaceous geology 
with well-drained soils supporting improved 
grasslands. Historic field patterns reflect 
centuries of pastoral farming with scattered 
woodland remnants.

 

 STSC_LCT4 58.2% elevation 450–600 m + 96.9% Devonian 
Sandstone + 71.2% Prehistoric-Medieval 
historic landscape + 47.9% Semi-natural 
Terrestrial herbaceous vegetation + 50.8% wet 
acid upland soils + 78.6% moor grassland.

EBMC_LCT9: Moorland Hills & 
Slopes

Higher elevation landscapes on sandstone 
geology with acidic, poorly-drained soils 
supporting semi-natural moorland vegetation. 
Extensive grazing systems with minimal 
settlement.

 

The Mutual flow analysis (Fig.  4) demonstrates strong bidirectional 
correspondence between automated and expert classifications, with 
key correspondences including STSC_LCT20 - EBMC_LCT2 (4.75%) and 
STSC_LCT4 - EBMC_LCT9 (5.44%).

Based on environmental composition analysis and expert corre-
spondence, the dominant automated cluster types can be characterised 
as meaningful landscape units (Table  3). For example, STSC_LCT20 
represents mid-elevation pastoral landscapes characterised by 61.3% 
elevation 250–350 m, 68% Devonian Argillaceous Rock geology, and 
92.5% freely draining acid loamy soils supporting improved grasslands. 
This corresponds closely to EBMC_LCT2 ‘‘Wooded Hills & Slopes’’, de-
scribed as pastoral landscapes with well-drained soils and historic field 
patterns. Similarly, STSC_LCT4 represents upland moorland systems 
with 58.2% elevation 450–600 m, 96.9% Devonian Sandstone geology, 
and 78.6% moor grassland, corresponding to EBMC_LCT9 ‘‘Moorland 
Hills & Slopes’’.

The environmental composition analysis reveals that automated 
clusters represent landscape units with similar environmental charac-
teristics and management requirements. These findings demonstrate 
that data-driven clustering produces meaningful landscape types with 
clear environmental coherence, addressing concerns about clusters 
lacking landscape significance. The strong correspondence with expert 
classification validates that automated methods can identify environ-
mentally coherent landscape units that serve as valuable foundations 
for landscape character assessment.

5. Discussion

5.1. Landscape characterisation

This research compares LCT classifications using machine learn-
ing, deep learning, and expert-based methods. A fundamental the-
oretical question in automated landscape character assessment con-
cerns whether data-driven clustering can produce meaningful land-
scape types beyond statistical artifacts. Our environmental composition 
analysis addresses this challenge by demonstrating that automated 
methods identify the underlying biophysical template that supports 
landscape character formation. While traditional LCA emphasises per-
ceptual and experiential dimensions, our findings show that objective 
environmental patterns can capture the essential landscape-forming 
processes that underpin these perceptual characteristics.

The strong correspondence between automated clusters and expert-
recognised landscape types (Table  3) validates this approach. For 
instance, STSC_LCT20’s environmental signature — characterised by
mid-elevation pastoral landscapes on well-drained soils — directly 
corresponds to the expert-identified ‘‘Wooded Hills & Slopes’’ character 
type. This consistency between automated and expert classifications 
suggests that data-driven methods can successfully identify meaningful 
landscape units with clear environmental coherence and management 
relevance, rather than producing arbitrary statistical clusters.
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However, a significant practical challenge remains in the inter-
pretability and accessibility of automated classifications. Manual clas-
sification generates intuitive, easily recognisable labels such as ‘grass-
land’, ‘forest’, or ‘urban area’, immediately understandable by a wide 
audience. These labels stem directly from expert interpretation and 
experiential knowledge. In contrast, automated methods typically pro-
duce less intuitive labels such as ‘Class19’ or ‘Cluster3’, which lack 
immediate clarity and make it challenging for practitioners, policymak-
ers, or stakeholders to use them effectively (Fagerholm et al., 2013). 
Therefore, bridging the gap between the environmental accuracy of au-
tomated classifications and the intuitive accessibility of expert-derived 
labels remains essential for improving both the precision and practical 
usability of landscape assessments.

5.2. Implications of automated classification for landscape character iden-
tification

Reducing subjectivity in landscape classification is a major goal in 
LCA. At its core, LCA seeks to establish a robust baseline framework 
that subdivides study areas into landscape types sharing similar natural 
and cultural attributes, providing consistent spatial units for subsequent 
landscape analysis and monitoring activities (Simensen et al., 2018). 
This study demonstrates that automated methods, particularly those 
involving machine and deep learning, are effective tools for establishing 
the baseline LCT framework objectively.

