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Abstract

Nutrition is fundamental to all living systems. In animals, morphological, physiological, and behavioral

adaptations for acquiring and digesting food shape their responses to the environment. While experimen-

tal frameworks have advanced our understanding of animal nutrition, methodological tools to address

its complexity remain limited. This thesis introduces pioneering analytical methods to explore nutri-

tional trade-offs and optimal diet balances using Geometric Framework for Nutrition (GF) performance

landscapes. Chapter 1 traces the historical development of GF, highlighting its independent origins in

agricultural sciences and evolutionary ecology. Chapter 2 presents the Vector of Positions approach—the

only method capable of analysing n-dimensional performance landscapes—validated using two landmark

datasets. Chapter 3, the first study in the Nutrigonometry series, introduces a computationally effi-

cient algorithm to estimate nutritional trade-offs in three-dimensional performance landscapes—the most

common in the field. Using the Pythagorean theorem, I demonstrate its robustness across multiple

datasets, showing that ordinary linear regression outperforms machine learning models for these calcu-

lations. Chapter 4 provides the first systematic test of the GF experimental design, proposing improved

methods for high-dimensional nutritional experiments to enhance accuracy in estimating optimal diets

and performance landscapes. Chapter 5 applies differential geometry to measure curvature in performance

landscapes and introduces the Hausdorff distance for comparing performance landscapes. Chapter 6 in-

tegrates previous analytical methods to examine the evolution of optimal diets between sexes in insects.

My findings reveal that the protein-to-carbohydrate ratio is more similar among closely related species

and that sexual conflict over nutrition is evolutionarily conserved. This study represents the first empir-

ical work in precision comparative nutrition. Chapter 7 applies Thales’ theorem of inscribed triangles

to analyse how animals cope with imbalanced diets. By triangulating food intake under suboptimal

conditions, I quantify deviations from Thales’ theorem, revealing underlying nutritional strategies. This

thesis advances our understanding of nutritional constraints in optimizing fitness. Through a range of

methodological advancements, my work provides new insights into how animal nutrition can be studied

in its full multidimensional complexity. These methods and applications have broad implications, and I

hope they will be extended to other areas of biology to further our understanding of how living organisms

interact with their diet and how nutritional responses evolve across the tree of life.
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the component of the unit vector âB onto the unit vector âA (i.e., comp(âA)âB). (d)

Example of a large component of âB into âA. E) Example of a small component of âB into

âA. (f) Schematic representation of a 3D vector in a performance landscape of protein,

carbohydrate, and fat intakes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3 Between-species comparison. (a) Schematic representation of a 3D vector in a per-

formance landscape of protein, carbohydrate, and trait expression. (b) Directional angles

α, β, γ. Top panel: figure oriented according to the z-axis (perpendicular to the plane of the

paper). Bottom panel: figure oriented according to the y-axis (perpendicular to the plane

of the paper). (c) Performance landscapes of reproductive rate (RR) of B. tryoni females

[data from Fanson et al. (2009)]. The dashed line highlights the P:C ratio that maximises

the trait. (d-e) Mean-standardized performance landscapes of the reproductive rate of D.

D. melanogaster [data from Lee et al. (2008) and B. tryoni from Fanson et al. (2009)].

Blue regions highlight the region estimated as the peak in the performance landscape from
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2.4 Analyses in high-dimension nutrient spaces. (a-c) 3D plots showing the simulated rela-

tionship between protein, carbohydrate and fat intake (x− y− and z− axes, respectively)

on the expression of traits A (panel A), B (panel B) and C (panel C) (in units of trait

expression), represented as the colour variable. Black circles show the estimates of region

of the peak in the performance landscape from the SVM machine learning model. . . . . 46

3.1 The Nutrigonometry model. (a) Considering an infinite number of nutritional rails that

divide the nutritional space into right-angle triangles, the angle αi and the hypothenuse

hi can be calculated from trigonometric relationships. (b) Nutrigonometry allows for the

estimates of the strength of nutritional trade-offs in terms of nutrient balance (angle θi,j))

and nutrient concentration (the difference hi,j), given in absolute terms). (c) Scenarios for

the estimates of the strength of nutritional trade-offs with respect to the angle θi,j) and

the length hi,j). (d) Metrics used to the peak prediction in the 3D landscape (see Methods

within this chapter for details). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.2 Predictions of peak region in lifespan and reproductive rate landscape with

intake data. (a) Lifespan landscape with the overlaid predicted peak regions (left small

panels). (b) Reproductive rate landscape with the overlaid predicted peak regions. Red

represents peaks while light green represents valleys. For the predicted region, dark blue

represents points with lower predicted z−values whereas bright yellow represents points

with higher predicted z−values. Shaded polygon added to help visualisation. Dotted lines

represent the nutritional rails (i.e., foods with fixed P:C ratios) upon which animals were

allow to eat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.3 Predictions of peak region in lifespan and reproductive rate landscape with

fixed ratio data. (a) Lifespan landscape with the overlaid predicted peak regions (left

small panels). (b) Reproductive rate landscapes with the overlaid predicted peak regions.

For the landscapes, red represents peaks while light green represents valleys. For the

predicted region, dark blue represents points with lower predicted z−values whereas bright
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facilitate visualisation of the predicted peak region and the homogeneity of points within
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3.4 Persistence Homology (PH) for the topological structure of the predicted peak

region. (a) PH plots of the predicted peak region in lifespan of data containing the

structure of individual intake (top left) and fixed intake data (top right). (b) PH plots of

the predicted peak region in reproductive rate with data of structure containing individual

intake (bottom left) and fixed intake data (bottom right). Homogenous predicted peaks

have red (dimension 0) and blue (dimension 1) points that are closer, as opposed to more

heterogeneous predicted peaks upon which (some) points can be farther from each other. . 88

3.5 RMSE and peak area estimates in peak region predictions. (a) RMSE and pre-

dicted peak area (i.e., area of the shaded polygon from the predicted region for lifespan

and reproductive rate data), with structure containing individual intakes. (b) RMSE and

predicted peak area (i.e., area of the shaded polygon from the predicted region for lifespan

and reproductive rate data), with structure containing fixed ratios. Note that models with

high RMSE can still be the best predictors of peak region. . . . . . . . . . . . . . . . . . . 91

4.1 Exploration of the nutrient space using alternative sampling strategies. (a) The

standard experimental design of a GF study (left) and a performance landscape generated

form a fixed ratio dataset (reconstructed from Kutz et al. 2019) (right). Note the unex-

plored region in the nutritional space (shaded area). (b) The three alternative sampling

strategies tested here: hexagonal, square, and random points grids. Red dots indicate

anchor points (see Main Text). (c) The baseline performance landscapes for lifespan, life-

time egg production and daily egg production. These landscapes were generated with the

purpose of acting as the true performance landscape of the trait, which are unknown in GF

experiments. These baselines landscapes are the standard upon which the reconstructed

landscapes with alternative methods were compared against the GF in this study (see

Methods section). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.2 P:C ratios of the estimated peak in the reconstructed performance landscape

across the grid sampling strategies. Note that the y-axis of the lifespan plots was log-

transformed to aid data visualisation (see also Figure 4.3a). Such differences in scale for

lifespan emerged from the fact that the peak lies near the boundary of the nutritional land-

scape, in a region of P:C 0:1. Hex: hexagonal sampling; rand: random points sampling;

sq: square sampling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
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4.3 Predicted peak region and shape across sampling strategies. (b) Predicted peak

in the performance landscape of lifespan (top) and daily eggs (bottom) (see also Figure

4.6a for lifetime egg peak predictions). Performance landscapes reconstructed from reso-

lution equal to 50. (b) Overlaid peak predictions mapped onto the baseline performance

landscapes of lifespan, lifetime eggs, and daily eggs across the sampling strategies. Note

that GF sampling (orange) generates incomplete peak shape predictions for traits that

respond to the interaction of nutrients. Hex: hexagonal sampling; rand: random points

sampling; sq: square sampling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.4 Peak area and performance landscape topology. (a) Predicted peak in the perfor-

mance landscape of lifespan (top) and daily eggs (bottom) (see also Figure 4.6d) for lifetime

egg peak predictions). Performance landscapes reconstructed from resolution equal to 50.

(b) Overlaid peak predictions mapped onto the baseline performance landscapes of lifes-

pan, lifetime eggs, and daily eggs across the sampling strategies. Note that GF sampling

(orange) generates incomplete peak shape predictions for traits that respond to the inter-

action of nutrients. Hex: hexagonal sampling; rand: random points sampling; sq: square

sampling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

xv



4.5 Alternative sampling strategies used for intake datasets. (a) Each anchor point

could be seen as a point in a nutritional rail (as defined in standard GF design). This is

true for all alternative sampling strategies tested in this study. (b) (left) Zoom of a specific

region of the nutritional space from the hexagonal grid strategy (in a). When measuring

intake, the anchor points move along nutritional rails represented by a vector ν⃗i for the ith

anchor point. The magnitude of the vector, ||ν⃗i||, provides a measure of the strength of

the physiological constraint experienced by the animals across diets as this metric shows

the distance travelled by the anchor point along the nutritional rail (centre and right

panels). Green line represents a hypothetical demand imposed by physiological constraint.

(c) Performance landscapes of protein and carbohydrate intake (from Lee et al. 2008)

to illustrate how intake can be used as the third dimension in performance landscapes.

This can assist the inferences of rules of compromise which determine the amount of food

and the quantity of each nutrient that individuals are capable of over- or under-consume

in order to minimise distance between current food intake and self-balanced food intake

(Simpson & Raubenheimer 1993, Raubenheimer & Simpson 1993). Rules of compromise

are not dealt with in this study as it lies beyond the study’s main scope, and is part of a

next manuscript of this series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.6 (a-c) Examples of the sampling strategies for resolutions of 30, 50, and 250, respectively.

(d) Prediction of the peak regions for lifetime egg across sampling strategies (data from

Lee et al. 2008). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.7 (a-b) Analogy to the circle packing problem and 2D Gaussian function as a way to de-

termine certainty of performance trait information. (c) The distances between the anchor

points in a hexagonal and square grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
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5.1 Schematic representation of the concept of curvature Flat surfaces had no curvature

such that, if we were to draw a triangle embedded on the surface, the sum of the internal

angles would equal π. Surfaces or sub-sections of surfaces with positive Gauss curvature

are curved in a way that, if we were to draw a triangle embedded in the surface, the sum of

the internal angles would exceed π. This could be equivalent to sub-sections of the surface

corresponding to the surface peak regions. Surfaces with negative Gauss curvature are

curved in a way that, if we were to draw a triangle embedded on the surface, the sum of

the internal angles would be less than π. This is equivalent to sub-sections of the surface

corresponding to mountain pass regions. Note that, for the purpose of this paper, we use

‘flat surface’ to denote an affine subspace with zero curvature. . . . . . . . . . . . . . . . . 136

5.2 Performance of commonly used models to analyse GF data. RMSE: Root mean

square error. Training: training dataset. Test: testing dataset. . . . . . . . . . . . . . . . 144

5.3 Gauss and mean curvatures of two canonical datasets. (a) Simulated flat and (b)

saddle landscapes. (b-c) Mean curvatures of the flat (c) and (d) saddle landscapes, respec-

tively. (e-f) Gauss and mean curvatures of the (e) the flat and (f) the saddle landscapes,

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.4 Gauss and mean curvatures of performance traits. (a-c) Landscape (a), Gauss

curvature (b) and mean curvature (c) for lifespan. (d-f) Landscape (d), Gauss curvature (e)

and mean curvature (f) for lifetime egg production. (g-i) Landscape (g), Gauss curvature

(h) and mean curvature (i) for daily egg production (daily eggs). . . . . . . . . . . . . . . 147

5.5 Curvature of a sphere is dependent on its radius. For any two (perpendicular)

direction of travel, curvature of a sphere (here projected in 2D) is 1
r and the Gauss and

mean curvatures are equal to 1
r2 and 1

2r . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
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6.1 Optimum PC ratios across related insect species (a) Flowchart for the systematic

literature search of experimental studies in insects that used GF to investigate the PC ratio

effects on lifespan. (b) Overview of the semi-automated algorithm to extract information

of performance landscapes for lifespan from the published GF literature. (b) Phylogeny

mapping the PC ratio that maximises lifespan across insect species for which GF data is

available in the published literature (females). (c) Phylogeny mapping the PC ratio that

maximises lifespan across insect species for which GF data is available in the published

literature (males) (d) Phylogeny mapping the angle θ, which is a metric of nutritional

trade-off, for PC ratios that maximise lifespan across insect species in the database (note

that the phylogeny is limited by the sex with the least amount of information. i.e. males).

Negative values for the angle θ indicates that female optimal PC ratio was lower than the

optimal PC ratio of males. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.2 Estimates of error between the peak regions of original (raw data) and recon-

structed performance landscapes for lifespan. Estimates of peak region were done

using the Nutrigonometry model (Morimoto et al. 2023) Note that the credible intervals

are relatively wider for the hypothenuse in Lee et al. (2008), Harrison et al. (2014) be-

cause of the quantity of nutrients eaten by the experimental animals in these studies were

higher than the others. Importantly, the hypothenuse measures trade-offs over quantity

and, therefore, has to be calculated in the same scale as the data was collected (i.e. cannot

be standardised). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.3 Original and reconstructed landscapes. Red polygon represents estimated peak

region (Nutrigonometry) (Morimoto et al. 2023). . . . . . . . . . . . . . . . . . . . 169

6.4 Reconstructed landscapes used in this study. Red polygon represents estimated

peak region (Nutrigonometry) (Morimoto et al. 2023). . . . . . . . . . . . . . . . 170
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7.1 Nutritional arrays, closest distance optimisation (CDO), and the Thales’ the-

orem. (a) An example of a hypothetical GF nutritional array for the intake of nutrients

n1 and n2. CDO is an array in which the distance between the intake in an imbalanced

nutritional rails are minimised relative to the intake target (red crossed point). This im-

plies that the angle between the nutritional rail intake and the intake target is 90° (see

zoomed blue box). Nutritional arrays do not have to adopt CDO, and can have a wide

range of configurations (left panels) such as a square array, equal distance array, inverted

square array, and a concave array (read small panels clockwise). This is reviewed in de-

tails in (Raubenheimer & Simpson 1993, Simpson & Raubenheimer 2012). (b) Thales’

theorem states that an inscribed triangle will have angle β = 90° when the vertices lie on

the circumference and the side AC is the diameter. Note the angle remains the same as

long as these conditions are fulfilled (see faded triangles with vertices β′ and β′′ (c) One

can apply Thales’ theorem to investigate whether or not nutritional arrays matches the

predicted conditions for CDO, or how much and where the nutritional array deviates from

CDO. (d) Normal distribution of errors provides more stability for the estimates of the

angle β. X-axis represent the proportion of ‘noise’ (effect size over error and the y-axis is

the estimate of the angle β following the Thales approach. Shaded region represents the

95% confidence intervals of the simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . 176

7.2 Thales theorem applied to empirical nutritional arrays (a) Nutritional array in

Drosophila melanogaster, with mean diet intake for each imbalanced diets (with varying

P:C ratios) from (Lee et al. 2008). (b) Summary plot of the angle β of the nutritional rails

relative to the intake target. A 90° angle suggests that the nutritional array matches the

prediction of CDO for a given rail. (c) Nutritional array in L. migratoria and S. gregaria,

with mean diet intake for each imbalanced diets (with varying P:C ratios) extracted from

(Simpson & Raubenheimer 1999). (d) Summary plot of the angle β of the nutritional rails

relative to the intake target for the two species. (e) Nutritional array in S. exempta and

S. littoralis, with mean diet intake for each imbalanced diets (with varying P:C ratios)

extracted from (Lee et al. 2002, 2003). (b) Summary plot of the angle β of the nutritional

rails relative to the intake target for the two species. Red circle: Thales’ circle with

diameter equals to the intake target. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
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7.3 Thales’ theorem applied to nutrition. (a) Geometric construction to show that the

estimates of the angle β become unstable as U approaches the IT. (b) Landscape of the

estimated standard deviation of a simulated mesh of nutrient intakes with known normally

distributed noise with mean = 0 and standard deviation = 0.2. This illustrates that the

standard deviation becomes unstable in a symmetric way as U approaches the IT. (c)

The estimates of the angle β in the same noisy landscape as in panel (b) to highlight

that, despite instabilities in the estimates of the standard deviation, error, and confidence

intervals, the angle β is nevertheless a useful proxy for the CDO rule of dietary compromise.188

7.4 Standard deviation of dietary intake in nutritional rails of varying distances

from the IT in Drosophila. Red diamond highlights the standard deviation in the in-

take of the rail associated with the IT. For carbohydrates, there is almost a linear decline

in standard deviation with the distance of the nutritional rail from the IT. For proteins, a

similar pattern is found, although standard deviation was higher for diets with increasing

protein content, which highlights interesting physiological differences between the regula-

tion of protein and carbohydrates in Drosophila. Distance from IT was estimated as the

Euclidean distance from the average dietary intake for the nutritional rail and the IT,

divided by the total intake in the nutritional rail. Dividing by the total intake in the nu-

tritional rail did not change the patterns shown. Standard deviation was estimated using

the ‘sd()’ function in R from the raw data. Data form Lee et al. (2008). . . . . . . . . . . 191
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conteúdo.

A carta era longa, com seis páginas. Mas um trecho da carta me comoveu mais que qualquer outro,

dessa carta ou de outras que já escrevi. Nele, me perguntei se já havia tido filhos, e questionei que se não

os tivera, era porque havia falhado de maneira irreparável a vida. De repente, o sentimento que tinha

quando escrevi o trecho veio à tona. Na época, eu não acreditava que um dia teria a bênção de ser pai.

Senti um nó na garganta, um frio na barriga como se estivesse prestes a flutuar. Lágrimas vieram aos

meus olhos sem serem convidadas, e saíram como quem foge do perigo. Relembrava os momentos que um

ano antes, haviam me feito pai. Lembrava de cada momento do nascimento do meu filho, que agora tinha

um ano e meio, e trazia tanta alegria, amor e felicidade para a nossa casa. Talvez tivesse sido tomado

por saudade, pois meu filho viajava quando li a carta. Mas parte da minha emoção era resultado da

lembrança do seu nascimento, que não foi fácil e, como pais de primeira viagem, nos trouxe momentos de

muita tensão, ansiedade e medo. Portanto, gostaria de escrever esse agradecimento para meu filho, em

uma carta pessoal, para que ele um dia, quando eu não estiver mais aqui, tenha uma carta para carregar

com ele.

–––

Meu filho,
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Você é o maior milagre da minha vida. Não importa quantos títulos, prêmios ou reconhecimentos eu

receba, nada se compara ao dia em que te dei colo pela primeira vez. Eu fui seu primeiro colo na vida e

no mundo. Eu te segurei enquanto dormias, exausto, pelo trabalho de vir a esse mundo, entre os minutos

que pareciam uma eternidade quando ficamos sozinhos, sem nenhuma informação, na sala enquanto sua

mãe foi encaminhada para a sala de cirurgia. Eu te vi respirar pela primeira vez. Eu vi você bocejar e

espirrar pela primeira vez. Te segurei enquanto tomava suas vacinas e quando quiseram tirar seu sangue

para exames, chorando mais que você pela dor que você não se lembra, mas que eu sim. Te vi cair pela

primeira vez e te ouvi falar pela primeira vez. Cortei seu cabelo, te dei banho. Te levei para nadar e te

ensinei a dar cambalhotas. Chorei quando você estava doente e chorei quando você sorriu pela primeira

vez.

Quando somos novos, pensamos que ter filho muda nossa vida para sempre pelas responsabilidades

que temos. Não podemos viajar, sair, dormir tarde. Não podemos isso ou aquilo. Tudo isso é verdade,

mas não é a maior transformação que tive quando você nasceu.

Você chegou para purificar a minha vida. Por toda a bagagem que carreguei, pelos meus erros, erros

dos meus pais, e dos pais dos meus pais, e de outras tantas gerações que me levaram a ser quem eu era.

Como no encontro entre o rio e o mar, eu era um turbilhão de sentimentos crus, fortes, porém opacos.

Quando chegaste, mudou tudo em um segundo. Decantou tudo que criava confusão e me trouxe clareza,

como águas cristalinas, que me batizou e perdoou tudo o que havia sido.

Quando li minha carta para mim mesmo, percebi que não somente tinha tido um filho. Mas que meu

filho, sem saber, tinha me curado da dor e da angústia que carregava. Como pode ser tão pequeno, mas

tão poderoso?

Poderia escrever um livro de tudo que me deste desde que chegou. Talvez o escreva deveras. Mas

nunca conseguirei transmitir o bem que você me fez ao me deixar ser seu pai.

Muito obrigado por dar sentido à minha vida. Eu sempre vou te amar, meu filho.
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Chapter 1

General introduction
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Malnutrition is one of the most significant global challenges of our societies. Malnutrition is an

umbrella term which includes the opposing consequences of both overnutrition (e.g., overweight and

obesity) and undernutrition (e.g., stunting). These contrasting nutritional burdens to individuals and

populations worldwide have been alluded to as the ‘double burden of malnutrition‘ (DBM) and is pervasive

(Nugent et al. 2020). More than 2.9 billion people corresponding to ca. 37% of the global population

suffer from malnutrition (World Health Organization 2024). Children are also at risk, with over 186

million of children under the age of five experiencing malnutrition (World Health Organization 2024).

Therefore, there is an urgent need to better understand how nutrition affects health, with insights that

can help us tackle the DBM and the global malnutrition crisis.

Fundamental research using animal models is a clear asset in this context because it helps advance

both theoretical and empirical research into the DBM. All living organisms need nutrients to grow,

survive and reproduce (Simpson & Raubenheimer 2012, White & Brown 2010, Gude & Taga 2020).

Animals, including humans, must balance their nutrient intake to survive and reproduce (Raubenheimer

& Simpson 2020), which poses an opportunity to use animal models to better understand the constraints

and consequences of their nutritional choices to health, and whenever appropriate, draw parallels to

humans (Boone et al. 1990, Le Couteur et al. 2024, Green 2024). This approach not only uncovers

how animals interact with each other and their environment, but also provides fertile ground for new

discoveries about the effects of nutrients on physiological processes across the tree of life, which in turn

have the potential for translational and clinical breakthroughs (Raubenheimer & Simpson 2020).

1.1 Nutrition is complex and multidimensional

Nutrition is complex and multifaceted, characteristics which have inspired and challenged theoretical

and experimental frameworks (Jacobs Jr et al. 2009, Simpson & Raubenheimer 2012, Simpson et al.

2017). Evolutionary ecology is particularly interesting in this regard because theoretical developments

to study nutrition follow a pattern of increasing complexity, from uni-dimensional approaches such as

optimal foraging theory (Krebs et al. 1977, Charnov 1976, Stephens & Krebs 1986) to more recent

multidimensional frameworks such as nutritional stoichiometry (Anderson et al. 2004) and the Geometric

Framework (GF) (Simpson & Raubenheimer 1993, Raubenheimer & Simpson 1993). They cover all

aspects of animal nutrition, from motivation (e.g. Sibly & McFarland 1974), behaviour (e.g. Krebs et al.

1977) to physiology and long-term (inclusive) fitness (e.g. Stearns 1998, Simpson & Raubenheimer 2012,
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Anderson et al. 2004).

Among these frameworks, GF is arguably the most powerful because nutrients do not need to be

transformed or converted into other currencies of analysis as in uni-dimensional frameworks that often

use the intake of elementary atoms as units of investigation (Simpson & Raubenheimer 2012). The GF

by contrast is nutrient explicit, an important requirement to maintain interpretability of models dealing

with nutrients and complex diet mixtures. Another advantage of the GF relative to other frameworks

relates to experiments. GF enables experiments which simultaneously manipulates unlimited numbers

of interacting nutrients, thereby addressing nutrient-nutrient interactions (Jacobs Jr et al. 2009). Thus,

GF is perhaps the most important and powerful framework to enable large-scale experiments in precision

nutrition, a field which aims to understand and predict how individuals will respond to personalised diets

and design these personalised diets to ensure individuals’ health (Rodgers & Collins 2020). If successful,

personalised nutrition promises to address the malnutrition crisis, mitigate the DBM, and guarantee long-

term health for individuals and populations worldwide, although such promises may be more challenging

to achieve than previously thought (Denny & Collins 2021, Bray & Ryan 2021). Nevertheless, GF remains

an important tool to advance precision nutrition research and application (Simpson et al. 2017).

This thesis presents a collection of analytical methods tailored to GF. These methods were developed to

address the lack of formal models which can facilitate insights from GF data, especially within the context

of personalised nutrition. The analytical methods presented here apply mathematical concepts and

theorems to multidimensional nutrition data, extracting insights into how animals eat, the consequences

of their feeding to life histories, and the trade-offs that animals might encounter when feeding on diets

with varying nutrient compositions. These are not the only methods that have been developed, and a

historical overview of the main methodological advances is provided before contextualising this thesis’

chapters within the broader field.

1.2 A historical overview of the applications of geometry to nu-

trition

1.2.1 Conceptualising the geometry of nutrition

The earliest published record of a study formally linking geometric concepts and nutrition dates back

to 1973 when Parks (1973) published a paper titled “Diet space and response surfaces”. In this paper,

3



Parks conceptualised key concepts that are still used today. For instance, Parks proposed the use of an

equilateral triangle coordinate system as the nutrient space wherein diet mixtures could be represented

as ratios of macronutrients (Fig 1.1a). Although this representation of diet mixtures had been used

in previous studies (Evans & Miller 1968), Parks discovered that such representation allows for the

identification of “lines of constant energy” that represent diet mixtures with the same total energy but

with varying nutrient compositions (Fig 1.1b). Perhaps more striking was Parks’ formalisation of the

response surface modelling approaches, which he defined as “lines of length R, representing the response of

an animal to each experimental diet, plotted orthogonal to the plane of the diet space” (Fig 1.1c). Growth

rate was the primary response mapped onto Parks’ diet space but as we will see later in this chapter,

other physiological, behavioural, and life history traits have been used since.

Response surface models applied to nutrition had been used in the late 1960s (Chandler et al. 1967,

1968, Gardiner et al. 1967) but Parks’ formalism provided a solid foundation for the applications of this

approach more widely. We shall return to response surface models below. Parks’ work provided a detailed

account of much of the principles of how geometry and nutrition can be integrated (see also Table 1.1).

One aspect that Parks’ original 1973 paper did not cover was the explicit use of vectors to model

diet mixtures. This was proposed independently by Moon & Spencer (1974) in their own version of

the geometry of nutrition. They used vectors to define nutrient mixtures and applied their then newly

developed concept of “holor” to model diets and nutrient blends in Euclidean space. Specifically, in their

approach, diets and nutrients can be perceived as vectors with “magnitude and character” and plotted

within right-angle triangles or other triangular shapes in Euclidean space (Moon & Spencer 1974) (Fig

1.2). Moon & Spencer (1974) were the first to propose the use of right-angle triangles as nutrient spaces

to locate diet mixtures. This innovative conceptualisation of nutrition and nutrient composition of diet

mixture was the first to explicitly represent diets as vectors. However, one limitation of this approach was

that Moon & Spencer (1974) conceptualised nutrition using affine geometry, lacking a metric and vector

multiplication operations. This meant that distances between diets were not defined and the approach

was primarily descriptive. Both Parks (1973) and Moon & Spencer (1974) papers have remained largely

overlooked from the recent literature on the geometry of nutrition.

In 1982, Parks published a book titled ‘A Theory of Feeding and Growth of Animals’, where he

proposed a new way to represent diet mixtures as vectors Parks (1982) (Fig 1.3a-b). Like Moon &

Spencer, Parks also explained the nutrient space as a triangular region and formalises in more detail how

vectors can be used to explain, model, and interpret dietary mixtures and blends. For example, Parks

4



a.

c.
b.

Figure 1.1: The geometry of nutrition by Parks (1973) (a) The equilateral triangle as coordinate
system of the nutrient space where diet mixtures could be represented as ratios of nutrients. The axis
represented by ϕ corresponds to fat, π corresponds to protein and κ corresponds to carbohydrates.
(b) Parks (1973) also proposed the identification of lines of equal energy, including EM and EC as
metabolisable and combustion energies, respectively. (c) A representation of a response surface over the
diet space. Adapted and reproduced with permission from the publisher.

(1982) showed how diet mixture vectors could uncover the “movement” of diets in nutrient space following

nutrient supplementation, as is the case of wheat that becomes progressively more similar to the diet

mixture vector of beef muscle with the supplementation of lysine up to 400 mg (Fig 1.3c). Importantly,

Park‘s advanced Moon & Spencer’s original approach by incorporating in addition to vector addition and

scalar multiplication, vector inner and outer products and a metric (i.e., a function that measure distances

between two points in space) (Parks 1982). This meant that Parks’ approach enabled the calculation of

distances between diets, enabling studies comparing diets and their physiological effects.
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a. b. c.

d.

Figure 1.2: The Geometry of Nutrition by Moon & Spencer (1974) (a) The nutrient triangle
proposed by Moon & Spencer (1974) where diet mixtures are represented in this two dimensional space.
The horizontal axis represents the proportion of protein and the vertical axis, the proportion of lipids.
(b) Three dimensional nutrient space with diets represented as points in such space. Each axis represent
an arbitrary nutrient N i. (c) Moon & Spencer (1974) subdivided the nutrient plane into what they
referred to as “planes of constant magnitude” where foods along a vector could be differentiated. Each
axis represent an arbitrary nutrient N i. (d) Moon & Spencer (1974) also correlate the planes of constant
magnitude with the nutrient triangle. Each axis represent an arbitrary nutrient N i.

The combination of early work applying response surface models to nutrition and Parks’ formalism

galvanised a wave of studies using response surface models in nutritional sciences. Roush et al. (1979)

used response surface modelling to estimate growth across diets in the Japanese quail. In this paper,

the authors put forward the foundations for how response surface models should be visualised, thereby

simplifying the original approach by Parks (1973) and setting the standards that are essentially used

in the field until today. Meanwhile, in a series of publications starting in 1982, Toyomizu et al. (1982)

used response surface modelling to study the body composition of chicks, late applying this methodology

to other animals (Toyomizu et al. 1988, 1991, 1993). These applications of response surface modelling

during the 1980s and early 1990s garnered attention to this methodological approach which became an

invaluable tool in nutrition (Table 1.1).

By early 1990s, the use of response surface models and geometry to represent dietary mixtures were
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a. b.

c.

Figure 1.3: The geometry of nutrition vector spaces by Parks (1982). The three (a) and four (b)
dimensional nutrient space. The axis represented by ϕ corresponds to fat, π corresponds to protein and
κ corresponds to carbohydrates. In (b), Λ represents an arbitrary nutrient. In (a) the nutrient space is
represented by an equilateral triangle of unit height whereas in (b), the nutrient space is represented as
a tetrahedron of unit height with each of the faces of this tetrahedron representing a pure diet mixture
of a single nutrient. (c) It is possible to estimate the angle θ between mixture vectors as proposed by
Parks (1982). In this example, the composition of wheat (W) following the addition of the amino acid
lysine in steps of 100 mg is shown. With the addition of lysine, the wheat mixture vector shifts in the
two dimensional nutrient space and become closest to the vector for beef muscle at the mixture of W +
300 mg and W + 400 mg of lysine before diverging again for higher lysine supplementations. Reproduced
with permission from the publisher.

discussed more widely. For example, Emmans (1991) published a short article in the Proceedings of

the Nutrition Society following a meeting of the Nutrition Society where the author alluded to the idea

of modelling animal dietary selection using the equilateral triangle of macronutrients (i.e. fat, protein,

carbohydrate), similar to the equilateral triangle first conceptualised by Parks (1973). The article was too
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short to present any formalism and omitted the crucial theoretical foundations that had been developed

in nutritional sciences by Parks (1982) and Moon & Spencer (1974) as well as the parallel work from the

field of ecology and evolution.

1.2.2 State-space models in ecology and evolution

Agricultural and nutritional scientists were not the only ones developing the idea of diets as mixtures

that can be represented in multidimensional space (see Table 1.1). Evolutionary ecologists also developed

similar frameworks when studying animal motivation. This was spearheaded by two landmark publica-

tions by David McFarland and Richard Sibly (McFarland & Sibly 1972, Sibly & McFarland 1974) which

approached nutrition from the perspective of animal motivation and drives as opposed to diet mixtures

as in Parks (1973) and Moon & Spencer (1974). McFarland and Sibly later expanded their framework

in subsequent works (Sibly & McFarland 1974, McFarland & Sibly 1975, Sibly & McFarland 1976, Sibly

& Calow 1983) which collectively, defines much of the conceptual and theoretical underpinnings of the

Geometric Framework of Nutrition (GF).

It is interesting to note the independent convergence of concepts which were developed simultaneously

in ecology and evolution and nutritional and agricultural sciences. For instance,McFarland & Sibly (1972)

studied the concept of “drives” related to animal motivation. They formalised the use of vectors to

represent non-unitary drives (as opposed to scalar unitary drives) which could be used to model animal

motivation and its consequences. As a case study, McFarland & Sibly (1972) linked their multidimensional

approach to animal feeding. In modelling feeding “commands”, which can be thought of as directions and

magnitudes of commands that act on behavioural mechanisms to elicit an observed behaviour, McFarland

& Sibly (1972) conceptualised a three dimensional Euclidean space for proteins, carbohydrates, and fat

required by a feeding animal (Fig 1.4). This is an analogous conceptualisation of diet as mixtures

represented by vectors in multidimensional space by Parks (1973), Moon & Spencer (1974).

McFarland & Sibly (1972) also defined the dimensionality of the nutrient space (which they called

the “consequence space”) and discussed cases where the realised dimensionality of such space are reduced

when animals feed in a single diet. This is conceptually similar to the concept of “lines of equal energy”

put forth by Parks (1973). As we will see below, this is also conceptually analogous to the concept of

“nutritional rails” used in the GF (Fig 1.4b).

An important insight proposed by McFarland & Sibly (1972) is the idea of “realizable consequences”,

which represents the subspace of achievable outcomes when animals feed on diets of varying composition.
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a. b.

c. d.

Figure 1.4: The concept of non-unitary drives by McFarland & Sibly (1972) and its similarities
with the Geometric Framework of Nutrition (GF). (a) McFarland & Sibly (1972) conceptualised
a nutrient space when developing a framework to study animal motivation and drives. The authors define
the command space as the three dimensional space composed of protein (p), carbohydrates (c) and fat
(f) axes. (b) When animals are kept in a diet with fixed nutrient composition, this creates a plane which
couples, in this example, protein and carbohydrates (pc), along which animals can move but cannot move
anywhere else in space. (c) When given a choice between two diets (in this example, G and R), animals
can reach any point within the sub-space defined by the vectors G⃗ and R⃗ that represent the mixture of
nutrients for each of the diets. Any point in the shaded region can be realised by eating amounts of R and
G, as exemplified in panel (d). In panel (d), T represents any transient state before animals reach their
desired state x. McFarland & Sibly (1972) referred to the shaded area as realisable consequences, which
conceptually underpins the methodological approach of choice experiments to identify the intake target
(IT) in the Geometric Framework (GF). Adapted and reproduced with permission from the publisher.

Specifically, these realizable consequences are the subspace which lies within two vectors, R⃗ and G⃗ that

represent diet mixtures and are the boundaries of a realizable subspace outside with animals cannot reach

(Fig 1.4c). Any space bounded by the two vectors is achievable if animals eat a mixture of R⃗ and G⃗,

whereas animals walk along the boundaries of this subspace by feeding only on R⃗ or G⃗. (McFarland
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& Sibly 1972) (Fig 1.4c-d). This insight was not, to my knowledge, conceptualised in nutritional and

agricultural sciences, although Parks (1973) discuss “movements” of diet mixtures when diet supplements

are added to mixtures, alluding to the idea that diets could be bounded within a subspace of the nutrient

space (see Chapter 8 and 9 in Parks 1982).

The 1970s marked the simultaneous development of multidimensional nutrition with the explicit ap-

plication of geometric concepts and linear algebra to model diet mixtures (Parks 1973, Moon & Spencer

1974) and animal motivations (McFarland & Sibly 1972, Sibly & McFarland 1974). Along with theoretical

developments, empirical work using response surface models, particularly in relation to animal nutrition

in agricultural settings, also emerged (Chandler et al. 1967, Gardiner et al. 1967, Chandler et al. 1968,

Roush et al. 1979, Toyomizu et al. 1982, 1988, 1993). These developments prepared the foundations for

and were paralleled to development of the Geometric Framework of nutrition.

1.2.3 The Geometric Framework of Nutrition (GF)

In 1993, Stephen J. Simpson and David Raubenheimer published two landmark papers formalising what

is now known as the Geometric Framework (GF) of nutrition (Simpson & Raubenheimer 1993, Rauben-

heimer & Simpson 1993). These two papers have had a major impact in evolutionary ecology and, more

broadly, biomedical and nutritional sciences. The GF incorporated the mathematical concepts of metric,

ratios, and realisable consequences while building upon the authors’ foundations on the statistical analy-

sis of nutrient ratios (Raubenheimer & Simpson 1992). Not all previous concepts were incorporated, such

as for example the use of vectors to estimate properties of GF data. This is relevant to the contributions

presented in this thesis and discussed below. Nonetheless, the GF rapidly grew to become one of the

most powerful methods to study animal and subsequently human nutrition. To fully understand the

significance of the GF to the field as well as the importance of the analytical methods proposed in this

thesis, we must first review the fundamental principles of the GF which makes this framework one of the

most widely used to study the complexity of nutrition.

The GF is a state-space model designed to uncover how the intake and balance of nutrients affect the

physiology, behaviour and fitness (Simpson & Raubenheimer 1995, 2012). The GF is subdivided into two

sets of experiments: (1) animals are force-fed diets with a wide range of nutrient ratios and concentrations

(no-choice experiments) (Fig 1.6a) and (2) animals ware offered diets with complementary nutrient ratios

and are allowed to self-select their preferred optimum nutrient blend (i.e., their “intake target”) (choice

experiments) (reviewed in Simpson & Raubenheimer 2012) (Fig 1.6b). No-choice experiments allows us
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to map how different, often extreme dietary mixtures, affect physiology and fitness. For example, one can

map how lifespan in the model organism Drosophila melanogaster changes with the intake of diets varying

in protein and carbohydrate as done in the landmark paper by Lee et al. (2008) (Fig 1.6c). In this case,

the GF reveals the dietary limitations which organisms have, by bringing to light diet mixtures that are

prohibitively unbalanced for homeostasis and fitness realisation. On the other hand, choice experiments

give insights into the nutrient balance that animals strive to achieve and defend when allowed to navigate

among diets. This concept maps well onto the concept of “realizable consequences” by McFarland & Sibly

(1972) whereby animals navigate a subspace of the nutrient space (bounded by their dietary options) to

achieve their intake targets (Fig 1.6d). When integrated, these two sets of GF experiments provide an

almost complete picture of how animals eat and the consequences of nutrition to their life-histories, and

how animals respond to eating imbalanced diets relative to their self-selected optimum, which is known

as “rules of compromise” (details below). Recent studies often employ one or the other set of experiments,

partly because of the nature of the information that is given but also due to challenges of ascertaining

dietary choices for some model systems (e.g. mice) (Solon-Biet et al. 2014, 2015). Nonetheless, the

combination of the two sets of GF experiments continue to uncover important biological insights into

how animals and humans respond to diets (Simpson & Raubenheimer 2012, Raubenheimer & Simpson

2020).

The GF led to the development of approaches to analyse diets in high dimensions. For instance, in

another landmark paper, Raubenheimer (2011) formalised the use of right-angle mixture triangles (RMT)

to analyse dietary mixtures from proportions. The RMT emerge to allow field ecologists to utilise the

multidimensionality approach and visualisation power of the GF using dietary data collected in the field

(Fig 1.5). At first, RMT resembles the concepts first proposed by Moon & Spencer (1974) and Emmans

(1991). However, Raubenheimer (2011) formalised the application of the RMT to analyse the nutritional

ecology of organisms from field data, providing a robust framework that has underpinned insights into

animal and human nutrition Raubenheimer & Simpson (2020). Moon & Spencer (1974) and Emmans

(1991) papers focused primarily on the abstract potential of using right-angle and equilateral triangles

to represent dietary mixtures and therefore were more difficult to translate to applications. Moon &

Spencer (1974) did propose a similar concept of partitioning nutrient space into sub-spaces that are

interlinked with the nutrient triangle as did Raubenheimer (2011), but their development lacked details

and formalism. The methodological developments geared towards the RMT lie outside the scope of the

contributions presented in this thesis.
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a.

b.

Figure 1.5: The right-angle triangle mixture (RMT) by Raubenheimer (2011). (a) A right-
angled mixture triangle (RMT) with three components: focal axes X and Y , and an implicit axis Z
(denoted generically as axis I). Mixtures containing only X and Y (where Z = 0%) lie along the
concentration isoline defined by Y = 100 −X, represented by the solid diagonal line in the figure (e.g.,
points a and b, satisfying X + Y = 100%). When Z is introduced at 30%, the possible mixtures shift
to a new isoline, X + Y = 70%, shown as a dashed line (e.g., points e, c, and d). More generally, the
X + Y isoline for any given Z value can be plotted as a line connecting the point (100% − Z) on the
X-axis to the same value on the Y -axis. (b) A four-component RMT with focal axes X, Y , and Z, and
an implicit axis W . The same logic applies as outlined for the three-component mixture in (a), except
that the X + Y isoline is replaced by an equilateral triangle with apices at X, Y , and Z. This approach
resembles that of “planes of constant magnitude” from Moon & Spencer (1974) (see e.g., Fig 1.2c above).
Adapted from Raubenheimer (2011).
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1.2.4 The GF experimental design and data collection

There are several commonalities in the design of choice and no-choice GF experiments and for brevity,

these are explained jointly in this section. Specific aspects of the experimental design of each set of

experiments are detailed below. The aim of this section is to review the fundamental details which

are relevant to the contributions presented in this thesis. A users’ guide is available in the literature

(Simpson & Raubenheimer 1995) along with an extensive review of the general GF approach (Simpson

& Raubenheimer 2012).

The GF was designed to be flexible and accommodate experiments investigating the effects of an

arbitrary (i.e., n) number of nutrients. Because visualisation of high-dimensional data (i.e. four di-

mensions or higher) are difficult or impossible, this section will focus on the simplified case of n = 2

nutrients. Nonetheless, the approach discussed here are readily applicable to studies of more than these

two nutrients. Suppose we are interested in studying how the intake of protein (P) and carbohydrates

(C) influences the expression of a fitness-related trait (e.g. lifespan) in a given species. The intake of each

nutrient can be plotted as orthogonal axis in Euclidean space, forming a region known as the “nutrient

space” (Fig 1.6a). Each point pi in this space is defined by the amounts of P and C intakes, that is, pi

has coordinates (P,C). Drawing a line from the origin through the point pi we can define a line, known

as “nutritional rail”, which has slope P
C and quantifies the amount of P and C intakes when animals feed

on a diet with P
C ratio of nutrients (henceforth “PC ratio”) (Fig 1.6a).

There are infinitely nutritional rails in such nutrient space. Instead, the GF experiments partitions the

nutrient space into pre-defined nutritional rails with known PC ratios. While helpful, this approach still

leaves the researcher with infinitely many possibilities because there are infinitely many points in each

nutritional rail. As a result, the researcher also needs to discretise each nutritional rail by concentrations

of P and C to form the diets that are be given to individuals of the target species in the study. At the end

of this discretisation process, the nutrient space is subdivided into “anchor points”, each representing diets

with different PC ratio and combined PC concentrations (Morimoto 2022). These anchor points represent

diets with specific PC ratio and nutrient concentrations which are then used in experiments (Fig 1.6a).

Originally, the nutrient intake on these diets was carefully measured (Lee et al. 2008, Fanson et al. 2009)

(intake experiments) but over time, this practice were replaced and the anchor points became the reference

points upon which traits are mapped directly (fixed ratios experiments) in no–choice experiments (e.g.,

Silva-Soares et al. 2017, Kutz et al. 2019). The methods presented in this thesis have been validated for
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Figure 1.6: The Geometric Framework of Nutrition (GF) by Simpson & Raubenheimer (1993)
and Raubenheimer & Simpson (1993). (a) The n = 2 dimensional nutrient space which is formed
when the intake of two nutrients, in this example protein (x-axis) and carbohydrates (y-axis) are plotted
in the Euclidean space. Discretising the nutrient space into nutritional rails is needed for experimentation,
as well as discretising each nutritional rail into diets with known ratio and concentration of nutrients – the
“anchor point”. In no-choice experiments, a trait of interest is mapped onto the nutrient space, creating
a n+ 1 dimensional performance landscape. (b) Example of a three-dimensional performance landscape
mapping lifespan to the intake of protein and carbohydrate in Drosophila melanogaster. Adapted from
Lee et al. (2008) and reproduced from Morimoto et al. (2023). (c) In choice experiments, animals are
given a choice between two complementary diets (red and blue) and can navigate a region (shaded) to
achieve their self-selected intake targets (IT; yellow star) assuming this IT lies within the region between
diets. Note that movements are parallel to the slope of each of the diets, and animals need to navigate
accordingly to ensure that IT is reached. Adapted from Simpson & Raubenheimer (2012). (d) Example
of four different “rules of compromise” when animals feed in imbalanced diets. Rule I: Eat until the intake
of one of the nutrients is reached, then stop eating; Rule II: eat until the intake of both nutrients are
reached, irrespective of surpluses in the intake of other nutrients; Rule III: eat until the intake of one
nutrient (e.g., protein, horizontal; shown) is met, irrespective of surpluses or deficits in the intake of other
nutrients; Rule IV: minimise the distance between the intake of nutrients in the imbalanced diet and the
IT (aka “closest distance optimisation”). Adapted from Raubenheimer & Simpson (1993).

both experiment types. It is important to mention, however, that intake experiments are still mandatory

for choice experiments within the context of the GF, as discussed below.
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1.2.5 Choice experiments

Animals are given two complementary choices of diet and are allowed to forage freely. The intake of

each of the diets and their nutrients is monitored so that their self-regulated dietary intake, also referred

to as “intake target (IT)” can be measured (Fig 1.6b). To confirm that the IT is that self-selected by

animals, it is often appropriate to challenge the animal by offering a wide range of complementary diets

and measuring whether or not the intake target converges to the same IT (see Simpson & Raubenheimer

2012). Once the IT is defined, we can map the average intake of nutrients in each of the nutritional rails

used in the no–choice experiment. Together, the average intake across nutritional rails and the IT form

a nutrient array, which is thought to contain information about the physiological and behavioural rules

that govern how animals feed on imbalanced diets relative to their self-regulated IT (Raubenheimer &

Simpson 1993, Simpson & Raubenheimer 1993). The shape of the nutrient array uncovers how the animal

cope with imbalanced diets, by demonstrating the rules that underpin their food intake when feeding at

various distances from their self-selected IT (Fig 1.6c).

