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Abstract

Machine learning is increasingly utilized to accelerate the discovery and design of new mate-
rials. Thermoelectrics are an important class of energy materials with the potential to help
address pressing environmental challenges. This thesis presents novel machine learning-based
methodologies for predicting material properties and generating crystal structures, with a fo-
cus on the discovery of new, and more effective, thermoelectric materials. First, a method is
introduced for deriving distributed representations of materials solely from their chemical for-
mulas, which demonstrates competitive performance in predicting various properties, such as
formation energy and band gap. Next, an attention-based deep learning model is developed to
predict thermoelectric transport properties, which incorporates the distributed representations,
and proves capable of making useful predictions with a significantly reduced computational
cost compared to traditional ab initio methods. Finally, a generative model is proposed that is
capable of suggesting crystal structures for chemical compositions, which is vital for progress-
ing from estimates of thermoelectric performance from composition, to deeper investigation
based on structure. The results from these studies demonstrate the potential for modern ma-
chine learning techniques in the field of materials discovery, and particularly for accelerating
the discovery of novel thermoelectrics.
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Chapter 1

Introduction

1.1 Machine Learning Approaches for the Discovery of New
Thermoelectrics

The work in this thesis has been motivated by the desire to accelerate the discovery of new
thermoelectric materials. While | ended up developing tools that will hopefully be applied
beyond this field, the search for novel thermoelectrics exemplifies well the challenges this thesis
addresses and the potential of the solutions offered. In this chapter, | give a brief introduction
to thermoelectric materials and an overview of how machine learning (ML) approaches are
being used in the field.

Thermoelectric materials are solids with a combination of thermal and electrical proper-
ties that allow them to be used for devices that convert heat into electricity, or that cool
surfaces with an input of electrical power. Thermoelectric devices are attractive for electricity
generation and for refrigeration applications due to their stability (absence of mobile parts)
and reliability (little need for maintenance). But in order for them to be more widely adopted,
their conversion efficiency must be increased from current levels [1].

i
?? ?

n Y

cold

Figure 1.1: Scheme of a thermoelectric couple comprising an n-type and a p-type
semiconductor.

A thermoelectric couple (Figure 1.1) comprises two semiconducting materials, one with
n-type and one with p-type conductivity, assembled between a heat source at temperature
Thot and a heat sink at temperature Tyoq. A thermoelectric module consists of an array
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of these couples connected electrically in series and thermally in parallel. The efficiency of a
thermoelectric generator, which contains the module plus ancillary components and associated
electronics, depends strongly on the temperature difference Ti,o1 — Teola and on the physical
properties of the semiconducting materials in the thermoelectric couples. The latter are usually
summarised in the figure of merit for the thermoelectric material:
2
=2 (1.1)

K

where S is the Seebeck coefficient or thermopower, which measures the voltage created per
unit of temperature difference across the material; o is the electrical conductivity; T is the
absolute temperature; and x is the thermal conductivity, which contains two main contri-
butions: the lattice thermal conductivity k1.t due to crystal vibrations, and the electronic
thermal conductivity kelec due to heat-carrying diffusion of electrons in the solid. The higher
the dimensionless figure of merit 21", the more efficient the material is in a thermoelectric de-
vice. That means that good thermoelectric materials must exhibit a large Seebeck coefficient,
good electrical conductivity, but low thermal conductivity.

The search for high-zT materials is complicated by the fact that the transport properties
in zT" are interdependent. Metals have very good electrical conductivity, but generally (not
always) [2] very poor Seebeck coefficients. Some electrically insulating materials, with wide
electronic band gaps, exhibit large Seebeck coefficients, but the poor electrical conductivity
prevents their use as thermoelectrics. On balance, the best thermoelectric materials are
usually semiconductors, with charge carrier concentrations in the order of ~10?° cm—3. But
even within semiconductors, the interdependence of the coefficients in 217" means that it is
difficult to find optimal materials. One of the most studied and used thermoelectric materials
is BiyTes, which has a 271" of around 1 at room temperature, and has been used in Peltier
coolers for decades [3]. At high temperatures (~1000 K or above), Si-Ge alloys exhibit some
of the highest values of 2T [4, 5], and radioisotope thermoelectric generators based on these
alloys have been used since the 1970's in NASA missions for space exploration [6]. But
despite significant advances in our understanding of thermoelectric behavior in recent years,
this has not yet translated into the development of new materials with widespread commercial
applications.

Computer simulations have been widely used to improve the understanding of thermoelec-
tric behavior, particularly because of the development of modern software for modeling electron
(e.g. BoltzTraP [7]) and phonon transport (e.g. ShengBTE [8]) from first principles, based on
solutions for Boltzmann's transport equation (BTE) for electrons and phonons, respectively.
Traditionally, thermoelectric research has been driven by experiments, and simulations have
been performed to rationalize observations. But given the cost of synthesizing materials and
measuring the relevant transport properties, and the advances in modeling algorithms and
computing hardware, computer simulations are increasingly playing a bigger role in the explo-
ration of the vast chemical space of semiconductors for the discovery of new thermoelectric
materials [9]. Central to this theoretical effort is the ability to perform predictions of trans-
port properties in a high-throughput fashion. However, standard physics-based predictions
of electronic and transport properties, while highly successful in rationalising thermoelectric
behavior, tend to have too high a computational cost to allow for efficient exploration of
chemical space.
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254 [ ] TE&ML publications
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Figure 1.2: Blue bars: Papers including keywords “thermoelectric” (TE) and “ma-
chine learning” (ML) in the title or abstract, published in the last five years. Red
bars: Number of those papers per thousand of papers including keyword “thermo-
electric” in the title or abstract. Source: Web of Science.

This Introduction chapter provides an overview of the ML techniques that are being in-
creasingly applied to accelerate the investigation and discovery of thermoelectric materials.
ML techniques can use existing data to fit or train a statistical model, which can be then
used to predict physical properties of compounds beyond the training set. Because ML allows
bypassing the need for computationally expensive physics-based calculations, the search for
molecules or materials with desired target properties can be vastly accelerated [10]. The appli-
cation of ML to thermoelectric research is a nascent but rapidly expanding field, as illustrated
in Fig. 1.2, and | will not provide here an exhaustive review of all contributions so far. | will
instead highlight key developments and focus on how ML techniques can help accelerate the
prediction of these properties, either by targeting the direct prediction of transport coefficients,
or by accelerating the calculation of lower-level quantities that determine those coefficients. |
will then summarize the current challenges and my perspective on the field.

1.1.1 Datasets for Machine Learning

The development of ML models for the prediction of thermoelectric transport properties re-
quires the pre-existence of appropriate databases. A number of datasets focusing on ther-
moelectric properties have been shared publicly over the last decade. The datasets comprise
a collection of stoichiometric and non-stoichiometric compounds and various corresponding
physical properties relevant to thermoelectricity, such as electrical conductivity, the Seebeck
coefficient, and lattice thermal conductivity at various temperatures. Some of the datasets
are derived from computations based on theoretical methods, such as DFT-BTE, while oth-
ers are derived from experimental measurements reported in the literature. Generally, these
datasets range in size from 102 to 10* compounds. Table 1.1 lists datasets that can be used
for ML-based prediction of thermoelectric properties.
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Table 1.1: A list of publicly available datasets of thermoelectric properties that
can be used for machine learning. Properties: E: Electrical conductivity; R: Elec-
trical resistivity; S: Seebeck coefficient; P: Power factor; F: Thermoelectric figure
of merit (2T); C: Semi-empirical lattice thermal conductivity; M: Semi-empirical
intrinsic charge carrier mobility; O: Electron and hole effective masses; D: Den-
sity of states (DOS) effective mass; H: Electronic thermal conductivity; I: lonic
conductivity; L: Lattice thermal conductivity; T: Total thermal conductivity.

Dataset Year References Source Compounds Properties
Wang et al. 2011 11, 12 theory 2,585 P, O
UCSB 2013 13, 14 experiment 282 E.R,S,PF
Carrete et al. 2014 15, 16 theory 450 L
TE Design Lab 2016 17, 18 theory 2,701 C,M,D
Ricci et al. 2017 19, 20 theory 47,737 E,S.H
Xi et al. 2018 21, 22 theory 161 P
Chen et al. 2019 23, 24 experiment 100 L
Starrydata2 2019 25, 26 experiment 434 EST
JARVIS-DFT 2020 27, 28 theory 21,900 E,S,P
Priya et al. 2021 29, 30 experiment 585 |
Jaafreh et al. 2021 31, 32 theory 119 L
Miyazaki et al. 2021 33, 34 theory 143 L
MIP-3d 2021 35, 36 theory 4,400 E, S
Tranas et al. 2022 37, 38 theory 122 L

An early dataset consisting of power factors computed from theoretically-derived electronic
transport coefficients was described by Wang and co-workers in 2011, who computed the
power factors for over 2,500 nanograined, sintered-powder materials from the AFLOWLIB
database [11, 39]. The authors avoid invoking the CRTA by assuming the compounds exist
as a sintered powder, which enables the derivation of the Seebeck coefficient and electrical
conductivity from a simple and physically sound model that is based on the constant-mean-
free-path approximation. A regression analysis reveals that the power factor is positively
correlated with the band gap and the carrier effective mass, and that larger power factors are
associated with larger numbers of atoms per primitive cell.

Perhaps the first reported large dataset containing electronic transport coefficients was
curated by Gaultois and co-workers in 2013, and is often referred to as the UCSB (or UCSB-
MRL) dataset, after the authors’ affiliation (Materials Research Laboratory at University of
California Santa Barbara) [13]. The database contains Seebeck coefficients, electrical conduc-
tivities and other data for 282 distinct stoichiometric and non-stoichiometric compounds at
various temperatures (300 K, 400 K, 700 K, and 1000 K). The data were obtained from over
100 publications reporting experimental measurements, resulting in a database comprised of
1,093 distinct composition-temperature entries [40]. The original work did not use ML for
analysis of the data, but was a useful demonstration of the power of data visualisation to gain
insights into the property space of plausible thermoelectric materials. A web tool was also
published to allow the visualisation of up to four parameters from the database (Figure 1.3).
The UCSB database has been subsequently used in several studies to create statistical models
to predict electronic transport properties. For example, Furmanchuk et al. reported the devel-
opment of a regression model that predicted the Seebeck coefficient at various temperatures,
using 927 entries from the database [41]. Mukherjee et al. used data from the UCSB database
to develop a ML-based approach for the prediction of electrical conductivity [42]. Gaultois
et al. used the database to build a web-based machine-learning model and recommendation
engine for the real-time screening of thermoelectric materials properties [43].

Several larger databases derived from theoretical methods also exist. In 2017, Ricci et
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Figure 1.3: Screenshot of the web-based visualisation tool [44] accompanying the
UCSB database. It allows the simultaneous visualisation of four parameters: ab-
scissa, ordinate, marker size, and colour. Plots of Seebeck coefficients vs electrical
resistivity give useful insights about the relative performance of different material
families.

al. released a database of 47,737 compounds and their corresponding electrical conductivities
and Seebeck coefficients at various temperatures and carrier concentrations [19, 45]. The
properties were derived from DFT calculations, and the BoltzTraP software [7], using the BTE-
RBA described above. Also, in 2020, Choudhary and co-workers [27] reported adding n- and p-
type Seebeck coefficients and electrical conductivities (theoretically obtained using BoltzTrap)
for 21,900 compounds to the JARVIS-DFT database [46] (Figure 1.4). Importantly, the
electron transport coefficients in both of these databases were obtained using the CRTA.
Since both databases share a number of compounds in common, Choudhary et al. compared
the calculated n-type Seebeck coefficient for 9,434 compounds existing in both databases,
at 600K and carrier concentration of 10%°/cm?, and found a mean absolute deviation of
18.8 uV K ! and coefficient of determination (R?) of 0.87. The investigators attribute the
differences between the datasets largely to the functionals used: the Ricci et al. database
uses the GGA functional by Perdew et al. [47], while the JARVIS-DFT database uses the
optB88vdW functional, which incorporates non-local correlation [48].

More recently, in 2021, Yao and co-workers reported the development of MIP-3d, a freely
available database accessible online, which contains theoretically derived electron transport
coefficients [35]. The database houses the results of DFT-based electronic property calcula-
tions for over 80,000 structures. Using a constant electron-phonon coupling approximation,
[49] rather than the CRTA, the authors compute the Seebeck coefficient and the electrical
conductivity (at 700K and doping level of 102° cm™3) for compounds in the database with
band gaps > 0.03 eV, which gave a total of more than 4,400 compounds. The TransOpt
code [50], implementing the constant electron-phonon coupling approximation to deal with
the scattering rates, was used to compute the transport properties. The authors validated
their calculations by comparing various computed properties to those in the Materials Project,
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Figure 1.4: An overview of the computed thermoelectric properties for compounds
of the JARVIS-DFT database, reproduced from reference 27. (a) n-type Seebeck
coefficient distribution, (b) n-type power factors, (c) n-type electrical conductivity
plotted against the absolute values of Seebeck-coefficient with colour-coded power-
factor and size of the dots proportional to bandgaps, (d) p-type Seebeck coefficient
distribution, (e) p-type power factors, (f) p-type power factor plotted against the
bandgaps.

and found very good agreement. Amongst the top 5% of compounds, with high power factors
and low sound velocities, there were many chalcogenides and compounds with heavy elements,
such as Bi and Pb.

In contrast with databases of electronic transport coefficients, databases of lattice thermal
conductivities are generally smaller in size, consisting typically of less than 10 compounds.
This is likely to be a consequence of the data coming from experimental measurements, which
are somewhat limited in number, or from theory, which is computationally quite involved for
the calculation of lattice thermal conductivity. A dataset of lattice thermal conductivities was
produced by Carrete et al., as part of their search for half-Heusler semiconductors with low
thermal conductivity [15]. The lattice thermal conductivities for 450 half-Heusler compounds
were obtained by a combination of ab initio and ML methods: first, ab-initio methods were
applied to a subset of 32 compounds, then that subset was used as a training set for a random
forest regression model that was subsequently used to predict the lattice thermal conductivities
of the remaining compounds. In a separate effort, Miyazaki and co-workers created a dataset
containing the theoretical lattice thermal conductivities for 143 half-Heusler compounds [33].
The lattice thermal conductivities for all of the compounds in this dataset were computed using
the Phono3py software library [51]. Finally, Jaafreh and co-workers assembled a dataset of the
theoretical lattice thermal conductivities of 119 compounds reported in previous computational
studies reported in the literature [31], and Tranas et al. produced a dataset of computed
lattice thermal conductivities for 122 half-Heusler compounds using DFT and the temperature-
dependent effective potential method [37, 52].

Datasets of experimentally-measured lattice thermal conductivities have also been assem-
bled. Chen et al. collected the lattice thermal conductivities of 100 single crystal inorganic
materials reported in the literature [23]. The dataset consists of 81 binary and 19 ternary
compounds, and is diverse in terms of composition, space group, and the range of lattice
thermal conductivities, which span 3 orders of magnitude.

In 2016, Gorai and co-workers released TE Design Lab, a database consisting of 2,701
compounds and their associated semi-empirical lattice thermal conductivities [17]. This is the
first (and so far only) example of a semi-empirical dataset of thermoelectric properties. In
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previous work [53, 54], Gorai et al. demonstrated a semi-empirical approach for computing
the lattice thermal conductivity using simple descriptors for the acoustic and optical phonon
modes. They derived a model for the lattice thermal conductivity that incorporates average
atomic mass, average volume per atom, the number of atoms in the primitive cell, and the
speed of sound in the material calculated from the DFT-derived bulk modulus, in addition to
parameters fitted to experimental data. They found that the model was predictive only within
one order of magnitude, across four orders of magnitude of experimental data.

1.1.2 Machine Learning Techniques to Accelerate the Calculation of Lattice
Thermal Conductivities

Although in this thesis | will not report models for the prediction of thermal conductivities,
this is a closely related problem that is important in the context of ML-based search for
thermoelectric materials. Therefore | provide here an overview of previous work in this area
and current challenges.

There are two main types of ML-based approaches to the calculation of lattice thermal
conductivity. ML models can be trained, using suitable databases, to directly predict Kjatt.
But it is also possible to use ML to accelerate the calculation of the forces or force constants
needed within physics-based computational models for Kj,t. | summarise the two types of
approach below.

Approaches Based on Thermal Conductivity Databases

The development of ML models for the direct prediction of lattice thermal conductivities
faces two main obstacles: i) the lack of experimental or theoretical data and ii) the strong
dependence of this property on a number of variables (temperature, particle size, nature of
defects and their concentrations). Despite the data-rich environment that can be attributed
to the recent rise of materials databases, data collection remains the main bottleneck for
Klatt-based models.

To the best of my knowledge, there have not been studies in which more that 150 materials
have been used during training. For instance, Chen et al. collected 95 experimental values of
Klatt to build a model combining Gaussian process regression and recursive feature elimination
[23]. Their results slightly improved previous works based on adding power coefficients as
fitting parameters to the Debye-Callaway model to reproduce experimentally measured i
[55]. Using kit values obtained form DFT calculations does not guarantee larger datasets
because of the high computational cost. The first dataset with calculated k44 values included
only 101 binary compounds, belonging to rocksalt, zincblende, and wurtzite-type structural
prototypes [56]. Combining Bayesian optimization with this limited dataset, while using only
volume, density and element features, Seko et al. were able to find 221 materials with very
low Kiatt, thus screening more than 54,000 structures. Similarly, Juneja et al. computed Kjatt
for 120 dynamically stable, non-metallic materials containing binary, ternary and quaternary
compounds [57]. They developed a Gaussian-process, regression-based ML model with four
unique descriptors (maximum phonon frequency, Griineisen parameter, average atomic mass
and unit cell volume), predicting log-scaled k).t with a root mean square error (RMSE) of
0.21 against target values.

Due to the experimental and theoretical limitations for creating large datasets for Kiag¢,
most recent works have focused on developing strategies to create transferable, predictive
models using small datasets. Incorporating the crude estimation of property, CEP, in the
feature space stands as a common strategy that has worked reasonably well for different ma-
terials properties [58]. CEP is defined as a prediction of the targeted property with inexpensive
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methods, even if their results are not very accurate. For instance, experimental band gaps
are accurately predicted, even using small datasets, if the DFT-GGA band gap is included
as a feature [58]. Following this strategy, Zhang et al. used the lattice thermal conductivity
calculated through the Slack equation (which systematically underestimates kjatt) as CEP,
improving the accuracy of a ML model based on a dataset of 93 experimental measurements,
as well as the use of a kernel ridge regression [58].

Small datasets can also work well by restricting the configurational space of materials.
Different machine-learning-based models for predicting x.:t have been built based on datasets
with specific structural prototypes such as half-Heusler alloys [15, 33|, germanides [59], and
graphene alloys [60]. Although these models are usually more accurate, they show poor
transferability across different families of materials. However, increasing the variability in
the training data leads to a reduction of the accuracy of the model. In order to improve
transferability and accuracy simultaneously, Juneja et al. has proposed the use of a localised
regression-based Patchwork Kriging approach for a class-independent dataset [61]. Using this
approach, the dataset, which covers a wide range of structural prototypes and compositions,
is partitioned into smaller local subsets with respect to kj,1;. These subsets share some data-
points in order to give the same response at the boundaries. This strategy drastically reduces
the RMSE for log-scaled kiatt, from 0.24 to 0.13 [61].

Feature selection constitutes a key step that not only modifies the accuracy of the model,
but also promotes a clearer insight into the chemical and physical features underlying Kiatt.
Chen et al. have demonstrated that bulk modulus and density can be combined to build a
good descriptor of the anharmonicity of the crystal and their group velocities [23]. Similarly,
Juneja et al. have found unexpected connections between electronic transport properties such
as Seebeck coefficient, S, and electrical conductivity, o, with kiatt [62]. However, feature
selection is also critical in determining the size of the training set and the applicability of the
model. For instance, the use of materials properties, such as maximum phonon frequency or
Griineisen parameter, requires expensive lattice-dynamic calculations, which limits the number
of materials included in the dataset, as well as the usefulness of the machine-learning model.
For this reason, cheaper sets of features should be used to maximise its applicability. Jaafreh
et al. have built a dataset based on calculated k¢ using exclusively crystal and compositional
features, in addition to temperature [31]. Crystal features are based on the Voronoi tessellation
structure [63] of each material, whereas composition features are generated using the element
properties. Accurate models are obtained independently of the machine-learning algorithm
used during training and, most importantly, they can predict k¢t for materials over a wide
range of temperatures. The use of simple features that can be obtained from many databases
facilitates the use of the model for the screening of Kjat¢ for more than 32,000 compounds.

Approaches Based on Accelerating the Calculation of Forces

The purely data-based prediction of K¢, as discussed above, is useful for examining trends
across large chemical spaces, and for preliminary screening of promising low-kj,¢¢ materials.
But at the level of individual compounds, average errors in the order of 50% are too high
to be relied upon for 2T estimation. Additionally, databases of experimentally measured
Klatt Values have important limitations, because such measurements are extremely sensitive
to the procedure of synthesis or preparation of the material. Variables such as point defect
concentration, average grain size, disorder or even isotope ratios not only modify ki, but
also its behavior with respect to temperature.

In order to obtain more accurate values, and consider some of the aforementioned variables,
some authors have opted for a bottom-up approach in which machine-learning algorithms are
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not used to compute ka4t directly, but instead to predict the forces needed for the calculation
of Kiatt using state-of-the-art methods. Solving the phonon BTE [64], or combining molecular
dynamics with Green-Kubo relations [65, 66], represent two of the most accurate approaches
for obtaining ki.t. Accelerating these calculations opens the door to investigation of more
sophisticated and realistic models of materials, allowing the consideration of the previously-
mentioned synthetic variables. Although these two approaches are very different, they both
rely on the calculation of forces, either via IFCs or interatomic potentials.

Several ML techniques have been proposed to build accurate interatomic potentials for
molecular dynamics, which can be combined with Green-Kubo relations to obtain kj,¢ values
as accurate as the ones obtained from ab-initio molecular dynamics. This approach is very
attractive because the Green-Kubo method allows the consideration of anharmonicity effects
to all orders in the calculation of kj,44. For instance, Korotaev and Shapeev developed moment
tensor potentials that allow for active learning as the way to generate a potential on the fly
[67]. Using this method, they predicted kit for partially-filled skutterudites, considering the
role of disorder. The success of the machine-learned potential approach relies on the accuracy
of those potentials to describe not only the harmonic part of the potential energy surface but
also the anharmonic contributions. This has been recently explored by Verdi et al. [68], who
used a kernel-based machine-learning model implemented in the VASP code to investigate
a paradigmatic anharmonic material, ZrO,, and its lattice thermal conductivity is predicted
with high accuracy. There are significant on-going efforts to improve the accuracy of machine-
learned potentials for the description of harmonic and anharmonic vibrational properties. For
example, deep neural networks have been used for the development of interatomic poten-
tials for 5-GasQ3, reproducing accurately phonon dispersion and the anisotropic behavior of
Klatt [09]. George et al. have recently shown how to fit Gaussian approximation potential
models that accurately predict vibrational properties and investigated the performance in the
prediction of thermal conductivity [70].

An alternative, related approach is to use machine-learning techniques to accelerate the
calculation of the force constants needed for the solution of the phonon BTE. There are
some codes, based on regularised linear regression or compressed sensing techniques, that
reduce between one and two orders of magnitude the computational cost of calculating IFCs
[71, 72]. As discussed above, traditional approaches based on finite-displacement of some
atoms in supercells require hundreds or even thousands of supercell single-point calculations
for the prediction of 2nd and 3rd-order IFCs. However, these new approaches are based on the
distortion of all atoms of the supercell, and have the computational advantage of requiring
much fewer single-point DFT calculations (typically only a few tens) to obtain the IFCs (Fig.
1.5).

The principle behind these techniques is based on the linear relationship between the
forces, F', and displacements, u, via the IFCs, ®:

F = —@%ﬁuf — %@Zoﬁjufuz, (1.2)
where i, j, k and «, B and -y represent atoms and Cartesian coordinates, respectively. Force
constants are extracted from a regression of these linear equations or using compressed sens-
ing, which is a technique for recovering sparse solutions from incomplete data. In this type
of approach, the calculated force constants are very sensitive to the amplitude and distribu-
tion of the distortions. For instance, small displacements (0.01-0.05 A) following a Gaussian
distribution work reasonably well to extract second-order IFCs. However, small displacements
can lead to high numerical errors if higher-order IFCs are included in the model. The average
displacement amplitude used with the direct approach (finite-displacements), implemented in
packages such as thirdOrder.py-ShengBTE [8] or AAPL [73], is typically 0.01-0.02 A, because
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Figure 1.5: Comparison between the workflows of a) the traditional method to
obtain K.ty using the DFT-BTE approach with systematic atom displacements,
and b) the machine-learning-accelerated approach implemented in the hiPhive
code [72]

each distorted supercell is exclusively used for the calculation of a specific third-order IFC. Us-
ing the regression approach implemented in the hiPhive code, in which all distorted supercells
are used to calculated all IFCs, larger displacement amplitudes are needed to disentangle the
contribution of high-order IFCs [74]. For large displacements (>0.1A), Gaussian distributions
are not encouraged because they can produce supercells with too-short interatomic distances.
There are different approaches to overcome this problem. One simple solution is using distorted
supercells generated via a Monte Carlo algorithm, which penalises displacements producing
too-short interatomic distances. Although this approach works well with simple structures,
building the right training dataset for complex materials with different types of bond strength
can be challenging. More complex approaches based on dual adaptive sampling, DAS, have
proven that it is possible to predict accurate IFCs for materials with chemical bond hierarchy
[75]. Yang et al. developed a DAS method that generates an effective training set covering a
wide spectrum of thermodynamic conditions and a wide temperature range, obtaining accu-
rate values of Ky, for CoSbs [75]. Once the training set is properly built, these techniques
are extremely powerful for the high-throughput prediction of k.t at a reduced cost. This
strategy has been effectively applied to rocksalt and zincblende compounds [76], ternary and
quaternary chalcogenides [77, 78], skutterudites [75] or clathrates [79].

1.1.3 Machine Learning Techniques to Accelerate the Calculation of Electron
Transport Coefficients

In contrast with the prediction of lattice thermal conductivity, there have been fewer studies
aimed at learning models of electron transport coefficients, although the datasets available
for this task are generally much larger. Table 1.2 presents a list of studies involving the use
of ML for the prediction of electron-transport properties.
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Figure 1.6: Scheme, reproduced from reference 43, illustrating the differences in
composition space between known thermoelectrics from the UCSB database and
those discovered in the work of Gaultois et al. [43]. Most thermoelectrics lie close
together in composition space (blue and black dots), but the machine learning-
based recommendation engine predicted new compounds (orange squares) that
were different, chemically and structurally, from existing known thermoelectrics.

Table 1.2: A list of studies involving the use of machine learning to predict various
electron transport properties. S is the Seebeck coefficient, o is the electrical
conductivity, and PF is the power factor (i.e. 05?).

Study Year Ref. Dataset Algorithms Targets
Gaultois et al. 2016 43 UCSB, custom random forest classification S, o
Chen et al. 2016 80 Ricci et al. clustering with DBSCAN [81] S, o
Furmanchuk et al. 2018 41 UCSB random forest regression S
Mukherjee et al. 2020 42 UCSB, custom gradient boosting regression o
Choudhary et al. 2020 27 JARVIS-DFT gradient boosting regression S, PF
Sheng et al. 2020 82 Xi et al. gradient boosting regression  p-type PF
Yoshihama et al. 2021 83  XRD?, starrydata2  Gaussian process regression S, o
Pimachev et al. 2021 84 custom neural net, random forest S
Na et al. 2021 85 UCSB neural net regression S, o, PF

? X-ray diffraction data from the AtomWork-Adv database [86, 87]

One of the first applications of ML to the estimation of electron transport properties was
the work of Gaultois and co-workers, who reported the development of a ML-based thermo-
electric material recommendation engine [43, 88]. Using a dataset constructed from various
experimental and theoretical sources, including the UCSB dataset, the authors train a random
forest classifier to predict whether a compound will have a Seebeck coefficient and electri-
cal resistivity (in addition to thermal conductivity and band gap) that fall within acceptable
ranges for thermoelectric application. The materials are represented using a “tuned blend” of
descriptors that are developed in-house, and incorporate information from a variety of sources,
including the periodic table. Using leave-one-out cross-validation, and error histograms for
visualisation, the authors conclude that the model is somewhat skewed towards making false
negative predictions in the case of resistivity, and false positive predictions in the case of the
Seebeck coefficient, but nevertheless makes reliable predictions overall. Based on the outputs
of the model, the authors make a number of recommendations of new compounds with the
potential for thermoelectric application, and further investigate Er;,CosBi and Gd;,CozBi in
particular. The recommendations seemed counter-intuitive, since their compositions are not
typical of known thermoelectrics (Figure 1.6). Nevertheless, the predicted high electrical con-
ductivity and modest Seebeck coefficient (and low thermal conductivity) were all confirmed
experimentally.
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Figure 1.7: A visualisation of the clustering results obtained using DBSCAN,
reproduced from reference 80. The clustered high-dimensional data has undergone
dimensionality reduction with t-SNE, and the axes have no physical meaning.
Clustering analysis reveals 6 large clusters, as depicted by the various colours in
the plot, with each of the clusters exhibiting distinct ranges of electron transport
coefficients.

Another early application of ML to the calculation of electron transport properties was
the work of Chen et al. [80], who reported an analysis of the results of computing the
theoretical transport coefficients of the compounds comprising the Ricci et al. database [19].
Instead of developing a regression model to predict the Seebeck coefficient or the electrical
conductivity, the authors carried out a clustering analysis with the DBSCAN algorithm [81].
Each material in a set of 5,431 candidate thermoelectric materials from the database was
given a descriptor comprised of 58 properties, excluding the calculated Seebeck coefficient and
electrical conductivity, since these were the properties that they were attempting to model.
Their clustering analysis revealed 6 clusters (Figure 1.7), and they found that each of the
clusters contained distinct ranges of electron transport coefficients. Such an approach can be
used in quantitative models, such as a cluster-rank-model, as suggested by the authors.

More recent studies have generally involved the use of regression models. An early example
is a study from Furmanchuk and co-workers [41], who reported using the UCSB database [13]
to learn a regression model that predicted the Seebeck coefficient for stoichiometric and non-
stoichiometric crystalline solids between 300K and 1000K. After an initial curation step of the
dataset to remove duplicates, 927 entries from the UCSB dataset were used to train a random
forest [89] regression model. The authors crafted a descriptor consisting of anywhere from
50 to 452 features, and achieved an R? of between 0.70 and 0.80. The features employed
consisted of material-specific properties such as the number of valence electrons, the largest
atomic number, and measured thermal conductivity data. To verify that model performance
extended beyond the original dataset, the authors collected 20 compounds from the literature,
and report that the model achieves an R? > 0.88 on this external dataset. The authors also
provided a publicly accessible web application that allows anyone to use their model [90].

Another study that makes use of the UCSB dataset and empirical values of electron
transport coefficients is that of Mukherjee et al.,, who attempt to predict experimentally
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measured electrical conductivities as well as relaxation times [42]. The authors begin by
assembling a dataset of 124 semiconducting compounds from the literature and from the
UCSB dataset. The compounds have different structure types, such as rocksalt, wurtzite, and
zinc-blende, and have experimentally measured electrical conductivities in the range of 1073
to 10° S cm~! at 300K. A feature selection process led to the selection of 8 different features,
including boiling point, melting point, molar heat capacity, electron affinity, and ionisation
energy. A gradient boosting tree regression method was employed [91], which has been shown
to be useful for smaller datasets. The model achieved an RMSE of 0.22 S cm™! and an R? of
0.98 for the prediction of log-scaled electrical conductivity. Furthermore, using the predicted
electrical conductivities, the authors predict the electron relaxation times, which outperforms
the relaxation times obtained from a deformation potential model.

Datasets containing theoretically-derived values of electron transport coefficients have also
been used in ML studies. In 2020, Choudhary and co-workers report creating a dataset by
computing the Seebeck coefficients for 21,900 compounds in the JARVIS-DFT database [27].
They further train ML models on these data to create predictors of the Seebeck coefficient
and power factor. Instead of building regression models, they train models that classify a
material as a high-performance thermoelectric, if its Seebeck coefficient is predicted to be
greater than 100 VK~ for p-type, or less than 100 uVK~! for n-type materials, and if its
power factor is greater than 1000 yWm~'K~=2. They found that gradient boosting decision
trees, combined with force-field inspired descriptors described previously by the authors [92],
result in the best performance.

A recurring theme in the prediction of material properties using ML approaches is that
there is often a scarcity of data for the problem at hand. Training data can be created from
first-principles calculations, but first-principles calculations themselves can be computationally
expensive, and require manual intervention. To mitigate this obstacle, Sheng et al. report
using an Active Learning approach [93] to predict the power factors of diamond-like chalco-
genides and pnictides [82]. Starting from a previously created database [21], 158 compounds
are selected as the initial set of ground-truth, DFT-derived examples. An additional 342 com-
pounds are selected by enumerating possible combinations of cations and anions, and together
with the previous set of 158 compounds comprise a search space. Using a query-by-committee
approach, with different kinds of models, such as support vector regression, gradient boosting
regression, and random forest regression, the 15 candidates which exhibit the most prediction
variance are selected at the beginning of each iteration, and subjected to DFT calculation
to determine their power factors. Each iteration of Active Learning begins with a training
step on the available DFT data, using composition-only descriptors such as valence electron
number, atomic weight, electronegativity, etc., and the learning loop ends when either the
extrapolated Pearson R is greater than 0.90, or 10 iterations have elapsed. All the models
eventually converged to low RMSE (~ 4 uWcm~tK~2) and high Pearson R (> 0.90). The
gradient boosting regression model performed the best in the last iteration of the learning
loop, and was used to predict the power factor for all compounds in the entire search space.
The results of these predictions led the authors to make generalisations about what kinds of
compounds are likely to have higher power factors, such as binary pnictides.

Descriptors used for the prediction of electron transport coefficients typically consist of
compositional information, such as the ratios of atoms in a compound, known atomic prop-
erties such as electronegativity, mass, etc., and structural information, such as volume per
atom. A different approach is described by Yoshihama and co-workers, using DFT-derived
X-ray diffraction patterns [83]. The authors assembled a dataset of 1,116 examples using
electron transport properties from the starrydata2 database [25] and X-ray diffraction data
from the AtomWork-Adv database [87]. The descriptor for a compound consisted of tem-
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Figure 1.8: An overview of the ETI framework, reproduced from reference 84. (a)
16-atom units of ordered and disordered fragments are used to train machine-
learning algorithms, (b) electronic properties are computed from theory, (c)
machine-learning models predict the energy values of collections of valence and
conduction bands for configuration of various sizes, (d) the Boltzmann Transport
Equation is used to compute the Seebeck coefficient from predicted electronic
properties, (e) a fabricated heterostructure is subjected to analysis, and (f) the
predictions of the Seebeck coefficient are compared to experimental values.

perature, atomic composition, and the X-ray diffraction data, and the target properties were
the electrical conductivity and Seebeck coefficient (in addition to direct prediction of ZT and
thermal conductivity). Different types of model were created, but Gaussian process regression
produced the best results. Within a defined applicability domain, the model produced an
MAE of 1.28 x 10* (€ m)~! for electrical conductivity, and an MAE of 10.7 uVK~! for the
Seebeck coefficient. The authors subsequently used the models to examine 610 compounds
with unknown transport properties, and identified compounds with high zT', including several
containing Pb, Te, and Se, as well as those with more atoms per unit cell in the crystal.

Although the majority of studies reported thus far involve bulk 3D solids, some work is
beginning to emerge on other classes of materials, such as heterostructures. Pimachev et
al. reported the development of an electronic-transport-informatics (ETI) framework for the
prediction of thermopower of fabricated silicon/germanium semiconducting heterostructures
(Figure 1.8) [84]. Their approach rests on the hypothesis that the relationship between
electronic band structures and smaller, localised collections of atoms, can be extrapolated
to larger collections. They trained neural network and random forest models to predict the
energy values of collections of valence and conduction bands for small (16-atom) ordered and
disordered configurations, with the expectation that the models would transfer their knowledge
to larger systems. A number of experiments were performed by the authors to validate their
approach, and one such attempt involved the prediction of the band structures of a Si,Ge,
superlattice. The predictions matched the DFT results closely, producing an MAE of 34.2
meV for the neural network model, and 38.2 meV for the random forest model. The authors
emphasised that fabricated heterostructures contain structural complexities that complicate
the application of ab-initio approaches. To demonstrate the effectiveness of their approach on
such systems, the models were applied to systems such as n-type Si(5A)/Ge(7A) superlattices
grown along the [001] direction at 300K, and n-type Sip7Gep 3 alloys at 300K, to obtain
the bands to be used in conjunction with the BTE, through which the Seebeck coefficients
were derived. The resulting cross-plane and in-plane Seebeck coefficients at different carrier
concentrations were in good agreement with experimental observations.

In another departure from pure bulk solids, Na and co-workers reported the development of
a deep neural network model to predict the electron transport coefficients of doped materials
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considering the nature and concentration of the doping elements [85]. Doping is a common
strategy to enhance the thermoelectric performance of materials, and it is well known that
the addition of even a small amount of dopants can have a drastic effect on thermoelectric
behavior [94, 95]. The authors devised a deep neural network architecture that they named
DopNet, which accepts as input a non-stoichiometric composition, and predicts a numerical
target property (Figure 1.9). The input is first split into host and dopant elements, and each
then converted into feature vectors consisting of the statistics of the elemental attributes
of the atoms present. The inputs are subsequently embedded using a learned autoencoder,
and concatenated before being fed into a deep feed-forward neural network. A dataset of
573 distinct composition-temperature entries was derived from the UCSB dataset, and the
performance of DopNet in regression tasks was compared to models created using more tra-
ditional machine-learning algorithms, such as Suppport Vector Regression, Gaussian Process
Regression, and Gradient Boosting Tree Regression (GBTR). Evaluation using 10-repeated 3-
fold cross-validation revealed that the DopNet model outperformed all other machine-learning
algorithms, achieving an R? of 0.86 on the Seebeck coefficient prediction task, and an R?
of 0.64 on the electrical conductivity prediction task. To further assess the utility of the
DopNet model, the authors sourced 18 compounds from the literature that have been studied
experimentally at 700K, and that were absent from the dataset used to train and evaluate the
model, and attempted to predict the reported 21" values. DopNet achieves an MAE of 0.13
versus an MAE of 0.41 achieved by the GBTR model, a large improvement which the authors
attribute to the enhanced ability of the deep neural network architecture to learn the highly
non-linear relationships involved in doping effects.