Automated clustering analyses group landscape samples based on 
similarities in their natural and cultural elements, significantly reducing 
researcher bias and providing the consistency necessary for reliable 
baseline establishment (Huang et al., 2023). Previous research also 
supports this, showing that automated methods can systematically 
integrate multiple landscape elements to produce consistent and ob-
jective classifications suitable for creating stable spatial frameworks 
(Myadzelets, 2021; Simensen et al., 2018; Huang et al., 2023). Our 
comparative analysis of three automated classification methods (OPMC, 
SOFM, and STSC) found that their results were largely consistent with 
one another, with accuracy assessment against EBMC highlighting that 
the STSC model most closely matched expert-driven classifications.

The findings highlight several key advantages of using automated 
methods for establishing landscape character baselines. Firstly, they 
significantly reduce the time required for classifying landscape types 
and delineating their boundaries compared to traditional manual ap-
proaches, enabling baseline establishment at previously impractical 
scales. For instance, while a comprehensive manual LCA for large 
regions can require decades of expert work, automated methods can 
establish similar frameworks within a fraction of that timeframe. Sec-
ondly, automated methods do not require the number of landscape 
types to be predefined, allowing for data-driven determination of natu-
ral landscape divisions. Most importantly, automated methods enhance 
objectivity and repeatability, providing consistent baseline frameworks 
that can serve as reliable spatial units for conservation planning, envi-
ronmental impact assessment, and landscape management decisions.
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This systematic consistency means that automated classification 
methods can be replicated across different geographic areas (Huang 
et al., 2025b), making them particularly valuable for creating stan-
dardised landscape character frameworks that support evidence-based 
policy development. The scalability demonstrated by our methods ad-
dresses the fundamental challenge where the need for comprehen-
sive landscape characterisation far exceeds the capacity of traditional 
expert-based approaches, particularly in regions lacking established 
LCA programs. While our study focuses on methodological compar-
ison, these advances provide essential foundations for enabling LCA 
applications at regional and national scales where landscape charac-
ter frameworks are critically needed for sustainable development and 
conservation planning.

5.3. Migratory and global perspectives on automatic classification methods

Automated landscape character classification methods, like those 
applied to Bannau Brycheiniog National Park in this study, have sig-
nificant potential for broader global applications due to the increasing 
availability of remote sensing data. Global Earth observation programs, 
such as the European Space Agency’s Copernicus and NASA’s Earth 
Observing System, now provide extensive satellite data that support 
large-scale landscape analysis. The rise of open-access data platforms 
further promotes information sharing and allows landscape character 
assessments to extend beyond local or national boundaries, enabling 
comparative studies across continents (Wascher, 2005). This enhanced 
global accessibility means that methods initially tested at smaller scales 
can be effectively adapted and expanded to larger and more diverse 
regions.

The scalability of automated classification is further strengthened 
through standardised approaches and unified analytical frameworks. 
Methods like unsupervised clustering algorithms (e.g., OPMC, SOFM) 
and semi-supervised deep learning techniques (e.g., STSC) offer consis-
tency in identifying landscape types across varied geographical areas 
(Yang et al., 2020). Standardisation simplifies the adaptation of these 
methods to new regions and enhances the comparability of results. 
When classification methods are consistent and unified, findings from 
one landscape can be reliably applied or compared to others. Employing 
common evaluation metrics, such as the Clustering Validity Index, 
further ensures uniformity, making landscape assessments easier to 
replicate and analyse across different ecosystems (Alfredsen et al., 
2022; Huang et al., 2023). Such consistency is critical for efficient 
environmental monitoring and informed policy-making at regional, 
national, and global levels.

Additionally, as landscapes change in response to climate change, 
human activities, and migratory species, monitoring these shifts be-
comes increasingly important (Turner, 2010). Automated methods, 
with their inherent scalability and adaptability, enable long-term ob-
servation of landscape dynamics. For example, researchers can track 
changes in vegetation or soil type patterns caused by migratory species 
and other environmental factors consistently across multiple regions. 
This temporal monitoring capability is especially valuable for biodiver-
sity conservation and sustainable management. By adopting standard-
ised, scalable automated classification methods, landscape changes can 
be studied effectively over time, providing essential data for both local 
and global conservation strategies. Consequently, this standardised 
approach facilitates a more comprehensive understanding of landscape 
evolution and supports global efforts to manage landscapes sustainably 
in a rapidly changing world (Yang et al., 2020; Griffiths, 2018).