1.2.6 No-choice experiments

Animals are fed diets corresponding to “anchor points” (see above). A trait or traits are then measured

in for these animals as a proxy of animals performance (fitness) on each of the diets. Common traits used

in these experiments include lifespan and egg production, for instance (Simpson & Raubenheimer 2012).

The values of the traits are assigned (“mapped”) onto each of the anchor points and an interpolation

method, most commonly using a thin-plate spline, is conducted to create what is known as performance

landscapes. These landscapes resemble a traditional fitness landscape (Wright 1932, Gavrilets 2004)

although in this case it relates diet intake or composition to a fitness-related performance trait(s) (Fig

1.6c). The interpretation of the performance landscapes are intuitive: peak regions (often represented

in red) are combination of nutrients which maximise the trait or traits under consideration while valley

regions (often represented in blue or green) are combination of nutrients which minimise the trait or traits.

Simpson et al. (2004) was the first to formalise how performance landscapes in GF work are constructed.

The authors assumed that the costs of nutrient surplus or deficit increased “continuously and smoothly”

as nutrient intake distanced from the intake target (as in Tilman 1982) and built a response surface

using a Taylor series expansion (Simpson et al. 2004). Using Spodoptera littoralis larvae fed in chemically

defined diets, they showed that the performance landscape for fitness (measured as a combination of
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larval growth and survival) (Fig 1.7). An important point to highlight in this work is that with their

definitions underpinning the construction of the landscape, the authors used the shape of the performance

landscape to infer the type of costs associated with nutrient surplus and deficit. In the specific example

of S. littoralis whose performance landscape approximated a “tilted ellipse”, the authors concluded that

the costs associated with nutrient imbalances were quadratic (Simpson et al. 2004).

Figure 1.7: GF performance landscape of an experiment in Spodoptera littoralis parame-
terised as Taylor series approximation by Simpson et al. (2004). (a) Results from the ex-
periment where Spodoptera littoralis larvae were fed chemically defined diets during their final larval
stage. Thirty-five treatment groups received a single food type, restricting their nutrient intake to a
fixed protein-to-carbohydrate ratio in the diet. In contrast, five treatment groups were allowed to choose
between complementary food pairings. Refer to the main text for detailed descriptions of the treatment
regimes. Each point on the graph represents the mean nutrient intake (bicoordinate mean ± SE for 10
caterpillars), and the number beside each point indicates performance, calculated as the mean wet mass
growth rate (mg grown/day) multiplied by the percentage of individuals surviving to pupation. The point
marked as the “regulated intake point” represents the combined mean for 58 caterpillars (with N = 11
or 12 per treatment) that had access to one of the five choice treatments in their experiment, that is, it
is the estimated intake target (IT). The regulated intake point of self-selecting larvae is located within
the summit region of the fitness surface. The short-dashed line represents treatments where the total
protein and carbohydrate concentration was 42%, corresponding to near-maximal performance at various
protein-to-carbohydrate ratios. The long-dashed line shows the upper limit of nutrient intake, beyond
which larvae did not feed. Adapted from Simpson et al. (2004).

It is important to note the increase in dimensionality of the GF data generated by no-choice ex-

periments. For instance, when investigating the effects of two nutrients (n = 2), then the performance

landscapes will be of n + 1 dimensions. This means that visualization of the performance landscapes

becomes easily intractable for a relatively low number (i.e. n = 3) of nutrients. Therefore, models which
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can accommodate this high-dimensionality are paramount to advance insights and push the field into

more robust and replicable approaches.

No-choice experiments may or may not be accompanied by the choice experiment, although the joint

information they provide can help interpret the topology of the performance landscapes. A classic example

is the work by Lee et al. (2008) which showed that self-selected IT maximise lifetime egg production (a

proxy of fitness) as opposed to other life-histories like lifespan and reproductive rate. More recently,

GF work has focused on interpreting the properties of the performance landscapes in their entirety, and

for this purpose the knowledge of the IT is desirable. This thesis proposes new methods that enable

researchers to find and compare peaks and valleys in GF performance landscapes within and between

species, as well as analyse the geometry of nutrient arrays to better understand the rules of animals

compromise.

1.3 Method development tailored to GF data

The GF is powerful but methodological developments to interpret the full range of data obtained from

GF choice and no-choice experiments has lagged behind the incredible growth in applications of the GF

in empirical studies. The specific details and history of these methodological developments are given in

detail at the introduction of each of the chapters to provide the appropriate background against which

the contributions presented have emerged. Here, it suffices to summarise the main limitations of the field

leading to the contributions presented in the upcoming chapters.

There have been only few analytical developments to study the rules of compromise from GF choice

experiments. Raubenheimer & Simpson (1992) first proposed a descriptive model of the rules of compro-

mise for which they later formalised through the concept of “summary plots” (Raubenheimer & Simpson

1997). Cheng et al. (2008) then built on these models and developed an analytical approach to calcu-

late what they referred as the “regulatory scaling factor” which was a scalar capable of estimating how

organisms dealt with nutrient excesses and deficits. A more extensive analytical framework was then

developed by Simpson et al. (2004) which aimed to integrate the full nutrient array and performance

landscapes data. This approach was successful in that it expanded the concept of multidimensional nu-

trition to that of the ecological niche (e.g., Tilman 1982, Hutchinson 1957, Chase & Leibold 2009), which

later underpinned the formal conceptualisation of what is known as the multidimensional dietary niche

(Machovsky-Capuska et al. 2016).
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Developments to measure properties in performance landscapes have also been limited. In fact,

two research teams have independently focused on analytical method development for GF performance

landscapes. First, John Hunt’s team were the first to propose analytical methods to systematise the

analysis of performance landscapes (Bunning et al. 2015, 2016, Rapkin et al. 2018, del Castillo et al.

2016). The second team belongs to the author, with contributions which compose this thesis and are

presented below.

1.4 Thesis outline

This thesis presents a collection of approaches to analyse GF data. Chapter 2 addresses a limitation

in the framework proposed by Rapkin et al. (2018). In doing so, this framework becomes the first

to accurately estimate differences in peaks and valleys in performance landscapes unbounded by the

dimensionality of the data. While powerful, the analytical method from Chapter 2 was conceptually

difficult and computationally expensive. As most GF experiments focus on the simple cases where

two nutrients are investigated and three-dimensional performance landscapes are analysed, Chapter 3

proposes a simpler conceptual approach, which is also computationally effective, to estimate differences

in peaks and valleys in performance landscapes – the “Nutrigonometry” models. The approach in this

chapter uses the Pythagoras theorem and trigonometric functions to achieve its purpose, and was later

expanded to incorporate other theorems and applications. Chapter 4 uses the analytical framework from

Chapter 3 to propose new ways in which GF experiments could be designed to maximise the information

obtained from performance landscapes. In particular, it proposes a new way in which anchor points

should be designed to cover larger regions of the nutrient space. Failing to do so can significantly curtail

our ability to make inferences about peak regions in performance landscapes, particularly for traits with

peaks that depend on the interaction of nutrients. Chapter 5 expands the analytical framework proposed

in Chapter 3 to estimate local curvature of performance landscapes. This provides for the first time a way

in which additional properties of performance landscapes are estimated, helping not only to describe and

compare performance landscapes but also to potentially build predictive models. Chapter 6 developed

for the first time a semi-automated algorithm to reconstruct performance landscapes from unavailable

published data, and compared the optimal diet that maximise lifespan across insect species. This was

the first time that multidimensional nutritional data is mapped onto evolutionary relationship between

species, opening up future directions in comparative precision nutrition. Lastly, Chapter 7 then uses
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the trigonometric approach to analyse performance landscapes and adapt it to nutrient arrays. Using the

Thales’ theorem of inscribed triangles, the chapter proposes a conceptually simple analytical approach

to test for the rules of dietary compromise.

1.5 Critical evaluation of contributions to the field

1.5.1 Chapter 2

As described above, there have been multiple parallel developments that incorporated geometric concepts

into nutrition. However, from 1967 until 2018 (over half a century), the use of geometry was primarily

focused on aiding the description of biological processes modulated by nutrition, such as, for example,

the expression of life-history traits. In 2018, Rapkin et al. (2018) developed the first targeted approach

to quantify and compare how different diet mixtures modulated the expression of seemingly competing

traits. However, there was an inconsistency in their methodology, which resulted in inaccurate estimates

of the extent to which two (or more) competing traits could not be maximised with a single diet—that

is, the strength of nutritional trade-offs.

Chapter 2 provides the accurate methodology needed to circumvent this limitation, as well as to

formalize an analytical framework for measuring nutritional trade-offs within and between species in a

n-dimensional nutritional space. The Vector of Positions approach introduced in Chapter 2 remains,

until the submission of this thesis, the only method capable of estimating nutritional trade-offs in high-

dimensional nutritional data from GF experiments.

However, the Vector of Positions approach has limitations. One such limitation is the computational

cost associated with the machine learning models, particularly the support vector machine (SVM), used

to delineate peak (or valley) regions. Another is that, due to noise and stochasticity, the algorithm

relies on an arbitrary threshold to reduce noise and maximize signal from the SVM, thus improving the

delineation of peak or valley regions in GF landscapes. While these limitations do not invalidate the

methodology, they introduce a certain degree of subjectivity to the analysis of the data, which I then

address in Chapter 3.

Despite these constraints, the Vector of Positions method still represents a significant advancement

in the ability to quantify nutritional trade-offs in complex, high-dimensional dietary environments.
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1.5.2 Chapter 3

To address the computational and conceptual limitations of Chapter 2 – particularly for 3D datasets,

which are the most common GF datasets in the literature – I developed the Nutrigonometry models.

Chapter 3 presents the first and most extensive of these, where I tested, for the first time, the performance

of multiple statistical models across different dataset types in identifying peak and valley regions in GF

landscapes. To accelerate computations, I implemented an extension of the Pythagorean theorem – a

well-known mathematical principle. Through a series of validations, my work demonstrated that off-

the-shelf machine learning models were outperformed by traditional models such as (Bayesian) linear

regressions and generalised additive models (GAMs), although the latter still imposed substantial, and

in some cases greater, computational costs than any other models.

In addition, Chapter 3 presents an extensive set of validations – including the pioneering use of

topological data analysis – to demonstrate that the Nutrigonometry I model can accurately describe the

properties of GF landscapes (such as peaks and valleys). A key improvement in this algorithm is the use

of a systematic method for delineating peak or valley regions in the performance landscape, relying on

the distribution of the data and quantiles, rather than the arbitrary threshold used in Chapter 2.

However, limitations remain with this algorithm, some of which have yet to be fully identified or

resolved. For example, the algorithm is based on the expansion developed by Simpson et al. (2004) to

parametrise the performance landscape. This parametrisation can "smooth out" multiple peaks, making

the Nutrigonometry I model less effective at detecting multiple disjoint peaks within a given landscape.

While disjoint peaks remain rare in the GF literature – observed only sporadically, such as in certain

gene expression landscapes (e.g., Post & Tatar 2016) – the growing application of GF to diverse datasets

means that the Nutrigonometry I model should ideally be capable of identifying such features when they

are present.

Despite these limitations, the Nutrigonometry I model has been well received in the field and is now

being implemented in a range of studies investigating other aspects of animal nutritional ecology, such

as for example the effect of local adaptation and temperature on nutritional responses (e.g., Zanco et al.

2025, Morimoto 2025a, Rho & Lee 2025).

20



1.5.3 Chapter 4

Chapter 4 began with a simple question: while the Vector of Positions approach and Nutrigonometry

I are accurate in identifying peaks and valleys in performance landscapes, are these GF performance

landscapes being built using the best possible experimental designs to maximize information?

Chapter 4 computationally tested different experimental designs for GF experiments and assessed

how well peaks and valleys in performance landscapes are identified and compared. By testing common

experimental designs used in ecology and evolutionary biology, Chapter 4 showed that standard GF

designs lead to accurate detection of nutrient ratios but truncated identification of nutritional peaks. As

a result, we lack a reliable way to determine the full extent of nutrient combinations that maximize a

given performance trait. Chapter 4 then argues that alternative designs, such as random sampling, can

explore a broader portion of the nutritional space and, in turn, uncover novel and unprecedented ways in

which animals respond to nutrition.

A key limitation of this work is the lack of a sensitivity analysis to determine the minimum number

of sampling points (i.e., “anchor points”) needed to empirically maximize the information content of a

true GF landscape. Such insight could be transformative, not only for refining Nutrigonometry methods

but also for advancing GF as an empirical framework. Power analyses and feasibility assessments of

experimental designs could help optimise experiments in both lab and field settings, widening access to

GF as a go-to method of investigation in nutritional ecology.

To date, Nutrigonometry II remains the only study to challenge the standard GF experimental design

and demonstrate that alternatives can unlock new avenues of discovery.

1.5.4 Chapter 5

Since 1967, when geometry and response surface models were first incorporated into the study of nutrition,

it has been assumed that animal nutrition operates within Euclidean space. While this assumption is

simple and useful, it overlooks a broader range of characteristics that can be derived from performance

landscapes to better understand how animals respond to their nutrition.

In this context, Chapter 5 is the first to incorporate concepts from differential geometry into the study

of animal nutrition. Its main innovation lies in the calculation of local (intrinsic and extrinsic) curvature

of performance landscapes. This allows animal responses to nutrition to be represented not only in terms

of the absolute magnitude of performance trait expression under a given diet, but also in terms of how
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rapidly that expression changes with varying diets – and in which direction those dietary changes occur.

With the growing interest in applying machine learning to biology, calculating curvature becomes a

valuable feature. This is because this approach introduces new variables that can improve the predictions

of machine learning models and the accuracy of classification, an approach known as feature engineering.

Although this was not implemented in the current chapter, it remains a promising direction for future

development of the Nutrigonometry models.

Another important contribution of Chapter 5 is the use of the Hausdorff distance as a metric to

quantify differences between a performance landscape and a null hypothesis (i.e., a flat landscape over

the same domain). The Hausdorff distance is a flexible way to estimate the distance between two sets,

and this chapter formalized its application to GF datasets for the first time.

The main limitation of this work is the dimensionality of the data. I used the fundamental forms

to calculate Gaussian and mean curvatures, which is only applicable to three-dimensional datasets. For

higher-dimensional landscapes, alternative methods are needed. However, as most GF landscapes to

date are three-dimensional, the current model can be applied to virtually all existing data (note that 4D

landscapes can be represented as series of 3D ones). Future work will aim to generalize this approach to

calculate curvatures of performance landscapes in n-dimensional datasets.

1.5.5 Chapter 6

Having developed the computational methods to estimate peaks, valleys, and curvatures, I moved on to

integrating GF data across multiple species to gain broader insights into nutritional responses across the

tree of life. Do closely related species share similar optimum nutrient ratios that maximize traits?

To answer this question in Chapter 6, I used the methodologies developed in Chapters 2 to 5 to

perform the first comparative analysis of GF performance landscapes, in what is now known as the field

of comparative precision nutrition. However, a major caveat that initially prevented such data integration

was the limited accessibility of raw GF data. I circumvented this issue by creating a semi-automated

algorithm that allowed me to reconstruct performance landscapes with similar features (e.g., peaks,

valleys, etc.) to the published ones –without requiring access to the original data. This represents a

major advance, as no prior algorithms (or even manual methods) had been able to extract meaningful

data from 3D performance landscape figures.

The results were insightful: related insect species share optimum protein-to-carbohydrate (P:C) ratios

that maximize lifespan. Moreover, I found that males and females have different P:C optima for maximiz-

22



ing lifespan, and that this difference is conserved across species. This suggests that sexual conflict over

nutrition may be evolutionarily conserved. This is particularly intriguing given that males and females

share a genome, implying that their responses to potential nutritional conflict may also be conserved. Un-

covering the molecular mechanisms underlying this phenomenon could help us understand how evolution

resolves sexual conflict through shared physiological and molecular adaptations.

The main limitation of this study is its small sample size. GF research has focused primarily on

insects, particularly model organisms. As a result, we currently lack the taxonomic breadth necessary to

confirm whether the patterns observed in Chapter 6 represent a broader phenomenon across the tree of

life. Addressing this will require several key initiatives. First, GF studies must be conducted in a wider

range of species across diverse taxonomic groups – including other insects, invertebrates, and vertebrates

beyond mice and humans. While some work has been done in cats and dogs, it remains too fragmented

to support robust comparative analyses. Second, we need better phylogenetic trees. The tree I used

was reconstructed from barcode genes, and while it reflects expected species relationships, it is neither

ultrametric nor dated. Accurate modelling of the evolution of nutritional responses across the tree of life

requires high-quality phylogenies – built from taxonomic, genomic, and paleontological data.

Despite these limitations, Chapter 6 shows the powerful insights that can be gained by integrating GF

with comparative methods and remains a foundational contribution to the field of comparative precision

nutrition.

1.5.6 Chapter 7

GF has two experimental branches: one where animals are given a choice of diets (choice experiments),

and one where they are not (no-choice experiments). All analytical methods developed in Chapters

2 to 6 apply to no-choice experiments. In contrast, Chapter 7 introduced a novel analytical method

to quantify how animals respond to dietary imbalances – specifically, the rules of dietary compromise

– in GF choice experiments. While the Geometric Framework (GF) has long enabled researchers to

visualise and interpret animal feeding behaviour, methods for statistically analysing rules of compromise

have lagged behind. Existing approaches often relied on pairwise distance calculations and/or complex

summary plots, which at times obscured rather than clarified biological interpretation.

To address this, Chapter 7 applied a classic geometric principle – Thales’ theorem of the inscribed

triangle – to quantify deviations from the commonly observed “closest distance optimisation” (CDO)

pattern in nutrient arrays. This provided a rigorous yet intuitive framework for testing whether nutrient

23



intake on imbalanced diets adheres to expected behavioural rules. This remains the first formal model

for testing CDO and making prediciton a priori, offering a clear ground truth against which researchers

can determine whether animals do, or do not, minimise the distance to their intake target – and if not,

which nutrients drive this deviation and why.

This method was validated using three landmark GF datasets of increasing complexity: from Drosophila

melanogaster (a model generalist), to two locust species with different dietary breadths, and finally to gen-

eralist and specialist moths (Spodoptera littoralis and S. exempta). The results revealed striking patterns:

dietary specialists tended to adhere more strictly to CDO, whereas generalists showed greater flexibility

in nutrient intake under imbalance. Interestingly, D. melanogaster exhibited strong underconsumption

of high-carbohydrate diets – a response more typical of specialists – suggesting possible physiological or

evolutionary constraints even in generalist species.

The main limitation of this study is that Thales’ theorem applies only to two-dimensional nutrient ar-

rays, restricting direct application to higher-dimensional landscapes. As with curvature analysis, entirely

new frameworks would be required to generalise the approach to higher dimensions. However, to date,

all GF choice experiments have been conducted in two-dimensional nutrient spaces, making the method

widely applicable to existing datasets. An adaptation of the Vector of Positions method may be possible,

though it has not yet been formalised (work in preparation).

A further limitation – highlighted in a comment by Senior et al. (2025) –is the lack of a formal maxi-

mum likelihood estimator for the angle β within this framework. This gap remains the main bottleneck

for broader statistical inference on rules of compromise in animal nutrition. Despite these limitations,

Chapter 7 represents a significant analytical advance and opens the door for comparative and evolutionary

studies of dietary compromise across species and ecological contexts.

1.6 Concluding remarks

Nutrition is complex and multifaceted. With the growing societal impact of the double burden of malnu-

trition (DBM), we need ways to overcome this complexity and high-dimensionality of nutritional data to

advance our prospects of healthier and more sustainable lives (Nugent et al. 2020). Analytical frameworks

are paramount to make sense of complex data to inform experiments, and uncover insights. There has

been a long history of applications of geometric concepts to represent diet mixtures and their impacts on

animals and humans, but this has been disjoint and lacking in analytical capacity (Table 1.1). The work
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presented in this thesis is situated in this context and represents a collection of analytical methods aimed

at spearheading the field into new research directions (Fig 1.8).

The geometric framework (GF) and map of contributions

Experimental design
and data collection

Choice No choice

Data analysis and 
visualization

Data analysis and 
visualization

Data integration 
and comparative 

nutrition

In 3-DIn n-D

Curvature

Chapter 7: 
Nutrigonometry IV

Chapter 4: 
Nutrigonometry II

Chapter 3: 
Nutrigonometry I

Chapter 5: 
Nutrigonometry III

Chapter 6: Comparative 
precision nutrition

Chapter 2: Vector 
of Positions

Figure 1.8: Map of the contributions of each chapter of this thesis for the advancement of the
geometry of nutrition. From experimental design to data integration, the contributions of this thesis
represent significant analytical and conceptual breakthroughs to help quantify nutritional trade-offs in
high dimensional nutritional data.
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Table 1.1: Historical overview of geometric concepts applied to diet and nutrition. The overview also
includes pioneering empirical work using the response surface models.

Year Authors Overview of contributions

1967 Chandler et al. (1967),
Gardiner et al. (1967)

Pioneered the use of response surface models in nutritional
sciences.

1968 Evans & Miller (1968) Pioneered the use of equilateral triangle to represent diet
mixtures within the context of comparative nutrition.

1972 McFarland & Sibly (1972)

Introduced the concepts of non-unitary drives and pre-
sented a framework to study animal motivation which later
underpinned the developments of the Geometric Framework
in the 1990s.

1973 Parks (1973)

Introduced geometric concepts to represent diet mixtures
and proposed the use of response surface models to map
dietary effects on animal growth. It also included the use
of equilateral triangles to represent mixtures of macronu-
trients.

1974 Moon & Spencer (1974) Used affine geometry to represent diet mixtures.

1974 Sibly & McFarland (1974) Defined state-space models of animal motivation building
upon their concepts of non-unitary drives from 1972.

1979 Roush et al. (1979)
Simplified Parks’ 1972 approach and applied the concept of
response surface models to study growth in the Japanese
quail.

1982 Parks (1982)

Built upon Parks’ 1972 approach and formalised the use of
vectors to represent diet mixtures; it expanded the use of
affine geometry to include the concept of metric into the
vector space of nutrients.

1982–1993 Toyomizu et al. (1982,
1988, 1991, 1993)

Applied geometric concepts and response surface models to
study animal nutrition in a series of pioneering empirical
work.

1991 Emmans (1991) Proposed the use of equilateral triangles to represent diet
mixtures in a verbal non-formal fashion.

1993
Simpson & Raubenheimer
(1993), Raubenheimer &
Simpson (1993)

Formalised the Geometric Framework of nutrition as is
widely used today. They also proposed the use of geometric
concepts to study animals’ rules of compromise when feed-
ing in imbalanced diets.

2004 Simpson et al. (2004)

Formalised the construction of performance landscapes in
the Geometric Framework of nutrition using Taylor series
approximations. They also derived a way to infer the costs
of nutrient surplus and deficit based on the geometry of the
performance landscape.

2011 Raubenheimer (2011)
Formalised the use of right-angle triangle mixtures (RTM)
to study nutrition, facilitating the applications of the Geo-
metric Framework to field data.
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Chapter 2

A vector-based approach to measure nutritional trade-

offs within and between species

Publication reference

Morimoto, J. and Lihoreau, M., (2019). Quantifying nutritional trade-offs across multidimensional per-

formance landscapes. The American Naturalist, 193(6), pp.E168-E181.
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2.1 Abstract

Animals make feeding decisions in order to simultaneously maximise fitness traits that often require

different nutritional optima. Current quantitative methods to characterise these nutritional trade-offs

from performance landscapes on which traits are mapped on a multi-dimensional nutrient space can

lead to inaccurate estimates, which greatly limits the possibility to explore scenarios with more than

two nutrients or to compare strategies across species. Here we propose a new analytical approach – the

Vector of Position Approach – that is based on vectors of position, and uses 2- and 3-D vector operations

combined with machine learning algorithms to accurately measure nutritional trade-offs from performance

landscapes for within- and between-species comparisons. Using landmark published datasets, we show

that the current method can overestimate the strength of nutritional trade-offs by up to 65%. We

then demonstrate that our approach gives accurate quantifications of nutritional trade-offs, applies to

scenarios with more than two nutritional dimensions, and provides new insights into the underlying

nutritional differences in trait expression between species. The Vector of Positions Approach provides

a unique generalised framework for investigating nutritional differences in life-history traits expression

within and between species, which allows future developments in comparative research on the evolution

of animal nutritional strategies.

Keywords: Nutritional Geometry, nutritional trade-off, performance landscapes, fitness.
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2.2 Introduction

Nutrition underpins complex life-history traits that determine individual fitness and impact on evolu-

tionary processes (Simpson & Raubenheimer 2012). Recent advances in nutritional ecology show how an

animals’ diet can differently influence the expression of key life-history traits, leading animals to trade-off

between optimising multiple traits simultaneously (e.g., Bunning et al. 2015, 2016, Rapkin et al. 2018,

Morimoto & Wigby 2016). In insects, for instance, lifespan is typically enhanced on high carbohydrate

diets whereas reproduction is maximised on high protein diets [e.g., fruit flies (Lee et al. 2008, Fan-

son et al. 2009, Reddiex et al. 2013, Jensen et al. 2015, Semaniuk et al. 2018) and crickets (Maklakov

et al. 2008)]. Immunity and reproduction also display complex species-specific differences in nutritional

requirements [e.g., moths (Cotter et al. 2011)], fruit flies (Ponton et al. 2015) and crickets (Maklakov

et al. 2008), reviewed by Ponton et al. (2011)]. Even traits related to different stages of reproduction can

have specific nutritional requirements that are not attainable simultaneously [fruit flies: (Reddiex et al.

2013, Jensen et al. 2015, Morimoto & Wigby 2016), cockroaches (Bunning et al. 2015), beetles (House

et al. 2016)]. Measuring these nutritional trade-offs is challenging because it necessitates to separate the

potential confounding effects of energy intake and nutrient balance on the expression of traits to identify

the contribution of specific food components to the expression of one trait over another (Stearns 1989,

Roff 2002, Hunt et al. 2004).

Over recent years, concepts of nutritional geometry (also known as the “Geometric Framework for

nutrition”) have been increasingly used to experimentally generate performance landscapes on which the

expression of a fitness trait can be mapped onto the nutrient space, allowing the effects of nutrient and

energy intakes on the optimal expression of traits to be disentangled (Simpson & Raubenheimer 1993,

Raubenheimer & Simpson 1993, Lee et al. 2008, Maklakov et al. 2008, Fanson et al. 2009, Simpson

& Raubenheimer 2012). Nutritional geometry has provided key insights into the nutritional factors

underpinning a wide variety of physiological and behavioural phenomena across taxonomic groups, feeding

guilds and ecological contexts (e.g., Trumper & Simpson 1993, Simpson et al. 2010, Lihoreau et al. 2015,

Raubenheimer & Simpson 1993), including human societies (Gosby et al. 2014). In most cases, however,

measures of nutritional trade-offs are based on the visual inspection of the performance landscapes.

Developing a standard quantitative method for analysing these nutritional data has become a key issue

for comparative research and investigate the role of nutrition in the evolution of physiology and behaviour

(Lihoreau et al. 2015).
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Bunning et al. (2015) and Rapkin et al. (2018) recently proposed a method for calculating the angle

and the distance between the peaks of fitness-related traits in nutrient space of nutritional geometry stud-

ies (henceforth referred as the “Angular Method”; see description in this chapters’ Materials and Methods

and (Figure 2.1a-g). This method is based on the representation of performance landscapes as vectors of

slopes and has been applied to measure nutritional trade-offs between immunity and reproduction, as well

as between different reproductive traits (Bunning et al. 2015, 2016, Rapkin et al. 2016, 2018). Although

informative, the Angular Method, as currently framed, can lead to misleading results, particularly when

the estimates of the angle separating the nutritional peaks are interpreted along with the performance

landscapes. The risk of confusion may rapidly become more important as the analyses get more complex,

for instance in the context of comparative studies, when multiple performance landscapes must be com-

pared, or in studies using complex (high dimension) nutritional spaces, when the effect of more than two

food components are investigated (e.g., Solon-Biet et al. 2014, Gosby et al. 2014, Solon-Biet et al. 2015).

To address these problems, here we introduce a new, vector-based approach to accurately measure

and compare nutritional trade-offs in performance landscapes: the “Vector of Position Approach”. First,

we show that the Vector of Position Approach provides an accurate measure of the angle between the

peaks of the traits and an in-depth description of the nutritional trade-offs using a landmark dataset

on lifespan-reproduction trade-offs on Drosophila (Lee et al. 2008). Second, we use simulated data to

illustrate how our approach can be generalised to more complex high-dimension nutrient spaces, allowing

for the comparison of the trade-offs in studies with three or more nutrients. Third, we show how this

novel approach can be applied for between-species comparisons, using published datasets on lifespan-

reproduction trade-offs in two fruit fly species (Lee et al. 2008, Fanson et al. 2009).

2.3 Material and Methods

2.3.1 Overview of the two methods

The Angular Method

The Angular Method uses vectors to describe the relationship between nutrient intake and the expression

of traits, and measures the angle between the vectors to infer the presence and strength of nutritional

trade-offs (Bunning et al. 2015). The first step is to fit a linear regression of the trait onto the intake of

each nutrient of interest, forcing the intercept to 0. If we consider two nutrients, e.g. protein (P) and
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carbohydrate (C), we obtain:

traiti ∼ β1,iP + β2,iC − 1 (1)

From (1), the slopes β1,i and β2,i – the linear slopes of P and C – are used as the components of a

2D vector a⃗i, in which i is the trait of interest,

a⃗i =

[
β1,i β2,i

]
(2)

In a simple example with two traits – traits A and B – with peaks in different regions of the nutrient

space (Figure 2.1a), the vectors of slopes are defined by:

a⃗A =

[
β1,A β2,A

]
(3a)

a⃗B =

[
β1,B β2,B

]
(3b)

It is then possible to calculate the angle θ′ formed between a a⃗A and aa⃗B vectors (Figure 2.1b-c) as:

θ′ = cos−1(
a⃗A · a⃗B

||a⃗A||·||a⃗B ||
) (4)

Note that in the original proposition, the angle between these vectors of slopes was called θ instead

of θ′ (Rapkin et al. 2018).

The value of θ′ is the angle formed between diet vectors representing the peaks in trait expressions

in the performance landscapes, and has been suggested as a useful measure of the nutritional trade-off

between traits (Rapkin et al. 2018). θ′ can take values between 0◦ and 180◦, in which the closer θ′ is from
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0◦, the more aligned the peaks in the nutrient space are expected to be, whereas the closer θ′ is from

180◦, the farther away the peaks are located in relation to each other (Rapkin et al. 2018). Therefore,

larger values of the angle θ′ indicate stronger nutritional trade-offs on the expression of two traits. Since

the coordinates of the vectors of slope a a⃗i are obtained by the linear slopes β1 and β2 of P and C intakes

onto the expression of the trait (Figure 2.1a-c), the angle θ′ between a a⃗i vectors measures how different

the slopes of P and C intakes are between the traits. θ′ thus informs about whether the slopes of either P

or C intakes, or both, have a positive, negative, or zero effect on the expression of the trait (Figure 2.1d).

This is interesting because the Cartesian quadrant that a given a a⃗i vector yields information about the

sign of the slope of the nutrient on the expression of the trait. For example, if a a⃗i lies on the second

quadrant, the slope of C intake is positive whereas the slope of the P intake is negative (Figure 2.1d).

This property will be explored to estimate the strength of the nutritional trade-offs using the Vector of

Position Approach (see this chapters’ results).

It is important to note that β can assume any value in the real range, that is, βj ∈ R ∀j = 1, 2, ..., j,

where j is the number of linear slopes, which means that the vectors a⃗i =
[
β1,i β2,i

]
can be defined in

any quadrant of the Cartesian plane. However, in nutritional geometry, the nutrient space (δ) is defined

only in the range of real positive numbers (δn ∈ R+ ∀n = 1, 2, ..., n), where n is the number of nutrients

being investigated (Simpson & Raubenheimer 2012). Therefore, vectors with negative coordinates are

meaningless from the point of view of the nutrient space, and any measure of distance between vectors

with negative components cannot represent the true angle between the peaks observed in the performance

landscapes.

In addition to θ′, Rapkin et al. (2018) extended the Angular Method to include estimates of the

Euclidean distances d′ between the peaks of two traits in the nutrient spaces (Figure 2.1e), calculated as:

d′ =

√
(P ∗

A − P ∗
B)

2
+ (C∗

A − C∗
B)

2 units (5a)

or alternatively, according to geometrical laws Heath (1956):

d′ =

√
a⃗A

2 + a⃗B
2 − 2a⃗Aa⃗B cos(θ′) units (5b)
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Figure 2.1: Overview of Angular Method and Vector of Position Approach. (a) Hypothetical
performance landscape with peaks of traits A and B (grey regions). (b) Linear slopes of protein and
carbohydrate intakes onto the trait i that composes the vector a⃗i. (c) Angle θ′ that separates the vectors
a⃗A and a⃗B . (d) Information of the slopes within slope vectors a⃗i. Note that the direction of vectors
a⃗i in the Cartesian plane contains information about the sign of the slopes of protein and carbohydrate
intakes onto the trait i. (e) Euclidean distance d′ between the peaks of traits A and B. (f) Schematic
representation of the relationship between θ′ and d′ for nutritional peaks in different isocaloric lines. (g)
Schematic representation of the relationship between θ′ and d′ for nutritional peaks in the same isocaloric
line. (h) Position vectors p⃗i that describe the relationship between the peaks of traits A and B in the
performance landscape.

where P ∗
i and C∗

i are the P and C coordinates of the peak, a⃗A and a⃗B are the slope vectors, and θ′ is

the angle between the slope vectors. Units are given in milligrams (mg), grams (g), or any other unit

used when measuring nutrient intakes. We discuss the validity of equation (5b) in the Angular Method in

the following sections. Rapkin et al. (2018) suggested that if the peaks are located in different isocaloric
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lines (i.e., lines with slope -1) in the nutrient space, d′ becomes a more reliable measure of the nutritional

trade-off than θ′, because θ′ can underestimate the true distance between the peaks (Rapkin et al. 2018)

(Figure 2.1f). However, if the peaks lie in the same isocaloric lines, large θ′ would be associated with

large d and vice versa (Figure 2.1g).

The Vector of Position Approach

The Vector of Position Approach is an extension of the Angular Method that builds upon the representa-

tion of performance landscapes through vectors, while removing the confusion regarding the interpreta-

tions of the angle θ′ by using vectors of positions rather than vectors of slopes. Instead of using the slopes

of the linear regression as the components of the vector a⃗i, we obtain a point estimate of the peak in the

performance landscape [(see e.g., ‘OptimaRegion package del Castillo et al. 2016, for this purpose)].

From (5), the point estimate of the peak in trait expression has coordinates (P ∗, C∗), in which P ∗, C∗

are the P and C intakes, respectively, that maximize the trait, and can be represented by a vector p⃗i.

p⃗i =

(
P ∗
i C∗

i

)
(6)

In the example used above, the vectors for traits A and B are:

p⃗A =

(
P ∗
A C∗

A

)
(7a)

p⃗B =

(
P ∗
B C∗

B

)
(7b)

It is then possible to calculate the observed degree of separation – the angle θ – between the vectors

p⃗A and p⃗B as:

θ = cos−1

(
p⃗A · p⃗B

∥p⃗A∥∥p⃗B∥

)
(8)

Using the vectors of positions guarantees that p⃗A and p⃗B always lie in the defined region of the

performance landscape (i.e., the first quadrant of the Cartesian plane). In this case, an angle θ = 90◦

would represent trait performance peaks that are located at the exact opposite ends of the nutrient space,

but still within the first quadrant. This is important when the intake of a nutrient is inversely correlated

with the expression of the trait being analysed, since in these cases, the slope of the nutrient on the trait
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expression β1,i is negative, and the vector of slope a⃗ would lie in the second, third, or fourth quadrant of

the Cartesian plane, which is outside the defined region of the nutrient space.

Once θ is calculated, we can calculate the Euclidean distance d as:

d =
√
p⃗2A + p⃗2B − 2p⃗A · p⃗B cos(θ) (9)

The Law of Cosines (Heath 1956) formalizes the relationship between θ and d. Note, however, that

the Law of Cosines cannot be used to calculate d′ using the θ′ (see equation 5b) because θ′ does not

measure the true angle between the peaks in the performance landscape (see Results).

2.3.2 Data and statistical analyses

The data for the D. melanogaster study was obtained from Lee et al. (2008). The data for the Queensland

fruit fly B. tryoni study was obtained from Fanson et al. (2009). Briefly, both studies used nutritional

geometry (Simpson & Raubenheimer 2012) to investigate the effects of protein and carbohydrate intake

on lifespan, lifetime reproduction (total number of eggs laid), and reproductive rate (number of eggs laid

per day) (see Supplementary Methods at the end of this Chapter 2 for details).

Performance landscapes were plotted using the Tps() function of the ‘fields’ package (Nychka et al.

2017). To obtain the point estimates for the performance landscapes in the absolute scale, we extracted

the coordinates of the maximum fitted values of the function Tps. To obtain the slopes of P and C intake

on lifespan, lifetime reproductive success, and reproductive rate, we used the function MCMCglmm()

from the ‘MCMC‘ package (Hadfield 2010), with uninformative prior nu = 0.2 expected covariances

V = 1, 400,000 iterations, with burn-in of 2000 and thinning parameter of 25 [as in (Bunning et al.

2015)]. For the comparison between the two species, we standardized the P and C intakes, as well as

the trait values by mean-subtraction as described in the main text (‘Results’ section of this chapter,

equations (13) and (14)). To estimate the optimum region in the standardized performance landscapes,

we used a support-vector machine (SVM) regression model with the ‘caret’ package (Kuhn 2017), from

which we could select the coordinates of the simulated P and C intakes that resulted in the predictions

that matched with the optimum region in the performance landscapes (see Supplementary Methods of

this chapter for details). All analyses were performed in R version 3.4.0 (Team 2017).
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2.4 Results

2.4.1 The Angular Method overestimates the true degree of separation be-

tween peaks in the performance landscape

To illustrate the advantage of the Vector of Position Approach relative to the Angular method, we

analysed and compared data from (Lee et al. 2008) with both methods. This study explored nutri-

tional trade-offs between lifespan, lifetime reproductive success (LRS), and reproductive rate (RR) in D.

melanogaster. Visual inspection of the performance landscapes indicates that lifespan is maximised in

diets with low P:C ratio of ∼1:16, LRS is maximised at a P:C ∼1:4, whereas RR is maximised at P:C

∼1:2 (Figure 2.2).

Table 2.1: Matrix of estimates of the angles between vectors of positions (θ) and slopes (θ′) (in degrees).
Note that nutritional trade-offs between lifespan and reproduction in D. melanogaster (data from Lee et
al. 2008) as calculated using the Angular Method (θ′) (above the diagonal of the matrix) and the Vector
of Position Approach (θ) (below the diagonal of the matrix). Estimates (95% credible intervals) are given
in degrees. LRS: lifetime reproductive success. RR: reproductive rate.

Lifespan LRS RR
Lifespan – θ′ = 15.082 (12.022, 18.123) θ′ = 63.210 (59.876, 66.438)

LRS θ = 14.073 (10.857, 19.889) – θ′ = 48.112 (43.945, 52.149)
RR θ = 26.390 (25.471, 27.385) θ = 12.322 (7.496, 14.613) –

Using the Angular Method, we estimated that a⃗RR and a⃗lifespan were separated by an angle θ′ =

63.21◦ (95% CI: 59.87◦, 66.43◦). a⃗lifespan and a⃗LRS were separated by θ′ = 15.08◦ (95% CI: 12.02◦,

18.12◦) and the vectors a⃗LRS and a⃗RR were separated by θ′ = 48.11◦ (95% CI: 43.94◦, 52.14◦). These

results confirm the expectation of a greater potential for a nutritional trade-off between lifespan–RR

compared with lifespan–LRS and LRS–RR (Lee et al. 2008). The estimates of d′ between lifespan–RR

was 294.89 mg, between lifespan–LRS was 155.66 mg, and between LRS–RR was 261.91 mg.

Using the Vector of Positions Approach, we determined the coordinates of the vectors of position

p⃗lifespan : ⟨0, 176.717⟩, p⃗LRS : ⟨75.001, 299.174⟩, and p⃗RR : ⟨141.198, 284.488⟩, which corresponds, as

expected, to a P:C ratio of ∼1:16, ∼1:4, and ∼1:2 as described above and in Lee et al. (2008) (Figure

2.2a-c), and calculated the angles θ that separated the vectors p⃗i (Table 2.1). The separation between

the nutritional peaks of lifespan and RR was greater than the nutritional peaks of lifespan and LRS, or

LRS and RR. These estimates of θ were confirmed using values from a standard table for θ based on the

most commonly used P:C ratios in nutritional geometry studies on Drosophila (Table 2.2).

We then calculated d according to p⃗i and θ. As expected, the estimates of d were longer between

36



0 50 100 150

50

100

150

200

250

300

X

Y

5

10

15

20

300

250

200

150

100

50

0     50    100  150 0 50 100 150

50

100

150

200

250

300

X

Y

0

20

40

60

80

100

300

250

200

150

100

50

0     50    100  150

0 50 100 150

50

100

150

200

250

300

X

Y

2

4

6

8

300

250

200

150

100

50

0     50    100  150

Lifespan Lifetime reproductive success (LRS)

Reproductive rate (RR)

D
ai

ly
 c

ar
bo

hy
dr

at
e 

in
ta

ke
 (𝜇
g)

Daily protein intake (𝜇g)Daily protein intake (𝜇g)

Daily protein intake (𝜇g)

A B

C

1:16 1:4

1:2

D. melanogaster D. melanogaster

D. melanogaster

D
ai

ly
 c

ar
bo

hy
dr

at
e 

in
ta

ke
 (𝜇
g)

Days Eggs

Eggs 
per day

D

Protein intake slope

Carbohydrate 
intake
slope

𝑎%&

𝑎%'

Protein intake slope

Carbohydrate 
Intake
slope

𝑎%&

𝑎%'

E

Protein intake
(x-axis)

Fat intake
(z-axis)

𝜃)

F

Vector Projections

Vector Projections

Vector of Position Approach 
in high-dimensional data
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females (data from Lee et al. 2008). (d-e) Vector projection to calculate the component of the unit
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âA. E) Example of a small component of âB into âA. (f) Schematic representation of a 3D vector in a
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p⃗lifespan and p⃗RR (d = 205.02 mg), compared to between p⃗lifespan and p⃗LRS (d = 154.25 mg) and p⃗RR

and p⃗LRS (d = 94.90 mg), thereby indicating a larger separation between the peaks of lifespan and RR.

Together, these results confirm the nutritional trade-offs between lifespan, LRS, and RR observed by Lee

et al. (2008) [and more recently by Reddiex et al. (2013) and Jensen et al. (2015)], and suggest that

nutritional trade-offs are stronger between female RR and lifespan.

The comparison between the two approaches shows that the Angular Method can lead to misleading
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Table 2.2: Protein-to-carbohydrate (P:C) ratios of the valleys in performance landscapes. Note that
estimated P:C ratios of the valleys in the landscapes for lifespan, lifetime reproductive success (LRS),
and reproductive rate (RR) as calculated by the Vector of Position Approach (data from Lee et al. (2008)).
Data shown as Estimate and 95% credible intervals (CI).

Life-history trait Estimate Lower CI Upper CI
Lifespan 1:1.87 1:1.57 1:2.17

LRS 1:13.64 1:12.41 1:14.86
RR 1:13.64 1:13.55 1:13.72

results and misinterpretation of the distance between peaks in the performance landscape. For instance,

our results reveal a 2-fold overestimation of the angle separating the peaks of lifespan and RR when

calculating θ′ compared to θ, and a 4-fold overestimation of the angle separating peaks of RR and LRS.

Such overestimation of the distance between peaks could lead to an erroneous interpretation of the P:C

ratios diets upon which the peaks are maximised because a separation of 63.21° that was given for the

vectors of lifespan and RR is equivalent to a separation between P:C ratios of 2:1 (high-protein) and 0:1

(pure sugar), which are considerably more distant in the performance landscape than the true P:C ratios

of 1:16 to 1:2 that maximised lifespan and reproductive rates (see Table 2 for angles between commonly

used P:C ratios). Furthermore, the inaccuracy in the estimation to an overestimation of the Euclidean

distance between peaks was of approximately 30.4% for LS and RR, approximately 1% for LS and LRS,

and 64.7% for LRS and RR.