1.1.4 Current Challenges and Perspectives

A number of themes emerge from the studies described above, involving the application of ML
to the prediction of transport properties from databases. Generally, datasets tend to be small,
with only two known datasets containing in the order of 10* examples, and the remaining
all containing in the order of 103 examples, or less. Moreover, most datasets are derived
from theory. While there are clear and valid reasons for the lack of experimentally-derived
datasets, practitioners must remain mindful of the limitations of theoretically-derived values.
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For example, values typically result from computations that are carried out under the CRTA,
which is often a poor approximation, and commonly used functionals are known to produce
quite inaccurate band gaps. Furthermore, the majority of studies are constrained to bulk 3D
systems, and do not explore more intricate systems, such as heterostructures and superlattices.
Related to this is the observation that many of the studies are limited to certain kinds of bulk
systems, such as chalcogenides, pnictides, and half-Heusler compounds. Chemical space is
vast, and the great majority of it remains unexplored for its thermoelectric potential.

Regarding the ML solutions that have been implemented, most involve the use of clas-
sical ML algorithms, such as random forests, ridge regression, and gradient boosting trees
(Table 1.3). While other fields of computational materials science have gradually seen the
introduction of the latest advancements in Deep Learning techniques [96], such as transformer
networks [97] and convolutional graph neural networks [98], the field of thermoelectrics has
yet to see any substantial adoption of these techniques. One reason for the lack of use of
Deep Learning may be the small size of thermoelectric datasets, and the consequent fear of
overfitting models with many parameters, but recent research has shown that this concern
may be exaggerated [99]. Additionally, the descriptors used tend to consist of enumerations
of known atomic and bulk properties, such as atomic radius, electronegativity, and melting
point, for example. But recent research, particularly in Natural Language Processing, has
demonstrated the superior nature of distributed, or non-local, representations [100]. These
representations replace traditional descriptors, and there has been some work on developing
such representations for materials [101-103]. However, such representations have not yet been
used to predict thermoelectric transport properties.

Table 1.3: A list of machine-learning (ML) techniques used by various studies
described in this chapter, along with references with more information.

ML Technique Ref. Used by Ref.
Active learning 93 67
Compressed sensing 104 72

Gaussian process regression 105 23, 57, 83
Gradient boosting regression 91 42, 27, 82

Kernel ridge regression 106 58, 68
Neural networks 96 69, 84, 85
Random forests 107 43, 41, 84

Going forward, there are a number of future directions that would advance the state of the
art. With respect to datasets, a need exists for larger databases with many more compounds,
perhaps in the order of 10, or greater. Such a dataset would need to be computed from
first-principles, but the structures of hundreds of thousands of compounds exist in openly ac-
cessible materials databases [108, 109]. The opportunity to apply more appropriate theoretical
treatments would also increase the quality of the data, and the size of the chemical space
covered would allow models to better generalize to less familiar systems. Another direction
that can be explored, and that addresses the problem of data scarcity, is to train models that
learn atomic scale dynamics, instead of training models to learn to predict transport proper-
ties directly. This approach has the advantage that data can be generated as required, from
molecular dynamics simulations, and does not depend on first-principles computations, or ex-
perimental measurement, for transport coefficients. In this spirit, Xie et al. developed Graph
Dynamical Networks, that learn the dynamics of atoms in materials [110]. Similar approaches
are already being used for the determination of lattice thermal conductivity, but they may also
be used for electrical conductivity determination (see Noritake et al. [111], for example).

With respect to ML algorithms, it is likely that Deep Learning will begin to see adoption
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Figure 1.10: Scheme illustrating the different levels at which machine-learning
techniques can be applied in the prediction of the thermoelectric figure of merit.

in the field, as will the use of distributed representations in place of traditional, local rep-
resentations. Graph neural network models of inorganic structure have been shown to work
very well when predicting electronic and bulk material properties [112], and it would be very
interesting to see what such models could glean from a thermoelectric dataset that includes
material structure information. On the other hand, structure information is often not avail-
able in thermoelectric property datasets, and models must make use of composition alone.
Recently, a transformer-based model has demonstrated superior performance when predicting
electronic and bulk material properties from composition alone [113]. It would be exciting
to apply such a model to thermoelectric datasets. Indeed, scanning composition space offers
tremendous potential [114], and such a model would provide the means for making accurate
and fast predictions of the thermoelectric properties of vast numbers of compositions.

In this chapter, | have discussed the application of ML techniques to the investigation of
thermoelectric materials, focusing on the accelerated prediction of the transport coefficients
contributing to the thermoelectric figure of merit z7T'. | have contrasted these approaches with
purely physics-based approaches to compute these properties. However, it is important to note
that the classification of existing approaches according to their use of physics principles or
data is not binary: there is a spectrum of models incorporating variable proportions of physics
and data. This is illustrated in Figure 1.10. ML models can be used to attempt to predict
2T directly from databases, using little physics in the model itself (although some physics
would enter in the selection of descriptors). A lower-level approach, of which some examples
have been given in this chapter, involves the use ML to individually predict the transport
coefficients S, 0, Kelec, Klatt that appear in zT'. ML can also be used one level below,
predicting properties that affect the transport coefficients, e.g. effective mass m™*, band gap
Eg, Lorenz number L, carrier relaxation time 7, or deformation potential, which are related to
electronic transport, or interatomic force constants @?jﬁ, @%ﬁ’y, which are related to phonon
transport. In this approach level, the ML predictions can be incorporated in physical models
to obtain the transport coefficients. The lowest-level approach consists of using ML for the
prediction of the electronic structure €(3, E) and total energy of the system as functions of the
atomic coordinates, thus replacing the DFT calculations. All electron and phonon transport
properties can then be derived using physical principles, still at a relatively low computational
cost because the DFT simulations are often the most time-consuming part in the calculation
of transport coefficients. The lower the level at which ML is used, the more physics is involved
in the model. In future studies of thermoelectric behavior of materials, it is likely that ML
techniques will be used following multi-level approaches, where lower-level approaches are used
to create large datasets to train higher-level approaches.
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Finally, | have only discussed the prediction of properties that are relevant to the figure
of merit 2T of the thermoelectric materials. But ML methods can also give useful insights
about other properties of interest for thermoelectric behavior. For example, the dopability of
the material is a crucial consideration in the design of a thermoelectric material, as has been
argued in the review by Gorai et al.[9] Predicting the optimal charge carrier concentration of
a compound is not very useful if the solubility of dopants and the intrinsic defect chemistry of
the material does not allow that carrier concentration to be reached. The stability of materials,
with respect to phase separation and the formation of compositional inhomogeneities, is also
a very important aspect in the design of thermoelectric materials.

Overall, the problem of discovering new thermoelectric materials is a complex playground
for ML. But it is precisely the challenging nature of the problem that makes it so compelling.
The potential for thermoelectric materials to transform the energy consumption profile on
Earth is astounding, and they are crucial if nations are intent on meeting carbon emission
targets. The search for thermoelectric materials that are cheap to produce, made of abundant
elements, and non-toxic is an important, worthwhile and fascinating endeavour that is bound
to increasingly attract the attention of computational scientists, and of ML practitioners in
particular.

1.2 Aims and Objectives of the Thesis

The central objective of this thesis is to design and develop novel and efficient ML-based
tools as part of a workflow for discovering promising thermoelectric materials (and potentially
other functional materials) in unexplored chemical spaces. This requires the following specific
objectives:

e Design, train, and test efficient representations of materials compositions that are suit-
able for deep learning algorithms.

e Develop a deep learning model that is capable of predicting properties of interest for
thermoelectric applications (e.g. the Seebeck coefficient) from knowledge of composi-
tion alone.

e Create a crystal structure generation tool that is capable of fast prediction of crystal
structures from composition, in such a way that high-throughput ab initio confirmation
of the ML-predicted properties is possible.

While for the purposes of this thesis, the focus is on the discussion on thermoelectric
materials, the ML-based tools developed have wider appeal. Therefore, this thesis aims to
make a substantial contribution to the field of materials informatics, paving the way for faster
discovery of useful materials.



Chapter 2

Methodology

2.1 Deep Learning

Deep learning is an ML technique that has led to significant advances in many areas of research,
such as natural language processing and computer vision [96]. Although it originates from
the idea of an artificial neural network, developed in the 1940s and 1950s, the first practical
demonstrations of the technique arrived in 2012, when Alex Krizhevsky, llya Sutskever, and
Geoffrey Hinton reported state-of-the-art computer vision results. Their model, AlexNet, won
the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) by a large margin [115].
For the first time, this work demonstrated how a GPU could facilitate the training of a neural
network with 60 million tunable parameters. It was also a synthesis of various novel concepts
at the time, including convolutional layers, the ReLU activation function, and the “dropout”
technique for addressing overfitting. This work ushered in a new ML era. Since then, the
approach has been applied in countless settings, at increasingly larger scales, with a growing
toolbox of techniques, and a stunning track record of success. Deep learning has become an
established science, and a distinct field of research. In this section, | will provide a precise
description of the basic techniques that constitute the foundation for deep learning.

2.1.1 Overview of Artificial Neural Networks

At the core of deep learning is the artificial neural network, a computational model of dis-
tributed and collective information processing inspired by the networks of neurons in biological
brains. The neural network appears to have been first introduced in 1943 by Warren S. Mc-
Culloch and Walter Pitts, and by Frank Rosenblatt in 1958 in the form of the Perceptron
model [116, 117].

The model is comprised of a collection of “neurons”, which are information processing
units that accept a weighted sum of inputs from other units, and produce as output the
result of an activation function. The inspiration for this design comes from the observed “all
or none" nature of biological neurons, where a neuron either fires completely or not at all,
depending on whether it reaches a threshold of stimulation. This binary character of biological
activity leads naturally to a model of computation based on binary logic, where a neuron can
be “on” (firing) or “off” (not firing).

While the originators of the neural network model may have envisioned this threshold-based
behavior closely resembling the operations of logical gates (e.g., AND, OR, NOT), which are
the fundamental building blocks of digital computation, modern neural networks are typically
not binary in their activity, but rather output a continuous range of values. Rather than a
neuron being in an “on” or “off” state, it can be interpreted as having a certain level of

19
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activity (e.g. a "firing rate”).

In practice, a precise biological interpretation is unnecessary. In 1969, Minsky and Papert
showed that Perceptrons could not learn certain functions that were not linearly separable, such
as the XOR function [118]. This result led to widespread pessimism towards neural networks.
However, it eventually became clear that these limitations could be overcome through the
introduction of an additional layer of neurons. David Rumelhart and colleagues demonstrated
how a multi-layer neural network could be trained, and hence the modern version of the neural
network was conceived [119].

Generally, an artificial (or deep) neural network is composed of multiple layers of neurons,
typically organized into an input layer, one or more hidden layers, and an output layer. Each
neuron in a layer is connected to all neurons in the subsequent layer via weighted connections.
The network is trained by adjusting these weights based on errors in its predictions using
a method known as backpropagation. The training process typically employs an optimiza-
tion algorithm, such as stochastic gradient descent, to minimize the difference between the
network'’s predictions and the expected outcomes.

2.1.2 Training: Backpropagation and Optimization

Formally, an artificial neural network can be described as a function f(x;60), where x € R”
is an n-dimensional input vector and 6 represents the network's parameters. The network's
parameters generally consist of the connection weights and biases. The network is organized
in L layers, with each layer [ containing a set of neurons. For a single layer [, the output h(")
is computed as:

h®) = o(WORED 4 p0)y, (2.1)

where W) is the weight matrix for layer I, b(!) is the bias vector, and ¢ is the activation
function (e.g., ReLU, sigmoid). The input layer is simply h(® = x, and the output of the
final layer, h(®)| represents the network’s prediction.

The network is trained by minimizing a loss function L(y, f(x;6)), where y is the target
output. Training is an iterative process which adjusts 6, with the aim of reducing the difference
between the predicted and true outputs, as quantified by the loss function. This optimization
is typically performed using stochastic gradient descent (SGD) and backpropagation.

Backpropagation is the method used to compute the gradient of the loss function with
respect to 6. It is an algorithm that efficiently applies the chain rule of calculus by computing
the gradient layer-by-layer, beginning from the output layer and moving backward, reusing
intermediate results and avoiding redundant calculations. For each layer [, the gradient of the
loss function with respect to the weights W and biases b"¥) is computed as:

aﬁ 1 -1 T 8£ 1

where () represents the gradient of the loss function with respect to layer I, which is re-
cursively calculated starting from the output layer. The gradient of the loss function is thus
computed with respect to the parameters of each layer.

SGD is an iterative algorithm which updates # based on these gradients. The training
process requires a dataset, D = {(x;,y;)}.,, consisting of N examples, where each example
consists of an input x;, and its corresponding target output y;. At each iteration ¢, a sampling
of one or more examples, x; and corresponding target y;, is selected. The parameters are
updated as:

(1) _ (1) _ naﬁ(}’mf(xiﬂg))

200 , (2.3)
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aL
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7 represents the gradient computed through back-

where € R is the learning rate, and
propagation.

Typically, the network is exposed multiple times to the entire dataset during training. Each
exposure to the full dataset is termed an epoch. Algorithm 1 describes the neural network

training procedure in detail:

Algorithm 1 Neural Network Training with Backpropagation and SGD

1: Initialize: Randomly initialize weights W) and biases b() for each layer .
2: while not converged, or for a fixed number of epochs do

3: for each batch Xpaich, Ybatch do

4: i. Sample batch: Select a batch of training examples Xpatch = {x;}
and corresponding targets Ypateh = {¥yi}-

5: ii. Forward pass: For each layer [, compute the output of the network:

h® = o(WOR=D 4 pO),

where h(®) = Xpatch-

6: ili. Compute loss: Calculate the loss function £(Ybatch,Ybatch),
where Yp,ich is the output from the final layer.
7 iv. Backpropagation: Compute the gradient of the loss

with respect to the parameters of each layer:

oL oL
WO and 50 for each layer I.
8: v. Update parameters: Update the parameters using the gradients

and the learning rate 7:

b® _ b0 _ 9L

w0 b0

9: end for
10: end while

Training is considered complete (or converged) when the model’s performance on a held-
out validation dataset is deemed satisfactory. One common technique to prevent overtraining
is early stopping, where training is halted once the validation performance no longer improves.
Given the large number of degrees of freedom (i.e., the network’s parameters), care must be
taken to avoid overfitting, which occurs when the model fits the training data too closely,
resulting in poor generalization to unseen data. Techniques such as regularization, dropout,
and cross-validation can also be used to mitigate this risk.

2.1.3 Supervised and Unsupervised Learning

ML training algorithms are broadly categorized as either supervised or unsupervised.

In supervised learning, a model is trained on a labeled dataset, where each input x; is
associated with a corresponding target y;. The goal of supervised learning is to learn a
function f(x) that maps inputs to their corresponding outputs, minimizing the error between
the predicted target ¥ and the true target y. The most common supervised learning tasks
are classification, where the target is a discrete label, and regression, where the target is a
continuous value.
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In unsupervised learning, a model is trained on a dataset that does not consist of labeled
exemplars. In this setting, there are only x;, and there are no y;. The aim is to automatically
discover the underlying structure inherent in the dataset. Common unsupervised learning
tasks are clustering, where similar examples are grouped together, and dimensionality reduc-
tion, where the number of features used to describe an example is reduced, with the aim of
simplifying a supervised learning problem, or to aid in visualization of the dataset.

Artificial neural networks are used in both of these paradigms. In the context of supervised
learning, the inputs are mapped to outputs consisting of a categorical vector (for classification)
or a single continuous output (for regression). In the context of unsupervised learning, variants
of the feed-forward architecture described in the previous sections are typically used, and
include models such as autoencoders and Generative Adversarial Networks (GANs) [120, 121].
Whether trained with labeled or unlabeled data, the underlying principles of neural network
architecture and backpropagation remain the same.

2.2 Local and Distributed Representations

In an ML problem, data can be represented in various ways. Two common forms of represen-
tation are local and distributed representations.

2.2.1 Local Representations

A local representation is the more traditional approach often used in classical ML. In a local
representation, each component z; of the feature vector x = [z1, 22, ..., z,] directly corre-
sponds to a specific, interpretable attribute of the data. For example, in a dataset consisting
of measurements of various species of flower, a feature vector might include components for
petal length, petal width, and color. Each of these dimensions has a concrete and intelligible
meaning, and each feature is (ideally) independent of the others.

Local representations have the advantage that they are typically intuitive and interpretable.
They often form the basis of classical ML models such as decision trees, linear regression, and
support vector machines. However, they may struggle with capturing complex relationships
between features, or generalizing well when the data is highly non-linear or abstract. Some
forms of data, such as a word from a large natural language corpus, are simply not easily
describable using local representations.

2.2.2 Distributed Representations

A distributed representation, on the other hand, is more abstract. Rather than each dimension
of the feature vector representing a specific, concrete attribute, a distributed representation
encodes information across many dimensions. Each component z; of the feature vector x € R"
may not have a clear, interpretable meaning by itself. Instead, the data is represented as a point
in a high-dimensional space, and the meaning arises from the combination of values across
all dimensions. The downside is that a distributed representation is not directly interpretable.
However, they are ideal for representing abstract and subtle aspects of an example, such as
the meaning of a word in a sentence. Moreover, metrics can be defined over a collection of
these vectors to capture semantic relationships between data points. Two common metrics
are the Euclidean distance,

n

d(x1,%2) = | > (1 — 72:)? (2.4)
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where x1 = [x11, %12, ...,%1,] and Xa = [z21, T2, ..., X2,], and the cosine similarity,
C X1 - X2
cosine similarity(x;,x2) = ———— (2.5)
7 [l |2l

where x; - X9 is the dot product of the vectors, and ||x;|| and ||x2|| are the magnitudes
(or norms) of the vectors.

These metrics can quantify how “close” two examples are in the high-dimensional space,
with the assumption that smaller distances correspond to higher semantic similarity. While
these metrics are often also applied to local representations, proximity in feature space does
not always correspond to meaningful semantic similarity, as they do in the case of distributed
representations.

Finally, distributed representations allow for transformations that can yield new vectors
while preserving semantic coherence. For example, vector addition and subtraction can be
used to create new examples based on the relationships between existing ones. An example
is the creation of “sentence” vectors by the element-wise summation of the word vectors for
the words comprising the sentence [122].

2.3 The Transformer Architecture

The Transformer architecture, introduced by Vaswani et al. in the paper "Attention is All
You Need” [97], began a paradigm shift in the field of Natural Language Processing (NLP)
by moving away from recurrent architectures like RNNs and LSTMs, which had been predom-
inantly used. It introduced a purely attention-based mechanism that allows for more efficient
parallelization during training, and is currently the foundation for state-of-the-art models such
as BERT and GPT [123, 124].

The Transformer architecture is based on an encoder-decoder structure, where both the
encoder and decoder consist of multiple layers of identical sub-units, which in turn consist
of feed-forward neural network layers. One of its key innovations is its use of multi-head
attention, which allows the model to focus on different parts of the input sequence when
making predictions.

In this section, | will provide an overview of the Transformer architecture, and of the
concept of multi-head attention.

2.3.1 Overview of the Transformer

The Transformer was originally developed for the task of sequence-to-sequence translation. In
such a scenario, one would like to transform a sequence of words in one language (e.g. English)
to a sequence of words in another language (e.g. French). Thus, the name “Transformer” is
apt, as the model transforms one sequence into another. In NLP, traditional models for such
tasks included RNNs, which generally iterate over each word in the input sequence, building up
to a single distributed representation, which is then used as the basis for a decoding step, which
produces each output word sequentially, until a terminating output token is produced. Various
mechanisms for emphasizing (or attending to) certain input and output tokens were, over time,
introduced atop this architecture. While these models greatly advanced the state-of-the-art in
machine translation, they were difficult to scale, to meet the increasing demands of real-time
translation. The Transformer architecture was developed to address the shortcomings of the
recurrent models.

The Transformer model consists of two main components: the encoder and the decoder.
Each of these components is composed of multiple layers of sub-modules that contain multi-
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head attention blocks and feed-forward neural networks. The encoder processes the input
data and generates a set of hidden representations, while the decoder uses these hidden
representations, along with the previously generated tokens, to produce the output sequence.
See Figure 2.1.
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Figure 2.1: The Transformer model architecture, from Vaswani et al.. [97]

2.3.2 The Attention Mechanism

At the core of the Transformer is the concept of attention, which is a mechanism for computing
a weighted representation of the input by focusing on each position in the sequence. The
most common form of attention is known as self-attention. In self-attention, a weighted
representation is computed for each element in the sequence in relation to each other element.
This allows the model to capture the importance of a relationship between two elements
regardless of the distance between them in the sequence.

Self-attention is computed using three vectors: a query vector, a key vector, and a value
vector. For each element of the sequence, the output is a weighted sum of the value vectors,
with the weights determined by the similarity between the query and key vectors.

The attention mechanism is what allows the Transformer to process all input tokens in
parallel, unlike sequential models such as RNNs.

2.3.3 Multi-Head Attention and Positional Encoding

More formally, the input to the model consists of a sequence. The sequence, Xj, € R®*%n,
is comprised of d;,-dimensional representations for each of the n constituent elements (e.g.
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words) of the sequence. These dj,-dimensional representations may be categorical vectors
in the case of words, for example, or local or pre-trained distributed representations. The
first step involves the positional encoding of the sequence’s elements into Xj,, resulting in
Xene € R™¥dmodel - where dpodel IS given as a hyperparameter. Positional encoding is used
in the Transformer to inject sequence order information, since the model lacks an inherent
sequential structure, such as in RNNs. The positional encoding for each position pos and
dimension 17 is defined as:

PE(pos,2i) = Sin(pos/lo()()()?i/dmodd)

2i/d (2.6)
PE(p087 21 + 1) = COS(pOS/lOOOO Z/ model)

where pos is the position in the sequence, and ¢ is the dimension index. These alternating
sine and cosine functions allow the model to encode positional information across different
frequencies, capturing both short- and long-range dependencies. The final, encoded input to
the model, Xepc, is the sum of the input embeddings X, and the positional encodings PE:

Xenc = Xin + PE (27)

This is followed by the sequential application of a number of Transformer blocks. Each
Transformer block begins by performing a multi-head self-attention operation. (Figure 2.2)
The self-attention operation allows the model to learn to attend to the relationships between
the elements of the sequence, in the context of the task. The “attention weights” are encoded
into a n X n matrix, associated with each of h attention heads, by applying the softmazx
operation to a scaled dot-product of a query, Q; € R™ %K and a transposed key, KlT €
R *" where di = dimoqel/ specifies the key (and query) dimension for an attention head.
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Figure 2.2: Depiction of the multi-head self-attention operation. The input,
Xene € R™Xdmodel - consists of the positionally encoded representations for n con-
stituent elements of the sequence, each with d;,oqc1 components. Linear transfor-
mations are applied to the input to produce the query, ) € R™*%model  the key,
K € R™*dmodel and the value, V € R"™*dmoder using the learned parameters we,
WK, and WV, respectively. The query, key and value are each subsequently sep-
arated into h heads (indexed here by i). The corresponding queries, Q;, keys, K;,
and values, V;, are combined to produce the attention products, A;, by multiply-
ing the softmax of a scaled dot-product of the queries and keys with the values.
After the attention products are concatenated to produce A, a linear transforma-
tion of A using the learned parameters W produces the output of multi-head
self-attention, X, € R7™*dmoder

The Transformer block follows the multi-head self-attention operation with layer normal-
ization [125], dropout [126], and feed-forward ReLU operations (Figure 2.3). The output of
a Transformer block, Xou; € R"*%model  thus consists of the same dimensions as the input,
which allows multiple Transformer blocks to be connected serially.
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2.4 Autoregressive Large Language Modeling

Autoregressive models, in the context of deep learning, are a class of generative models used
for the production of text, via the prediction of the next token of text given the preceding
tokens. Such models undergo an unsupervised pre-training procedure, where they are tasked
with predicting which token is most likely to follow a sequence of preceding tokens.

While language modeling pre-dates deep learning, Alec Radford and colleagues demon-
strated in 2018 that subjecting deep neural networks to autoregressive pre-training resulted
in state-of-the-art natural language models [124]. These models, which came to be known
as the Generative Pre-trained Transformer (GPT), are based on the decoder portion of the
Transformer architecture, and have since become foundational to the modern NLP workflow.
It was proposed that the Transformer architecture could be scaled up in size, suggesting that
improved performance could be achieved by increasing the amount of training data, com-
putational power, and model parameters. Developments such as ChatGPT, a revolutionary
chatbot capable of achieving human-level performance on many intellectual tasks, have since
validated these ideas, as the size of these GPT models has increased from millions to hundreds
of billions of parameters [127].

The following sections introduce the fundamentals of language modeling and describe how
LLMs use autoregressive pre-training to achieve state-of-the-art performance on a variety of
NLP tasks.

2.4.1 Language Modeling

Language modeling refers to the estimation of the probability distribution over sequences of
tokens in a given language. Formally, given a sequence of tokens x = (z1,z2,...,%,), the
task of a language model is to estimate the joint probability P(x). This is often factorized as
the product of conditional probabilities using the chain rule:

P(x) = P(x1)P(z2|z1)P(x3|x1,22) . .. P(xn|21,. .o, Tpe1) (2.8)

The objective of the model is to maximize the likelihood of the observed sequences in a
training dataset. In practice, language models are typically trained on large corpora of text,
and are produced through Maximum Likelihood Estimation (MLE). Traditionally, language
models have been limited to estimating distributions over fixed numbers of tokens, and are
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referred to as n-gram language models. However, deep neural network-based language models,
such as the GPT model, are much more powerful and flexible, with more recent versions having
practically no limit on the number of preceding tokens which are considered when predicting
the next token.

2.4.2 Large Language Models and Autoregressive Pre-training

Large language models, such as GPT, are characterized by the incorporation of a deep neural
network with typically millions or more parameters. These models must undergo an unsu-
pervised pre-training step before they can be fine-tuned for more specialized, downstream
tasks, such as sentiment classification, for example. Fine-tuning usually involves replacing
the model’s original output layer with a layer specialized for the downstream task. The orig-
inal output layer produces next-token probabilities. Thus, the pre-trained (or foundation)
model generates text one token at a time, with each predicted token being conditioned on the
previously generated tokens. The model follows the autoregressive process:

P(x|xy, 29, ..., 24-1) (2.9)

Autoregressive pre-training requires a vocabulary, V, and an ordered list of tokens U =
(U1, ..., up), with u; € V, such as may be obtained by concatenating the tokenized documents
of a corpus end-to-end. The objective is to maximize the following likelihood:

LO;U) = log P(u;|ui—c, ..., ui—1;6) (2.10)

where c is the size of a context window, P is the conditional probability distribution to be
modelled, and € the parameters of a neural network. Therefore, J(6;U) = —L is the objective
to be minimized, using stochastic gradient descent to adjust the parameters. In practice, the
cross-entropy loss between the model’s predicted probabilities and the true one-hot encoded
labels is used to establish the difference between the actual and desired outputs.



Chapter 3

Distributed Representations of
Atoms and Materials

3.1 Introduction

A central problem in materials science is the rational design of materials with specific proper-
ties. Typically, useful materials have been discovered serendipitously [128]. With the advent
of ubiquitous and capable computing infrastructure, materials discovery has been increasingly
aided by computational chemistry, especially density functional theory (DFT) simulations
[129]. Such theoretical calculations are indispensable when investigating the properties of
novel materials. However, they are computationally intensive, and performing such analysis
on large numbers of compounds (there are more than 10'° chemically sensible stoichiometric
quaternary compounds possible [114]) becomes impractical with today's computing technol-
ogy. Moreover, certain chemical systems, such as those with very strongly correlated electrons,
or with high levels of disorder, remain a theoretical challenge to DFT [130, 131].

The application of ML to materials science aims to ameliorate some of these problems, by
providing alternate computational routes to properties of interest. There have been numerous
examples of the successful application of ML to chemical systems. Techniques from ML have
been used to predict very local and detailed properties, such as atomic and molecular orbital
energies and geometries [132] or partial charges [133], and also global properties, such as the
formation energy and band gap of a given compound [134-137].

For a ML algorithm to work effectively, the objects of the system of interest must be
converted into faithful representations that can be consumed in a computational context.
Deriving such representations has been a main focus for researchers in ML, and in the case of
Deep Learning, such representations are typically learned automatically, as part of the training
process [96]. Related to this are the concepts of Unsupervised Learning, where patterns in
the data are derived without the use of labels or other forms of supervision [138], and Semi-
supervised Learning, where a small amount of labelled data is combined with large amounts of
unlabelled data [139-142]. Indeed, given that most data is unlabelled, such techniques are very
valuable. Some of the most successful and widely used algorithms, such as Word2Vec from
the field of Natural Language Processing (NLP), use unsupervised learning to derive effective
representations of the objects in the system of interest (words, in this case) [100, 143].

The most basic object of interest in chemical systems is very often the atom. Thus,
there have already been several investigations examining the derivation of effective machine
representations of atoms in an unsupervised setting [102, 103, 144], and other investigations
have aimed to learn good atomic representations in the context of a supervised learning task
[145, 146]. A learned representation of an atom generally takes the form of an embedding,

29
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which can be described as a relatively low-dimensional space in which higher-dimensional
vectors can be expressed. Using embeddings in a ML task is advantageous, as the number
of input dimensions is typically lower than if higher-dimensional sparse vectors were used.
Moreover, embeddings which are semantically similar reside closer together in space, which
provides a more principled structure to the input data. Such representations should allow ML
models to learn a task more quickly and effectively.

A widely held hypothesis in ML is that unlabelled data can be used to learn effective
representations. In this work, we introduce an approach for learning atomic representations
using an unsupervised approach. This approach, which we name SkipAtom, is inspired by the
Skip-gram model in NLP, and takes advantage of the large number of inorganic structures in
materials databases. We also investigate forming representations of chemical compounds by
pooling atomic representations. Combining vectors by various pooling operations to create
representations of systems composed from parts (e.g. sentences from words) is a common
technique in NLP, but apparently remains largely unexplored in materials informatics [147].
The analogy we explore here is that atoms are to compounds as words are to sentences,
and our results demonstrate that effective representations of compounds can be composed
from the vector representations of the constituent atoms. Finally, a common problem when
searching chemical space for new materials is that the structure of a compound may not
be known. Since the properties of a material are typically tightly coupled to its structure,
this creates a significant barrier [148]. Here, we compare our models, which operate on
representations derived from chemical formulas only, to benchmarks that are based on models
that use structural information. We find that, for certain tasks, the performance of the
composition-only models is comparable.

3.2 Methods

3.2.1 Representations of Atoms and Compounds

There are various strategies for providing an atom with a machine representation. These
range from very simple and unstructured approaches, such as assigning a random vector to
each atom, to more sophisticated approaches, such as learning distributed representations.
A distributed representation is a characterization of an object attained by embedding in a
continuous vector space, such that similar objects will be closer together.

Similarly, a compound may be assigned a machine representation. Again, these represen-
tations may be learned on a case-by-case basis, or they may be formed by composing existing
representations of the corresponding atoms.

Atomic Representations

We are interested in deriving representations of atoms that can be used in a computational
context, such as a ML task. Intuitively, we would like the representations of similar atoms to be
similar as well. Given that atoms are multifaceted objects, a natural choice for a computational
descriptor for an atom might be a vector: an n-tuple of real numbers. Vector spaces are well
understood, and can provide the degrees of freedom necessary to express the various facets
that constitute an atom. Moreover, with an appropriately selected vector space, such atomic
representations can be subjected to the various vector operations to quantify relationships and
to compose descriptions of systems of atoms, or compounds.
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Random Vectors

The simplest approach to assigning a vector description to an atom is to simply draw
a random vector from R"™, and assign it to the atom. Such vectors can come from any
distribution desired, but in this report, such vectors will come from the standard normal
distribution, N'(0,1).

One-hot Vectors

One-hot vectors, common in ML, are binary vectors that are used for distinguishing between
various categories. One assigns a vector component to each category of interest, and sets the
value of the corresponding component to 1 when the vector is describing a given category,
and the value of all other components to 0. More formally, a one-hot n-dimensional vector v
is in the set {0,1}" such that >~ , v; = 1, where v; is a component of v. A unique one-hot
vector is assigned to each category. In the context of this report, a category is an atom (Figure
3.1a).
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Figure 3.1: a Scheme illustrating one-hot and distributed representations of atoms.
In the diagram, there are n atoms represented, and d is the adjustable number of
dimensions of the distributed representation. Note that the atoms in this example
are H, He and Pu, but they could be any atom. b Scheme describing how training
data is derived for the creation of SkipAtom vectors. Here, a graph representing
the atomic connectivity in the structure of BayN4 is depicted, and the resulting
target-context atom pairs derived for training. The graph is derived from the unit
cell of BagN4. € Scheme describing how the SkipAtom vectors are derived through
training. Here, a one-hot vector, x, representing a particular atom is transformed
into an intermediate vector h via multiplication with matrix W,. The matrix
W, is the embedding matrix, whose columns will be the final atom vectors after
training. Training consists of minimizing the cross-entropy loss between the output
vector ¥ and the one-hot vector representing the context atom, y. The output §
is obtained by applying the softmax function to the product Wh.
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Atom2Vec

If one may know a word by the company it keeps, then the same might be said of an atom.
In 2018, Zhou and coworkers described an approach for deriving distributed atom vectors that
involves generating a co-occurrence count matrix of atoms and their chemical environments,
using an existing database of materials, and applying Singular Value Decomposition (SVD)
to the matrix [102]. The number of dimensions of the resulting atomic vectors is limited to
the number of atoms used in the matrix.

Mat2Vec

A popular means of generating word vectors in NLP is through the application of the
Word2Vec algorithm, wherein an unsupervised learning task is employed [143]. Given a corpus
(a collection of text), the goal is to predict the likelihood of a word occurring in the context
of another. A neural network architecture is employed, and the learned parameters of the
projection layer constitute the word vectors that result after training. In 2019, Tshitoyan and
coworkers described an approach for deriving distributed atom vectors by making direct use of
the materials science literature [103]. Instead of using a database of materials, they assembled
a textual corpus from millions of scientific abstracts related to materials science research, and
then applied the Word2Vec algorithm to derive the atom representations.

SkipAtom

In the NLP Skip-gram model, an occurrence of a word in a corpus is associated with the
words that co-occur within a context window of a certain size. The task is to predict the
context words given the target word. Although the aim is not to build a classifier, the act
of tuning the parameters of the model so that it is able to predict the context of a word
results in a parameter matrix that acts effectively as the embedding table for the words in the
corpus. Words that share the same contexts should share similar semantic content, and this
is reflected in the resulting learned low-dimensional space. Analogously, atoms that share the
same chemo-structural environments should share similar chemistry.

In the SkipAtom approach, the crystal structures of materials from a database are used
in the form of a graph, representing the local atomic connectivity in the material, to derive a
dataset of connected atom pairs (Figure 3.1b). Then, similarly to the Skip-gram approach of
the Word2Vec algorithm, Maximum Likelihood Estimation is applied to the dataset to learn
a model that aims to predict a context atom given a target atom.

More formally, a materials database consists of a set of materials, M. A material, m € M,
can be represented as an undirected graph, consisting of a set of atoms, A,,, comprising the
material, and bonds B,,, C {(z,y) € Ay X Aplx # y}, which are unordered pairs of atoms.
The task is to maximize the average log probability:

\M| Z Z Z log p(n|a) (3.1)

meM a€Am neN(a)

where N (a) are the neighbors of a (not including a itself); more specifically: N(a) = {z €
Anl(a,x) € By}

In practice, this means that the cross-entropy loss between the one-hot vector representing
the context atom and the normalized probabilities produced by the model, given the one-hot
vector representing the target atom, is minimized (Figure 3.1c).
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The graph representing a material can be derived using any approach desired, but in this
work, an approach is used which is based on Voronoi decomposition [149], which identifies
nearest neighbors using solid angle weights to determine the probability of various coordination
environments [150, 151]. (See Supplementary Note 3 in Appendix A for more information
about how the graphs are derived.)

The result of SkipAtom training is a set of vectors, one for each atom of interest (Fig-
ure 3.1a), that reflects the unique chemical nature of the represented atom, as well as its
relationship to other atoms.

A complicating factor in the procedure just described is that some atoms may be under-
represented in the database, relative to others. This will result in the parameters of those
infrequently occurring atoms receiving fewer updates during training, resulting in lower quality
representations for those atoms. This is an issue when learning word representations as well,
and there have been several solutions proposed in the context of NLP [152, 153]. Borrowing
from these solutions, we apply an additional, optional processing step to the learned vectors,
termed induction. The aim is to adjust the learned vectors so that they reside in a more
sensible area of the representation space. To achieve this, each atom is first represented as
a triple, given by its periodic table group number and row number, and its electronegativity.
Then, for each atom, the closest atoms are obtained, in terms of the cosine similarity between
the vectors formed from these triples. Using the learned embeddings for these closest atoms,
a mean nearest-neighbor representation is derived, and the induced atom vector, 1, is formed
by adding the original atom vector, u, to the mean nearest neighbor:

N
N 1 _
ut=u+t o kg_oe Fvi (3.2)

where N is the number of closest atoms to consider, and vy, is the learned embedding of the
k'™ nearest atom from the sorted list of nearest atoms. In this work, the nearest 5 atoms are
considered.

Compound Representations

Atom vectors by themselves may not be directly useful, as most problems in materials in-
formatics involve chemical compounds. However, atom vectors can be combined to form
representations of compounds.

Atom Vector Pooling

The most basic and general way of combining atom vectors to form a representation for a
compound is to perform a pooling operation on the atom vectors corresponding to the atoms
in the chemical formula for the compound. There are three common pooling operations:
sum-pooling, mean-pooling, and max-pooling.