5.4. Limitations and future work

This study demonstrated the comparative effectiveness of auto-
mated methods for identifying LCTs within Bannau Brycheiniog Na-
tional Park. However, several limitations remain, pointing to important 
areas for future research and methodological refinement.
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The most significant limitation concerns the geographic scope and 
generalisability of our findings. Our validation relies exclusively on 
expert classification within BBNP, a specific upland Welsh landscape 
context characterised by particular geological, topographical, and cul-
tural attributes. While this focused approach ensured high-quality 
ground truth data and demonstrated clear methodological effectiveness 
within our study area, it raises important questions about model 
transferability across different landscape settings. The relationships 
between automated methods that we observed may not hold in regions 
with contrasting topographies, land use patterns, or cultural attributes. 
Cross-site validation using other protected areas from the UK National 
Parks system (Fig.  1) — such as lowland agricultural areas (Norfolk 
Broads), coastal environments (Pembrokeshire Coast), or different ge-
ological contexts (Lake District) — would provide essential insights 
into model robustness and help identify which landscape characteris-
tics most strongly influence classification performance. Such external 
validation would enable the development of adaptive strategies for 
applying automated LCA methods across diverse environmental con-
texts, ultimately supporting broader adoption of these approaches in 
landscape management.

A second methodological challenge involves the covariance among 
landscape character elements. High collinearity between variables can 
obscure distinctions between landscape types and influence classifi-
cation model performance, particularly when scaling across different 
geographic contexts. Future studies should explore multiscale or hi-
erarchical modelling approaches, alongside dimensionality reduction 
techniques such as Principal Component Analysis, to reduce redun-
dancy and improve the interpretability of classification outputs across 
diverse landscape settings.

The temporal dimension represents another important limitation. 
This study focuses on single-time-point classification without assess-
ing the temporal stability of automated methods. Evaluating whether 
these techniques can produce consistent results over time is critical 
for supporting long-term landscape monitoring and establishing robust 
baseline assessments, particularly as landscapes respond to climate 
change and human pressures.

6. Conclusions

This study demonstrates that automated classification methods — 
OPMC, SOFM, and STSC — can effectively generate LCTs with greater 
scalability and repeatability than the traditional expert-based approach. 
Among the three methods, STSC showed the strongest agreement with 
the expert-based reference, highlighting its potential for high-quality 
landscape characterisation.

Importantly, the automated LCTs produced through this study pro-
vide a reliable spatial foundation for monitoring key ecological and 
environmental variables such as land use and land cover changes, habi-
tat dynamics, fire frequency, carbon storage, and species distributions. 
These are essential components for managing landscape responses to 
habitat degradation, biodiversity loss, and the broader impacts of cli-
mate change on food and ecosystem security.

While the performance of automated methods is promising, some 
limitations remain, notably the generation of character types inter-
pretable by stakeholders. Future research should focus on integrat-
ing automated methods with expert knowledge to enhance both the 
interpretability and credibility of classification outputs. Such hybrid 
approaches would ensure that automated LCA frameworks are not only 
scientifically robust but also practical for supporting diverse monitor-
ing, planning, and management applications across a wide range of 
environmental contexts.
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Table A.4
Landscape character elements.
 ID Variables % ID Variables %  
 Altitude/m l8 Tectonically controlled topography 0.84%  
 al1 80–250 17.64% l9 Undulating lowland hill terrain 2.99%  
 al2 250–350 24.74% l10 Undulating upland terrain and dissected plateau 0.92%  
 al3 350–450 25.06% l11 Upland and mountain river and stream 1.38%  
 al4 450–600 23.73% l12 Upland glacial and fluvioglacial depositional terrain 0.23%  
 al5 600–931 8.83% Vegetation
 Geology v1 Natural terrestrial vegetation 0.43%  
 g1 Carboniferous: limestone 6.00% v2 Moor grassland 28.73% 
 g2 Carboniferous: mudstone 6.97% v3 Coniferous woodland 6.79%  
 g3 Carboniferous: sandstone 9.43% v4 Broadleaf woodland 15.61% 
 g4 Carboniferous: argillaceous rock 27.19% v5 Limestone grassland 3.23%  
 g5 Devonian: conglomerate 0.16% v6 Improved grassland 24.27% 
 g6 Devonian: mudstone 0.67% v7 Heathland 12.72% 
 g7 Devonian: sandstone 41.00% v8 Bog 4.54%  
 g8 Ordovician 1.11% v9 Cultivated 3.68%  
 g9 Silurian: quartzite 0.07% Habitat
 g10 Silurian: else 7.41% ha1 Cultivated terrestrial vegetation 27.03% 
 Soil type ha2 Semi-natural terrestrial woody vegetation 17.26% 
 s1 Blanket bog peat soils 2.40% ha3 Semi-natural terrestrial herbaceous vegetation 28.63% 
 s2 Freely draining acid loamy soils 53.55% ha4 Natural aquatic vegetation 23.68% 
 s3 Freely draining floodplain soils 2.34% ha5 Artificial surface 1.47%  
 s4 Restored soils mostly from quarry and opencast spoil 0.52% ha6 Bare surface 0.19%  
 s5 Slightly acid loamy and clayey soils with impeded drainage 6.49% ha7 Water 1.75%  
 s6 Slowly permeable wet very acid upland soils with a peaty surface 23.55% Historic landscape
 s7 Unclassified 10.56% hl1 Prehistoric, Roman, medieval, post medieval 15.82% 
 s8 Water 0.59% hl2 Prehistoric, Roman, post medieval 16.44% 
 Landform hl3 Prehistoric, medieval, post medieval, later period 28.51% 
 l1 Dissected lowland plateau 50.09% hl4 Prehistoric, medieval, post medieval 14.92% 
 l2 Glaciated mountain terrain 20.23% hl5 Prehistoric, post medieval, industrial, recent 8.31%  
 l3 Karst 10.46% hl6 Roman, medieval, post medieval 7.37%  
 l4 Lowland glacial and fluvioglacial depositional terrain 4.14% hl7 Medieval, post medieval, industria 1.83%  
 l5 Lowland river and drainage systems 2.48% hl8 Post medieval, industrial, recent 5.87%  
 l6 Lowland scarp and dip-slope dominated terrain 0.70% hl9 Industrial, recent 0.93%  
 l7 Man-made 5.53%  
Table C.5
Ten experts expressed 10 opinions on whether landscape character elements (LCE) are involved in the landscape classification process.
 Multi-view Altitude Soil type Geology Landform Vegetation Historic landscape Habitat 
 V1a 1b 1 1 1 1 1 1  
 V2 1 1 1 1 1 1 0  
 V3 1 1 0 0 1 1 1  
 V4 1 1 1 1 1 1 1  
 V5 0 1 0 1 1 1 1  
 V6 1 1 1 1 1 0 0  
 V7 1 1 1 1 1 1 1  
 V8 1 0 0 1 1 1 1  
 V9 1 1 0 0 1 1 0  
 V10 1 1 1 1 1 0 1  
a Multi-views form 10 experts;
b 1 denotes ‘‘essential’’, 0 denotes ‘‘not essential’’.
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Appendix A. Landscape character elements