2.4.2 Vector projections can be used to extract information from vectors of

slope

Because of the way in which the coordinates of the vectors of slopes a⃗i are obtained, θ′ contains important

information on whether the slopes of either P or C intakes, or both, have a positive, negative, or zero effect

on the expression of the trait. Using the concepts of vector projection, the a⃗i can be used to quantify

the influence of each nutrient on the expression of traits. For instance, consider the scalar projection

(“component”) of the unit vector ˆ⃗aB onto the unit vector ˆ⃗aA (Figure 2.2d-e):

compˆ⃗aA

ˆ⃗aB =
ˆ⃗aA · ˆ⃗aB
∥ˆ⃗aA∥

(10)

where ˆ⃗ai is the unit vector with the same direction as a⃗i, defined as:

ˆ⃗ai =
a⃗i

∥a⃗i∥
(11)
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The scalar projection compˆ⃗aA

ˆ⃗aB measures how much of the vector ˆ⃗aB is present in vector ˆ⃗aA (hence

the saying “component of” ˆ⃗aB onto ˆ⃗aA). Large values of the compˆ⃗aA

ˆ⃗aB indicate that ˆ⃗aB shares a large

component in the direction of ˆ⃗aA, and there exists only a weak potential for a nutritional trade-off

between traits (e.g., Figure 2.2d). Conversely, small values of compˆ⃗aA

ˆ⃗aB indicate that ˆ⃗aB shares only

a small component in the direction of ˆ⃗aA, and therefore there exists a strong potential for a nutritional

trade-off between traits A and B (e.g., Figure 2.2e).

We applied the Vector of Position Approach to calculate the scalar projection of the unit vector

ˆ⃗alifespan onto the unit vectors ˆ⃗aLRS and ˆ⃗aRR on the D. melanogaster data (Lee et al. 2008). The scalar

projection of a⃗lifespan measures the magnitude of the vector ˆ⃗alifespan in the direction of ˆ⃗aRR and ˆ⃗aLRS; the

larger the scalar projection, the greater the component of ˆ⃗alifespan in the direction of ˆ⃗aRR and ˆ⃗aLRS, and

thus the lower the potential for a nutritional trade-off between these traits. The results confirmed the

stronger nutritional trade-off between lifespan and RR as the scalar projection between the unit vectors

ˆ⃗alifespan and ˆ⃗aRR was 0.053 (95% CI: 0.047, 0.058), whereas the scalar projection between unit vectors

ˆ⃗alifespan and ˆ⃗aLRS and ˆ⃗aLRS and ˆ⃗aRR were 1.716 (95% CI: 1.632, 1.799) and 10.039 (95% CI: 9.188, 10.899),

respectively.

Finally, we investigated what nutrient was likely to have the most influence in the trade-off between

lifespan and reproductive rate. To do this, we inspected the direction of a⃗lifespan and a⃗RR on the Cartesian

plane. While a⃗RR lies in the first quadrant with positive slopes for both P and C intake on RR, a⃗lifespan

is located in the second quadrant, with a negative slope of P intake and a positive slope of C intake on

lifespan. Thus, the nutritional trade-off between lifespan and RR is likely driven by the opposite effects

of P intake on lifespan and reproduction. Although these results demonstrate the Vector of Positions

approach applied to two nutrients, the Vector of Positions approach can, in theory, be applied to n

nutrients (see Figure 2.4 and supplementary files of this chapter).

2.4.3 The Vector of Position Approach can be used for comparing species

In addition to comparing different traits between classes of individuals in the same species (e.g. males

and females), our approach can be useful to compare traits or trade-offs across species. In these cases,

the angle that separates the vectors of P and C intake is not sufficient because we are now interested

in both nutrient intake as well as the expression level of the trait between species. For simplicity, let’s

return to our 2D-vectors of P and C, and this time, we shall include the 3rd dimension to the vectors

that describe the expression level of the trait (Figure 2.3a). This step is needed because the trait can be
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maximised in the same location in the nutrient space, but with different expression levels (i.e. difference

may be on the z-axis). Consider the vector of positions p⃗sp i as in (6). To work with different species, it

is necessary to standardize the coordinates of the vector so that the vectors p⃗i are now defined as:

ˆ⃗psp1 =
(
P ∗

sp1, C
∗
sp1, w

∗
sp1

)
(13a)

and

ˆ⃗psp2 =
(
P ∗

sp2, C
∗
sp2, w

∗
sp2

)
(13b)

where

P̂sp1 =
P

P̄
, Ĉsp1 =

C

C̄
, ŵsp1 =

w

w̄
(14)

P̂ , Ĉ, ŵ are the standardized values of the protein (P) and carbohydrate (C) intake, and the trait of

interest (w). Having defined the standardized position vectors ˆ⃗psp1 and ˆ⃗psp2, we can calculate the angle

θ that separates these two vectors. Here, θ also includes the differences in the expression of traits (on

the z-axis), which, in biological terms, can be interpreted as the difference in the maximum standardized

expression of the trait of interest when species are at the peak in the performance landscape. It is

also possible to calculate the directional angles α, β, γ separating the vector and the x-, y-, and z-axes,

respectively, which provides information regarding the differences in standardized P and C intake, as well

as trait expression between species (Figure 2.3b). α, β, γ are calculated as follows:

α = cos−1

 P ∗
sp1√

P ∗2
sp1 + C∗2

sp1 + w∗2
sp1

 (15a)

β = cos−1

 C∗
sp1√

P ∗2
sp1 + C∗2

sp1 + w∗2
sp1

 (15b)

γ = cos−1

 w∗
sp1√

P ∗2
sp1 + C∗2

sp1 + w∗2
sp1

 (15c)

If the peaks are located in the same region of the standardized performance landscapes, the angles α

and β are likely to be similar between species 1 and 2, as the vectors ⃗̂pspi
point in the same direction in

space (Figure 2.3b). This property could be used to infer the mechanisms underlying the species-specific

40



effects of nutrition on trait expression. For example, consider the x-axis as being P intake. If the angles

αsp1 and αsp2 measure the distance between vectors and the x-axis, the angles αsp1 and αsp2 indicate

how strongly the standardized optimal P intake influences the expression of traits for each species. If the

difference between αsp1 and αsp2 is large, the optimal standardized P intake between species are located

far from each other, and thus P intake is likely a key modulator of the differences in trait expression

between the species.

Table 2.3: Comparative application of the Vector of Positions Approach. Note that comparisons be-
tween the standardized performance landscapes of reproductive rate between two fruit fly species: D.
melanogaster (data Lee et al. 2008) and B. tryoni (data from Fanson et al. (2009)). Estimates and their
95% credible intervals of the direction angles α, β, and γ for the vectors a⃗Drosophila and a⃗Bactrocera. All
angles are given in degrees.

Species Estimate Lower CI Upper CI
Angle α
Drosophila 50.02053 48.22801 52.16193
Bactrocera 29.34615 25.38286 38.79428
Angle β
Drosophila 57.76124 56.38002 59.38668
Bactrocera 67.18635 66.7606 69.50664
Angle γ
Drosophila 56.62615 55.7261 56.98359
Bactrocera 72.55797 58.69577 80.35599

To illustrate this approach, we compared the nutritional requirements for the reproductive rate of

two fruit fly species: D. melanogaster (Lee et al. 2008) and B. tryoni (Fanson et al. 2009) (Figure 2.3c-

e). We standardized the performance landscapes of the two species according to equation (14). Using

the previously described machine learning algorithm (see Statistical analyses section in this chapter),

we estimated the region of the standardized peak in reproductive rate in the standardized performance

landscape for both species (Figure 2.3c-e), and used these values as the coordinates of the standardized

vectors of position p⃗Drosophila and p⃗Bactrocera according to (13). We then calculated the average, the

minimum, and maximum values of the θ angle separating p⃗Drosophila and p⃗Bactrocera. On average, we

found that θ = 21.28◦, with minimum value of 11.30◦ and maximum value of 29.88◦, suggesting a

relatively large degree of separation between the expression of the trait between the two species.

We then investigated this separation in terms of P and C intake and expression level of the trait by

calculating the angle α, β, and γ between the vectors p⃗Drosophila and p⃗Bactrocera and the standardized x-,

y-, and z-axes, respectively (Table 2.3). We found a marked difference in the angles α and γ (ca. 21◦

and 16◦, respectively), whereas there was a small difference for the angle β (ca. 9◦), suggesting that the

difference in nutritional requirements for the reproductive rate of females of the two species is mainly
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Figure 2.3: Between-species comparison. (a) Schematic representation of a 3D vector in a perfor-
mance landscape of protein, carbohydrate, and trait expression. (b) Directional angles α, β, γ. Top panel:
figure oriented according to the z-axis (perpendicular to the plane of the paper). Bottom panel: figure
oriented according to the y-axis (perpendicular to the plane of the paper). (c) Performance landscapes
of reproductive rate (RR) of B. tryoni females [data from Fanson et al. (2009)]. The dashed line high-
lights the P:C ratio that maximises the trait. (d-e) Mean-standardized performance landscapes of the
reproductive rate of D. D. melanogaster [data from Lee et al. (2008) and B. tryoni from Fanson et al.
(2009)]. Blue regions highlight the region estimated as the peak in the performance landscape from the
SVM machine learning model.

driven by differences in species-specific standardized P intake and expression level of the trait.
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2.5 Discussion

We introduced a vector-based approach to quantify the strength of nutritional trade-offs in nutritional

geometry data and compare them across studies. Previous methods involved visual inspection of nutrient

spaces or calculations of vectors of slopes that can lead to misinterpretations. Our approach strictly

considers vectors of slopes in the real positive region of the nutrient space and calculates the true sepa-

ration between nutritional peaks and the strength of nutritional trade-offs, which facilitates quantitative

analyses of nutritional trade-offs in a broad range of studies, including complex experimental designs.

Our approach is not constrained to two dimensions but can be generalized to high-dimension nutri-

tional data. Such generalization is key when dealing with three or more nutrients (or any other relevant

food components), in which data visualisation can be difficult (if possible), and conducting analysis with

the Angular Method with negative vector coordinates can lead to misleading results. Although initially

developed for analyses with two nutrients (e.g., typically the macronutrients carbohydrates and protein)

(Simpson & Raubenheimer 1993), nutritional geometry studies are increasingly utilising high-dimension

nutrient spaces, as illustrated by recent data on the importance of carbohydrates, protein, and fat in

reproduction, lifespan, and other aspects of animal and human health (Hewson-Hughes et al. 2011, 2012,

Solon-Biet et al. 2014, 2015, Gosby et al. 2014). Studies on insects have also begun to look at the effects

of individual amino acids (rather than full proteins) on the expression of fitness traits (e.g., Grandison

et al. 2009, Arganda et al. 2017, Piper et al. 2017). Future systematic quantifications of the effects of

individual amino acids in foods on physiology and behaviour may therefore require analyses in nutri-

ent spaces with as many as 22 dimensions, for which visual inspections of nutrient spaces or inaccurate

estimates of distance between performance peaks will not suffice. Many other studies have started to

consider other food components such as individual fatty acids (Arien et al. 2015), mineral salts (Simpson

et al. 2006), or even water (Fanson et al. 2009). Our approach therefore opens new opportunities to

quantify complex nutritional trade-offs and provides the first quantitative method to quantify nutritional

trade-offs in high-dimensional nutritional data.

The Vector of Positions Approach also provides a quantitative framework through which the nutri-

tional effects of the expression of the same trait can be compared within species and between species.

By reanalysing two published datasets in fruit flies, we quantified species-specific differences in female

reproductive rate and identified that this difference is driven by differences in species-specific standard-

ized protein intake and expression level of the trait. A potential explanation for this result is that Lee
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et al. (2008) used mated females of D. melanogaster, while Fanson et al. (2009) used unmated females

of B. tryoni. In D. melanogaster, mating increases protein intake and egg production rate in response

to seminal fluid proteins transferred in the male ejaculate (Yapici et al. 2008, Ribeiro & Dickson 2010,

Gligorov et al. 2013, Perry et al. 2013, Walker et al. 2015). Thus, differences in experimental design

and in the biological state of the organisms used in the study could underpin the effects found between

species, calling for future studies using standardised protocols as well.

Comparative studies of nutritional traits across species can yield fundamental insights into the role

of nutrition on the evolution of physiological and behavioural strategies as well as important ecological

processes (Behmer & Joern 2008). In primates, comparative research shows that nutrient availability in

ancestral diets has shaped appetites and rules of compromises that greatly vary among species (Felton

et al. 2009, Rothman et al. 2011, Johnson et al. 2013), yielding key insights for our understanding of the

human obesity epidemic (Simpson & Raubenheimer 2014). Comparing species based on their nutritional

properties is a powerful means to study the role of nutrition in social evolution (Lihoreau et al. 2015,

2017), for instance to explain social transitions from populations of isolated animals to aggregations

of several million individuals (Simpson et al. 2006). All these comparisons are currently made by eye.

Future developments of quantitative approaches such as the one proposed here therefore yield considerable

promise to understand the role of nutrition in the evolution of animal physiology, behaviour, and ecology.

2.6 Supplementary Information

2.6.1 Supplementary Figures and Tables
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Table 2.4: Convergence and robustness of the Bayesian models to different V and nu parameters. The
low marginal standard deviations of the posterior mean indicate that the models converged and were
robust across all variations of the parameters

Table 2.5: Table with the angles θ separating the most typically used protein to carbohydrate (P:C) ratios
in studies using nutritional geometry in Drosophila, as calculated using the Vector of Position Approach.
All angles are given in degrees.

P:C ratio (0:1) (1:16) (1:8) (1:4) (1:2) (1:1) (2:1) (1:0)

(0:1) -
(1:16) 3.548 -
(1:8) 7.125 3.548 -
(1:4) 14.036 10.459 6.911 -
(1:2) 26.565 22.988 19.440 12.528 -
(1:1) 45.000 41.423 37.875 30.963 18.435 -
(2:1) 63.439 59.858 56.309 49.398 36.870 18.435 -
(1:0) 90.000 86.423 82.875 75.963 63.439 45.000 26.565 -
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Figure 2.4: Analyses in high-dimension nutrient spaces. (a-c) 3D plots showing the simulated relationship
between protein, carbohydrate and fat intake (x− y− and z− axes, respectively) on the expression of
traits A (panel A), B (panel B) and C (panel C) (in units of trait expression), represented as the colour
variable. Black circles show the estimates of region of the peak in the performance landscape from the
SVM machine learning model.
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2.6.2 Appendix: Text S1 and Text S2 with examples of R code.
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Text	S1	–	Comparison	between	the	Angular	Method	and	the	Vector	of	
Positions	Approach	in	a	2-dimensional	nutrient	space	

Loading	the	packages	
First,	let’s	load	the	packages	required	for	the	data	manipulation	and	analyses.	Please	use	
‘install.packages(	)’	if	you	don’t	have	the	packages	installed.	

library(ggplot2)	
library(dplyr)	
library(MCMCglmm) # for the Bayesian regression	
library(fields) # for the surface plots and the thin-plate spline (Tps) funct
ion	
library(tidyr)	

Data	
For	2-dimensional	data,	we	used	two	published	data	sets.	The	first	data	set	is	from	the	
study	of	Lee	et	al	2008	in	Drosophila	melanogaster,	published	in	PNAS.	The	second	data	set	
is	from	a	study	by	Fanson	et	al	2009	in	Bactrocera	tryoni,	published	in	Ageing	Cell	[^1].	
[^1]:	The	authors	ob	both	studies	have	kindly	agreed	to	share	their	data.	

We	will	work	in	two	parts.	In	the	first	part	we	will	use	Lee	et	al	data	to	compare	nutritional	
trade-offs	of	different	traits,	using	both	the	Angular	method	and	the	Vector	of	Positions	
Approach.	

Loading	Lee	et	al	data	

First	we	load	and	clean	data.	

leedt <- read.csv("LEetetal-DataSet-survival.csv", na.strings = ".", header = 
TRUE, stringsAsFactors = TRUE, strip.white = TRUE)	
leedt$Ratio <- gsub("[\\(\\)]", "", leedt$Ratio) ## Removing the brackets aro
und the Ratio ###	
leedt <-na.omit(leedt) ## removing NA's	

and	prepare	the	data	frame	for	the	Bayesian	regressions	

angle.data1 <- data.frame(P = leedt$proteinday, C = leedt$carboday, lifespan 
= leedt$lifespan, lifetimeegg = leedt$lifetimeegg, dailyeggs = leedt$dailyegg
s)	

Bayesian	models	(the	Angular	Method)	
Once	with	the	data	formatted,	we	can	start	implementing	the	Angular	Method	(see	main	
text).	Following	the	approach	by	Bunning	et	al	2015,	we	use	Bayesian	Regressions	to	obtain	
slopes	of	Protein	and	Carbohydrate	intake	onto	the	expression	of	the	life-hisotry	trait.	Note	
that	this	cunk	of	code	can	take	some	time	to	complete.	Let’s	first	set	an	informative	prior	

prior<-list(R=list(V=1,nu=0.02))	
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and	then	the	models	

angle.model.lifespan <-MCMCglmm(lifespan ~ P + C - 1,data=angle.data1, prior 
= prior, nitt=400000,burnin=2000,thin=25)	

angle.model.lifetimeegg <-MCMCglmm(lifetimeegg ~ P + C - 1,data=angle.data1, 
prior = prior, nitt=400000,burnin=2000,thin=25)	

angle.model.dailyeggs <-MCMCglmm(dailyeggs ~ P + C -1,data=angle.data1, prior 
= prior, nitt=400000,burnin=2000,thin=25)	

We	have	tuned	the	model	based	on	diagnostic	plots	such	as	
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Calculating	the	angle	𝜽’	
According	to	Bunning	et	al	2015,	let’s	calculate	the	angle	𝜃’	that	separate	the	vectors	of	
slope	for	the	life	history	traits.	

Let’s	start	with	the	angle	between	lifespan	(LS)	and	reproductive	rate	(RR)	

angles_LS_RR <-numeric(15200)	
for(i in 1:15200){	
  b.lifespan <- angle.model.lifespan$Sol[i,1:2]	
  b.dailyeggs <- angle.model.dailyeggs$Sol[i,1:2] # creates a vector of beta 
estimates for each variable for each row of the posterior distribution (and t
he loop runs through all rows)	
  angles_LS_RR[i]<- acos((t(b.dailyeggs) %*% b.lifespan) / ((sqrt(t(b.dailyeg
gs) %*% b.dailyeggs)) * (sqrt(t(b.lifespan) %*% b.lifespan)))) * (180/pi) }	
summary(angles_LS_RR)	

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 	
##   44.77   59.83   63.21   63.07   66.41   79.88	

And	the	same	for	lifetime	reproductive	success	(LRS)	

angles_LRS_RR <-numeric(15200)	
for(i in 1:15200){	

53



Trade-offs in life-history traits  	
	

7	

  b.lifetimeegg <- angle.model.lifetimeegg$Sol[i,1:2]	
  b.dailyeggs <- angle.model.dailyeggs$Sol[i,1:2]	
  angles_LRS_RR[i]<- acos((t(b.dailyeggs) %*% b.lifetimeegg) / ((sqrt(t(b.dai
lyeggs) %*% b.dailyeggs)) * (sqrt(t(b.lifetimeegg) %*% b.lifetimeegg)))) * (1
80/pi) }	
summary(angles_LRS_RR)	

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 	
##   20.30   43.73   48.02   47.91   52.21   69.17	

and	finally,	

angles_LS_LRS <-numeric(15200)	
for(i in 1:15200){	
  b.lifetimeegg <- angle.model.lifetimeegg$Sol[i,1:2]	
  b.lifespan <- angle.model.lifespan$Sol[i,1:2]	
  angles_LS_LRS[i]<- acos((t(b.lifespan) %*% b.lifetimeegg) / ((sqrt(t(b.life
span) %*% b.lifespan)) * (sqrt(t(b.lifetimeegg) %*% b.lifetimeegg)))) * (180/
pi) }	
summary(angles_LS_LRS)	

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 	
##   0.213  12.060  15.047  15.161  18.126  31.996	

Vector	of	Positions	Approach	
Let’s	use	the	Vector	of	Positions	Approach	to	calculate	the	angles.	We	first	define	a	
function	to	estimate	the	optimum	region	based	on	the	thin-plate	spline	extrapolation	

intervalpoint <- function(data, x1, x2, y, level = 0.95, lambda = 0.01){	
  dat <- na.omit(data)	
  out <-  Tps(cbind(dat[,x1], dat[,x2]), dat[,y], lambda = lambda)	
  maxima <- with(out, subset(data.frame(fitted.values, x), fitted.values == m
ax(fitted.values)))	
  	
  z_critical <- qnorm(level)	
  pop_stdev <- sd(out$residuals)	
  sample_size <- length(dat[,x1])	
  margin_of_error <- z_critical * (pop_stdev / sqrt(sample_size))	
  	
  if(maxima$X1/maxima$X2 >= 1) {	
    sample_mean <- mean(maxima$X1/maxima$X2)	
    confidence_interval  <- data.frame(mean = sample_mean, lower = sample_mea
n - margin_of_error,  	
                                       upper = sample_mean + margin_of_error)	
    message("Result given as Protein-to-Carbohydrate ratio")	
    return(confidence_interval)	
  } else if(maxima$X1 == round(0)){	
    maxima$X1 <- 1	
    sample_mean <- mean(maxima$X2/maxima$X1)	
    confidence_interval  <- data.frame(protein = 0, mean = sample_mean, lower 
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= sample_mean - margin_of_error,  	
                                       upper = sample_mean + margin_of_error)	
    message("Result given as Carbohydrate-to-protein ratio and estimate of pr
otein intake is approximated to 0")	
    return(confidence_interval)	
  } else {	
    sample_mean <- mean(maxima$X2/maxima$X1) 	
    confidence_interval  <- data.frame(mean = sample_mean, lower = sample_mea
n - margin_of_error,  	
                                       upper = sample_mean + margin_of_error)	
    message("Result given as Carbohydrate-to-protein ratio")	
    return(confidence_interval)	
    	
  }	
}	

We	then	find	the	point	estimates	according	to	the	proposed	approach,	and	create	the	
vectors	representing	the	performance	landscape	

point.lifespan <- as.data.frame(intervalpoint(leedt, x1 = "proteinday", x2 = 
"carboday", y = "lifespan"))	
	
point.dailyeggs <- as.data.frame(intervalpoint(leedt, x1 = "proteinday", x2 = 
"carboday", y = "dailyeggs"))	
	
point.lifetimeegg <- as.data.frame(intervalpoint(leedt, x1 = "proteinday", x2 
= "carboday", y = "lifetimeegg"))	

vector.lifespan <- c(point.lifespan$protein, point.lifespan$mean)	
vector.dailyeggs <- c(1, point.dailyeggs$mean)	
vector.LRS <- c(1, point.lifetimeegg$mean)	
	
	
lower.lifespan <- c(point.lifespan$protein, point.lifespan$upper)	
lower.dailyeggs <- c(1, point.dailyeggs$upper)	
lower.LRS <- c(1, point.lifetimeegg$upper)	
	
	
upper.lifespan <-  c(point.lifespan$protein, point.lifespan$lower)	
upper.dailyeggs <- c(1, point.dailyeggs$lower)	
upper.LRS <- c(1, point.lifetimeegg$lower)	

Calculating	the	angle	𝜽	

We	can	then	calculate	the	angle	𝜃	and	its	lower	and	upper	confidence	bound	for	all	life-
history	traits	

Let’s	start	with	the	difference	between	lifespan	and	RR	
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position.angle <- acos((t(vector.dailyeggs) %*% vector.lifespan) / ((sqrt(t(v
ector.dailyeggs ) %*% vector.dailyeggs )) * (sqrt(t(vector.lifespan) %*% vect
or.lifespan)))) * (180/pi)	
lower.angle <- acos((t(lower.dailyeggs ) %*% lower.lifespan) / ((sqrt(t(lower
.dailyeggs ) %*% lower.dailyeggs )) * (sqrt(t(lower.lifespan) %*% lower.lifes
pan)))) * (180/pi)	
upper.angle <- acos((t(upper.dailyeggs ) %*% upper.lifespan) / ((sqrt(t(upper
.dailyeggs ) %*% upper.dailyeggs )) * (sqrt(t(upper.lifespan) %*% upper.lifes
pan)))) * (180/pi)	
position.final <- data.frame(theta = position.angle, upper.margin = upper.ang
le, lower.margin = lower.angle)	
position.final	

##      theta upper.margin lower.margin	
## 1 26.39629     27.38559     25.47133	

The	same	for	lifespan	and	LRS	

position.angle2 <- acos((t(vector.LRS) %*% vector.lifespan) / ((sqrt(t(vector
.LRS ) %*% vector.LRS )) * (sqrt(t(vector.lifespan) %*% vector.lifespan)))) * 
(180/pi)	
	
lower.angle2 <- acos((t(lower.LRS) %*% lower.lifespan) / ((sqrt(t(lower.LRS) 
%*% lower.LRS)) * (sqrt(t(lower.lifespan) %*% lower.lifespan)))) * (180/pi)	
	
upper.angle2 <- acos((t(upper.LRS) %*% upper.lifespan) / ((sqrt(t(upper.LRS) 
%*% upper.LRS)) * (sqrt(t(upper.lifespan) %*% upper.lifespan)))) * (180/pi)	
	
position.final2 <- data.frame(theta = position.angle2, upper.margin = upper.a
ngle2, lower.margin = lower.angle2)	
position.final2	

##      theta upper.margin lower.margin	
## 1 14.07379     19.88953     10.85754	

anf	finally,	for	LRS	and	RR	

position.angle3 <- acos((t(vector.LRS) %*% vector.dailyeggs) / ((sqrt(t(vecto
r.LRS ) %*% vector.LRS )) * (sqrt(t(vector.dailyeggs) %*% vector.dailyeggs)))
) * (180/pi)	
	
lower.angle3 <- acos((t(lower.LRS) %*% lower.dailyeggs) / ((sqrt(t(lower.LRS) 
%*% lower.LRS)) * (sqrt(t(lower.dailyeggs) %*% lower.dailyeggs)))) * (180/pi)	
	
upper.angle3 <- acos((t(upper.LRS) %*% upper.dailyeggs) / ((sqrt(t(upper.LRS) 
%*% upper.LRS)) * (sqrt(t(upper.dailyeggs) %*% upper.dailyeggs)))) * (180/pi)	
	
position.final3 <- data.frame(theta = position.angle3, upper.margin = upper.a
ngle3, lower.margin = lower.angle3)	
position.final3	
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##     theta upper.margin lower.margin	
## 1 12.3225     7.496069     14.61379	

Calculating	the	Euclidean	distance	
We	can	then	apply	the	Law	of	Cosines	(see	main	text)	to	calculate	the	Euclidean	distance	
between	the	traits.	To	do	that,	we	extract	the	point	estimate	as	follows:	

### Extracting the absolute values for the point estimate of Lifespan###	
out.surface_LS <- Tps(cbind(leedt$proteinday, leedt$carboday), leedt$lifespan
, lambda = 0.01)	
maxima.LS <- with(out.surface_LS, subset(data.frame(fitted.values, x), fitted
.values == max(fitted.values)))	
lifespan.scaled <- c(maxima.LS$X1, maxima.LS$X2)	
	
### Extracting the absolute values for the point estimate of RR###	
out.surface_RR <- Tps(cbind(leedt$proteinday, leedt$carboday), leedt$dailyegg
s, lambda = 0.01)	
maxima <- with(out.surface_RR , subset(data.frame(fitted.values, x), fitted.v
alues == max(fitted.values)))	
dailyeggs.scaled <- c(maxima$X1, maxima$X2)	
	
### Extracting the absolute values for the point estimate of LRS###	
out.surface_LRS <- Tps(cbind(leedt$proteinday, leedt$carboday), leedt$lifetim
eegg, lambda = 0.01)	
maxima_LRS <- with(out.surface_LRS, subset(data.frame(fitted.values, x), fitt
ed.values == max(fitted.values)))	
lifetimeegg.scaled <- c(maxima_LRS$X1, maxima_LRS$X2)	

We	can	then	use	these	vectors	to	calculate	the	Euclidean	distance	d’	(Angular	Method)	and	
d	(Vector	of	Positions	approach).	Let’s	start	with	the	Angular	Method	

Euclidean	distance	using	the	Angular	Method	

Applying	the	Law	of	Cosines,	we	have	

# LS- RR	
distance.d.tprime1 <- sqrt((t(lifespan.scaled) %*% lifespan.scaled) + (t(dail
yeggs.scaled) %*% dailyeggs.scaled) - (2 * (t(lifespan.scaled) %*% dailyeggs.
scaled) * cos(median(angles_LS_RR)*(pi/180))))	
# LS - LRS	
distance.d.tprime2 <- sqrt((t(lifespan.scaled) %*% lifespan.scaled) + (t(life
timeegg.scaled) %*% lifetimeegg.scaled) - (2 * (t(lifespan.scaled) %*% lifeti
meegg.scaled) * cos(median(angles_LS_LRS)*(pi/180))))	
# LRS-RR	
distance.d.tprime3 <- sqrt((t(lifetimeegg.scaled) %*% lifetimeegg.scaled) + (
t(dailyeggs.scaled) %*% dailyeggs.scaled) - (2 * (t(lifetimeegg.scaled) %*% d
ailyeggs.scaled) * cos(median(angles_LRS_RR)*(pi/180))))	
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Euclidean	distance	using	the	Vector	of	Positions	approach	

Using	the	Law	of	Cosines,	we	have	

# LS- RR	
distance.d.theta1 <- sqrt((t(lifespan.scaled) %*% lifespan.scaled) + (t(daily
eggs.scaled) %*% dailyeggs.scaled) - (2 * (t(lifespan.scaled) %*% dailyeggs.s
caled) * cos((position.final$theta*(pi/180))))) 	
	
# LS - LRS	
distance.d.theta2 <- sqrt((t(lifespan.scaled) %*% lifespan.scaled) + (t(lifet
imeegg.scaled) %*% lifetimeegg.scaled) - (2 * (t(lifespan.scaled) %*% lifetim
eegg.scaled) * cos((position.final2$theta*(pi/180))))) 	
	
# LRS-RR	
distance.d.theta3 <- sqrt((t(dailyeggs.scaled) %*% dailyeggs.scaled) + (t(lif
etimeegg.scaled) %*% lifetimeegg.scaled) - (2 * (t(dailyeggs.scaled) %*% life
timeegg.scaled) * cos((position.final3$theta*(pi/180))))) 	

Finally,	we	can	compare	the	estimates	of	the	two	methods	

# % overstimation of the Angular method	
perc.estimation1 <- data.frame(Percentage_difference = paste(round(100 - dist
ance.d.theta1/distance.d.tprime1 * 100, digits = 2), "%"))	
perc.estimation2 <- data.frame(Percentage_difference = paste(round(100 - dist
ance.d.theta2/distance.d.tprime2 * 100, digits = 2), "%"))	
perc.estimation3 <- data.frame(Percentage_difference = paste(round(100 - dist
ance.d.theta3/distance.d.tprime3 * 100, digits = 2), "%"))	
	
data.frame(perc.estimation1, perc.estimation2, perc.estimation3)	

##   Percentage_difference Percentage_difference.1 Percentage_difference.2	
## 1                30.4 %                  0.94 %                  63.6 %	

Vector	Projections	
The	Vector	of	Positions	approach	extends	the	use	of	the	Angular	Method	to	include	vector	
projections	to	estimate	the	strength	of	the	nutritional	trade-off	in	life-history	traits.	Let’s	
calculate	the	vector	projections	for	the	data	mentioned	above.	The	approach	will	be	similar	
to	the	Angular	method	described	above,	although	the	calculations	and	interpretations	are	
different	(refer	to	the	main	text).	To	do	this,	we	will	use	the	models	fitted	above	with	the	
Bayesian	regression:	angle.model.lifespan,	angle.model.dailyeggs,	
angle.model.lifetimeegg.	

Calculating	the	projections	of	lifespan	onto	RR	
scalingfactor_LS_RR <-c(numeric(15200))	
	
for(i in 1:15200){	
  vector.lifespan <- angle.model.lifespan$Sol[i,1:2]	
  unit.lifespan <- vector.lifespan/ (t(vector.lifespan) %*% vector.lifespan)	
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  vector.dailyeggs <- angle.model.dailyeggs$Sol[i,1:2]	
  unit.dailyeggs <- vector.dailyeggs/ (t(vector.dailyeggs) %*% vector.dailyeg
gs)	
  scalingfactor_LS_RR[i] <- (t(unit.dailyeggs) %*% unit.lifespan / (t(unit.da
ilyeggs) %*% unit.dailyeggs))}	
summary(scalingfactor_LS_RR)	

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 	
## 0.02210 0.04745 0.05327 0.05333 0.05910 0.08862	

Calculating	the	projections	of	lifespan	onto	LRS	
scalingfactor_LS_LRS <-c(numeric(15200))	
	
for(i in 1:15200){	
  vector.lifespan <- angle.model.lifespan$Sol[i,1:2]	
  unit.lifespan <- vector.lifespan/ (t(vector.lifespan) %*% vector.lifespan)	
  vector.lifetimeegg <- angle.model.lifetimeegg$Sol[i,1:2]	
  unit.lifetimeegg <- vector.lifetimeegg/ (t(vector.lifetimeegg) %*% vector.l
ifetimeegg)	
  scalingfactor_LS_LRS[i] <- (t(unit.lifetimeegg) %*% unit.lifespan / (t(unit
.lifetimeegg) %*% unit.lifetimeegg))  }	
summary(scalingfactor_LS_LRS)	

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 	
##   1.279   1.632   1.717   1.717   1.802   2.274	

Calculating	the	projections	of	LRS	onto	RR	
scalingfactor_RR_LRS <-c(numeric(15200))	
	
for(i in 1:15200){	
  vector.dailyeggs <- angle.model.dailyeggs$Sol[i,1:2]	
  unit.dailyeggs <- vector.dailyeggs/ (t(vector.dailyeggs) %*% vector.dailyeg
gs)	
  vector.lifetimeegg <- angle.model.lifetimeegg$Sol[i,1:2]	
  unit.lifetimeegg <- vector.lifetimeegg/ (t(vector.lifetimeegg) %*% vector.l
ifetimeegg)	
  scalingfactor_RR_LRS[i] <- (t(unit.lifetimeegg) %*% unit.dailyeggs / (t(uni
t.lifetimeegg) %*% unit.lifetimeegg)) }	
summary(scalingfactor_RR_LRS)	

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 	
##   4.977   9.177  10.041  10.034  10.898  14.277	

Comparative	studies	
As	mentioned	in	the	main	text	that	accompany	this	RMarkDown,	the	Vector	of	Positions	
allow	for	the	comparison	of	the	expression	of	life-history	traits	between	species.	In	this	
section,	we	will	compare	the	nutritional	differences	in	reproductive	rates	of	Drosophila	
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melanogaster	and	Bactrocera	tryoni	(aka	’Queensland	fruit	fly)	from	two	published	studies	
(see	Data	section	above).	

The	section	calculates	the	differences	in	the	reproductive	rate	of	these	two	species	in	the	
performance	landscape	using	machine	learning	models.	Let’s	first	load	the	required	
packages	for	this	analyses	(in	addition	to	those	loaded	in	the	previous	section)	

library(caret)	

Then	let’s	load	and	tide	up	Fanson	et	al	2009	data.	

Loading	and	cleaning	Fanson	et	al	data	
fansondt <- read.csv("Fansonetal2008AgeingCell-NoChoiceData.csv", strip.white 
= TRUE, stringsAsFactors = TRUE, header = TRUE)	
	
	
#adjusting the Ratio levels	
	
fansondt$Ratio <- ifelse(fansondt$Ratio == "0:01", "0:1",	
                         ifelse(fansondt$Ratio == "1:00", "1:0", 	
                                ifelse(fansondt$Ratio == "1:01", "1:1",	
                                       ifelse(fansondt$Ratio == "1:02", "1:2"
,	
                                              ifelse(fansondt$Ratio == "1:04"
, "1:4",	
                                                     ifelse(fansondt$Ratio == 
"1:08", "1:8", "1:16"))))))	
	
### adjusting the Food columns	
fansondt <- separate(fansondt, Food, into = c("Food", "unit"), sep = " ", rem
ove = TRUE)	
fansondt$Food <- as.integer(fansondt$Food)	
	
	
### Calculating the P and C intake of each observation	
fansondt$Ceaten <- ifelse(fansondt$Ratio == "0:1", fansondt$totaleaten*fanson
dt$Food,	
                          ifelse(fansondt$Ratio == "1:0", 0,	
                                 ifelse(fansondt$Ratio == "1:1", (fansondt$to
taleaten/2)*fansondt$Food,	
                                        ifelse(fansondt$Ratio == "1:2", (fans
ondt$totaleaten/3)*2*fansondt$Food,	
                                               ifelse(fansondt$Ratio == "1:4"
, (fansondt$totaleaten/5)*4*fansondt$Food,	
                                                      ifelse(fansondt$Ratio =
= "1:8",(fansondt$totaleaten/9)*8*fansondt$Food, (fansondt$totaleaten/17)*16*
fansondt$Food))))))	
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fansondt$Peaten <- (fansondt$totaleaten*fansondt$Food) - fansondt$Ceaten	
	
### Getting in mg of macronutrients	
fansondt$Ceaten <- fansondt$Ceaten/1000	
fansondt$Peaten <- fansondt$Peaten/1000	
	
### Cleaning the data	
fansondt <- subset(fansondt, Ceaten >= 0 & Peaten >= 0)	
fansondt$dailyeggs <- fansondt$eggs/fansondt$lifespan	

Standardising	the	data	
Because	we	are	working	with	two	species,	the	data	must	be	standardized	(refer	to	the	main	
text)	

## the standardizing function ##	
stdfunc <- function(x) x/mean(x, na.rm = TRUE)	
	
## standardizing the variable 	
leedt[c(5:6,9)] <- lapply(leedt[c(5:6,9)], stdfunc)	
fansondt[c(14:16)] <- lapply(fansondt[c(14:16)], stdfunc)	

Machine	Learning	model	
Once	the	data	has	been	standardized,	we	can	now	use	the	machine	learning	model	to	find	
the	optimum	region	in	the	performance	landscape.	We	start	with	the	Lee	et	al	data.	For	the	
Machine	learning,	we	first	split	our	data	set	into	the	training	and	test	sets.	These	two	data	
sets	are,	in	a	nutshell,	the	data	that	your	model	will	use	to	find	patterns	(training	set)	and	
evaluate	its	performance	against	data	that	the	model	has	never	seen	before	(test	set).	The	
proportion	of	data	allocated	to	the	training	and	test	sets	vary	according	to	the	aim	of	the	
model.	In	this	case,	we	would	like	accurate	predictions	for	the	nutritional	peak.	As	such,	the	
model	needs	to	be	trained	with	as	much	data	as	possible.	We	will	use	95%	of	the	original	
data	as	the	training	set,	and	the	remaining	5%	as	the	test	test.	We	can	achieve	this	as	
following:	

validation_index_lee <- createDataPartition(leedt$treatment, p=0.95, list=FAL
SE) ## randomly selecting observations 	
	
validationlee <- leedt[-validation_index_lee,]	
	
training_set_lee <- leedt[validation_index_lee,]	

Before	fitting	the	model,	we	set	up	the	parameters	

# Run algorithms using 10-fold cross validation	
control <- trainControl(method="cv", number=10)	
metric <- "RMSE" # RMSE since we are using regression models (not classifiers
)	
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Now	we	are	ready	to	fit	the	machine	learning	model	in	our	data.	We	will	use	a	Radial-
Kernel	Support	Vector	Machine	(RadialSVM)	as,	from	previous	trials,	is	the	best	approach	
for	predicting	the	optima	in	the	performance	landscapes	(in	fact,	other	regression	models	
such	as	Random	Forest	does	a	remarkably	poor	job!).	What	we	will	do	here	is	to	first	fit	the	
model,	then	validate	it,	and	then	use	in	a	new	grid.	The	predictions	from	these	grids	will	be	
subsetted	based	on	the	maximum	region	(which	is	the	region	of	the	optimum	in	the	
performance	landscape).	

# SVM	
set.seed(7)	
fit.svm_lee <- train(dailyeggs~proteinday + carboday, data=training_set_lee, 
method="svmRadial", metric=metric, trControl=control) # the machine learning 
model	
	
predictionslee <- data.frame(validationlee, dailyeggs_pred = predict(fit.svm_
lee, validationlee)) # validating	
	
newdatalee <- expand.grid(proteinday = seq(0, max(leedt$proteinday), 0.01), c
arboday = seq(0, max(leedt$carboday), 0.01)) # creating the grid	
	
estimatelee <- data.frame(newdatalee, dailyeggs_pred = predict(fit.svm_lee, n
ewdatalee)) # predicting in the new grid	
	
regionoptima_lee <- subset(estimatelee, dailyeggs_pred >= quantile(dailyeggs_
pred,probs=0.95) & carboday >= 2.5 & proteinday >= 2.5) # subsetting the pred
icted optima	

We	now	do	the	same	for	the	Fanson	et	al	data.	

#subsetting the data frame	
validation_index_fanson <- createDataPartition(fansondt$DietID, p=0.95, list=
FALSE)	
	
validationfanson <- fansondt[-validation_index_fanson,]	
	
training_set_fanson <- fansondt[validation_index_fanson,]	
	
# Machine Learning Model	
set.seed(7)	
fit.svm_fanson <- train(dailyeggs~Peaten + Ceaten , data=training_set_fanson, 
method="svmRadial", metric=metric, trControl=control)	
	
predictionsfanson <- data.frame(validationfanson, dailyeggs_pred = predict(fi
t.svm_fanson, validationfanson))	
	
newdatafanson <- expand.grid(Peaten = seq(0, max(fansondt$Peaten), 0.01), Cea
ten = seq(0, max(fansondt$Ceaten), 0.01))	
	
estimatefanson <- data.frame(newdatafanson, dailyeggs_pred = predict(fit.svm_
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fanson, newdatafanson))	
	
regionoptima_fanson <- subset(estimatefanson, dailyeggs_pred >= quantile(dail
yeggs_pred,probs=0.95) & Ceaten >= 1.5 & Ceaten < 4 & Peaten >= 4.5)	

Comparative	studies	of	the	nutritional	landscape	

Having	defined	the	optima	regions	(i.e.,	regionoptima_fanson	and	regionoptima_lee),	we	
can	now	estimate	the	angle	and	the	confidence	bound.	Let’s	first	define	the	function	to	
calculate	the	angle	

## calculating the angle between the 3-dimensional vectors ##	
angle <- function(x,y){	
  dot.prod <- x%*%y 	
  norm.x <- norm(x,type="2")	
  norm.y <- norm(y,type="2")	
  theta <- acos(dot.prod / (norm.x * norm.y))	
  as.numeric(theta)*57.2958	
}	

and	then	

### Extrating the mean angle and the upper and lower bound of its estimates	
regionoptima_fanson_mean <- regionoptima_fanson %>% summarise(meanP = mean(Pe
aten), meanC = mean(Ceaten), meanpred= mean(dailyeggs_pred))	
regionoptima_lee_mean <- regionoptima_lee %>% summarise(meanP = mean(proteind
ay), meanC = mean(carboday), meanpred= mean(dailyeggs_pred))	
	
	
regionoptima_fanson_upper <- regionoptima_fanson %>% summarise(lowerP = min(P
eaten), lowerC = min(Ceaten), lowerpred= min(dailyeggs_pred))	
regionoptima_lee_upper <- regionoptima_lee %>% summarise(lowerP = min(protein
day), lowerC = min(carboday), lowerpred= min(dailyeggs_pred))	
	
regionoptima_fanson_lower <- regionoptima_fanson %>% summarise(upperP = max(P
eaten), upperC = max(Ceaten), upperpred= max(dailyeggs_pred))	
regionoptima_lee_lower <- regionoptima_lee %>% summarise(upperP = max(protein
day), upperC = max(carboday), upperpred= max(dailyeggs_pred))	
	
	
	
### calculating the angle theta between vectors ###	
anglesspecies_mean <- angle(as.matrix(regionoptima_fanson_mean), as.matrix(t(
regionoptima_lee_mean)))	
	
anglesspecies_upper <- angle(as.matrix(regionoptima_fanson_upper), as.matrix(
t(regionoptima_lee_upper)))	
	
anglesspecies_lower <- angle(as.matrix(regionoptima_fanson_lower), as.matrix(
t(regionoptima_lee_lower)))	
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### printing the result ###	
angle_species <- data.frame(lower_bound = anglesspecies_lower, mean_theta = a
nglesspecies_mean, upper_bound = anglesspecies_upper)	
angle_species	

##   lower_bound mean_theta upper_bound	
## 1    13.48714   17.58226    24.58529	

Calculating	the	direction	angles	𝜶,	𝜷	and	𝜸	
With	the	Vector	of	Positions	Approach,	we	also	propose	that	we	can	use	the	direction	
angles	𝛼,	𝛽	and	𝛾	to	obtain	a	detailed	description	of	the	nutritional	trade-offs	between	
species.	