Sum-pooling involves performing component-wise addition of the atom vectors for the
atoms in the chemical formula. That is, for a chemical compound whose formula is comprised
of m constituent elements, and a set of atom vectors, v € V, the compound vector, w, is
given in this case by:

w=Y e (3.3)
k=1

where v}, is the corresponding atom vector for the k™" constituent element in the formula,
and ¢ is the relative number of atoms of the k' constituent element (which need not be a
whole number, as in the case of non-stoichiometric compounds).
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Mean-pooling involves performing component-wise addition of the atom vectors for the
atoms in the chemical formula, followed by dividing by the total number of atoms in the
formula. In this case:

_ 221:1 CkVi

w = Zek=1kTk
D ket Ck

Finally, max-pooling involves taking the maximum value for each component of the vectors
being pooled. In this case:

(3.4)

w = r’é%(ckvk (3.5)

where max returns a vector where each component has the maximum value of that component
across 1 input vectors.

ElemNet (Mean-pooled One-hot Vectors)

If we assign a unique one-hot vector to each atom, and perform mean-pooling of these
vectors when forming a representation for a chemical compound, then the result is the same as
the input representation for the ElemNet model [145]. Such a compound vector is sparse (as
most compounds do not typically contain more than 5 or 6 atom types). Each component of
the vector contains the unit normalized amount of the atom in the formula. For example, for
H,0, the component corresponding to H would have a value of 0.66 whereas the component
corresponding to O would have a value of 0.33, and all other components would have a value
of zero.

Bag-of-Atoms (Sum-pooled One-hot Vectors)

In NLP, the Bag-of-Words is a common representation used for sentences and documents.
It is formed by simply performing sum-pooling of the one-hot vectors for each word in the text.
Similarly, we can conceive of a Bag-of-Atoms representation for chemical informatics, where
sum-pooling is performed with the one-hot vectors for the atoms in a chemical formula. The
result is a list of counts of each atom type in the formula. This is an unscaled version of the
ElemNet representation. Crucially, this sum-pooling of one-hot vectors is more appropriate
for describing compounds than it is for describing natural language sentences, as there is no
significance to the order of atoms in a chemical formula as there is for the order of words in
a sentence.

3.2.2 Evaluation Tasks

A number of diverse materials ML tasks are utilized to evaluate the effectiveness of the pooled
atom vector representations, and the quality of the SkipAtom representation. In total, ten
previously described tasks are utilized, and are broadly divided into two categories: those used
for evaluating the pooling approach, and those used for evaluating the SkipAtom approach.
To evaluate the pooling approach, nine tasks are chosen, and are described in Table 3.1.
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Table 3.1: The predictive tasks utilized in this study to evaluate the atom vector
pooling approach. All datasets and benchmarks for the tasks above are described
in [154], with the exception of the Formation Energy task, which is described in

[145].
Task Type Examples  Structure? Method

Band Gap (eV) Regression 4,604 No Experiment [135]
Band Gap (eV) Regression 106,113 Yes DFT-GGA [155, 156]

Bulk Modulus (log(GPa)) Regression 10,987 Yes DFT-GGA [157]

Shear Modulus (log(GPa)) Regression 10,987 Yes DFT-GGA [157]

Refractive Index (n) Regression 4,764 Yes DFPT-GGA [158]

Formation Energy (eV/atom) Regression 275,424 Yes DFT [145, 159]
Bulk Metallic Glass Formation  Classification 5,680 No Experiment [160, 161]

Metallicity Classification 4,921 No Experiment [135]
Metallicity Classification 106,113 Yes DFT-GGA [155, 156]

The tasks were chosen to represent the various scenarios encountered in materials data sci-
ence, such as the availability of both smaller and larger datasets, the need for either regression
or classification, the availability of material structure information, and the means (experiment
or theory) by which the data is obtained. The OQMD (Open Quantum Materials Database)
Formation Energy task [145, 159] requires a different training protocol, as it was derived from
a different study than the other eight tasks that are used for the pooling approach, which
were sourced from the Matbench test suite [154].

To evaluate the SkipAtom representation, the Elpasolite Formation Energy task was uti-
lized. The task and the model were initially described in the paper that introduced Atom2Vec
(an alternative approach for learning atom vectors) [102]. The task consists of predicting the
formation energy of elpasolites, which are comprised of a quaternary crystal structure, and
have the general formula ABC;Dg. The target formation energies for 5,645 examples were
obtained by DFT [162]. The input consists of a concatenated sequence of atom vectors, each
representing the A, B, C, and D atoms. We reproduce the approach here, for comparison
against the Atom2Vec results.

All tasks require a representation of a material as input, and produce a prediction of a
physical property as output, in either a regression or classification setting. Moreover, with
the exception of the Elpasolite Formation Energy task, all tasks make use of the same model
architecture (described in detail below).

3.2.3 Pooling Approach Evaluation

For the purposes of evaluation, the atom and compound vectors were utilized as inputs to feed-
forward neural networks. All results for evaluating the pooling approach were obtained using
a 17-layer feed-forward neural network architecture based on ElemNet [145]. The network
was comprised of 4 layers with 1,024 neurons, followed by 3 layers with 512 neurons, 3 layers
with 256 neurons, 3 layers with 128 neurons, 2 layers with 64 neurons, and 1 layer with 32
neurons, all with ReLU activation. For regression tasks, the output layer consisted of a single
neuron and linear activation. For classification tasks, the output layer consisted of a single
neuron and sigmoid activation (as only binary classification was performed). Instead of using
dropout layers for regularization, as in the ElemNet approach, L2 regularization was used,
with a regularization constant of 107°. The goal during training was to minimize the Mean
Absolute Error loss (for regression tasks), or the Binary Cross-entropy loss (for classification
tasks). All pooling approach experiments utilized a mini-batch size of 32, and a learning
rate of 10~ along with the Adam optimizer (with an epsilon parameter of 1078) [163]. As
described in the paper that introduces the Matbench test set [154], k-fold cross-validation
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was performed to evaluate the compound vectors in regression tasks, with the same random
seed to ensure the same splits were used each time. For classification tasks, stratified k-fold
cross-validation was performed. As required by the benchmarking protocol, 5 splits were used
(with the exception of the OQMD Formation Energy prediction task, which used 10 splits).
Because the variance was high for some tasks after k-fold cross-validation, repeated k-fold
cross-validation was performed, to reduce the variance [164]. All training was carried out
for 100 epochs, and the best performing epoch was chosen as the result for that split. By
following this protocol, a direct and fair comparison can be made to results reported previously
using the same Matbench test set [154].

3.2.4 Elpasolite Formation Energy Prediction

The results for evaluating the SkipAtom approach were obtained using the Elpasolite neural
network architecture and protocol, originally described in the paper that introduces Atom2Vec
[102]. The input to the neural network is a vector constructed by concatenating 4 atom vectors,
representing each of the 4 atoms in an Elpasolite composition. The single hidden layer consists
of 10 neurons, with ReLU activation. The output layer consists of a single neuron, with linear
activation. L2 regularization was used, with a regularization constant of 107°. The goal
during training was to minimize the Mean Absolute Error loss. The training protocol differs
slightly in this report, and 10-fold cross-validation was performed, utilizing the result after 200
epochs of training. The same random seed was used for all experiments, to ensure the same
splits were utilized. A mini-batch size of 32 was utilized, and a learning rate of 10~2 along
with the Adam optimizer (with an epsilon parameter of 10~%) was chosen [163].

3.2.5 SkipAtom Training

Learning of the SkipAtom vectors involved the use of the Materials Project database [165].
To assemble the training set, 126,335 inorganic compound structures were downloaded from
the database. Each of these structures was converted into a graph representation using an
approach based on Voronoi decomposition [149-151], and a dataset of co-occurring atom
pairs was derived. (See Supplementary Note 3 in Appendix A for more information on graph
derivation.) A total of 15,360,652 atom pairs were generated, utilizing 86 distinct atom types.
The architecture consisted of a single hidden layer with linear activation, whose size depended
on the desired dimensionality of the learned embeddings, and an output layer with 86 neurons
(one for each of the utilized atom types) with softmax activation. The training objective
consisted of minimizing the cross-entropy loss between the predicted context atom probabilities
and the one-hot vector representing the context atom, given the one-vector representing the
target atom as input. Training utilized stochastic gradient descent with the Adam optimizer,
with a learning rate of 1072 and a mini-batch size of 1,024, for 10 epochs.

3.2.6 Data Availability

The data that support the findings described this chapter are available as follows: The ma-
terials data that was used to learn the SkipAtom embeddings are publicly available online at
https://materialsproject.org/. The elpasolite formation energy training data are publicly avail-
able online at https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.117.135502, in the
Supplemental Material section. The datasets comprising the Matbench tasks are publicly avail-
able at https://hackingmaterials.lbl.gov/automatminer/datasets.html. The Mat2Vec pre-
trained embeddings are publicly available online and can be downloaded by following the in-
structions at https://github.com/materialsintelligence/mat2vec. The Atom2Vec embeddings
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are publicly available online and can be obtained from https://github.com /idocx/Atom2Vec.
The processed data that is used in this study, as well as scripts for reproducing the experiments,
can be found on the GitHub repository at the address https://github.com/lantunes/skipatom.
Any other relevant data from this work is available from the authors upon reasonable request.

3.2.7 Code Availability

The code for creating and using the SkipAtom vectors is open source, released under the GNU
General Public License v3.0. The code repository is accessible online, at:
https://github.com/lantunes/skipatom

The repository also contains pre-trained 200-dimensional SkipAtom vectors for 86 atom types
that can be immediately used in materials informatics projects.

3.3 Results and Discussion

3.3.1 Evaluation of Atom Vectors

A common technique for making high-dimensional data easier to visualize is t-SNE (t-Stochastic
Neighbor Embedding) [166]. Such a technique reduces the dimensionality of the data, typi-
cally to 2 dimensions, so that it can be plotted. Visualizing learned distributed representations
in this way can provide some intuition regarding the quality of the embeddings and the struc-
ture of the learned space. In Figure 3.2, the 200-dimensional learned SkipAtom vectors are
plotted after utilizing t-SNE to reduce their dimensionality to 2. It is evident that there is
a logical structure to the data. We see that the alkali metals are clustered together, as are
the light non-metals, for example. The relative locations of the atoms in the plot reflect
chemo-structural nuances gleaned from the dataset, and are not arbitrary.
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Figure 3.2: Dimensionally-reduced SkipAtom atom vectors with an original size
of 200 dimensions. The vectors were reduced to 2 dimensions using t-SNE. (See
also Supplementary Figures 1 and 2 in Appendix A for results of dimensionality
reduction with PCA.)
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To properly evaluate the quality of a learned distributed representation, they are utilized
in the context of a task, and their performance compared to other representations. Here,
we use the Elpasolite Formation Energy prediction task, and compare the performance of the
SkipAtom vectors to the performance of other representations, namely, to Random vectors,
One-hot vectors, Mat2Vec and Atom2Vec vectors. In the original study that introduced the
task, atom vectors were 30- and 86-dimensional. We trained SkipAtom vectors with the same
dimensions, and also with 200 dimensions, and evaluated them. The results are summarized
in Table 3.2.

Table 3.2: Elpasolite Formation Energy prediction results after 10-fold cross-
validation; mean best formation energy MAE on the test set after 200 epochs
of training in each fold. Batch size was 32, learning rate was 0.001. Note that
Dim refers to the dimensionality of the atom vector; the size of the input vector
is 4 x Dim. All results were generated using the same procedure on identical
train/test folds.

Representation Dim MAE (eV/atom)

Atom?2Vec 30 0.1477 + 0.0078
SkipAtom 30 0.1183 + 0.0050
Random 30 0.1701 + 0.0081
Atom?2Vec 86 0.1242 + 0.0066
One-hot 86 0.1218 + 0.0085
SkipAtom 86 0.1126 + 0.0078
Random 86 0.1190 + 0.0085
Mat2Vec 200 0.1126 + 0.0058
SkipAtom 200 0.1089 + 0.0061
Random 200 0.1158 =+ 0.0050

For all embedding dimension sizes, SkipAtom outperforms the other representations on
the Elpasolite Formation Energy task (Mat2Vec vectors were only available for this study in
200 dimensions, and Atom2Vec vectors, by virtue of how they are created, cannot have more
dimensions than atom types represented). In Figure 3.3, a plot of how the mean absolute
error changes during training demonstrates that the SkipAtom representation achieves better
results from the beginning of training, and maintains the performance throughout.
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Figure 3.3: Mean absolute error during training for the Elpasolite Formation Energy
prediction task, for the Atom2Vec and SkipAtom representations. The average
MAE over 10 folds is plotted.

3.3.2 Evaluation of Compound Vectors

Similar to atom vectors, compound vectors formed by the pooling of atom vectors can be
dimensionally reduced, and visualized with t-SNE, or with PCA (Figure 3.4a). In Figure 3.4b, a
sampling of several thousand compound vectors, formed by the sum-pooling of one-hot vectors,
were reduced to 2 dimensions using t-SNE, and plotted. Additionally, since each compound
vector represents a compound in the OQMD dataset, which contains associated formation
energies, a color is assigned to each point in the plot denoting its formation energy. A clear
distinction can be made across the spectrum of compounds and their formation energies. The
vector representations derived from the composition of atom vectors appear to have preserved
the relationship between atomic composition and formation energy.
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Figure 3.4: a 200-dimensional SkipAtom vectors for Cr, Ni, and Zr, and their
mean-pooled oxides, dimensionally reduced using PCA. b Plot of a sampling of
the dimensionally-reduced compound vectors for the OQMD Dataset Formation
Energy task, mapped to their associated physical values. The points are sum-
pooled one-hot vectors reduced using t-SNE with a Hamming distance metric.
The sum-pooled one-hot representation was the best performing for the task.

Again, as with atom vectors, the quality of a compound vector is best established by com-
paring its performance in a task. To evaluate the quality of pooled atom vectors, 9 predictive
tasks were utilized, as described in Table 3.1. The performance on the benchmark regres-
sion tasks is summarized in Table 3.3, and the performance on the benchmark classification
tasks is summarized in Table 3.4. Finally, the performance on the OQMD Formation Energy
prediction task is summarized in Table 3.5.

Table 3.3: Benchmark regression task results after 2-repeated 5- or 10-fold cross-
validation; mean best MAE on the test set after 100 epochs of training in each
fold. All results were generated using the same procedure on identical train/test
folds. TBG refers to the Theoretical Band Gap task (MAE in eV), BM to the
Bulk Modulus task (MAE in log(GPa)), SM to the Shear Modulus task (MAE in
log(GPa)), and RI to the Refractive Index task (MAE in n). These tasks make use
of structure information. EBG refers to the Experimental Band Gap task (MAE
in eV), and it makes use of composition only. Only the best results for each
representation are reported. The pooling procedure varies between results; blue
results represent sum-pooling, red results represent mean-pooling, and teal results
represent max-pooling. Numbers in parentheses represent the standard deviation
to one part in 10%. See the Supplementary Information tables in Appendix A for
more detailed results.

Representation Dim EBG TBG BM SM RI
SkipAtom 86 0.3495(20) 0.2791(8) 0.0789(2) 0.1014(1) 0.3275(4)
Atom2Vec 86  0.3922(87) 0.2692(8)  0.0795(5) 0.1029(0) 0.3308(16)

Bag-of-Atoms / One-hot 86 0.3797(22) 0.2611(8) 0.0861(2) 0.1137(5) 0.3576(2)
ElemNet / One-hot 86 0.4060(72) 0.2582(3) 0.0853(1) 0.1155(1) 0.3409(16)
One-hot 86  0.3823(46) 0.2603(4) 0.0861(3) 0.1140(2) 0.3547(13)
Random 86 0.4109(58) 0.3180(16) 0.0908(4) 0.1195(2)  0.3593(6)
Mat2Vec 200 0.3529(7) 0.2741(2) 0.0776(0) 0.1014(2) 0.3236(17)
SkipAtom 200 0.3487(85) 0.2736(8) 0.0785(0) 0.1014(0) 0.3247(15)

Random 200  0.4058(4) 0.3083(21) 0.0871(1) 0.1163(2)  0.3543(6)
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Table 3.4: Benchmark classification task results after 2-repeated 5-fold stratified
cross-validation; mean best ROC-AUC on the test set after 100 epochs of training
in each fold. All results were generated using the same procedure on identical
train/test folds. TM refers to the Theoretical Metallicity task, and makes use of
structure information. BMGF refers to the Bulk Metallic Glass Formation task,
and EM to the Experimental Metallicity task. These last two do not make use of
structure information. Only the best results for each representation are reported.
The pooling procedure varies between results; blue results represent sum-pooling,
red results represent mean-pooling, and teal results represent max-pooling. See
the Supplementary Information tables in Appendix A for more detailed results.

Representation Dim ™ BMGF EM
SkipAtom 86 0.9520 + 0.0002  0.9436 + 0.0010  0.9645 + 0.0012
Atom2Vec 86 0.9526 + 0.0001  0.9316 + 0.0012  0.9582 + 0.0008

Bag-of-Atoms / One-hot 86 0.9490 + 0.0002  0.9277 £+ 0.0004  0.9600 + 0.0012
ElemNet / One-hot 86 0.9477 + 0.0001 0.9322 + 0.0014 0.9485 + 0.0007
One-hot 86 0.9487 + 0.0003  0.9289 + 0.0016  0.9599 + 0.0014
Random 86 0.9444 + 0.0000  0.9274 4+ 0.0006  0.9559 + 0.0021
Mat2Vec 200 0.9528 + 0.0002 0.9348 + 0.0024  0.9655 + 0.0014
SkipAtom 200  0.9524 4+ 0.0001  0.9349 + 0.0019  0.9645 + 0.0008
Random 200  0.9453 4+ 0.0001  0.9302 + 0.0016  0.9541 + 0.0002

Table 3.5: OQMD Dataset Formation Energy prediction results after 10-fold cross-
validation; mean best formation energy MAE on the test set after 100 epochs of
training in each fold. All results were generated using the same procedure on
identical train/test folds.

Representation Dim Pooling MAE (eV/atom)

SkipAtom 86 sum 0.0420 £ 0.0005
Atom2Vec 86 sum 0.0396 £ 0.0004
Bag-of-Atoms / One-hot 86 sum 0.0388 + 0.0002
ElemNet / One-hot 86 mean 0.0427 + 0.0007
Random 86 sum 0.0440 £+ 0.0004
Mat2Vec 200 sum 0.0401 £ 0.0004
SkipAtom 200 sum 0.0408 £ 0.0003
Random 200 sum 0.0417 £+ 0.0004

In the benchmark regression and classification task results, there isn't a clear atom vector
or pooling method that dominates. The 200-dimensional representations generally appear to
perform better than the smaller 86-dimensional representations. Though not evident from
Tables 3 and 4, sum- and mean-pooling outperform max-pooling (see Supplementary Note 1
and Supplementary Tables 1 to 10 in Appendix A). The pooled Mat2Vec representations are
notable, in that they achieve the best results in 4 of the 8 benchmark tasks, while pooled
SkipAtom representations are best in 2 of the 8 benchmark tasks. Pooled Random vectors
tend to under-perform, though not always by a very large margin. This may not be so
surprising, since random vectors exhibit quasi-orthogonality as their dimensionality increases,
and thus may have the same functional characteristics as one-hot vectors [167]. On the
OQMD Formation Energy prediction task, the Bag-of-Atoms representation yields the best
results, significantly outperforming both the distributed representations, and the mean-pooled
one-hot representation originally used in the ElemNet paper, that introduced the task.

A noteworthy aspect of these results is how the pooled atom vector representations com-
pare to the published state-of-the-art values on the 8 benchmark tasks from the Matbench
test suite. Figure 3.5 depicts this comparison. Indeed, the models described in this report
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outperform the existing benchmarks on tasks where only composition is available (namely,
the Experimental Band Gap, Bulk Metallic Glass Formation, and Experimental Metallicity
tasks). Also, on the Theoretical Metallicity task and the Refractive Index task, the pooled
SkipAtom, Mat2Vec and one-hot vector representations perform comparably, despite making
use of composition information only.

With Structure No Structure
TBG BM SM RI ™ EBG BMGF EM

Automatminer ~ 0.282 | 0.0679 | 0.0849 | 0.299 | 0.909 | 0.416 0.861 0.92
CGCNN 0.228 | 0.0712 0.0895 0.599 0.954
MEGNet 0.235 0.0712 0.0914 0.478 | 0.977
SkipAtom 0.274 0.0785 0.1014 0.325 0.952 | 0.349 | 0.9349 | 0.965
One-hot 0.258 0.0853 0.1155 0.341 0.948 | 0.406 0.9322 0.949
Mat2Vec 0.274 0.0776 0.1014 0.324 0.953 | 0.353 = 0.9348 | 0.966

?fe?ior Superio?J

performance performance

Figure 3.5: A comparison between the results of the methods described in the
current work and existing state-of-the-art results on benchmark tasks. TBG refers
to the Theoretical Band Gap task (MAE in eV), BM to the Bulk Modulus task
(MAE in log(GPa)), SM to the Shear Modulus task (MAE in log(GPa)), Rl to
the Refractive Index task (MAE in n), and TM to the Theoretical Metallicity task
(ROC-AUC). These tasks make use of structure information. EBG refers to the
Experimental Band Gap task (MAE in eV), BMGF to the Bulk Metallic Glass For-
mation task (ROC-AUC), EM to the Experimental Metallicity task (ROC-AUC).
These tasks make use of composition only. The results that are outlined in bold
represent the best score for that task. ltalicized results represent an improvement
over existing best scores. As described in the Methods section of this chapter, the
same approach was used to obtain the results for all of the algorithms in the table.

3.4 Conclusions

NLP researchers have learned many lessons regarding the computational representations of
words and sentences. It could be fruitful for computational materials scientists to borrow tech-
niques from the study of Computational Linguistics. Above, we have described how making an
analogy between words and sentences, and atoms and compounds, allowed us to borrow both
a means of learning atom representations, and a means of forming compound representations
by pooling operations on atom vectors. Consequently, we draw the following conclusions: i)
effective computational descriptors of atoms can be derived from freely available and growing
materials databases; ii) effective computational descriptors of compounds can be easily con-
structed by straightforward pooling operations of the atom vectors of the constituent atoms;
iii) representations of material composition (without structure) can be useful for predicting
certain properties, and can play a useful role in hierarchical screening studies where subsequent
more expensive steps account for structure.

SkipAtom performs as well as state-of-the-art embeddings, while offering significant ad-
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vantages in terms of flexibility and ease of implementation. The SkipAtom representation can
be derived from a dataset of readily accessible compound structures. Moreover, the training
process is lightweight enough that it can be performed on a good quality laptop on a scale of
minutes to several hours (given the atom pairs). This highlights some important differences
between SkipAtom and Atom2Vec and Mat2Vec. Training of the Mat2Vec representation
requires the curation of millions of journal abstracts, and a subsequent classification step for
retaining only the most relevant abstracts. Additionally, pre-processing of the tokens in the
text must be carried out to identify valid chemical formulae through the use of custom rules
and regular expressions. On the other hand, since SkipAtom makes direct use of the informa-
tion in materials databases, no special pre-processing of the chemical information is required.
Although the procedures for creating Mat2Vec and SkipAtom vectors have been incorporated
into publicly available software libraries, the conceptually simpler SkipAtom approach leaves
little room for ambiguity that might result from manually written chemical information extrac-
tion rules. When compared to Atom2Vec, a principal difference is that SkipAtom vectors are
not limited in size by the number of atom types available. This allows larger SkipAtom vectors
to be trained, and, as is evident from the results described above, larger vectors generally per-
form better on tasks. (See Supplementary Note 5 in Appendix A for an analysis of embedding
size.) Overall, we believe SkipAtom is a more accessible tool for computational materials
scientists, allowing them to readily train expressive atom vectors on chemical databases of
their choosing, and to take advantage of the growing information in these databases over
time. (See Supplementary Note 6 in Appendix A for an analysis of training dataset size.)

The ElemNet architecture demonstrated that the incorporation of composition information
alone could result in good performance when predicting chemical properties. In this work, we
have extended the result, and shown how such an approach performs in a variety of different
tasks. Perhaps surprisingly, the combination of a deep feed-forward neural network with
compound representations consisting of composition information alone results in competitive
performance when comparing to approaches that make use of structural information. We
believe this is a valuable insight, since high-throughput screening endeavours, in the search
for new materials with desired properties, often target areas of chemical space where only
composition is known. We envision performing large sweeps of chemical space, in relatively
shorter periods of time, since structural characteristics of the compounds would not need to
be computed, and only composition would be used. The results presented here could motivate
more extensive and computationally cheaper screening.

Going forward, there are a number of different avenues that can be explored. First, the
atom vectors generated using the SkipAtom approach can be explored in different contexts,
such as in combination with structural information. For example, graph neural networks, such
as the MEGNet architecture [112], can accept as input any atom representation one chooses.
It would be interesting to see if starting with pre-trained SkipAtom vectors could improve the
performance of these models, where structure information is also incorporated. (See Supple-
mentary Note 2 in Appendix A for preliminary results with MEGNet.) Alternatively, chemical
compound vectors formed by pooling SkipAtom vectors can be directly concatenated with
vectors that contain structure information, thus complementing the pooled atom vectors with
more information. A candidate for encoding structure information is the Coulomb Matrix (in
vectorized form), a descriptor which encodes the electrostatic interactions between atomic
nuclei [168]. Finally, one limitation of the SkipAtom approach is that it does not provide
representations of atoms in different oxidation states. Since it is (often) possible to unam-
biguously infer the oxidation states of atoms in compounds, it is, in principle, possible to
construct a SkipAtom training set of pairs of atoms in different oxidation states. The number
of atom types would increase by several fold, but would still be within limits that allow for ef-
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ficient training. Note that by using a motif-centric learning framework, the oxidation states of
transition metal elements have been effectively learned based on local bonding environments,
using a graph neural network framework [169]. It would be interesting to explore the results
of forming compound representations using such vectors for atoms in various oxidation states.
(See Supplementary Note 4 in Appendix A for a preliminary experiment demonstrating the
learning of representations for Fe(ll) and Fe(lll).)



Chapter 4

Thermoelectric Transport Property
Prediction with Deep Neural
Networks

4.1 Introduction

As discussed in Chapter 1 of this thesis, finding good thermoelectric materials with the right
combination of properties is a difficult task, because of the interdependence of the properties
that appear in the figure of merit. Other factors, like abundance and toxicity, further com-
plicate the search for good candidate materials. While thermoelectricity has been a known
phenomenon since the early 1800s [170, 171], relatively few materials have been discovered
that are effective enough for practical applications. Well-studied thermoelectric materials,
such as Bi, Te; and PbTe, are suitable for various applications, but are often too expensive or
too toxic for widespread adoption [172]. If thermoelectric generators are to be deployed on a
scale large enough to have a positive environmental impact, new materials are needed [173].

The search for novel thermoelectrics is an active field of research [174-176]. A range of
promising thermoelectric materials have been discovered experimentally, either serendipitously,
or as a result of chemical intuition. In the low-temperature range (near room temperature),
where thermoelectric materials are typically used for cooling applications or low-grade heat
recovery, top performances are achieved with Bi, Tes-based alloys (e.g. 27" = 1.2 and power
factor of 45 yWem~1K=2 for (Bi;_,Sb,),Tes at room temperature [177]). Materials based
on PbTe exhibit some of the best performances in the temperature range between 500 K
and 900 K (e.g. 2T of 2.5 at around 800 K in p-doped Pb;y_,Sr, Te, with a maximal power
factor above 30 pWcm~!K=2) [178]. At very high temperatures, such as those used in
radioisotope thermoelectric generators (~1000 K or above), Si-Ge alloys exhibit some of the
highest figures of merit (e.g. peak zT of about 1.3 at 1173 K in an n-type nanostructured
SiGe bulk alloy, corresponding a maximal power factor of ~30 uWcm~1K=2) [179]. Other
families of compounds that are attracting considerable attention as promising thermoelectric
materials include the metal chalcogenides (e.g. SnSe, Cu,Se) [180-182], skutterudites (e.g.
CoAsz, CoSbs) [183], Zintl compounds (e.g. YbZn,Sb,) [184], clathrates (e.g. SrgGa;6Ges)
[185], Heusler and Half-Heusler compounds (e.g. TiNiSn, ZrNiSn) [186-188], and metal
oxides (e.g. NaCo,0,, Ca3Co0,404) [189, 190]. Hole-doped polycrystalline SnSe is the record-
holder in terms of thermoelectric figure of merit, and is reported to exhibit a 27" of 3.1 at 783K
[191]. In principle, there are no theoretical or thermodynamic limits for the possible values of
2T [192], so there is hope that materials with even higher values of 2T can be found.

46
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In addition to trial-and-error exploration, and the rational design of materials, compu-
tational techniques based on the combination of density functional theory (DFT) and high-
throughput screening (HTS) are becoming increasingly prevalent in the search for new thermo-
electrics [193-195]. The first report of such an approach was made in 2006 by Madsen, who
screened a dataset of 1,630 Sh-containing compounds derived from existing crystal structure
databases, and based on the results of ab initio calculations, identified LiZnSb as an interest-
ing thermoelectric material [196]. Since then, a number of studies involving the use of HTS in
the search for new thermoelectric candidates have followed [11, 21, 197-203]. The increasing
availability of distributed computing infrastructure, along with the development of workflow
management software [159, 204-210], has enabled the growing adoption of this approach.

While DFT-based HTS is becoming more prevalent, there remains a large gap between
the size of chemical space that is accessible with this approach, and the size of the space of
all possible inorganic materials. As discussed in Chapter 1, in order to bridge that gap and to
further accelerate computational predictions of thermoelectric behavior, techniques involving
the use of ML are being increasingly used in the search for new thermoelectric materials
[211-215]. Data for these ML approaches can come from either theoretical calculations, or
from physical experiments. HTS studies have been producing ab initio results for thousands of
materials, and these results can be assembled into datasets that are usable with ML algorithms.
Since experimental data is scarcer, the outputs of ab initio calculations are often the source
of data for ML approaches. Using ML to learn models that predict the output of ab initio
calculations is sensible, since invoking an ML model is much faster (and less computationally
expensive) than carrying out an ab initio calculation. ML models of various thermoelectric
properties, such as the Seebeck coefficient [41, 43, 84, 216], electrical conductivity [42, 83],
power factor [27, 82, 217, 218], lattice thermal conductivity [15, 23, 31, 33, 37, 219-226],
and even 2T [85, 227-231], have been developed.

In this chapter, | report the use of attention-based deep learning, together with existing
datasets derived from high-throughput DFT calculations [232], to predict the thermoelectric
transport properties of a material. The input to the model is a representation of a material's
composition, and optionally the material's band gap. The output is a collection of predic-
tions for a range of temperatures, for various doping levels, and for n and p doping types.
This structure-free approach allows us to scan regions of materials space of hypothetical but
plausible compounds, whose structures are not known. Our multi-output approach creates a
thermoelectric behavior profile for a material at a number of different conditions, which offers
advantages over narrower models that only make predictions for specific conditions.

4.2 Methods

4.2.1 Datasets

Our models are trained on the dataset published in 2017 by Ricci et al. [19] (henceforth the
Ricci database). This is a freely available electronic transport database containing the com-
putationally derived electronic transport properties for 47,737 inorganic compounds with sto-
ichiometric compositions. The properties listed include the Seebeck coefficient, the electrical
conductivity, and the electronic thermal conductivity, obtained using DFT in the generalized
gradient approximation (GGA), and the BTE through the BoltzTraP computer software [7],
under the constant relaxation time approximation (CRTA). They also associate the computed
band gap with each entry, amongst several other properties. For each compound, the afore-
mentioned properties were determined at various temperatures (100 K to 1300 K in 100 K
increments), for p- and n-doping types, and at 5 doping levels (ranging from 106 to 1020
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cm~3). Moreover, each property is a tensor quantity reported as a 3x3 matrix. The database
is altogether quite large, with 18,617,430 data points if one considers only the values of the
diagonal elements Sy, Syy, and S, (i.e. 47,737 compounds x 13 temperatures x 2 doping
types x 5 doping levels x 3 diagonal elements). Another important consideration is that there
are duplicate compounds in the database in terms of composition (corresponding to possible
polymorphs). While there are 47,737 unique compounds in the database when structure is
considered, there are only 34,628 unique compositions. In this study, we form a dataset of
compositions from the Ricci database and their associated thermoelectric transport proper-
ties. For cases where there are multiple entries with the same composition, we obtain the
DFT-derived energy per atom of each polymorph, and use the transport properties and band
gap of the entry corresponding to the polymorph with the lowest energy per atom.

Additionally, we form a dataset consisting solely of compositions and their associated
electronic band gaps derived from DFT, by combining data from the Materials Project [155]
and the Ricci database. We obtained 126,335 structures and their associated electronic band
gaps from the Materials Project, which corresponded to 89,444 unique compositions, which are
used to train the band gap predictor. Where there were multiple structures for a composition,
again we used the band gap of the polymorph with the lowest computed energy per atom.

The Ricci database has some important limitations. As discussed in Ref. [19] and elsewhere
(see Ref. [233] for a recent perspective), the use of the GGA and CRTA in the prediction of
electronic transport can lead to large discrepancies with respect to experiment. In particular,
GGA band structures generally exhibit too narrow gaps and too large bandwidths, which
tends to exaggerate the electronic conductivity. The CRTA, especially when unaccompanied
by physically-sound prediction of relaxation times, misses important differences in scattering
mechanisms across compounds. Furthermore, the calculations in Ref. [19] did not consider
spin-orbit coupling (SOC), which often has an important effect on the electron transport
properties of materials [234]. Inevitably, any ML model based on this dataset will carry
over these limitations of the underlying data, hindering the quality of the predictions with
respect to experimental values. However, our approach establishes a protocol capable of
efficiently mapping composition to thermoelectric behavior, which can be easily refined once
more accurate databases become available. This is important because, in addition to the
improvement of existing ab initio databases, there are ongoing efforts to create large databases
of thermoelectric properties from experiment [235], so we anticipate our model will keep
evolving following the expansion of such datasets.

4.2.2 ML Models

We build ML models that predict the Seebeck coefficient, the electrical conductivity, and
the power factor using data from the Ricci database. Our multi-output regression models
[236, 237] produce predictions of transport properties at 13 temperatures, 5 doping levels,
for 2 doping types, given a material’s composition and (optionally) band gap. The task is
to predict the mean of the diagonal elements of the Seebeck tensor, (Sxx + Syy + Sz)/3,
henceforth referred to as the Seebeck coefficient, S, and the mean of the diagonal elements of
the electrical conductivity tensor, (oyy + Oyy + 04,)/3, henceforth referred to as the electrical
conductivity, o. The values for electrical conductivity in the Ricci database are reported per
unit of relaxation time. Hence, in this report, electrical conductivity, o, will more precisely
refer to electrical conductivity per unit relaxation time, o/7. The target power factor, S%c,
is also predicted, and is defined here as the mean of the directional power factors, (S)%XUXX +
Sf,yoyy +82,0,,)/3. It will be denoted by PF, and also given per unit of relaxation time.
More formally, the task is to learn a function f : X — ), given a training set D =
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{(xi,yi) | 1 <i <k}, withx; € X, y; €Y, and k labeled examples. Here, the x; represent
a multi-dimensional input describing the features of an exemplar, and y; represent a multi-
dimensional target associated with x;. A training procedure is used to find f, and involves
the minimization of a loss, L : Y x ) — R, that specifies the degree of disagreement between
the true values ), and 37 the output of f given members of X.

Here, we use two different forms of f: a Random Forest [89], and an attention-based
deep neural network based on the CrabNet architecture, which is the state-of-the-art tool for
property prediction from materials composition, as demonstrated in the work by Sparks et al.
[113]. The CrabNet architecture incorporates a multi-head self-attention mechanism, originally
introduced in the Transformer deep learning model [238], which provides the added advantage
of enhanced interpretability. Traditionally, a Transformer transforms an input sequence to an
output sequence using an encoder followed by a decoder. However, CrabNet consists strictly
of an encoder, followed by a number of Residual blocks [239]. Moreover, instead of a sequence
of words, CrabNet operates on a bag of atoms, and consequently, instead of using a positional
encoding of the input, it encodes the relative amounts of atoms present.

The input to the model thus consists of a material’'s composition. Formally, the input,
Xin € R™"%din consists of d;,-dimensional representations for the n constituent elements of the
composition. The first step involves the encoding of the relative amounts of atoms into X,
referred to as fractional encoding (see [113] for more details), resulting in Xeye € R™Xdmodel,
where d0de1 is given as a hyperparameter. This is followed by the sequential application of
a number of Transformer blocks. Each Transformer block begins by performing a multi-head
self-attention operation. (Figure 2.2) The self-attention operation allows the model to learn to
attend to the relationships between the atoms of the composition, in the context of the task.
The “attention weights” are encoded into a n X n matrix, associated with each of h attention
heads, by applying the softmax operation to a scaled dot-product of a query, Q; € R«
and a transposed key, K/ € RI*" where dfx = dmodel/h specifies the key (and query)
dimension for an attention head. The output of a Transformer block, Xou: € R™*%model | thus
consists of the same dimensions as the input.
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Figure 4.1: A depiction of how additional features, such as band gap, are incorpo-
rated into the CrabNet architecture. The addition operation refers to element-wise
addition. The projection of the feature involves trainable parameters.

Since it may also be desirable to provide additional information beyond composition to
the model, we augment the CrabNet architecture so that additional features may be provided.
There are a number of ways this could be accomplished, but we choose to borrow an approach
from computer vision [240], and perform a projection on v input features, u € R", followed
by a tiling operation, so that the resulting projected features, P € R™*%model  have the same
dimensions as the output of a Transformer block. Finally, we perform element-wise addition,

P+ X(()uNt), where N is the number of Transformer blocks, and X(N)

out denotes the output of
the last Transformer block (Figure 4.1). While any number of extra features may be supplied
to the model this way, in this work, we (optionally) supply a single feature, the band gap E,,
associated with the material.