Table  A.4 shows the 60 variables from seven elements.
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Fig. B.8. Area comparison of four models. (a) OPMC; (b) SOFM; (c) STSC; (d) EBMC. The rows represent the numbers of the LCTs, and the columns represent the size of the area 
of each type.

Fig. D.9. Scatter Plots of the geology, historic and soil type for four models: (a) OPMC; (b) SOFM; (c) STSC; (d) EBMC. The horizontal axis represents the actual value of the 
feature and the vertical axis represents the corresponding SHAP value.
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Appendix B. OPMC, SOFM, STSC, and EBMC model clustering re-
sults

The area comparison of OPMC, SOFM, STSC, and EBMC model 
clustering results is demonstrated in Fig.  B.8.

Appendix C. Multi-views from experts

Ten experts expressed 10 opinions on whether landscape character 
elements (LCE) are involved in the landscape classification process, the 
multi-view results are presented in Table  C.5.

Appendix D. Scatter Plots of the geology, historic landscape and 
soil type for four models

Scatter Plots of the geology, historic landscape and soil type for four 
models are presented in Fig.  D.9

Data availability

All data and code used in this study are publicly available at 
GitHub (https://github.com/TingtingHwang/BBNP_LCA). The reposi-
tory includes raw data, processed datasets, analysis scripts, and detailed 
documentation for complete reproduction of results.

References

Alfredsen, K., Dalsgård, A., Shamsaliei, S., Halleraker, J.H., Gundersen, O.E., 2022. 
Towards an automatic characterization of riverscape development by deep learning. 
River Res. Appl. 38 (4), 810–816.

2010. Dataset: ©JAXA/METI alos PALSAR L1.0 2006 [dataset]. http://dx.doi.org/10.
5067/J4JVCFDDPEW1, Accessed through ASF DAAC 25 November 2023.

Amani, M., Foroughnia, F., Moghimi, A., Mahdavi, S., Jin, S., 2023. Three-dimensional 
mapping of habitats using remote-sensing data and machine-learning algorithms. 
Remote. Sens. 15 (17), http://dx.doi.org/10.3390/rs15174135.

Antrop, M., Van Eetvelde, V., 2000. Holistic aspects of suburban landscapes: visual 
image interpretation and landscape metrics. Landsc. Urban Plan. 50 (1), 43–58. 
http://dx.doi.org/10.1016/S0169-2046(00)00079-7.