##### Calculating the angles of each component ####	
regionoptima_lee_mean	

##     meanP    meanC meanpred	
## 1 3.77762 3.118889 2.562604	

regionoptima_fanson_mean	

##    meanP    meanC meanpred	
## 1 5.8917 2.620724 2.025965	

#### the ANGLE ALPHa (against the x-axis (protein axis))	
dirangles_alpha <- rbind(data.frame(mean_alpha = atan2(sqrt(regionoptima_lee_
mean$meanC^2 + 	
    regionoptima_lee_mean$meanpred^2), regionoptima_lee_mean$meanP) * (180/pi
), 	
    lower_alpha = atan2(sqrt(regionoptima_lee_lower$upperC^2 + regionoptima_l
ee_lower$upperpred^2), 	
        regionoptima_lee_lower$upperP) * (180/pi), upper_alpha = atan2(sqrt(r
egionoptima_lee_upper$lowerC^2 + 	
        regionoptima_lee_upper$lowerpred^2), regionoptima_lee_upper$lowerP) * 	
        (180/pi)), data.frame(mean_alpha = atan2(sqrt(regionoptima_fanson_mea
n$meanC^2 + 	
    regionoptima_fanson_mean$meanpred^2), regionoptima_fanson_mean$meanP) * 	
    (180/pi), upper_alpha = atan2(sqrt(regionoptima_fanson_lower$upperC^2 + 	
    regionoptima_fanson_lower$upperpred^2), regionoptima_fanson_lower$upperP) 
* 	
    (180/pi), lower_alpha = atan2(sqrt(regionoptima_fanson_upper$lowerC^2 + 	
    regionoptima_fanson_upper$lowerpred^2), regionoptima_fanson_upper$lowerP) 
* 	
    (180/pi)))	
	
row.names(dirangles_alpha) <- c("Drosophila", "Bactrocera")	
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### The angle BETA (against the y-axis (carbohydrate axis))	
dirangles_beta <- rbind(data.frame(mean_beta = atan2(sqrt(regionoptima_lee_me
an$meanP^2 + 	
    regionoptima_lee_mean$meanpred^2), regionoptima_lee_mean$meanC) * (180/pi
), 	
    lower_beta = atan2(sqrt(regionoptima_lee_lower$upperP^2 + regionoptima_le
e_lower$upperpred^2), 	
        regionoptima_lee_lower$upperC) * (180/pi), upper_beta = atan2(sqrt(re
gionoptima_lee_upper$lowerP^2 + 	
        regionoptima_lee_upper$lowerpred^2), regionoptima_lee_upper$lowerC) * 	
        (180/pi)), data.frame(mean_beta = atan2(sqrt(regionoptima_fanson_mean
$meanP^2 + 	
    regionoptima_fanson_mean$meanpred^2), regionoptima_fanson_mean$meanC) * 	
    (180/pi), upper_beta = atan2(sqrt(regionoptima_fanson_lower$upperP^2 + re
gionoptima_fanson_lower$upperpred^2), 	
    regionoptima_fanson_lower$upperC) * (180/pi), lower_beta = atan2(sqrt(reg
ionoptima_fanson_upper$lowerP^2 + 	
    regionoptima_fanson_upper$lowerpred^2), regionoptima_fanson_upper$lowerC) 
* 	
    (180/pi)))	
	
row.names(dirangles_beta) <- c("Drosophila", "Bactrocera")	
	
	
### The angle GAMMA (against the z-axis (trait axis))	
dirangles_gamma <- rbind(data.frame(mean_gamma = atan2(sqrt(regionoptima_lee_
mean$meanP^2 + 	
    regionoptima_lee_mean$meanC^2), regionoptima_lee_mean$meanpred) * (180/pi
), 	
    lower_gamma = atan2(sqrt(regionoptima_lee_lower$upperP^2 + regionoptima_l
ee_lower$upperC^2), 	
        regionoptima_lee_lower$upperpred) * (180/pi), upper_gamma = atan2(sqr
t(regionoptima_lee_upper$lowerP^2 + 	
        regionoptima_lee_upper$lowerC^2), regionoptima_lee_upper$lowerpred) * 	
        (180/pi)), data.frame(mean_gamma = atan2(sqrt(regionoptima_fanson_mea
n$meanP^2 + 	
    regionoptima_fanson_mean$meanC^2), regionoptima_fanson_mean$meanpred) * 	
    (180/pi), upper_gamma = atan2(sqrt(regionoptima_fanson_lower$upperP^2 + 	
    regionoptima_fanson_lower$upperC^2), regionoptima_fanson_lower$upperpred) 
* 	
    (180/pi), lower_gamma = atan2(sqrt(regionoptima_fanson_upper$lowerP^2 + 	
    regionoptima_fanson_upper$lowerC^2), regionoptima_fanson_upper$lowerpred) 
* 	
    (180/pi)))	
	
row.names(dirangles_gamma) <- c("Drosophila", "Bactrocera")	
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dirangles <- list(alpha = dirangles_alpha, beta = dirangles_beta, gamma = dir
angles_gamma)	
dirangles	

## $alpha	
##            mean_alpha lower_alpha upper_alpha	
## Drosophila   46.89844    45.90927    47.99309	
## Bactrocera   29.34615    25.38286    38.79428	
## 	
## $beta	
##            mean_beta lower_beta upper_beta	
## Drosophila  55.65722   56.03449   55.26419	
## Bactrocera  67.18635   66.76060   69.50664	
## 	
## $gamma	
##            mean_gamma lower_gamma upper_gamma	
## Drosophila   62.38538    63.16885    61.51371	
## Bactrocera   72.55797    80.35599    58.69577	
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Text	S2	–	High-dimensional	plots	and	data	analyses	

Loading	the	packages	
library(ggplot2)	
library(plot3D)	
library(fields) # for the surface plots and the thin-plate spline (Tps) 
function	
library(caret)	

Simulating	data	and	modelling	
We	simulate	data	for	the	intake	of	Protein,	Carbohydrate,	and	Fat.	First	we	simulate	traits	
that	are	close	in	the	expression	of	the	hypothetical	life-hisotry	trait.	Let’s	first	focus	on	
simulating	data	where	traits	are	in	similar	locationg	in	the	nutrient	space.	

set.seed(121212)	
testdt <- data.frame(protein = rnorm(200, 50, 0.1), carbohydrate = rnorm(200, 
30, 0.1), fat = rnorm(200, 5, 0.1))	
	
testdt$trait1 <- with(testdt, ((carbohydrate)*protein) + rnorm(100, 0,0.1))	
testdt$trait2 <- with(testdt,  (12*(carbohydrate)*protein)/fat  + rnorm(100, 
0, 0.1))	
testdt$treatment <- as.factor(c("1:16", "1:8", "1:4", "1:2"))	

Fitting	the	model	
newtestdt <- expand.grid(protein = seq(0, max(testdt$protein), 0.2), 
carbohydrate = seq(0, max(testdt$carbohydrate), 0.2), fat = seq(0, 
max(testdt$fat), 0.2))	

Modelling	

First	we	will	focus	on	calculating	the	difference	in	expression	of	traits	1	and	2.	

Model	for	trait	1	
validation_index_lee <- createDataPartition(testdt$treatment, p=0.95, 
list=FALSE)	
validation <- testdt[-validation_index_lee,]	
	
training_set <- testdt[validation_index_lee,]	
	
	
# Run algorithms using 10-fold cross validation	
control <- trainControl(method="cv", number=10, search = "grid")	
metric <- "RMSE"	
	
# SVM	
set.seed(8)	
fit.svm_trait1 <- train(trait1~protein + carbohydrate + fat, 
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data=training_set, method="svmRadial", 	
                        preProcess = c("center","scale"), metric=metric, 
trControl=control)	

Model	for	trait	2	
fit.svm_trait2 <- train(trait2~protein + carbohydrate + fat, 
data=training_set, method="svmRadial", 	
                        preProcess = c("center","scale"), metric=metric, 
trControl=control)	

Validation	of	the	models	
validation_test <- data.frame(validation, value_pred1 = 
predict(fit.svm_trait1, validation), value_pred2 = predict(fit.svm_trait2, 
validation))	
prediction_test <- data.frame(newtestdt, value_pred1 = 
predict(fit.svm_trait1, newtestdt), value_pred2 = predict(fit.svm_trait2, 
newtestdt))	

Obtaining	theoptimum	
regionoptima_trait1 <- subset(prediction_test, value_pred1 >= 
quantile(value_pred1,probs=0.999996)) ## selecting the optimum region. Tune 
the "probs" argument for more/less tight predictions      	
regionoptima_trait2 <- subset(prediction_test, value_pred2 >= 
quantile(value_pred2,probs=0.999996))	

Calculating	the	angle	between	the	optimum	vectors	
angle <- if(dim(regionoptima_trait1)[1] >= dim(regionoptima_trait2)[1]){	
  angle <- numeric(dim(regionoptima_trait2)[1])	
} else {angle <- numeric(dim(regionoptima_trait1)[1])}	
	
for(i in 1:length(angle)){	
  btrait1 <- as.matrix(regionoptima_trait1[i,c(1:3)])	
  btrait2 <- as.matrix(regionoptima_trait2[i,c(1:3)])	
  norm1 <- norm(btrait1, type = "2")	
  norm2 <- norm(btrait2, type = "2")	
  value <- as.numeric(btrait1 %*% t(btrait2)/ (norm1 * norm2))	
  angle[i] <- acos(value) * (180/pi)	
}	
	
summary(angle)	

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 	
## 0.07015 0.07038 0.20679 0.21951 0.33464 0.41557	

Plotting	figures	

Trait	1	
#### For trait 1 ####	
x <- testdt$protein	
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y <- testdt$carbohydrate	
z <- testdt$fat	
w <- testdt$trait1	
	
scatter3D(x = testdt[,1], y = testdt[,2], z = testdt[, 3], colvar = 
testdt[,4], pch = 20, cex = 1.2, 	
          theta = 40, phi = 10,ticktype = "detailed",	
          xlab = "protein", ylab = "carbohydrate", zlab = "fat", main = 
"Trait 1", bty = "b2")	
points3D( x = regionoptima_trait1[,1], y = regionoptima_trait1[,2], z = 
regionoptima_trait1[,3], col = "black", add = TRUE,	
          pch = 20, cex = 1.3, type = "h") ## adding points predicted by the 
model (black)	

	

Trait	2	
#### For trait 1 ####	
x <- testdt$protein	
y <- testdt$carbohydrate	
z <- testdt$fat	
w <- testdt$trait2	
	
scatter3D(x = testdt[,1], y = testdt[,2], z = testdt[, 3], colvar = 
testdt[,5], pch = 20, cex = 1.2, 	
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          theta = 40, phi = 10,ticktype = "detailed",	
          xlab = "protein", ylab = "carbohydrate", zlab = "fat", main = 
"Trait 2", bty = "b2")	
	
points3D( x = regionoptima_trait2[,1], y = regionoptima_trait2[,2], z = 
regionoptima_trait2[,3], col = "black", add = TRUE,	
          pch = 20, cex = 1.3, type = "h") ## adding points predicted by the 
model (black)	

	

Modeling	(distant	traits)	

Now	we	can	focus	on	calculating	the	differences	between	the	expression	of	traits	1	and	3	
which	lie	in	distant	locations	in	nutrient	space.	As	before,	let’s	simulate	traits	1	and	3.	Trait	
1	is	simulated	with	the	same	parameters	as	trait	1	before	(I	will	repeat	it	here	to	facilitate	
comprehension).	

set.seed(121212)	
testdt1 <- data.frame(protein1 = rnorm(200, 50,0.1), carbohydrate1 = 
rnorm(200, 30, 0.1), fat1 = rnorm(200, 5, 0.1))	
testdt1$trait1 <- with(testdt1, (carbohydrate1*protein1) + rnorm(100, 0,0.1))	
	
testdt2 <- data.frame(protein2 = rnorm(200, 50,0.1), carbohydrate2 = 
rnorm(200, 70, 0.3), fat2 = rnorm(200, 5, 0.1))	
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testdt2$trait3 <- with(testdt2,  ((carbohydrate2)*8*protein2)*fat2  + 
rnorm(100, 0, 0.1)) 	
	
testdt1$treatment <- as.factor(c("1:16", "1:8", "1:4", "1:2"))	
testdt2$treatment <- as.factor(c("1:16", "1:8", "1:4", "1:2"))	

We	can	then	fit	the	model	

newtestdt1 <- expand.grid(protein1 = seq(0, max(testdt1$protein1), 0.2), 
carbohydrate1 = seq(0, max(testdt1$carbohydrate1), 0.2), fat1 = seq(0, 
max(testdt1$fat1), 0.2))	
head(newtestdt1)	

##   protein1 carbohydrate1 fat1	
## 1      0.0             0    0	
## 2      0.2             0    0	
## 3      0.4             0    0	
## 4      0.6             0    0	
## 5      0.8             0    0	
## 6      1.0             0    0	

newtestdt2 <- expand.grid(protein2 = seq(0, max(testdt2$protein2), 0.2), 
carbohydrate2 = seq(0, max(testdt2$carbohydrate2), 0.2), fat2 = seq(0, 
max(testdt2$fat2), 0.2))	
head(newtestdt2)	

##   protein2 carbohydrate2 fat2	
## 1      0.0             0    0	
## 2      0.2             0    0	
## 3      0.4             0    0	
## 4      0.6             0    0	
## 5      0.8             0    0	
## 6      1.0             0    0	

## Models ###	
	
validation_index1 <- createDataPartition(testdt1$treatment, p=0.95, 
list=FALSE)	
validation_index2 <- createDataPartition(testdt2$treatment, p=0.95, 
list=FALSE)	
# select 20% of the data for validation	
validation1 <- testdt1[-validation_index1,]	
validation2 <- testdt2[-validation_index2,]	
# use the remaining 80% of data to training and testing the models	
training_set1 <- testdt1[validation_index1,]	
training_set2 <- testdt2[validation_index2,]	
	
	
# Run algorithms using 10-fold cross validation	
control <- trainControl(method="cv", number=10, search = "grid")	
metric <- "RMSE"	
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# SVM	
set.seed(8)	
fit.svm_trait1 <- train(trait1~protein1 + carbohydrate1 + fat1, 
data=training_set1, method="svmRadial", 	
                        preProcess = c("center","scale"), metric=metric, 
trControl=control)	
	
fit.svm_trait3 <- train(trait3~protein2 + carbohydrate2 + fat2, 
data=training_set2, method="svmRadial", 	
                        preProcess = c("center","scale"), metric=metric, 
trControl=control)	

We	can	then	estimate	the	position	of	the	peak	for	traits	1	and	3	

prediction_test1 <- data.frame(newtestdt1, value_pred1 = 
predict(fit.svm_trait1, newtestdt1))	
prediction_test2 <- data.frame(newtestdt2, value_pred2 = 
predict(fit.svm_trait3, newtestdt2))	
	
regionoptima_trait1 <- subset(prediction_test1, value_pred1 >= 
quantile(value_pred1,probs=0.999996))    	
regionoptima_trait3 <- subset(prediction_test2, value_pred2 >= 
quantile(value_pred2,probs=0.999996))	

And	finally	calculate	the	angle	theta	

angle <- if(dim(regionoptima_trait1)[1] >= dim(regionoptima_trait3)[1]){	
  angle <- numeric(dim(regionoptima_trait3)[1])	
} else {angle <- numeric(dim(regionoptima_trait1)[1])}	
	
for(i in 1:length(angle)){	
  btrait1 <- as.matrix(regionoptima_trait1[i,c(1:3)])	
  btrait3 <- as.matrix(regionoptima_trait3[i,c(1:3)])	
  norm1 <- norm(btrait1, type = "2")	
  norm3 <- norm(btrait3, type = "2")	
  value <- as.numeric(btrait1 %*% t(btrait3)/ (norm1 * norm3))	
  angle[i] <- acos(value) * (180/pi)	
}	
	
summary(angle)	

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 	
##   23.13   23.15   23.32   23.29   23.33   23.52	

We	finish	by	plotting	trait	3,	as	we	did	for	traits	1	and	2	

x <- testdt2$protein2	
y <- testdt2$carbohydrate2	
z <- testdt2$fat2	
w <- testdt2$trait3	

73



Trade-offs in life-history traits	

	

8	

	
scatter3D(x = testdt2[,1], y = testdt2[,2], z = testdt2[, 3], colvar = 
testdt2[,4]/1000, pch = 20, cex = 1.2, 	
          theta = 40, phi = 10,	
          xlab = "protein", ylab = "carbohydrate", zlab = "fat", main = 
"Trait 3", bty = "b2")	
	
points3D( x = regionoptima_trait3[,1], y = regionoptima_trait3[,2], z = 
regionoptima_trait3[,3], col = "black", add = TRUE,	
          pch = 20, cex = 1.3, type = "h")	
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Chapter 3

Nutrigonometry I: using right-angle triangles to quantify

nutritional trade-offs in performance landscapes

Publication reference

Morimoto, J., Conceição, P., Mirth, C. and Lihoreau, M., (2023). Nutrigonometry I: using right-angle

triangles to quantify nutritional trade-offs in performance landscapes. The American Naturalist, 201(5),

pp.725-740.
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3.1 Abstract

Animals regulate their food intake to maximise the expression of fitness traits, but are forced to trade-

off optimal expression of some fitness traits due to differences in nutrient requirements of each trait

(‘nutritional trade-offs’ ). Nutritional trade-offs have been experimentally uncovered using the Geometric

Framework for Nutrition (GF). However, current analytical methods to measure such responses rely on

either visual inspection or complex models of vector calculations applied to multidimensional performance

landscapes, making these approaches subjective, or conceptually difficult, computationally expensive, and

in some cases inaccurate. Here, we present a simple trigonometric model to measure nutritional trade-

offs in multidimensional landscapes (Nutrigonometry), which relies on the trigonometric relationships

of right-angle triangles and thus, is both conceptually and computationally easier to understand and

use than previous quantitative approaches. We apply Nutrigonometry to a landmark GF dataset for

the comparison of several standard statistical models to assess model performance in finding regions

in the performance landscapes. This revealed that polynomial (Bayesian) regressions can be used for

precise and accurate predictions of peaks and valleys in performance landscapes, irrespective of the

underlying structure of the data (i.e., individual food intakes vs fixed diet ratios). We then identified

the known nutritional trade-off between lifespan and reproductive rate both in terms of nutrient balance

and concentration for validation of the model. This shows Nutrigonometry enables a fast, reliable, and

reproducible quantification of nutritional trade-offs in multidimensional performance landscapes, thereby

broadening the potential for future developments in comparative research on the evolution of animal

nutrition.

Keywords: Fitness landscapes, health, physiology, costs.
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3.2 Introduction

Animals often require different nutrient blends to maximize concurrent life-history traits, creating the

potential for a conflict for optimum nutrition (Simpson & Raubenheimer 2012, Raubenheimer & Simpson

2020). When the optimum nutrition for two traits cannot be achieved simultaneously, animals must

make a compromise in their feeding decisions to support the optimal expression of one trait over another

(‘nutritional trade-off’) (Lee et al. 2008, Maklakov et al. 2008, Fanson et al. 2009). Previous research has

identified nutritional trade-offs between lifespan and reproduction or between immunity and reproduction

across many different taxa including Drosophila melanogaster (Ponton et al. 2020), tephritid fruit flies

(Fanson, Yap & Taylor 2012, Fanson & Taylor 2012), crickets (Harrison et al. 2014, Treidel et al. 2021,

Guo et al. 2022), and mice (Solon-Biet et al. 2014) [see also reviews by (Ponton et al. 2011, Schwenke et al.

2016)]. Even traits related to different aspects of the same life-history can vary in nutritional requirements

during the lifetime of an animal, as seen for instance in pre- and post-mating traits related to reproduction

of many insect species such as sperm number and viability (Bunning et al. 2015), fertilization success

across sperm competitive contexts Morimoto & Wigby (2016), cuticular hydrocarbons, courtship song

and sperm viability Ng et al. (2019), as well as size and numbers of eupyrene and apyrene sperms Gage

& Cook (1994). Thus, nutritional trade-offs are likely ubiquitous and impose significant constraints on

the feeding choices of individuals.

Measuring nutritional trade-offs is critical to understand the evolution of animal feeding behaviour.

However, it is highly challenging because of the interactive effects of nutrient ratios and concentrations on

the expression of life-histories Stearns (1989), Roff (2002), Hunt et al. (2004), Simpson & Raubenheimer

(2012). In the last decades, however, a method known as the Geometric Framework for Nutrition (GF)

has emerged as a powerful unifying framework capable of disentangling the multidimensional effects of

nutrients (both ratios and concentrations) on life-history traits and fitness Raubenheimer & Simpson

(1993). The GF has been applied to a diverse range of nutritional studies across species such as flies

Lee et al. (2008), Fanson, Yap & Taylor (2012), Ponton et al. (2015), Barragan-Fonseca et al. (2018),

crickets Maklakov et al. (2008), Ng et al. (2018), Rapkin et al. (2018), cockroaches Bunning et al. (2015),

domestic cats and dogs Hewson-Hughes et al. (2011, 2012), and mice Solon-Biet et al. (2014), Morimoto

et al. (2019), being paramount for advancing our understanding of complex physiological and behavioural

processes across ecological environments and even human health Simpson et al. (2017). With the growing

applications of GF in the study of animal and human nutrition, the development of simple, intuitive, and
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accurate quantitative methods for identifying optimal diets in performance landscapes and quantifying

nutritional trade-offs has become a key issue for research in comparative nutrition. Simple methodolo-

gies that are friendly to biologists and ecologists will facilitate new insights into the complex nutritional

decision-making that animals have to undergo in order to navigate physiological and behavioural con-

straints of different life-history traits Morimoto & Lihoreau (2020).

Recent approaches to analyse GF data have been complex to navigate, and many studies continue

to use a combination of approaches (including visual inspection) or potentially inaccurate methods to

quantify the strength of nutritional trade-offs in GF landscapes (Polak et al. 2017, Ng et al. 2018, 2019,

Rapkin et al. 2018, Kutz et al. 2019, Morimoto & Lihoreau 2019, Ma et al. 2022, Barragan-Fonseca

et al. 2021). There are three major gaps in our approaches to analyse GF data which contribute to

inconsistencies in the analysis in the field of nutritional ecology: (i) there has been no investigation on

the suitability and accuracy of different statistical models in identifying regions of interest (e.g., peaks,

valleys) in multidimensional performance landscapes (see e.g., Rapkin et al. 2018, Morimoto & Lihoreau

2019). The reason for this is because (ii) current methods to analyse multidimensional GF performance

landscapes are complex and difficult to implement in a comparative fashion, precluding the exploration

of the full range of statistical methods commonly used in ecology and evolution (e.g., linear regressions,

additive models etc). Moreover, (iii) the structure of the data that GF empirical studies generate is

also inconsistent. For instance, some GF studies measure both the amount of food ingested and the trait

values on each diet across a broad range of dietary compositions, while others consider diets as treatments

and examine the effect of a wide range of diets on trait values without measuring food intake [e.g., (e.g.,

Maklakov et al. 2008, Kutz et al. 2019, respectively). This difference in experimental approach leads to

distortions in the generated performance landscapes which could influence the estimates of the strength

of nutritional trade-offs. There has been no study to investigate how current analytical methods perform

in identifying peaks and valleys across different data structures. Collectively, these gaps in analytical

methods used to estimate nutritional trade-offs limit our ability to draw conclusions between studies

and, more broadly, preclude our understanding of the evolution of nutritional responses in comparative

analysis. Thus, there is a need for the development of consistent analyses which derive precise estimates

of peak (and valley) regions from GF landscapes, thereby enabling large-scale comparative analyses

necessary to gain insights into the evolution of animal nutrition.

Here, we address these gaps by proposing a novel analytical model (Nutrigonometry) that is sim-

ple, precise, and can accommodate different data structures. We then use this model to perform the
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first comparative analysis of different statistical methods and their performance in identifying regions

of interest (e.g., peaks or valleys) in GF performance landscapes. Nutrigonometry is different from our

previous Vector of Positions approach (Morimoto & Lihoreau 2019) because the latter used a single sta-

tistical model (i.e., a support-vector machine (SVM) model) which required an arbitrary input threshold

to identify peak regions. Moreover, the Vector of Positions could not identify and delineate valley regions

as accurately and the overall approach was computationally expensive to apply to multiple landscapes.

Nutrigonometry uses trigonometric relationships (i.e., Pythagoras theorem) to estimate the difference

in angles of right-angle triangles formed in performance traits (Figure 3.1a), after which the difference

between these angles can be estimated as a proxy for the strength of nutritional trade-offs (i.e., wider

angles indicate stronger trade-offs) (Figure 3.1b).

Below, we first describe the mathematical foundation underlying the Nutrigonometry method. Next,

we apply Nutrigonometry to a landmark GF dataset in Drosophila melanogaster with known nutritional

trade-offs between lifespan and reproductive rate (Lee et al. 2008, Morimoto & Lihoreau 2019). This

dataset provided an important ground-truth to apply, test, and validate the precision of Nutrigonometry

in identifying the known nutritional trade-off. Moreover, the use of this dataset allowed us to demonstrate

the consistency of the Nutrigonometry model in identifying nutritional trade-offs when the structure of the

input dataset varied (i.e., individual intake vs fixed ratio experiments). Finally, we leveraged the simplistic

(and computationally cheap) approach provided by Nutrigonometry to conduct the first comparative

analyses of a range of ‘off-the-shelf’ statistical models (including machine learning) in estimating the

peak region in the performance landscapes, which is an essential component for proper quantification of

nutritional trade-offs to perform a comparative analysis.

3.3 Material and Methods

3.3.1 Nutrigonometry

GF studies consider a ‘nutritional space’ in which animals can eat foods and navigate their nutritional

state (for a review, see Raubenheimer & Simpson 2020). This nutritional space is defined by the food

components (typically macro-nutrients) under investigation. Foods are represented in the nutritional

space as nutritional rails (i.e., imaginary lines that pass through the origin with a given positive slope)

characterized by different ratios of the food components. For example, in studies where protein and
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carbohydrate effects are investigated, there is a 2D nutritional space (one dimension for each nutrient)

onto which the performance landscape of the trait is mapped. This rationale can be extended to n

number of nutrients (Simpson & Raubenheimer 1993), albeit to date, studies with two nutrients are the

most common (Morimoto & Lihoreau 2020). If we consider this 2D nutritional space as a rectangular

space in which an infinite number of nutritional rails (i.e., foods) exist that divides the space in right-

angle triangles, then it is possible to use simple trigonometric functions to estimate the angle αi and the

hypothenuse of the triangle, for all fitness traits mapped onto the nutritional space. The angle αi is the

angle of the nutritional rail, relative from the x-axis, that passes through the peak in the landscape for

the trait i, and the hypothenuse hi of the triangle shows how far from the origin the peak in the landscape

sits for the trait i (Figure 3.1a). αi and hi can be calculated using the Pythagorean theorem and the

relationship between the angle and the sides of right-angle triangles (i.e., sines and cosines), as shown in

(Figure 3.1a).

Once αi and αj are known, we can estimate the angle θ [as in (Morimoto & Lihoreau 2019)] which

is the difference in the angle between nutritional rails that maximize two traits, i and j, and provides a

measure of the strength of the nutritional trade-off that exists between traits i and j (Figure 3.1b). The

larger the angle θ(i,j), the stronger the nutritional trade-off in terms of nutrient balance (and potentially

nutritional compromise) between traits. Likewise, we can compare the difference h(i,j) in the estimates of

the hypothenuse hj and hi to quantify nutritional trade-offs in relation to nutrient concentration (Figure

3.1b). These metrics allowed us to disentangle the following theoretical scenarios in which nutritional

trade-off can occur: (i) when θ(i,j) is large but h(i,j) is small (‘Strong nutritional trade-off in terms

of nutrient balance’), (ii) when θ(i,j) is small but h(i,j) is large (‘Strong nutritional trade-off in terms of

nutrient concentration’), (iii) when θ(i,j) and h(i,j) are large (‘Strong nutritional trade-off in terms of both

nutrient balance and concentration’), and (iv) when θ(i,j) and h(i,j) are small (‘Weak or no nutritional

trade-off’) (Figure 3.1c).

Here when applying this model for empirical datasets (see below), inferences on the strength of

nutritional trade-offs were made using confidence intervals for h(i,j) and θ(i,j), whereby nutritional trade-

offs were stronger when confidence intervals did not overlap zero and the magnitude of the difference was

large. Estimates are presented in the units of the nutrient space in which the data was collected (e.g.,

mg), while angles are presented in degrees. Confidence intervals for both h(i,j) and θ(i,j) were calculated

using the significance threshold of 0.05 and the quartiles of a t-distribution. All analyses and plots were

done in R version 3.6.2 (Team 2019).
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3.3.2 Datasets used for model application: diet intake and fixed ratios

Nutrigonometry was designed to work on diverse types of GF data, including those generated from

experimental approaches measuring diet intakes or fixed ratio diets (see ‘Introduction‘). To validate this,

we applied the Nutrigonometry model to a landmark dataset which measured the nutritional requirements

for lifespan and reproduction in Drosophila melanogaster (Lee et al. 2008). This dataset was used

to test previous approaches and therefore has important benchmark status in the field, providing the

ground-truth data for the identification of the now known nutritional trade-offs between lifespan and

reproductive rate (Morimoto & Lihoreau 2019). This data has the benefit of allowing us to implement

the Nutrigonometry model to measure the trade-off in data of both intake and fixed ratio structures.

This is because the original data carefully estimated individual intake across diets and provided the ratio

of nutrients of all diets, enabling us to transform the data structure from intake to fixed ratio. We also

demonstrated the application of Nutrigonometry to a GF dataset with fixed ratios from (Kutz et al.

2019), which studied how temperature modulates nutritional responses of larval development and adult

fitness in D. melanogaster, as an auxiliary demonstration of the application of our model (see Figure S1

in the supplementary material for Chapter 3 below).

3.3.3 Analytical approach

The implementation outline of Nutrigonometry is as follows:

Predicting peak (or valley) location and size. We designed algorithms that fitted a range of statistical

models (details of the models below) to the empirical data in order to test their performance in predicting

peaks (or valleys; see Supplementary Material of this chapter) in the performance landscape for lifespan

and reproductive rate from our landmark dataset. This comparative statistical approach enabled us to

provide the first comparative assessment of models to identify peak regions in GF performance landscapes.

This was done for both the dataset with nutrient intake and with fixed ratios. This enabled us to predict

peak regions in the performance landscapes for which further analysis was possible.

Model fit. We then tested the fit of all models using several quantitative parameters such as (i) root-

mean-square-error (RMSE), (ii) peak area and spread, and (iii) homogeneity of points within the predicted

peak region. These provide information on the error in the predictive estimates of the performance trait in

the z-axis, the spread that the models predicted the peak in the landscape to comprise, and the clustering

of points that delineate the predicted peak region, respectively.
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Nutrient balance. We then compared the nutrient ratio of the predicted peak regions with the nutrient

ratio that animals chose when given the freedom to self-balance their diet (aka ‘nutrient intake target’).

This allowed the model to infer whether or not animals are maximising any particular performance trait

(i.e., the ratio of intake target coincides with ratio of predicted peak). Below, we provide the details of

each of the steps outlined above.

Predicting peak (or valley) location and size. As with previous approaches, our model depends on ac-

curate estimates of the coordinates for the peak in the multidimensional performance landscape. Without

this, estimates of h(i,j) and θ are inaccurate, which in turn affects the ability of the model to estimate the

strength of nutritional trade-offs. To overcome this, the basic algorithms underpinning the identification

of peak regions in performance landscapes were designed as follows: (a) Empirical data was split into

training (75%) and test (25%) datasets; (b) The statistical model was fitted to the training set using

10-fold cross-validation, with the fitness trait as the dependent variable and the nutrient intakes (or fixed

ratios) as independent variables. The model included main and interactive effects of protein and carbohy-

drate, as well as quadratic effects of each nutrient (for non-linear relationships); (c) A set of 500 random

points corresponding to (protein, carbohydrate) coordinates was generated, and the model of step (b)

was used to predict the value of the performance trait at these points and selected the points with the

highest 5% predicted performance trait values; (d) Step (c) was repeated 100 times.

Peak area was then estimated as the area of the convex hull incorporating all of the predicted points

from the above algorithm. 95% confidence intervals of peak area were estimated using the ‘ci‘ function

of the ‘Rmisc’ package (Hope et al. 2013).

We compared the performance of several statistical models (including commonly used statistical GF

literature), namely, Bayesian linear regression (Bayes), general linear regression (LM), k-nearest neigh-

bours (KNN), Gradient boost (GBoost), random forest (RF), support vector machine (SVM) with radial

basis function as well as generalized additive models (GAMs) with both smooth term or tensor product

terms. Note that SVM models were used as the underlying model in the Vector of Positions approach

in (Morimoto & Lihoreau 2020) and thus, provides the grounds where the two methodologies can be

compared. With the exception of GAMs that were fitted using the ‘mgcv’ package (Wood & Wood 2015),

all other models were fitted using the ‘tidymodels’ package of the tidyverse (Wickham et al. 2016). Per-

formance landscapes were estimated using the ‘Tps’ function of the ‘fields‘ package (Nychka et al. 2017).

We fitted the majority of models with default parameters, as these are the most likely approach from a

beginner starting to work with GF data. Automated parameter tuning built into the ‘tidymodels’ pack-

82



age was done for the ‘mtry’ argument (RF and GBoost), the ‘cost’ argument (SVM), and the ‘neighbors’

and ‘weight_func’ (KNN). For the Bayesian regression (Bayes), we fitted a weakly informative Cauchy

prior using the ‘rstan::cauchy(...)’ function (Goodrich et al. 2020). All plots were constructed using the

‘ggplot2’ package (Wickham & Wickham 2016). We also demonstrated how the best performing models

in our peak analyses can be used to predict valley regions in GF datasets (Figures S2 and S3 in the

supplementary material of Chapter 3). The R code with the functions used for this paper is available as

supplementary information.

Model fit

RMSE . The root-mean-square-error (RMSE) was estimated as the difference between the predicted

(generated by the above algorithm) and observed (from the empirical dataset) values for the performance

trait. Note that RMSE values do not interfere with accuracy of estimates of h(i,j) and θ, and thus

the estimates of nutritional trade-offs, because the z-axis is not used in the calculation of angles and

hypothenuses (Figure 3.1d). A model can have high RMSE and still be the best predictive model as long

as the predicted peak correctly matches with the observed peak in the landscape.

Peak area. In addition to RMSE, we estimated the area (in squared units in which the data is collected)

of the polygon delimited by the estimated predicted peak region (‘Area’) and the horizontal (protein)

and vertical (carbohydrate) spread of the datapoints of the predicted peak region (‘Nutrient spread’) as

proxies for the precision of our predicted peak regions (Figure 3.1d). The smaller the area and nutrient

spread, the more compact the prediction of the peak region in the nutritional space.

Homogeneity of points within the predicted peak region. Even in cases where RMSE, area and

nutrient spread of the predicted peak regions are small, it is important to have evenly-spaced datapoints

within the predicted peak region. This is because predictions of regions which contain holes can lead to

mis-estimation of the strength of nutritional trade-offs by potentially adding noise to the set of protein and

carbohydrate coordinates used to calculate h(i,j) and the angle θ. We measured the topological structure

of the predicted peak region using the concept of persistence homology (PH), which in simple terms,

allows us to investigate the overall structural organization of the data (see Text S1 in the supplementary

material for Chapter 3) and (Zomorodian & Carlsson 2004, Weinberger 2011) for details of the concept]

(Figure 3.1d). PH was estimated using the ‘TDAstats’ package (Wadhwa et al. 2018). Together, the

estimates of RMSE, area, nutrient spread, and PH provided a comprehensive suite of metrics to assess

the quality of model predictions for the peak region in fitness landscapes.
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Nutrient balance

Drosophila melanogaster adults balance their nutrient intake to a protein to carbohydrate (P:C) ratio of

1:4 when given the possibility to self-select multiple nutritionally complementary foods (see results in the

original study by Lee et al. 2008). We then used the peak predictions of the Nutrigonometry framework

to test whether the observed P:C ratios that maximized lifespan and reproductive rates coincided with

the P:C ratio of 1:4 reached by flies in choice situations. To achieve this, we calculated the 95% confidence

interval as described for the peak area but in this case, for the P:C ratio of each trait. Whenever the

confidence interval overlapped 1:4, we inferred that the estimate of peak ratio did not statistically differ

from the intake target of 1:4.

Figure 3.1: The Nutrigonometry model. (a) Considering an infinite number of nutritional rails
that divide the nutritional space into right-angle triangles, the angle αi and the hypothenuse hi can be
calculated from trigonometric relationships. (b) Nutrigonometry allows for the estimates of the strength
of nutritional trade-offs in terms of nutrient balance (angle θi,j)) and nutrient concentration (the difference
hi,j), given in absolute terms). (c) Scenarios for the estimates of the strength of nutritional trade-offs
with respect to the angle θi,j) and the length hi,j). (d) Metrics used to the peak prediction in the 3D
landscape (see Methods within this chapter for details).
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3.4 Results

Simple (Bayesian) linear regressions outshine machine learning models when predicting

peak region in multidimensional landscapes

First, we applied the Nutrigonometry model with several underlying statistical models to test the precision

of the framework in finding peak regions in the performance landscapes. All models generated predictions

of peak region in nutritional landscapes irrespective of data structure although the accuracy and topology

of the predicted regions varied (Figures 3.2, 3.3, and 3.4). In general, GAMs with tensor product and

smooth function as well as Bayes and LM linear models generated peak predictions for both lifespan and

reproductive rate that were significantly more precise (narrower) than other models when the structure

of the data was composed of food intakes (Figure 3.2 and Tables S1 and S2 in the supplementary material

for Chapter 3).

When the data structure changed to fixed ratios, LM, GAM with tensor product, Bayes, and KNN

predicted peaks with smaller area for lifespan and all but KNN perform within similar scales for the

peak prediction of reproductive rate (Figure 3.3 and Tables S1 and S2 in the supplementary material

for Chapter 3). In comparison, GAM smooth did not perform well in predicting peak region that was

homogenous and precise in the performance landscapes.

The performance of the models was independent of the estimates of RMSE and nutrient spread

which showed no clear pattern of performance. The exceptions were that LM and Bayes displayed

consistently lower spread when the structure of the data were intakes (Figures 3.4 and 3.5, Tables S1-3

in the supplementary material for Chapter 3).

Interestingly, machine learning models consistently underperformed, predicting peak regions that were

wider and less precise (Figures 3.2, 3.3, 3.4, Tables S1 and S2 in the supplementary material for Chapter

3). The underlying reason for this is unclear, but similar patterns were observed when predicting the peak

region of (Kutz et al. 2019) dataset (Figure S1 and Table S3 in the supplementary material for Chapter

3). This is important because the previous Vector of Position approaches uses SVM models which,

as shown here, do not perform as well as other simpler models (Morimoto & Lihoreau 2020). Bayes,

GAMs (both smooth and tensor product), and LM also performed well when predicting valley regions

(Figure S2 and Figure S3 in the supplementary material for Chapter 3). These results indicate that

simple (Bayesian) linear regression consistently provides precise estimates of peak regions in performance
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Figure 3.2: Predictions of peak region in lifespan and reproductive rate landscape with
intake data. (a) Lifespan landscape with the overlaid predicted peak regions (left small panels). (b)
Reproductive rate landscape with the overlaid predicted peak regions. Red represents peaks while light
green represents valleys. For the predicted region, dark blue represents points with lower predicted
z−values whereas bright yellow represents points with higher predicted z−values. Shaded polygon added
to help visualisation. Dotted lines represent the nutritional rails (i.e., foods with fixed P:C ratios) upon
which animals were allow to eat.

landscapes irrespective of the structure of the data, and that GAMs with tensor product (and to a smaller

extent, smooth function) can also be used when the data structure is of individual intakes.
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Figure 3.3: Predictions of peak region in lifespan and reproductive rate landscape with fixed
ratio data. (a) Lifespan landscape with the overlaid predicted peak regions (left small panels). (b)
Reproductive rate landscapes with the overlaid predicted peak regions. For the landscapes, red represents
peaks while light green represents valleys. For the predicted region, dark blue represents points with lower
predicted z−values whereas bright yellow represents points with higher predicted z−values. The shaded
polygon was added to facilitate visualisation of the predicted peak region and the homogeneity of points
within the predicted peak.

3.4.1 Precision in estimates of known nutritional trade-offs in performance

landscapes

Next, we tested whether Nutrigonometry was capable of reliably quantifying known nutritional trade-

offs in the dataset. The dataset used here is known to contain a strong trade-off between lifespan
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and reproductive rate (Lee et al. 2008, Morimoto & Lihoreau 2019). We therefore tested how different

statistical models in Nutrigonometry performed when estimating this nutritional trade-off. GAMs (both

smooth and tensor product), Bayes, LM, and KNN models were the only models that correctly identified

the known nutritional trade-off in the dataset, measured by angle θ between lifespan and reproductive

rate for data with individual intakes (Table 3.1). Given the variability in the area, spread, and topology

of the predicted region, estimates of hi,j and θ were more precise (narrower confidence intervals) for

GAMs (smooth and tensor product), Bayes and LM compared with KNN. GAMs, Bayes, and LM were

the only models that identified a trade-off on the hypothenuse estimate hi,j for data of individual intakes,

while KNN was the only model that identified this trade-off in data with fixed ratio (Table 3.1). Thus,

overall, simpler models are more suitable to generate peak predictions that accurately describe nutritional

trade-offs in multidimensional performance landscapes for data of different structures.
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Figure 3.4: Persistence Homology (PH) for the topological structure of the predicted peak
region. (a) PH plots of the predicted peak region in lifespan of data containing the structure of individual
intake (top left) and fixed intake data (top right). (b) PH plots of the predicted peak region in reproductive
rate with data of structure containing individual intake (bottom left) and fixed intake data (bottom right).
Homogenous predicted peaks have red (dimension 0) and blue (dimension 1) points that are closer, as
opposed to more heterogeneous predicted peaks upon which (some) points can be farther from each other.

3.4.2 Comparing trait optimum with intake target

When given a choice of imbalanced diets, animals balance their nutrient intake to ratios that maximize

the expression of some fitness traits at the expense of others. In the landmark dataset used here, D.

melanogaster flies balanced their P:C to a ratio of 1:4, which does not coincide with the P:C ratios that
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maximize lifespan nor reproductive rate (Lee et al. 2008). We tested whether Nutrigonometry could

identify such known nutritional trade-off in the data. All models predicted a significantly lower optimum

P:C ratio that maximizes reproductive rate relative to lifespan as expected from the original visual

comparison of landscapes (around 1:2 for reproductive rate and >1:9 for lifespan) (Table 3.2). However,

none of the estimates overlapped the P:C 1:4. This confirms the findings from the original study that

D. melanogaster females do not balance their nutrient intake to maximize lifespan or reproductive rate,

but instead balance their P:C to 1:4 in order to maximize lifetime egg production (Lee et al. 2008). This

validates the power of Nutrigonometry in analysing nutritional behaviour in GF studies (Lee et al. 2008).

Table 3.1: Quantification of nutritional trade-offs between lifespan and reproduction. Estimates of θi,j
(in degrees) and hi,j (in mg) are provided for the nutritional trade-off between lifespan and reproductive
rate. The analysis is based on the data presented in Lee et al. (2008). Confidence intervals overlapping
zero imply no significant differences in the peaks. The magnitude of the estimates reflects the strength of
nutritional trade-offs, with larger magnitudes indicating stronger trade-offs. Note that θi,j is constrained
between 0 and 90 degrees (i.e., 0 and π

2 ).

Parameter Model Estimate Std LwrCI UprCI

SVM 14.456 10.728 -6.574 35.485
RF 14.508 8.109 -1.388 30.404
GAM_tensor 16.128 4.984 6.358 25.897

θi,j GAM_smooth 16.166 4.962 6.438 25.893
GBoost 17.063 9.575 -1.706 35.831
LM 17.940 4.826 8.479 27.400
Bayes 18.205 4.709 8.974 27.436

Trade-off KNN 21.203 6.181 9.088 33.318
(intakes) SVM 16.792 65.723 -112.038 145.622

KNN 50.015 48.137 -44.343 144.373
GBoost 52.851 75.218 -94.591 200.293

hi,j RF 58.561 66.066 -70.943 188.064
LM 75.870 35.142 6.984 144.757
Bayes 76.729 34.444 9.211 144.247
GAM_smooth 120.245 29.406 62.604 177.886
GAM_tensor 124.533 27.930 69.784 179.282
GAM_smooth 9.645 5.897 -1.916 21.205
SVM 11.840 5.649 0.767 22.913
RF 17.368 5.848 5.906 28.831
GBoost 20.177 5.057 10.264 30.090

θi,j GAM_tensor 21.177 3.872 13.588 28.766
Bayes 26.454 5.876 14.935 37.973
LM 26.499 5.903 14.928 38.070

Trade-off KNN 31.428 7.186 17.342 45.513
(fixed) SVM 2.381 68.888 -132.653 137.416

RF 4.819 64.841 -122.283 131.921
GBoost 9.377 65.605 -119.222 137.975

hi,j Bayes 41.461 34.912 -26.974 109.896
LM 42.305 34.429 -25.182 109.791
GAM_smooth 46.635 40.358 -32.475 125.745
GAM_tensor 49.009 32.855 -15.394 113.412
KNN 82.516 30.388 22.949 142.083
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3.5 Discussion

We proposed a new simple analytical framework to analyse nutritional trade-offs in multidimensional

fitness landscapes. Nutrigonometry uses trigonometric relationships from right-angle triangles to identify

and compare peaks (or valleys) in 3D performance landscapes. Using a landmark GF dataset, we demon-

strated the precision and performance of standard statistical (machine learning) models in finding the

peak regions in performance landscapes and subsequently quantifying the strength of nutritional trade-

offs between traits. In the first comparative analysis of statistical methods in GF datasets, we showed

that simpler general linear models outshined machine learning models in the prediction of peak and val-

ley regions in the performance landscapes. Thus, Nutrigonometry is a powerful yet easy-to-implement

methodology to determine the strength of nutritional trade-offs in fitness studies in the field of animal

nutrition.