Finally, the output P + XéuNt) is given to three separate output heads. Each output head
consists of a series of Residual blocks, followed by a fully connected linear layer that produces
the final predictions for each of S, o, and PF. This multi-head architecture has advantages
in terms of convenience, efficiency, and also usually provides better overall performance on
the task when compared to using a separate (single-head) model for each property predicted.
(See Supplementary Table 1 in Appendix B for a comparison of the performance of archi-
tectures with different output head numbers.) For clarity, and to differentiate it from the
original CrabNet architecture, we refer to this model as CraTENet (Compositionally-restricted
attention-based ThermoElectrically-oriented Network); its architecture is illustrated in Figure
4.2
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Figure 4.2: The multi-head attention-based architecture, CraTENet, used in this
study. Each of the three output heads are multi-valued, containing the prediction
of the Seebeck (S), electrical conductivity (o), and power factor (PF), at different
temperatures, doping levels, and doping types.

The CraTENet model thus expects a dataset consisting of compositions, X; € R™®*%n,
and associated thermoelectric transport properties, yf,yf,yfF € R™, where yf, y7, and
yfF, represent the S, o, and PF transport values, respectively, at all temperatures, doping
levels and doping types, each an m-dimensional vector. Optionally, a band gap, F,s € R, may
be associated with X;. The dataset is thus {((X;, Eg,), (y7,y7,y7F)) | 1 <i < k}, where
k is the number of examples.

As in the CrabNet and Roost models, the CraTENet model learns the heteroscedastic
aleatoric uncertainty (i.e. how the variance of the predicted variable depends on the indepen-
dent variables), explicitly through the loss function [241, 242]. Here, the calculated variance is
a measure of the uncertainty associated with the incompleteness of the descriptor used (which
is why the calculated variance decreases considerably when the band gap information is added
to the descriptor). This variance is different from the epistemic variance related to the quality
of the model parameterization. Whereas the CrabNet and Roost models use a Robust L1
loss to estimate the uncertainty, we find that a Robust L2 loss, which places an L2 distance
on the residuals, results in superior performance for this task (see Supplementary Note 2 and
Supplementary Table 4 in Appendix B). The loss, L,, for a particular thermoelectric transport
property p, is given by:

k. m
~ 2 ~ ~
L,= o ZZ(yfj —yi;)” exp(—1In 87;) + In 87, (4.1)
i=1 j=1
where k is the number of examples in the dataset, and m is the number of components
of the output vector y’. The prediction of the i'! example is 7, and gi; the 4 component

of the i*" prediction (also considered the predictive mean in this context). The corresponding
target value is y;;. Finally, the predictive aleatoric variance for the 4™ component of the itP
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prediction is given by §fj. The form of this loss arises from the assumption that the uncertainty
in the observations follows a Gaussian distribution. Also, the term exp(—In §fj) is used in
place of the term 1/§fj for numerical stability reasons, such as to avoid a potential division
by zero. Since the model utilizes a separate output head for each of the three thermoelectric

transport properties being learned, the overall loss, L, to be minimized is given by:
L= aLS + BLU + "YLPF (42)

where «, 3, and ~ are constants which weight the importance of each of the terms in the loss
L. In this work, a = =~v=1.

Finally, we also train a band gap predictor from composition, using the original CrabNet
model and the expanded band gap dataset described previously. The fact that the band
gap predictor can be trained with a much larger dataset than the one used for training the
CraTENet model justifies our attempt to use the band gap as an additional input to CraTENet
for the prediction of transport coefficients. As shown in the Results and Discussion section, if
the band gap predictor is sufficiently accurate, the inclusion of the predicted band gap in the
CraTENet input can lead to overall performance enhancement, even if composition remains
the only global input of the model.

4.2.3 ML Model Training and Evaluation

For all CraTENet and CrabNet models, the input, X;,, consisted of n = 8 elements, and was
zero-padded if the composition consisted of less than 8 elements. Each element in the input
was described with a SkipAtom distributed representation [243] with dimensions di, = 200.
(We performed experiments, as described in Supplementary Note 1 and Supplementary Ta-
ble 3 in Appendix B, to determine the performance of different descriptors). The default
architectural hyperparameters of the original CrabNet model were used without further tun-
ing. Specifically, both models consisted of h = 4 attention heads in each of 3 sequential
Transformer blocks; the hyperparameter dy,0qe1 Was set to 512. The output (or output head)
consisted of 4 sequential Residual blocks, with 1024, 512, 256, and 128 nodes respectively.
For all neural network training procedures, a mini-batch size of 128 and a learning rate of 10~*
was used, which were derived from a hyperparameter grid search. The Adam optimizer, with
an epsilon parameter of 1078, was used [163]. All neural network models were implemented
using the TensorFlow [244] and Keras [245] software libraries.

The input for the Random Forest models was a descriptor described by Meredig et al.
[148], as implemented in the Matminer software library [246]. It is a local descriptor of
composition, containing properties such as atomic fractions, electronegativities, and radii.
In some experiments, we concatenate an unscaled band gap feature to the descriptor. The
Random Forest model hyperparameters were determined using a grid search. The number
of estimators was set to 200, the maximum depth was set to 110, the maximum number of
features was set to 36, and bootstrapping was used. We used the implementation provided in
the Scikit-learn software library [247].

Because the electrical conductivity values in the Ricci database are given per unit of
relaxation time 7, which is an exceedingly small number (of the order of 10717 s), the target
values for 0 and PF' are numerically quite large. The values also vary by orders of magnitude,
reflecting the distribution across metallic, semiconducting and insulating conductivity ranges.
For these reasons, the models learn log;,o and log,o PF' instead. All output targets are
standardized by removing the mean and scaling to unit variance. The band gap, when it is
provided to the CraTENet model, is given in eV units and unscaled.

Neural network model training was carried out in one of two contexts: a 90-10 holdout
experiment, or a 10-fold cross-validation experiment. For 90-10 holdout experiments, we split



CHAPTER 4. THERMOELECTRIC TRANSPORT PROPERTY PREDICTION 53

the dataset D into a set A consisting of 90% of the data, and a set B consisting of 10% of the
data. For the neural network models, set A was further split into a training set 7 consisting
of 90% of A, and a validation set V consisting of 10% of .A. Early stopping was used (with a
patience of 50) to determine the optimal number of epochs to train, using V as the validation
set. Then, the model was re-trained on all of A for the number of epochs determined to
be optimal, again starting from random parameters. Test set B was then used to evaluate
performance of the re-trained model (see [248] for more information on this approach). The
Random Forest models were trained on A, and evaluated on 3. The same random seed was
used throughout when creating the splits, to ensure identical splits for all experiments.

For the 10-fold cross-validation experiments, we followed the same procedure as for the
90-10 holdout experiments, except that we create 10 mutually exclusive splits, each consisting
of 10% of D for testing and 90% of D for training, using the same random seed for all
experiments, and repeating the hold-out procedure for each of the 10 splits. The performance
on B3 was averaged across the 10 splits to yield the final performance of the model.

The objective of all neural network training experiments was to minimize either the Robust
L1 or Robust L2 loss. The objective of Random Forest training was to minimize the mean
squared error (MSE) criterion. The mean absolute error (MAE) and coefficient of determina-
tion (R?) metrics were used to assess model performance. To produce the final neural network
models to be used for inference on composition space outside the datasets used for training
and evaluation, we train the models on all available data D for a number of epochs deter-
mined from the corresponding 10-fold cross-validation experiment, by averaging the number
of epochs required for each fold. The final Random Forest models to be used for inference
were simply trained on all available data D.

4.2.4 DFT Calculations

We performed a small number of DFT calculations in systems not found in the Ricci database,
for testing purposes. All calculations were carried out using the Vienna Ab initio Simulation
Package (VASP) [249, 250], and the calculation settings were chosen to follow the work of
Ricci et al. [19] as closely as possible. The Perdew-Burke-Ernzerhof (PBE) [47] exchange-
correlation functional, which is based on the GGA, was used in conjunction with the projector
augmented-wave method [251, 252] to describe the interaction between core and valence
electrons. All structures were fully relaxed until the force on each atom is below 0.02 eV/A.
Spin polarization was on, and magnetic moments on the ions were initialized in a high-
spin ferromagnetic configuration, and then allowed to relax to the spin groundstate. A self-
consistent static calculation was performed using 90 k:—points/A_3 (in terms of reciprocal
lattice volume) for systems with band gaps > 0.5 eV, and 450 k—points/A_3 for systems
with band gaps < 0.5 eV. Subsequently, a non-self-consistent calculation was gerformed to
evaluate the band structures on a uniform k-point grid, with 1,000 k-points/A™" for systems
with band gaps > 0.5 eV, and 1,500 k:—points/A_3 for systems with band gaps < 0.5 eV.
Spin-orbit coupling was not considered.

The Seebeck coefficient, S, and the electrical conductivity, o, were computed using the
BoltzTraP2 software package [253]. Interpolation was first performed by sampling 5 irreducible
k-points for each k-point from the VASP output. The band structure was then integrated to
obtain sets of Onsager coefficients. The temperature range 100K to 1300K was explored, in
increments of 100K, at 5 different doping levels (106 to 1020 cm~3), for both n and p doping
types. We verified that our ab initio procedure emulates the one that was used to create
the Ricci database by comparing our results to those of the Ricci database for a number of
compounds (see Supplementary Figure 3 in Appendix B).
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4.2.5 Data Availability

The data that support the findings described in this chapter are openly available. The Ricci
database of thermoelectric transport coefficients is publicly available online at:
https://datadryad.org/stash /dataset/doi:10.5061/dryad.gn001. The Materials Project data
that was used to train the band gap predictor and form a composition search space are publicly
available online at: https://materialsproject.org/. The pre-trained SkipAtom embeddings that
were used as input to the neural network models are located at:
https://github.com/lantunes/skipatom. The OQMD data that was used to provide structures
for the SMACT-generated selenides are publicly available online at: https://ogmd.org/.

4.2.6 Code Availability

The code with the CraTENet implementation, and for pre-processing the data and reproducing
the experiments, is open source, released under the MIT License. The code repository is
accessible online, at: https://github.com/lantunes/CraTENet.

4.3 Results and Discussion

4.3.1 Thermoelectric Property Prediction

Both the CraTENet model and a Random Forest model were trained on the 34,628 entries of
the Ricci database. To establish the generalization error of the models, 10-fold cross-validation
was performed. Since multi-target regression of thermoelectric transport properties on compo-
sition is essentially a new task, unreported in the literature, there are no existing benchmarks
to compare with. We created simple baseline models, such as linear regression with a Meredig
feature vector, or simply taking the median of the target values, but these models performed
considerably worse than the ML models presented here. To simplify presentation, we leave
out the baseline results.

The results of 10-fold cross-validation are presented in Table 4.1. For the remainder of
this chapter, “CraTENet” will refer to either the version of the model which does not accept
a band gap input or to the CraTENet model in general, depending on the context, whereas
“CraTENet+gap” will specifically refer to the version of the model which requires a band
gap input. As is evident from the results in Table 4.1, the models which utilize the band
gap clearly outperform those which do not. The band gap is thus an important predictor of
thermoelectric transport properties. In both the case where band gap is or is not provided,
the CraTENet model outperforms the Random Forest model in terms of MAE. The Random
Forest performs better in terms of R?, but generally only when band gap is absent. Moreover,
the models appear to perform slightly better when predicting the log o than the Seebeck.
Prediction of the log PF appears to be the most problematic, with the R? for this property
being noticeably lower than for the other two properties. The best thermoelectric materials
have Seebeck coefficients in the order of several hundreds of uV/K, so the resulting MAE is
still reasonably small by comparison.
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Table 4.1: Ten-fold cross-validation results for each of the transport properties for
the CraTENet and Random Forest (RF) models, both with and without a provided
band gap, in terms of MAE and R?. Each value represents the mean result across
10 folds, across all temperatures, doping levels and doping types. Bold values
represent the best result for a class of models (i.e. with or without band gap) for
a particular property.

S log o log PF
MAE (uV/K) R?> MAE R?! MAE R?
CraTENet 114 0.780 0.576 0.768 0.452 0.616
RF 141 0.798 0.696 0.780 0.476 0.632
CraTENet+gap 49 0.962 0.260 0.968 0.380 0.731
RF+gap 54 0961 0.301 0.964 0398 0.737

The results in Table 4.1 represent predictions made for all temperatures, doping levels
and doping types. However, it is useful to understand how the models perform for different
cross-sections of the data. For example, the 10-fold cross-validation results as a function of
doping type are presented in Table 4.2. To obtain the values in Table 4.2, only the predictions
for a given doping type were considered when computing the metrics, across all doping levels
and temperatures. The CraTENet model appears to perform better on the p-type predictions,
though it depends on which metric one considers. In Figure 4.3, 10-fold cross-validation results
are presented as a function of temperature and doping level. It is interesting (and useful to
know) that the PF predictions are worse, in terms of R? values, at lower temperatures and
higher doping levels. The MAE, on the other hand, does not show significant variations with
the conditions of temperature and doping, remaining constant at around 0.40 for log PF'.
The ability of the model to find the most promising compounds for further study depends on
the magnitude of the error relative to the width of the distribution of values. If the absolute
error is roughly constant, the ability of the model to discriminate between compounds can
be expected to be worse for a dataset that is more narrowly distributed. In this sense, the
R? is a better metric because it is related to the ratio between the mean squared error
and the variance. Supplementary Figure 14 in Appendix B shows that at high doping levels
the distribution of values is narrower, and therefore the R? (as well as our ability to select
the best compounds) decreases. The effect of temperature is a bit less pronounced, but
because increasing temperature also tends to widen the distribution, the R? is slightly better
at high temperatures. The variations in the distribution of power factors at different conditions
are related to the balance between the Seebeck coefficient and the conductivity in metallic
vs. gapped materials in the calculations of Ref. [19]; further details can be found in the
Supplementary Material in Appendix B.

Table 4.2: Ten-fold cross-validation performance of the CraTENet model as a
function of doping type. Each value represents the mean result for each doping
type across all 10 folds, across all temperatures and doping levels. Bold values
represent the best result between p- and n-doping types for a class of models (i.e.
with or without band gap) for a particular property.

S log o log PF
Doping  MAE (uV/K) R? MAE R? MAE R?
CraTENet p-type 119 0.636 0589 0.775 0.465 0.631
CraTENet n-type 109 0.627 0.562 0.758 0.439 0.594
CraTENet+gap p-type 49 0.945 0.260 0.972 0.388 0.747

CraTENet+gap n-type 50 0.925 0.260 0.962 0.371 0.709
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Figure 4.3: Ten-fold cross-validation performance (R?) of the CraTENet model as
a function of temperature and doping level. On the left, each point represents the
mean performance for each temperature across all 10 folds, across all doping levels
and doping types. On the right, each point represents the mean performance for
each doping level across all 10 folds, across all temperatures and doping types.
The dotted series represent the model’s results without a provided band gap.

To understand how the predictions compare to the “true” values (i.e. the target DFT
values), and how the prediction errors are distributed, it is useful to plot the true versus the
predicted values, and also the distribution of absolute errors, as in Figure 4.4. The plots show
that most predictions lie close to the true values. Moreover, the distribution of absolute errors
indicates that the majority of errors are less than the overall MAE values.
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Figure 4.4: True values vs. predicted values of the test set of a 90-10 holdout
experiment using the CraTENet+gap model, for each of the transport properties,
across all temperatures, doping levels, and doping types. Each plot contains
450,190 points, as there are 3,463 compositions in the test set, each with 130 (13
temperatures x 5 doping levels x 2 doping types) associated values. The inset
plots depict the distribution of absolute errors.

As the CraTENet model performs best when access to a band gap is available, it is
important to understand how the performance of the model depends on the quality of the
band gap provided, since, in many contexts, an experimental or ab initio band gap may not be
available. In screening scenarios, the band gap could originate from a predictive model. Thus,
to understand how the CraTENet model depends on the quality of the band gap, we performed
sensitivity experiments, by incrementally degrading high quality band gaps (i.e. derived from
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an initio methods) by adding Gaussian noise, and then supplying these “lower-quality” band
gaps to the model. The results are presented in Figure 4.5. In the figure, the horizontal axis
along the top of the plot represents the resulting MAE (in eV) after a certain percentage of
noise has been added to the band gaps. For example, when 10% noise has been added to the
ab initio band gaps, the MAE when comparing these corrupted gaps to the true gaps is 0.065
eV. Figure 4.5 shows, as might be expected, that when more noise is added to the band gaps,
the performance of the model falls. However, some thermoelectric transport properties are
more robust (or more sensitive) to changes in the band gap quality. For example, in the case of
the prediction of the Seebeck, even with band gaps exhibiting an MAE of 0.30 eV, the model
is still able to achieve an R? of 0.85, in comparison to an R? of below 0.80 when no band gap
is provided. However, in the case of log o, the model is much more sensitive. Current state-
of-the-art band gap predictors that operate on composition alone typically achieve an MAE
of 0.30-0.45 eV [254]. However, band gap predictor performance is expected to improve over
time, and this will further increase the utility of the CraTENet model in screening scenarios
with predicted band gaps.

band gap MAE (eV)
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Figure 4.5: Performance of the CraTENet+gap model (in terms of R?) as a
function of band gap quality. A 90-10 holdout experiment was performed, and
the actual gaps in the test set were corrupted by adding increasing amounts of
Gaussian noise, before the performance of the model was assessed. The dotted
lines represent the performance of the CraTENet model without a provided band

gap.

4.3.2 Band Gap Prediction

A dataset consisting of compositions and their corresponding DFT-derived band gaps was
formed by taking all of the unique compositions in the Materials Project, and consisted of
89,444 entries. A CrabNet model was trained on this dataset, using the minimization of the
Robust L1 loss as the objective. To establish the generalization error of the model, 10-fold
cross-validation was performed (as described in the Methods). Across the 10 folds, the model
achieved a mean R? of 0.71, and a mean MAE of 0.38 eV. A final model was trained on all



CHAPTER 4. THERMOELECTRIC TRANSPORT PROPERTY PREDICTION 59

89,444 entries for 101 epochs, which was determined to be the ideal number of epochs required
(i.e. the mean number of epochs required across the 10 folds). This band gap predictor was
subsequently used to provide band gaps when scanning composition space where structure
and band gaps were unknown.

4.3.3 Searching Composition Space for New Thermoelectrics
Materials Project Compounds not in the Ricci Database

Of the 126,335 structures we obtained from the Materials Project, we derived 89,444 unique
compositions. Since the compounds in the Ricci database originate from the Materials Project,
we obtained 54,816 unique compositions when removing the compositions found in the Ricci
database. This collection of 54,816 compositions forms a sizeable and convenient search
space, since GGA band gaps have already been computed for these compounds, and their
structures are known. Moreover, we verified that the distributions of compositions in this
dataset and the Ricci database are similar (see Supplementary Figure 2 in Appendix B). Thus,
we apply our CraTENet+gap model to this space, in an attempt to surface novel compounds
which may represent promising thermoelectrics. We verify the quality of our predictions by
performing ab initio calculations for a small subset of these compounds.

Making predictions for tens of thousands of compounds with the CraTENet model is
computationally inexpensive in comparison with ab initio calculations, since inference is fast,
aided by the use of GPUs and the inherent parallelism in neural networks. After performing
inference on this space, we selected 23 materials from this collection that spanned a range
of different thermoelectric properties and band gaps. For example, the predicted Seebeck
values ranged from -1200 to 1200 uV/K. When comparing the values produced using the
CraTENet+gap model and those obtained through ab initio methods, we found that the R?
was between 0.87 and 0.88, and the MAE was between 72 and 79 uV/K (Figure 4.6 and
Supplementary Figure 15 in Appendix B). Although the agreement is generally good, there
are some outliers (notably related to compositions SbTelr and LiNbN,). The performance of
the model at specific compositions is difficult to rationalise, as it reflects both how well similar
compositions are represented in the training set and the error related to the incompleteness
of composition as a descriptor.

Moreover, we extracted the top 1000 compounds by predicted power factor, for each of
p and n doping types (the lists are provided in the dataset accompanying this chapter). We
selected 3 p-type selenides for performing ab initio calculations: GaCuTeSe, InCuTeSe, and
CeSbSe. These compounds do not appear to have been studied as thermoelectrics before,
but they seem promising as they include elements like Cu, In, Sb, and Te that are present
in well-known thermoelectrics. After carrying out ab initio calculations, we found generally
good agreement with the CraTENet predictions (Figure 4.7; see Supplementary Figures 4-9
in Appendix B for more comprehensive plots of the predictions).
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Figure 4.7: Predictions of the Seebeck and logo for GaCuTeSe using the
CraTENet models and the ab initio procedure, for p-type doping, at a level of
10" ¢cm™3. The band gap value used, 0.387 eV, was obtained from the Materials
Project. The shaded regions represent the + standard deviation (i.e. the square
root of the predicted variance).

Hypothetical Selenides

Since the CraTENet model requires only composition as input, it is conceivable that arbi-
trarily large hypothetical composition spaces could be generated and then processed by the
model. SMACT is a software library that facilitates the generation of composition spaces,
while adhering to chemical bonding rules, resulting in compositions which are chemically sen-
sible [255]. Selenium-based materials are very promising thermoelectrics, because they exhibit
similar properties as record-holding thermoelectric tellurides, but with the advantage that Se
is much more Earth-abundant and cheaper than Te. We then chose to focus on creating
a composition space of ternary selenides. Using SMACT, we generated 269,846 ternary se-
lenide compositions, containing elements with an atomic number less than 84 (to avoid the
heavy radioactive elements). The CraTENet and CraTENet+gap models were then used to
make predictions of the thermoelectric transport properties of these compositions. As the
CraTENet+gap model requires a band gap, we use our composition-only CrabNet band gap
predictor as the source of the band gaps for this space. Since there is uncertainty in the band
gap prediction, we make a separate prediction of thermoelectric transport properties using the
predicted gap, the predicted gap plus the standard deviation, and the predicted gap minus the
standard deviation. We find that this technique is useful for understanding the sensitivity of
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the predictions to the band gap value for a particular composition.

Having made predictions on these SMACT-generated selenides, we then rank the com-
positions by power factor (as described in the previous section). We make the top 1000
compositions publicly accessible in the code and dataset repository accompanying this chap-
ter. There are several interesting selenides in that list, involving elements like bismuth (e.g.
LiBiSe,) or thallium (e.g. NaTISe,) which are often present in known thermoelectric materi-
als. To the best of our knowledge, these compounds have not been studied as thermoelectrics
in the literature. To validate the model’s predictions, we carried out ab initio calculations on
these two compounds, given that their structures are reported in the OQMD database [159].
A comparison of the predictions and the ab initio values for each is provided in Figures 4.8a
and 4.8b. (See also Supplementary Figures 10-13 in Appendix B for more comprehensive plots
of the predictions).

In the absence of DFT-calculated band gaps as input, the performance of the CraTENet
model for these compounds is not as impressive in predicting the DFT-calculated values of
the transport coefficients. The model using the predicted band gaps as an input seems to
perform generally better than the model with no gap, but the deviations are still considerable,
especially at high temperatures. All models, for example, overestimate the electrical conduc-
tivity of LiBiSe, by at least half an order of magnitude. Still, the DFT calculations confirm,
within their own limitations, that these compounds have attractive values of the electronic
transport coefficients; they deserve further investigation, either using more accurate theoreti-
cal predictions with methods beyond the GGA and the CRTA, or experimentally. Clearly, the
main use of the methods presented here cannot be the quantitative prediction of the transport
properties of individual compounds, but rather the identification of interesting candidates in
unexplored regions of the compositional space.
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Figure 4.8: Predictions of the Seebeck and log o for a) LiBiSe,, and b) NaTISe,
using the CraTENet models and the ab initio procedure, for n-type doping, at
a level of 10?° cm™3. Predicted band gap values were used: blue represents
the initial prediction, green represents the prediction plus the predicted standard
deviation, and red represents the prediction minus the predicted standard deviation
(i.e. square root of the predicted variance).

4.4 Conclusions

Approaches based on HTS combined with ML seem promising for suggesting novel candidate
materials, since very large areas of chemical space can be examined quickly and efficiently.
Here, we have shown that such an approach can be used to identify promising candidate
thermoelectric materials based on the screening of potential compositions only, optionally
supplemented with band gaps.

Several aspects of the approach described here contribute to its utility. First, the use
of multi-output regression is helpful, and well-suited to the problem, since thermoelectric
transport properties are dependent on factors such as temperature, doping level, and doping
type. Conversely, an approach that requires parameters such as the temperature, doping
level and doping type as input is problematic, since it increases the dimensionality of the input
space, and also leads to inputs that resemble each other closely, as a result of the combinatorial
nature of such a dataset [256].

Second, we believe that regression is a more useful choice for this learning task when
compared to classification, in the context of searching for new materials. Several existing
studies have involved the training of classification models of thermoelectric properties [43,
257]. These classification approaches involve predicting whether a thermoelectric property
is in a desired range, or above (or below) a specified threshold. We argue that regression
models, such as ours, provide a level of increased utility via their finer-grained predictions,
which is critical when sifting through many thousands of potential candidates. A binary
classifier simply provides no convenient means of differentiating the candidates labelled as
promising. Although there is room for improvement in the quality of the predictions made by
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our regression models, we find that at the current performance level, the approach is effective
at surfacing promising candidates.

Third, the use of an attention-based model, in combination with the Robust L2 loss, both
leads to superior performance and provides unique advantages. The learned attention weights
provide an opportunity to interpret the predictions made for a composition [258], and this
could be a useful aspect of using the CraTENet model when analyzing individual materials
(rather than in bulk, as we have focused on here). Additionally, the Robust L2 loss is especially
useful in that it allows the model to learn to quantify the uncertainty arising from mapping
the composition (and optionally band gap) to thermoelectric properties. This provides users
with a quantitative measure of the certainty of a prediction.

Future work will involve follow-up investigations of the candidate materials proposed here,
using more rigorous ab initio methods. Should the candidates continue to appear promising,
attempts may be made to synthesize the materials and measure their thermoelectric properties
in the laboratory. In terms of the model itself, future work may involve augmenting the objec-
tive so that it takes into account the shape of the underlying manifold on which the multiple
target values exist [259]. It is important to note that optimal thermoelectric transport prop-
erties are not the only criteria that establishes a material as a practical thermoelectric; other
properties, such as dopability and stability, need to be considered. Thus, the computational
discovery of novel thermoelectrics will be aided by the development of a suite of predictive
models.

It is clear that the approach we describe depends heavily on the quality of the data it is
trained on. The Ricci database was derived using theoretical constraints such as the CRTA
for solving the Boltzmann transport equation, and the GGA for the exchange correlation
functionals, which have important limitations. However, the approach we describe here can
continue to be used with future databases of computed thermoelectric properties that will be
obtained with more accurate theoretical methods, with improved data quality.

Finally, to demonstrate the predictions made by the CraTENet model, we have deployed
an internet-accessible web browser-based application, located at
https://thermopower.materialis.ai, that allows a user to submit a material's composition and
(optionally) its band gap, and returns thermoelectric transport property predictions for the
material, as made by the CraTENet model.


https://thermopower.materialis.ai

Chapter 5

Crystal Structure Generation with
Large Language Models

5.1 Introduction

In this thesis, we have focused on the prediction of properties of materials based solely on
their composition. However, to properly define a material, both composition and structure are
essential. The accurate evaluation of properties in a solid using ab initio techniques requires
structural knowledge. Therefore, to confirm ML predictions of properties from composition,
a first step is to generate a plausible structure for each composition.

To elucidate the structures of unknown materials, a Crystal Structure Prediction (CSP)
approach is often employed, which attempts to derive the ground state crystal structure for
a given chemical composition under specific physical conditions [260]. CSP approaches are
relatively computationally expensive, typically involving ab initio techniques [261]. They often
begin with the generation of candidate structures. Examples are the AIRSS [262, 263] and
USPEX [264] approaches. Initializing the search space with sensible structures increases the
likelihood of success, and decreases the amount of computation required. It is therefore
expected that effective crystal structure generation tools would help accelerate the prediction
of structures using CSP methods.

Increasingly, generative modeling approaches based on autoencoder architectures and gen-
erative adversarial networks (GANs) [121] have been used to generate crystal structures
[265-269]. Indeed, generative modeling has become commonplace, an outcome catalyzed
by astounding advancements in the computational generation of images, audio and natural
language over the last several years [270]. The Large Language Model (LLM), backed by the
Transformer architecture [238], is the approach behind state-of-the-art performance on natural
language processing tasks. This approach begins with a generative pre-training step, which is
autoregressive in nature, involving the unsupervised task of predicting the next token given a
sequence of preceding tokens [124]. When such models are scaled to billions of parameters,
their effectiveness becomes quite remarkable, as tools such as ChatGPT [127] demonstrate.

LLMs have recently been used in the context of materials science [271-277]. These
attempts have been focused on using existing and publicly accessible LLMs, training and tuning
LLMs for natural language generation tasks involving chemical subject matter, or training
LLMs on a corpus of expanded chemical compositions for the purposes of generating unseen
compositions. However, the potential of training LLMs on textual representations of crystal
structures has not been considered. A sole exception is a recent pre-print by Flam-Shepherd
and Aspuru-Guzik, where the idea of generating the structures of molecules, materials, and
protein binding sites with LLMs has been preliminarily explored [278].

65



CHAPTER 5. CRYSTAL STRUCTURE GENERATION 66

Here, we report an LLM specifically designed for crystal generation. This model is dis-
tinctively trained on textual representations of inorganic crystal structures, specifically in the
Crystallographic Information File (CIF) format [279], instead of relying solely on natural lan-
guage corpora, or chemical compositions alone. The motivation for this approach originates
from two conjectures: The first states that a sequence of symbols (i.e. tokens) is an appro-
priate representation modality for many predictive tasks, including those involving chemical
structure. The idea of representing any domain with a sequence of tokens may at first seem
counter-intuitive. However, consider that even images can be represented this way, and be
subject to the autoregressive language modeling of pixels [280]. This challenges the notion
that domain-specific representations, such as graphs for chemical structure [112], are neces-
sary for superior performance. The second conjecture states that LLMs learn more than simply
surface statistics and the conditional probability distribution of tokens. Indeed, autoregressive
pre-training involving next-token prediction may result in learning an effective world model:
an internalized causal model of the processes generating the target phenomena. A model
which simply learns spurious correlations in the data is less desirable, as it may have greater
difficulty in generalizing beyond the training distribution. Recent studies have demonstrated
that LLMs trained on sequences of board game play (e.g. chess and Othello) do indeed track
the state of the board, and probes of the internal activations of the model reveal the exis-
tence of representations of various abstract concepts specific to the domain [281, 282]. We
therefore asked whether a model trained to predict the 3-dimensional coordinates of atoms,
digit-by-digit, could learn the chemistry implicit in crystal structures, and generate unseen
structures, borrowing from its model of the world of atoms.

As such, we herein describe the CrystaLLM model, a tool for crystal structure generation
trained on an extensive corpus of CIF files representing the structures of millions of inorganic
solid-state materials. Unlike small molecule organic compounds, the generative modeling of
inorganic crystals presents unique challenges: the structures are complex and periodic, are
not readily described by simple graphs, are imbued with different forms of symmetry, and
can be constructed from more than 100 different elements. Even so, the model is capable
of reliably generating correct CIF syntax and physically plausible crystal structures for many
classes of inorganic compounds. Moreover, we demonstrate how sampling from the model
can be improved using the Monte Carlo Tree Search (MCTS) algorithm [283, 284] together
with a pre-trained graph-based neural network predictor of formation energy.

5.2 Methods

CrystalLLM is a Transformer-based, decoder-only language model of the CIF file format, trained
autoregressively on a corpus of millions of CIF files (Figure 5.1a). Rather than training on
structural representations derived from the CIF files, the model is directly trained on the
standardized and tokenized text contents of the CIF files. During training, the model is
given a sequence of tokens from the corpus of CIF files, and is tasked with predicting the
tokens which follow each of the given tokens. Once the model is trained, it can be used to
generate new CIF files, conditioned on some starting sequence of tokens. Generating a CIF
file involves repeatedly sampling tokens from the model, conditioning on the accumulated
generated content, until a terminating condition is reached (Figure 5.1b).

To assess the ability of the model to generate structures, a test set of approximately
10,000 randomly chosen CIF files is withheld from a training set of approximately 2.2 million
CIF files, and the model is tasked with generating CIF files beginning from prompts constructed
from the test set. Moreover, we assemble what we call a challenge set, which consists of 70
structures, 58 of which were obtained from the recent literature, and were not in the training
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set. The remaining 12 structures are from the training set, and are included as representatives
of different structural classes. They serve to assess the model’s ability to recover what it has
seen in training, and as a means of comparing the model's generations of seen and unseen
structures. (Supplementary Table 1 in Appendix C contains the full list of the challenge set
compounds, and their sources.) The permutative nature of the dataset, with many structures
having been derived by substituting atoms into pre-defined templates, results in a test set with
the potential for some structures to closely resemble those of the training set. The challenge
set provides a source of structures that are guaranteed to have been produced through a
different process. Moreover, the challenge set constitutes a manageable set of compounds
that reflects a variety of solid-state structural classes, allowing for a fine-grained picture of the
model’s capabilities. The test set, on the other hand, is better suited for a bulk assessment,
and originates from the same distribution as the training set.

The following terminology is used in the remainder of this article: A formula, reduced
formula, or reduced composition, refers to the empirical formula, or formula unit, which is
the simplest, whole-number ratio of atoms in the compound. An example of a formula is
Ba,MnCr. A cell composition is a chemical formula referring to the total number of atoms
of each type in the unit cell of a crystal. It represents the chemical formula of the compound
as it would appear in the crystallographic unit cell, which might contain Z formula units. An
example of a cell composition is BagMn3Crs, with a Z of 3.

5.2.1 Training and Learned Representations

Training consists of iteratively sampling sequences of tokens, of fixed length, and adjusting the
model's parameters so that it becomes progressively better at predicting which token should
follow a preceding sequence. (See the Methods, and Supplementary Note 2 in Appendix C,
for more information on the model architecture and training.) Since it has been observed that
LLM performance improves as the number of model parameters is increased [285], we train a
small model, consisting of 25 million parameters, and a large model, consisting of 200 million
parameters.

To monitor the progress of training, we withhold a validation set that constitutes 10% of
the set held-out for training. Over the course of training, the model continues to improve in
terms of its total cross-entropy loss on the validation set, even after 90,000 iterations (see
Supplementary Figure 2 in Appendix C). We note, however, that improvements appear to
become smaller with more training time.

As a consequence of the model’s architecture, each token in a processed sequence is
mapped to a distinct learned vector representation using an embedding table, whose pa-
rameters are adjusted during training. The result is that, through autoregressive training,
distributed representations are learned for each symbol in the vocabulary. The vocabulary
consists of symbols for atoms, space groups, and numeric digits. (See Supplementary Note 1
in Appendix C for a detailed description of the vocabulary and the tokenization procedure.)
The training process appears to result in sensible representations of these various symbols.
Plots of dimensionally-reduced atom and space group vectors demonstrate a logical structure,
where similar entities cluster together, indicating that intrinsic properties and relationships
are captured. (See Supplementary Figure 3 in Appendix C for plots of the learned atom
vectors, and Supplementary Figure 4 in Appendix C for a plot of the learned space group
vectors.) Moreover, examination of the learned numeric digit vectors reveals that numerical
relationships are captured in the representations, as measurements of cosine and Euclidean
distances between the learned digit vectors demonstrate a logical spatial relationship. (See
Supplementary Figure 5 in Appendix C.) While not explored further in this work, we note that
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distributed representations of chemical entities, such as atoms, are useful for the prediction
of materials properties [243, 286].

5.2.2 Dataset Curation

The dataset was assembled by obtaining structures from the Materials Project [155], the
OQMD [159], and NOMAD [287], which were originally optimized using density functional
theory (DFT) simulations. Specifically, the structures from the Materials Project were down-
loaded in April 2022, and from NOMAD in April 2023. We use version 1.5 of the OQMD,
which was released in October 2021. In total, approximately 3.6 million structures were ob-
tained. This dataset consists of compounds containing anywhere from 1 to 10 elements, with
most consisting of 3 or 4 elements. The elements up to and including atomic number 94 are
present, with the exception of polonium, astatine, radon, francium, and radium. The dataset
contains roughly 800,000 unique formulas, and 1.2 million unique cell compositions. When
paired with space groups, there are 2.3 million unique cell composition-space group pairs. (See
Supplementary Figure 1 in Appendix C.) To choose between duplicate structures containing
the same cell composition and space group, the structure with the lowest volume per formula
unit was selected. The 2.3 million structures in this dataset were converted to CIF files using
the pymatgen library [288], and were used for training. The CIF files were created with the
pymatgen option for symmetry finding tolerance set to 0.1 A. All floating point numbers in the
files were rounded to 4 decimal places. The dataset was split randomly into train, validation,
and test sets, such that the training set consisted of 2,047,889 CIF files, the validation set
227,544 CIF files, and the test set 10,286 CIF files.

5.2.3 CIF Syntax Standardization and Tokenization

The dataset of CIF files was standardized and tokenized prior to training. The vocabulary
consisted of CIF tags, space group symbols, element symbols, numeric digits, and various
punctuation symbols, for a total of 371 symbols. After tokenization, the training set consisted
of 768 million tokens. See Supplementary Note 1 in Appendix C for further details.

5.2.4 Generative Pre-training

The generative pre-training step requires a vocabulary, V, and an ordered list of tokens U =
(U1, ...y up), With u; € V. We want to maximize the following likelihood:

LO:U) = ZlogP(uilui_c,...,ui_l;H) (5.1)

where c is the size of a context window, P is the conditional probability distribution to be
modelled, and @ the parameters of a neural network. We therefore minimize J(6;U) = —L,
using stochastic gradient descent to adjust the parameters. We use a multi-layer Transformer
decoder [289] for the neural network, as described in [124]. Our model consists of 25 million
parameters, with 8 layers, 8 attention heads, and an embedding size of 512. We decay the
learning rate from 1073 to 10~ over the course of training, and use a batch size of 32. For
further details, see Supplementary Note 2 in Appendix C.