2023. British Geological Survey. (2023). BGS Geology 50K [Dataset]. British Geological 
Survey, URL: https://www.bgs.ac.uk/datasets/bgs-geology-50k-digmapgb/.

Brabyn, L., 2009. Classifying landscape character. Landsc. Res. 34 (3), 299–321. http:
//dx.doi.org/10.1080/01426390802371202.

Brown, G., Brabyn, L., 2012. An analysis of the relationships between multiple values 
and physical landscapes at a regional scale using public participation GIS and 
landscape character classification. Landsc. Urban Plan. 107 (3), 317–331. http:
//dx.doi.org/10.1016/j.landurbplan.2012.06.007.

Buller, H., Furuseth, O., Gilg, A.W., Lapping, M., 2012. Sustainable Rural Systems: 
Sustainable Agriculture and Rural Communities. Ashgate Publishing, Ltd..

Capotorti, G., Guida, D., Siervo, V., Smiraglia, D., Blasi, C., 2012. Ecological classifica-
tion of land and conservation of biodiversity at the national level: The case of Italy. 
Biol. Cons. 147 (1), 174–183. http://dx.doi.org/10.1016/j.biocon.2011.12.028.

Carvalho, D.V., Pereira, E.M., Cardoso, J.S., 2019. Machine learning interpretability: 
A survey on methods and metrics. Electron. 8 (8), http://dx.doi.org/10.3390/
electronics8080832.

Collier, D., LaPorte, J., Seawright, J., 2012. Putting typologies to work: Concept 
formation, measurement, and analytic rigor. Political Res. Q. 65 (1), 217–232. 
http://dx.doi.org/10.1177/1065912912437162.

Cui, Y., Yang, G., Zhou, Y., Zhao, C., Pan, Y., Sun, Q., Gu, X., 2023. AGTML: A novel 
approach to land cover classification by integrating automatic generation of training 
samples and machine learning algorithms on Google Earth Engine. Ecol. Indic. 154, 
110904. http://dx.doi.org/10.1016/j.ecolind.2023.110904.

Davies, D.L., Bouldin, D.W., 1979. A cluster separation measure. IEEE Trans. Pattern 
Anal. Mach. Intell. PAMI-1 (2), 224–227. http://dx.doi.org/10.1109/TPAMI.1979.
4766909.

Déjeant-Pons, M., 2006. The European landscape convention. Landsc. Res. 31 (4), 
363–384. http://dx.doi.org/10.1080/01426390601004343.

Fagerholm, N., Käyhkö, N., Van Eetvelde, V., 2013. Landscape characterization inte-
grating expert and local spatial knowledge of land and forest resources. Environ. 
Manag. 52, 660–682. http://dx.doi.org/10.1007/s00267-013-0121-x.

Fairclough, G., Herlin, I.S., Swanwick, C., 2018. Routledge Handbook of Landscape 
Character Assessment: Current Approaches to Characterisation and Assessment. 
Routledge, London, pp. 392–393. http://dx.doi.org/10.4324/9781315753423.
13 
Fairclough, G., Herring, P., 2016. Lens, mirror, window: interactions between historic 
landscape characterisation and landscape character assessment. Landsc. Res. 41 (2), 
186–198. http://dx.doi.org/10.1080/01426397.2015.1135318.

Foody, G.M., 1999. Applications of the self-organising feature map neural network in 
community data analysis. Ecol. Model. 120 (2), 97–107. http://dx.doi.org/10.1016/
S0304-3800(99)00094-0.

Fraley, C., Raftery, A.E., 2002. Model-based clustering, discriminant analysis, and 
density estimation. J. Amer. Statist. Assoc. 97 (458), 611–631. http://dx.doi.org/
10.1198/016214502760047131.

Griffiths, G., 2018. Transferring landscape character assessment from the UK to the 
Eastern Mediterranean: Challenges and perspectives. Land 7 (1), http://dx.doi.org/
10.3390/land7010036.

Halkidi, M., Batistakis, Y., Vazirgiannis, M., 2001. On clustering validation techniques. 
Journal of intelligent information systems. J. Intell. Inf. Syst. 17, 107–145. http:
//dx.doi.org/10.1023/A:1012801612483.

Halkidi, M., Batistakis, Y., Vazirgiannis, M., 2002. Cluster validity methods: part I. 
SIGMOD Rec. 31 (2), 40–45. http://dx.doi.org/10.1145/565117.565124.

Hartigan, J.A., Wong, M.A., 1979. Algorithm AS 136: A K-means clustering algorithm. 
J. R. Stat. Soc. Ser. C (Appl. Stat.) 28 (1), 100–108, URL: http://www.jstor.org/
stable/2346830.