Multidimensional studies of nutrition through the GF have been increasingly used to gain insight

into animal and human nutrition (Lee et al. 2008, Behmer & Joern 2008, Felton et al. 2009, Simpson &

Raubenheimer 2012, Hewson-Hughes et al. 2012, Gosby et al. 2014, Solon-Biet et al. 2014). Likewise, the

complexity of the applications has also increased, ranging from studies with few nutrients (e.g., protein

and carbohydrates, salts) through to high-dimensional studies investigating individual fatty acids and

amino acids (Simpson et al. 2006, Grandison et al. 2009, Arien et al. 2015, Arganda et al. 2017, Piper

et al. 2017). This means that analytical frameworks that are simple and robust must be developed to

support the development of the field.

In this study, we proposed such a framework. Previous methods were either computationally expensive

(and imprecise) or could, in some cases, overestimate the strength of nutritional trade-offs. For instance,

Rapkin et al. (2018) proposed a model that used regression slopes of the nutrients onto the performance

trait as coordinates of a vector v⃗i, for performance trait i. From these vectors, the angle θ′ between

vectors v⃗i and v⃗j for traits i and j, respectively, could be calculated as the estimate of the strength of

the nutritional trade-off. This method has the limitation that regression slopes can be positive, zero, or

negative, whereas performance landscapes can only exist in the positive numbers (i.e., animals cannot eat

negative amounts of nutrients). This can lead to overestimation of nutritional trade-offs (Morimoto &

Lihoreau 2019). We then proposed a method, known as the Vector of Positions approach, that addressed

this limitation and used vectors with coordinates that matched the location of peaks in the domain of

positive numbers (Morimoto & Lihoreau 2019). However, this approach was limited because (i) we used
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Figure 3.5: RMSE and peak area estimates in peak region predictions. (a) RMSE and predicted
peak area (i.e., area of the shaded polygon from the predicted region for lifespan and reproductive rate
data), with structure containing individual intakes. (b) RMSE and predicted peak area (i.e., area of
the shaded polygon from the predicted region for lifespan and reproductive rate data), with structure
containing fixed ratios. Note that models with high RMSE can still be the best predictors of peak region.

an SVM model which required an arbitrary input threshold to identify peaks and (ii) was computationally

expensive to apply to multiple landscapes. Nutrigonometry resolves the limitations from the previous

models as it (1) estimates nutritional trade-offs using the domain of positive numbers, (2) demonstrates,

in the first comparative study of statistical methods, that simpler (Bayesian) linear regressions are often

more precise, and (3) is computationally cheap to run as it relies on simple trigonometric relationships.

Thus, Nutrigonometry enables reliable large-scale studies on the fitness consequences of animal foraging

decisions that will shed light into the evolution of physiological and behavioural responses to nutrition.

We provided the first comparative assessment of the power and precision of common statistical mod-
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Table 3.2: Estimates of nutritional compromises. Estimates of optimal intake that maximises lifespan
and reproductive rate based on the predicted peak region. Comparison made with the visual peak ratio
from Lee et al. (2008) Note that all but one model (i.e., GAM smooth for 29 fixed ratio reproductive
rate data) predicted peak region 1:4, which is the ratio that individuals balance when given the ability
to balance their diet. Other models suggest that a P:C ratio of 1:4 is lower than the ratio needed to
maximise lifespan but higher than that for reproductive rate.

Data Trait Model Mean Upr CI Lwr CI Target (Visual)

GBoost 5.235 5.205 5.265
RF 5.533 5.508 5.557

SVM 5.864 5.836 5.892
Lifespan LM 9.084 9.048 9.120 16

Bayes 9.154 9.118 9.190
KNN 12.075 12.015 12.135

GAM_smooth 13.055 12.997 13.114
Peak GAM_tensor 13.108 13.049 13.168
Ratio (intakes) GBoost 1.858 1.853 1.864

KNN 2.041 2.037 2.045
RF 2.138 2.133 2.144

Reproductive SVM 2.147 2.138 2.156 2
rate Bayes 2.194 2.191 2.197

LM 2.215 2.212 2.219
GAM_smooth 2.644 2.639 2.650
GAM_tensor 2.661 2.656 2.667

GBoost 13.078 12.987 13.170
SVM 14.946 14.873 15.019

RF 15.107 15.045 15.169
Lifespan GAM_smooth 16.977 16.859 17.097 16

GAM_tensor 20.623 20.536 20.710
KNN 26.050 25.929 26.173
Bayes 32.426 32.237 32.617

Peak LM 32.933 32.744 33.125
Ratio (fixed) KNN 1.467 1.463 1.470

LM 1.836 1.832 1.839
Bayes 1.841 1.837 1.845

Reproductive GBoost 2.171 2.168 2.174 2
rate GAM_tensor 2.244 2.241 2.248

RF 2.545 2.539 2.552
SVM 3.527 3.516 3.538

GAM_smooth 4.280 4.265 4.296

els in identifying regions of interest (e.g., peaks or valleys) in multidimensional performance landscapes.

More importantly, we showed that Nutrigonometry provides a clear, concise, and simpler foundation

for analysing GF data, by demonstrating the best approach to investigate nutritional trade-offs in 3D

fitness landscapes. Because Nutrigonometry uses trigonometric relationships of right-angle triangles, it

is applicable to n dimensions. However, given the often counter-intuitive geometrical effects of high

dimensionality (Milman 1998, Watanabe 2022), such expansion to higher dimensions requires further in-

vestigation as the topic of future developments. Nevertheless, given the broad use of 3D fitness landscapes

in GF studies (Morimoto & Lihoreau 2020), Nutrigonometry readily enables important quantifications

of nutritional trade-offs that were otherwise absent or cumbersome to produce.
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For instance, using a range of models, Nutrigonometry uses right-angle triangles to compare the ratio

of nutrients that maximize lifespan and reproductive rate along with the strength of nutritional trade-offs

between these traits in a landmark paper in the field (Lee et al. 2008). Moreover, Nutrigonometry is

capable of comparing the nutrient ratio that maximizes lifespan and reproductive rate with the nutrient

ratio balanced by individuals when given a choice, providing important insights into the dietary choices

underpinning nutritional compromises. Such quantification can bring new fundamental insights into our

understanding of nutritional trade-offs such as the strength and the direction of the trade-offs (e.g.,

nutrient balance vs. concentration, see Figure 3.1), as well as how much animals actually resolve these

trade-offs when they have the opportunity to do so and whether, for instance, they favour one trait over

another (distance between optimal trade-off and observed nutrient intake target, see Table 3.2).

An important trend in the field of multidimensional nutrition is the study of nutritional effects across

physiological pathways and across levels of biological organization (Lihoreau et al. 2015, Simpson et al.

2015). These studies generate multiple performance landscapes that are often compared visually, with-

out rigorous analytical methods to measure nutritional trade-offs. This limits our ability to identify diet

balances that maximize (or minimize) gene expression of a particular pathway. For example, regions

of eleven performance landscapes of the expression of genes involved in the Insulin/IGF pathway were

visually compared to provide insights into how a key endocrine pathway is regulated based on nutrient

intake, and how gene expression can underlie the expression of life histories (Post & Tatar 2016, Mc-

Donald et al. 2021). Likewise, regions of twelve performance landscapes with gut microbial diversity or

abundance were visually compared to better understand how nutrient composition can modulate host-

microbe interactions (Ng et al. 2019). Similar visual comparisons have been made to understand the

effects of nutrition on host-endosymbiont relationships (Ponton et al. 2015).

Of course, the goal of these molecular studies may not have been the identification of nutrient ratios

that optimize (or minimize) gene expression but instead, the relative contribution of specific nutrients

to changes in gene expression profiles. Nevertheless, identifying peaks and valleys in GF gene expres-

sion landscapes is a useful concept with wider application to veterinary and medical sciences (Simpson

& Raubenheimer 2009). Nutrigonometry will allow researchers to move beyond visual comparisons to

quantitatively assess how landscapes differ using a rigorous and reproducible framework, providing ad-

ditional tools for better understanding the properties of multidimensional performance landscapes. As

a result, Nutrigonometry yields considerable advances to the status quo in the field, enabling a deeper

understanding of the role of nutrition in physiology, behaviour, and ecology.
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3.6 Conclusion

We propose a model that is simple and robust to analyze performance landscapes from GF studies.

Contrary to previous methods (Rapkin et al. 2018, Morimoto & Lihoreau 2019), Nutrigonometry does not

rely on vector calculations but instead harnesses the trigonometric relationships of right-angle triangles

to estimate nutritional trade-offs. This is a major advance of the model as it considerably simplifies

the framework both in conceptual and computational terms. Nutrigonometry thus significantly advances

our ability to generate reliable and reproducible estimates of nutritional trade-offs within and between

species, facilitating quantitative studies of animal nutrition. These advances in our approach open new

avenues of research in multidimensional nutrition and allow for physiological and comparative studies

to be performed in a consistent and reproducible way from which insights into the evolution of animal

nutrition can be gained across the tree of life.
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3.8.1 Appendix: Supplementary information.

The supplementary information for Chapter 3 includes:

• Text S1

• Text S2

• References specific to the supplementary material for Chapter 3

• Figure S1

• Figure S2

• Figure S3

• Table S1

• Table S2

• Table S3

95



Trigonometry to measure fitness trade-offs 

 1 

American Naturalist 

Supplementary Material: “Nutrigonometry I: using right-angle triangles to quantify 

nutritional trade-offs in performance landscapes” 

Authors: Juliano Morimoto1,2,3*, Pedro Conceição3, Christen Mirth4, Mathieu Lihoreau5 

Authors’ affiliations: 

1 School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Ave, 

Aberdeen AB24 2TZ 

2Programa de Pós-graduação em Ecologia e Conservação, Universidade Federal do Paraná, 

Curitiba, 82590-300, Brazil 

3 Institute of Mathematics, University of Aberdeen, King's College, Aberdeen AB24 3FX 

4 School of Biological Sciences, Monash, University, Melbourne, Victoria, Australia 

5 Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI); 

CNRS, University Paul Sabatier – Toulouse III, France. 

 

* Correspondence:  

Dr Juliano Morimoto 

juliano.morimoto@abdn.ac.uk  

Running-title: Trigonometry to measure fitness trade-offs  

Keywords: Nutritional Geometry, nutritional trade-off, performance landscapes 

  

96



Trigonometry to measure fitness trade-offs 

 2 

Text S1 – What is Persistence Homology (PH)? A brief introduction  
 
The text below was adapted from (Conceição & Morimoto, 2022) where more details and 
applications are described. 
 
Topological data analysis and persistence homology  
Topological data analysis (TDA) is a relative new subject that lies at the intersection of 
algebraic topology, data science, statistics and computer science (Chazal & Michel, 2021). 
Algebraic topology is the part of mathematics that studies (topological) spaces by associating 
algebraic objects to it that do not change under ‘well-behaved’ deformations called homotopies, 
e.g., affine transformations – scaling, rotations, translations – and more generally ‘squeezing 
and stretching the space without tearing it apart’. Such algebraic objects that are invariants to 
these deformations are commonly called topological invariants. In a way, one could 
encapsulate the goal of the field of TDA with the common slogan: data has shape and TDA 
aims to measure it.   
 
One of the branches of TDA called persistence homology (PH) has provided new insights and 
methods to understand higher dimensional data and extra qualitative features of data using 
techniques of algebraic topology. In the last years, PH has been extensively studied and, by 
now, is supported by a solid theoretical framework to study complex data structures. Moreover, 
PH application is supported by a range of well-established softwares designed for PH analysis 
pipeline, making PH more accessible to different scientific communities. The aim of PH is to 
extract qualitative information of the data via the computation of a topological invariant called 
homology. For the purpose of the Nutrigonometry, it is enough to think of homology as an 
algebraic tool that records the number of holes on each dimension of a given space. However, 
what is a n-dimensional hole? A 0-dimensional hole is defined to be a connected component 
(e.g., points), a 1-dimensional hole is a cycle/loop that are formed when connected components 
are linked together (for instance, a circumference has a 1-dimensional hole), a 2-dimensional 
hole is the void space enclosed by a surface (a sphere, i.e., the boundary of a ball, has a 2-
dimensional hole) and so on. Note that holes in a space are invariants under homotopies, in 
other words, a hole cannot be created or erased in homotopical deformation. This is important 
because it shows that the topological structure of the data and the information obtained from 
these n-dimensional holes are invariant. As a result, homology is then an algebraic structure 
associated to the input data robust under small perturbations (deformations).  
 
 
The overall structure of a PH pipeline is as following: 
 

 
 
We move from the original cloud of datapoints, upon which we implement a filtering function 
that allows us to extract the n-dimensional holes described above (a). We then display the 
information of the n-dimensional holes with standard plots (b) from which inferences on the 
topological structure of the data can be made (c). For the purpose of this paper, we will focus 
on providing a user-guide explanation on how to read and interpret persistence diagrams. For 
a detailed survey and introduction on PH, refer to (Otter, Porter, Tillmann, Grindrod, & 
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Harrington, 2017) and (Ghrist, 2008). For an introduction on algebraic topology and precise 
mathematical definitions of the concepts defined here, consult (Ghrist, 2014; Hatcher, 2002). 
 
 
(a)From point cloud data to a realized space: filtered simplicial complex  
Topological spaces are generalizations of geometric objects and are scattered all around – from 
Euclidean space to fractals. It can be hard to compute the homology of a general space. 
However, for most of the purpose of PH and most of real-life applications the realized space is 
a topological space called simplicial complex. A simplicial complex is built out of pieces called 
simplices which occur in any dimension n, where n is a non-negative integer: the 0-simplices 
are points, the 1-simplices are edges, the 2-simplices are triangles, the 3-simplices are 
tetrahedrons and so on. More precisely, a n-simplex represent a convex hull of n+1 points in 
the n dimensional Euclidean space that are affinely independent, that is, they are not all on the 
same n-1 dimensional hyperplane. 
 

 
A simplex is determined by its vertex and has special subsets called boundary faces, which are 
simplices of dimension one below their own. For instance, a 1-simplex has two 0-simplices as 
boundary faces, a 2-simplex has three 1-simplices as boundary faces and, more generally, a n-
simplex has n+1 (n-1)-simplices as boundary faces. Boundary faces are important because it 
allows us to build a general simplicial complex out of simplices by gluing them together 
according to one single rule: two simplices of any dimension can be glued along a common 
boundary faces of the same dimension. This surprisingly naive definition has led to important 
developments in mathematics. 
 
The first step of PH is to construct a simplicial complex out of the point cloud data. One of the 
most natural ways to do it is via the Vietoris-Rips complex. Recall that our data is embedded in 
the Euclidean space and, thus, it allows us to talk about (Euclidean) distance between points. 
Let ε be greater or equal than 0. The Vietoris-Rips complex for ε is the simplicial complex 
whose k-simplices are the k+1 data point that are pairwise ε distant. A common way to visualize 
it is performing the following visual experiment: at each data point we draw a ball of diameter 
ε, if k+1 balls intersect there is a k-simplex there. For instance, when ε is very small no ball 
intersect any other ball and the associated Vietoris-Rips complex is a discrete set of point (the 
data point themselves), whereas for very large ε the Vietoris-Rips complex is a unique n-
simplex, since the balls centered at each of the n+1 data points intersect. In other words, we 
construct a filtration by varying the value of the scale parameter ε: it starts with ε equals to zero 
until there is no more change in the simplicial complex, that is, the Vietoris-Rips complex 
becomes a simplex of a given dimension. More precisely, denote VR = (VRi)n a sequence of 
Vietoris-Rips complexes associated to data set for an increasing sequence of scale parameter 
εi, and build a sequence of inclusion of topological spaces 
 

 
 
(b)Persistence diagrams: a topological signature of the data 
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The next step is to compute the homology of the space VR = (VRi)n at each step of the filtration 
according to scale parameter ε. The name persistence homology comes from the fact that we 
observe which parts of the homology (for each possible dimension) persists as the scale 
parameter εi increases. There are two standard and equivalent ways of visualising the 
homological calculation: via persistence diagrams or via barcodes. One can think of a 
persistence diagram/barcode as a representation of a topological signature of the data. For sake 
of completeness, we present both.  
 
A persistence diagram is a two-dimension plot where each point there represents an apparition 
of the topological feature in question (e.g., a hole) in the data set. The value horizontal 
coordinate (x-axis) indicates the birth time of a hole and the vertical coordinate (y-axis) is the 
death time of it according to εi. Each hole always dies after its birth, and thus, all the points in 
the persistence diagram must lie above the diagonal line. Note that points close to the diagonal 
line are features (holes) with a really short ‘lifespan’.  
 
An alternative way to interpret the same information is through the barcode plot. Each bar 
represents an apparition of a hole in the dataset, with the beginning of the bar showing its birth 
and the end of the bar its death as the scale parameter varies in the filtration VR. Short bars in 
the barcode representation are equivalent to points that lie in the diagonal line in the persistence 
diagram, whereas long bars are point far from the diagonal line. 
 
As an example, consider the point cloud data A below 
 

 
The persistence diagram (on the left) and the barcode representation (on the right) of A are 
given below 
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Note that all the red points (i.e., connected components or 0-dimension simplex) are aggregated 
and have a really short lifespan as the scale parameter grows. Moreover, the blue points (i.e., 
cycles or 1-dimension hole) also have a relative short life space. This usually indicates that all 
the data points lie in a unique cluster with points really close to each other and relatively 
homogenous, since there is no space to form a cycle within a persistent enough interval with 
respect to the scale parameter. This is the property used to measure homogeneity in peak (or 
valley) region prediction in using the Nutrigonometry (see Main Text).  
 
(c)Interpretation  
As a direct and easy consequence, one is able to spot when two data sets are different by looking 
at their persistence diagrams/barcodes. Moreover, a persistence diagram gives a global analysis 
of the data.  Higher points in persistence diagrams (long bars in barcodes representation) 
correspond to more persistent features of the data and potentially more informative, whereas 
points close to the diagonal (point with short life-span, short bars in barcodes representation) 
are regarded as noise or small perturbation. However, recent studies have shown that such 
short-life points may contain information about the local geometry properties of data (Adams 
& Moy, 2021) and, therefore, their significance will depend on the problem/data in 
consideration. One current research topic is to obtain a detailed statistical inference out of 
persistence diagrams/barcodes, as outlined in (Otter et al., 2017) and there are still challenges 
and open questions to be answered. Finally, PH has been used to machine learning applications 
as a way of providing feature vectors and enhancing machine learning algorithms.   
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Supplementary Figures 
 
In GF studies, data can be divided into two structures: intake data and fixed ratio data. Intake 
data is ideal in GF studies because it allows for exploration of realized nutritional effects, that 
is, nutritional effects exerted upon traits given by the amount of nutrient eaten (Simpson & 
Raubenheimer, 1993). However, collecting intake data can be cumbersome or challenging, and 
recent approaches have adapted GF experiments to draw landscapes of traits based on the fixed 
ratio of the nutrients in the diets (Kutz, Sgrò, & Mirth, 2019). This approach has been successful 
in generating important biological insights. For instance, fixed ratio diets were used to show 
that high-energy, high-sugar larval diets minimize fluctuating asymmetry in adult male sex 
combs but at a cost of reduced growth and survival in D. melanogaster (Gray, Simpson, & 
Polak, 2018). Similarly, fixed ratio diets have shown that larvae dietary choices minimize 
development time (Rodrigues et al., 2015) and, in combination with chemically-defined diet 
formulations, fixed ratio diets revealed that each fitness-related trait such as survival, growth, 
reproduction, and reproductive rate have different optimal diets (Jang & Lee, 2018). Moreover, 
fixed ratio diets were used to show that larvae fed on protein-restricted diets resulted in adults 
with shorter lifespan in the neriid fly Teleostylinus angusticollis, suggesting a carry-over effect 
from larval nutrition to adult life history (Runagall-McNaull, Bonduriansky, & Crean, 2015). 
Despite this, however, we still do not know how the adaptation of using fixed ratio diets 
influence estimates of nutritional trade-offs in multidimensional performance landscapes.  
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Nutrigonometry allowed us to test whether the structure of the data is important for model 
predictions. We used Lee et al., (2008) dataset with individual intakes (‘intakes’) as well as 
with fixed ratios (‘fixed’) (see Main Text). We also used a second dataset from (Kutz et al., 
2019), which studied how temperature modulates nutritional responses of larval development 
and adult fitness in D. melanogaster, as an additional auxiliary example of our model in fixed 
ratio datasets (see Fig S1 below), as we anticipate this experimental design to become 
progressively more common in the literature given the use of chemically-defined diets and 
increasing nutrient axis being analysed simultaneously [e.g., (Arganda et al., 2017)].  
 
 
 
 
 
 
 
 

 
Figure S1. Model application to fixed ratio data. (a) 3D landscape for developmental time 
at 25oC (top left) and 28oC (bottom left) (from Kutz et al., 2019) with the overlaid predicted 
peak regions. For the landscape, red represents peaks while light green represents valleys. For 
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the predicted region, dark blue points represent points with lower predicted z-values whereas 
bright yellow represents points with higher predicted z-values. The shaded polygon was added 
to facilitate visualisation of the predicted peak region and the homogeneity of points within the 
predicted peak. (b) RMSE and predicted peak area (i.e., area of the shaded polygon in panel a) 
for the models of developmental time at 25oC (top right) and 28oC (bottom right) values of 
each model. Note that models with high RMSE can still be the best predictors of peak region. 
(c) Persistence homology (PH) plots for the topological analysis of the predicted peak region 
of the 3D landscape for developmental time at 25oC (top panel) and 28oC (bottom panel) (from 
Kutz et al., 2019). x and y- axes represent birth and death, respectively, of topological 
structures. The diagonal line represents the line in which the birth and death co-occur. 
Homogenous predicted peaks have red (dimension 0) and blue (dimension 1) points that are 
closer, as opposed to more heterogeneous predicted peaks upon which points are farther from 
each other.  
 

 
Figure S2. Prediction of the valley regions for lifespan using individual intake data from 
Lee et al., 2008. Note that we used the best performing models for the peak region (see Main 
text). 
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Fig S3. Prediction of the valley regions for reproductive rate using individual intake data 
from Lee et al. (2008). Note that we used the best performing models for the peak region (see 
Main text). 
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Supplementary Tables 
 
Table S1. Area of the predicted peak region for all models. All values are given in unit 
squared of nutrient intake or diet composition (for fixed ratios). 
 
Data Trait Model Mean Upr CI Lwr CI 
  GAM_smooth 1912.72 1922.91 1902.53 

  GAM_tensor 1912.84 1923.67 1902.01 
  Bayes 1954.67 1967.07 1942.26 
 Lifespan LM 2069.88 2081.61 2058.14 
  KNN 3126.88 3145.94 3107.83 
  SVM 4800.91 4824.54 4777.28 
  RF 5978.74 6024.63 5932.85 

Peak   GBoost 10919.99 11148.43 10691.55 
Area (intakes)  LM 1932.41 1944.72 1920.10 

  GAM_smooth 2022.98 2037.21 2008.76 
  GAM_tensor 2032.59 2046.05 2019.13 
 Reproductive Bayes 2041.78 2055.65 2027.91 
 rate KNN 6181.58 6216.59 6146.57 
  RF 11001.14 11158.15 10844.12 
  SVM 14614.46 14674.16 14554.76 

    GBoost 16358.27 16555.54 16161.00 
  LM 2201.23 2213.00 2189.47 
  GAM_tensor 2208.55 2220.72 2196.38 
  Bayes 2292.38 2310.97 2273.80 
 Lifespan KNN 2505.34 2570.34 2440.33 
  RF 4909.45 4954.50 4864.39 
  SVM 5848.48 5888.34 5808.61 
  GAM_smooth 6532.01 6587.10 6476.93 

Peak   GBoost 9156.89 9302.30 9011.47 
Area (fixed)  GAM_smooth 2086.55 2098.31 2074.78 

  SVM 2101.93 2113.36 2090.50 
  GAM_tensor 2102.28 2112.33 2092.24 
 Reproductive GBoost 2145.32 2156.60 2134.04 
 rate LM 2162.05 2171.65 2152.45 
  Bayes 2211.30 2224.25 2198.35 
  RF 2994.72 3025.90 2963.55 

    KNN 4357.13 4377.04 4337.22 
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Table S2. Nutrient spread of the predicted peak region for all models. All values are given 
in units of nutrient intake or diet composition (for fixed ratios). 
 

Data Trait Model 
Protein 
(median) 

Protein 
(std) 

Carb 
(median) 

Carb 
(std) 

  LM 0.5333 0.0858 0.1461 0.0194 
  Bayes 0.5354 0.0963 0.1446 0.0155 
  GAM_tensor 0.5576 0.0772 0.1504 0.0218 
 Lifespan GAM_smooth 0.5598 0.0752 0.1566 0.0208 
  RF 0.5884 0.1184 0.2530 0.0342 
  KNN 0.6239 0.0863 0.1920 0.0253 
  SVM 0.6629 0.1153 0.2202 0.0245 

Nutrient   GBoost 0.6721 0.1259 0.2723 0.0339 
spread 
(intakes)  LM 0.1348 0.0214 0.0513 0.0088 

  Bayes 0.1360 0.0207 0.0512 0.0083 
  GBoost 0.2006 0.0337 0.1893 0.0412 

 
Reproduc
tive GAM_smooth 0.2152 0.0260 0.0303 0.0049 

 rate GAM_tensor 0.2172 0.0257 0.0290 0.0051 
  RF 0.2255 0.0379 0.1280 0.0317 
  KNN 0.2768 0.0287 0.1548 0.0140 

    SVM 0.3541 0.0342 0.2288 0.0240 
  GAM_tensor 0.4752 0.0980 0.0731 0.0162 
  RF 0.5004 0.2436 0.0812 0.0261 
  KNN 0.5376 0.0487 0.1072 0.0505 
 Lifespan SVM 0.6408 0.2370 0.0795 0.0461 
  Bayes 0.6416 0.1078 0.0866 0.0146 
  LM 0.6502 0.1075 0.0910 0.0159 
  GBoost 0.6599 0.2394 0.1313 0.0454 

Nutrient   GAM_smooth 0.8015 0.1148 0.1080 0.0595 
spread 
(fixed)  GBoost 0.0807 0.0662 0.0383 0.0143 

  GAM_tensor 0.1413 0.0554 0.0229 0.0088 
  KNN 0.1538 0.1273 0.0202 0.0214 

 
Reproduc
tive Bayes 0.1610 0.0897 0.0228 0.0128 

 rate LM 0.1620 0.0902 0.0206 0.0113 
  RF 0.2238 0.0768 0.0231 0.0122 
  SVM 0.2804 0.0765 0.0333 0.0106 

    GAM_smooth 0.4162 0.0293 0.0444 0.0048 
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Table S3. Quantification of nutritional trade-offs in developmental time between two 
developmental temperatures. Estimates of 𝜃!,# (in degrees) and ℎ!,# (in g/L). Analysis from 
the data presented in Kutz et al., 2019. Confidence intervals overlapping zero implies no 
difference in the peaks. Magnitude of the estimates indicate the strength of nutritional trade-
offs (i.e., larger magnitudes indicate stronger nutritional trade-offs). Note that 𝜃!,# is bound 
between 0 and 90 degrees (i.e., 0 and $

%
). 

 
Parameter Model Mean Sd lwrCI uprCI 
 LM  -0.0228  2.1983   -4.332   4.286  
 Bayes  -0.0707   2.2355   -4.452   4.311  

𝜃!,# RF  0.74892   3.1543   -5.434  6.932  
 Gboost  -11.541  15.598   -42.11   19.03  
 SVM  -0.0604   30.284   -59.42   59.30  
 KNN  -0.0084   2.2102   -4.341   4.324  
 LM  2.0297   51.035   -98.00  102.06  
 Bayes  0.3822   50.295   -98.20   98.971  

ℎ!,# RF  17.283  125.803   -229.31   263.88  
 Gboost  102.95  179.903   -249.68   455.60  
 SVM  0.6422   124.636   -243.67   244.95  
 KNN  5.8109  175.197   -337.61   349.23  
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Chapter 4

Nutrigonometry II: Experimental strategies to maximize

nutritional information in multidimensional performance

landscapes

Publication reference

Morimoto, J., (2022). Nutrigonometry II: Experimental strategies to maximize nutritional information

in multidimensional performance landscapes. Ecology and Evolution, 12(8), p.e9174.
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4.1 Abstract

Animals regulate their nutrient consumption to maximise the expression of fitness traits with competing

nutritional needs (‘nutritional trade-offs’). Nutritional trade-offs have been studied using a response sur-

face modelling approach known as the Geometric Framework for nutrition (GF). Current experimental

design in GF studies does not explore the entire area of the nutritional space resulting in performance

landscapes that may be incomplete. This hampers our ability to understand the properties of the per-

formance landscape (e.g., peak shape) from which meaningful biological insights can be obtained. Here,

I tested alternative experimental designs to explore the full range of the performance landscape in GF

studies. I compared the performance of the standard GF design strategy with three alternatives: hexag-

onal, square, and random points grid strategies with respect to their accuracy in reconstructing baseline

performance landscapes from a landmark GF dataset. I showed that standard GF design did not recon-

struct the properties of baseline performance landscape appropriately particularly for traits that respond

strongly to the interaction between nutrients. Moreover, the peak estimates in the reconstructed perfor-

mance landscape using standard GF design were accurate in terms of the nutrient ratio but incomplete

in terms of peak shape. All other grid designs provided more accurate reconstructions of the baseline

performance landscape while also providing accurate estimates of nutrient ratio and peak shape. Thus,

alternative experimental designs can maximise information from performance landscapes in GF studies,

enabling reliable biological insights into nutritional trade-offs and physiological limits within and across

species.

Keywords: Nutritional Geometry, trigonometry, lifespan-reproduction trade-off, fitness maps, Drosophila

melanogaster.
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4.2 Introduction

Animals often balance their diet to maximize life-history traits with diverging nutritional needs (Simpson

& Raubenheimer 2012, Raubenheimer & Simpson 2020). This creates the potential for trade-offs in

the balance and allocation of nutrients needed for optimum fitness, aka ‘nutritional trade-off’ (Lee et al.

2008, Maklakov et al. 2008, Morimoto & Lihoreau 2019). Nutritional trade-offs have been described across

taxa. For example, nutritional trade-offs between lifespan and reproduction and between immunity and

reproduction have been described in Drosophila melanogaster (Lee et al. 2008, Ponton et al. 2015),

tephritid fruit flies and neriid flies (Fanson, Yap & Taylor 2012, Fanson & Taylor 2012, Adler et al. 2013,

Pascacio-Villafán et al. 2022), crickets (Maklakov et al. 2008, Rapkin et al. 2018, Treidel et al. 2021,

Hawkes et al. 2022, Guo et al. 2022), and mice (Solon-Biet et al. 2014) (see also reviews by Ponton

et al. 2011, Schwenke et al. 2016). Nutritional trade-offs have also been described between reproductive

traits in D. melanogaster (Morimoto & Wigby 2016) and neriid flies (Sentinella et al. 2013), cockroaches

(Bunning et al. 2015), crickets (Ng et al. 2018), and butterflies (Gage & Cook 1994). Thus, nutritional

trade-offs appear to be ubiquitous.

A method known as the Geometric Framework of Nutrition (GF) has emerged as a powerful unifying

framework capable of disentangling the multidimensional effects of nutrients (both ratios and concen-

trations) on life-history traits and fitness (Simpson & Raubenheimer 1993, Raubenheimer & Simpson

1993), thereby enabling accurate estimates of nutritional trade-offs. The GF framework has been used

across taxa and became a cornerstone design for advancing our understanding of complex physiological

and behavioural responses to nutrition, including human health (Raubenheimer et al. 2009, Simpson &

Raubenheimer 2012, Simpson et al. 2017). In essence, GF is an application of the response surface model-

ing (RSM) approach (Box & Wilson 1951), where a n-dimensional Euclidean space is used to investigate

the response of the animal to the dietary intake of various ratios and concentrations of n nutrients. The

resulting n+ 1 surface (known as ‘performance landscape’) maps the level of the chosen trait across the

different dietary ratios and concentrations. However, contrary to standard applications of RSM, GF is not

only interested in optimization (i.e., finding the ‘peak’ in the performance landscape). This is because the

entire landscape contains valuable biological information about diet-dependent expression of traits and

thus, are meaningful to biologists and ecologists. For example, both peaks and valleys can be important

indicators of the overall nutritional responses and comparisons between the positions of these properties

within a performance landscape can be useful to determine the degree of changes in life-histories with
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small dietary changes as well as quantifying obligate nutritional trade-offs between traits (Rapkin et al.

2018, Morimoto & Lihoreau 2019, Kutz et al. 2019, Morimoto et al. 2023). However, common design of

experiments used in RSM such as full factorial or fractional designs and central composite designs (CCD)

(Myers et al. 2016) are not necessarily sufficient or efficient to reveal the characteristics of the entire

performance landscapes (Ruohonen et al. 2001). Therefore, an optimum GF experimental design is a

trade-off between the number of diets and replicates per diet to maximise resolution of the performance

landscape and the costs and feasibility risks associated with geometrically increasing sample sizes.

Traditionally, GF studies have been of two types: those which measure individual diet intake as in

(Lee et al. 2008, Maklakov et al. 2008, Fanson, Yap & Taylor 2012) and those that provide diets with fixed

ratios and do not measure intake as in (Kutz et al. 2019, Alton et al. 2020). Both of these types share the

fundamental GF design of experiments, which is as follows: (i) the standard design of experiments in GF

studies divides the nutritional space (i.e., Cartesian plane with nutrients as axes) into several ‘nutritional

rails’, which are diets with fixed nutrient ratios (Figure 4.1a), (ii) each nutritional rail is subdivided

into different diet concentrations, and (iii) each combination of diet ratio and concentration (red dots in

Figure 4.1a) are the ‘dietary treatments,’ which are given to replicate animals or groups of animals, from

which the measure of the traits is taken (Simpson & Raubenheimer 2012); here I will refer to the dietary

treatment points as ‘anchor points’.

The difference between the two types of studies using GF is that in one type, experimenters measure

individuals’ (or groups’) food intakes (‘intake data’), whereas in the other type, individuals are given a

fixed ratio of the diet without measurements of food intake (‘fixed ratio data’). The anchor points (diets)

are the points that contain data for the performance traits and therefore act as data-driven points (or

‘anchors’) for the reconstruction of the performance landscape, which is commonly done using thin-plate

spline interpolation (see e.g., Ponton et al. 2015, Morimoto & Lihoreau 2019). Anchor points are directly

used for interpolation in the fixed ratio data but only work as guidelines for the experimental design for

intake data, since the interpolation is done using the final nutrient intake of each individual in each diet.

The performance landscape has depth determined by the variance in food intake (for intake data) or the

range of diet concentrations (for fixed ratio data) (Figure 4.1a).

Importantly though, both types of GF approaches are insufficient to generate anchor points that

cover the entire area of the nutrient space, requiring interpolation while making performance landscapes

incomplete. As a result, a large area of the nutrient space remains unexplored or in need of extrapolation

for areas without anchor points (Figure 4.1a). While this may not necessarily affect our approximations
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of the regions in which peaks and valleys are located, it certainly precludes us from extracting meaningful

biological information across the entire domain of the nutritional space of animals. For instance, by

limiting the range of the nutrient space that is explored, GF makes an underlying assumption about the

a priori knowledge of the physiological limits that a species has or evolved in terms of diet, although this

information is rarely known.

More recent GF studies have used ecological and fieldwork data to design GF diets that are ecologically

relevant and guide experimental design, incorporating not only natural dietary information from natural

populations (see e.g., Rothman et al. 2011, Wilder et al. 2013, Vaudo et al. 2016) but also genetics (Deans

et al. 2016), environmental stability (Lawton et al. 2021), and land use (Le Gall et al. 2020). Despite

this, GF studies are still inductive and do not explore the full range of the nutrient space. To date, there

has been no systematic investigation as to how the standard GF experimental design can influence the

resolution of the reconstructed performance landscapes, nor whether alternative experimental designs

could provide more complete estimates of performance landscapes across the entire nutritional space.

Here, I investigated the performance of different sampling strategies when reconstructing performance

landscapes, using a landmark dataset in the field of nutritional ecology (Lee et al. 2008). I used the pio-

neering Nutrigonometry framework to identify and compare the peaks in the reconstructed performance

landscapes and how congruent these estimates are across sampling strategies (Morimoto et al. 2023). I

tested four different sampling strategies: standard GF, hexagonal, squared, and random points sampling

grids (Figure 4.1a). As a proof-of-concept, I developed the main arguments using fixed ratio datasets,

as this type of GF approach is conceptually easier to explain and allows for the understanding of the

foundations of my argument. I then expanded the applications of the argument for GF studies with

intake datasets in the discussion section. Overall, this is the first investigation of the foundations of GF

experimental design, which can have important long-term implications to the quality of data collected in

field of nutritional ecology. Expanding the coverage of performance landscapes will open up possibilities

to extract biological information that is currently inaccessible, allowing for more complete studies on the

nutritional trade-offs that animals have evolved to circumvent physiological and nutritional constraints.
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4.3 Materials and Methods

4.3.1 Terminology and sampling designs

Throughout the text, I used the term ‘anchor point’ to refer to a diet of given nutrient ratios and

‘resolution’ as the total number of different diets (anchor points) in an experiment. Anchor points in the

performance landscapes were generated in three resolutions: 30, 50, and 250 anchor points (see Figure

4.6 for examples).

4.3.2 Standard GF

The standard GF sampling grid was used with nutritional rails and diet concentrations as in the original

dataset (Lee et al. 2008) (Figure 4.1a).

4.3.3 Hexagonal grid

The first alternative sampling strategy was the hexagonal grid (Figure 4.1b). Consider that knowledge

(or ‘certainty’) ηi about the estimate of the performance trait for trait i at the anchor point follows a

(symmetric) Gaussian density function such that:

ηi = C · e
−
[

(x−x0)2

2σ2
X

+
(y−y0)2

2σ2
Y

]

where C is the amplitude of the distribution (e.g., determined by trait values), x0 and y0 are coordi-

nates of the anchor points where the Gaussian is centred, and σ2
X and σ2

Y correspond to the uncertainty

around the anchor point (Figure 4.7a). Note that for the purpose of this argument, I assume a correlation

of zero between x and y and thus, a symmetric (circular) Gaussian.

Then, the performance landscape can be seen as an analogous problem of circle packing in geometry,

where the hexagonal grid is the densest circle packing in 2D Euclidean space (Chang & Wang 2010) (see

Figure 4.7b). In fact, the distance between any two anchor points i and j is equal to 2r, where r is the

apothem of the hexagons containing the anchor points (see Figure 4.7c). I hypothesized that a hexagonal

grid with anchor points at the centre of hexagons could maximise performance landscape reconstruction

in the nutritional space while minimizing the number of anchor points and replicates

113



4.3.4 Square grid

The second sampling strategy was the square grid (Figure 4.1b). The underlying rationale for the square

grid is similar to that of the hexagonal grid above, where I divided the nutritional space into adjacent

squares, with anchor points at the centre of each square. The distance between any two anchor points

i and j is equal to 2r if the squares lie in the same column or row and 2r
√
2 if the anchor points lie in

diagonal squares, where r is the apothem of the squares containing the anchor points (Figure 4.7c).

Random Points grid

Lastly, I also investigated the accuracy of randomly probing the nutritional space (Figure 4.1b).

Dataset and Computation

Dataset

I used a landmark dataset that contains Drosophila melanogaster individual diet intakes and diet fixed

ratios, and the consequences of diet on lifespan and reproduction (Lee et al. 2008). Two nutrients were

investigated – protein and carbohydrate – such that performance landscapes have three dimensions. This

dataset was previously used in my conceptualization of the Vector of Position approach and Nutrigonom-

etry, having important benchmark status in the field (Morimoto & Lihoreau 2019, Morimoto et al. 2023).

Briefly, the Vector of Positions approach was developed to generate n-dimensional performance land-

scapes from GF experiments as vectors from which the strength of nutritional trade-offs between traits can

be estimated via the angle θ between vectors of two traits (Morimoto & Lihoreau 2019). This approach

uses a machine learning model to identify the peak region. More recently, I developed a conceptually

simpler and computationally cheaper model to estimate peak regions and nutritional trade-offs in GF

studies using trigonometric relationships (‘Nutrigonometry’), which enabled the comparison of different

statistical methods to estimate nutritional trade-offs and opened up new ways in which properties of per-

formance landscapes can be estimated (Morimoto et al. 2023). The dataset used here was fundamental

for the validation of these methods and is therefore used here.

Generating the Baseline Performance Landscape

The baseline performance landscape is the true performance landscape for the response of a trait through-

out the nutritional space (Figure 4.1c). In experiments, this true performance landscape is unknown, and
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the GF framework aims to approximate a reconstructed performance landscape to the baseline landscape

empirically. There are no available datasets in the literature that explore the entire nutritional space,

and thus, no true performance landscapes have yet been estimated experimentally.

Consequently, to obtain baseline performance landscapes, I created a high-resolution grid (of 4 units

distance between points) that covered the entire nutritional landscape, including regions beyond the

original boundaries of the nutritional space sampled by (Lee et al. 2008), and predicted the value of

the trait at each of the grid points using a machine learning approach based on the empirical values of

the sampled regions obtained in (Lee et al. 2008). This allowed me to create high-resolution (predicted)

baseline performance landscapes for lifespan, lifetime eggs, and daily eggs that can be compared with

the reconstructed performance landscapes for the same traits using different sampling approaches (see

below). The baseline landscapes are shown in Figure 4.1c.

Approach

I simulated a real-world experiment as follows:

• I sampled the anchor points in the nutritional space according to the four grid sampling approaches

and three resolutions tested here (see above).

• I used a polynomial regression with the linear and quadratic effects of protein and carbohydrate

(and their interactions) fitted to the baseline performance landscape to assign a value of the trait

to each of the anchor points. This is equivalent to running an experiment with the anchor points

and obtaining the estimates for the performance trait at each anchor point, based on the true

performance landscape (which is unknown in real-world problems).

• I reconstructed the performance landscape for each sampling grid and resolution using the thin-plate

spline method.

• I applied the Nutrigonometry model to estimate the peak region for each sampling grid and resolu-

tion on the reconstructed landscape, which included the calculation of the protein-to-carbohydrate

(P:C) ratios of the estimated Nutrigonometry peak.

• I overlaid the identified peak region with the true performance landscape as well as all the estimates

of the peak region across all resolutions and grid sampling strategies.

115



• I calculated the area of the estimated peak by approximating the area to an ellipse with coordinates

determined by the peak estimates using Nutrigonometry.

Reconstruction Accuracy

I estimated the accuracy of the reconstruction vs. baseline landscape by generating a 2D profile of

the 3D landscape using the predicted value of the landscape as the y-axis and the multiplication of

protein and carbohydrate content as the x-axis for all points in the landscape. This approach allowed

for dimensionality reduction while providing topological information about the structure of the data. I

then binned the x-axis (n = 100) and calculated the average and standard deviation of the Euclidean

distance between the points from the baseline performance landscape and the reconstructed performance

landscape. For this analysis, I used the reconstructed landscapes with the highest resolution (i.e., 250)

because of the higher density of anchor points (and hence, expected accuracy) used to generate these

performance landscapes.

Software and Packages

All simulations were performed in R version 3.6.2 (Team 2019). The ‘tidymodels version 0.1.0’, ‘stringr

version 1.4.0’, ‘tidyr version 1.1.0’, ‘purrr version 0.3.4’, and ‘dplyr version 0.8.5’ packages of the tidyverse

were used for data wrangling, as well as to generate the baseline performance landscape and manipulate

data for visualization (Wickham et al. 2016, 2019). Performance landscapes were reconstructed using

the ‘Tps’ function of the ‘fields version 10.3’ package with the lambda argument set to 0.05 in all models

(Nychka et al. 2017). I also used the ‘raster version 3.1-5’, ‘rgeos version 0.5-3’, and ‘sp version 1.4-2’

packages for data manipulations for visualization and sampling of the nutritional space, the latter being

used for the functionalities in the ‘spsample’ function (Bivand et al. 2017, ?, Pebesma & Bivand 2005).

All plots were created using the ‘ggplot2 version 3.3.1’ package (Wickham et al. 2016). The ‘ggnewscale

version 0.4.5’ package was used to enhance the data visualization (Campitelli 2020).
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Figure 4.1: Exploration of the nutrient space using alternative sampling strategies. (a) The
standard experimental design of a GF study (left) and a performance landscape generated form a fixed
ratio dataset (reconstructed from Kutz et al. 2019) (right). Note the unexplored region in the nutritional
space (shaded area). (b) The three alternative sampling strategies tested here: hexagonal, square, and
random points grids. Red dots indicate anchor points (see Main Text). (c) The baseline performance
landscapes for lifespan, lifetime egg production and daily egg production. These landscapes were gener-
ated with the purpose of acting as the true performance landscape of the trait, which are unknown in
GF experiments. These baselines landscapes are the standard upon which the reconstructed landscapes
with alternative methods were compared against the GF in this study (see Methods section).

Results

Standard GF sampling strategy finds the correct ratio of nutrients but often

with inaccurate peak shape estimates

The data showed that all sampling strategies provide reasonably accurate estimates of the ratio in which

the peak in the performance landscape is found (Figure 4.2). Note that estimates of peak P:C ratio were
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more variable for lifespan (log10-transformed in Figure 4.2 to aid visualization) because the peak lies

near the boundary of the performance landscape (i.e., P:C ∼0:1). Nonetheless, the visualization of the

predicted peak region shows that all methods find peak regions in the correct area of the performance

landscape (Figure 4.3a).
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Figure 4.2: P:C ratios of the estimated peak in the reconstructed performance landscape
across the grid sampling strategies. Note that the y-axis of the lifespan plots was log-transformed
to aid data visualisation (see also Figure 4.3a). Such differences in scale for lifespan emerged from the
fact that the peak lies near the boundary of the nutritional landscape, in a region of P:C 0:1. Hex:
hexagonal sampling; rand: random points sampling; sq: square sampling.