5.2.5 Evaluation of Generated Structures

A CIF file is said to be valid if: 1) the declared space group is consistent with the generated
structure, 2) the generated bond lengths are reasonable, and 3) the declared atom site multi-
plicity is consistent with the cell composition. To check if the generated structure is consistent
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with the printed space group, we use the SpacegroupAnalyzer class of the pymatgen library,
which uses the spglib library [290]. To check if bond lengths are reasonable, we first use a
Voronoi-based nearest-neighbour algorithm in pymatgen to identify bonded atoms; then, we
establish expected bond lengths based on the electronegativity difference between the bonded
atoms, and their ionic or covalent radii. We classify a structure as having reasonable bond
lengths if all the detected bond lengths are within 30% of the corresponding expected bond
lengths. See Supplementary Note 3 in Appendix C for more details on how the validity of a
generated CIF file is established.

In some scenarios, we wish to determine whether a generated structure matches a target
structure, which typically represents a ground-truth structure. To determine whether two
structures are a match, we use the pymatgen StructureMatcher class, which performs a
structural similarity assessment of two crystals. We use a fractional length tolerance of 0.2,
a site tolerance of 0.3 A, and an angle tolerance of 5 degrees, which are the default values in
pymatgen. Both structures are reduced to primitive cells before matching, and are scaled to
equivalent volume.

5.2.6 Benchmark Evaluations
CSP Tasks

To evaluate CrystaLLM on the Perov-5, Carbon-24, MP-20 and MPTS-52 benchmarks, we
consider two different scenarios: 1) the model is trained only on the benchmark training sets,
and 2) the model is trained on the full 2.3 million-structure dataset minus the validaton and
test set structures of the MPTS-52 dataset. For the first scenario, both the small and large
model architectures are used. We use the same 60-20-20 train/validation/test splits used in
the CDVAE study [266] for the Perov-5, Carbon-24, and MP-20 datasets, and we use the same
27,380/5,000/8,096 train/validation/test split used in the DiffCSP study for the MPTS-52
dataset. These models are trained for a fixed number of iterations: the Perov-5 model is
trained for 1,750 iterations, the Carbon-24 model is trained for 8,000 iterations, the MP-20
model is trained for 5,000 iterations, and the MPTS-52 model is trained for 3,500 iterations.
For the second scenario, we train a model with the small model architecture on the full 2.3
million-structure dataset minus the structures of the MPTS-52 validation and test sets. The
model is trained for 100,000 iterations. We decay the learning rate from 1073 to 10~ over
the course of training, and use a batch size of 32, for all models. For both scenarios, we
take the structures of the test set(s), and prompt the models with only the cell compositions
of these structures. Models are given 20 attempts to generate a structure. We use top-k
sampling with £ = 10 and a temperature of 1.0 for all models and in both scenarios.

To establish the match rate and RMSE, we use the same procedure defined in the DiffCSP
study. Specifically, we use the pymatgen StructureMatcher class, with a fractional length
tolerance of 0.3, a site tolerance of 0.5 A, and an angle tolerance of 10 degrees, to determine if
a generation attempt matches the ground truth structure. The RMSE, normalized by ¢/V/N
(where V is the volume of the lattice and N is the number of sites), is computed between the
corresponding ground truth structure and each matching generated structure. The test set's
average RMSE is computed by taking the lowest RMSE for each entry’s matching generated
structure.

Unconditional Generation Tasks

To evaluate CrystalLLM on the unconditional generation tasks, we train a model on the training
sets of each of the Perov-5, Carbon-24 and MP-20 datasets, using both the small and large
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model architectures. We use the same 60-20-20 train/validation/test splits used in the CDVAE
study [266]. These models are trained for a fixed number of iterations: the Perov-5 model is
trained for 5,000 iterations, the Carbon-24 model is trained for 8,000 iterations, and the MP-
20 model is trained for 5,000 iterations. We decay the learning rate from 1073 to 10~* over
the course of training, and use a batch size of 32, for all models. Models are then given 10,000
generation attempts, starting from the prompt ‘data_'. Each generation attempt results in
both a generated cell composition and structure. We use top-k sampling with k& = 30 and
temperatures of 0.5 and 0.7 for all models.

To establish the unconditional generation metrics, we follow the same procedure defined in
the CDVAE study. Specifically, structural fingerprints are created using the CrystalNNFingerprint
class with the “ops” preset, and compositional fingerprints are created using the EplementProperty
class with the “magpie” preset, both provided by the matminer library [246]. For the coverage
metrics, we use the standard cutoff values: for MP-20, we use a structure cutoff of 0.4 and a
composition cutoff of 10; for Carbon-24 and Perov-5, we use a structure cutoff of 0.2 and a
composition cutoff of 4.

5.2.7 Monte Carlo Tree Search Decoding

The MCTS search tree is constructed iteratively, as the search proceeds. We maintain a tree
width of 5, and maximum tree depth of 1,000. The PUCT constant cpyct is set at 1.0. The
expansion involves adding child nodes based on predicted probabilities. When a node has
a probability of 0.99 or greater, it becomes the only child node, and bypasses the rollout
step. During the rollout step, the CrystaLLM model is prompted with token sequences until
a terminating condition is met, up to a maximum of 1,000 tokens. Evaluation is conducted
using the ALIGNN model of formation energy per atom. The ALIGNN model is given the
generated CIF file, and the predicted formation energy per atom (in eV) is used to compute
the reward. The backpropagation step accumulates outcomes in the tree nodes, scoring each
based on the quality of the generated structure, with a reward constant A of 2.0. For all
compounds, we perform 1,000 search iterations. See Supplementary Note 4 in Appendix C
for a more detailed description of the algorithm.

5.2.8 Uniqueness and Novelty of Generated Materials

To assess the model’s ability to generate materials unseen in training, the model is prompted
with ‘data_’ 1,000 times, each resulting in a CIF file. We use top-k sampling with £ = 10
and a temperature of 1.0. (In principle, the chosen temperature should affect the trade off
between novelty rate and how reasonable the generated structures are, so temperature should
be considered a parameter to be optimized in future studies.) To establish uniqueness and
novelty of the generated structures, we use the pymatgen StructureMatcher class, with a
fractional length tolerance of 0.2, a site tolerance of 0.3 A, and an angle tolerance of 5 degrees.
A generated compound is considered unique if it represents a structural type that appears only
once amongst all compounds generated during the experiment, under the specified tolerances
for lattice dimensions and atomic positions configured for the StructureMatcher class. A
generated compound is considered novel if it is structurally distinct from all of the compounds
in the dataset used to train the model.

5.2.9 DFT Calculations

For the pyrochlore case study, a small number of DFT calculations were performed using
VASP, following as closely as possible the settings used in the OQMD project (where most of
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the pyrochlore structures seen in training were taken from). For example, the recommended
PAW potential was used for each element: Zr_sv for zirconium, Hf_pv for hafnium, Lu_3 for
lutetium, Pr_3 for praseodymium, Ce_3 for cerium (for the remaining elements, the name of the
PAW potential simply matched the element’'s symbol). The Perdew-Burke- Ernzerhof (PBE)
exchange-correlation functional [47], in the generalized-gradient approximation, was used in all
calculations. Hubbard (PBE+U) corrections were applied for transition metal elements with
unfilled d levels (Usg=3.8 €V for Mn and 3.1 eV for V). Although the cell parameters reported
here correspond to the conventional cubic cell with 8 formula units, the DFT calculations
were performed using the primitive cell with two formula units, and sampling of the reciprocal
space corresponding to that primitive cell was performed using a 7x7x7 grid, as done for all
pyrochlore calculations in the OQMD project.

For the DFT calculation of the energy against hull of the unconditionally generated com-
pounds, we also used the VASP code, following the Materials Project settings [291], i.e. same
functional (PBE), U.g parameters, PAW potentials, etc. to ensure compatibility with reference
compounds in the hull. Structures generated with CrystaLLM were relaxed to the nearest local
minima within the generated unit cell, without symmetry constraints on the atomic coordi-
nates (we applied small random displacements of less than 0.1 A to the initial coordinates). All
the DFT calculations converged, electronically and ionically, within the standard convergence
thresholds in the Materials Project setup.

5.2.10 Web Application

The web application is made available at https://crystallm.com. The user of the application
is presented with a text field requiring a formula to be entered. Optionally, they may provide
the number of formula units (Z), the desired space group, and the size of the model. Once
they press the Generate button, a request is sent to a GPU server which has the model in
memory. The request is converted into a prompt, and the generated contents are returned to
the user. If no Z is provided, we scan through Z values of 1, 2, 3, 4, 6, and 8, and return the
first valid structure generated by the model. We validate the generated structure using the
same procedure described previously, checking that the generated structure is consistent in
terms of the printed space group, and other elements of the CIF file. If no valid structure can
be found, the user is presented with an informative error message, including the option to view
the generated content. Requests typically take several seconds to process, but can take longer
if no Z is provided and the model has trouble generating a valid structure for the attempted
Z values. Generated structures are displayed in a web browser-based 3D structure viewer
provided by the Crystal Toolkit framework, upon which the front-end of the web application
is built [292].

5.2.11 Data Availability

The structures used in the experiments described in this chapter were obtained from the
Materials Project (https://materialsproject.org/), the OQMD (https://ogmd.org/), and NO-
MAD (https://nomad-lab.eu/). All structures were made available by those sources under
the Creative Commons Attribution 4.0 License [293].

All trained models, training sets, and artifacts generated by the models have been deposited
to Zenodo. The files are publicly accessible at: https://zenodo.org/records/10642388. All
files are released under the CC-BY 4.0 license.
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5.2.12 Code Availability

The code for training and using the CrystaLLM model is open source, released under the MIT
License. The code repository is accessible online, at:
https://github.com/lantunes/CrystaLLM.

5.3 Results and Discussion

5.3.1 Generalizing to Unseen Structures

To evaluate the ability of the model to generate an unseen structure, the model is prompted
with the structure’s cell composition, and allowed to generate up to 3,000 tokens. The prompt
includes the first line of the CIF file, which consists of the data block header, containing the cell
composition of the structure. Subsequently, the model is prompted with both the structure’s
cell composition and space group, and again allowed to generate up to 3,000 tokens. The
prompt includes the first several lines of the pre-processed CIF file, up to the line containing
the specification of the space group. Prompting the model with both the cell composition and
space group allows us to assess how reliant the model is on the space group. This process is
repeated for all CIF files of the held-out test set (10,286 in total).

The generated CIF files are then assessed for correctness and quality. Any syntactically
incorrect CIF files are declared invalid. Syntactically correct CIF files are subjected to further
analysis, and are considered to be valid only if specific criteria are met, such as being consistent
in terms of generated structure and declared space group, and having reasonable bond lengths
(see Supplementary Note 3 in Appendix C for further details on the validation of generated
CIF files). The results of evaluating the generation of the CIF files of the test set using the
small model are presented in Table 5.1.

Table 5.1: Performance of the small model on the held-out test set. The percent-
ages represent the fraction of test set compounds which meet the corresponding
criteria. For example, the first row represents the percentage of test set com-
pounds where the declared space group in the generated CIF file is consistent with
the generated structure. Valid generated length refers to the length of a valid
generated CIF file in terms of the number of tokens.

No Space Group With Space Group

Space Group Consistent 98.8% 99.1%
Atom Site Multiplicity Consistent 99.4% 99.4%
Bond Length Reasonableness Score  0.9878 + 0.0686 0.9878 £+ 0.0671
Bond Lengths Reasonable 94.6% 94.6%
Valid 93.8% 94.0%
Longest Valid Generated Length 1145 970

Average Valid Generated Length 331.885 + 42.567  339.002 + 41.361

The CIF files generated by prompting the model with the cell composition and space
group were compared to the corresponding CIF files of the test set using a structure matching
algorithm. The fraction of matching structures is presented in Table 5.2.
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Table 5.2: Structure matching results for the test set when the space group is
included in the prompt. The Reduced Unseen column represents the results for
formulas that were not seen in training with any Z. 1

All Reduced Unseen
At least 1 match within 3 attempts 88.1% 86.3%
All 3 attempts matching 67.4% 70.0%
Matched on 1st attempt 78.4% 78.7%
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We further examined how closely the generated cell parameters resembled the actual cell
parameters, for the cases where there was a structural match. We took the first matching
structure for samples that had at least one generated structure matching the test set structure,
and measured the R? and mean absolute error (MAE) for the true versus generated cell
lengths, the true versus generated (i.e. printed) volume, and the implied (from generated cell

parameters) versus generated volume. The results are presented in Figure 5.2.

1For example, if NalCl1 were in training, Na2CI2 may be in All but not in Reduced Unseen.
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Figure 5.2: a The generated cell lengths for matching structures of the test set
vs. the true cell lengths, when space group is included. b The generated cell
volumes for matching structures of the test set vs. either the true cell volumes,
or the cell volumes implied from the generated cell parameters, when space group

is included.
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To further assess the model’s ability to generalize to unseen structures, we prompted the
model with the cell compositions of the challenge set. The challenge set contains 58 structures
not seen in training. These structures were all manually sourced from the recent literature,
and represent experimentally characterized materials. Crucially, these compounds originate
through a process different from the process which generated the training set (namely, a high-
throughput DFT analysis of hypothetical materials). They also represent a variety of different
structural classes, such as intermetallics, silicates, sulfides and selenides, borates, phosphates,
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carbonates, and complex mixed-anion compounds.

Both the small and large models were prompted with the cell compositions of the challenge
set, both with and without the space group. A total of 100 attempts were made to generate
a structure from the given cell composition (and optionally space group). We record the
successful generation rate, representing the fraction of compounds where at least one valid
CIF file was generated in the 100 attempts, and the true match rate, representing the fraction
of compounds where there was a structural match between a valid generated structure and
the true structure reported in the literature. The results are presented in Table 5.3 and
Supplementary Tables 2 to 5 in Appendix C.

Table 5.3: Results of the small and large models on the challenge set, both with
a space group (‘s.g.’) and without. The first row represents the percentage of
cases where the model was able to generate a valid structure within 100 attempts.
The second row represents the percentage of cases where a generated structure
matched the true structure, for the compounds seen in training. The last row
represents the percentage of cases where a generated structure matched the true
structure, for unseen compounds only.

Small model Large model
no s.g. with s.g. nos.g. with s.g.
Successful Generation Rate  85.7% 88.6% 87.1% 91.4%
Match Rate (Seen) 50.0%  50.0%  833%  83.3%
Match Rate (Unseen) 259%  345%  37.9%  41.4%

The results in Table 5.3 indicate that inclusion of the space group in the prompt increases
the likelihood of generating a valid structure, and of generating a match with the true structure.
The large model appears to be superior to the small model in all categories. While the models
can recover the reported structure more often when the structure was seen in training, it
is noteworthy that they are able to generate unseen structures which match the reported
structure in up to 40% of the cases.

5.3.2 Comparison with Other ML-based Approaches

Generative models of materials based on advanced ML techniques have been developed re-
cently, some concurrently with this work. Due to the unavailability of source code and complete
benchmarking results for all these emerging models, conducting an in-depth comparison be-
tween the approaches remains challenging. Nevertheless, here we present a comparison with
other ML-based approaches. CDVAE [266], DiffCSP [294], DiffCSP++ [295] and UniMat
[296] are examples of diffusion-based approaches, whereas Gruver et al. [297] introduced a
fine-tuned version of the LLaMA-2 model [298] for crystal structure generation. DiffCSP fo-
cuses on crystal structure prediction through an equivariant diffusion process, while CDVAE
uses a diffusion-based approach within a variational autoencoder framework for generating
periodic materials. DiffCSP++ augments the equivariant diffusion process by introducing
support for space-group constrained generation, through the incorporation of prior knowl-
edge of Wyckoff positions which constrain the diffusion process. UniMat re-purposes the 3D
U-Net architecture [299, 300] for unconditional generation, and generation conditioned on
composition, and is trained on a large dataset of millions of structures.

We compare CrystalLLM to these models in both conditional and unconditional generation
settings. In the Crystal Structure Prediction (CSP, or conditional) generation setting, we
compare CrystaLLM to these models on four benchmarks: Perov-5 [301, 302], Carbon-24
[303], MP-20 [155], and MPTS-52 [304]. The Perov-5 dataset consists of 18,928 perovskites,
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Carbon-24 consists of 10,153 carbon allotropes, MP-20 consists of 45,231 stable inorganic
materials of various classes, while MPTS-52 consists of 40,476 various inorganic materials.
MPTS-52 is by far the most complex dataset, with up to 52 atoms in the unit cells of the
constituent structures. In the unconditional generation setting, CrystaLLM is compared to
these models on the Perov-5, Carbon-24, and MP-20 benchmarks.

The benchmark datasets have each been split into training, validation and test sets. All
models are trained solely on the training set. For the CSP task, the models are used to generate
20 structures for each of the cell compositions of the test set. The models are evaluated in
terms of the match rate, which is the fraction of compositions for which the true structure was
generated within n attempts (we tried n=1 and 20), and the average root mean squared error
(RMSE) of the closest candidate for each test set structure. For the unconditional generation
task, the models are given 10,000 generation attempts, and are evaluated in terms of metrics
such as validity rate and coverage. In the validity tests, following the metrics presented in
other studies, a structure is defined as valid if no interatomic distances are below 0.5 A, and a
composition is defined as valid if a charge neutral combination of the constituent atoms in the
generated stoichiometry is possible. Coverage measures how closely the generated materials
match the distribution of ground truth materials. Coverage precision is a measure of how
many generated materials are a close match to materials from the ground truth set and is an
indication of the quality of the generated materials. Being a close match is defined by distance
between the materials with a pre-defined metric (see Supplementary Note 5 in Appendix C for
more details). Coverage recall measures how many of the ground truth materials are matched
by at least one generated material, and is a measure of how diverse the generated materials
are. For example, a generating process could have high COV-P by simply generating the same
valid material each time, but COV-R would be low in this instance. The AM(S/C)D measures
are similar to coverage statistics, but measure the minimum distance between a generated
material and the materials in the ground truth set; these measures are also separated across
structural matching (AMSD) and composition matching (AMCD). While the COV-R and
COV-P metrics have become established for the purposes of evaluating generative models of
materials, we note that they must be interpreted cautiously, as they have several drawbacks.
Primarily, the metrics do not fully account for the novelty of the generated materials, focusing
instead on similarity, which depends on arbitrarily set thresholds. This can favor models which
are overfit to the dataset, and not necessarily generalizable. Moreover, the metrics can be
sensitive to the relative sizes of the test and generated sets, which can lead to potentially
misleading scores, since a larger generated set together with a smaller test set might result
in artificially high COV-R values, while a smaller generated set could inflate COV-P values.
The results for the CSP task are presented in Table 5.4, and the results for the unconditional
generation task are presented in Tables 5.5 and 5.6.

For the CSP task, we present results for three different versions of CrystaLLM. Versions
a and b are trained on the benchmark data only and differ in the size of the model used.
Version ¢ is trained on the full 2.3M training points minus the test set of MPTS-52 and
is included to demonstrate how the results improve with the size of training data, but is
not directly comparable to other models due to the different training data sets. For the
unconditional generation task, we present results for both the small and large CrystaLLM
models, with different sampling temperatures. Supplementary Table 8 in Appendix C contains
comprehensive results for the unconditional generation task.
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Table 5.4: Benchmark CSP results. Numbers in bold indicate the best n=20
result, while italicized numbers represents the best n=1 result, amongst the models
trained only on the benchmark training sets, where n represents the number of
samples generated for each structure of the benchmark test set. a Results for
the small model architecture trained only on the benchmark training sets. b
Results for the large model architecture trained only on the benchmark training
sets. ¢ Results for the small model architecture trained on the original 2.3M-
structure dataset without the structures of the MPTS-52 validation or test sets.
The CDVAE and DiffCSP results are taken from Jiao et al. [294].

Perov-5 Carbon-24 MP-20 MPTS-52
Model n  Match Rate RMSE Match Rate RMSE Match Rate RMSE Match Rate RMSE
CDVAE 1 45.31 0.1138 17.09 0.2969 33.90 0.1045 5.34 0.2106
CDVAE 20 88.51 0.0464 88.37 0.2286 66.95 0.1026 20.79 0.2085
DiffCSP 1 52.02 0.0760 17.54 0.2759 51.49 0.0631 12.19 0.1786
DiffCSP 20 98.60 0.0128 88.47 0.2192 77.93 0.0492 34.02 0.1749

CrystaLLM @ 1 47.95 0.0966 21.13 0.1687 55.85 0.0437 17.47 0.1113
CrystaLLM @ 20 98.26 0.0236 83.60 0.1523 75.14 0.0395 32.98 0.1197

CrystalLM ® 1 46.10 0.0953 20.25 0.1761 58.70 0.0408 19.21 0.1110
CrystaLLM b 20 97.60 0.0249 85.17 0.1514 73.97 0.0349 33.75 0.1059

CrystaLLM ¢ 1 - - - - - - 28.30 0.0850
CrystaLLM ¢ 20 - - - - - - 47.45 0.0780

Table 5.5: Validity and Coverage metrics for the unconditional generation tasks.
Numbers in bold indicate the best results for the given task. The LM-CH
(character-level tokenization) and LM-AC (atom+coordinate-level tokenization)
results are from Flam-Shepherd et al. [278]. The LLaMA 70B results are from
Gruver et al. [297]. T represents the sampling temperature.

Validity (%) Coverage (%)
Method Struct  Comp COV-R COV-P
MP-20
CDVAE 100.0 86.70 99.15 99.49
DiffCSP 100.0 83.25 99.71 99.76
DiffCSP++ 99.94 85.12 99.73 99.59
UnitMat 97.20 89.40 99.80 99.70
LM-CH 84.81 83.55 99.25 97.89
LM-AC 05.81  88.87 99.60 98.55
LLaMA 70B (7=1.0) 96.50 86.30 96.80 98.30
LLaMA 70B (7=0.7) 99.60 95.40 85.80 98.90

CrystaLLM small (r=0.5) 94.97  93.80 97.58 95.75
CrystaLLM large (7=0.5)  96.21  95.40 96.78 96.60

Perov-5
CDVAE 100.0 98.59 99.45 98.46
DiffCSP 100.0 98.85 99.74 98.27
DiffCSP++ 100.0 98.77 99.60 98.80
UnitMat 100.0 98.80 99.20 98.20
LM-CH 100.0 98.51 99.60 99.42
LM-AC 100.0 98.79 98.78 99.36

CrystaLLM small (r=0.5) 99.83  99.24 97.91 98.95
CrystaLLM large (7=0.7)  99.82  98.92 98.28 98.92

Carbon-24
CDVAE 100.0 - 99.80 83.08
DiffCSP 100.0 - 99.90 97.27
DiffCSP++ 99.99 - 100.0 88.28
UnitMat 100.0 - 100.0 96.50
CrystaLLM small (r=0.5)  99.86 - 99.80 98.96

CrystaLLM large (r=0.5)  99.90 - 99.75 99.52

78
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Table 5.6: Average Minimum Distance metrics for the unconditional generation
tasks. Numbers in bold indicate the best results for the given task. 7 represents
the sampling temperature.

Method AMSD-R AMSD-P AMCD-R AMCD-P
MP-20
CDVAE 0.154 0.188 3.620 4.014
UnitMat 0.097 0.119 2.410 2.410
CrystaLLM small (7=0.5) 0.106 0.095 3.729 1.762
CrystaLLM large (7=0.7) 0.090 0.077 3.299 2.114
Perov-5
CDVAE 0.048 0.059 0.696 1.270
UnitMat 0.046 0.074 0.711 1.399
CrystalLLM small (7=0.7) 0.025 0.027 1.055 1.287
CrystaLLM large (7=0.5) 0.027 0.020 1.144 1.319
Carbon-24
CDVAE 0.048 0.134 0.000 0.000
UnitMat 0.018 0.052 0.000 0.000
CrystalLLM small (7=0.7) 0.015 0.021 0.000 0.000
CrystaLLM large (7=0.5) 0.018 0.010 0.000 0.000

In the CSP task, CrystaLLM outperforms DiffCSP on three out of four benchmarks in
terms of RMSE for both n=20 and n=1, and in terms of match rate when constrained
to only a single generation attempt. This is achieved even in the most challenging of the
benchmarks, MPTS-52, which contains structures with larger unit cells and more atoms. In
the unconditional generation task, CrystaLLM is competitive with the other models, and also
achieves strong results in terms of compositional validity on MP-20 and Perov-5, and obtains
the highest COV-P value on Carbon-24. Furthermore, the best AMSD metrics are achieved
by CrystaLLM on all three benchmarks.

CrystaLLM has important advantages when compared to the other models. In comparison
to the diffusion-based methods, CrystaLLM supports both conditional and unconditional gen-
eration seamlessly, without requiring any architectural adjustments. More (or less) information
is simply provided in the prompt, accordingly. Conversely, DiffCSP requires architectural aug-
mentation to support unconditional generation, and CDVAE also requires an architectural
adjustment to support conditional generation. Another important advantage is that Crys-
taLLM natively supports space-group constrained generation, with no changes or external
processing required. Conversely, DiffCSP++ was devised as a separate approach dedicated to
handling space-group constrained generation. It relies on a template retrieval and substitution
method when the space group is unknown. In contrast, CrystaLLM generates a suitable space
group automatically, with no extra work required. The DiffCSP++ template-based approach
consequently makes it difficult to propose structures when no suitable template exists, which
is a limitation that CrystaLLM does not have. CDVAE and UniMat do not support space
group-constrained generation.

In comparison to the fine-tuned LLaMA-2 model, the largest CrystaLLM model has 200
million parameters, whereas the smallest fine-tuned LLaMA-2 model has 7 billion parameters,
a difference of more than an order of magnitude in the number of parameters. The smaller
size of CrystaLLM makes it easier to deploy for inference tasks, and much more accessible
for training and fine-tuning. Additionally, while the fine-tuned LLaMA-2 model supports
the constructs of natural language in its prompts, the flexibility of its inputs suggests that
CrystaLLM may be conditioned on other properties of the structure as well, including those
not traditionally included in the CIF format.

Finally, as a neural language model, CrystaLLM can leverage the established practice
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of fine-tuning, allowing the pre-trained model to be adapted for the prediction of materials
properties. There is far less precedent in fine-tuning models based on diffusion and variational
autoencoder architectures for tasks involving regression or classification.

The differences above between CrystaLLM and previous methods indicate that CrystaLLM
has the unique advantage of being a more flexible, general-purpose model, capable of support-
ing a number of different generation use cases, without requiring a switch between architectural
variants, or different models entirely, and which can be deployed in a cost-effective manner.
CrystaLLM can alternate seamlessly between unconditional generation (when neither compo-
sition nor space group is known), generation conditioned on composition only, and generation
conditioned on both composition and space group. Notably, it supports the conditioning of
structure generation on specific symmetry space groups without being restricted, in principle,
to the availability of known templates, a capability unique to CrystaLLM.

5.3.3 Examples of Generated Structures

To further examine the model's ability to generalize to unseen scenarios, we prompted the
model with various formulas, and examined its output. The results are presented in Figure
5.3.

An example of the model generalizing to a formula that had been seen in training, but
with different space groups, is presented in Figure 5.3a. The formula, Ba,MnCr, was in the
held-out test set, with the R9m space group. That combination of formula and space group
had not been seen in training. The model generated a structure matching the one in the test
set on the first attempt, when the space group was provided.

The model also demonstrated the ability to generate plausible structures for formulas
not seen in training with any Z. An example is the quaternary compound CsCuTePt. This
compound was not in the training set, but was in the held-out test set (with Z=4). The
model generated a structure matching the one in the test set, in the F/ 3m space group, on
the third attempt when the space group was provided. The generated structure is presented
in Figure 5.3b.

Finally, in Figure 5.3c is the generated structure of YbMngSng [305], an example of the
model generalizing to structural motifs with atoms not seen in training. This formula was not
seen in training for any Z, and was not in the held-out test set. However, ZrMngSng was seen
in training, in the P6/mmm space group. The model generated a structure in the same space
group on the first attempt, without the space group being provided. The generated structure
matched the ZrMngSng structure, with Yb substituted for Zr, and with cell parameters and
atomic coordinates adjusted accordingly. This demonstrates the model performing a structure
prediction by analogy procedure, as commonly used by materials scientists for discovery [114,
306], despite never having been provided with the procedure to do this.

Rutiles

Rutiles are a class of binary compounds that adopt a tetragonal unit cell, in the P4s/mnm
space group (Z=2), as is seen in TiO,, from which this class of materials adopts its name.
The general formula for rutile oxides is MO,, where M is a metallic species in the +4 oxidation
state. Rutile fluorides are also known, where the metal is in the +2 oxidation state.

The model’s training dataset consisted of essentially all of the rutiles one might expect
to be able to find in nature. Therefore, to test the model’s ability to generate unseen rutiles,
we requested the generation of theoretically possible, but unlikely compounds, such as AuO,.
With gold in a highly unlikely +4 oxidation state, AuO, is not expected to be formed under
most conditions. However, the model was able to imagine what the structure of such a
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compound might be (when the space group is provided). While TiO, has cell parameters
a=4.594A, c=2.959A, the generated rutile gold variant has a=4.838A ¢=3.429A, reflecting
the increased volume occupied by the larger gold atoms (Figure 5.3d).

Spinels

Spinels are a group of ternary compounds with general formula AB,X,. The most common
combination of elements in spinels is one where A is a cation in the +2 oxidation state, B is
a cation in the +3 oxidation state, and X, normally a chalcogen, is a -2 anion. Spinels form
cubic close-packed structures, with eight tetrahedral, and four octahedral sites, normally in
the Fd3m space group.

To explore the model's ability to generate unseen spinels, we selected the thiospinel
Sm,BS,, which was absent from both the training and test sets. The model was able to
generate the expected spinel structure when the cell composition and space group were pro-
vided (Figure 5.3e). During training, the model encountered a number of different oxy-, thio-,
and selenospinels, and this likely contributed to its ability to generate this compound.

Elpasolites

Elpasolites are quaternary compounds with the general formula ABC,Xg. The A and C species
are typically alkali metal cations in the +1 oxidation state, B is usually a transition metal
cation in the 43 oxidation state, and X is a halogen anion. The elpasolites are often referred
to as “double perovskites”, since their structures are related to perovskites by the doubling of
their unit cell dimensions, and the replacement of the M2 cation with alternating M* and
M3+ cations. Elpasolites crystallize in the Fm3m space group, and are the most common
quaternary crystal system reported in the Inorganic Crystal Structure Database (ICSD) [307].
We wondered if the CrystaLLM model could generate elpasolites not seen during training.

We selected an elpasolite from the held-out test, that was not seen in training: the
fluoride KRb,TiFs. The model was able to generate the correct elpasolite structure when the
cell composition and space group was provided (Figure 5.3f).
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Figure 5.3: The generated structures of various inorganic compounds. a Ba,MnCr.
Cell parameters: a, b: 3.778 A, c: 27503 A, «, B: 90.0°, «v: 120.0°. Color scheme:
Ba: green, Mn: purple, Cr: blue. b CsCuTePt. Cell parameters: a, b, ¢: 7.153
A «, B, v: 90.0°. Color scheme: Cs: purple, Cu: blue, Te: gold, Pt: white. ¢
YbMngSng. Cell parameters: a, b: 5.488 A ¢ 8832 A, qa, £:90.0°, v: 120.0°.
ZrMngSng, in the training set, possessed the same structure, but with the following
cell parameters: a, b: 5.364 A c: 8933 A q, B: 90.0°, ~: 120.0°. Color scheme:
Yb: green, Mn: magenta, Sn: grey. d AuO,. Cell parameters: a, b: 4.838 A,
c: 3.429 A, o, B, y: 90.0°. Color scheme: Au: yellow, O: red. e Sm,BS,. Cell
parameters: a, b, c: 10.884 A «, B, v: 90.0°. Color scheme: Sm: light green,
B: green, S: yellow. f KRb,TiFgs. Cell parameters: a, b, c: 8.688 A, a, B,
90.0°. Color scheme: K: white, Rb: purple, Ti: brown, F: green. g LiTa,NiSes (a:
3517 A, b: 13.362 A, ¢: 15.156 A, Z=4), which resembles the recently reported
structure in [308]. h Ta,NiSes, seen in training. i NaSn,CuSe;, seen in training.

Pyrochlores

The general formula for the pyrochlores is A,B,0;, where A, a trivalent cation, and B, a
tetravalent cation, are either rare-earths or transition metals (other oxidation states, e.g.
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combining monovalent and pentavalent cations, are also possible, but we focus here on the
trivalent/tetravalent pyrochlores). Pyrochlores crystallize in the Fd3m space group (Z=8).
There are many combinations of A and B that are possible for this structure, by using lan-
thanide ions, actinide ions, and Y(III) for the A species, and various transition metal ions, as
well as Ti(IV), Zr(IV), and Hf(IV) for the B species. We investigated whether CrystaLLM
could generate valid pyrochlore structures for any unseen combinations, and whether it could
estimate reasonable cell parameters in line with the trends observed for the pyrochlore series,
as the cell parameters are expected to be correlated with the ionic radii of the A and B cations.

We created a space of pyrochlores consisting of 144 compounds by producing different
combinations of A and B species. Of these, 54 were seen in training. We selected 10
compounds from among the 90 not seen in training, and attempted 3 generations with the
model, for each. The cell composition and space group were included in the prompt. All
generations resulted in valid pyrochlore structures (Table 5.7).

Table 5.7: Values of mean generated cell length for the selected pyrochlores not
seen in training, over 3 generation attempts.

Formula Cell Length (A)
Ce,Hf,0,  10.75 + 0.07
Ce,Mn,O,  10.50 & 0.22
Ce, V5,04 10.53 £+ 0.09
La,Mn,0,  10.21 + 0.07
La,V,0; 10.48 £+ 0.06
LuyHf, 04 10.30 £+ 0.08
Lu,Zr,O,  10.45 + 0.12
Pr,Mn,0, 10.40 £+ 0.08
Pr,V,0; 10.51 4+ 0.06
Pr,Hf,0, 10.80 £ 0.06

We subsequently performed DFT relaxation calculations on the first generated structure
for each of the 10 compounds. One case, Ce,V,0,, posed challenges in calculation under
the generalized gradient approximation and was thus excluded from further analysis. The
DFT-derived value of the cell parameter for each of the remaining compounds is plotted
against the mean value generated by CrystaLLM in Figure 5.4. A good agreement exists
between the DFT-derived and generated cell lengths, with an R? of 0.62 and MAE of 0.08 A
being exhibited. This example illustrates CrystaLLM's capability to accurately estimate cell
parameters of compounds not seen in training with any structure.
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Figure 5.4: The generated vs. DFT-derived value of the cell parameter a for
selected pyrochlores not in the training dataset. The error bars represent the +
standard deviation of the value of the a cell parameter for the three generation
attempts (all of which resulted in the pyrochlore structure), while the y-coordinate
of the points represents the mean value of the cell parameter across the three at-
tempts. The inset represents the structure of the generated pyrochlore Pr,Mn,0-,
with cell parameters a, b, ¢: 10.34 A, a, B, v: 90.0°. Color scheme: Pr = yellow,
Mn = purple, O = red.

Problematic Cases

While the model seems capable of generating structures for many different classes of inorganic
crystals, it does nonetheless have difficulty in certain cases. All of the cases appear to involve
systems that are rare, and under-represented in the training dataset, or missing from the
training set altogether. More precisely, we define a template as a unique combination of
the reduced composition ratio, the space group, and Z. For example, the combination of
the reduced composition ratio 1:1:3:4, space group Cmcm, and Z = 4, represents a unique
template. There are 25,921 unique templates in the dataset.

The problematic cases in the challenge set are largely represented by unseen templates,
and templates for which there are few examples. For example, validation rates were low for
Mg, Pt,Gey, the structure of which was reported recently to exist in the P63mc space group
(Z=2) [309]. In this case, there were only 38 examples of 7:4:4 systems in the training dataset,
none contained Mg or Pt, and none were in the P63mc space group.

The small version of the model also seems to struggle with generating phosphates, sulfates,
carbonates, and organic-inorganic hybrid structures. Examples include carbonate hydroxide
minerals, such as Co,CO3(OH), [310] and Cu,CO5(OH), (malachite). While present in the
dataset, they belong to a group of analogous structures for which there are only a handful of
examples. While both the small and large versions of the model can generate Mn,(PO,)3,
they generally fail to generate a valid structure for Cag(PO,);(OH) (hydroxyapatite). A
common theme is the appearance of multiple oxyanions, which can give rise to more complex
arrangements of atoms, for which the model may not have seen enough examples. In contrast,
the model can generate compounds of the perovskite class reliably. However, over 5,000
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examples of the ABX; (X=0O,F) system in the Pm3m space group were seen in training.
Finally, structures represented by CIF files with a relatively large number of tokens also pose
challenges for the models.

Future versions of the model will consider strategies for addressing these occurrences of
class imbalance.

5.3.4 Heuristic Search for Low-Energy Structures

The examples generated in the previous section were produced through top-k random sampling
of the model. Essentially, as the CIF file is generated, each subsequent token is sampled
randomly from amongst the top k tokens, according to their probabilities. (See Supplementary
Note 2.4 in Appendix C for a detailed description of top-k sampling.) However, random
sampling may not necessarily result in the most desirable sequence, and consequently, there
are more strategic approaches for constructing sequences that incorporate the probability
distributions produced by the model, along with additional heuristics. An example of a heuristic
search is Beam Search [311], which is commonly used in natural language contexts to improve
the quality of generated sequences. Another popular heuristic search algorithm is MCTS,
which has traditionally been used in the context of planning and games, but has recently also
been used to increase the quality of generated natural language, through incorporation with
LLMs [312].

Here, we employ the MCTS algorithm, informed by CrystaLLM, to generate a collection
of sequences, which is expected to progressively yield sequences of increasingly higher quality
as the search advances. In this implementation, each node in the tree represents a cumulative
context of tokens. The algorithm operates through a series of steps, including selection,
expansion, rollout, evaluation, and backpropagation. The search tree is constructed iteratively,
as the search proceeds (Figure 5.5). In the selection phase, nodes are chosen using the
PUCT algorithm (Predictor-Upper Confidence bound applied to Trees) [313, 314], which is
a principled means of obtaining a balance between exploring untried nodes, and exploiting
promising nodes. The expansion involves adding child nodes based on predicted probabilities.
During the rollout step, the CrystaLLM model is prompted with token sequences until a
terminating condition is met, leading to the evaluation of the completed sequence. Evaluation
is conducted using the ALIGNN (Atomistic Line Graph Neural Network) model of formation
energy per atom [315], while the backpropagation step accumulates outcomes in the tree
nodes, scoring each based on the quality of the generated structure. (See Supplementary
Note 4 in Appendix C for a more detailed description of the algorithm.) The objective is to
produce structures with lower formation energy per atom, Ef, and the incorporation of the
ALIGNN model allows for a fast and sufficiently accurate estimate of the target property.