Huang, T., Huang, B., Li, S., Zhao, H., Yang, X., Zhu, J., 2025a. SwinClustering: 
a new paradigm for landscape character assessment through visual segmenta-
tion. Front. Environ. Sci. Volume 13 - 2025, http://dx.doi.org/10.3389/fenvs.
2025.1509113, URL: https://www.frontiersin.org/journals/environmental-science/
articles/10.3389/fenvs.2025.1509113.

Huang, F., Jiang, S., Li, L., Zhang, Y., Zhang, Y., Zhang, R., Li, Q., Li, D., Shangguan, W., 
Dai, Y., 2024. Applications of explainable artificial intelligence in earth system 
science. http://dx.doi.org/10.48550/arXiv.2406.11882, arXiv preprint arXiv:2406.
11882.

Huang, T., Zhang, Y., Li, S., Griffiths, G., Lukac, M., Zhao, H., Yang, X., Wang, J., 
Liu, W., Zhu, J., 2023. Harnessing machine learning for landscape character 
management in a shallow relief region of China. Landsc. Res. 48 (8), 1019–1040. 
http://dx.doi.org/10.1080/01426397.2023.2241390.

Huang, T., Zhao, H., Huang, B., Li, S., Zhu, J., 2025b. Integrating natural language 
processing with vision transformer for landscape character identification. IEEE J. 
Sel. Top. Appl. Earth Obs. Remote. Sens. 18, 5838–5852. http://dx.doi.org/10.
1109/JSTARS.2025.3538174.

James, G., Witten, D., Hastie, T., Tibshirani, R., Taylor, J., 2013. An introduction to 
statistical learning. http://dx.doi.org/10.1201/9781315120256.

Kohonen, T., 2013. Essentials of the self-organizing map. Neural Netw. 37, 
52–65. http://dx.doi.org/10.1016/j.neunet.2012.09.018, Twenty-fifth Anniversay 
Commemorative Issue.

Li, T., Johansen, K., McCabe, M.F., 2022. A machine learning approach for identifying 
and delineating agricultural fields and their multi-temporal dynamics using three 
decades of Landsat data. ISPRS J. Photogramm. Remote Sens. 186, 83–101. http:
//dx.doi.org/10.1016/j.isprsjprs.2022.02.002.

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B., 2021a. Swin 
transformer: Hierarchical vision transformer using shifted windows. In: Proceed-
ings of the IEEE/CVF International Conference on Computer Vision. ICCV, pp. 
10012–10022.

Liu, J., Liu, X., Yang, Y., Liu, L., Wang, S., Liang, W., Shi, J., 2021b. One-pass multi-
view clustering for large-scale data. In: Proceedings of the IEEE/CVF International 
Conference on Computer Vision. ICCV, pp. 12344–12353.

Lundberg, S.M., Lee, S.-I., 2017. A unified approach to interpreting model predic-
tions. In: Proceedings of the 31st International Conference on Neural Information 
Processing Systems. NIPS ’17, Curran Associates Inc., Red Hook, NY, USA, pp. 
4768–4777.

Mücher, C., Bunce, R., Jongman, R., Klijn, J., Koomen, A., Metzger, M., Wascher, D., 
2003. Identification and characterisation of environments and landscapes in europe. 
Technical Report, Alterra.

Mücher, C.A., Klijn, J.A., Wascher, D.M., Schaminée, J.H., 2010. A new European 
Landscape Classification (LANMAP): A transparent, flexible and user-oriented 
methodology to distinguish landscapes. Ecol. Indic. 10 (1), 87–103. http://
dx.doi.org/10.1016/j.ecolind.2009.03.018, Landscape Assessment for Sustainable 
Planning.

Myadzelets, A., 2021. Mapping the pyrogenic dynamics of forest geosystems on 
the northeastern shore of Lake Baikal. In: IOP Conference Series: Earth and 
Environmental Science. Vol. 895, IOP Publishing, 012032. http://dx.doi.org/10.
1088/1755-1315/895/1/012032.

Myers, R.H., 1990. Classical and Modern Regression with Applications, vol. 2, Duxbury 
press Belmont, CA.

Olga, K., Ross, S.P., 2020. From online texts to landscape character assessment: 
Collecting and analysing first-person landscape perception computationally. Landsc. 
Urban Plan. 197, 103757. http://dx.doi.org/10.1016/j.landurbplan.2020.103757.

Owers, C., Lucas, R., Clewley, D., Planque, C., Punalekar, S., Tissott, B., Chua, S., 
Bunting, P., Mueller, N., Metternicht, G., 2021. Big earth data 5, 368–390 [dataset]. 
http://dx.doi.org/10.1080/20964471.2021.1948179.