Despite this, striking differences between standard GF and other sampling strategies were found in

the shape of the predicted peak. For lifespan, where the peak in the performance landscape lies near the

boundary of the nutritional space, the predictions of all sampling strategies were similar in shape (Figure

4.3a-b). Conversely, the shapes of the GF peaks for lifetime egg production and daily eggs, which are in

the middle of the performance landscape (indicating that the trait responds to the interaction between
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Figure 4.3: Predicted peak region and shape across sampling strategies. (b) Predicted peak in
the performance landscape of lifespan (top) and daily eggs (bottom) (see also Figure 4.6a for lifetime
egg peak predictions). Performance landscapes reconstructed from resolution equal to 50. (b) Overlaid
peak predictions mapped onto the baseline performance landscapes of lifespan, lifetime eggs, and daily
eggs across the sampling strategies. Note that GF sampling (orange) generates incomplete peak shape
predictions for traits that respond to the interaction of nutrients. Hex: hexagonal sampling; rand: random
points sampling; sq: square sampling.

protein and carbohydrate), differed substantially from those of other sampling strategies: standard GF

peaks are wider and semi-circular, while all other sampling strategies find a defined circular peak covering

the appropriate region of the baseline performance landscape (Figure 4.3a-b and Figure 4.6d).

The overlaid visualization of the peak estimates and the underlying baseline performance landscape

clearly showed that estimates of the peak region from GF sampling were incapable of reflecting the true

peak region of the baseline performance landscape relative to the other methods (Figure 4.3b). As a

result, these differences are also reflected in the peak area estimates, where the peak area using standard

GF was smaller relative to other sampling strategies (Figure 4.4). In other words, standard GF can only

provide a partial estimate of peak area, especially for traits that are affected by the interaction between

nutrients.
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Reconstructed performance landscapes from standard GF sampling are more

inaccurate in regions that capture responses to nutrient interactions

The topological profile of the reconstructed landscapes showed that standard GF sampling generates

reconstructed performance landscapes that are more dissimilar (measured as the Euclidean distance)

to the true baseline performance landscape in regions that capture the interaction of nutrients on the

performance trait (e.g., high protein and high carbohydrate values) (Figure 4.4b). Importantly, the

inaccuracy is less accentuated for traits that have peaks near the boundary of the nutritional space (i.e.,

lifespan), but progressively more pronounced for traits with peaks in the middle of the nutrient space,

which indicates strong responses to the interaction of nutrients (Figure 4.4b).
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Figure 4.4: Peak area and performance landscape topology. (a) Predicted peak in the performance
landscape of lifespan (top) and daily eggs (bottom) (see also Figure 4.6d) for lifetime egg peak predictions).
Performance landscapes reconstructed from resolution equal to 50. (b) Overlaid peak predictions mapped
onto the baseline performance landscapes of lifespan, lifetime eggs, and daily eggs across the sampling
strategies. Note that GF sampling (orange) generates incomplete peak shape predictions for traits that
respond to the interaction of nutrients. Hex: hexagonal sampling; rand: random points sampling; sq:
square sampling.

For instance, in regions of high protein and carbohydrate, the average Euclidean distance between

the reconstructed and true baseline performance landscapes increases rapidly for standard GF sampling

relative to other sampling strategies, particularly for the landscapes of lifetime eggs (with peak at P:C

∼1:3) and daily eggs (P:C ∼1:2) (see highlighted red region in Figure 4.4b).
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Discussion

I report an investigation of alternative sampling strategies of the nutritional space for GF studies. This is

necessary so that GF landscapes can be made more robust, from which properties can be estimated and

biological insights gained. This goes above and beyond current efforts that integrated ecological informa-

tion into the design of traditional GF studies, as those suffer from similar limitations that underpinned

this work (i.e., regions of the nutrient space with a lack of sampling) (Rothman et al. 2011, Wilder et al.

2013, Vaudo et al. 2016). I tested three alternative grid sampling strategies: hexagonal, square, and

random point grids. Using a landmark dataset coupled with the pioneering Nutrigonometry method, I

showed that all sampling strategies are able to provide reasonable estimates of the nutrient ratios where

the peak in nutritional landscape is found. However, GF sampling provides incomplete estimates of peak

region. This can have knock-on consequences for biological inferences when, for example, peak area is rel-

evant to understand the nutritional conditions that maximize the expression of a trait. Importantly, GF

sampling also provides inaccurate estimates of the performance landscape shape for performance traits

that respond to the interaction between nutrients, highlighting additional limitations of the standard

GF experimental design for biological insight using the properties of the performance landscapes. Over-

all, this study shows that to build performance landscapes with reliable shapes for biological inferences,

alternative strategies of experimental design are needed in GF studies.

Why does the GF sampling find the correct information of nutrient ratios but not on the shape of

the peaks in the landscape? Figure 4.1a (right panel) shows that the GF sampling strategy explores only

a subset of the nutritional space. For fixed ratio datasets, this is usually a triangular region, whereas

for intake datasets, the shape can vary but never covers the entire nutrient space. As a result, the

interpolation for the construction of the performance landscape becomes an extrapolation beyond the

regions upon which the anchor points exist, which can be mathematically and computationally difficult

to achieve even with more complete datasets (Campagna & Perracchione 2021). As a result, the standard

thin-plate spline interpolation and subsequent algorithms to estimate peak position truncate the peak

estimates on the boundary of the performance landscape that can be estimated based on the anchor points.

In doing so, the shape and area of the peak is also truncated, losing important biological information

(Figure 4.3). The alternative methods tested here circumvent this limitation by sampling a wider range

of the nutrient space, with anchor points that support a more accurate estimate of the peak shape and

area.
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Figure 4.5: Alternative sampling strategies used for intake datasets. (a) Each anchor point
could be seen as a point in a nutritional rail (as defined in standard GF design). This is true for all
alternative sampling strategies tested in this study. (b) (left) Zoom of a specific region of the nutritional
space from the hexagonal grid strategy (in a). When measuring intake, the anchor points move along
nutritional rails represented by a vector ν⃗i for the ith anchor point. The magnitude of the vector, ||ν⃗i||,
provides a measure of the strength of the physiological constraint experienced by the animals across
diets as this metric shows the distance travelled by the anchor point along the nutritional rail (centre
and right panels). Green line represents a hypothetical demand imposed by physiological constraint. (c)
Performance landscapes of protein and carbohydrate intake (from Lee et al. 2008) to illustrate how intake
can be used as the third dimension in performance landscapes. This can assist the inferences of rules
of compromise which determine the amount of food and the quantity of each nutrient that individuals
are capable of over- or under-consume in order to minimise distance between current food intake and
self-balanced food intake (Simpson & Raubenheimer 1993, Raubenheimer & Simpson 1993). Rules of
compromise are not dealt with in this study as it lies beyond the study’s main scope, and is part of a
next manuscript of this series.
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Why does the GF sampling lead to more inaccurate landscapes in regions of nutrient interactions?

The first reason lies in the previous point: GF only covers a subset of the nutritional space. Often, the

diagonal region of the nutrient space has less ‘covered area’ relative to the empty nutrient space (see,

e.g., Figure 4.1a). Consequently, a larger area of the performance landscape is missing and needs to be

extrapolated, which can result in higher error. The second reason is likely related to the curvature of

the performance landscape. I showed that the inaccuracies increase in performance landscapes for traits

with peaks in the middle of the nutrient space, which indicates that the trait responds to the interaction

between nutrients rather than an additive effect. For instance, the inaccuracies were almost absent for

the landscape of lifespan but progressively more accentuated for the landscapes of lifetime eggs and daily

eggs, respectively (Figure 4.4b). The absence of anchor points (i.e., diets) covering the full diagonal

region likely precludes an adequate estimate of the curvature of the performance landscape in regions

of nutrient interactions. The alternative methods tested here circumvent both of these limitations of

GF sampling by covering a wider region of the nutrient space, including in the diagonal region. Note,

however, that although the alternative methods perform better than standard GF sampling, they still

introduce inaccuracies in the performance landscapes in the regions of nutrient interactions, providing an

important area for future theoretical, computational, and empirical work to understand the underlying

reasons.

In this study, I used fixed ratio datasets as a proof-of-concept, which is the structure that has been

used recently in studies of GF focused on development (Silva-Soares et al. 2017, Alton et al. 2020, Kutz

et al. 2019, Ma et al. 2022). However, GF sampling primarily covers datasets with individual nutrient

intakes (e.g., Lee et al. 2008, Maklakov et al. 2008, Hawkes et al. 2022). Individuals’ nutrient intakes

are constrained by animal physiology and are difficult or impossible to overcome (e.g., individuals often

die on overly unbalanced diets). Consequently, animals will unlikely eat sufficient quantities of food to

explore the entire nutrient space, particularly in diets that are highly unbalanced relative to physiological

constraints. As a result, the anchor points will be shifted in the direction of the physiological constraint,

which can be represented by a vector ν⃗i (Figure 4.5a-b). Note that each anchor point can be represented

as a point in a nutritional rail that determines the direction of the vector ν⃗i (Figure 4.5b).

In this case, the anchor points for any performance landscape of the alternative sampling strategies

tested here, if plotted using intakes, will yield a similar performance landscape to that generated by

GF sampling because individuals will shift their intakes to match the physiological constraints (Figure

4.5b). In other words, the performance landscapes from all methods will tend to converge. This is
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important because nutrient intake data can reveal physiological constraints as well as compensatory

feeding strategies underpinning rules of compromise, where individuals modulate the intake of more (or

less) concentrated diets to achieve similar P:C ratios and total nutrient intake (Raubenheimer & Simpson

1993). This information is unavailable in fixed ratio data where intake is not measured.

Several questions could be raised, for instance: (i) How can the limitations of alternative methods in

terms of representing nutrient intakes to derive rules of compromise be resolved? Or (ii) Why then, use

alternative methods, if they either fail to provide intake datasets or converge towards the standard GF

sampling strategy? To answer the first question, it is important to notice that it is not mandatory to use

nutrient intakes to define the anchor points when generating landscapes (e.g., Kutz et al. 2019, Alton et al.

2020). It is true that, in general, GF studies have used individual nutrient intake as an input variable

upon which the performance trait was mapped and the landscape built (see Simpson & Raubenheimer

2012) for a comprehensive review. However, intake estimates can and have been used as the output

(performance) variable in GF studies, opening up the possibility of using fixed ratios for the design of

experiments and nutrient intake as performance traits (rather than input variables). For example, a GF

study showed that yeast-rich diets induce higher water intakes in D. melanogaster (Fanson, Yap & Taylor

2012). That said, it is possible to use the alternative methods presented here as fixed ratios upon which

nutrient intake and performance traits can be mapped (Figure 4.5c).

I conjecture that this approach will enable us to extract the same rules of compromise and insights

into physiological constraints as the original GF approach. The formalization of this conjecture requires

an extensive argument that lies beyond the scope of this paper, as it involves introducing new concepts,

e.g., intake targets (Simpson & Raubenheimer 2012), but is part of a follow-on manuscript being con-

ceived. Importantly, the conjecture must be valid under the assumption that performance landscapes of

alternative methods and GF sampling converge (as in Figure 4.5b). This leads to the answer of the second

question: Why then use alternative methods? Alternative methods allow for more complete exploration

and accuracy in the representation of performance landscapes, as shown here. This opens up the possi-

bility to use properties of the performance landscapes as new proxies for biological insights. For instance,

peak area and shape could provide insights into the nutritional resilience of the animal in maximizing a

trait under varying nutritional conditions (e.g., the wider the peak, the more nutritionally resilient the

animal). The use of the properties of the performance landscape cannot be achieved unless performance

landscapes explore the entire nutritional space. Thus, alternative sampling methods expand the scope

of GF methods and can unlock new measurements that can provide unique insights into compensatory
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feeding strategies with biological significance and, more broadly, the evolution of nutritional trade-offs

(Raubenheimer & Simpson 1993, Fanson et al. 2009, Fanson, Yap & Taylor 2012).

4.4 Conclusion

Despite the growing integration of ecological information into experimental design, current GF studies

use a design aimed at sampling the nutrient space to construct performance landscapes that had not been

scrutinized (Rothman et al. 2011, Wilder et al. 2013, Deans et al. 2016, Vaudo et al. 2016, Le Gall et al.

2020, Lawton et al. 2021). I tested alternative sampling strategies and show that their performances

in reconstructing landscape properties are superior. Among these alternative strategies, the hexagonal

design seems the most obvious choice for empirical testing as it allows for anchor points to be distributed

such that more area is covered in the nutrient space per anchor point.

Future studies will illuminate how other standard metrics calculated in GF studies (i.e., rules of

compromise) can be estimated and calculated from fixed ratio data with hexagonal (or other sampling

strategy) design. This includes, for instance, regions in which the combination of nutrients is potentially

lethal, generating holes in the performance landscapes (Blonder 2016, Conceição & Morimoto 2022).

Overall, the findings presented represent an advance in current GF experimental design methodology. This

has important consequences for the field because GF enables a multidimensional approach in nutrition

where performance landscapes can provide important biological insights into the evolution of animal

nutrition and life histories.
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4.6.1 Appendix: Supplementary figures.
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Figure 4.6: (a-c) Examples of the sampling strategies for resolutions of 30, 50, and 250, respectively. (d)
Prediction of the peak regions for lifetime egg across sampling strategies (data from Lee et al. 2008).
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Chapter 5

Nutrigonometry III: Curvature, area and differences be-

tween performance landscapes

Publication reference

Morimoto, J., Conceição, P. and Smoczyk, K., (2022). Nutrigonometry III: Curvature, area and differ-

ences between performance landscapes. Royal Society Open Science, 9(11), p.221326.

128



5.1 Abstract

Nutrition is one of the underlying factors necessary for the expression of life-histories and fitness across

the tree of life. In recent decades, the Geometric Framework (GF) has become a powerful framework to

obtain biological insights through the construction of multidimensional performance landscapes. How-

ever, to date, many properties of these multidimensional landscapes have remained inaccessible due to

our lack of mathematical and statistical frameworks for GF analysis. This has limited our ability to

understand, describe, and estimate parameters which may contain useful biological information from

GF multidimensional performance landscapes. Here, we propose a new model to investigate the curva-

ture of GF multidimensional landscapes by calculating the parameters from differential geometry known

as Gaussian and mean curvatures. We also estimate the surface-area of multidimensional performance

landscapes as a way to measure landscape deviations from flat. We applied the models to a landmark

dataset in the field, where we also validate the assumptions required for the calculations of curvature. In

particular, we showed that linear models perform as well as other models used in GF data, enabling for

landscapes to be approximated by quadratic polynomials. We then introduced Hausdorff distance as a

metric to compare the similarity of multidimensional landscapes.

Keywords: Ecological specialisation, Grinnelian niche, diet; climate change; persistence homology.
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5.2 Introduction

Animals can often balance their nutrient intake to maximise fitness (Raubenheimer & Simpson 1997,

Raubenheimer et al. 2009). This creates the potential for nutritional trade-offs to emerge when animals

cannot simultaneously maximise the nutrient balance for the expression of two competing fitness-related

traits. (Simpson et al. 2004, Simpson & Raubenheimer 2012, Raubenheimer & Simpson 2020). Nutritional

trade-offs are ubiquitous and have been described across the animal kingdom, from invertebrates such as

flies (Lee et al. 2008, Fanson et al. 2009, Morimoto & Wigby 2016) and crickets (Maklakov et al. 2008) to

vertebrates (Raubenheimer et al. 2015, Solon-Biet et al. 2014, 2016), including humans (Raubenheimer

& Simpson 2016, Simpson et al. 2003). Nutritional trade-offs shape individual’s fitness and can have

important implications for responses to unbalanced diets as well as adaptations to novel environments

(Behmer & Joern 2008, Behmer 2009).

Nutrition is complex and the ability of individuals to navigate nutritional trade-offs and properly

balance their nutrient intake depend both on the amount of – and the (synergistic and antagonistic) in-

teractions between –nutrients (Raubenheimer & Simpson 2020). A recent model known as the Geometric

Framework (GF) enables the complexity of nutrition to be studied in relatively simple experimental de-

signs, where both the quantity and the interactions between nutrients can be investigated simultaneously

(Raubenheimer & Simpson 1993, Simpson & Raubenheimer 1993). GF has gained central stage in studies

of nutrition both in animals and humans and has underpinned major insights into the evolution of nu-

tritional responses (e.g., protein leverage hypothesis Simpson & Raubenheimer 2005) (Raubenheimer &

Simpson 2020, Simpson & Raubenheimer 2012). Despite this, the development of analytical frameworks

to analyse properties of GF multidimensional performance landscapes has lagged behind, and many stud-

ies have relied on visual interpretations to draw conclusions (see e.g., Kutz et al. 2019, Ma et al. 2020,

Barragan-Fonseca et al. 2019, 2021) (but see also Pascacio-Villafán et al. 2022). While the visual ap-

proach can be useful for simple inferences, it is neither objective nor reproducible. More importantly, it

overlooks the nuanced properties of multidimensional landscapes which might contain useful biological

information about the responses of animals to nutrition.

Recent models have been developed to automate and standardise the analysis of GF performance

landscapes. For example, (Rapkin et al. 2018) proposed the use of the coefficients of regression models,

obtained by regressing the performance trait i to the intake of nutrients (say P and C for protein and

carbohydrate, respectively) as components of vectors v⃗i for each performance trait i. This enables the
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comparison between the angle θi,j of vectors v⃗i and v⃗j as proxy of the strength of nutritional trade-offs.

We showed that the use of coefficients could lead to inaccurate estimates of the angle θi,j (Morimoto &

Lihoreau 2019). Instead, we proposed the use of the positions of the coordinates representing the region

of interest in the performance landscapes of traits i and j as the components of the (position) vector

v⃗i and v⃗j , from which the nutritional trade-off can be more accurately estimated from the angle θi,j .

Other models have been proposed to find peaks and valleys in multidimensional performance landscapes,

either using bootstrapping (del Castillo et al. 2022) or Machine Learning models (Morimoto & Lihoreau

2019). More recently, we also proposed a novel way to define the peak and valleys of multidimensional

performance landscapes for comparison of strengths of nutritional trade-offs using the angle θi,j which

strictly represents performance landscapes as right-angle triangles and uses trigonometry for estimates

of nutritional trade-offs (Morimoto et al. 2023). However, these models focus on obtaining information

of either peak or valley regions (or both) of the multidimensional performance landscapes, overlooking

other properties of the landscapes with potential biological significance.

Here, we explored this and proposed a model to calculate both the surface-area and local curvatures

of multidimensional performance landscapes. These two properties of performance landscapes can be

extracted and compared against the expected value of a flat landscape, and thus can provide invalu-

able information as to the overall profile of the nutritional responses not only in the regions of optimal

(peaks) and minimal (valleys) responses, but across the entire sampling space of nutrients. We refer to

performance landscape sensu (Morimoto & Lihoreau 2019) in that the landscape represents the possible

values of the performance trait (e.g., lifespan) across a range of (x, y) values. Importantly, animals do not

necessarily ‘walk’ onto the performance landscapes. Hence, performance landscapes can be thought of

as a ‘blueprint’ for the expression of a performance trait. This means that the definition of performance

landscapes is different than the definition of fitness landscapes sensu stricto, the latter which incorporates

fitness, phenotype and genotype (Fragata et al. 2019). We first explain the mathematics underpinning the

estimates of curvatures in multidimensional landscapes. For this, we assumed that multidimensional per-

formance landscapes can be approximated by a quadratic polynomial of the form ax2+by2+cx+dy+exy,

where a, b, c, d, e are the coefficients of a general linear model and x, y correspond to protein and carbo-

hydrate intakes, respectively. We then describe how the surface-area of multidimensional performance

landscapes can be estimated and compared against the area of a flat landscape of same region, which

provides a proxy of how wiggly the landscape is relative to a flat landscape. Next, we demonstrated the

application of the model in canonical datasets (flat landscape and a saddle landscape) and to a land-
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mark GF dataset which investigates nutritional responses in terms of lifespan, lifetime egg production

(‘lifetime eggs’), and daily egg production (‘daily eggs’) in Drosophila melanogaster. To do this, we first

tested the assumption that GF landscapes can be approximated by a quadratic polynomial by comparing

the performance of a quadratic polynomial regression (LM), a generalised additive model (GAM) and a

thin-plate spline (TPS) model, the latter two which are commonly used to analyse GF data. We then

calculated surface-area and the Gauss and mean curvatures of the performance landscapes for lifespan,

lifetime eggs and daily eggs. Finally, we compared the performance landscapes against a flat landscape as

well as against each other using a metric known as the Hausdorff distance, which enabled us to compare

two multidimensional performance landscapes of n−dimensions. This has the potential to expand the

tools in which two landscapes can be directly compared, broadening our ability to make inferences about

nutritional trade-offs when two performance landscapes are substantially different. Overall, the model

proposed here advances our ability to study the properties of multidimensional performance landscapes

and can underpin important biological insights from multidimensional studies in nutritional ecology and

evolutionary biology.

5.3 The model

The model was designed to estimate properties of performance landscapes that have so far been over-

looked. This is because GF studies and models have primarily focused on identifying regions of maxima

or minima in the performance landscape, that is, peaks and valleys. While useful, this approach might

neglect other properties of the performance landscapes which may contain important information to char-

acterise the landscapes and gain insights into the biological responses to varying nutrient balances. To

discuss the model, we first present the Taylor’s theorem and the use of polynomial approximations to

describe the performance landscapes. Next, we provide an intuition of curvature and present the Theorem

Egregium. We then focus on the application of these two concepts to performance landscapes of empirical

work to demonstrate how the model presented here can be used. For the purpose of the discussion and

for the target audience of the paper (e.g., biologists), we denote an affine subspace with zero curvature

as a ‘flat surface’.
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5.3.1 Taylor’s theorem and polynomial approximation of performance land-

scapes

Given any smooth function f (or at least k-differentiable), it is possible to apply Taylor expansion to

obtain a polynomial approximation of f of any degree k around a given point – this is known as the

Taylor’s theorem (Taylor 1715). The resulting polynomial is called the kth-order Taylor polynomial. It

is important to note that to compute curvature, the smooth function f must be at least 2-differentiable

(i.e., differentiable at least up to the second degree). This is because the first derivative f ′ of the

smooth function f provides the slope of the tangent line or plane while the second derivative f ′′ provides

information about the concavity of the tangent line or plane, and hence, its curvature. Taylor’s theorem

can be applied to more than one variable, providing a way to approximate functions with n variables

using k degree polynomials. The approximated function is k−differentiable and can be used to estimate

curvature of the landscape when k ≥ 2. For the purpose of this study and the available empirical data

in the literature, we will focus on functions with two variables (x, y) and approximations using k = 2

(i.e., quadratic approximations). Nonetheless, the arguments used here are applicable to functions with

n variables and k degree polynomials.

5.3.2 Intrinsic and extrinsic curvature and the Theorem Egregium

As mentioned above, let’s consider only smooth functions and in particular, performance landscapes

approximated by a polynomial of degree 2. Curvature at each point p is defined via principal curvatures.

The two principal curvatures κ1 and κ2 represent, respectively, the maximum and minimum amount of

‘bending’ in the landscape in each orthogonal direction of movement in the landscape along the tangent

plane (i.e., a plane tangent to a point p on the landscape). The principal curvatures are algebraically

defined as follows: κ1 and κ2 (at a point p) are the eigenvalues of a linear operator (i.e., can be seen as

a matrix) called the shape operator. The shape operator at point p is defined as

S(v) = ∇v(n)
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where v is a vector tangent to p, ∇v is the directional derivative and n is the unit normal vector field of

a surface M . As ∇v(n) is still a tangent vector at p, the shape operator is a linear operator

Sp : TpM → TpM,

where TpM is the tangent space at a point p of M , that is, a vector space that encapsulates all the

possible directions which pass tangentially through p. This makes sense because the eigenvectors measure

the distortion of a linear operator, in this case, the eigenvalues of the shape operator tell us the how much

the landscape bends.

Principal curvatures bear relationship with extrinsic and intrinsic curvatures. Extrinsic curvature is

a property of the landscape which depends on the space in which the landscape exists. In other words,

extrinsic cuvature are properties that depend on the embedding of the landscape. Conversely, intrinsic

curvature is a property that only depends on the landscape itself, that is, the intrinsic curvature depends

only on the metric space.

The relationships between principal curvatures and extrinsic and intrinsic curvatures are simple and

useful for analysing landscapes. For instance, the mean curvature, which is an extrinsic curvature, is the

arithmetic mean of the principal curvatures, that is, κ1+κ2

2 . The Gauss curvature, an intrinsic curvature,

is the product of the principal curvatures κ1κ2. Therefore, the Gauss curvature is the determinant of

the shape operator and the mean curvature is the arithmetic mean of the trace of the shape operator.

From linear algebra, the determinant of a matrix is invariant under change of bases (and row columns

operations) - that is the intrinsic property - whereas the sum mean of the trace of the shape operator

does depend on the embedding of the surface and, therefore, an extrinsic property.

Importantly, the Gauss curvature (but not the mean curvature), as it is an intrinsic invariant, does

not change value if the surface bends without stretching, that is, invariant under local isometries – this

is known as Gauss’ Theorema Egregium. A consequence of this theorem illustrates the local to global

interplay of geometry and topology. The theorem provides information as to when two spaces are different,

for instance, a sphere of radius r has Gauss curvature 1
r2 and a plane has Gauss curvature 0. One way

of developing an intuition about Gauss curvature in particular is to play with triangles. From Euclidean

geometry, we know that the sum of the internal angles in any triangle sums up to π, that is, 180 degrees.

Geometric objects that satisfy this condition are called planar. But what if this conditions fails? For

instance, imagine that, instead of drawing a triangle in a flat piece of paper, we draw the triangle in the
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surface of a sphere. Note that the triangle is not allowed to leave the surface, that is, it must be drawn

onto the surface itself. In this case, the sum of the internal angles of the triangle will be greater than π.

If we were to compare the triangles drawn in a piece of paper and in the surface of a sphere, the latter is

more curved than the former. Sphere-like spaces are known as convex surface or (locally) positively curved

spaces, whereas flat-like space are referred to as spaces with zero curvature. There are also situations

where the sum of the internal angles of a triangle is less than π, for example, a triangle embedded in

a saddle surface. These are known as (locally) hyperbolic spaces or (locally) negatively curved. But

what does this have to do with Gauss curvature? The sign of the Gauss curvature provides a way to

identify the characteristics of the surface: a surface with zero Gauss curvature can be classified as flat.

Surfaces with Gauss curvature positive and negative are classified as convex or hyperbolic, respectively

(see Figure 5.1). For the landscapes in nutritional ecology (and evolutionary biology, more generally),

Gauss curvature can thus be an important parameter to characterise the local properties of the space

that the landscape generates.

We can also obtain information of the local magnitude of the curvature of a given space that is

positively or negatively curved. For example, as mentioned above, a flat plane has Gaussian curvature 0

across its entire domain, whereas a sphere of radius r has Gaussian curvature 1
r2 (Do Carmo 2016). This

means that, for a sphere, the larger its radius, the smaller the local curvature at a given point in the

surface of that sphere. In other words, if you were to stand on top and walk along a perfectly spherical

ball (in any direction, since this is a perfect sphere), it is easy to imagine that this is a much harder task

than walking on the surface of the Earth. This is because the radius rs of the football is substantially

smaller than the radius rE of the Earth, and thus, the local curvature of the former is greater than the

local curvature of the latter (ask the Flat Earth Society!).

For practical applications, however, the Gauss curvature has limitations. For instance, imagine rolling

a sheet of paper to form a cylinder. The flat sheet of paper has Gauss curvature equals to zero and,

because there were no deformations such as stretching of the sheet of paper when rolling, the Gauss

curvature of a cylinder is also zero. This happens because the cylinder is an isometric transformation of a

flat plane (i.e., the transformation does not tear, stretch, or shrink the flat surface). As a result, the Gauss

curvature alone is unable to differentiate between the two forms. Yet, they are different, and we need

additional metrics to differentiate them. This leads to the definition of other types of curvature which

depend on proprieties of the object as well as the space in which the object exist (extrinsic properties of

a surface). In this instance, we can resort to the estimates of the mean curvature which is non-zero for
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the cylinder but zero for a flat surface (see also Do Carmo 2016, for formal definitions). Together, Gauss

and mean curvatures provide important properties to characterise surfaces and, in our case, landscapes.

Flat surface
No curvature

Surface with positive 
Gauss curvature

Surface with negative 
Gauss curvature

Sum angles = 𝜋 Sum angles > 𝜋 Sum angles < 𝜋

Figure 5.1: Schematic representation of the concept of curvature Flat surfaces had no curvature
such that, if we were to draw a triangle embedded on the surface, the sum of the internal angles would
equal π. Surfaces or sub-sections of surfaces with positive Gauss curvature are curved in a way that, if
we were to draw a triangle embedded in the surface, the sum of the internal angles would exceed π. This
could be equivalent to sub-sections of the surface corresponding to the surface peak regions. Surfaces
with negative Gauss curvature are curved in a way that, if we were to draw a triangle embedded on the
surface, the sum of the internal angles would be less than π. This is equivalent to sub-sections of the
surface corresponding to mountain pass regions. Note that, for the purpose of this paper, we use ‘flat
surface’ to denote an affine subspace with zero curvature.

5.3.3 Curvature and nutrition

In nutritional ecology and GF experiments, the idea of curvature can be useful to understand how

animals are expected to navigate nutrient imbalances given the shape of the performance landscape. For

instance, animals navigating a performance landscape with small or zero curvature likely benefit (or pay

costs) of nutrient imbalances in equal magnitude throughout the landscape, as they move from valley to

peak regions. It is analogous to walking uphill (or around the hill, depending on the direction). This

suggests that an imbalanced diet has the same relative cost to performance in two arbitrary regions of

the landscape. Conversely, animals navigating a performance landscape with large curvature likely pay

a greater relative cost to performance in certain regions of the landscape (e.g., on the edges) where the

negative effect of nutrient imbalance is accelerated. Thus, understanding the curvature of a performance

landscape can enable us to understand and predict the costs associated with nutrient imbalance.

Following the idea of curvature, we also propose to use the idea of surface area of the performance

landscape as an additional metric for landscape characterisation. The concept of area is easily understood
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and thus, we will not delve into analogies. One important point worth mentioning here is that surface-area

allows us to estimate how ‘wiggly’ (rugged) a performance landscape is. This is because the wiggliness of

a landscape increases its surface-area (analogous to e.g., cell microvilli) relative to a flat landscape with

the same domain (i.e., values of x and y). In nutritional ecology and GF experiments, the wiggliness of

the performance landscape can indicate how resilient the animal is to small changes in nutrient balance,

and how plastic the animal is in maximising performance traits in response to varying combinations of

diet (e.g., the term we call ‘nutritional plasticity’). Performance landscapes with large surface-area likely

represent cases where small deviations in nutrient balance of the diet creates large differences in the

expression of a performance trait (i.e., the landscape is wiggly). This could indicate that the performance

trait responds rapidly to changes in nutrition and hence, is nutritionally plastic, but not resilient. On

the other hand, performance traits with landscapes that are less wiggly indicate high resilience against

deviations from nutrient balance, but potentially low nutritional plasticity.

With this intuition, we now present the formal mathematics underpinning the calculations of curvature

and surface-area, with focus on the performance landscapes of interest to this study. Next, we apply the

formulations to canonical and real-world datasets to demonstrate their use and interpretation (see also

Text S1 and Fig 5.5).

5.3.4 Curvature of performance landscapes

Suppose S is a performance landscape parameterised as (x, y) 7→ (x, y, f(x, y)) where f(x, y) is given

by a quadratic polynomial of the form ax2 + by2 + cx + dy + exy and a, b, c, d, e are coefficients of a

general linear regression. The variables x and y can represent intakes of protein and carbohydrate,

respectively. The domain of f(x, y) lies within [0, x∗], [0, y∗], where (x∗, y∗) are the maximum intake of

nutrients x and y nutrients. This domain is identical for any S1, S2, . . . , Si, multidimensional performance

landscapes obtained from the same experiment. For reasons that we discuss below, it is necessary to ensure

that the domains of the multidimensional landscapes coincide. Therefore, to compare multidimensional

performance landscapes from different experimental designs, the domains can be min-max standardised

as x−min(x)
max(x)−min(x) (and similarly for y) such that the domains of the landscapes are x = [0, 1] and y = [0, 1].

We can then estimate the Gauss curvature KSi and mean curvature HSi of a performance landscape Si.

To do this, we first estimate the gradient ∇Si in the x and y directions:
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∇Sx =
∂Si

∂x
=


1

0

2ax+ c+ ey

 ; ∇Sy =
∂Si

∂y
=


0

1

2by + d+ ex

 (5.1)

Note that these partial derivatives provide the coordinates of tangent vectors to a point within the

landscape in the (x, y) directions. As a result, we can also calculate the unit normal vector n⃗ perpendicular

to the landscape at a given point as the cross product of the two partial tangent vectors in the directions

of x and y such that

n⃗ =

∂Si

∂x × ∂Si

∂y

∥∂Si

∂x × ∂Si

∂y ∥
(5.2)

Next, we calculate the second partial derivatives of ∇2Si as

∇2Sx =
∂2Si

∂x2
=


0

0

2a

 ;∇2Sy =
∂2Si

∂y2
=


0

0

2b

 (5.3)

We can now use the I and II fundamental forms to estimate Gauss and mean curvature at all points

in the landscape. A simplified geometric intuition for the I and II fundamental forms can be obtained as

follows: (i) the I fundamental form can be thought of as providing information of the curvature in the

landscape for any direction of travel, starting at a given point in the performance landscape. (ii) the II

fundamental form provides information of how much the landscape curves away (or deviates) from a flat

tangent plane at a given point in the landscape. Note that the I fundamental form can be estimated solely

using properties of the landscapes itself (and hence is related to ‘intrinsic’ curvature of the landscape)

while the II fundamental form requires an additional parameter (i.e., the normal vector n⃗) and hence

provides ‘extrinsic’ curvature of the landscape. We calculate the I fundamental form as:

E =
∂Si

∂x
· ∂Si

∂x
; F =

∂Si

∂x
· ∂Si

∂y
; G =

∂Si

∂y
· ∂Si

∂y
(5.4)

I =

E F

F G

 (5.5)

Likewise, we calculate the II fundamental form as:
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L =
∂2Si

∂x2
· n⃗;M =

∂2Si

∂x∂y
· n⃗;N =

∂2Si

∂y2
· n⃗; (5.6)

II =

L M

M N

 (5.7)

The Gauss curvature KSi
and the mean curvature HSi

can then be calculated as

KSi =
LN −M2

EG− F 2
(5.8)

HSi
=

GL− 2FM + EN

2(EG− F 2)
(5.9)

KSi
and HSi

provide information about the local curvature of the multidimensional performance

landscapes. For biological purposes, this curvature contains information on the shape of the landscape as

well as the local changes in shape of the landscape across valleys and peaks (see below). Importantly, these

quantities provide information regarding additional properties of the GF multidimensional performance

landscapes which, combined with previous methods, can collectively describe the regions as well as the

overall shapes of the landscapes.

5.3.5 Area of performance landscapes

Multidimensional performance landscapes are not always flat. Instead, performance landscapes can have

oscillations in the z-direction such that the surface area ASi varies according to the magnitude of the

oscillations. For performance landscapes that contains high degrees of oscillation (i.e., high ‘wiggliness’ ),

the surface area is expected to be higher than that of flat performance landscapes if the two landscapes

have the same domain. We then calculated the surface area of performance landscapes as a proxy of how

‘wiggly’ a landscape is relative to the area of a flat landscape over the same domain. To do this, we can

estimate the area of the flat surface A0 as the area of a rectangle with sides x, y. To estimate the surface

area ASi of the performance landscapes, we can use the formula for the surface integral

ASi
=

∫∫
Ω

√
1 + (∇Si)2 dx dy =

∫∫
Ω

√
1 +

∂Si

∂x

2

+
∂Si

∂y

2

dx dy (5.10)

The double-integral is then evaluated over the intervals [0, y] and [0, x], respectively, to return the
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surface area of the landscapes over its domain Ω. For performance landscapes in nutritional geometry,

where we can consider x as protein intake and y as carbohydrate intake, we evaluate the surface integral

from 0 to the maximum intake of x and y (maxx, y) so that the equation above becomes

ASi
=

∫ max y

0

∫ max x

0

√
1 +

∂Si

∂x

2

+
∂Si

∂y

2

dx dy (5.11)

Alone, this metric is of little use. For a more informative estimate, we can calculate the ratio of the

surface-area of the performance landscape over the surface area of a flat landscape S0 with the same

domain as the performance landscape. In doing so, we obtain the surface-area ratio of performance

landscape i as Ai =
ASi

A0
where Ai = [1,∞). The greater the value of Ai, the greater the surface-area

of the performance landscape relative to a flat landscape of same domain. Conversely, performance

landscapes with Ai closer to 1 are nearly flat. Thus, the surface-area ratio could be interpreted as the

magnitude of wiggliness of a landscape, provided that the ratio informs how many times the area of

the performance landscape is greater than that of a similar flat landscape. Note that for estimating

surface-area, for which the ratio is performed against a flat landscape with similar domain (as opposed

to direct comparisons between two performance landscape), the z value was maintained in its original

scale to represent the deviations from a flat surface in the z dimension (but see also section on Hausdorff

distance below).

5.4 Material and Methods

5.4.1 Statistical analyses

All analyses were conducted in R version 4.1.3 (Team 2019). Data handling was conducted using the

tidyverse packages ‘dplyr’ and ‘tidyr’ (Wickham et al. 2019). Performance landscape plots and mean

curvature plots were done using the ‘ggplot2’ package (Wickham et al. 2016). Closed solutions for the

surface integrals and the function to estimate the Hausdorff distance were obtained from the ‘pracma’

package (Borchers 2022). We estimated confidence intervals for the Hausdorff distance using the‘boot’

function from the package of the same name (Canty 2002).

We first validated our assumption that performance landscapes could be approximated using a

quadratic polynomial. To do this, we split the data into training and testing sets in the proportion

60-40%. We then generated new datasets by sampling with replacement from the training set, and fitted
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one of three models: (1) general linear model (LM) with trait value as response variable, the linear and

quadratic effects of protein and cabrohydrate intakes, and the linear interaction between protein and car-

bohydrate intakes; (2) generalised linear model (GAM) using the ’gam’ package (Hastie & Hastie 2015)

with similar structure as the model above and with smoothing function ’s’ with default parameters; and

(3) a thin-plate spline model (TPS) using the ‘fields’ package (Nychka et al. 2017) with trait value as

response variable and protein and carbohydrate intakes as independent variables. We estimated model

performance using the square-root of the sum of the squared residuals (i.e., root-mean-square-error or

RMSE) for both the training and testing datasets.

We then developed the algorithms to estimate curvature and surface-area. The underlying algorithm

used in all analyses is as following:

1. We fitted a general linear model for each performance trait, with the trait value (simulated or

empirical) as a dependent variable and a polynomial with the main linear and quadratic effects

of protein and carbohydrate intakes and the linear interaction between protein and carbohydrate

intakes.

2. We created a square grid from 0 to max protein and carbohydrate intakes, from which the predicted

value of a point x, y corresponding to the intakes of protein and carbohydrate, respectively, could

be predicted using the general linear models from above. This approach has two benefits:

• It creates an interpolation similar to that obtained with splines but with the advantage of

conforming to a generalised equation ax2 + by2 + cx + dy + exy. This polynomial facilitates

integration and estimates of partial derivatives for calculation of curvature.

• It ensures that the predicted value for all performance traits are obtained for similar regions

within the domain of the performance landscape. This is because the models predict the

expected value of each performance landscape using the same underlying x, y grid.

3. In addition to the predicted values for all traits, we included the values for a flat landscape of the

form (x, y, 1). Note that the choice of 1 was arbitrary and does not affect curvature or surface-area.

4. We then used the grid containing the predicted values for each trait to estimate curvature, surface

area, and Hausdsorff distances.

The algorithm above is needed because standard GF design only explores the nutritional space through

rails, which are lines that subdivide the nutrient space. This means that a large portion of the space
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remains unexplored, and the approach above is needed to cover these unexplored spaces as shown in the

second study of the Nutrigonometry series (see (Morimoto et al. 2023)). A full coverage of the nutrient

space is needed for a global analysis of the properties of the performance landscapes (see also ‘Discussion’

section for more on this topic).

5.4.2 Difference between performance landscapes

We used the Hausdorff distance dH(Sm, Sn) to estimate the difference between two performance land-

scapes Sm and Sn. Note that the two performance landscapes can be of two traits or the landscape of

a trait and the flat landscape with same domain. We used the Hausdorff distance because it measures

the distance between two sets of non-empty compact (‘closed’) subsets of a given metric space and thus,

provide a way to measure the overall differences between two subsets. For performance landscapes in 3D,

the metric space is R3, and the non-empty subset within the metric space are the performance landscapes

Sm and Sn. Formally, the Hausdorff distance dH(Sm, Sn) is defined as

dH(Sm, Sn) = inf{ϵ ⩾ 0; Sm ⊆ Snϵ
and Sn ⊆ Smϵ

} (5.12)

whereby ϵ is the distance which necessary for the subset Sm to contain the subset Sn and vice versa

(note that the definition is symmetric). One can think of ϵ as a the smallest quantity needed to expand

the subset Sm such that it contains set Sn and subset Sn to contain Sm. The bidirectionality of the

definition of the Hausdorff distance ensures that the value of dH(Sm, Sn) equals zero if and only if the

two sets (or in this case, the two landscapes) are the same. This implies that the distance between two

sets may differ depending on the way the calculation is conducted. For example, consider two sets A =

{1, 2} and B = {1, 2, 3, 4}. If the Hausdorff distance was unidirectional, then the distance between sets

A and B would equal zero, since A ⊆ B (i.e., the numbers 1 and 2 in set A are also present in set B).

Now, considering the bidirectionality of the definition of Hausdorff distance given above, we also need

to calculate the distance between the set B and set A, which is equal to 2 (i.e., the maximum distance

between the elements of B and A so that B ⊆ A is 4B − 2A = 3B − 1A = 2, where the subscripts

represent the sets from which the number belongs in this example). Thus, performance landscapes that

are identical have Hausdorff distances dH(Sm, Sn) equal to zero. To avoid scale effects when estimating

ϵ, we mean-standardized the z−axis (i.e., divided by the variables’ mean) to ensure that the estimates of

dH(Sm, Sn) were obtained on the same scale for two performance landscapes.
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5.4.3 Data sets and model application

To demonstrate the functionality of our model we first implemented the model in two canonical datasets:

a flat surface (x, y, 1) and a saddle surface (x, y, xy). Next, we applied the model to empirical performance

landscapes from a landmark GF dataset, to estimate properties of the performance landscapes for lifespan,

daily egg production (daily eggs), and lifetime egg production in Drosophila melanogaster (Lee et al. 2008).

Gauss and mean curvatures, as well as the surface-area ratio of the canonical and empirical performance

landscapes were calculated as explained in the previous section (see ’The Model’ section).

5.5 Results

5.5.1 Evaluating model performance for landscape construction

The fundamental assumption for our model is that performance landscapes could be approximated using

a polynomial regression model of the form ax2+by2+cx+dy+exy. Yet, in GF studies, other models are

commonly used to analyse the data, such as generalised additive models (GAMs) and thin-plate splines

(TPS). These models cannot be represented with closed quadratic polynomial equations but could result

in better fit of the data and consequently, better approximations of the performance landscapes. To

test this, we compared the model performance (using root-mean-square error or RMSE) of the quadratic

polynomial linear regression (LM), GAM, and TPS models across the three traits of the dataset. The

results show that the LM model has similar performance in both training and test datasets for all traits

(Fig 5.2). Therefore, quadratic LM models are a valid approximation for analysing GF data. More

importantly, this enables us to represent the regression model in the quadratic polynomial form, which

facilitate the calculations of curvature and surface-area ratios.

5.5.2 Model application to canonical datasets

We first demonstrate the use of our model by applying it to canonical datasets. We calculated the surface-

area ratio of the canonical landscapes, where we expected the ratio to equal 1 for the flat landscapes

(as a flat landscape has the same area as itself) and greater than 1 for the saddle landscape, due to the

additional surface-area resulting from its curvature. Indeed, surface-area ratio of the the flat landscape

was equal to 1 while the surface-area ratio for the saddle landscape was equal to 3.982, revealing that

the saddle landscape had approximately 4-times more surface-area than a flat landscape with the same
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Figure 5.2: Performance of commonly used models to analyse GF data. RMSE: Root mean
square error. Training: training dataset. Test: testing dataset.

domain. This shows that the saddle canonical landscape used here was ca. 4-fold more wiggly than a flat

landscape. Importantly, aside from rounding error, this corroborates analytical expectation of the ratio

between a flat landscape and a saddle landscape given by
∫ 1
0

∫ 1
0
xy dx dy∫ 1

0

∫ 1
0
1 dx dy

= 4.

Next, we calculated curvature. By definition, flat landscapes do not have curvature and, as expected,

we found that the model gives both Gauss and mean curvatures equal to zero for all points (Fig 5.3).