When compared to random sampling, MCTS improves the overall validity rate for a com-
pound, and also generally produces lower energy structures. To evaluate the MCTS decoding
procedure, we took the 20 most problematic cases of the challenge set where the validity rate
was greater than 0, and performed 1,000 generation attempts using random top-k sampling,
and 1,000 iterations of MCTS. The results are presented in Table 5.8.
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Table 5.8: Results of MCTS decoding for the 20 most problematic cases of the
challenge set. The percentages represent the fraction of cases with the corre-
sponding improvement after using MCTS decoding, when compared to random
sampling. The first row represents the percentage of cases where the validity rate
improved. The second row represents the percentage of cases where the minimum
E obtained was improved. The third row represents the percentage of cases where
the mean E¢ was improved.

No Space Group With Space Group

Validity Rate Improvement 95.0% 60.0%
Minimum E; Improvement 85.0% 65.0%
Mean E; Improvement 70.0% 65.0%

When no space group is provided in the prompt, the validity rate improves in 95% of the
cases, and the minimum Ef attained improves in 85% of cases. (See Supplementary Tables 6
and 7 in Appendix C for more detailed results.) In some cases, the validity rate increases as
the search proceeds when using MCTS (see Supplementary Figure 6 in Appendix C).

To further test the performance of MCTS, we applied the procedure to 102 novel com-
pounds generated unconditionally by CrystaLLM (see the following section “Generating Novel
Materials” for details of the unconditional generation). On these materials, we performed
MCTS decoding with 1,000 iterations each, using ALIGNN to provide feedback. After MCTS,
the ALIGNN energy decreased (or remained constant) for all the compositions, with an aver-
age energy change of -153 + 15 meV/atom (compared to the structures generated without
MCTS). The mean Ey for the 102 structures, as calculated by DFT, improved by -56 4+ 15
meV /atom on average, to 0.34 eV/atom; 22 of those structures were within 0.1 eV /atom of
the hull. Further demonstration of the statistical significance of ALIGNN-based MCTS, and
details of the results, are provided in Supplementary Note 6 in Appendix C. Future improve-
ments of the energy estimators will increase the effectiveness of the MCTS approach.

5.3.5 Generating Novel Materials

The discovery of novel and stable compounds can expand the capabilities of materials science.
To understand the potential of using CrystaLLM for generating novel and feasible crystalline
solids, we used the large model trained on the 2.3M-structure dataset to generate 1,000
structures unconditionally, and assessed the stability of the novel compounds among them,
using DFT. Of the 1,000 generated CIF files, 900 were valid, and 891 represented structurally
distinct (i.e. unique) materials. There were 102 structures which were novel when compared
to the training dataset (established using structure matching). We performed DFT relaxation
of the 102 novel structures, and compared the energy of each structure with the convex
hull as given by the Materials Project. The mean Ey, of the 102 novel structures was 0.40
eV/atom. Notably, we found that 20 structures were within 0.1 eV /atom of the hull, including
3 with Ey, = 0.00 eV/atom. Figure 5.6 depicts the 4 most stable of the novel compounds.
(See Supplementary Table 9 in Appendix C for comprehensive results for the 20 most stable
compounds.)

Inspection of the novel materials revealed that the model generated a mix of ionic, semi-
ionic and metallic compounds. The compounds with lower energy above the hull tended to
be ionic and sem-ionic in nature. This could be due to the model being better at learning the
coordination rules of ionic and semi-ionic compounds, as they are typically more defined and
stricter than those for metallic compounds. For example, in most oxides, Fe will be coordinated
tetrahedrally or octahedrally to oxygen. For metallic compounds, it is less defined, a priori,
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Figure 5.5: Schematic depiction of the Monte Carlo Tree Search decoding pro-
cedure. CIF files are generated as a tree is iteratively constructed, with each
iteration guiding the generation of subsequent structures towards more desirable
parameters (e.g. lower formation energy per atom). The nodes in the tree repre-
sent the cumulative contents of a CIF file at various points. a The Selection step
involves descending the tree by choosing the most promising node at each level,
using a variant of the PUCT algorithm. b During Expansion, an unexplored child
node is randomly selected and added to the tree. If a node has only one highly
probable child (represented as empty nodes), the child node bypasses the Rollout
step. ¢ The Rollout step involves prompting the model with the contents of the
selected node, and sampling from the model until a terminal condition is met, so
as to obtain a complete CIF file and an estimate of the value of a node. d The
generated structure is validated and scored, incorporating the prediction of the
structure's formation energy per atom, as given by a pre-trained neural network.
e Finally, the score is backpropagated through the selected nodes, which store the
accumulated results of each iteration. The resulting generated CIF file, if valid, is
returned.
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what the coordination patterns should be. In fact, many metallic compounds only stabilize
due to disorder thanks to the configurational entropy (effects which are not considered here).
The model has therefore a better chance of generating a stable ionic material than a stable
ordered metallic compound.

Figure 5.6: The four lowest-energy novel structures generated unconditionally by
the large model. a Ba,Na,lr,0;; Z=2, Cm. Cell parameters: a: 10.308 A, b:
5.995 A, ¢: 10.269 A, a, v: 90.0°, 3: 108.5°. Color scheme: Ba: green, Na:
orange, Ir: white, O: red. Ep,;=0.00 eV/atom. b NaAlS, Z=16, P2;. Cell
parameters: a: 10.233, b: 10.277 A, ¢ 13.703 A, ¢, ~: 90.0°, 8: 100.9°. Color
scheme: Na: orange, Al: grey, S: yellow. FE},;=0.00 eV/atom. ¢ Ca,YSbOq
7Z=2, P2;/c. Cell parameters: a: 5.651 A b 5853 A, ¢ 9.850 A, «, ~: 90.0°,
3: 125.0°. Color scheme: Ca: blue, Y: purple, Sb: bronze, O: red. FE,;;=0.00
eV/atom. d Li,FeSiO, Z=4, Pna2;. Cell parameters: a: 10.988 A, b: 6.278 A,
c: 5.026 A, «, B, v: 90.0°. Color Scheme: Si: light blue, Fe: dark grey, Li: light
green, O: red. E},,1=0.02 eV/atom.

5.3.6 Beyond Element Substitution

Although CrystaLLM appears to be very effective at finding appropriate template systems
for a given cell composition, and making the necessary adjustments of cell parameters to
substitute different atoms, it appears capable of going further, synthesizing information from
different template systems. An example is the selenide LiTa,NiSes, which is obtained by
lithium intercalation into Ta,NiSeg [308].

The compound LiTa,;NiSe; was not present in the training set; however, the layered
material Ta,NiSe; was (Figure 5.3g,h). As LiTa,NiSes was included in the challenge set, we
performed 100 generation attempts with the model. While the model was not able to recover
the lowest energy structure reported, it did produce structures with close resemblance to
low-energy polymorphs. Upon closer examination of the dataset, we found that NaSn,CuSeg
was present (Figure 5.3i), which likely provided some precedent for the intercalation of atoms
between layered structures. It thus appears that the model is capable of integrating information
from different template systems to form new structural predictions.
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5.3.7 The CrystaLLM.com Web Application

To allow for easy and open access to the CrystaLLM model, we make it available through a
web application, published at https://crystallm.com. The application allows users to enter in
a reduced formula, and optionally a value for Z and the desired space group. The option to
select the model size is also provided. The request is sent to the model, and the resulting
structure (or the CIF contents, if the structure is invalid) is presented to the user. By making
the model easily accessible, we hope to contribute a potentially useful tool to the materials
structure research community. We also hope to receive feedback from users that may help
improve future versions of the model.

5.4 Conclusions

Here, we have shown that LLMs of the CIF format are able to generate inorganic crystal
structures for a variety of known classes. Indeed, the model is able to produce valid and
sensible arrangements of atoms in 3-dimensional space by generating xyz coordinates digit-
by-digit. The model also seems to have captured the relationship between space group symbols
and the symmetries inherent in the structures it generates.

We chose to build a language model of the CIF format (instead of a simplified format,
for example, which might include a minimal vocabulary) for several reasons. First, the CIF
format is not particularly verbose. The model learns the grammatical structure of the format
fairly quickly. We can thus avoid having to devise an intermediate format that requires inter-
conversion between more common formats, which could also be error prone. Second, we
believe that having the model learn to generate the more redundant parts of the CIF format,
such as the cell volume, and Z, which are inferable from prior inputs, helps the model to
perform better overall.

A number of approaches for crystal structure generation have been reported [316-319].
These approaches generally require the existence of pre-defined structural templates, and are
followed by the procedural or machine learning-assisted substitution of atoms and adjustment
of cell parameters, under the constraint of a specified space group. These types of approaches
can also be enhanced to increase the structural diversity of generated materials, by allowing
partial substitutions and adjusting substitution probabilities [320]. Conversely, CrystaLLM
automatically selects the templates which can be applied to a given composition, utilizing the
implicit templates it has absorbed through autoregressive training. Moreover, the model can
automatically adjust cell parameters to accommodate the atoms in the unit cell. It can also
produce structures based on templates it has not explicitly encountered in training, borrowing
from its internalized concepts of chemical structure. In comparison with recently reported
diffusion-based ML methods for crystal generation (CDVAE [266] and DiffCSP [294]), not
only does CrystaLLM outperform them on established benchmarks in several aspects, but it
also offers additional advantages in terms of flexibility (e.g. in using symmetry as input) and
the potential for fine-tuning.

While the CrystaLLM model can generate sensible structures, this does not by itself make it
suitable, as is, for CSP. Just as natural language LLMs, such as GPT-3 and -4, are not suitable
chatbots without further fine-tuning and alignment, the CrystaLLM model will also need to be
fine-tuned for more advanced tasks. Fine-tuning involves an additional and separate training
step, where the model’s parameters are adjusted in the context of a different task. This may
also involve altering the model’s output layer, such as to make it suitable for a regression
task. Models can be fine-tuned using a variety of techniques, but supervised learning and
reinforcement learning [321] are most common. One might use reinforcement learning, for
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example, when a task is not clearly defined as a supervised learning problem. When fine-tuning
natural language LLMs for chatbot applications, it is common to use Reinforcement Learning
from Human Feedback (RLHF) [322, 323]. With RLHF, the idea is to gather data from human
annotators to be used to train a reward model, which scores generated text according to its
desirability. The reward model is then used as part of a reinforcement learning-based tuning of
the LLM. In CSP, one would like to produce ground-state structures (for some given physical
conditions). One could thus imagine an analogous procedure where CrystaLLM is fine-tuned
for the goal of generating low-energy structures, via feedback from an external evaluator of
the generated structure’s energy, resulting in Reinforcement Learning from Thermodynamic
Feedback. This procedure would also require a reward model, and such a model should ideally
provide a timely estimate of a structure's energy. This excludes time-consuming approaches
such as DFT. A viable approach could make use of a separate machine learning-based model of
formation energy, such as one based on ALIGNN. Indeed, neural network potentials have been
used to accelerate the prediction of crystal structures, and the identification of potentially
stable materials [324, 325].

There are several limitations with the current approach. First, none of the structures of
the dataset have site-occupancy disorder (fractional site occupancies). Therefore, CrystaLLM
cannot generate disordered structures, and may not successfully generate structures for com-
binations of cell composition and space group that imply a disordered structure. An example
is K,NaTiOF5, which is reported to be an elpasolite, in the Fm3m space group (Z=4), with
F and O species sharing the same crystal site [326]. Another limitation is that the CIF files
of the dataset were not all created using the same level of theory. The training set is derived
from a combination of DFT sources using different settings, functionals, etc., which may make
it difficult for the model, in some instances, to learn a consistent relationship between cell
composition and detailed structure [327].

Nevertheless, we believe that CrystaLLM will be a useful tool for crystal structure gener-
ation, which is quickly becoming a critical step in large scale materials discovery [320, 328],
and materials informatics. We plan to explore fine-tuning the model for physical property
prediction tasks, such as the prediction of lattice thermal conductivity, where experimental
data is relatively scarce [215]. The architecture of the model allows it to be fine-tuned for
either composition-based or structure-based prediction tasks. This implies that CrystaLLM
may be the basis for a general-purpose materials informatics model, which can be used for
generative tasks, and fine-tuned for property prediction tasks that require either composition
or structure. If the model is able to transfer what it has learned about the world of atoms to
these various predictive problems, it may prove to be a quite flexible tool relevant to many
aspects of materials chemistry.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

This thesis presents the development of novel ML algorithms designed to address various
aspects of the materials discovery process. In particular, the focus has been on the discovery of
new and promising thermoelectric materials. The algorithms presented are built upon current
and emerging deep learning methodologies. They draw extensively from advancements in NLP,
particularly the Transformer architecture—a result that is notable given the thesis's focus on
a problem in materials chemistry. This synthesis of two seemingly disparate fields, namely,
NLP and materials chemistry, demonstrates the fruitfulness of interdisciplinary research.

First, | designed and evaluated an approach for learning distributed representations of
atoms and materials, named SkipAtom, which can be used to produce effective representations
of materials from their compositions alone, for use with deep neural network models. | showed
that SkipAtom outperforms existing atom vector representations like Atom2Vec and Mat2Vec
on materials prediction tasks, including formation energy prediction. Through benchmarking
on a variety of regression and classification tasks, | demonstrated that SkipAtom-derived com-
pound representations, which rely solely on composition, achieve competitive results compared
to models that incorporate structure. This suggests that SkipAtom can be an effective tool
for rapid, high-throughput materials screening where structural data may be unavailable.

Second, | developed a Transformer-based model, named CraTENet, for predicting elec-
tronic transport properties of thermoelectric materials, specifically the Seebeck coefficient,
the electrical conductivity, and the power factor. | demonstrated that CraTENet can generate
useful predictions across various temperatures, doping levels, and doping types, providing an
efficient and practical alternative to traditional machine learning approaches. lIts attention-
based architecture allows for greater interpretability by surfacing important relationships be-
tween atomic elements within a material's composition, and the incorporation of the band
gap as an optional input, when available, improves prediction quality significantly.

Finally, I created CrystaLLM, a crystal structure generation tool based on autoregressive
large language modeling. A fast model for CSP is needed in any workflow that attempts to
identify promising materials within unexplored chemical spaces. Here, | showed that Crys-
taLLM can generate valid crystal structures for a wide variety of materials classes, including
those not seen during training. The model demonstrated the ability to generalize to combi-
nations of unseen compositions and space groups, generating structures that are physically
plausible and chemically sensible. It also proved useful in the context of unconditioned gen-
eration, proposing stable materials unseen in the training dataset. When integrated with the
MCTS decoding procedure, the quality of generated materials improves noticeably.

To illustrate how these tools can be integrated into a workflow for discovering novel
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thermoelectric materials, consider the flowchart in Figure 6.1.
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Figure 6.1: A flowchart depicting a potential thermoelectric materials discovery
pipeline and workflow, which incorporates the tools described in this thesis.

The CraTENet model, incorporating pre-trained SkipAtom representations, can be used to
filter a large space of chemical compositions generated by SMACT, by producing predictions
for thermoelectric transport properties from composition alone. The compositions with the
most promising combination of predicted properties can then be given to the CrystaLLM
model, which will propose structures for those compositions. Finally, the proposed structures
can be subjected to a DFT pipeline, involving a more rigorous investigation of the materials
and their properties. While this final step can be the most time-consuming and labor-intensive,
the tools presented here reduce the search space to only the most promising candidates.

The ML-based tools developed in this thesis are also of wider interest, beyond thermoelec-
tric applications. The pre-trained SkipAtom representations, for instance, can be used in any
context where atoms and materials are involved. The SkipAtom software library additionally
allows for customized training on any set materials, leading to atomic representations which
reflect the nature of the dataset. Similarly, the CrystaLLM model is not constrained to any
specific class of materials, and can be used for the crystal structure generation of materials
of any kind. Like SkipAtom, the CrystalLLM software library allows for training a CrystaLLM
model on a custom dataset, further expanding the scenarios in which the model can be used.

6.2 Future work

While the algorithms introduced in this thesis can be used to augment and enhance the mate-
rials discovery process, there are a number of ways in which they can be further investigated,
expanded and improved.

Given that pre-trained SkipAtom embeddings are often competitive on tasks with ap-
proaches that include structure information, it could be worthwhile to attempt screening a
large, targeted portion of materials space for a specific property using composition alone. This
would be computationally cheaper than explicitly requiring structure information. Addition-
ally, it would be interesting to investigate the performance of existing graph neural network
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models, such as MEGNet [112], when they begin with pre-trained SkipAtom vectors as the
atomic representations. The pre-trained SkipAtom embeddings could accelerate training, and
possibly improve performance. Finally, it should be possible to learn atom vectors that take
into account oxidation states, using the SkipAtom approach. Indeed, such an investigation
has recently been reported [329]. A collection of oxidation state-based atom representations
would be a unique tool for materials informaticists.

The accuracy of the predictions of thermoelectric behavior from composition, as produced
by CraTENet, could be improved through a number of different approaches. The single most
important development would be the creation of a more accurate ab initio database of elec-
tron transport properties (given the problem that the Ricci database used in this study is
based on the GGA flavor of DFT, which is problematic for the prediction of electron trans-
port). Two further extensions would make possible the prediction, at the ML level, of the full
thermoelectric figure of merit, 27": 1) the ability to estimate sensible relaxation times for elec-
tron transport, and 2) the ability to predict the phonon-related (lattice) thermal conductivity.
For the former, training data could be obtained from either ab initio calculations involving
electron-lattice interactions (for example, in deformation potential approximations, as done
in the AMSET code), or by contrasting electrical conductivities per unit of relaxation times
predicted at DFT level with experimental conductivities. In terms of the prediction of lattice
thermal conductivities, | anticipate that structure should be part of the input, but that could
be achieved by integrating the CrystaLLM tool in the process.

The crystal structure generation and prediction model, CrystaLLM, could be improved in
a number of ways. Perhaps the most obvious improvement would be to incorporate all of
the recent LLM architectural developments since GPT-2, upon which CrystaLLM is currently
based. These include techniques for improving positional representations, such as RoPE (Ro-
tary Positional Embeddings) [330]. Other techniques, such as KV (key-value) caching, and
multi-query decoding [331], could be used to accelerate inference, making the model even
faster to use in practice. It would also be interesting to experiment with simplified versions
of the CIF syntax that the model is trained to produced, such as using a lower decimal pre-
cision. Additionally, sampling to achieve a more balanced representation of the structural
templates the model sees in pre-training is another avenue of investigation that is expected to
be fruitful: LLMs are reliant on the quality of data seen in training, thus it is likely that large
improvements could be made to the model’s performance by simply optimizing the quality of
the dataset. Another desired extension would be the ability to predict fractional occupancy of
lattice sites, essentially extending the model to site-disordered materials. This is important,
because most thermoelectric and other functional materials are solid solutions with some de-
gree of site disorder. Certainly, this introduces complexity in the further ab initio evaluation
of properties, because DFT calculations are normally performed in fully ordered crystal cells.
(Methods like the virtual crystal approximation, VCA, which define fractional occupancies of
lattice sites in DFT simulations, tend to perform poorly in the prediction of most properties.)
However, this is a well-studied problem, and ensemble approaches can be used to calculate
effective properties of solid solutions (e.g. [332]). Finally, it would be exciting to incorporate
the most recent state-of-the-art estimators of formation energy into the MCTS decoding pro-
cedure. On the Matbench Discovery benchmark [333], which measures the ability of an ML
model to predict solid-state thermodynamic stability, the best model currently attains an F1
score of 0.763, which is a large improvement over the ALIGNN model’s score of 0.567.

In summary, while there are many directions in which the models | present here could
evolve, | believe that this work has made a substantial contribution to the rapidly developing
field of materials informatics. | look forward to new developments in the field, and hope to
further contribute in the future.
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Appendix A

Supplementary Information for
Chapter 3

A.1 Supplementary Notes

1. Comprehensive Results

Supplementary Tables 1 to 10 contain comprehensive results for the experiments described in
the chapter, reporting the performance for all utilized combinations of representation type,
embedding size, and pooling type. In all experiments, due to intrinsic limitations of the
Atom2Vec approach, Atom2Vec vectors [1] could not be created with dimensions greater than
the number of atoms being considered. Similarly, one-hot vectors are limited in dimensionality
to the number of atoms being considered. Finally, pre-trained Mat2Vec vectors [2] were used,
and their dimensionality was limited to 200. All tasks reported utilized the ElemNet feed-
forward neural net architecture (consisting of 17 layers), with L2 regularization instead of
dropout.

2. Preliminary Results with Structure-based Architectures

The experiments described in the chapter were performed using the ElemNet architecture as
a standard (with the exception of the Elpasolite Formation Energy task). The study does not
experiment with various different kinds of neural network-based architectures because the aim
of the work is to introduce a new (and more accessible and effective) way of learning distributed
atom representations, and not a particular combination of representation and architecture,
nor to establish a new performance benchmark on a task. Nevertheless, here preliminary
results are reported on the use of SkipAtom embeddings with two different structure-based
architectures: CGCNN [3] and MEGNet [4]. These results highlight two important points:
first, that SkipAtom embeddings are effective in the context of neural network architectures
in general (and not only with an ElemNet architecture), and second, that they can improve
the performance of models that incorporate structure information.

The CGCNN model is a convolutional graph neural network that operates on datasets
that incorporate crystal structure information. It can be used for classification and regression
tasks. The paper that introduced the CGCNN model used a dataset of 27,430 compounds
from the Materials Project to build a regression model for predicting band gap. The CGCNN
paper reports 0.388 eV MAE. They create a 60/20/20 train/validation/test split: they train
on 60% and validate on 20% after each epoch; then they pick the best model according
to the validation score, and evaluate on the test set. The 0.388 eV MAE is on the test
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set. Here, the CGCNN codebase [5] is used to reproduce the results, and to evaluate using
SkipAtom vectors as the atom representations. The CGCNN architecture requires that atom
representations are provided. By default, a binary feature vector is provided (see [3] for
more details). In Supplementary Table A.11, the results of using 200-dimensional SkipAtom
embeddings is compared to the results of using the default binary feature vectors.

The MEGNet model [4] consists of a graph neural network that can be used to predict
properties of molecules and crystals. It requires that atoms are given a predefined repre-
sentation. Alternatively, one-hot atom vectors can be provided, and an embedding table is
learned during training, which results in learned atom representations. Here, the MEGNet
codebase [6] is used to compare the performance of the MEGNet model with (and without)
the SkipAtom embeddings on the Elpasolite Formation Energy task. In Supplementary Table
A.12, the results of using 200-dimensional SkipAtom embeddings are compared to the results
of using the default one-hot vectors, in the context of the Elpasolite Formation Energy predic-
tion task with the MEGNet model. Note that in the chapter an MAE of 0.1089 eV /atom is
reported using the original architecture with concatenated atom vectors (that does not include
structure information).

3. Derivation of Materials Graphs

As described in the chapter, the SkipAtom approach relies on the conversion of the unit
cells of materials to a graph representation. From this graph, atom pairs are derived for
training. The graph representing a material can be derived using any approach desired, but in
this work, an approach is used which is based on Voronoi decomposition [7], which identifies
nearest neighbors using solid angle weights to determine the probability of various coordination
environments. Specifically, the CrystalNN neighbor finding algorithm was used to construct
the graphs [8, 9], as implemented in the pymatgen package (version 2021.2.8.1) [10].

A brief description of the CrystalNN algorithm is provided here for convenience, but for
more details, the reader is referred to the original descriptions [8, 9]. The first step in the
algorithm involves the assignment of a multi-component weight to each atom pair in the
structure, such that these weights correspond to the likelihood that two atoms are neighbors.
The weight consists of various components, including the solid angle obtained from a Voronoi
construction based on the crystal structure, a penalty for atoms that are too far apart, and
the electronegativity difference between the atoms. The next step involves projecting these
multi-component weights onto a quadrant of the unit circle, ordered from largest to smallest
weights, and computing the area under the circle between adjacent weights to obtain neighbor
likelihoods. Finally, the coordination number with the highest probability for each site is
selected.

4. Learning Representations of Atoms in their Oxidation States

As stated in the chapter, one limitation of the SkipAtom approach is that it does not provide
representations of atoms in different oxidation states. Since it is (often) possible to unambigu-
ously infer the oxidation states of atoms in compounds, it is, in principle, possible to construct
a SkipAtom training set of pairs of atoms in different oxidation states. The number of atom
types would increase by several fold, but would still be within limits that allow for efficient
training. Here, this is demonstrated by incorporating two additional atom types: Fe(ll) and
Fe(Ill). A separate embedding for neutral Fe is continued to be learned.

To learn the representations for Fe(ll) and Fe(lll), the materials structure database is
scanned for compounds containing Fe, and the oxidation state of the element is determined
using a maximum a posteriori estimation method, as implemented in the BVAnalyzer class of



APPENDIX A. SUPPLEMENTARY INFORMATION FOR CHAPTER 3 120

the pymatgen package (version 2021.2.8.1) [10]. Pairs are then formed that will be added to
the original training set, by keeping only the pairs where Fe(Il) or Fe(lll) are the target atom
(i.e. the atom whose context is predicted). The associated atom in the pair is represented in
its neutral state. In total, there were 190,056 pairs generated in this way, and added to the
original dataset.

The embeddings were then learned using the SkipAtom approach described in the chapter,
together with this enhanced dataset. To evaluate the learned Fe(Il) and Fe(lll) representations,
a qualitative assessment was made by comparing to Zn and Al, since Zn is generally found in
its Zn(Il) state, and Al is generally found in its Al(lll) state. The four embeddings together,
Al, Zn, Fe(ll), and Fe(lll), were subjected to dimensionality reduction using t-SNE, and the
results are plotted in Supplementary Figure A.3. It is apparent that Fe(ll) resides more closely
to Zn, and Fe(lll) resides more closely to Al, as one might expect, at least along the first
dimension.

5. Analysis of the Number of Embedding Dimensions

Across all the evaluation tasks, the performance of the SkipAtom embeddings appears to in-
crease with the number of embedding dimensions. To better evaluate the influence of the num-
ber of embedding dimensions on the performance of the representations, a series of SkipAtom
embeddings of different sizes were learned. These embeddings were then mean-pooled for the
Refractive Index prediction task, and their performance is given in Supplementary Table A.13.
A plot of their performance on the task in given in Supplementary Figure A.4. Also, these
embeddings were used for the Elpasolite Formation Energy prediction task. The results are
given in Supplementary Table A.14 and Supplementary Figure A.5

6. Analysis of Training Set Size

To analyze the influence of the training dataset size on the quality of the learned embeddings,
200-dimensional SkipAtom embeddings were learned using either all or 25% of the available
training data from the Materials Project. The training dataset consisting of 25% of the
available pairs was created by randomly sampling from the 15,360,652 pairs derived from the
Materials Project, yielding a dataset with 3,840,163 pairs. These 200-dimensional SkipAtom
embeddings were mean-pooled for the Refractive Index prediction task, and their performance
is given in Supplementary Table A.15.
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A.2 Supplementary Tables

Table A.1: Elpasolite Formation Energy prediction results after 10-fold cross-
validation. The dataset consists of 5,645 examples. The task and the model
were initially described in the paper that introduced Atom2Vec (an alternative
approach for learning atom vectors). [1] The target formation energies were ob-
tained by DFT. [11] The mean best formation energy MAE on the test set after
200 epochs of training in each fold is reported. Batch size was 32, learning rate
was 0.001. Note that Dim refers to the dimensionality of the atom vector; the
size of the input vector is 4 x Dim. All results were generated using the same

procedure on identical train/test folds.

Representation Dim MAE (eV/atom)

Atom2Vec 30 0.1477 £ 0.0078
SkipAtom 30 0.1183 + 0.0050
Random 30 0.1701 + 0.0081
Atom?2Vec 86 0.1242 + 0.0066
One-hot 86 0.1218 + 0.0085
SkipAtom 86 0.1126 + 0.0078
Random 86 0.1190 + 0.0085
Mat2Vec 200 0.1126 + 0.0058
SkipAtom 200 0.1089 + 0.0061
Random 200 0.1158 + 0.0050

Table A.2: OQMD Dataset Formation Energy prediction results after 10-fold cross-
validation. The dataset consists of 275,424 examples. The target values were
computed using DFT. [12, 13]. The mean best formation energy MAE on the test
set after 100 epochs of training in each fold is reported. All results were generated

using the same procedure on identical train/test folds.

Representation Dim Pooling MAE (eV/atom)
SkipAtom 86 sum 0.0420 £ 0.0005
SkipAtom 86 mean 0.0460 £ 0.0006
SkipAtom 86 max 0.0615 =+ 0.0006
Atom2Vec 86 sum 0.0396 + 0.0004
Atom2Vec 86 mean 0.0417 + 0.0005
Atom?2Vec 86 max 0.0532 + 0.0006

Bag-of-Atoms / One-hot 86 sum 0.0388 + 0.0002
ElemNet / One-hot 86 mean 0.0427 £+ 0.0007
One-hot 86 max 0.0388 + 0.0005
Random 86 sum 0.0440 + 0.0004
Random 86 mean 0.0468 + 0.0006
Random 86 max 0.0572 + 0.0007
Mat2Vec 200 sum 0.0401 + 0.0004
Mat2Vec 200 mean 0.0444 + 0.0007
Mat2Vec 200 max 0.0501 =+ 0.0006
SkipAtom 200 sum 0.0408 £ 0.0003
SkipAtom 200 mean 0.0451 £ 0.0005
SkipAtom 200 max 0.0559 + 0.0006
Random 200 sum 0.0417 £ 0.0004
Random 200 mean 0.0441 =+ 0.0007

Random 200 max 0.0511 £ 0.0005
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Table A.3: Experimental Band Gap prediction results after 2-repeated 5-fold cross-
validation. The dataset consists of 4,604 examples. The target values were ob-
tained by experiment. [14]. The mean best MAE on the test set after 100 epochs
of training in each fold is reported. All results were generated using the same
procedure on identical train/test folds. The reported state-of-the-art result is an
MAE of 0.416 eV (Automatminer). [15] Note that the state-of-the-art result does
not make use of structure, and uses composition only.

Representation Dim Pooling MAE (eV)
SkipAtom 86 sum 0.3495 + 0.0020
SkipAtom 86 mean 0.3737 £ 0.0091
SkipAtom 86 max 0.3954 £+ 0.0090
Atom2Vec 86 sum 0.3922 £ 0.0087
Atom2Vec 86 mean 0.4005 4 0.0080
Atom2Vec 86 max 0.4070 + 0.0048

Bag-of-Atoms / One-hot 86 sum 0.3797 + 0.0022
ElemNet / One-hot 86 mean 0.4060 + 0.0072
One-hot 86 max 0.3823 + 0.0046
Random 86 sum 0.4109 + 0.0058
Random 86 mean 0.4286 + 0.0058
Random 86 max 0.4389 + 0.0028
Mat2Vec 200 sum 0.3529 + 0.0007
Mat2Vec 200 mean 0.3886 + 0.0000
Mat2Vec 200 max 0.3625 + 0.0070
SkipAtom 200 sum 0.3487 + 0.0085
SkipAtom 200 mean 0.3737 4+ 0.0069
SkipAtom 200 max 0.3985 + 0.0049
Random 200 sum 0.4058 £ 0.0004
Random 200 mean 0.4181 £ 0.0010

Random 200 max 0.4289 £ 0.0067
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Table A.4: Theoretical Band Gap prediction results after 2-repeated 5-fold cross-
validation. The dataset consists of 106,113 examples. The target values were
obtained by DFT-GGA. [16, 17]. The mean best MAE on the test set after 100
epochs of training in each fold is reported. All results were generated using the
same procedure on identical train/test folds. The reported state-of-the-art result
is an MAE of 0.228 eV (CGCNN). [15] Note that the state-of-the-art result makes

use of structure.

Representation Dim Pooling MAE (eV)
SkipAtom 86 sum 0.2791 + 0.0008
SkipAtom 86 mean 0.2807 + 0.0003
SkipAtom 86 max 0.3512 £ 0.0017
Atom2Vec 86 sum 0.2692 £ 0.0008
Atom2Vec 86 mean 0.2712 + 0.0025
Atom2Vec 86 max 0.3289 + 0.0016

Bag-of-Atoms / One-hot 86 sum 0.2611 + 0.0008
ElemNet / One-hot 86 mean  0.2582 + 0.0003
One-hot 86 max 0.2603 + 0.0004
Random 86 sum 0.3238 + 0.0005
Random 86 mean 0.3180 + 0.0016
Random 86 max 0.4096 + 0.0008
Mat2Vec 200 sum 0.2741 + 0.0002
Mat2Vec 200 mean 0.2744 + 0.0005
Mat2Vec 200 max 0.3256 £ 0.0002
SkipAtom 200 sum 0.2736 + 0.0008
SkipAtom 200 mean 0.2753 + 0.0006
SkipAtom 200 max 0.3351 £+ 0.0013
Random 200 sum 0.3083 £ 0.0021
Random 200 mean 0.3095 £ 0.0009
Random 200 max 0.3733 4+ 0.0010
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Table A.5: Bulk Modulus prediction results after 2-repeated 10-fold cross-
validation. The dataset consists of 10,987 examples. The target values were
computed using DFT-GGA. [18]. The mean best MAE on the test set after 100
epochs of training in each fold is reported. All results were generated using the
same procedure on identical train/test folds. The reported state-of-the-art result is
an MAE of 0.0679 log(GPa) (Automatminer). [15] Note that the state-of-the-art
result makes use of structure.

Representation Dim Pooling MAE (log(GPa))
SkipAtom 86 sum 0.0790 + 0.0002
SkipAtom 86 mean 0.0789 £+ 0.0002
SkipAtom 86 max 0.0867 £ 0.0000
Atom?2Vec 86 sum 0.0795 + 0.0005
Atom2Vec 86 mean 0.0810 =+ 0.0004
Atom2Vec 86 max 0.0861 + 0.0002

Bag-of-Atoms / One-hot 86 sum 0.0861 + 0.0002
ElemNet / One-hot 86 mean 0.0853 £ 0.0001
One-hot 86 max 0.0861 + 0.0003
Random 86 sum 0.0916 =+ 0.0002
Random 86 mean 0.0908 + 0.0004
Random 86 max 0.0997 + 0.0001
Mat2Vec 200 sum 0.0776 + 0.0000
Mat2Vec 200 mean 0.0779 + 0.0003
Mat2Vec 200 max 0.0813 + 0.0003
SkipAtom 200 sum 0.0786 =+ 0.0003
SkipAtom 200 mean 0.0785 =+ 0.0000
SkipAtom 200 max 0.0888 £ 0.0002
Random 200 sum 0.0887 + 0.0003
Random 200 mean 0.0871 + 0.0001

Random 200 max 0.0960 £ 0.0004
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Table A.6: Shear Modulus prediction results after 2-repeated 10-fold cross-
validation. The dataset consists of 10,987 examples.
computed using DFT-GGA. [18]. The mean best MAE on the test set after 100
epochs of training in each fold is reported. All results were generated using the
same procedure on identical train/test folds. The reported state-of-the-art result is
an MAE of 0.0849 log(GPa) (Automatminer). [15] Note that the state-of-the-art

result makes use of structure.

The target values were

Representation

Dim Pooling MAE (log(GPa))

SkipAtom
SkipAtom
SkipAtom
Atom?2Vec
Atom?2Vec
Atom2Vec
Bag-of-Atoms / One-hot
ElemNet / One-hot
One-hot
Random
Random
Random
Mat2Vec
Mat2Vec
Mat2Vec
SkipAtom
SkipAtom
SkipAtom
Random
Random
Random

86
86
86
86
86
86
86
86
86
86
86
86
200
200
200
200
200
200
200
200
200

sum
mean
max
sum
mean
max
sum
mean
max
sum
mean
max
sum
mean
max
sum
mean
max
sum
mean
max

0.1014 + 0.0001
0.1025 £ 0.0002
0.1102 £ 0.0002
0.1029 £ 0.0000
0.1054 £ 0.0000
0.1089 £ 0.0005
0.1137 £ 0.0005
0.1155 £ 0.0001
0.1140 £ 0.0002
0.1195 £ 0.0002
0.1199 £ 0.0001
0.1260 £ 0.0001
0.1014 -+ 0.0002
0.1035 £ 0.0001
0.1050 £ 0.0000
0.1014 + 0.0000
0.1024 £ 0.0001
0.1111 £ 0.0001
0.1167 £ 0.0002
0.1163 + 0.0002
0.1223 £ 0.0000
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Table A.7: Refractive Index prediction results after 2-repeated 5-fold cross-
validation. The dataset consists of 4,764 examples.
computed using DFPT-GGA. [19]. The mean best MAE on the test set after
100 epochs of training in each fold is reported. All results were generated using
the same procedure on identical train/test folds. The reported state-of-the-art
result is an MAE of 0.299 n (Automatminer). [15] Note that the state-of-the-art

result makes use of structure.

The target values were

Representation Dim Pooling MAE (n)
SkipAtom 86 sum 0.3369 + 0.0014
SkipAtom 86 mean 0.3275 + 0.0004
SkipAtom 86 max 0.3561 £ 0.0013
Atom2Vec 86 sum 0.3419 £ 0.0013
Atom2Vec 86 mean 0.3308 4 0.0016
Atom2Vec 86 max 0.3522 + 0.0005

Bag-of-Atoms / One-hot 86 sum 0.3576 + 0.0002
ElemNet / One-hot 86 mean 0.3409 £ 0.0016
One-hot 86 max 0.3547 £ 0.0013
Random 86 sum 0.3625 + 0.0012
Random 86 mean 0.3593 + 0.0006
Random 86 max 0.3891 + 0.0021
Mat2Vec 200 sum 0.3272 £ 0.0004
Mat2Vec 200 mean  0.3236 + 0.0017
Mat2Vec 200 max 0.3428 + 0.0004
SkipAtom 200 sum 0.3340 + 0.0012
SkipAtom 200 mean 0.3247 £+ 0.0015
SkipAtom 200 max 0.3618 + 0.0026
Random 200 sum 0.3598 + 0.0053
Random 200 mean 0.3543 £ 0.0006
Random 200 max 0.3824 4+ 0.0019
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Table A.8: Bulk Metallic Glass Formation prediction results after 2-repeated 5-
fold stratified cross-validation. The dataset consists of 5,680 examples. The target
values were obtained from experiment. [20, 21]. The mean best ROC-AUC on
the test set after 100 epochs of training in each fold is reported. All results were
generated using the same procedure on identical train/test folds. The reported
state-of-the-art result is an ROC-AUC of 0.858 (RF) [15]. Note that the state-of-
the-art result does not make use of structure, and uses composition only.