Rousseeuw, P.J., 1987. Silhouettes: A graphical aid to the interpretation and validation 
of cluster analysis. J. Comput. Appl. Math. 20, 53–65. http://dx.doi.org/10.1016/
0377-0427(87)90125-7.

https://github.com/TingtingHwang/BBNP_LCA
http://refhub.elsevier.com/S1574-9541(25)00358-9/sb1
http://refhub.elsevier.com/S1574-9541(25)00358-9/sb1
http://refhub.elsevier.com/S1574-9541(25)00358-9/sb1
http://refhub.elsevier.com/S1574-9541(25)00358-9/sb1
http://refhub.elsevier.com/S1574-9541(25)00358-9/sb1
http://dx.doi.org/10.5067/J4JVCFDDPEW1
http://dx.doi.org/10.5067/J4JVCFDDPEW1
http://dx.doi.org/10.5067/J4JVCFDDPEW1
http://dx.doi.org/10.3390/rs15174135
http://dx.doi.org/10.1016/S0169-2046(00)00079-7
https://www.bgs.ac.uk/datasets/bgs-geology-50k-digmapgb/
http://dx.doi.org/10.1080/01426390802371202
http://dx.doi.org/10.1080/01426390802371202
http://dx.doi.org/10.1080/01426390802371202
http://dx.doi.org/10.1016/j.landurbplan.2012.06.007
http://dx.doi.org/10.1016/j.landurbplan.2012.06.007
http://dx.doi.org/10.1016/j.landurbplan.2012.06.007
http://refhub.elsevier.com/S1574-9541(25)00358-9/sb8
http://refhub.elsevier.com/S1574-9541(25)00358-9/sb8
http://refhub.elsevier.com/S1574-9541(25)00358-9/sb8
http://dx.doi.org/10.1016/j.biocon.2011.12.028
http://dx.doi.org/10.3390/electronics8080832
http://dx.doi.org/10.3390/electronics8080832
http://dx.doi.org/10.3390/electronics8080832
http://dx.doi.org/10.1177/1065912912437162
http://dx.doi.org/10.1016/j.ecolind.2023.110904
http://dx.doi.org/10.1109/TPAMI.1979.4766909
http://dx.doi.org/10.1109/TPAMI.1979.4766909
http://dx.doi.org/10.1109/TPAMI.1979.4766909
http://dx.doi.org/10.1080/01426390601004343
http://dx.doi.org/10.1007/s00267-013-0121-x
http://dx.doi.org/10.4324/9781315753423
http://dx.doi.org/10.1080/01426397.2015.1135318
http://dx.doi.org/10.1016/S0304-3800(99)00094-0
http://dx.doi.org/10.1016/S0304-3800(99)00094-0
http://dx.doi.org/10.1016/S0304-3800(99)00094-0
http://dx.doi.org/10.1198/016214502760047131
http://dx.doi.org/10.1198/016214502760047131
http://dx.doi.org/10.1198/016214502760047131
http://dx.doi.org/10.3390/land7010036
http://dx.doi.org/10.3390/land7010036
http://dx.doi.org/10.3390/land7010036
http://dx.doi.org/10.1023/A:1012801612483
http://dx.doi.org/10.1023/A:1012801612483
http://dx.doi.org/10.1023/A:1012801612483
http://dx.doi.org/10.1145/565117.565124
http://www.jstor.org/stable/2346830
http://www.jstor.org/stable/2346830
http://www.jstor.org/stable/2346830
http://dx.doi.org/10.3389/fenvs.2025.1509113
http://dx.doi.org/10.3389/fenvs.2025.1509113
http://dx.doi.org/10.3389/fenvs.2025.1509113
https://www.frontiersin.org/journals/environmental-science/articles/10.3389/fenvs.2025.1509113
https://www.frontiersin.org/journals/environmental-science/articles/10.3389/fenvs.2025.1509113
https://www.frontiersin.org/journals/environmental-science/articles/10.3389/fenvs.2025.1509113
http://dx.doi.org/10.48550/arXiv.2406.11882
http://arxiv.org/abs/2406.11882
http://arxiv.org/abs/2406.11882
http://arxiv.org/abs/2406.11882
http://dx.doi.org/10.1080/01426397.2023.2241390
http://dx.doi.org/10.1109/JSTARS.2025.3538174
http://dx.doi.org/10.1109/JSTARS.2025.3538174
http://dx.doi.org/10.1109/JSTARS.2025.3538174
http://dx.doi.org/10.1201/9781315120256
http://dx.doi.org/10.1016/j.neunet.2012.09.018
http://dx.doi.org/10.1016/j.isprsjprs.2022.02.002
http://dx.doi.org/10.1016/j.isprsjprs.2022.02.002
http://dx.doi.org/10.1016/j.isprsjprs.2022.02.002
http://refhub.elsevier.com/S1574-9541(25)00358-9/sb31
http://refhub.elsevier.com/S1574-9541(25)00358-9/sb31
http://refhub.elsevier.com/S1574-9541(25)00358-9/sb31
http://refhub.elsevier.com/S1574-9541(25)00358-9/sb31
http://refhub.elsevier.com/S1574-9541(25)00358-9/sb31
http://refhub.elsevier.com/S1574-9541(25)00358-9/sb31
http://refhub.elsevier.com/S1574-9541(25)00358-9/sb31
http://refhub.elsevier.com/S1574-9541(25)00358-9/sb32
http://refhub.elsevier.com/S1574-9541(25)00358-9/sb32
http://refhub.elsevier.com/S1574-9541(25)00358-9/sb32
http://refhub.elsevier.com/S1574-9541(25)00358-9/sb32
http://refhub.elsevier.com/S1574-9541(25)00358-9/sb32
http://refhub.elsevier.com/S1574-9541(25)00358-9/sb33
http://refhub.elsevier.com/S1574-9541(25)00358-9/sb33
http://refhub.elsevier.com/S1574-9541(25)00358-9/sb33
http://refhub.elsevier.com/S1574-9541(25)00358-9/sb33
http://refhub.elsevier.com/S1574-9541(25)00358-9/sb33
http://refhub.elsevier.com/S1574-9541(25)00358-9/sb33
http://refhub.elsevier.com/S1574-9541(25)00358-9/sb33
http://refhub.elsevier.com/S1574-9541(25)00358-9/sb34
http://refhub.elsevier.com/S1574-9541(25)00358-9/sb34
http://refhub.elsevier.com/S1574-9541(25)00358-9/sb34
http://refhub.elsevier.com/S1574-9541(25)00358-9/sb34
http://refhub.elsevier.com/S1574-9541(25)00358-9/sb34
http://dx.doi.org/10.1016/j.ecolind.2009.03.018
http://dx.doi.org/10.1016/j.ecolind.2009.03.018
http://dx.doi.org/10.1016/j.ecolind.2009.03.018
http://dx.doi.org/10.1088/1755-1315/895/1/012032
http://dx.doi.org/10.1088/1755-1315/895/1/012032
http://dx.doi.org/10.1088/1755-1315/895/1/012032
http://refhub.elsevier.com/S1574-9541(25)00358-9/sb37
http://refhub.elsevier.com/S1574-9541(25)00358-9/sb37
http://refhub.elsevier.com/S1574-9541(25)00358-9/sb37
http://dx.doi.org/10.1016/j.landurbplan.2020.103757
http://dx.doi.org/10.1080/20964471.2021.1948179
http://dx.doi.org/10.1016/0377-0427(87)90125-7
http://dx.doi.org/10.1016/0377-0427(87)90125-7
http://dx.doi.org/10.1016/0377-0427(87)90125-7