Conversely, for the saddle landscape we expected a point in which the landscape resembles a sphere at

(x, y) = (0, 0). At this point, the Gauss curvature is expected to be −1 and mean curvature, 0, provided

that principal curvatures are equal to 1 and −1 (Do Carmo 2016). Mean curvature, on the other hand,

was expected to be positive for regions in the saddle where the landscape bends downwards and negative

for regions that bends upwards. This prediction emerges from theory on the behaviour of the normal unit

vector n⃗ in saddle regions (Do Carmo 2016). As expected, our model found that both Gauss and mean

curvatures were zero for a flat landscape. Moreover, the model found that Gauss curvature equals −1

at the point (x, y) = (0, 0) in the saddle landscape, and that mean curvature was positive and negative

for regions bending downwards and upwards, respectively (Fig 5.3). Together, these results demonstrate

that our model can accurately estimate the curvature and surface-area ratio as a proxy of landscape

wiggliness in canonical datasets.
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Figure 5.3: Gauss and mean curvatures of two canonical datasets. (a) Simulated flat and (b)
saddle landscapes. (b-c) Mean curvatures of the flat (c) and (d) saddle landscapes, respectively. (e-f)
Gauss and mean curvatures of the (e) the flat and (f) the saddle landscapes, respectively.

5.5.3 Model application to empirical datasets

Next, we applied the model to an empirical landmark GF dataset to estimate curvature and surface-

area (see Lee et al. 2008). As in the previous section, we first estimated the surface-area ratio for the

performance landscape for the three performance traits measured in the dataset: lifespan, lifetime egg

production (lifetime eggs) and daily egg production (daily eggs). Our model found that the performance
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landscape for lifespan had the largest deviations from a flat landscape (surface-area ratio: 51.125),

followed by the the performance landscape of lifetime eggs (surface-area ratio: 49.587) and daily eggs

(surface-area ratio: 4.194), respectively. These differences in the overall conformation of the performance

landscapes were corroborated by the estimates of Hausdorff distances dH(Sm, Sn). All performance

landscapes differed significantly from flat, but the magnitude of this difference was greater for lifespan,

lifetime eggs, and daily eggs, respectively. This suggests that, the performance landscape for lifespan is

the most different from a flat landscape, while the performance landscape for daily eggs is the closest

(relatively speaking). We also compared the differences between landscapes using the Hausdorff distances

and found that, as expected, the landscapes from lifespan and daily eggs are the most different, followed

by the landscapes of lifespan and lifetime eggs and lifetime eggs and daily eggs, respectively (Table 5.1).

Table 5.1: Hausdorff distance estimates for the performance landscapes.
dH(Sm, Sn)

Comparison Mean SD lwr 95% CI upr 95% CI
Lifespan-flat 2.411 0.270 1.426 2.534

Lifetime eggs-flat 1.940 0.110 1.765 2.186
Daily eggs-flat 1.783 0.134 1.375 1.967

Lifespan-Lifetime eggs 2.118 0.177 1.616 2.315
Lifespan-Daily eggs 2.615 0.197 2.589 3.311

Lifetime eggs-Daily eggs 1.661 0.212 1.418 2.214

We then investigated the curvature of the performance landscapes. Overall, the majority of the

landscape had zero Gauss and mean curvatures, suggesting that these regions were equivalent to flat

inclined planes. For instance, lifespan, which was the landscape with the greatest surface-area, had small

regions of negative Gauss curvature and positive mean curvature at low nutrient intakes (i.e., closer to the

origin), which disappeared for other regions of the landscape (see Fig 5.4a-c). Likewise, the performance

landscape for lifetime egg had virtually zero Gauss and mean curvatures throughout, suggesting that

the landscape as a whole was an inclined plane (see Fig 5.4d-f). The performance landscape for daily

egg production was the only landscape that showed higher curvature estimates in regions close to the

origin (i.e., low nutrient intake) (see Fig 5.4g-h). These results suggest that the performance landscape

for daily eggs, which responds strongly to the interaction between protein and carbohydrate intakes,

had relatively more positive curvature in the region of low nutrient intake. This is important because it

can suggests that, in regions of low nutrient intake, animals can pay larger costs from small nutritional

imbalances. This can be interpreted as analogous to walking along a ridge: small deviations from the

path have potentially large implications for the position in the ridge (e.g., falling either side of the crest).

Overall though, the results show that estimating surface-area and curvature of performance landscapes
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can reveal important properties of the landscapes with potential biological significance (see Discussion

for hypothesis generated from curvature).
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Figure 5.4: Gauss and mean curvatures of performance traits. (a-c) Landscape (a), Gauss cur-
vature (b) and mean curvature (c) for lifespan. (d-f) Landscape (d), Gauss curvature (e) and mean
curvature (f) for lifetime egg production. (g-i) Landscape (g), Gauss curvature (h) and mean curvature
(i) for daily egg production (daily eggs).

5.6 Discussion

We proposed a new model to measure properties of performance landscapes related to surface-area and

curvature. Moreover, we introduced the Hausdorff distance which can be used to compare the similar-

ity between two n−dimensional performance landscapes. Our analysis first corroborate the underlying

assumption that performance landscape could be approximated by a quadratic polynomial of the form

ax2+ by2+ cx+dy+ exy. In fact, we showed that this polynomial fit the data as well as other commonly
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used models to analyse and interpolate GF data (i.e., GAM and TPS). These approximations are useful

because exact curves and landscapes are never accessible in real-world biological data due to for example,

sampling limitations and variability in responses. Therefore, the approximations used here and in previ-

ous studies provide a way in which landscapes can be constructed from a relatively sparse grid of known

biological responses (Simpson & Raubenheimer 1993, Simpson et al. 2004). We used canonical simulated

datasets and an empirical dataset (Lee et al. 2008), which measured the performance landscapes for

lifespan and daily eggs, to demonstrate the application of our model. Together, the model proposed here

is the first to estimate properties of performance landscapes other than peaks and valleys. This enables

new insights from studies of nutrition in high dimensions. Currently, we do not know how (or whether)

animals ‘navigate’ performance landscapes in similar ways to fitness landscapes (e.g., Fragata et al. 2019).

Recent studies integrating the concept of performance landscapes and genetics have been carried out (see

Hawkes et al. 2022) and simulations have provided insights into the genetic variance in response to diet for

lifespan (Senior 2023). This remains a subject of future theoretical development. Despite this, from the

perspective of curvature of multiple performance landscapes, one question emerges: how are the different

performance landscapes integrated so that they influence animal nutritional resource allocation based on

nutritional trade-offs? In other words, how do animals allocate nutrients to competing resources with

different performance landscapes? The curvatures of the performance landscapes, if important, suggest

that the cost-benefit functions are non-linear for different traits. Therefore, animals have to allocate

resources to competing traits taking into account the non-linearity of the performance landscapes of each

trait i, for all traits. More formally, we can state that for all fitness traits w with landscape Sw, animals

will evolve to allocate resources such that the animal optimises some weighted average of all performance

landscapes Sw. This implies that animal nutrition is in Pareto optimality, whereby any deviations on the

nutrient intake or allocation to a trait wi would result in a cost to other traits wj (Debreu 1954). Pareto

optimality in nutritional decisions have been demonstrated in computer algorithms (Wang & Bai 2006,

Pei & Liu 2009) but to our knowledge, has not yet been shown in empirical data. Currently, we rely

on the growing use of GF to generate landscapes to test Pareto optimality on nutritional trade-offs and

feeding behaviour. A formal derivation of the Pareto optimal model is outside the scope of this paper

and will be subject of future work.

Previous analytical models using GF data focused on identifying peaks and valleys in performance

landscapes in order estimate the extent to which animals had to compromise in their nutrition for optimal

trait expression. For instance, Rapkin et al. (2018) proposed a model which relied on slopes of linear
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regressions as components of a vector to compare the strength of nutritional trade-offs between traits,

estimated as the angle θ between vectors. Likewise, Morimoto & Lihoreau (2019) used a similar idea

but instead of slopes, used the position coordinates of the regions of interest (i.e., peaks or valleys)

as components of a vector and estimation of θ. The coordinates for the region of interest was found

using Machine Learning support-vector-machine (SVM) with radial kernel. del Castillo et al. (2022)

used bootstrapping approaches to identify the region within the performance landscape that represented

the landscape optimal, which could then be compared with the similar region in other traits using

confidence regions generated by the method (see also Hawkes et al. 2022). This approach had the

advantage of not relying on any particular parametric distribution for generating estimates. More recently,

Pascacio-Villafán et al. (2022) implemented a standard optimisation algorithm from response surface

modelling approaches to identify and compared regions of interest in the landscape, primarily focusing

on the comparison between peak regions. While these previous analytical models are useful, they have

focused on identifying and comparing either peaks or valleys in performance landscapes, an approach

that might have overlooked other properties of the landscapes which can contain biologically relevant

information. The model proposed here addresses this limitation, as it estimates curvature properties from

the performance landscapes. Importantly, we showed how the framework can be used to estimate surface-

area and curvature of performance landscapes, which can aid interpretation and generate important

predictions of animal responses to nutrition. For instance, as explained above, surface-area can be an

important indicator of wiggliness in performance landscapes, as landscapes with more oscillations also

have higher surface-area relative to flat landscapes (e.g., increased surface-area of cells due to microvilli).

By estimating surface-area, it might be possible to predict how animals might respond physiologically and

behaviourally to various nutrient imbalances. Similarly, curvature (both Gaussian and mean curvatures)

can also enable further characterisation and prediction of responses to nutritional imbalances. Landscapes

with regions of high (or low) curvature can lead to terrains in which animals are expected to experience

higher costs of nutrient imbalances than regions in landscapes with low curvature (e.g., inclined plane). In

our analysis of the empirical dataset of life-histories in D. melanogaster, we found that only the landscape

of daily egg production showed relatively high local curvature at low nutrient intakes. This coincided with

the valley region in the performance landscape, and confirms the non-linear costs of low nutrient intake

in the expression of this trait. More empirical studies as well as more data for performance landscapes

are needed to develop a more intuitive relationship between analytical properties of the performance

landscapes (e.g., local curvature) and the broader patterns of animal nutrition (Morimoto & Lihoreau
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2020). Nevertheless, we showed that our approach can be a powerful ally to characterise properties of

performance landscapes that can aid biological insight.

Studies using GF have used a range of standard statistical models to analyse the data, but to date,

the performance of these models had not been properly scrutinised. In particular, linear models (LM),

generalised additive model (GAM), and thin-plate splines (TPS) have been the most commonly used

approaches in GF studies (see e.g., Polak et al. 2017, Ponton et al. 2015, Lee et al. 2008, Maklakov

et al. 2008, Kutz et al. 2019, Ma et al. 2020, Fanson et al. 2009, Morimoto & Wigby 2016, Ng et al.

2018, Solon-Biet et al. 2014, 2016, and references therein) (see also Ruohonen et al. 2007) for cubic

splines. In this study, we had to assume that performance landscapes could be approximated using

a general linear model of the form ax2 + by2 + cx + dy + exy in order to calculate surface-area and

curvature. We tested this assumption by measuring the performance of LM, GAM, and TPS onto GF

data, and showed that indeed, a linear model can be as good of a model to GF data as the more complex

GAM and TPS. This is important because the equation ax2 + by2 + cx + dy + exy is differentiable and

enables easy calculations of surface integrals and gradients for the estimates of curvatures. We have

recently analysed the performance of several statistical (machine learning) models and their performance

in identifying peak and valley regions in performance landscapes (Morimoto et al. 2023). The good

quadratic approximation using LM presented in this study agrees with our extensive comparison of model

performance in GF datasets (see also Simpson et al. 2004). Therefore, the results suggest that linear

models are, in principle, reasonable approximations for the analysis of GF datasets for characterisation

of regions in the performance landscape. With the growing use of GF in nutritional studies, it is crucial

that the raw data to construct the performance landscapes are made open access as this will enable us

to test whether the quadratic approximation presented here are suitable for other performance traits and

species.

It is important to mention that the model proposed here, and all previous models developed in the

literature which rely on - or estimates properties from - performance landscape assume that the landscape

itself can be estimated accurately. This may not necessarily be the case for a standard GF design which

relies on nutritional rails and explores a subset of all possible regions in space, leaving large parts of the

space unexplored (particularly in regions that correspond to the interactions between nutrients, that is,

along the diagonal of the nutrient space) (Morimoto 2022). The rationale for empirically testing a subset

of diets and hence, regions of the nutrient space, is that results are reliable only if ecologically relevant

ranges of diets are tested (see Point 4 in Raubenheimer & Simpson 2019). More studies are needed to
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understand the consequences of imbalanced diets beyond those in which animals have evolved. We argue

that exploring more combinations of diets - and hence, regions of the space - can enable more accurate

approximations of performance landscapes and consequently, better predictions of landscape properties.

This may come with higher practical cost (e.g., higher number of experimental diets needed) which is

justified if better performance landscapes are generated as outputs. Optimal experimental designs in

nutritional studies is an active research area (Ruohonen et al. 2001) (see also Ruohonen et al. 2007,

Raubenheimer & Simpson 1993, Simpson & Raubenheimer 1993, 2012).

In conclusion, we proposed a novel model to measure curvature properties of performance landscapes

using the Geometric Framework for Nutrition (GF). The model estimates surface-area and curvature

of performance landscapes and, for the first time, estimates properties of performance landscapes other

than peaks and valleys. This opens the range of parameters that can be estimated from performance

landscapes, which may prove important for biological insights. We also introduce the use of the Hausdorff

distance as metric for pairwise comparison of performance landscapes. The methodology proposed here

can be employed to landscapes in general, for comparisons within and between species (for any fitness-

related trait) and thus, can play an important role in our understanding of the responses to nutrition

across the animal kingdom (Raubenheimer & Simpson 2020).
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Text S1. Primer on curvatures. Geometry has its foundation on the study of angles and distances

on a space, which goes back when Euclid wrote his influential Elements around 300 B.C. Topology, on

the other hand, is the study of spaces without dealing with angles and distances. The notion of curvature

has a geometric nature (as we have seen, it can be described using triangles and the plane, spherical and

hyperbolic model spaces) and represents one of the many interactions of geometry and topology. Whereas

the latter deals mostly with global properties of space, the former focuses on local properties. In many

situations is possible to extract global from local information, as we shall outline here. We will treat two

concepts of curvature: the Gauss and mean curvature. Moreover, we will deal only with surfaces. The

idea of the supplementary material is to briefly explain the intuition behind the alphabet soup kind of

formulas used in the main text (without getting lost in details) and to motivate the reader to explore the

world of geometry and topology. For a more rigorous account, please consult (Do Carmo 2016).

In continuous surfaces, curvature at each point p is defined via two principal curvatures. The principal

curvatures can be geometric visualized as follows. One can choose a (unit) normal vector at a given point

p and trace a normal place at p, that is, a plane that contains this chosen normal vector. This determines

an unique tangent direction to the surface and a plane curve called normal section. This curvature will

have different curvatures. By curvature here we mean the reciprocal of the radius of osculating circle,

that is, the tangent circle at the point p that approaches the curve the most. The principal curvatures

κ1 and κ2 are the maximum and the minimum values of this curvature, respectively.

One can also define the principal curvatures algebraically. It turns out that κ1 and κ2 at a point p

are the eigenvalues of a linear operator (i.e., can be seen as a matrix) called the shape operator.The shape

operator at point p is defined as

S(v) = ∇v(n)

where v is a vector tangent to p, ∇v is the directional derivative and n is the unit normal vector field of
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a surface M . As ∇v(n) is still a tangent vector at p, the shape operator is a linear operator

Sp : TpM → TpM,

where TpM is the tangent space at a point p of M , that is, a vector space that encapsulates all the

possible directions which pass tangentially through p. If we recall linear algebra classes, it makes sense

because the eigenvectors measure the distortion of a linear operator, in our case, the eigenvalues of the

shape operator tell us the how much the surface bends.

Finally, we define the Gauss curvature to be the product of the eigenvalues κ1κ2 and the mean

curvature to be κ1+κ2

2 , the sum mean of the eigenvalues (Fig 5.5). Recall that the product of eigenvalues

is the determinant of matrix and the sum of eigenvalues is the trace. Hence, we can say that the Gauss

curvature is the determinant of the shape operator and the mean curvature is the sum mean of the trace

of the shape operator.

𝑟

Curvature of a sphere is dependent on its radius

For any two (perpendicular) directions of travel 
𝜅! and 𝜅", curvature equals to  !

#
such that the 

Gauss curvature is equal to !
#!

and the mean 
curvature is equal to !

"#
.𝜅!

𝜅"

Figure 5.5: Curvature of a sphere is dependent on its radius. For any two (perpendicular) direction
of travel, curvature of a sphere (here projected in 2D) is 1

r and the Gauss and mean curvatures are equal
to 1

r2 and 1
2r

Recall again from linear algebra, that the determinant of a matrix is invariant under change of bases

(and row columns operations). Therefore, the Gaussian curvature should also inherit this invariance!

Indeed, the famous Theorema Egregrium proved by Gauss tells us that the Gauss curvature does not

depend on the embedding of the surface in the 3-dimensional Euclidean space. Hence, we say that the

Gauss curvature is an intrinsic property of a surface. Moreover, the theorem tells us that the Gauss

curvature is invariant under local isometries, that is, it does not change if one bends the surface without

stretching it. A consequence of this theorem illustrates the local to global interplay of geometry and

topology. It can tell us when two spaces are different, a sphere of radius r has Gauss curvature 1
r and a
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plane has Gauss curvature 0. However, it can not tell when two spaces are equal: a plane is isometrically

transformed into a cylinder, hence both have Gauss curvature 0 even though are clearly different surfaces.

Due to this pitfall of Gauss curvature, it is desired to compute also the mean curvature of a surface

while analysing our nutritional landscapes. As it is defined as the sum mean of the trace of the shape

operator, it does depend on the embedding of the surface and, therefore, receives the name of extrinsic

measure of curvature of surface. It does tell us interesting properties of a surface. For instance, a surface

is called minimal surface if and only if it has mean curvature 0 at every point. There are many equivalent

definitions of minimal surfaces but, roughly, a minimal surface is a surface that minimizes the total area

subject to some constraint, for instance, some surfaces formed by soap films. The theory of minimal

surfaces is vast and has interesting application inside and outside mathematics.

Another important theorem connecting geometry and topology is the Gauss-Bonnet theorem connects

the Gauss curvature with another important topological invariant, the Euler characteristics. The precise

statement is not of importance here but its message, which tell us how to compute a global invariant

(Euler characteristic) via local quantity (Gauss curvature). Moreover, it says that if you deform your

surface without tearing it apart, the global invariant (i.e., Euler characteristic) remains the same.

After this conceptual detour, let’s return to the aim of our work. We are interested in computing the

curvature for the nutritional landscapes. For that, there is a way of deriving formulas for the Gauss and

mean curvature for surfaces which are more suitable for computations and especially coding, with less

of a conceptual flavour. Firstly, we need to compute the so-called first and second fundamental forms.

We defined and explained them in the main text. We opt to use those formulas in particular because

our surfaces are modelled by polynomials and we can derive the first and second fundamental form via

a routine method that does not require a lot of computational power and, consequently, the Gauss and

mean curvature.
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Chapter 6

Optimum ratio of dietary protein and carbohydrate that

maximises lifespan is shared among related insect species

Publication reference

Morimoto, J., (2024). Optimum ratio of dietary protein and carbohydrate that maximises lifespan is

shared among related insect species. Aging Cell, 23(3), p.e14067.
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6.1 Abstract

Animals often regulate the intake and quantity of nutrients to maximise fitness through life-history traits

such lifespan, but we still lack a proper understanding of how specific nutrients influence these traits.

Here, I developed an algorithm which allowed me to create a nutrient-specific database from literature

data, and investigated how the requirements of protein (P) and carbohydrate (C) needed to maximise

lifespan evolved across nine insect species. I found moderate evidence of a phylogenetic signal on the

optimal ratio of protein to carbohydrate (PC ratio) that maximised lifespan, suggesting that optimal PC

ratio for lifespan could have evolved non-independently among related species. I also found evidence for

weak-to-strong sex-specific optimal PC ratios for lifespan, suggesting that sex-specific nutritional needs

to maximise lifespan can emerge and persist in some species. Although limited in the number of species,

the approach adopted here is portable to experiments with n number of nutrients and, thus, can be used

in complex comparative precision nutrition studies for insights into the evolution of animal nutrition.

Keywords: Ecological specialization; Aging; precision nutrition;
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6.2 Background and findings

Different animals have different nutritional needs (Wu 2017, Sauvant et al. 2008). This appears obvious

at a coarse level since animals feed on different food types, but how nutritional needs differ among species

at the nutrient level remains an open question. Nutrient-specific needs are not always evident from the

food type of a species. For instance, animals that seemingly feed on different food types can converge

towards similar nutrient profiles, as is the case of the giant panda which, although classified as a strict

herbivorous species, has evolved a protein-biased diet akin to that of carnivores (Nie et al. 2019). Thus,

it is important to look beyond food types and into nutrient-specific patterns to gain insights into the

evolution of nutritional needs across the tree of life (Machovsky-Capuska et al. 2016, Gonzalez et al.

2017).

Comparative nutrition has long been recognised as a powerful approach to uncover how nutritional

needs have evolved (Mitchell et al. 1962, Baker & Czarnecki-Maulden 1991, Payne & Wheeler 1968). It

was used to provide insights into the effects of both macro- and micro-nutrients on health (see Baker &

Czarnecki-Maulden 1991, Lei et al. 2022, references therein), including the effects of protein on morpho-

logical and reproductive traits (Talal et al. 2023, Swanson et al. 2016). Comparative nutrition studies

are few because it is difficult to obtain a single dataset that maps the effects of specific nutrients to life-

history traits, such as lifespan or reproduction. A more parsimonious approach is to identify multiple but

comparable studies on different species which allow for comparative studies. A recent study by Swanson

et al. (2016) showed the effects of nitrogen, phosphorus and sodium across 96 butterfly species, and found

that species feeding on high nitrogen diets are more fecund but have smaller eggs, potentially highlighting

the evolution of a nutritional trade-off. A limitation in this study is that dietary nitrogen may be used as

proxy for protein intake and protein needs, but these are not necessarily equivalent (Mattson Jr 1980).

Nakagawa et al. (2012) used the comparative approach to study lifespan extension via dietary restriction

across 36 species, and showed the proportion of protein intake had greater influence on lifespan extension

than the degree of caloric restriction. These studies highlight the need for studies using nutrient-specific

approaches.

The Geometric Framework for Nutrition (GF) is an experimental framework which allows for the study

of nutrient-specific effects on life-history traits in animals and humans (Raubenheimer & Simpson 1993,

Simpson & Raubenheimer 1993). GF is portable to any species, which makes GF an attractive framework

for insights into the evolution of nutrition (Raubenheimer & Simpson 2020, Simpson & Raubenheimer
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2012) as well as a potential key for precision nutrition experiments and its future applications (Simpson

et al. 2017). GF has gained popularity and has underpinned major insights into animal and human

nutritional ecology over the last decades, primarily from studies in insect species but alse more recently

in vertebrate models and humans (see e.g., Barragan-Fonseca et al. 2019, Pascacio-Villafán et al. 2022,

Simpson et al. 2017, Behmer 2009, Lee et al. 2008, Maklakov et al. 2008, Rapkin et al. 2018, Ponton

et al. 2015, Polak et al. 2017, Solon-Biet et al. 2014, Simpson & Raubenheimer 2005, Simpson et al. 2003,

Behmer 2009, Ng et al. 2018, Bradbury et al. 2014, and references therein). Thus, GF datasets are unique

in their potential to reveal broad-scale patterns of nutrition, making GF the ideal candidate for large-

scale comparative nutrition studies. However, open data practices in the field remains poor, preventing

broad-scale comparative studies (Morimoto & Lihoreau 2020). We therefore lack the means to study how

optimum nutrient intakes evolved using a systematic and nutrient-explicit comparative approach.

I conducted a systematic literature search to assess the availability of raw data in the GF literature

(see ‘Experimental procedures’), I found that out of 32 studies using the GF framework to study the ratio

of protein (P) and carbohydrate (C) in the diet and its effects on lifespan in male and/or female insects,

only five (29.4%) provided direct access to the raw data (see Fig 6.1a). This is in line with my previously

report on the open practices in the field which showed that only ca. 39% of general (i.e. not limited to

a particular trait) GF studies made their raw data available (Morimoto & Lihoreau 2020). Among the

identified studies, there was a notable sex-bias: all (100%) studies investigated female lifespan in response

to diet, while only eight studies (25%) also investigated male lifespan in response to diet.

Open data practices are widely recognised as an imperative for research breakthroughs (Lowndes

et al. 2017, Murray-Rust 2008, Reichman et al. 2011). Thus, innovative ways that open GF datasets for

comparative studies are urgently needed to advance our understanding of animal nutrition. To overcome

the lack of data availability, I developed a semi-automated algorithm which enabled me to reconstruct

published performance landscapes from GF studies that do not make their raw data available (see Fig 6.1b

and ‘Experimental procedures’ section for details). While this does not replace the need for better open

data practices, it allowed me to create the first systematic precision nutrition database for comparative

nutrition insights (Morimoto & Lihoreau 2020). For practical and financial reasons, GF has been most

commonly used in insect studies and this study and database focused on this group, although it is portable

to any animal group. The algorithm allowed me to create a database with optimal PC ratios for lifespan

across nine insect species for females and five species in males.

I then tested the hypothesis that the optimal PC ratio that maximise lifespan is shared among related
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Figure 6.1: Optimum PC ratios across related insect species (a) Flowchart for the systematic
literature search of experimental studies in insects that used GF to investigate the PC ratio effects on
lifespan. (b) Overview of the semi-automated algorithm to extract information of performance landscapes
for lifespan from the published GF literature. (b) Phylogeny mapping the PC ratio that maximises lifespan
across insect species for which GF data is available in the published literature (females). (c) Phylogeny
mapping the PC ratio that maximises lifespan across insect species for which GF data is available in the
published literature (males) (d) Phylogeny mapping the angle θ, which is a metric of nutritional trade-off,
for PC ratios that maximise lifespan across insect species in the database (note that the phylogeny is
limited by the sex with the least amount of information. i.e. males). Negative values for the angle θ
indicates that female optimal PC ratio was lower than the optimal PC ratio of males.

species, that is, optimal PC ratio is non-independent among species with shared evolutionary history. I

measured phylogenetic signal, which is a measure of non-independent evolution of a continuous trait (in

this case, optimal PC ratio) using two common metrics: (a) Pagel’s λ, which is well-defined within the

range of 0 (no signal) and 1 (strong signal) and (b) Blomberg’s K which varies between 0 and ∞ and is
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proportional to the strength of the phylogenetic signal, whereby K = 1 indicates no difference between

the trait evolution as expected under Brownian motion. These metrics measure different aspects of the

phylogenetic signal, the former measuring a scaling parameter relative to expectation under Brownian

motion and the former, the normalised ratio of variances within and between clades over the expected

variances under Brownian motion (see e.g. Revell et al. 2008, Revell & Harmon 2022, Munkemuller

et al. 2012, for more details). Because of the female-bias representation in the database, the mapping

of the optimal PC ratio for lifespan onto the phylogeny was more extensive for females than males, and

was done separately, giving less precise (i.e. higher variance) estimates of the posterior distribution of

the phylogenetic signal for males. I used the Nutrigonometry model to the reconstructed performance

landscapes to compute the optimal PC ratio region in the performance landscapes that maximised lifespan

in each species (Morimoto et al. 2023, 2022, Morimoto & Lihoreau 2019) (see ‘Experimental procedures’

section for details).

The results revealed a moderate phylogenetic signal for the PC ratio that maximised female lifespan

(Blomberg’s K: 1.265; p = 0.021; MCMCglmm Pagel’s λ: 0.580, HPD interval: [0.222, 0.938]) and male

lifespan (Blomberg’s K: 1.228; p = 0.032; MCMCglmm Pagel’s λ: 0.445, HPD interval: [0.021, 0.901]).

In females, orthopterans had extended lifespan when fed at intermediate PC ratios. Within holometabola,

termites and dipterans had extended lifespan in low PC ratios while the ant L. niger showed the opposite

effect, with extended lifespan at high PC ratios (Fig 6.1c). In males, the patterns were similar despite the

lack of hymenopterans (see Fig 6.1d). These results must be interpreted with caution though, due to the

relatively small number of species used in the comparative model to estimate phylogenetic signal. This

led to relatively wide credible intervals for the estimates of Pagel’s λ as well as a noticeable sensitivity to

prior specifications on the estimates of Pagel’s λ (see Dialog S1 in the Appendix of this chapter). With

more data being generated in the field, these estimates will inevitably become less variable. Nonetheless,

these results show for the first time that the optimal PC ratio for lifespan may be shared among closely

related insect species.

Species that live longer in diets with higher or lower PC ratio may also feed on diets with similar PC

ratios when given a choice. However, I found no evidence of a positive relationship between optimal PC

ratio that maximise lifespan and self-regulated PC ratios in both sexes in the database (Females: Mean

posterior[95% CI]: 0.405 [-0.452, 1.323]; Males: -0.531 [-4.041, 4.024]). This does not imply that the

relationship between optimal PC ratio and self-regulated PC ratio is absent: multiple studies in single

insect species have shown that, when given a choice, self-regulated PC ratios often match more closely
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the optimal PC ratio for reproductive traits (see e.g., Jensen et al. 2015, Lee et al. 2008, Maklakov et al.

2008, Hawkes et al. 2022, and references therein). Hosking et al. (2019) showed through simulations

that self-regulated PC ratio that optimises reproduction should be prioritised under certain evolutionary

contexts. Thus, it is possible that the relationship between optimal PC ratio and self-regulated PC ratio

exist for reproductive traits, although this remains to be tested.

Optimal PC ratios may also vary within species between sexes, which creates the potential for sexual

conflict over optimal nutrition (Jensen et al. 2015, Carey et al. 2022). This can lead to long-term ‘tug-of-

war’ between sexes nutrient intake or alternatively, lead to the evolution of physiological and behavioural

adaptations to resolve – or mitigate – the negative effects of the conflict when both sexes cannot achieve

their optimal nutrition (Hawkes et al. 2022, Simpson & Raubenheimer 1993, 1999). Using the database,

I tested whether there was evidence for a phylogenetic signal in the sex-specific optimal PC ratio for

lifespan in insects. I used the recently developed Nutrigonometry model to compare nutritional trade-offs

in the PC ratio (angle θ) and the quantity (the hypothenuse) of the diets that extended lifespan. There

was evidence of moderate phylogenetic signal for the angle θ but not for the hypothenuse, captured by

Blomberg’s K but not Pagel’s λ (θ: Blomberg’s K: 1.264; p = 0.027; MCMCglmm Pagel’s λ: 0.0564,

HPD interval: [0.00, 0.548]; Hypothenuse: Blomberg’s K: 0.900; p = 0.792; MCMCglmm Pagel’s λ:

0.0002, HPD interval: [0.000, 0.001]. The nutritional trade-off measured by θ appeared to be stronger in

Orthopterans, particularly T. commodus, compared to Dipterans (see Fig 6.1e). These results show that

sex-specific nutritional needs are likely related to the nutrient balance rather than nutrient quantity.

Physiological and behavioural traits that regulate optimal PC ratio intakes are likely under selection.

The findings that optimal PC ratio is shared among species also suggest that the underlying physiological

machinery to cope with diet balances can also be shared. The database created here did not allow me

to investigate shared molecular pathway activities underpinning the effects of PC ratios on lifespan.

However, it is likely that the nutrient-sensing mTOR pathway is involved on the evolution of optimal PC

ratio intake on lifespan, considering taxa-specific and comparative evidence for the role of this pathway

in diet-dependent lifespan extension (e.g., Garratt et al. 2016, Ma & Gladyshev 2017). Furthermore, a

recent comparative transcriptome study across 14 Drosophila species also suggests that lifespan regulation

involves a complex orchestra of system-level gene expression and trade-offs (Ma et al. 2018), suggesting

that physiological trade-offs emerging from responses to diet may also be shared among closely related

species. Future studies should test whether mTOR expression level is linked to the PC ratios that

extend lifespan across species and whether mTOR expression – and the expression and trade-offs across
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nutrient-sensing pathways – evolves non-independently along with PC ratios. Diet-dependent comparative

transcriptome analysis will shed light onto the pathways and trade-offs that are conserved in the responses

to diet. It is also worth mentioning that some traits are plastic and the location of peaks in GF landscapes

might vary depending on environmental conditions such as temperature (e.g., Kutz et al. 2019, Lee &

Roh 2010, Chakraborty et al. 2020). This has been shown for developmental traits such as developmental

time and growth rate but we do not know if similar patterns are seen for lifespan. This remains subject

of future studies.

Genetic constrains may prevent rapid evolution of dietary choice as well as the physiological machinery

to resolve sex-specific optimal diet intake. For example, Hawkes et al. (2022) showed that positive genetic

correlations under diet choice can accelerate (males) or constraint (females) evolutionary responses to

PC ratio intake in G. sigillatus. In D. melanogaster, both sexes display considerable heritability on the

intake of both protein and carbohydrates (Reddiex et al. 2013). However, it is unknown how selection in

response to diet acts between sexes across species, making it difficult to hypothesise the underlying factors

driving the maintenance or resolution of sexual conflict over nutrition. A recent nutrient-explicit model

showed that selection acting on macronutrient appetite can modulate PC ratio intakes and influence

the prioritisation of life-history trait optimisation under different ecological conditions in an asexual

population (Hosking et al. 2019). A generalisation of this model to include how intake targets evolve

in sexual populations with sex-specific nutritional needs for optimal expression of competing life-history

traits will provide important insights into the evolution and maintenance of sexual conflict over nutrition.

The main limitation of this study is the relatively low number of species for which GF lifespan

landscapes are available. It was possible to retrieve GF landscapes only for nine species of insects in the

female database and five species in the male database. With the low sample size, it is not surprising

that the MCMC models to estimate phylogenetic signal displayed sensitivity to prior specifications (see

Dialog S1). Nonetheless, in all cases, even non-informative priors found on average a moderate estimate

for the Pagel’s λ as measure of phylogenetic signal (Dialog S1). Is in unquestionable that more studies, in

different species, are urgently needed, as they will allow for more robust estimates of phylogenetic signals

in the optimal PC ratio maximising lifespan and other life-histories. It is also worth noting that the diet

formulations of the studies identified here varied, with studies in orthopterans relying on powdered diets

derived from (Simpson & Abisgold 1985) while studies for other groups using primarily gel-based diets

(but see Carey et al. 2022). The impacts of the diet formulation on physiological responses and lifespan

were assumed to be negligible, but this remains a key factor to be tested empirically in the field.
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In conclusion, I started off from the common knowledge that different animals eat different foods and

asked the question: is there one ratio of protein and carbohydrate that maximises lifespan across species?

Using insects as case study, I showed that there may exist such shared optimal PC ratio for lifespan among

related species. This is likely to be true for other life-histories, making the comparative approach proposed

here an essential part of future precision nutrition predictive models. Although relatively modest in the

number of species compared to other non-GF comparative nutritional studies (Swanson et al. 2016), this

study adopts a direct nutrient-specific approach and lays the foundation for the use of GF nutritional

data to gain insights into the evolution of nutrition needs across taxa.

6.3 Experimental procedures

Literature search in the Web of Science database were conducted to identify all studies since 2008 that

used GF to study lifespan (Search terms: Geometric Framework, nutrition, lifespan OR survival [All

fields]). The search was supplemented with new entries from Google Scholar search with same terms (Fig

6.1a). In total, 32 studies were identified from which 17 complied with the inclusion criteria, which were:

1. Presents experimental data;

2. Conducted in an insect species;

3. Displayed GF performance landscapes for lifespan

4. Presents results for diet manipulations of protein and carbohydrate ratios (PC ratios)

Criteria number (2) was adopted because there is a general lack of controlled experimental studies using

GF to assess lifespan in non-insect groups ((but see e.g. Solon-Biet et al. 2014). Methods and data

availability statements for each of the included studies were read and raw data was downloaded when

available for model validation. The female database included nine different species across three insect

orders (Orthoptera, Hymenoptera, and Diptera). The male database included eight studies, from which

five species and two orders (Orthoptera and Diptera) were represented. Two studies presented multiple

landscapes for lifespan and a decision was made as to which landscape to include in the present study. For

instance, Fanson & Taylor (2012) presented lifespan performance landscapes for mated and virgin females,

while Poissonnier et al. (2018) presented two lifespan performance landscapes for worker and soldier

termites. In these cases, I selected the performance landscapes for virgins and workers, respectively, as

representative of these studies and species. One study in D. melanogaster was excluded from the analysis
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because the performance landscape for lifespan presented in the original study was given as yeast-to-

sugar, rather than protein-to-carbohydrate ratio (Skorupa et al. 2008). The list of all studies used in this

analysis is provided as supplementary information (Table 6.1).

Data extraction and analyses were conducted in R version 4.1.3 (Team 2019) (see Fig 6.1b). The

semi-automated algorithm to extract simulated data to reconstruct the published lifespan performance

landscapes worked as following:

1. The algorithm segmented the performance landscapes with respect to the z-axis using the ‘recolorize’

0.1.0 package (Weller et al. 2022). In this study, the z-axis corresponds to lifespan values.

2. Each z-layer was manually assigned a value for lifespan based on the contour lines depicted in the

image on the published literature. This ensured that the values and ranges of lifespan matched that

of the original landscape.

3. This approach ‘categorises’ the values for lifespan, leading to a z-axis that was ladder-like. This

format hinders the estimates of the performance landscape using thin-plate splines from the ‘fields’

package (Nychka et al. 2017). To overcome this, I added random error to the categorised lifespan

values by sampling from a normal distribution using the ‘rnorm’ function, with mean 0 and standard

deviation 0.25. Note that, without the raw data, it is currently impossible to estimate the true

variance underlying the data used to build performance landscapes (see comment below).

4. A filtering function was applied to remove noise introduced during the segmentation step which could

lead to simulated points existing outside the true region of the original performance landscape.

5. The reconstructed landscapes were drawn using a custom-made function which is a wrapper for the

‘Tps’ function from the ‘fields’ package (Nychka et al. 2017).

Note that without the raw data, it is virtually impossible to estimate the variance in the z-variable.

By simulating the standard error from a normal distribution with mean 0 and standard deviation 0.25

throughout, I assumed that variance in lifespan across species and diets with varying PC ratios were

constant. This might not reflect reality, but it is nonetheless an essential assumption for data interpolation

and identification of optimal PC ratios in reconstructed performance landscapes. Future studies to

reconstruct the true variance from published images are needed. Landscapes were plotted using the

‘ggplot2’ 3.4.2 package (Wickham et al. 2016). Data handling was conducted using the tidyverse packages

‘dplyr’ 1.1.2 and ‘tidyr’ 1.2.0 (Wickham et al. 2019).
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Raw data for seven studies were available and allowed me to validate the algorithm above. Valida-

tion was done using the Nutrigonometry model to the reconstructed and original lifespan performance

landscapes and measuring whether the angle θ and the hypothenuse of the identified peak region differed

between the original and reconstructed landscapes. Average estimates along with 95% confidence inter-

vals for the estimates were calculated from the model. Zero-overlapping estimates, which were found for

all seven studies, showed that the reconstructed landscapes displayed its peak region in a comparable

location to the landscapes made using the original data (Fig 6.2 amd 6.3. Validation was done using the

female database due to accessibility to a higher number of raw data for female landscapes. Given the

same methodology was implemented to extract and reconstruct both male and female landscapes, and

male and female landscapes do not vary dramatically, this validation approach is suitable. Reconstructed

landscapes and their estimated peak regions used in this study are given in Figure 6.4.

Phylogenetic relationship between the species in the database was reconstructed using the whole or

partial mitochondrial genome (i.e. the barcoding CO1 gene sequence) obtained from the NCBI database,

using the packages ‘ape’ 5.6-2 (Paradis & Schliep 2019), ‘phytools’ 1.2.0 (Revell 2012) and ‘phyloseq’

1.38.0 (McMurdie & Holmes 2013). Multiple sequence alignment was done using the ‘msa’ 1.26.0 package

(Bodenhofer et al. 2015). Blomberg’s K and its statistical significance were estimated using the ‘phylosig’

function in the ‘phytools’ package; phylogenetic tree with continuous trait mapping were made using the

‘contMap’ function from the same package. Pagel’s λ was estimated using the ‘MCMCglmm’ package and

the function with same name (Hadfield 2010). Because of the unequal number of species, phylogenetic

signals were estimated for each sex separately.

MCMCglmm models with gaussian family error distribution were fitted using optimal PC ratio as

response variable with a model with fixed intercept and study and species as random variables, accounting

for the non-independent variance-covariance matrix from the reconstructed phylogenetic relationships

among species. Fixed effect prior parameters were set as V = 1 and nu = 1 while random effect priors

were set at V = 1 and nu = 0.02. Burn-in was set at 2000, thin parameter at 20, and a total of 20000

iterations for all models. Convergence was analysed using autocorrelation for fixed and random effects as

well as Gelman-Rubin diagnostics for among-chain convergence. Prior sensitivity tests were conducted

for optimal PC ratio models using a range of values for the parameter nu (i.e. 10−6, 0.002, 0.02 and 0.2)

(see Dialog S1 and Table 6.9). Sex-specific optimal PC ratio where compared using the angle θ and the

hypothenuse, obtained using the Nutrigonometry model (Morimoto et al. 2023). θ and the hypothenuse

were calculated within each study and species and the averages of these estimates per species were used
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for the analysis of phylogenetic signal as described above. Phylogenetic signal for sex-specific optimal

PC ratio could only be calculated for the species in which both male and female data were available and

therefore, was limited to only a subset of the female database (see above). The MCMCglmm models to

estimate Pagel’s λ had either the angle θ or the hypothenuse as response variable and a fixed intercept,

with study and species as random effects as described above. I used default MCMCglmm priors for these

models. The relationship between optimal PC ratio for lifespan and self-regulated PC ratio was analysed

using a MCMCglmm model with optimal PC ratio as response variable and self-regulated PC ratio as

independent variable, controlling for the random effects of study, species, and observation (to account

for repeated measures in the same study and species). I used the same values of V and nu for priors

as in the above models with the addition of priors for the random effect of observation with parameters

V = 1 and nu = 0.002. The highest posterior density intervals were calculated using the ‘HPDposterior’

function of the ‘MCMCglmm’ package for all MCMC models.
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6.8 Data accessibility

Data on optimal PC ratio that maximise lifespan is available as supplementary material. Code for the

semi-automated algorithm is not made available because the author, who developed the algorithm, is still

using the algorithm to create and analyse other databases with similar approach to that described here.

Table 6.1: List of articles and associated species for which the performance landscape for lifespan was
extracted using the semi-automated algorithm developed in this study.

Species Year Journal Reference
Drosophila melanogaster 2022 BIOGERONTOLOGY Carey et al. (2022)
Drosophila melanogaster 2015 AGING CELL Jensen et al. (2015)
Teleogryllus oceanicus 2019 JOURNAL OF EVOLUTIONARY BIOLOGY Ng et al. (2019)
Bactrocera tryoni 2009 AGING CELL Fanson et al. (2009)
Ceratitis cosyra 2017 ECOLOGY AND EVOLUTION Malod et al. (2017)
Teleogryllus commodus 2015 ANTIOXIDANTS Archer et al. (2015)
Bactrocera tryoni 2012 PROCEEDINGS OF THE ROYAL SOCIETY B Fanson, Fanson & Taylor (2012)
Bactrocera tryoni 2012 AGE Fanson & Taylor (2012)
Teleogryllus commodus 2008 CURRENT BIOLOGY Maklakov et al. (2008)
Drosophila melanogaster 2008 PNAS Lee et al. (2008)
Drosophila melanogaster 2008 AGING CELL† Skorupa et al. (2008)
Gryllus veletis 2014 PROCEEDINGS OF THE ROYAL SOCIETY B Harrison et al. (2014)
Lasius niger 2012 PROCEEDINGS OF THE ROYAL SOCIETY B Dussutour & Simpson (2012)
Gryllodes sigillatus 2022 FUNCTIONAL ECOLOGY Hawkes et al. (2022)
Teleogryllus commodus 2017 EVOLUTION Rapkin et al. (2017)
Drosophila melanogaster 2018 ENTOMOLOGIA EXPERIMENTALIS ET APPLICATA Semaniuk et al. (2018)
Nasutitermes exitiosus 2018 FUNCTIONAL ECOLOGY Poissonnier et al. (2018)
†: Study excluded from the analysis because performance landscapes were drawn using yeast:sugar ratios rather than protein:carbohydrate ratios.

6.9 Appendix: Supplementary material.

Dialog S1. MCMCglmm models. MCMCglmm models were used to estimate phylogenetic signal

via Pagel’s lambda. I conducted a prior sensitivity analysis where I ran models with priors of varying

levels of confidence (i.e. V = 1, nu ranging from 0.2 to 10-6; see main text). These priors expanded on

those tested in Nakagawa et al. (2012). Results suggest that estimates of Pagel’s lambda were somewhat

sensitive to prior specifications for both sexes (but more so for males which had smaller number of

species), although the posterior mean for all models, irrespective of priors, found a moderate strength

of phylogenetic signal (with wide credible interval estimates; see also main text for Blomberg’s K).

Because of my a priori belief, based on the plots of the optimal PC ratio onto the phylogeny during the

exploratory data analysis stage, I selected model 2 (V = 1, nu = 0.02), which was a resonable balance

between uninformative prior and a prior with more confidence, when presenting the results, while adding

a cautionary tale for the interpretations of the results given prior sensitivity (see Chapter 6). Convergence

of the final models were analysed using autocorrelation for fixed and random effects (which were close to

or lower than 0.1) as well as Gelman-Rubin diagnostics for among-chain convergence, whereby I ran the
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MCMCglmm with same specifications three independent times and compared the Gelman-Rubin score,

which were 1.01 (upr: 1.02 and 1.01) for both male and female models, respectively. MCMCglmm models

for theta and the hypothenuse, which used default priors, also converged (Gelman-Rubin: 1.01; upr: 1.01-

1.02, Theta autocorrelation: intercept = 0.015, study = 0.02, species 0.00, units = 0.016; Hypothenuse

autocorrelation: intercept = 0.03, study = 0.17, species 0.05, units = 0.004). Similarly, MCMCglmm

models for the relationship between optimal and self-regulated PC ratios converged (Gelman-Rubin: 1.06;

upr: 1.06, autocorrelation intercept = 0.019, self-regulated PC ratio: 0.021, study = 0.003, species =

0.051, units = 0.037).