Representation Dim Pooling ROC-AUC
SkipAtom 86 sum 0.9312 &£ 0.0007
SkipAtom 86 mean 0.9346 + 0.0010
SkipAtom 86 max 0.9243 £ 0.0005
Atom?2Vec 86 sum 0.9306 + 0.0026
Atom2Vec 86 mean 0.9316 + 0.0012
Atom2Vec 86 max 0.9300 =+ 0.0008

Bag-of-Atoms / One-hot 86 sum 0.9277 + 0.0004
ElemNet / One-hot 86 mean 0.9322 + 0.0014
One-hot 86 max 0.9289 + 0.0016
Random 86 sum 0.9262 + 0.0011
Random 86 mean 0.9274 + 0.0006
Random 86 max 0.9243 + 0.0020
Mat2Vec 200 sum 0.9280 + 0.0004
Mat2Vec 200 mean 0.9348 + 0.0024
Mat2Vec 200 max 0.9253 + 0.0009
SkipAtom 200 sum 0.9327 + 0.0022
SkipAtom 200 mean  0.9349 + 0.0019
SkipAtom 200 max 0.9268 + 0.0002
Random 200 sum 0.9274 + 0.0019
Random 200 mean 0.9302 + 0.0016

Random 200 max 0.9298 + 0.0009
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Table A.9: Experimental Metallicity prediction results after 2-repeated 5-fold strat-
ified cross-validation. The dataset consists of 4,921 examples. The target values
were obtained from experiment. [14]. The mean best ROC-AUC on the test set af-
ter 100 epochs of training in each fold is reported. All results were generated using
the same procedure on identical train/test folds. The reported state-of-the-art re-
sult is an ROC-AUC of 0.917 (Random Forest). [15] Note that the state-of-the-art

result does not make use of structure, and uses composition only.

Representation Dim Pooling ROC-AUC
SkipAtom 86 sum 0.9645 + 0.0012
SkipAtom 86 mean 0.9575 + 0.0003
SkipAtom 86 max 0.9561 + 0.0020
Atom2Vec 86 sum 0.9582 £ 0.0008
Atom2Vec 86 mean 0.9541 + 0.0005
Atom2Vec 86 max 0.9548 + 0.0006

Bag-of-Atoms / One-hot 86 sum 0.9600 + 0.0012
ElemNet / One-hot 86 mean 0.9485 + 0.0007
One-hot 86 max 0.9599 + 0.0014
Random 86 sum 0.9559 =+ 0.0021
Random 86 mean 0.9460 + 0.0008
Random 86 max 0.9426 + 0.0037
Mat2Vec 200 sum 0.9655 + 0.0014
Mat2Vec 200 mean 0.9570 + 0.0008
Mat2Vec 200 max 0.9634 + 0.0013
SkipAtom 200 sum 0.9645 + 0.0008
SkipAtom 200 mean 0.9572 + 0.0008
SkipAtom 200 max 0.9589 + 0.0010
Random 200 sum 0.9541 + 0.0002
Random 200 mean 0.9454 + 0.0001
Random 200 max 0.9508 + 0.0011
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Table A.10: Theoretical Metallicity prediction results after 2-repeated 5-fold strat-
ified cross-validation. The dataset consists of 106,113 examples. The target values
were obtained by DFT-GGA. [16, 17]. The mean best ROC-AUC on the test set
after 100 epochs of training in each fold is reported. All results were generated
using the same procedure on identical train/test folds. The reported state-of-the-
art result is an ROC-AUC of 0.977 (MEGNet). [15] Note that the state-of-the-art
result makes use of structure. Notable is that the CGCNN model in the same
study achieves an ROC-AUC of 0.954, also using structure, which is comparable
to the performance of the Mat2Vec representation, which uses only composition.

Representation Dim Pooling ROC-AUC
SkipAtom 86 sum 0.9520 + 0.0002
SkipAtom 86 mean 0.9506 + 0.0000
SkipAtom 86 max 0.9440 + 0.0000
Atom2Vec 86 sum 0.9526 + 0.0001
Atom2Vec 86 mean 0.9506 + 0.0001
Atom?2Vec 86 max 0.9450 + 0.0003

Bag-of-Atoms / One-hot 86 sum 0.9490 + 0.0002
ElemNet / One-hot 86 mean 0.9477 £ 0.0001
One-hot 86 max 0.9487 + 0.0003
Random 86 sum 0.9444 + 0.0000
Random 86 mean 0.9433 + 0.0002
Random 86 max 0.9330 + 0.0001
Mat2Vec 200 sum 0.9528 + 0.0002
Mat2Vec 200 mean 0.9517 + 0.0001
Mat2Vec 200 max 0.9469 + 0.0005
SkipAtom 200 sum 0.9524 + 0.0001
SkipAtom 200 mean 0.9507 + 0.0001
SkipAtom 200 max 0.9454 + 0.0001
Random 200 sum 0.9453 + 0.0002
Random 200 mean 0.9441 + 0.0001
Random 200 max 0.9380 =+ 0.0000

Table A.11: Band gap prediction results on the test set of 27,430 compounds
from the Materials Project, split 60/20/20, using the CGCNN model. Training
was performed for 100 epochs, a learning rate of 0.01 was used, along with a
batch size of 256. The default settings provided by library were used for the other

hyperparameters.

Input Representation MAE (eV)
CGCNN binary feature vector 0.381
SkipAtom 200-dim 0.371

Table A.12: Elpasolite formation energy prediction results with the MEGNet ar-

chitecture. This model incorporates crystal structure.

Input Representation MAE (eV/atom)

one-hot atom vectors + embedding table 0.0685
SkipAtom 200-dim 0.0568
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Table A.13: Refractive Index prediction results after 2-repeated 5-fold cross-
validation using mean-pooled SkipAtom embeddings of various dimensions. The
mean best MAE on the test set after 100 epochs of training in each fold is re-
ported. All results were generated using the same procedure on identical train/test

folds.

Dim

MAE (n)

30
86
200
300
400
800

0.3278 + 0.0008
0.3262 £+ 0.0002
0.3248 + 0.0015
0.3252 £ 0.0005
0.3267 + 0.0017
0.3263 + 0.0000

Table A.14: Elpasolite Formation Energy prediction results after 10-fold cross-
validation using SkipAtom embeddings of various dimensions.
MAE on the test set after 200 epochs of training in each fold is reported. All
results were generated using the same procedure on identical train/test folds.

The mean best

Dim

MAE (eV/atom)

30
86
200
300
400
800

0.1183 £ 0.0050
0.1126 + 0.0078
0.1089 + 0.0061
0.1082 £ 0.0053
0.1085 £ 0.0029
0.1056 + 0.0034

Table A.15: Refractive Index prediction results after 2-repeated 5-fold cross-
validation using 200-dim mean-pooled SkipAtom embeddings learned with dif-
ferent amounts of training data. The mean best MAE on the test set after 100
epochs of training in each fold is reported. All results were generated using the

same procedure on identical train/test folds.

Dim % of training data

MAE (n)

200

25
200 100

0.3256 £ 0.0003
0.3248 + 0.0015
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A.3 Supplementary Figures
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Figure A.1: Principal Component Analysis of SkipAtom Representations.

The

first two principal components of the SkipAtom 200-dim vectors for 34 atoms are

depicted.
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Figure A.2: Principal Component Analysis of SkipAtom Representations.

The

third and fourth principal components of the SkipAtom 200-dim vectors for 34

atoms are depicted.
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Figure A.3: Dimensionally reduced SkipAtom vectors for Al and Zn, and for Fe(ll)
and Fe(ll). The vectors were reduced from 200 dimensions to 2 dimensions using

t-SNE.
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The SkipAtom embeddings were mean-pooled.
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Appendix B

Supplementary Information for
Chapter 4

B.1 Supplementary Notes

1. Descriptor Comparison

The use of various descriptors was evaluated with the Random Forest and CraTENet models.
To evaluate a model with a particular descriptor, a 90-10 holdout experiment was performed
using the Ricci database, focusing only on the p-type Seebeck entries at 600K and 102 cm 3
doping. For the Random Forest model, two descriptors were evaluated: the Meredig descriptor
[1] and a sum-pooled 200-dimensional SkipAtom representation [2]. For the CraTENet model,
two atom descriptors were evaluated: a SkipAtom 200-dimensional atom descriptor, and a
binary descriptor described in the original CGCNN work [3]. Each model is thus evaluated
with a local descriptor (i.e. the Meredig material descriptor or the binary atom descriptor)
and a distributed representation (i.e. the sum-pooled SkipAtom material representation or the
SkipAtom atomic representation). The results are given in Supplementary Table B.3.

2. Robust L1 and Robust L2 Loss Comparison

The performance of the CraTENet model was evaluated when trained to minimize either the
Robust L1 loss or the Robust L2 loss. For this comparison, a single-head output model was
used that makes predictions across 13 different temperatures, for a fixed doping type and
doping level. Specifically, models were created that predict either S or log o, at 13 different
temperatures, for either n- or p-type doping, at a level of 102 cm™3. The results are given
in Supplementary Table B.4.
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B.2 Supplementary Tables

Table B.1: Results of 90-10 holdout experiments using the CraTENet+gap model,
consisting of 1, 2, or 3 output heads. ldentical train-test splits were used through-
out. Each number represents either the MAE or R? on the held-out test set of the
dataset formed from the Ricci database, across all temperatures, doping levels,
and doping types. The 1-head entry refers to 3 separate models, each with a
single output head, for each of S, log o, and log PF'. The 2-head model consisted
of outputs only for S and logo, and thus results for log PF' are not reported.
The 3-head model consisted of a separate output head for each of S, logo, and
log PF. Bold values represent the best result for a given metric and transport
property.

S log o log PF
# output heads MAE (uV/K) R?> | MAE R? | MAE R?
1 51.595 0.960 | 0.269 0.964 | 0.384 0.727
2 50.333 0.961 | 0.259 0.968 - -
3 49.718 0.962 | 0.257 0.968 | 0.372 0.738

Table B.2: Mean relative predicted variance for the predictions of the various
transport properties made by both the CraTENet and CraTENet+gap models, for
the MP-excluding-Ricci dataset. Each model makes 54,816 x 130 predictions for a
given transport property (i.e. for different temperatures, doping levels and doping
types). Here, for each prediction, the associated predicted variance is divided by
the absolute value of the mean (i.e. the predicted value of the property), to obtain
the relative predicted variance. The numbers in the table represent the mean of
the relative predicted variances.

S logo log PF
CraTENet 48456 0.0075 0.0114
CraTENet+gap 0.0928 0.0003 0.0032

Table B.3: Results of 90-10 holdout experiments for the p-type Seebeck entries at
600K and 10%° cm—2 doping of the Ricci database. Identical train-test splits were
used throughout. Band gap is not provided to the models. The CraTENet model
consisted of a single output head only. Bold results represent the best results for
a model type.

Model Descriptor R?>  MAE (uV/K)
Random Forest Meredig 0.643 74
Random Forest sum-pooled SkipAtom 200-dim  0.551 92

CraTENet SkipAtom 200-dim 0.587 69

CraTENet CGCNN binary atom vector 0.556 71
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Table B.4: Results for CraTENet models with a single output head that produce
predictions for 13 temperatures, for a given thermoelectric transport property, at a
doping level of 1029 cm ™3, and for a specific doping type. The models were trained
using either the Robust L1 or Robust L2 loss. Each column represents either the
MAE or the R? across all temperatures and across all members of the test set
of a 90-10 holdout experiment. Identical train-test splits were used throughout.
MAE values for tasks involving prediction of S are in units of uV/K. Bold values

represent the best result for a loss for a particular metric.

Robust L1 Robust L2
Task MAE  R? MAE R?
p-type S 67 0.592 66 0.612
n-type S 64 0.478 62 0.503
p-type log o 0.411 0.750 | 0.402 0.764
n-type log o 0.388 0.711 | 0.379 0.723
p-type S + gap 35 0.914 35 0.914
n-type S + gap 38 0.831 38 0.832
p-type logo + gap 0.272 0.896 | 0.275 0.898
n-type logo + gap 0.274 0.860 | 0.269 0.865
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B.3 Supplementary Figures
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Figure B.1: Plots of the agreement between the CraTENet and CraTENet+gap
models, measured in terms of R?, as a function of temperature and doping level,
for each of the transport properties. Each point represents the average R? for the
predictions made on the test set by the CraTENet and CraTENet+gap models,
over the folds of 10-fold cross-validation experiments (each experiment utilized
identical splits).
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Figure B.2: A plot of dimensionally-reduced 200-dimensional mean-pooled
SkipAtom compound vectors for compounds from the Materials Project that are
not in the Ricci database (red) and from the Ricci database (blue). UMAP [4]
with the Minkowski metric was used to reduce the compound vectors to 2 dimen-
sions. The plot contains a random sampling of 3,000 compounds from each of
the datasets. The plot supports the claim that the distributions of compounds in
the datasets are similar.
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Figure B.3: Plots comparing the Ricci database values for the Seebeck (y-axis,
1V/K) to those produced by our ab initio approach, for the compound HoSbPd
(mp-567418). These results demonstrate that our ab initio procedure emulates
the one that was used to create the Ricci database. (Similar results were obtained
for the electrical conductivity.)
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Figure B.4: Plots of the Seebeck values for CeSbSe (mp-1103153) as predicted by
the CraTENet models and by the ab initio procedure. The band gap value used,
0.0 eV, was obtained from the Materials Project.
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Figure B.5: Plots of the logo values for CeSbSe (mp-1103153) as predicted by
the CraTENet models and by the ab initio procedure. The band gap value used,
0.0 eV, was obtained from the Materials Project. The shaded regions represent
the + standard deviation (i.e. the square root of the predicted variance).
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Figure B.6: Plots of the Seebeck values for InCuTeSe (mp-1224187) as predicted
by the CraTENet models and by the ab initio procedure. The band gap value used,
0.164 eV, was obtained from the Materials Project. The shaded regions represent
the + standard deviation (i.e. the square root of the predicted variance).
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Figure B.7: Plots of the log o values for InCuTeSe (mp-1224187) as predicted by
the CraTENet models and by the ab initio procedure. The band gap value used,
0.164 eV, was obtained from the Materials Project. The shaded regions represent
the + standard deviation (i.e. the square root of the predicted variance).
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Figure B.8: Plots of the Seebeck values for GaCuTeSe (mp-1224994) as predicted
by the CraTENet models and by the ab initio procedure. The band gap value used,
0.387 eV, was obtained from the Materials Project. The shaded regions represent
the + standard deviation (i.e. the square root of the predicted variance).
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Figure B.9: Plots of the log o values for GaCuTeSe (mp-1224994) as predicted by
the CraTENet models and by the ab initio procedure. The band gap value used,
0.387 eV, was obtained from the Materials Project. The shaded regions represent
the + standard deviation (i.e. the square root of the predicted variance).
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Figure B.10: Plots of the Seebeck values for NaT|Se, (oqmd-1482315) as predicted
by the CraTENet models and by the ab initio procedure. Predicted band gap values
were used: blue represents the initial prediction, green represents the prediction
plus the predicted standard deviation, and red represents the prediction minus the
predicted standard deviation (i.e. square root of the predicted variance).
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Figure B.11: Plots of the log o values for NaTISe, (oqmd-1482315) as predicted by
the CraTENet models and by the ab initio procedure. Predicted band gap values
were used: blue represents the initial prediction, green represents the prediction
plus the predicted standard deviation, and red represents the prediction minus the
predicted standard deviation (i.e. square root of the predicted variance).
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Figure B.12: Plots of the Seebeck values for LiBiSe, (oqmd-1442673) as predicted
by the CraTENet models and by the ab initio procedure. Predicted band gap values
were used: blue represents the initial prediction, green represents the prediction
plus the predicted standard deviation, and red represents the prediction minus the
predicted standard deviation (i.e. square root of the predicted variance).
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Figure B.13: Plots of the log o values for LiBiSe, (oqmd-1442673) as predicted by
the CraTENet models and by the ab initio procedure. Predicted band gap values
were used: blue represents the initial prediction, green represents the prediction
plus the predicted standard deviation, and red represents the prediction minus the
predicted standard deviation (i.e. square root of the predicted variance).
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Figure B.14: Plots of the true vs. predicted log PF values from the test set of a 90-
10 holdout experiment using the CraTENet+gap model, for various combinations
of temperature and doping level, across both doping types. The bars on top and
right of each frame are histograms representing the data distribution. Different
colours are used to represent metallic (red) and finite-gap (blue) compounds. At
low temperatures and low doping levels, compounds with an electronic band gap
do not have enough electronic conductivity to make a high PF', because they have
few extrinsic (due to doping) or intrinsic (due to temperature) carriers. Only when
more carriers are introduced, can the semiconducting systems compete with the

metals in terms of overall PF.
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Figure B.15: Seebeck coefficients at various temperatures predicted with

CraTENet+gap vs. those computed using the ab initio approach, for 23 Materials
Projects compounds not found in the Ricci database, with a) n-type doping at
400 K, b) p-type doping at 400 K, c) n-type doping at 1300 K, and d) p-type
doping at 1300 K. Each point represents a particular compound at a particular

doping level (e.g. SbTelr at 1
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Appendix C

Supplementary Information for
Chapter 5

C.1 Supplementary Notes

1. CIF Syntax Standardization and Tokenization

The CIF format is flexible in terms of the sequence of tags in the file. Moreover, not all tags
are required to be present in the file. While a large language model could, in principle, learn to
process variable arrangements of the tags, the CIF file syntax was restricted, such that every
CIF file in the dataset is structured identically. Furthermore, several tags were added that are
not part of the CIF specification.

To ensure consistency, and enhance the model's ability to learn from the data, the CIF
files were standardized using a sequence of pre-processing steps. The steps were designed to
not only normalize the format of the CIF files, but also to incorporate additional information
beneficial for the model’s training. The pre-processing steps are as follows:

1. Each structure in the dataset was first converted into a pymatgen Structure object.

2. The pymatgen CifWriter class was used to create CIF files from the Structure ob-
jects, using a symprec value of 0.1.

3. In the created CIF files, the content of the data_ tag was replaced, which contains
the reduced formula, with the cell composition of the structure. The atoms of the cell
composition appended to data_ are sorted by electronegativity.

4. The symmetry operators were removed from the CIF files.

5. A custom block in the CIF files was introduced to include specific atomic properties,
namely, the electronegativity, the radius, and ionic radius. These properties are not part
of the standard CIF specification.

6. All numerical values in the CIF files were rounded to four decimal places.

An example of a CIF file from the training dataset, both before and after it has been
pre-processed, is given below:

data_TePb
_symmetry_space_group_name_H-M Pmma
_cell_length_a 5.64400000
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_cell_length_b 4.00120000
_cell_length_c 5.68070000
_cell_angle_alpha 90.00000000
_cell_angle_beta 90.00000000
_cell_angle_gamma 90.00000000
_symmetry_Int_Tables_number 51

_chemical_formula_structural TePb
_chemical_formula_sum ’Te2 Pb2’
_cell_volume 128.28595744
_cell_formula_units_2Z 2

loop_

_symmetry_equiv_pos_site_id

_symmetry_equiv_pos_as_xyz
1 ’x, y, z’

’—X, -y, -z

’-x+1/2, -y, z’

‘x+1/2, y, -z’

'x+1/2, -y, -z’

'-x+1/2, y, z°

7—X, ¥y, -z
8 ’x, -y, z’

loop_
_atom_site_type_symbol
_atom_site_label
_atom_site_symmetry_multiplicity
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_occupancy

~N o O WwN

Te TeO 2 0.25000000 0.50000000
Pb Pbl1 2 0.25000000 0.00000000

0.73570000
0.26910000

1.0
1.0

154

Original CIF file for PbTe (Z=2, Pmma), before pre-processing

data_Te2Pb2

loop_

_atom_type_symbol
_atom_type_electronegativity
_atom_type_radius
_atom_type_ionic_radius

Te 2.1000 1.4000 1.2933

Pb 2.3300 1.8000 1.1225
_symmetry_space_group_name_H-M Pmma
_cell_length_a 5.6440
_cell_length_b 4.0012
_cell_length_c 5.6807
_cell_angle_alpha 90.0000
_cell_angle_beta 90.0000
_cell_angle_gamma 90.0000
_symmetry_Int_Tables_number 51
_chemical_formula_structural TePb
_chemical_formula_sum ’Te2 Pb2’
_cell_volume 128.2864
_cell_formula_units_Z 2

loop_
_symmetry_equiv_pos_site_id
_symmetry_equiv_pos_as_xyz

1 ’x, y, 2z’

loop_

_atom_site_type_symbol
_atom_site_label
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_atom_site_symmetry_multiplicity
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_occupancy

Te TeO 2 0.2500 0.5000 0.7357 1
Pb Pbl 2 0.2500 0.0000 0.2691 1

Pre-processed CIF file for PbTe (Z=2, Pmma)

After the pre-processing step, the CIF files are tokenized; that is, a CIF file is parsed
and converted into a sequence of numbers, where each number represents a particular token.
Tokenization is necessary for converting the structured, text-based data of CIF files into a
format that the model can process. The selection of tokens is guided by a custom vocabulary.
The vocabulary defines the distinct, irreducible elements of the CIF file syntax that are relevant
to the problem. In constructing this vocabulary, numeric digits, atomic symbols, space group
symbols, and CIF tags were represented with distinct tokens. Specifically, the vocabulary
consists of digits: 0 1 2 3 4 5 6 7 8 9, as well as various symbols: xyz . ()’ , _
(space) \n (newline). A complete enumeration of the supported atom, CIF tag, and space
group symbols follows:

Ac Ag Al Ar As Au B Ba Be Bi Br C Ca Cd Ce Cl1 Co Cr Cs Cu Dy Er Eu F Fe Ga
Gd Ge H He Hf Hg Ho I In Ir K Kr La Li Lu Mg Mn Mo N Na Nb Nd Ne Ni Np O
Os P Pa Pb Pd Pm Pr Pt Pu Rb Re Rh Ru S Sb Sc Se Si Sm Sn Sr Ta Tb Tc Te
Th Ti T1 Tm U V W Xe Y Yb Zn Zr

Supported atom tokens.

_cell_length_b _atom_site_occupancy
_atom_site_attached_hydrogens _cell_length_a
_cell_angle_beta _symmetry_equiv_pos_as_xyz
_cell_angle_gamma _atom_site_fract_x
_symmetry_space_group_name_H-M _symmetry_Int_Tables_number
_chemical_formula_structural _chemical_name_systematic
_atom_site_fract_y _atom_site_symmetry_multiplicity
_chemical_formula_sum _atom_site_label
_atom_site_type_symbol _cell_length_c
_atom_site_B_iso_or_equiv _symmetry_equiv_pos_site_id
_cell_volume _atom_site_fract_z
_cell_angle_alpha _cell_formula_units_Z

loop_ data_

_atom_type_symbol _atom_type_electronegativity *
_atom_type_radius * _atom_type_ionic_radius *

_atom_type_oxidation_number

Supported CIF tag tokens. Tags with * do not exist in the official CIF specification.

Aea?2 Aem2 Ama?2 Amm?2 Cc2 C2/c
C2/m C222 c222_1 Cc Ccc2 Ccce
Cccm Cm Cmc2_1 Cmce Cmcm Cmm?2
Cmme Cmmm F-43c F-43m F222 F23
F432 F4_132 Fd-3 Fd-3c Fd-3m Fdd2
Fddd Fm-3 Fm-3c Fm-3m Fmm2 Fmmm
I-4 I-424d I-42m I-43d I-43m I-4c2
I-4m2 1222 I23 I2_12_12_1 1I2_13 I4
I14/m I4/mcm I4/mmm 1422 1432 I4_1
I4_1/a I4_1/acd I4_1/amd I14_122 I4_132 I4_1cd
I4_1md I4cm I4mm Ia-3 Ta-3d Iba2

Ibam Ibca Im-3 Im-3m Ima2 Imm2
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Imma Immm P-1 P-3 P-31c P-31m
P-3c1 P-3m1 P-4 P-42_1c P-42_1m P-42c
P-42m P-43m P-43n P-4Db2 P-4c2 P-4m2
P-4n2 P-6 P-62c P-62m P-6c2 P-6m2

P1 P2 P2/c P2/m P222 P222_1
P23 P2_1 P2_1/c P2_1/m P2_12_12 P2_12_12_1
P2_13 P3 P312 P31c P31m P321
P3_1 P3_112 P3_121 P3_2 P3_212 P3_221
P3c1 P3m1 P4 P4/m P4 /mbm P4 /mcc
P4 /mmm P4 /mnc P4/n P4/nbm P4/ncc P4 /nmm
P4/nnc P422 P42_12 P4_1 P4_122 P4_12_12
P4_132 P4_2 P4_2/m P4_2/mbc P4_2/mcm P4_2/mmc
P4_2/mnm P4_2/n P4_2/nbc P4_2/ncm P4_2/nmc P4_2/nnm
P4_22_12 P4_232 P4 _2bc P4 _2cm P4 _2mc P4_2nm
P4_3 P4_322 P4_32_12 P4_332 P4bm Pdcc
P4mm P4dnc P6/m P6/mcc P6/mmm P622
P6_1 P6_122 P6_2 P6_222 P6_3 P6_3/m
P6_3/mcm P6_3/mmc P6_322 P6_3cm P6_3mc P6_4
P6_422 P6_5 P6_522 P6cc P6mm Pa-3
Pba2 Pbam Pban Pbca Pbcm Pbcn

Pc Pca2_1 Pcc2 Pcca Pccm Pccn

Pm Pm-3 Pm-3m Pm-3n Pma?2 Pmc2_1
Pmm?2 Pmma Pmmm Pmmn Pmn2_1 Pmna
Pn-3 Pn-3m Pn-3n Pna2_1 Pnc2 Pnma
Pnn?2 Pnna Pnnm Pnnn R-3 R-3c
R-3m R3 R32 R3c R3m

Supported space group tokens.

The atom tokens cover all 89 atom types present in the training data. Atoms with atomic
number Z > 84 (Po) are thus excluded (except for the early actinides Ac, Th, Pa, U, Np,
and Pu, which did appear in crystal structures in the databases).

The 227 space group symbols also cover all space groups present in the training data.
The space groups P4,22 (no. 93), P6 (no. 168), and P432 (no. 207) are not supported
as there are no structures in the training data with these space groups. These three space
groups are known to occur very rarely, due to a combination of symmetries (and absences of
symmetries) that are difficult to realise in a crystal geometry. [1] For example, the space group
P6 requires the presence of a six-fold rotation axis but without the presence of mirror planes
and inversion centres that occur in other hexagonal groups. Note that the rarity of these
space groups is not limited to the ab initio databases used in the study. The ICSD database,
which lists crystallographic information for most currently known materials and minerals, does
not contain any experimentally-determined ordered inorganic compounds in these three space
groups (only three experimental inorganic crystal structures are listed for these space groups:
K, Ta,OgF, and MoCugAly g2 for space group P6, and Rb(NOj3) for space group P432, but
they all exhibit site-occupancy disorder).

After the model has generated a sequence of tokens representing a CIF file, a post-
processing step is performed in which the custom loop_ section with atomic properties is
removed, and the symmetry equivalent site IDs and positions which match the printed space
group are introduced.

2. Model Architecture and Generative Pre-training

The generative pre-training step consists of training a GPT-style transformer model autore-
gressively. The implementation is based on the nanoGPT project [2]. The model consists of
a series of transformer blocks, each consisting of multi-head self-attention and a feed-forward
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neural network. The input to the model is a sequence of token indices representing the token
sequence. The tokens are embedded using a learned embedding table. The token embeddings
are combined with learned positional embeddings, to which dropout is applied. The result is
passed through a series of transformer blocks. A transformer block consists of causal self-
attention [3] and a feed-forward network containing a non-linear layer with GELU activation
[4], and dropout. A linear output layer transforms the features produced by the transformer
blocks into a vector of logits. A softmax operation is applied to convert the logits into the
probabilities of the tokens of the vocabulary, for each position in the output sequence. Weight
tying [5] is used: the output layer and the input embedding layer share the same weights.
The objective is to minimize the cross-entropy loss between the predicted probability distribu-
tion over the vocabulary and the actual next token in the sequence, for all the tokens in the
sequence.

Training consists of iteratively sampling sequences from the dataset, performing a forward-
pass through the model, computing the loss, and backpropagating the error. The AdamW
optimizer [6] is used, and a cosine decay schedule is applied to the learning rate, from 1073
to 1074, over the course of training. Gradients were clipped to have a norm of at most 1.0.
During each training iteration, 40 gradient accumulation steps were performed, and in each
step a batch of 32 sequences was randomly sampled. The dataset consists of a single list of
all tokens from all CIF files, concatenated together, and the beginning of each sequence is a
randomly sampled token from the list. The number of tokens in each sequence is equal to the
block size of the model, which is the maximum length of the input sequence the model can
process. All models were trained on a single A100 GPU with 80 GB of memory.

2.1 Small Model

The small model consists of 25 million parameters, with 8 transformer blocks, each with 8
attention heads, an embedding size of 512, a block size of 1,024, and dropout with probability
p = 0.1. To determine the optimal number of training iterations, the model is trained using
10% of the dataset as a validation set, and monitor the model’s performance on the validation
set, in terms of the cross-entropy loss. It was determined that the model continues to improve
beyond 90,000 iterations. Therefore, the final model was trained on the entire dataset for
100,000 iterations (due to computational resource and time constraints).

2.2 Large Model

The large model consists of 200 million parameters, with 16 transformer blocks, each with
16 attention heads, an embedding size of 1,024, a block size of 2,048, and dropout with
probability p = 0.1. Due to computational resource and time constraints, the large model is
trained on the entire dataset for 48,000 iterations. Additionally, the starting point for each
sequence is sampled from a pre-compiled list of tokens, each known to be the starting token
of a CIF file in the dataset. This approach ensures that each sequence begins at the start of
a distinct CIF file.

2.3 Training Times

On an A100 GPU, the small model requires 3 seconds per training iteration. Therefore,
100,000 small model training iterations requires 83.3 hours, or approximately 3.5 days. The
large model requires 16 seconds per training iteration on an A100 GPU. Therefore, 48,000
large model training iterations requires 213.3 hours, or approximately 8.9 days.
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2.4 CIF File Generation via Random Sampling

CIF files are generated using top-k random sampling. Top-k sampling involves randomly
selecting the next token from the top k& most likely candidates as predicted by the model.
Temperature scaling x/7 is first applied to the logits x € RVl at the final position, and keep
only the top k logits, where || represents the size of the vocabulary. The top k logits are then
converted into normalized probabilities through application of the softmax operation. Finally,
the next token is sampled using the given probabilities. More formally,

X

token ~ softmax (topk <;)) (C.1)

evi

Z?:l ety
where i represents the i-th element of the vector x. Tokens are sampled iteratively, each

conditioned on the progressively growing sequence of previously sampled tokens, until two
consecutive newline tokens are sampled.

softmax(z); = (C.2)

3. Validation of Generated CIF Files

To ensure the consistency of the printed information and the chemical sensibility of the implied
structure, a series of validations is conducted on the generated CIF file. The procedure is
described in Algorithm 2.

First, it is required that the chemical formula, which is printed in several locations in the
file, is consistent everywhere. Specifically, the formula associated with the _chemical _formula_sum
tag, and the (reduced) formula associated with the
_chemical formula structural tag must be consistent with the cell composition in the
first line of the file, and with each other.

Next, it is required that the printed atom site multiplicity is consistent with the cell
composition. This information is printed at the end of the file, and the values are associated
with the _atom_site_type_symbol and _atom_site_symmetry multiplicity tags.

The structure’s bond lengths are also evaluated for reasonableness. To check if bond
lengths are reasonable, a Voronoi-based nearest-neighbour algorithm is first used in pymatgen
to define which atoms are bonded together; then, expected bond lengths are established based
on the electronegativity difference between the bonded atoms, and their ionic or covalent radii.
A bond length reasonableness score is computed, B € [0, 1], which represents the fraction
of bonds which are within 30% of the corresponding expected bond lengths. A structure is
classified as having reasonable bond lengths if B > cpong, Where cpong € [0, 1] is a bond
length acceptability score minimum, which in this work is set to 1.0 (i.e. all bond lengths
must be within 30% of the expected bond lengths).

Finally, the generated CIF file is checked for consistency in terms of space group. To check
if the generated structure is consistent with the printed space group, the SpacegroupAnalyzer
class of the pymatgen library is used, which uses the spglib library [7].
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Algorithm 2 Check Validity of Generated CIF File
. Input: S, the contents of the generated CIF file

[y

2: Input: cpong, the bond length acceptability score minimum
3: Output: True or False, indicating whether S is valid
4: if not is_formula_consistent(S) then

5: return False

6: end if

7: if not is_atom_site_multiplicity_consistent(,S) then

8: return False

9: end if

10: B <+ bond_length_reasonableness_score(S)

11: if B < c¢pong then

12: return False

13: end if

14: if not is_space_group_consistent(.S) then

15: return False

- end if
: return True

=
~N O

4. Monte Carlo Tree Search Decoding

To improve the efficiency and quality of sampling from the model, the Monte Carlo Tree
Search (MCTS) algorithm [8, 9] is used. Typically, the MCTS algorithm is used in the context
of games, and similar decision processes, where the aim is to select an optimal action to
perform. Here, MCTS is used to generate a collection of sequences, which should improve
(according to some measure of quality) as the algorithm proceeds.

A sequence of tokens can be considered the outcome of following a specific path during
the traversal of a tree of tokens, starting from the root and progressing to a leaf. In this
framework, each node in the tree represents a token, and each edge denotes the transition
from one token to the next in the sequence. By systematically exploring and expanding
the most promising paths, MCTS balances exploitation of well-performing token sequences
with exploration of new, potentially better sequences. The trade-off between exploitation and
exploration is achieved through a principled selection strategy, which guides the search towards
areas of the tree that either have high potential or have not been sufficiently explored. As the
search progresses, the algorithm builds a more informed representation of the tree, enabling
more efficient and higher-quality sampling of token sequences.

The MCTS algorithm is comprised of a sequence of steps performed for a fixed number
of iterations. The implementation is described in Algorithm 3, and a detailed explanation of
each step follows.

4.1 Selection

Each node, 4, in the tree represents the cumulative context up to that point, akin to con-
structing a sentence word by word. The first step in every iteration involves descending the
tree, from the root node to a leaf node, by selecting the most promising node, i;, at each level
t. To select the node, a variant of the PUCT (Predictor-Upper Confidence bound applied to
Trees) algorithm [10, 11] is used.

The selection of a node at each level is guided by the statistics accumulated in the
tree. The specific node i; is chosen by maximizing the PUCT value, expressed as iy =
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argmax(PUCT(i;)), where the PUCT value is calculated as:

1

i VN
PUCT(i) = % + CpuctPiT]}\Lf (C3)

where w; represents the total score accumulated at node i, indicating the node’s past perfor-
mance. N; is the number of times node 7 has been visited, reflecting its exploitation level. P;
is the prior probability of selecting the token leading to node i, given its parent node h, which
is provided by the CrystaLLM model. N}, is the total number of visits to the parent node h,
and cpuct is a constant determining the level of exploration in the PUCT algorithm.

4.2 Expansion

If a node has children that haven't been added to the tree, a child node is selected randomly
and added to the tree. This newly added node is the selected node for the remainder of
the iteration. To determine what children a node contains, the CrystaLLM model’s predicted
probabilities are used to select the top k£ tokens. If a child node’s probability exceeds 0.99,
it becomes the sole child node. In this case, where a node has only a single child node, the
child node is bypassed, foregoing the Rollout step. The process then proceeds directly to the
Selection step for the child nodes of the bypassed node, continuing the iteration from that
point onwards.

4.3 Rollout

The Rollout step involves prompting the CrystaLLM model with the sequence of tokens rep-
resented by the selected node in the tree, and then sampling from the model repeatedly, until
a terminating condition is reached. The aim is to arrive at a completed structure, which can
then be further evaluated and scored.

4.4 Evaluation

Once a sequence has been completed, either by reaching a terminal node through Selection,
or through Rollout, it represents the contents of a completed CIF file. The generated CIF
contents are then validated (see Supplementary Note 3), and if the generated CIF file is valid,
the structure is evaluated using the ALIGNN model of formation energy per atom, to produce
a prediction of the structure's energy, Fj.

4.5 Backpropagation

The outcomes of iterations are accumulated in the tree nodes. All nodes selected during a
simulation increase in their visit count, and a score is added to each. The score, R € [—1, 1],
represents the quality of the generated structure. A more positive R represents a better
structure.

Because scores are required to be between -1 and 1, and since the range of formation
energies is not known for a composition a priori, the score for valid structures (Ryaiq € [0, 1])
is computed using the statistics of the predicted energies over the course of the search:

1
1+ eM(Er—p)/o)

Ryatia = (C4)

where Ey is the formation energy per atom (eV) according to ALIGNN (Atomistic Line Graph
Neural Network) [12], v is the mean over all of the obtained F¥, o is the standard deviation
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over all the obtained E¥f, and X is a constant that determines how responsive the reward is to
E.
The overall score is computed piecewise:

Ryaq  if valid,
R =4 B—1 if bond lengths unreasonable, (C.5)
-1 otherwise
where B is the bond length reasonableness score. An invalid structure receives a score of -1,
unless it is invalid because of unreasonable bond lengths. In cases where a CIF file is otherwise

valid, but the structure contains unreasonable bond lengths, a negative score is assigned that
is proportional to the number of unreasonable bonds.