T. Huang et al. Ecological Informatics 90 (2025) 103349 
Sayre, R., Dangermond, J., Frye, C., Vaughan, R., Aniello, P., Breyer, S., Cribbs, D., 
Hopkins, D., Nauman, R., Derrenbacher, W., et al., 2014. A new map of global 
ecological land units—an ecophysiographic stratification approach. Wash. DC: 
Assoc. Am. Geogr. 46, http://dx.doi.org/10.13140/2.1.2167.8887.

Simensen, T., Halvorsen, R., Erikstad, L., 2018. Methods for landscape characterisation 
and mapping: A systematic review. Land Use Policy 75, 557–569. http://dx.doi.
org/10.1016/j.landusepol.2018.04.022.

Torres, A., Serra, J., Llopis, J., Delcampo, A., 2020. Color preference cool versus warm 
in nursing homes depends on the expected activity for interior spaces. Front. Archit. 
Res. 9 (4), 739–750. http://dx.doi.org/10.1016/j.foar.2020.06.002.

Trop, T., 2017. From knowledge to action: Bridging the gaps toward effective incor-
poration of landscape character assessment approach in land-use planning and 
management in Israel. Land Use Policy 61, 220–230. http://dx.doi.org/10.1016/
j.landusepol.2016.10.052.

Turner, M.G., 2010. Disturbance and landscape dynamics in a changing world. Ecol. 
91 (10), 2833–2849. http://dx.doi.org/10.1890/10-0097.1.

Turner, M.G., Gardner, R.H., 2015. Landscape Ecology in Theory and Practice: Pattern 
and Process. Springer Science Business Media, Inc.

Uzun, O., Dilek, F., Çetinkaya, G., Erduran, F., Açiksöz, S., 2011. National and regional 
landscape classification and mapping of Turkey: Konya closed basin, Suğla lake and 
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