Table 6.2: Prior sensitivity analysis for the phylogenetic signal on optimal PC ratio.
Sex Model V Nu Sample size Pagel’s lambda Lwr Upr

1 1 0.002 900 0.332 0.0135 0.766
Females 2 1 0.02 900 0.58 0.2200 0.938

3 1 0.2 900 0.808 0.5650 0.977
4 1 10−6 900 0.377 0.0000 0.888
1 1 0.002 900 0.35 0.0000 0.899

Males 2 1 0.02 900 0.445 0.0210 0.901
3 1 0.2 900 0.666 0.2680 0.992
4 1 10−6 900 0.18 0.0000 0.858

Hypothenuse Theta
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Malod et al. (2017)
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Figure 6.2: Estimates of error between the peak regions of original (raw data) and recon-
structed performance landscapes for lifespan. Estimates of peak region were done using the
Nutrigonometry model (Morimoto et al. 2023) Note that the credible intervals are relatively wider for
the hypothenuse in Lee et al. (2008), Harrison et al. (2014) because of the quantity of nutrients eaten
by the experimental animals in these studies were higher than the others. Importantly, the hypothenuse
measures trade-offs over quantity and, therefore, has to be calculated in the same scale as the data was
collected (i.e. cannot be standardised).
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Figure 6.3: Original and reconstructed landscapes. Red polygon represents estimated peak
region (Nutrigonometry) (Morimoto et al. 2023).
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Figure 6.4: Reconstructed landscapes used in this study. Red polygon represents estimated
peak region (Nutrigonometry) (Morimoto et al. 2023).
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Chapter 7

Nutrigonometry IV: Thales’ theorem to measure the rules

of dietary compromise in animals

Publication reference

Morimoto, J., (2023). Nutrigonometry IV: Thales’ theorem to measure the rules of dietary compromise

in animals. Scientific Reports, 13(1), p.7466.
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7.1 Abstract

Diet specialists and generalists face a common challenge: they must regulate the intake and balance of

nutrients to achieve a target diet for optimum nutrition. When optimum nutrition is unattainable, organ-

isms must cope with dietary imbalances and trade-off surplus and deficits of nutrients that ensue. Animals

achieve this through compensatory rules that dictate how to cope with nutrient imbalances, known as

‘rules of compromise’. Understanding the patterns of the rules of compromise can provide invaluable

insights into animal physiology and behaviour, and shed light into the evolution of diet specialisation.

However, we lack an analytical method for quantitative comparisons of the rules of compromise within

and between species. Here, I present a new analytical method that uses Thales’ theorem as foundation,

and that enables fast comparisons of the rules of compromise within and between species. I then apply

the method on three landmark datasets to show how the method enables us to gain insights into how

animals with different diet specialisation cope with nutrient imbalances. The method opens new avenues

of research to understand how animals cope with nutrient imbalances in comparative nutrition.

Keywords: Ecological specialisation, decision-making, diet choices, foraging
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7.2 Introduction

Evolution has shaped animals to integrate internal (physiological) and external (behavioural, social,

ecological) cues to balance their nutrition (Simpson et al. 2015, Chan et al. 2021). Whether diet specialists

or generalists, all animals must regulate the intake and balance of nutrients in their diet to maximise

growth and fitness (Raubenheimer & Simpson 1997, Raubenheimer et al. 2009). Despite this, optimum

nutrition (henceforth referred to as the ‘intake target’) is not always attainable, and animals must cope

with nutrient imbalances the best way possible. The rules that animals follow in order to compromise

their nutrient intake remains subject of extensive interest in nutritional sciences research because they

shape animal decision-making and long-term fitness (Raubenheimer & Simpson 2020).

Animals can regulate nutrient imbalances physiologically, through post-digestive processes (see e.g.,

Simpson & Raubenheimer 2012, Cavigliasso et al. 2020, Simpson & Raubenheimer 1999, Behmer et al.

1999) and behaviourally, by choosing the amount and types of foods to eat and hence, controlling the

magnitude of nutrient surpluses and deficits (Raubenheimer & Simpson 1997) (see also Behmer 2009,

for excellent review on the topic). Both of these processes are expected to follow rules (aka ‘rules of

compromise’) that evolved under natural selection which enable animals to tolerate nutrient imbalances

(Raubenheimer & Simpson 1997). These rules of compromise aim to minimise the costs of surpluses and

deficits of nutrient intake in imbalanced diets (Raubenheimer & Simpson 1993). Marked differences in

the rules of compromise have been described in closely related species with different dietary needs (e.g.,

Lee et al. 2006, Simpson & Raubenheimer 1999, Behmer 2009) but this is a new field for which large-

scale comparative studies remain a fertile field of investigation. A recent framework has enabled us to

unravel such rules of compromise: the framework known as the Geometric Framework for nutrition (GF).

GF accommodates the complexity of nutrition through a clever experimental design where the additive

and interactive effects of nutrients can be investigated simultaneously (Raubenheimer & Simpson 1993,

Simpson & Raubenheimer 1993).Two concepts in the GF framework are key: nutritional rails and intake

target. Nutritional rails are diets with fixed ratio of nutrients that animals are fed, and can be balanced

or imbalanced. Animals can move along these nutritional rails by modulating the quantity of food they

eat, but cannot move across rails because the ratio of nutrients is fixed (hence the name ‘rails’), unless

a choice experiment is performed (see Fig 7.1a). In standard GF experiments, the number of nutritional

rails can vary, but is typically between five and ten (e.g., Simpson & Raubenheimer 1993, Lee et al. 2008,

Barragan-Fonseca et al. 2021, Jang & Lee 2018, Lihoreau et al. 2016, Rapkin et al. 2018, Morimoto &
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Wigby 2016, Carey et al. 2022, Bunning et al. 2015, Ponton et al. 2015, Polak et al. 2017). These rails

are essential to generate the nutrient array, which is the collection of average food intake of animals in

each of the nutritional rails (Raubenheimer & Simpson 1993) (Fig 7.1a). The intake target is the balance

of nutrients that animals actively seek to achieve when allowed to feed freely (Simpson & Raubenheimer

2012, 1993, Raubenheimer & Simpson 1993). The intake target is the closest measure of the optimum

nutrient balance of animals in terms of food consumption (although other targets may exist, e.g., for

growth) (see Simpson & Raubenheimer 2012, Raubenheimer et al. 2022, for thorough discussion). The

rules of compromise can thus be inferred from the way animals feed on the nutritional rails relative to

their intake target (i.e. the shape of the nutrient array). This is precisely why nutrient arrays can be

used as the fingerprint of the underlying rules of compromise guiding animal feeding (Raubenheimer &

Simpson 1997). Rules of compromise are generally assumed to impose constraints on how animals feed

when the available diet differs (by a little or a lot) from the optimal diet. A more detailed overview

of the GF framework can be found in the literature (see e.g., Simpson & Raubenheimer 1993, 2012,

Raubenheimer & Simpson 1993, Raubenheimer et al. 2009, Morimoto & Lihoreau 2020, del Castillo et al.

2016, Rapkin et al. 2018, and others). Importantly, GF is a framework that can be applied across taxa,

making GF an attractive framework to reveal general patterns and responses in animal nutrition (Simpson

& Raubenheimer 1993, Raubenheimer & Simpson 1993). Because of this, GF has gained popularity in

studies of nutritional ecology, particularly when the focus is on nutritional trade-offs and life-history

traits (see e.g., Barragan-Fonseca et al. 2019, Pascacio-Villafán et al. 2022, Simpson et al. 2017, Behmer

2009, Lee et al. 2008, Maklakov et al. 2008, Rapkin et al. 2018, Ponton et al. 2015, Polak et al. 2017,

and references therein). Although GF experiments are expensive and time-consuming, and broader data

sharing remains poor (Morimoto & Lihoreau 2020), GF has enabled unprecedented insights into animal

and human nutrition (see e.g., Raubenheimer & Simpson 2020, Simpson & Raubenheimer 2012, 2005,

Simpson et al. 2003, Behmer 2009, Solon-Biet et al. 2016, Ng et al. 2018, Bradbury et al. 2014).

An important roadblock for the wider use of GF has been the relative delay in the development of

specific analytical frameworks that match the experimental complexity of GF studies. Until recently,

studies have relied at least partly on visual interpretations of multidimensional performance landscapes

obtained with GF to draw biological conclusions (see e.g., Kutz et al. 2019, Ma et al. 2020, Barragan-

Fonseca et al. 2019, 2021) (but see also Pascacio-Villafán et al. 2022), making objective comparisons

and comparative studies of nutrition using GF difficult. Recent models have been developed to address

this, and this has been a fertile ground for methodological advances (see for instance Rapkin et al. 2018,
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Morimoto & Lihoreau 2019, Morimoto et al. 2022, 2023, Pascacio-Villafán et al. 2022, del Castillo et al.

2016, Hosking et al. 2019, Ruohonen et al. 2001). However, the same level of methodological development

has not been seen for studies on the rules of compromise, which has lagged behind and remains in need of

analytical breakthroughs. Analytical methods are crucial for the advancement of this field because they

provide the methodology for accurate and reproducible analyses of the rules of compromise. This can

help uncover insights into the eco-evolutionary processes underpinning diet specialisation. For example,

diet specialists, but not diet generalists, display a peculiar rule of compromise known as the ‘closest

distance optimisation’ (CDO)(Raubenheimer & Simpson 1993) (see Simpson & Raubenheimer 2012, for

a review) (see Fig 7.1a), which was empirically observed in dietary specialist locust and moth species (Lee

et al. 2002, 2006, 2003, Simpson & Raubenheimer 1999) (see also Simpson et al. 2002). Furthermore,

CDO was observed in the solitary but not the gregarious stage of the swarming locust Schistocerca

gregaria, suggesting that solitary individuals might have more specialised diets as opposed to the swarming

gregarious counterparts (Simpson & Raubenheimer 1999).

There have been few specific studies developing theoretical methods for quantitative analysis of the

rules of compromise. For example, Raubenheimer & Simpson (1993) has provided conceptual overview

of the nutrient intake arrays that animals display in GF studies, which can be used to infer the rules of

compromise. Later, Raubenheimer & Simpson (1997) provided guidelines to study and interpret nutrient

arrays and the associated rules of compromise. At the time, the proposed approach relied on Euclidean

distances between the amount of food eaten between the imbalanced and optimal diets, which were plotted

in 2D spaces to generate what is called ‘summary plots’ (e.g., Figs 4 and 5 in Raubenheimer & Simpson

1997). However, summary plots estimate the Euclidean distances for each nutrient in the data separately,

resulting in a plot with two (or more) curves with different patterns that can be challenging to interpret.

In general, the shape of these curves has been interpreted individually and, depending on their linearity

and non-linearity, inferences on the rules of animal compromise were derived (Raubenheimer & Simpson

1997). This can be problematic due to some degree of subjectivity. A more complex model was later

developed which involved the mapping of the nutrient arrays onto performance landscapes to compare

the overall shape of the performance landscape relative to the shape of the nutrient arrays (Simpson et al.

2004). A geometric model was proposed by Cheng et al. (2008) which also relied on Euclidean distances

between points to find what was called the ‘regulatory scaling factor’, which estimated how organisms

cope with nutrient surpluses and deficits (Cheng et al. 2008). These models also relied on the Euclidean

distances between two average points (e.g., the average intake in imbalanced and the target diets) and
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(a) An example of a hypothetical GF nutritional array for the intake of nutrients n1 and n2. CDO is an
array in which the distance between the intake in an imbalanced nutritional rails are minimised relative to
the intake target (red crossed point). This implies that the angle between the nutritional rail intake and
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& Simpson 1993, Simpson & Raubenheimer 2012). (b) Thales’ theorem states that an inscribed triangle
will have angle β = 90° when the vertices lie on the circumference and the side AC is the diameter. Note
the angle remains the same as long as these conditions are fulfilled (see faded triangles with vertices β′

and β′′ (c) One can apply Thales’ theorem to investigate whether or not nutritional arrays matches the
predicted conditions for CDO, or how much and where the nutritional array deviates from CDO. (d)
Normal distribution of errors provides more stability for the estimates of the angle β. X-axis represent
the proportion of ‘noise’ (effect size over error and the y-axis is the estimate of the angle β following the
Thales approach. Shaded region represents the 95% confidence intervals of the simulations.
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lacked error estimates (see e.g., Simpson & Raubenheimer 1999, Lee et al. 2002, Cheng et al. 2008).

Other models have been developed to analyse the trade-off between energy intake and the leverage that

each nutrient has in shaping animal nutrient arrays, which have been applied to human nutrition to gain

insights into obesity (Hall 2019, Raubenheimer & Simpson 2019). However, these past methods often

relied on pairwise distances between average diet intakes in balanced (intake target) and imbalanced diets

(nutritional rails). Thus, an integrative method that enables clear visualisation and rapid and intuitive

computation of CDO will benefit our interpretation and understanding of animal feeding rules, advancing

the field of nutritional ecology.

Here, I propose an analytical method to address this gap. The method builds upon the interpretation

of distance summary plots from Raubenheimer & Simpson (1997), Simpson et al. (2004) but enables direct

statistical tests of the patterns of nutrient arrays against the predictions from CDO. This is achieved by

integrating an ancient mathematical theorem known as the Thales’ theorem to estimate deviations of the

patterns of nutrient arrays from CDO (see Fig 7.1b-c), which I show here by validating the method to

a simulation (Fig 7.1d) and applying the method to three landmark datasets of increasing complexity:

(1) the data for the nutrient array of a single species, Drosophila melanogaster, (2) the data for locusts

presented in Simpson & Raubenheimer (1999), and (3) the data for generalists and specialists Spodoptera

moths from Lee et al. (2002, 2003). I used these datasets of nutrient arrays that emerged from behavioural

regulations of food intake (as opposed to post-digestive processes), but the method presented here is also

applicable to physiological and molecular data from GF. Overall, the method proposed here advances

our ability to make statistical inferences on the rules of compromises within and between species. This

opens up new possibilities to study how the rules of compromise evolved across the animal kingdom, and

how the behaviour, ecology and physiology of species can influence their ability to cope with nutrient

imbalances.

7.3 Results

7.3.1 The method: Thales’ theorem and CDO

Thales’ theorem states that if an inscribed triangle has points A,B and C on the circumference, where

the side AC is the diameter of the circumference, then the angle ∠ABC equals to π
2 (i.e., 90°) (see Fig

7.1b). But why is this theorem useful in the context of the rules of compromise?
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A common and informative rule of compromise is the CDO (see ‘Introduction’), which states that

animals should minimise the distance between the average intake of the imbalanced diet relative to the

intake target. This leads to a semi-circle configuration of the nutrient array (Raubenheimer & Simpson

1997) (see Fig 7.1a). The CDO configuration emerges because in a flat plane, such as the Cartesian

plane (or more generally, in R2) the closest distance between two points is a straight line. This means

that the closest distance from the intake target and a point in a nutritional rail is a straight line with

90°angle between the rail that crosses the intake target and the imbalanced nutritional rail i, where i is

the number of imbalanced nutritional rails used in the study (Raubenheimer & Simpson 1993). Recall

that the Thales’ theorem states that the angle β = ∠ABC equals 90°if and only if the three points

of an inscribing triangle lie in the circumference and AC is the diameter. Adapting this theorem, we

can draw a circumference with diameter equal to the distance between the origin and the intake target.

We can then triangulate the origin, the intake target, and the point in the imbalanced nutritional rail

such that if the angle β equals to 90°for all nutritional rails, then the nutrient array is that of a CDO

rule of compromise (see Fig 7.1c). Moreover, if the nutrient array does not match that of CDO rule of

compromise, the angle β can nevertheless provide useful insights to determine the relative importance

of each nutrient in determining animals’ feeding priorities, such as e.g., which nutrients are more or less

tightly prioritised. For example, if the angle β is greater than 90°, then the point in the nutritional rail

lies inside the inscribing circle, which suggests stronger feeding constrain to avoid surpluses of a nutrient.

Conversely, if the angle β is smaller than 90°, the point in the nutritional rail lies outside the inscribing

circle, suggesting that the surplus of the nutrient is well tolerated. Interestingly, the simulations of error

structure underpinning nutrient array data showed that the Thales approach to estimate the angle β is

more stable when the error distribution in the nutritional rails is derived from a Gaussian distribution

(see Fig 7.1d).

7.3.2 Drosophila responds to dietary imbalances with underconsumption of

carbohydrate but not of protein

Firstly, I applied the method to gain insights into the feeding behaviour of Drosophila melanogaster. When

given a choice, Drosophila regulates the intake of both protein and carbohydrate to reach a P:C ratio of

1:4, which is the ratio that maximises lifetime egg production (fitness) (Lee et al. 2008). Moreover, when

given a choice between two complementary diets of varying concentrations, flies also choose to overeat
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protein when the concentration of carbohydrate is low in the counterpart diet (Lee et al. 2008). Using the

method proposed here, I confirmed that flies are able to regulate both protein and carbohydrate intakes

(F7,966: 15.585, p < 0.001, Table 7.1) , as the shape of the nutrient array for diets with P:C ratio 1:4,

1:2, 1:1 and 2:1 were according to the predictions of the CDO (see Fig 7.2a-b). However, as the nutrient

imbalances in the diet increased towards high-carbohydrate contents (i.e., P:C 1:8, 1:16, 0:1), dietary

intake of the nutritional rails progressively decreased, becoming statistically significantly different than

the predictions from CDO for diets with P:C 1:16 and 0:1 (see Fig 7.2a-b). These results suggest that flies

display remarkable underconsumption of carbohydrate-biased, but not protein-biased diets when facing

strong nutrient imbalances (Table 7.1).

Table 7.1: Estimates of angle β in the nutritional array in D. melanogaster relative to CDO. Note that
ratios in which the angle β overlaps zero implies no differences from CDO.

D. melanogaster
P:C ratio Mean β lwr 95% CI upr 95% CI

0:1 43.526 34.643 52.410
1:16 14.596 5.676 23.508
1:8 8.587 -0.460 17.634
1:4 -6.503 -15.355 2.348
1:2 1.849 -6.908 10.607
1:1 -0.093 -9.041 8.854
2:1 -3.469 -12.258 5.320

Diet specialisation leads to different nutrient arrays in response to dietary

imbalances in two locust species

Next, I applied the method to the dataset of Locusta and Schistocerca locusts species first presented

in (Simpson & Raubenheimer 1999). The original study shows the difference in the nutrient array,

whereby Locusta, a diet specialist, displayed nutrient array as predicted by CDO whereas Schistocerca,

a diet generalist, displayed a more linear nutrient array which was more tolerant of overconsumption of

both protein and carbohydrate (see Fig 4 in Simpson & Raubenheimer 1999). The method presented

here provides a clear framework to distinguish between the two responses (see Fig 7.2c-d). The method

corroborates the findings presented in (Simpson & Raubenheimer 1999) by showing that the nutrient array

for Locusta fits well to the predictions for CDO, while the response for Schistocerca diverged substantially.

This translated into different patterns in the plots of the angle β for both species. For instance, the angle

β for Locusta fluctuated closely to 90° as expected from the Thales’ theorem predictions. Meanwhile,

the angle β for Schistocerca was often smaller than 90° in nutritional rails with more extreme nutrient
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imbalances, and progressively converged to 90° as the P:C ratio of the nutritional rail approximated the

optimum P:C ratio of the intake target. This led to the plot of the angle β to resemble a parabola (see

Fig 7.2d). Thus, the method proposed here provides an analytical framework to clearly differentiate

differences in nutrient arrays and deviations from CDO.

7.3.3 Nutrient-specific effects of diet specialisation levels on the responses to

nutrient imbalances in Spodoptera species

Next, I used the method to gain insights into the patterns of the nutrient arrays of two Spodoptera species

with different diet specialisation levels. There was substantial difference in the overall consumption of

diets (irrespective of their P:C ratios) between the two species, with S. littoralis consuming greater

amounts of all diets (see Fig 7.2e-f). More importantly, the method revealed interesting differences in

the responses to nutrient imbalances between the two species (see Fig 7.2e). There was a statistically

significant interaction between species and the nutritional rail on the estimates of the angle β (Ratio *

Species: F4,626: 13.668, p < 0.001), suggesting that the shape of nutrient arrays differ between species.

Spodoptera littoralis, a diet generalist species, displayed a clear pattern of overconsumption of the

most abundant nutrient in order to minimise the underconsumption of the least abundance nutrient.

This was true for all four days of feeding data collection and resembled the responses of Schistocerca (see

above). This means that, if we were to connect the average intakes across all nutritional rails to form the

nutrient array of S. littoralis (or Schistocerca previously), forming a parabola on the plot of the angle β

(see Fig 7.2e, Table 7.2).

Spodoptera exempta, a diet specialist, displayed a somewhat similar nutrient array as S. littoralis for

nutritional rails that were carbohydrate-biased relative to the intake target P:C ratio. However, for diets

that were similar or protein-biased compared to the P:C ratio of the intake target, S. exempta displayed

an imperfect resemblance to CDO. This mixture of responses showed in the plot of the angle β, in which

values of β progressively increased towards 90° as the P:C ratio increased (i.e., more protein) up until

the nutritional rail with similar P:C ratio to the intake target, where the intake in the nutritional rail

decreased (and hence, the angle β was ≥ 90° (see Fig 7.2f). Furthermore, contrary to the response

observed in S. littoralis, the angle β did not decrease as the nutritional rails became protein-biased,

suggesting that S. exempta held the intake of imbalanced diets closer to the expected intake for CDO

(see Fig 7.2f, Table 7.2). Together, the results from the method suggest that S. littoralis can cope with
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Table 7.2: Estimates of angle β in the nutritional array in locusts and moths, relative to CDO. Note
that ratios in which the angle β overlaps zero implies no differences from CDO.

Species P:C ratio Mean β lwr 95% CI upr 95% CI
L. migratoria 1:5 2.640 -0.550 5.828

1:2 5.535 2.345 8.724
1:1 7.702 4.512 10.891
2:1 0.843 -2.346 4.032
5:1 -9.628 -12.817 -6.438

S. gregaria 1:5 -23.895 -27.294 -20.494
1:2 -17.878 -21.278 -14.478
1:1 7.401 4.001 10.800
2:1 -22.993 -26.392 -19.592
5:1 -30.953 -34.353 -27.553

S. exempta 1:5 -41.504 -53.956 -29.052
1:2 -35.560 -53.53 -17.585
1:1 0.475 -11.977 12.927
2:1 -6.064 -24.038 11.908
5:1 -8.017 -20.470 4.434

S. littoralis 1:5 -23.037 -43.644 -2.430
1:2 -9.955 -30.562 10.651
1:1 -1.565 -22.171 19.042
2:1 -13.086 -33.693 7.520
5:1 -29.878 -50.484 -9.270

surpluses of both carbohydrates and proteins equally well, whereas S. exempta can cope well with surplus

of carbohydrate but tightly regulate the intake of nutrients in protein-biased diets.

7.4 Discussion

Animals often need to regulate the intake of nutrients, a challenging task when animals feed on imbal-

anced diets. Rules evolved which enable animals to balance the costs and benefits of under- and over-

consumption of nutrients in these situations (‘rules of compromise’) imposing important constrains on

how animals eat (Raubenheimer & Simpson 2020, Simpson & Raubenheimer 2012). Using the Geometric

Framework for nutrition, studies have generated a rich collection of datasets that allow for these rules

of compromise to be studied in details. However, the development of analytical methods for statistical

inferences lagged behind (Simpson & Raubenheimer 1999, Lee et al. 2002, Cheng et al. 2008). In this

study, I proposed an analytical method to study rules of compromise, which was validated using three

landmark datasets of increasing complexity. This method provides two main contributions to the field,

namely, (1) an intuitive framework for data visualisation of animal feeding and (2) a simple method to

describe and test the rules of compromise in animal nutrition. This will help advance our understanding

of how animals compromise the intake of nutrients when feeding in imbalanced diets.

Diet specialists are seemingly constrained in their ability to cope with overconsumption of nutrients
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Figure 7.2: Thales theorem applied to empirical nutritional arrays (a) Nutritional array in
Drosophila melanogaster, with mean diet intake for each imbalanced diets (with varying P:C ratios) from
(Lee et al. 2008). (b) Summary plot of the angle β of the nutritional rails relative to the intake target.
A 90° angle suggests that the nutritional array matches the prediction of CDO for a given rail. (c)
Nutritional array in L. migratoria and S. gregaria, with mean diet intake for each imbalanced diets (with
varying P:C ratios) extracted from (Simpson & Raubenheimer 1999). (d) Summary plot of the angle β of
the nutritional rails relative to the intake target for the two species. (e) Nutritional array in S. exempta
and S. littoralis, with mean diet intake for each imbalanced diets (with varying P:C ratios) extracted
from (Lee et al. 2002, 2003). (b) Summary plot of the angle β of the nutritional rails relative to the
intake target for the two species. Red circle: Thales’ circle with diameter equals to the intake target.

and compromise on the intake of both nutrients tested (in this case, protein and carbohydrate), in

accordance with the strategy of closest distance optimisation (CDO). This was evident in the array of

L. migratoria and partly evident in the nutritional array of S. exempta (see Fig 7.2c-f). CDO has been

hypothesised as a general pattern in diet specialists, where the consumption of multiple nutrients are

tightly regulated to ensure fitness (Raubenheimer & Simpson 1999, Simpson & Raubenheimer 2001).

Interestingly, in the cockroach Blattella germanica, in which some populations have evolved dietary

specialisation to avoid glucose, rules of compromise did not comply with CDO (see Shik et al. 2014).

Glucose-avoidance specialisation appears to be hardwired and individuals may be unable to compensate
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for underconsumption of nutrients via digestive processes (Shik et al. 2014). One caveat is that Shik et al.

(2014) only used three nutritional rails to construct the nutritional arrays and thus, the experimental

design is not broad enough to allow for a proper test for CDO. Nonetheless, the model proposed here can

be used in future studies to verify whether or not the nutrient arrays of diet specialists and generalists

adhere to CDO rule of compromise.

The nutrient array of D. melanogaster was also constrained for overconsumption of imabalanced diets,

particularly those with high carbohydrate, and resembled in many ways the array of a diet specialist

even though D. melanogaster is widely defined as being diet generalist. Could the nutrient array be

revealing that D. melanogaster is in truth a specialist species? This is unlikely, although not completely

implausible scenario. The laboratory population used in the study by Lee et al. (2008) was inbred and

could have behaved as a diet specialist. Moreover, a recent study using the Drosophila Genetic Reference

Panel (DGRP) lines has shown considerable variability in D. melanogaster survival across different diets,

in particular diets with high carbohydrate levels (Havula et al. 2022). This aligns with the insights

gained here using the Thales’ method: Drosophila nutrient array diverges more strongly from CDO as

the concentration of carbohydrate (but not of protein) increases. Contrary to this, however, previous

studies have shown that in high-sugar diets, flies have reduced responses to sweet taste which leads to

overconsumption of the diet, a response that is mediated by the release of dopamine and the expression

of the enzyme O-linked N-Acetylglucosamine transferase (OGT) in sweet-sensing neurons (Inagaki et al.

2012, May et al. 2019). Moreover, sugar consumption is directly linked to female fecundity (Carvalho-

Santos et al. 2020) and male fertility is maximised at a relatively higher proportion of sugar consumption

(compared with females) (Morimoto & Wigby 2016, Lee et al. 2008). This highlights the importance of

sugar-appetite to overall fitness. Thus, the seemingly divergent findings of the nutritional array studies

and studies on the consumption of sugar in Drosophila literature remains subject of further molecular

and physiological studies.

I have shown that the method proposed here can help the interpretation of more complex nutritional

arrays which display mixed responses to nutrient imbalances. To be applied in empirical datasets, the

method proposed here requires a GF choice experiment to determine the coordinates of the intake target,

from which an accurate Thales’ circle can be drawn to analyse the nutritional array. It is also worth

mentioning that the method presented here has some limitations. Firstly, I calculated the angle β for

individual datapoints in each nutritional rail relative to the average intake target. As a result, the

estimates might suffer from uncertainty propagation (i.e. when the uncertainty in random variable are
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propagated when variables are combined). This is particularly important when variables are correlated,

as failing to account for propagation of uncertainty can lead to underestimation of combined error. In

the datasets used to validate the approach presented here, the errors associated with nutritional rails and

intake targets were collected independently and are assumed to be uncorrelated, as most of the studies

conducted in the field (e.g., Raubenheimer & Simpson 1993, Simpson et al. 2004). In the datasets analysed

here, the combined error is smaller than the individual errors in nutrient intake and thus, the Thales’

approach presented here shows a conservative estimate of statistical significance (Table 7.3). Recent

studies have started to consider uncertainty propagation when measuring GF data within the context of

the protein leverage hypothesis (Senior 2023) but this investigation lies beyond the scope of this study.

Secondly, the Thales’ theorem applies in two, but not higher dimensions. This 2D-nutritional-arrays

approach have been proposed as the best way to analyse rules of compromise (Simpson & Raubenheimer

2001) and the method proposed in this study complies with this recommendation. Should the number of

dimensions of the nutritional array increase, however, a new method has to be devised or the data has

to be ‘sliced’ into lower dimension subsections (either by pairwise comparisons or through dimensionality

reduction such as e.g., Principal Component Analysis), although such approach can transform the data in

ways that might complicate analysis of the rules of compromise. High-dimensional data are considerably

more difficult to interpret, and whether high-dimensional nutritional arrays are in themselves informative

remains to be studied. So far, studies that investigated the rules of compromise have been of 2D, for

which the method proposed here is perfectly suitable (e.g., Lee et al. 2002, 2003, 2006, 2008, Pascacio-

Villafán et al. 2022, Barragan-Fonseca et al. 2021, Bunning et al. 2015, Morimoto & Wigby 2016, Polak

et al. 2017, Ponton et al. 2015, Hosking et al. 2019, and others).

Using an ancient theorem known as the Thales’ theorem, I have developed an intuitive and repro-

ducible analytical method to study the feeding patterns of animal in response to nutrient imbalances. This

method advances our previous approaches and enables statistical analysis and interpretation of complex

patterns in nutrient arrays. This opens up routes for the application of this method to the broader field

of nutritional ecology, including recent translational studies using GF to investigate nutrition in health

and (metabolic) diseases (e.g. Solon-Biet et al. 2014, 2016, Simpson et al. 2017).
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7.5 Methods

7.5.1 Datasets

We validated the method using three landmark datasets in the field of nutritional ecology:

1. The first was the data from Lee et al. (2008) on the nutritional responses in Drosophila melanogaster.

This is a landmark paper because it was the first to demonstrate the nutritional trade-offs between

lifespan, reproductive rate, and lifetime egg production (i.e., fitness), and that when given a choice,

individuals feed on diets with nutrient ratios that maximise lifetime egg production. The experi-

ments focused on the manipulation of the ratio of protein and carbohydrate (P:C ratio) of the diets.

Flies were given seven P:C ratios (i.e., nutritional rails), namely, 0:1, 1:16, 1:8, 1:4, 1:2, 1:1, and 1.9

(Lee et al. 2008). This data has been extensively used for GF method development and thus, has

gained a important status as a ground-truth in the field (Morimoto & Lihoreau 2019, Morimoto

et al. 2022, 2023).

2. The second dataset was for two locust species originally presented in Figure 4 of Simpson & Rauben-

heimer (1999). The two species for which the nutrient array were extracted were Locusta migratoria

(specialist, gregarious) and Schistocerca gregaria (generalist, solitary or gregarious). For the pur-

pose of this paper, where we used the data for validation, I compared the nutrient arrays of both

species but opted to omit the comparison for the solitary vs gregarious stage of S. gregaria pre-

sented in Simpson & Raubenheimer (1999). This is because my aim was not to replicate the original

study, but to demonstrate the power of the method proposed here in identifying different shapes

of nutrient arrays. This data also contained five nutritional rails with P:C ratios 7:35 (1:5), 14:28

(1:2), 21:21 (1:1), 28:14 (2:1) or 35:7(5:1).

3. The third dataset was for two Lepidopteran species of the Spodoptera genus: S. littoralis and S.

exempta, the former a diet generalist and the latter, a diet specialist. Moths were given five P:C

ratios (nutritional rails), namely, 35:7 (5:1), 28:14 (2:1), 21:21 (1:1), 14:28 (1:2) and 7:35 (1:5) (Lee

et al. 2002, 2003).

More details of the findings of the above studies can be found in the original publications.
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7.5.2 Statistical analyses

All analyses were conducted in R version 4.1.3 (Team 2019). Data handling was conducted using the

tidyverse packages ‘dplyr 1.0-10’ and ‘tidyr 1.2.0’ (Wickham et al. 2019). Data visualisation plots were

done using the ‘ggplot2 3.4.0’ package (Wickham et al. 2016). I studied the stability of the probability

distribution of errors on the estimates of the angle β using a nutrient array with known angle (i.e., 90

°) and added error using the ‘rnorm’, ‘rpois’ and ‘rgamma’ functions in R, with increasing values of the

the parameters related to the standard deviation of the distributions (i.e., ‘sd’, ‘lambda’, and ‘shape’

parameters, respectively). Simulation sample size was equal to n = 100. I ran 100 simulations, each with

standard deviation of the data for each distribution increasing from 0.01 (virtually no error) to 100 (error

equals the sample size) in steps of 0.5, totalling 59700 simulated observations of the angle estimates. I

estimate the extent of the effects of increasing errors given the proportion of effect size over the error,

represented by the proportion of error relative to the data (Fig 7.1d). Next, I extracted average intake for

each nutritional rail from (Simpson & Raubenheimer 1999) manually using WebPlotDigitizer 4.2 (Rohatgi

2019). Errors in the intake of carbohydrate and protein for the dataset from Simpson & Raubenheimer

(1999) were simulated from a normal distribution using the ‘rnorm’ function in R with the parameter

‘mean’ equal to the mean protein or carbohydrate observed in the data and standard deviation equals

to 10. Because the errors were simulated, I did conduct any statistical inference on this dataset. The

simulation of errors was necessary because the raw estimate of errors were not available in the original

dataset. In all datasets, the angle β was estimated for each individual data point in the nutritional rails

against the average coordinates of the intake target. This allowed me to estimate the 95% confidence

intervals of the angle β, which were calculated using the ‘confint’ in-built function.
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7.7 Supplementary information

7.7.1 Supplementary tables

Table 7.3: Individual versus combined errors in nutrient intake across diets.
Species Experiment Nutrient SD SD (Combined)
Heliothis subflexa Target Carbohydrate 35.2

Rails 56.4 66.48
Heliothis virescens Target 28.5

Rails 30.1 41.45
Heliothis subflexa Target Protein 33.6

Rails 41.0 53.00
Heliothis virescens Target 38.5

Rails 43.8 58.31
Spodoptera exempta Target Carbohydrate 11.5

Rails 23.7 26.34
Spodoptera littoralis Target 41.6

Rails 66.0 78.01
Spodoptera exempta Target Protein 13.7

Rails 16.4 21.36
Spodoptera littoralis Target 58.8

Rails 68.3 90.12

7.8 Supplementary text: Matters Arising

After the publication of the manuscript presented in Chapter 3, Senior et al. (2025) wrote a commentary

on the approach I used to make statistical inferences using the angle β. In particular, they argue for

more theoretical work, and warned against using trigonometric functions to make statistical inferences

in nutritional geometry data. My response to their critique is reproduced in full below and published in

Morimoto (2025b).

7.8.1 Reply to: A caveat about the use of trigonometric functions in statis-

tical tests of Nutritional Geometry models

Over the past decade, analytical models leveraging the experimental power of the Geometric Frame-

work for nutrition (GF) have advanced significantly in extracting insights from multidimensional data

(Morimoto & Lihoreau 2019, Rapkin et al. 2018, del Castillo et al. 2022, Morimoto et al. 2023, 2022,

Pascacio-Villafán et al. 2022). In a recent study, I introduced the use of Thales’ theorem to analyse

experimental data on appetite and nutrient intake (Morimoto 2023). While supportive of the concept,

Senior et al. (2025) critiqued my model, highlighting potential misestimations of the standard error and
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confidence intervals for the angle β. This angle was central to statistically testing whether nutrient ar-

rays align with the closest distance optimization (CDO) rule of dietary compromise (see Morimoto 2023,

Simpson & Raubenheimer 1993, Raubenheimer & Simpson 1993, for details).

Using simulations and a reanalysis of the Drosophila melanogaster data from my study, Senior et al.

(2025) demonstrated two points: (1) heteroscedastic models are required instead of the homoscedastic

models I used and (2) estimates of standard error and confidence intervals depend on the proximity to

the intake target (IT), that is, the nutrient balance animals select when given a choice.
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Figure 7.3: Thales’ theorem applied to nutrition. (a) Geometric construction to show that the
estimates of the angle β become unstable as U approaches the IT. (b) Landscape of the estimated
standard deviation of a simulated mesh of nutrient intakes with known normally distributed noise with
mean = 0 and standard deviation = 0.2. This illustrates that the standard deviation becomes unstable in
a symmetric way as U approaches the IT. (c) The estimates of the angle β in the same noisy landscape as
in panel (b) to highlight that, despite instabilities in the estimates of the standard deviation, error, and
confidence intervals, the angle β is nevertheless a useful proxy for the CDO rule of dietary compromise.

Senior et al. (2025) offered heuristic explanations for these findings and suggested that the delta

method could improve accuracy when using trigonometric functions. They also emphasised the need for

further theoretical development to address these issues comprehensively.

I welcome the engagement of Senior et al. (2025) and endorse their call for more theoretical work in
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nutritional ecology. I was delighted by the delta method’s ability to accurately estimate standard errors

and confidence intervals, enabling correct statistical inferences with my proposed model. This is because

Senior et al. (2025) simulations showed that these estimates depend on the distance to the IT. However,

an important question remains: why are the angle β estimates influenced by the distance to the IT?

While Senior et al. (2025) heuristic argument offered valuable insights, I believe further formalisation is

needed, and I aim to address that here.

Recall from Morimoto (2023) and the law of cosines that the angle β is calculated as:

β = cos−1

(
s2 + t2 − h2

2st

)
(7.1)

where s is the length between the origin and the average intake of an unbalanced diet U , h is the length

between the origin and the IT (also the diameter of Thales’ circle), and t is the Euclidean distance between

the IT and the intake in the unbalanced diet. Senior et al. (2025) claimed that standard errors are wider

as the intake of an unbalanced diet U approaches the IT (Figure Figure 7.3a). In the GF framework,

this happens if diet U was designed (purposefully or serendipitously) and used in no-choice experiments

with PC ratios near that of the IT (Raubenheimer & Simpson 1993, Simpson & Raubenheimer 1993).

The inverse cosine function cos−1(x) used above has domain [−1, 1]. Notice that this function is non-

linear in its domain, and the absolute magnitude of its gradient increases as the input value x approaches

the domain boundaries:

d

dx
cos−1(x) = − 1√

1− x2
(7.2)

This means that estimates of the angle β will vary proportionally more as x approaches the boundaries,

i.e., as x → ±1. For the sake of argument, let’s focus on the case where x → 1, although the logic is

the same when x → −1. As the domain interval is closed, let x = 1, which means that in Equation 1,

cos−1(1) when s2 + t2 − h2 = 2st. Simplifying this, we find that cos−1(1) when h = s− t (see Appendix

I).

Let’s consider a diet U that is some distance y to the IT as shown in Figure 7.3a. With some geometric

constructions and projections, we have the following relationships:
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t2 = x2 + y2 using Pythagoras theorem (7.3)

x′2 = x2 + y′
2 using Pythagoras theorem (7.4)

sin(α) =
y′

x
using similarity of triangles (7.5)

s = s′ + δ + x′ by construction (7.6)

(s′ + δ)2 = h2 + y2 using Pythagoras theorem (7.7)

What happens to these equations when U → IT? Another way of stating this is: ‘what happens when

y → 0?’ (Figure 7.3a). This means that:

1. t2 → x2, which also implies that t → x (using 7.3 and 7.4)

2. α → 0 and sin(α) → 0, such that x′ →
√
0 + x2 and x′ → x (7.4 and 7.5)

3. δ → 0, as the distance between the horizontal line y becomes tangent to the Thales’ circle at the

IT. This also means that s → s′ + x′ in 7.6.

4. Note that x′ → x (from step 2) and t → x (from step 1), then s → s′+x′ is equivalent to s′ → s+ t.

5. As both δ (from step above) and y (by definition) → 0, 7.7 then leads us to h → s′.

6. Substituting this into step 4, we have that as y → 0, then h → s − t, which is what we needed to

show: that estimates of the angle β become more variable as the intake of diet U → IT.

To show how this looks within the GF context, I used the software R version 4.3.2 (Team 2019) to

run simulations showing how the standard deviation (which is related to the standard error) of the angle

β changes across a GF landscape. For the simulation, I created a mesh that simulated nutrient intakes

across a range of 0 to 10 for both protein (x-axis) and carbohydrates (y-axis). For each point, I added

random noise from a normal distribution using the rnorm function parameters of mean = 0 and standard

deviation = 0.2. The IT was set at the coordinates (Protein = 6, Carbohydrate = 6) and, as in Senior

et al. (2025), was assumed to be known with perfect knowledge. Figure 7.3b shows that the standard

deviation of the angle β indeed increases as the estimates approach the intake target. It also increases

next to the origin for the same reasons mentioned above.

Despite these criticisms, the Thales’ method remains valid, even if as a qualitative tool for under-

standing dietary compromise rules. This is because animals following the CDO rule will have average
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angle β estimates close to 90◦. Figure 7.3c illustrates angle β estimates within the same noisy landscape,

demonstrating the method’s utility. As expected, average angle β values increase when the intake of an

unbalanced diet (U) falls within the Thales’ circle, while estimates near the circle approach 90◦. Thus,

the Thales’ method continues to be a valuable approach for evaluating nutrient intake patterns.

An encouraging finding from Senior et al. (2025) is their reanalysis of the Drosophila dataset from

Lee et al. (2008). Using Welch’s heteroscedastic models, they concluded that neither equal distance nor

CDO fully explains macronutrient regulation in females. This aligns with my original conclusions using

the Thales’ theorem with a homoscedastic model, where I found that flies follow the CDO rule when diets

are protein-rich but deviate from it as diets become carbohydrate-rich (see Figure 7.4a-b in the original

paper)6. While this does not suggest fitting an incorrect model, it underscores the overarching value of

the Thales’ method.
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Figure 7.4: Standard deviation of dietary intake in nutritional rails of varying distances from
the IT in Drosophila. Red diamond highlights the standard deviation in the intake of the rail associated
with the IT. For carbohydrates, there is almost a linear decline in standard deviation with the distance
of the nutritional rail from the IT. For proteins, a similar pattern is found, although standard deviation
was higher for diets with increasing protein content, which highlights interesting physiological differences
between the regulation of protein and carbohydrates in Drosophila. Distance from IT was estimated as
the Euclidean distance from the average dietary intake for the nutritional rail and the IT, divided by the
total intake in the nutritional rail. Dividing by the total intake in the nutritional rail did not change
the patterns shown. Standard deviation was estimated using the ‘sd()’ function in R from the raw data.
Data form Lee et al. (2008).

Increased intake variance near the IT may not merely result from statistical artifacts but could reflect

191



underlying biological mechanisms. GF studies suggest that performance landscapes for traits across diets

often form ‘plateaus’ of maximum expression (see e.g., Lee et al. 2008, Rapkin et al. 2018, Pascacio-

Villafán et al. 2022, Rodrigues et al. 2015, Morimoto 2024, Ng et al. 2018). This implies that individuals

might tolerate deviations from their IT without significant fitness costs as long as these deviations remain

within the plateau (Figure 7.3a). In contrast, larger deviations from IT, taking individuals off the plateau,

could act as filters that reduce variance in nutrient intake. Animals feeding closer to the IT might exhibit

greater variability in nutrient intake without incurring fitness costs.

This idea aligns with Simpson et al. (2004) assumptions that fitness costs increase “continuously

and smoothly” with distance from IT. Under these assumptions, animals would optimize their intake to

minimize this distance, shaping their nutrient array and performance landscape geometry. Deviations

from IT on costly diets (i.e., off the IT) would be penalised, possibly non-linearly (Simpson et al. 2004),

resulting in narrower feeding ranges for animals further from IT. Simpson et al. (2004) Figure 5a visually

supports this, showing increased errors when dietary intakes neared the plateau. I reanalysed data from

Lee et al. (2008) which also supports this pattern, particularly for carbohydrates and, to a lesser extent,

proteins (Figure 7.4). This raises intriguing questions for future research and will certainly uncover new

biological patterns, provided the field adopts stronger open-data policies to enhance experimental power

and collaboration (Morimoto & Lihoreau 2020, Morimoto 2024).

In sum, I agree with Senior et al. (2025) that further theoretical work is needed to formalise the

sampling distributions and statistical inferences using angles and confidence intervals. Advancing our un-

derstanding of the hidden patterns in animal nutritional ecology will require a concerted effort combining

new theoretical frameworks, analytical models, and empirical data.
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Appendix I

s2 + t2 − h2 = 2st (7.8)

s2 − 2st+ t2 = h2 (7.9)

Recognising the left-hand side as a perfect square:
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(s− t)2 = h2 (7.10)
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