Algorithm 3 Monte Carlo Tree Search Decoding

Jursy

Input: trained large language model, LLM

2: Input: number of simulations, n

3: Input: tree width, &

4: Input: PUCT exploration constant, cpuct

5. Input: text prompt, P

6: Output: list of valid sequences

7: Initialize tree with root node based on P

8: valid_sequences <« []

9: for simulation =1 to n do

10: current_node <— root

11: // Select

12: while not current_node.has_untried_children() and current_node.has_children() do
13: current_node < select_node(current_node.children, LLM, cpyct)
14: end while

15: // Expand

16: if current_node.has_untried_children() then

17: untried_child «+ select_untried_child_randomly(current_node, k)
18: current_node.add_child(untried_child)

19: current_node <— untried_child

20: end if

21: // Rollout

22: complete_sequence < sample_randomly(current_node, LLM)
23: // Evaluate

24: score < evaluate_sequence(complete_sequence)

25: if is_valid(complete_sequence) then

26: valid_sequences.append(complete_sequence)

27: end if

28: // Backpropagate

20: while current_node is not null do

30: current_node.visits <— current_node.visits + 1

31 current_node.wins < current_node.wins + score

32 current_node < current_node.parent

33: end while

34: end for

35: return valid_sequences
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5. Metrics for Unconditional Generation

To assess performance on the unconditional generation tasks, the metrics introduced by Xie
et al. [13] are used. Six metrics are used to evaluate different aspects of generation quality:
COV-R (coverage recall), COV-P (coverage precision), AMSD-R (average minimum structure
distance recall), AMSD-P (average minimum structure distance precision), AMCD-R (average
minimum composition distance recall) and AMCD-P (average minimum composition distance
precision).

Using the same formalism introduced by [13], the definitions of these metrics are re-stated
here: A collection of K materials generated by a model, {Mk}ke[l..K}: is compared to a
collection of L ground-truth materials, {M*l}le[l..L]- A distance is further defined between
two structures of the collections, Dgtrye. (Mg, M*;), and a distance between two compositions
of the collections, Deomp. (M, M*;). For all metrics, the structure distance is the Euclidean
distance between the CrystalNN fingerprints [14] for the two structures, while the composition
distance is the Euclidean distance between the normalized Magpie fingerprints [15] of the two
compositions. Moreover, thresholds dsiruc., Ocomp. € R are defined for the structure and
composition distances.

The metrics are thus defined as follows:

1
COV-R = = {l € [1..L] : 3k € [1.K], Dutrue. My, M"1) < Gitruc.

(C.6)
Dcomp.(Mk>M*l) < (Scomp.}‘
1
COV-P = —|{k € [1..K] : 31 € [1..L], Dagruc.(Mp, M*}) < Sstruc.
K’{ 6[ ] E[ ]7 st c( k l)< struc (C.?)
Dcomp.(Mk:a M*l) < 6comp.}|
1
AMSD-R = — min  Dggrye. (Mg, M™) (C.8)
L k€[1..K]
lefl..L]
1
AM -F == i struc. ) * .
SD-P % len[lll.g:}Dt (M, M) (C.9)
ke[l..K]
1
AMCD-R = — in  Deomp. (M, M* C.10
i3 gl Deo p. (M, M™) (C.10)
lefl..L]
1
AMCD-P = — in Deomp. (M, M* C.11
% S p. (M, M™)) (C.11)
ke[l..K]

In summary, the recall metrics assess the proportion of actual materials correctly identified,
whereas the precision metrics evaluate the quality of the materials generated. See [13] and
[16] for more detailed discussion and description of these metrics. As in [13], dstruc. = 0.2,
dcomp. = 4 for Perov-5 and Carbon-24, and dstruc. = 0.4, dcomp. = 10 for MP-20 is used.

6. Effect of MCTS on the Stability of Unconditionally Generated Novel Struc-
tures

The MCTS procedure can be used to find structures with lower energy for the unconditionally
generated compositions, using the ALIGNN energy evaluator as a fast proxy for DFT energies.
As mentioned in the chapter, MCTS is performed, with 1,000 iterations, on each of the 102
compounds initially identified as novel.
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The raw results are provided as a separate CSV file, and discussed in more detail here. The
MCTS procedure works as intended, lowering (or keeping constant) the ALIGNN energies of all
tested compositions. The average ALIGNN energy change is -153 £ 15 meV /atom (with the
error bar obtained as the standard error of the mean). However, the mean Ey, as calculated
by DFT, is not reduced by the same amount, because of the limitations in accuracy of the
ALIGNN energy estimator (and the fact that ALIGNN predicts energies for the as-generated,
unrelaxed compounds, while the DFT energies are obtained for relaxed geometries). The
MCTS-induced improvement of the average DFT energy, of -56 + 15 meV /atom, reduces the
average Ey,; from 0.40 to 0.34 eV/atom. The question, then, is whether, given the sample
size, this DFT energy lowering is still significant, or simply due to a statistical fluctuation.
In other words, is the improvement introduced by the MCTS procedure in terms of ALIGNN
energies maintained (with statistical significance) after evaluating the energies with DFT?

To precisely answer this question, a statistical test of significance was performed. The null
hypothesis is that MCTS does not bring any improvement to the average F obtained by
DFT. In that case, the DFT energy changes (from the original structures to those generated
by MCTS) would be just randomly distributed with zero mean. What the probability p would
be of obtaining the DFT results under the null hypothesis conditions can be calculated. Using
a paired t-test, t=-3.7 was obtained, which means that the probability of the DFT energy
change observed being a statistical fluctuation in either direction (two-sided test) is p=0.0003.
This is well below the threshold of p=0.05 typically accepted for statistical significance. It
was verified that a Wilcoxon signed-rank test, that accounts for deviations of the distribution
of paired differences from normality, gives a similar result. Therefore, the null hypothesis
can definitely be rejected: the advantage introduced by MCTS does survive the transition
from ALIGNN to DFT energies, despite the limitations of ALIGNN. Not only are the ALIGNN
energies improved by the MCTS approach, but the DFT Ey, energies are as well.
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C.2 Supplementary Tables

Table C.1: The compounds of the Challenge Set, their sources, and their formation
energies per atom, as predicted by the ALIGNN model.

Formula Source ALIGNN Ef (eV/atom)
Ba,MnCr training set 0.906
Ca;(PO,4)s(OH), training set -3.029
CH3;NH;Pbl, training set -0.358
Co,CO3(0OH), training set -1.019
CsCuTePt training set 0.137
Cu,C,05H, training set -0.923
Cu3(C0O3),(0OH), training set -0.999
K,AgMolg training set -0.639
MgF, training set -3.782
Mn,(PO,); training set -2.010
PbCu(OH),SO, training set -1.160
Sm,BO, training set -2.993
AICu,As(HO)4, ref. [17] -1.185
Ba,AulOg¢ ref. [18] -1.329
Ba,Fe,Fy ref. [19] -3.073
BagFe, Te;S; ref. [20] -1.593
Ba,Gd(BO;),F ref. [21] -3.325
Ba,GeSb,Se;; ref. [22] -1.136
Ba;GeTeS, ref. [23] -1.721
Ba,HfFg ref. [24] -4.177
BaY¢Si, 033 ref. [25] -3.702
BagYb,(Si0,)s ref. [26] -3.245
Ca,Bi,0, ref. [27] -1.952
CaFegGeg ref. [28] -0.200
CaHPO, ref. [29] -2.445
CaPt,P, ref. [30] -0.826
Ca,Te;0g ref. [31] -1.911
CaZnV,0q4 ref. [32] -2.573
CegCdysTe ref. [33] -0.295
Cs,Al,O4F, ref. [34] -3.116
CsgCu3Si 4035 ref. [35] -2.561
Cs,LuSi; 0, ref. [36] -2.970
Cu,FeGe,S, ref. [37] -0.368
Eu,FeGe,0S; ref. [38] -1.265
HgB,S, ref. [39] -0.340
Ho,Ir;Sig ref. [40] -0.885
KScP,0, ref. [41] -2.801
K,Sr,(PO3)10 ref. [42] -2.626
KeZn(CO3), ref. [43] -1.817
La,Ga,S505 ref. [44] 2171
LaScSe, ref. [45] -1.912
LigAl,Sng ref. [46] -0.173
LiBa,AlO, ref. [47] -2.965
Li,GeS; ref. [48] -0.989
LiMnBi ref. [49] -0.004
LiTa,NiSe, ref. [50] -0.842
Mg, Pt,Ge, ref. [51] -0.676
NaGdSi, 0, ref. [52] -3.074
Na,Hf(BOj3), ref. [53] -2.834
NagLi,WO,(CO;), ref. [54] -2.010
NaMgV5(H506), ref. [55] -1.540
NagMn,P,H,(OgF,), ref. [56] -2.140
NaSbSe, 0, ref. [57] -1.213
NaSb, TeO, ref. [57] -1.502
Na,Sn,GesO4 ref. [58] -1.862
Na;Te,(FeO,); ref. [59] -1.430
Nd;BSi, 0y, ref. [60] -3.352
NisTe,0,(PO,),(OH),  ref. [61] -1.302
RbNiFe(PO,), ref. [62] -1.930
Rb;SnCl, ref. [63] -1.434
Sr,Bi,0, ref. [27] -1.963
SrCo,(OH)(PO,), ref. [64] -1.861
Sr(ClO,), ref. [65] -0.593
SrgGe30Se ref. [66] -1.145
Tb;S;B0, ref. [67] -2.857
Tb;TeBO, ref. [68] -2.433
YbMngSng ref. [69] -0.070
Zny(HTeO3)(AsO,) ref. [70] -1.290
Zn,BS,Br ref. [71] -0.692

Zn,CuHg(COy), ref. [72] -1.251
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Table C.2: Performance of the small model on the Challenge Set. No space group
was included in the prompt.

Composition Mean E; Min Ef % Valid Any match true?
AlCu,As(HO),, -0.366 -0.568 19 no
Ba,AulOg -1.546 -1.599 96 no
Ba,Fe,Fq -2.324 -2.598 14 no
Ba,Gd(BO,),F -2.091 -2.578 12 no
Ba,HfFg -3.427 -3.940 35 yes
Ba,MnCr 0.985 0.611 100 yes
Ba;GeTeS, -0.985 -1.366 33 no
Ba,GeSb,Se;; -0.707 -0.859 18 no
BagFe, Te;S; -0.743 -0.989 15 no
BagYb,(Si0,), -1.524 -1.524 1 no
BaY(Si 033 - - 0 no
CH3NH,Pbl, 0339  0.110 11 no
Cay(PO,)6(OH), - - 0 no
Ca,Bi,0, -1.759 -1.889 100 yes
Ca, Te;04 - - 0 no
CaFegGeg 0.232 -0.207 26 yes
CaHPO, -1.471 -2.030 18 no
CaPt,Pg -0.330 -0.671 29 no
CaZnV,04 -1.981 -2.551 32 yes
CesCdy3Te -0.309 -0.369 91 yes
Co,CO;(0OH), -0.180 -0.527 29 no
Cs,Al,05F, -1.959 -2.455 16 no
Cs;LuSi; Oy - - 0 no
CsgCus3Siy 4035 - - 0 no
CsCuTePt 0.136 0.092 100 yes
Cu,C;05H, -0.279 -0.708 48 no
Cu3(C0O3),(0OH), -0.164 -0.479 22 no
Cu,FeGe,S, -0.060 -0.266 39 no
Eu,FeGe,0S¢ -0.924 -1.265 45 yes
HgB,S, 0.336 0.051 18 no
Ho, Ir;3Sig -0.883 -0.890 98 yes
K,AgMolg -0.638 -0.643 100 yes
K,Sr, (PO3)1g - - 0 no
KgZn(CO3), - - 0 no
KScP,0, -2.626 -2.794 81 yes
La,Ga,S50, -1.024 -1.288 5 no
LaScSe; -1.879 -1.978 98 yes
Li,GeS; -0.554 -0.960 44 no
LigAl,Sng 20122 -0.189 2 no
LiBa,AlO, -1.837 -2.053 3 no
LiMnBi 0.130 0.075 100 no
LiTa,NiSeg -0.693 -0.847 71 no
Mg, Pt,Ge, -0.263 -0.521 23 no
MgF, -3.512 -3.811 93 yes
Mn,(PO,)3 -1.750 -2.014 16 yes
Na,Hf(BO,), -2.766  -2.835 69 yes
Na;Te,(FeO,); -1.362 -1.455 97 yes
Na,Sn,Ge; 044 -0.741 -0.867 2 no
NagMn,P,H,(OgF5), -0.917 -0.948 2 no
NagLi,WO,(CO5), - - 0 no
NaGdSi,Og -2.721 -3.060 63 no
NaMgV5(H50¢),4 - - 0 no
NaSb, TeO, -0.855 -1.049 3 no
NaSbSe, 0, -0.528 -0.813 10 no
Nd;BSi, 0, - - 0 no
Ni;Te,0,(PO,),(OH), -0.538 -0.824 28 no
PbCu(OH),SO, -0.362 -0.731 51 no
Rb;SnCl, -1.329 -1.506 52 yes
RbNiFe(PO,), -0.896 -1.315 9 no
Sm,BO, -2.978 -3.011 92 yes
Sr(ClO,), -0.044 -0.357 20 no
Sr,Bi, 05 -1.729 -1.931 97 yes
SreGe;OSey; -0.768 -1.017 4 no
SrCo,(OH)(PO,), -0.868 -0.868 1 no
Tb3S;BO0; -1.173 -2.026 45 no
Tb;TeBO, -2.274 -2.477 73 yes
YbMngSng -0.042 -0.071 100 yes
Zn,(HTeO3)(AsO,) -0.556 -1.209 26 no
Zn,BS;Br -0.077 -0.602 77 no

Zn,CuHg(COg), -0.207  -0.641 19 no
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Table C.3: Performance of the small model on the Challenge Set. The space group
was included in the prompt.

Composition Mean E; Min Ef % Valid Any match true?
AlCu,As(HO),, -0.403 -0.735 50 no
Ba,AulOg¢ -1.410 -1.608 74 yes
Ba,Fe,F, 2163 -2.416 8 no
Ba,Gd(BO,),F -1.869 -2.266 12 no
Ba,HfFg -3.565 -4.082 40 yes
Ba,MnCr 1.020 0.833 100 yes
Ba;GeTeS, -1.148 -1.589 42 yes
Ba,GeSb,Se;; -0.707 -0.888 16 no
BagFe, Te;S; -0.563 -1.020 6 no
BagYb,(Si0,), - - 0 no
BaY(Si 033 - - 0 no
CH3;NH;Pbl, 0.523 0.068 47 no
Cay(PO,)6(OH), - - 0 no
Ca,Bi, 0, -1.758 -1.887 100 yes
Ca, Te;04 - - 0 no
CaFe,Geg 0013  -0.175 8 yes
CaHPO, -1.175 -1.917 18 no
CaPt,Pg -0.346 -0.645 31 yes
CaZnV,04 -2.197 -2.583 51 yes
CesCdy3Te -0.315 -0.357 89 yes
Co,CO;3(0OH), -0.086 -0.304 21 no
Cs,Al,05F, -2.028 -2.813 20 no
Cs;LuSi; 0y -1.505 -1.927 3 no
CsgCus3Siy 4035 - - 0 no
CsCuTePt 0.136 0.128 100 yes
Cu,C,05H, -0.135 -0.541 29 no
Cu3(C0O3),(0OH), -0.157 -0.581 29 no
Cu,FeGe,S, -0.055 -0.314 57 no
Eu,FeGe,0S¢ -1.151 -1.290 52 yes
HgB,S, 0272 -0.043 25 no
Ho, Ir;Sig -0.881 -0.892 97 yes
K,AgMolg -0.638 -0.643 100 yes
K,Sr, (PO3)1g - - 0 no
KgZn(CO3), -0.820 -0.820 1 no
KScP,0, -2.703 -2.798 77 yes
La,Ga,S504 -1.028 -1.460 19 no
LaScSe; -1.912 -1.975 99 yes
Li,GeS; -0.590 -0.962 24 yes
LigAl,Sng -0.117  -0.216 9 no
LiBa,AlO, -1.392 -2.074 15 no
LiMnBi 0.123 -0.037 100 yes
LiTa,NiSeg -0.249 -0.555 48 no
Mg, Pt,Ge, -0.412 -0.602 19 no
MgF, -3.774 -3.810 100 yes
Mn,(PO,)3 -1.574 -1.997 34 yes
Na,Hf(BO,), -2.802  -2.839 99 yes
Na;Te,(FeO,); -1.363 -1.458 94 yes
Na,Sn,Ge; 044 -0.974 -1.215 3 no
NagMn,P,H,(OgF5), -1.053 -1.053 1 no
NagLi,WO,(CO;3), -0.712  -1.012 3 no
NaGdSi,Og -1.696 -2.620 12 no
NaMgVg(H50¢),4 - - 0 no
NaSb, TeO, -0.752 -0.752 1 no
NaSbSe, 0, -0.543 -1.081 21 no
Nd;BSi, 050 -1.915  -1.915 1 no
Ni;Te,0,(PO,),(OH), -0.582 -0.947 24 no
PbCu(OH),SO, -0.378 -0.776 46 no
Rb;SnCl, -1.454 -1.538 76 yes
RbNiFe(PO,), -0.887 -1.082 4 no
Sm,BO, -2.981 -3.011 92 yes
Sr(ClO,), -0.064 -0.158 2 no
Sr,Bi,0; -1.762  -1.968 100 yes
SreGe;OSey; -0.672 -0.912 5 no
SrCo,(OH)(PO,), - - 0 no
Tb3S;B0; -1.281  -1.477 6 no
Tbh;TeBO, -2.251 -2.466 84 yes
YbMngSng -0.052 -0.066 99 yes
Zn,(HTeO3)(AsO,) -0.865 -1.210 50 no
Zn,BS;Br 0.111 -0.181 56 no

Zn,CuHg(COg), -0.205  -0.302 4 no
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Table C.4: Performance of the large model on the Challenge Set. No space group
was included in the prompt.

Composition Mean E; Min Ef % Valid Any match true?
AlCu,As(HO),, -0.333 -0.620 33 no
Ba,AulOg -1.541 -1.589 65 no
Ba,Fe,Fq -2.292 -2.701 10 no
Ba,Gd(BO,),F -1.996 -2.207 5 no
Ba,HfFg -3.522 -4.109 23 yes
Ba,MnCr 1.027 0.593 100 yes
Ba;GeTeS, -1.346 -1.681 71 yes
Ba,GeSb,Se;; -1.085 -1.137 82 yes
BagFe, Te;S; -0.722 -1.036 12 no
BagYb,(Si0,), -2.970 -3.244 41 yes
BaY(Si 033 - - 0 no
CH3NH;Pbl, -0.352 -0.358 100 yes
Ca;y(PO,)s(OH), -2.999 -3.003 93 no
Ca,Bi, 0, -1.751 -1.888 100 yes
Ca, Te;04 - - 0 no
CaFe,Geg 0.207  -0.003 7 no
CaHPO, -1.165 -1.504 14 no
CaPt,Pg -0.437 -0.756 34 yes
CaZnV,04 -2.394 -2.585 64 yes
CesCdy3Te -0.325 -0.342 93 yes
Co,CO;(0OH), -1.009 -1.019 100 yes
Cs,Al,05F, -2.114 -2.685 14 no
Cs;LuSi; Oy -2.815 -2.946 19 no
CsgCus3Siy 4035 - - 0 no
CsCuTePt 0.140 0.131 100 yes
Cu,C;05H, -0.924 -0.933 99 yes
Cu3(C0O3),(0OH), -1.007 -1.018 95 yes
Cu,FeGe,S, -0.073 -0.282 53 no
Eu,FeGe,0S¢ -0.824 -1.264 31 yes
HgB,S, 0.380 0.154 9 no
Ho, Ir;Sig -0.880 -0.887 99 yes
K,AgMolg -0.637 -0.644 100 yes
K,Sr, (PO3)1g - - 0 no
KgZn(CO3), - - 0 no
KScP,0, -2.761 -2.795 100 yes
La,Ga,S504 -1.174 -1.421 5 no
LaScSe; -1.866 -1.940 96 yes
Li,GeS; -0.735 -0.917 23 no
LigAl,Sng 0112 -0.218 14 no
LiBa,AlO, -2.000 -2.628 9 no
LiMnBi 0.124 -0.055 99 yes
LiTa,NiSeg -0.436 -0.844 58 no
Mg, Pt,Ge, - - 0 no
MgF, -3.380 -3.803 93 yes
Mn,(PO,)3 -1.980 -2.020 81 no
Na,Hf(BO3), -2.567 -2.829 75 yes
Na;Te,(FeO,); -1.430 -1.460 100 yes
Na,Sn,Ge; 044 -1.023 -1.034 3 no
NagMn,P,H,(OgF5), -1.094 -1.151 2 no
NagLi,WO,(CO5), - - 0 no
NaGdSi,Og -2.962 -3.083 73 yes
NaMgV5(H50¢),4 - - 0 no
NaSb, TeO, -0.689 -0.943 4 no
NaSbSe, 0, -0.497 -0.698 9 no
Nd;BSi, 0, -3.338 -3.374 86 yes
Ni;Te,0,(PO,),(OH), -0.502 -1.010 31 no
PbCu(OH),SO, -1.153 -1.160 98 yes
Rb;SnCl, -1.438 -1.481 6 yes
RbNiFe(PO,), -1.011 -1.557 9 no
Sm,BO, -2.986 -3.006 95 yes
Sr(ClO,), -0.170 -0.348 12 yes
Sr,Bi,0; -1.672  -1.874 100 yes
SreGe;OSey; -0.870 -0.870 1 no
SrCo,(OH)(PO,), - - 0 no
TbyS,B0, -1.792  -2.195 13 no
Tb;TeBO, -1.994 -2.347 71 yes
YbMngSng -0.056 -0.067 100 yes
Zn,(HTeO3)(AsO,) -0.470 -0.671 22 no
Zn,BS,Br 0024  -0.510 56 no

Zn,CuHg(COg), -0.181  -0.550 18 no
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Table C.5: Performance of the large model on the Challenge Set. The space group
was included in the prompt.

Composition Mean E; Min Ef % Valid Any match true?
AlCu,As(HO),, -0.343 -0.540 30 no
Ba,AulOg¢ -1.411 -1.572 65 yes
Ba,Fe,Fy 2175  -2.503 4 no
Ba,Gd(BO,),F -2.505 -2.739 4 no
Ba,HfFg -3.466 -4.058 47 yes
Ba,MnCr 1.066 0.862 100 yes
BayGeTeS, -1.520  -1.681 70 yes
Ba,GeSb,Se;; -1.100 -1.138 75 yes
BagFe, Te;S; -0.724 -1.068 31 no
BagYb,(Si0,), -2.949 -3.241 38 yes
BaY(Si 033 - - 0 no
CH3NH;Pbl, -0.358 -0.358 100 yes
Ca;y(PO,)s(OH), -1.634 -1.634 1 no
Ca,Bi, 0, -1.745 -1.864 100 yes
Ca, Te;04 - - 0 no
CaFe,Geg 0.079  -0.063 12 no
CaHPO, -1.159 -1.857 22 no
CaPt,Pg -0.475 -0.813 33 yes
CaZnV,0q -2.310 -2.571 79 yes
CesCdy3Te -0.327 -0.360 99 yes
Co,CO;(0OH), -1.009 -1.020 100 yes
Cs,Al,05F, -2.190 -2.831 18 no
Cs;LuSi; Oy - - 0 no
CsgCus3Siy 4035 - - 0 no
CsCuTePt 0.139 0.131 100 yes
Cu,C;05H, -0.923 -0.929 99 yes
Cu3(C0O3),(0OH), -0.260 -0.634 27 no
Cu,FeGe,S, -0.104 -0.215 60 no
Eu,FeGe,0S; -1.123 -1.300 91 yes
HgB,S, 0191  0.040 10 no
Ho, Ir;3Sig -0.881 -0.886 99 yes
K,AgMolg -0.637 -0.643 100 yes
K,Sr, (PO3)1g - - 0 no
KeZn(CO3), -0.857  -0.997 2 no
KScP,0, -2.759 -2.803 98 yes
La,Ga,S50, -1.235 -1.290 4 no
LaScSe; -1.880 -1.960 97 yes
Li,GeS; -0.629 -0.930 15 yes
LigAl,Sng -0.149  -0.249 37 no
LiBa,AlO, -1.621 -2.328 37 no
LiMnBi 0.066 0.001 100 yes
LiTa,NiSeg -0.166 -0.493 50 no
Mg, Pt,Ge, -0.448 -0.591 50 no
MgF, -3.783 -3.808 100 yes
Mn,(PO,)3 -1.903 -2.021 84 yes
Na,Hf(BO,), -2.802  -2.857 98 yes
Na;Te,(FeO,); -1.430 -1.456 100 yes
Na,Sn,Ge; 044 -0.946 -1.214 15 no
NagMn,P,H,(OgF5), -0.902 -1.123 2 no
NagLi,WO,(CO;), -0.914  -1.307 3 no
NaGdSi,Og -3.011 -3.083 79 yes
NaMgV5(H50¢),4 - - 0 no
NaSb, TeO, -0.717 -0.892 4 no
NaSbSe, 0, -0.575 -0.983 21 no
Nd;BSi, 0, -3.363 -3.372 76 yes
Ni;Te,0,(PO,),(OH), -0.588 -0.851 21 no
PbCu(OH),SO, -1.138 -1.161 99 yes
Rb;SnCl, -1.431  -1.521 51 yes
RbNiFe(PO,), -0.966 -1.218 6 no
Sm,BO, -2.986 -3.005 96 yes
Sr(ClO,), -0.184 -0.337 11 yes
Sr,Bi,0; -1.671  -1.861 100 yes
SreGe;OSey; -0.698 -0.836 6 no
SrCo,(OH)(PO,), -0.506 -0.506 1 no
Tb3S;B0; -1.246  -1.410 7 no
Tb;TeBO, -2.035 -2.443 78 yes
YbMngSng -0.055 -0.070 100 yes
Zn,(HTeO3)(AsO,) -0.389 -0.889 34 no
Zn,BS;Br 0.167 -0.245 21 no

Zn,CuHg(COg), -0.065  -0.126 3 no
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Table C.6: MCTS results for the small model. No space group was included in

the prompt.
Composition Algorithm Best Fy Best Iter. Mean E; % Valid
Ba,Fe,Fq Random -2.787 10 -2.273 14.50
MCTS -2.812 570 -2.359 42.10
Ba,Gd(BO;),F Random -2.950 943 -2.121 18.50
MCTS -2.992 699 -2.104 27.20
Ba,GeSb,Se;; Random -0.928 571 -0.704 16.70
MCTS -0.925 509 -0.735 37.40
BagFe,Te;S, Random -1.123 110 -0.689 16.60
MCTS -1.216 510 -0.730 17.40
BagYb,(Si0,)e Random -2.712 834 -1.907 1.40
MCTS 2,777 534 -1.815 2.10
CH;NH,Pbl, Random -0.027 257 0.431 10.60
MCTS -0.199 611 0.448 52.80
CaHPO; Random -2.048 55 -1.397 18.10
MCTS -2.247 367 -1.596 59.30
Cs,AlLO,F, Random -2.825 283 -1.972 22.90
MCTS -2.922 651 -2.051 37.90
HgB,S, Random -0.142 765 0.284 16.90
MCTS -0.212 282 0.270 34.20
La,;Ga,Sg04 Random -1.404 696 -1.016 3.30
MCTS -1.495 27 -1.094 5.70
LigAl,Sng Random -0.225 409 -0.147 1.50
MCTS -0.231 123 -0.143 4.60
LiBa,AlO, Random -2.683 667 -1.728 4.40
MCTS -2.504 281 -1.854 61.20
Mn,(PO,); Random -2.029 122 -1.787 22.00
MCTS -2.045 632 -1.946 68.90
Na,;Sn,Ge;O ¢ Random -1.126 40 -0.863 2.50
MCTS -1.264 848 -0.915 8.70
NazMn,P,H,(OF,), Random -1.510 660 -1.020 2.40
MCTS -1.531 335 -0.979 1.10
NaSb, TeO, Random -1.292 64 -0.851 4.50
MCTS -1.391 787 -0.875 25.50
NaSbSe, 0, Random -0.969 795 -0.473 11.50
MCTS -1.108 792 -0.658 42.70
RbNiFe(PO,), Random -1.465 197 -0.835 4.70
MCTS -1.599 699 -1.044 6.80
SrgGe;OSey; Random -0.974 658 -0.716 1.50
MCTS -1.214 207 -0.910 31.10
SrCo,(OH)(PO,); Random -1.245 493 -0.845 2.20

MCTS -1.223 102 -0.674 9.90
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Table C.7: MCTS results for the small model. The space group was included in

the prompt.
Composition Algorithm Best Fy Best Iter. Mean E; % Valid
Ba,Fe,Fq Random -2.523 822 -2.213 8.10
MCTS -2.642 188 -2.204 8.30
Ba,Gd(BO;),F Random -2.761 906 -1.922 7.60
MCTS -2.644 461 -1.956 10.20
Ba,GeSb,Se;; Random -0.904 490 -0.677 15.30
MCTS -0.923 450 -0.725 25.30
BagFe, Te;S, Random -1.110 297 -0.632 6.20
MCTS -1.137 160 -0.711 24.60
CaFeqGeg Random -0.205 353 0.018 9.30
MCTS -0.209 675 0.065 8.70
Cs;LuSi; 0y Random -1.967 640 -1.491 1.60
MCTS -1.953 325 -1.514 1.40
KgZn(CO3), Random -1.308 143 -0.694 1.50
MCTS -0.958 487 -0.673 1.40
LigAl,Sng Random -0.247 926 -0.115 10.50
MCTS -0.290 559 -0.134 42.50
LiBa,AlO, Random -2.395 365 -1.370 15.60
MCTS -2.380 125 -1.319 16.40
Na,Sn,Ge; 046 Random -1.271 849 -0.907 5.80
MCTS -1.432 119 -0.920 10.50
NagMn,P,H,(OgF,), Random -1.567 463 -1.105 2.10
MCTS -1.472 671 -1.076 3.50
NagLi,WO,(CO3), Random -1.488 675 -0.677 6.80
MCTS -1.203 694 -0.722 2.90
NaGdSi,Og Random -2.486 128 -1.686 12.80
MCTS -2.501 893 -1.669 9.60
NaSb, TeO, Random -0.902 616 -0.571 1.40
MCTS -1.025 881 -0.667 5.40
Nd;BSi, 0, Random -2.910 740 -2.234 1.60
MCTS 2,777 411 -2.372 0.50
RbNiFe(PO4)2 Random -1.477 104 -0.926 4.70
MCTS -1.555 73 -0.961 8.50
Sr(ClO,), Random -0.278 125 -0.043 2.80
MCTS -0.314 633 -0.051 3.10
SrsGe;0Se;; Random -1.155 679 -0.763 3.80
MCTS -1.358 158 -0.874 3.00
Tb3S;BO, Random -1.877 487 -1.358 6.10
MCTS -1.915 199 -1.327 5.70
Zn,CuH4(COy), Random -0.350 834 -0.139 3.70

MCTS -0.575 815 -0.255 4.00
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Table C.8: Metrics for the unconditional generation tasks. Numbers in bold indi-
cate the best results for the given task. The CDVAE results are from Xie et al.
[13]. The DiffCSP and DiffCSP++ results are from Jiao et al. [73, 74]. The Uni-
Mat results are from Yang et al. [75]. The LM-CH (character-level tokenization)
and LM-AC (atom+-coordinate-level tokenization) results are from Flam-Shepherd
et al. [76]. The LLaMA 70B results are from Gruver et al. [77]. T represents the
sampling temperature.

Validity (%) 1 Coverage (%) T Property | Average Minimum Distance |
Method Struct  Comp COV-R COV-P dp delem AMSD-R AMSD-P AMCD-R AMCD-P
MP-20
CDVAE 100.0 86.70 99.15 99.49 0.6875 1.4320 0.154 0.188 3.620 4.014
DiffCSP 100.0 83.25 99.71 99.76 0.3502 0.3398 - - - -
DiffCSP++ 99.94 85.12 99.73 99.59 0.2351  0.3749 - - - -
UnitMat 97.20 89.40 99.80 99.70 0.0880 0.0560 0.097 0.119 2.410 2.410
LM-CH 84.81 83.55 99.25 97.89 0.8640  0.1320 - - - -
LM-AC 95.81 88.87 99.60 98.55 0.6960  0.0920 - - - -
LLaMA 70B (7=1.0) 96.50 86.30 96.80 98.30 1.7200 0.5500 - - - -
LLaMA 70B (7=0.7) 99.60 95.40 85.80 98.90 0.8100  0.4400 - - - -
CrystaLLM small (7=0.7) 93.66 91.10 98.52 95.08 0.8353  0.2229 0.096 0.096 3.251 2.084
CrystaLLM small (7=0.5) 94.97 93.80 97.58 95.75 1.1824 0.3269 0.106 0.095 3.729 1.762
CrystaLLM large (7=0.7) 95.54 93.07 97.22 96.40 0.5965 0.1709 0.090 0.077 3.299 2.114
CrystaLLM large (7=0.5) 96.21 95.40 96.78 96.60 0.9835 0.3436 0.098 0.076 3.675 1.880
Perov-5
CDVAE 100.0 98.59 99.45 98.46 0.1258  0.0628 0.048 0.059 0.696 1.270
DiffCSP 100.0 98.85 99.74 98.27 0.1110 0.0128 - - - -
DiffCSP++ 100.0 98.77 99.60 98.80 0.0661 0.0040 - - - -
UnitMat 100.0 98.80 99.20 98.20 0.0760  0.0250 0.046 0.074 0.711 1.399
LM-CH 100.0 98.51 99.60 99.42 0.0710  0.0360 - - - -
LM-AC 100.0 98.79 98.78 99.36 0.0890  0.0280 - - - -
CrystaLLM small (7=0.7) 99.90 99.04 98.20 99.01 0.3355 0.0299 0.025 0.027 1.055 1.287
CrystaLLM small (7=0.5) 99.83 99.24 97.91 98.95 0.3950 0.0970 0.027 0.025 1.215 1.293
CrystaLLM large (7=0.7) 99.82 98.92 98.28 98.92 0.2070  0.0490 0.026 0.024 1.000 1.288
CrystaLLM large (7=0.5) 99.96 98.86 97.86 98.73 0.3937  0.1240 0.027 0.020 1.144 1.319
Carbon-24

CDVAE 100.0 - 99.80 83.08 0.1407 - 0.048 0.134 0.000 0.000
DiffCSP 100.0 - 99.90 97.27 0.0805 - - - - -
DiffCSP++ 99.99 - 100.0 88.28 0.0307 - - - - -
UnitMat 100.0 - 100.0 96.50 0.0130 - 0.018 0.052 0.000 0.000
CrystaLLM small (7=0.7) 99.21 - 99.85 97.03 0.0639 - 0.015 0.021 0.000 0.000
CrystaLLM small (7=0.5) 99.86 - 99.80 98.96 0.1217 - 0.022 0.012 0.000 0.000
CrystaLLM large (7=0.7) 99.70 - 99.80 98.37 0.0409 - 0.014 0.018 0.000 0.000

CrystaLLM large (7=0.5)  99.90 - 99.75 99.52  0.0953 - 0.018 0.010 0.000 0.000
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Table C.9: Novel materials generated unconditionally with the large model. Only
those with a DFT energy of less than or equal to 0.1 eV/atom above the hull are

listed.

Composition Z  Space Group  Ey, (eV/atom)
Ca,YSbO, 2 P2, /c 0.00
NaAlS, 16 P2 0.00
Ba,Na,Ir,04; 2 Cm 0.00
Li,FeSiO, 4 Pna2; 0.02
La,Aly; 3 R3m 0.03
Ba, Zr,Mo,0;, 2 Pm 0.03
LaSc(Al,Pd), 2 Amm2 0.04
KLi(NbCly)q 2 P1 0.05
Li,MnsNb,Fe,0,s 1 P1 0.05
Ba,SrCa 2 Imm2 0.06
MnAlTclr 4 Fi3m 0.07
Nag(SnS,), 4 P2 0.07
MnVO, 4 Pbcn 0.07
Li,TiyV5(SbOg), 2 Cm 0.07
Li,TiyCry(FeOg), 2 Pc 0.07
K,LiVsH0010 2 Pi 0.07
KNas, 2 Pi 0.09
Li,CrCuH, 4 P2 /e 0.09
Li,Ti;Fe;(WOq), 2 P1 0.10
MnAl, V4 1 P4imm 0.10
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C.3 Supplementary Figures
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Figure C.1: Various plots describing the contents of the CIF file dataset. a The
distribution of CIF files containing the atoms indicated (by atomic number) on
the x-axis. The most abundant element in the dataset is oxygen, followed by
copper, then lithium. b The distribution of Z values (i.e. the number of formula
units in the unit cell) in the dataset. The majority of structures have Z of 1-
4. ¢ The distribution of compositions by the number of constituent elements in
the formula. Most formulas are ternary or quaternary. Inset: The Venn diagram
illustrates the numbers of unique reduced compositions obtained from each of the
publicly accessible materials databases used to create the training dataset. d The
distribution of space groups occurring in the CIF files of the dataset.
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Figure C.2: A plot of the training set and validation set losses for the small model
over the course of training. The green points represent an improved loss on the
validation set, demonstrating that the model continues to improve its performance
on the validation set even after 90,000 iterations. While the gap between the
training set loss and the validation set loss appears to grow over the course of
training, this is not necessarily indicative of overfitting. The growing gap could
be more indicative of the differences between the distributions of the training
and validation sets. On absolute terms, the difference between the curves is less
than 0.02 units. Moreover, the performance on the validation and challenge sets
indicate that the model trained for more iterations is superior.
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Figure C.3: Plots depicting the small model’s learned atom vectors. a A t-SNE
[78] plot of the small model's dimensionally reduced learned atom vectors. b A
heatmap of the cosine similarities between the small model's learned atom vectors.
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Figure C.4: A plot of the small model’s learned space group vectors. The space
group vectors were reduced to 2 dimensions using the t-SNE algorithm.
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Figure C.6: Plots of the number of valid generations over the course of 1,000
iterations for the MCTS experiment (with no space group). The plot illustrates
the finding that MCTS produces more valid generations than sampling randomly,
and that, in some cases, the validation rate increases over time.
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